WO2018149076A1 - 辅助导航定位方法及系统 - Google Patents

辅助导航定位方法及系统 Download PDF

Info

Publication number
WO2018149076A1
WO2018149076A1 PCT/CN2017/089623 CN2017089623W WO2018149076A1 WO 2018149076 A1 WO2018149076 A1 WO 2018149076A1 CN 2017089623 W CN2017089623 W CN 2017089623W WO 2018149076 A1 WO2018149076 A1 WO 2018149076A1
Authority
WO
WIPO (PCT)
Prior art keywords
pseudorange
difference
satellite
gnss
gnss signal
Prior art date
Application number
PCT/CN2017/089623
Other languages
English (en)
French (fr)
Inventor
丁元
张光华
肖鹏
Original Assignee
深圳思凯微电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳思凯微电子有限公司 filed Critical 深圳思凯微电子有限公司
Publication of WO2018149076A1 publication Critical patent/WO2018149076A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H2201/00Aspects of broadcast communication
    • H04H2201/10Aspects of broadcast communication characterised by the type of broadcast system
    • H04H2201/18Aspects of broadcast communication characterised by the type of broadcast system in band on channel [IBOC]
    • H04H2201/183FM digital or hybrid

Definitions

  • the present invention relates to the field of communications, and in particular, to a method and system for assisting navigation positioning.
  • GNSS signal is relatively weak, when the satellite signal is very weak, due to the extremely low signal-to-noise ratio, the traditional receiver can not capture the satellite signal;
  • the use of high-sensitivity GNSS receivers often requires a cumulative approach to improve the signal-to-noise ratio of the captured and tracked GNSS signals.
  • the GNSS signal can only be completed when the signal-to-noise ratio of the GNSS signal exceeds a certain threshold.
  • the high-sensitivity GNSS receiver can locate the coarse-grained navigation equation after capturing at least five GNSS satellite signals, but if the direct solution of such a coarse-time navigation equation has a whole millisecond flipping problem.
  • the most common solution for the whole millisecond fuzzy problem is to provide the high-sensitivity GNSS receiver with the position coordinates of the auxiliary reference station, the satellite ephemeris and the reference time.
  • the receiver can eliminate the whole millisecond flipping problem based on the prior information. Thereby, the full pseudorange of the corresponding satellite is obtained, and the positioning result of the receiver can be obtained by solving the reconstructed coarse time navigation equation.
  • the mainstream transmission scheme of GNSS signal auxiliary information is completed by using the mobile Internet, due to the complex topology of the Internet and the inherent coverage of mobile communication, large delay dynamic range, cell switching, and multi-user concurrency. It often leads to instability of GNSS auxiliary information transmission, which greatly affects the practical application and user experience of high-sensitivity GNSS receivers.
  • FIG. 1 is a flow chart of a method for assisting navigation and positioning according to the present invention
  • FIG. 2 is a schematic flowchart of GNSS auxiliary information verification in an auxiliary navigation positioning method according to the present invention
  • FIG. 3 is a schematic flowchart of a pseudo-distance difference confirmation in an auxiliary navigation positioning method according to the present invention
  • FIG. 4 is a schematic flowchart of generating a full pseudorange in an auxiliary navigation positioning method according to the present invention
  • FIG. 5 is a schematic flowchart of a scenario for implementing an auxiliary navigation and positioning method according to the present invention
  • FIG. 6 is a schematic diagram of functional modules of a first embodiment of an auxiliary navigation and positioning system according to the present invention.
  • FIG. 7 is a schematic diagram of a functional module of a second embodiment of an auxiliary navigation and positioning system according to the present invention.
  • FIG. 1 is a block diagram of a method for assisting navigation and positioning according to the present invention. Referring to FIG. 1, the method includes:
  • the receiver receives the current GNSS signal.
  • the power of the current GNSS signal is less than a preset power, and the carrier-to-noise ratio of the current GNSS signal is less than a preset carrier-to-noise ratio
  • the acquiring is performed by the GNSS auxiliary reference station through the CDRadio channel.
  • GNSS auxiliary information ;
  • the power of the GNSS signal is less than the preset power and the carrier-to-noise ratio is less than the preset carrier-to-noise ratio.
  • the received power is generally ⁇ -150 dBm, and C/N0 ⁇ 25 dB ⁇ Hz.
  • the high-sensitivity GNSS receiver is generally used, but Gao Ling Sensitivity GNSS receivers often need to use a cumulative method to improve the signal-to-noise ratio of the captured and tracked GNSS signals.
  • the GNSS signal can be captured and tracked only after the signal-to-noise ratio of the GNSS signal exceeds a certain threshold.
  • the GNSS auxiliary information includes: the GNSS auxiliary station reference time, the GNSS auxiliary station position coordinate, the currently visible asterisk, the message of the corresponding satellite, and the Doppler of the satellite observed by the GNSS auxiliary station.
  • the CDRadio is an abbreviation of China Digital Radio. It is specially designed for China's FM broadcasting.
  • key technologies such as irregular spectrum allocation, OFDM modulation, LDPC error correction coding, time slicing and layered modulation, it can more effectively utilize the spectrum between existing analog FM bands.
  • the gap, high receiving sensitivity, strong anti-interference ability, etc., and the digital signal and analog signal symbiosis in the same frequency band, is the world's original advanced technology;
  • the auxiliary information includes the auxiliary reference station time, the auxiliary station prior position, and the satellite ephemeris, and further includes a current visible satellite number, a message, a Doppler frequency, etc., which can assist navigation positioning.
  • Information of action
  • the current GNSS signal is captured and the current GNSS signal is within the reference time. Tracking, using the current GNSS signal in the reference time as the target GNSS signal;
  • the capturing process is a process of transmitting carrier Doppler frequency and message information of a current GNSS signal to a receiver through a CDRadio channel in the auxiliary reference time, compared to the prior art by using mobile communication.
  • Way of sending the net By using the CDRadio channel of the present invention, the carrier Doppler frequency and message information of the GNSS signal can be acquired in time, accurately and stably, and the cumulative time of coherent accumulation and non-coherent accumulation can be shortened, thereby improving the GNSS signal faster.
  • Signal to noise ratio Signal to noise ratio
  • the GNSS navigation signal can be expressed as:
  • ⁇ 2P is the signal amplitude
  • D(t) is the spreading code of the current GNSS signal
  • C(t) is the pseudorandom noise code (PN)
  • cos(2 ⁇ f IF t+ ⁇ ) is the carrier signal.
  • the complete GNSS signal is mainly composed of three parts, the phase D(t) of the current GNSS signal spreading code, the PN code C(t), and the carrier cos(2 ⁇ f IF t+ ⁇ ).
  • the carrier part of the GNSS signal can be demodulated by the carrier generated locally by the receiver.
  • the GNSS signal after stripping off the carrier is correlated with the locally reproduced PN code, and the correlation result is compared with the threshold. If the threshold is exceeded, It can be considered that the capture is successful, and vice versa, the capture fails; the above GNSS capture process essentially performs two-dimensional correlation and search on the target GNSS signal in the two dimensions of frequency and PN code phase, when the two-dimensional correlation result is the largest.
  • the value passes the preset threshold, the capture is successful.
  • the frequency and code phase corresponding to the maximum value are the carrier Doppler frequency of the captured GNSS signal and the initial value of the PN code phase;
  • the maximum value obtained by a two-dimensional search often fails to pass the threshold, and the signal-to-noise ratio of the GNSS signal is often improved by a coherent and non-coherent accumulation method for a period of time.
  • the receiver either takes a long time to guess and trial and error to determine the carrier Doppler frequency of the captured GNSS signal, or A very complex signal processing model is used to estimate the carrier Doppler frequency, whichever solution can not provide a satisfactory customer experience. Therefore, when the weak GNSS signal is captured, the carrier Doppler frequency and the message information of the GNSS signal in the auxiliary reference time are given to the receiver through the CDRadio channel, which can solve the above problem well.
  • the successfully captured GNSS signal is tracked, multiplied by the locally generated two orthogonal carriers, and the carrier demodulation operation is completed, and then respectively with the local PN code generator.
  • the generated real-time code, the advance code of the leading half chip, and the hysteresis code of the delayed half chip are integrated, and the integrated result is transmitted to the carrier tracking loop and the code tracking loop for tracking, and the obtained tracking result is fed back to Local carrier Adjust with the generator of the local code;
  • the auxiliary information can be provided to the GNSS receiver in time, accurately and stably through the CDRadio channel compared to the prior art mobile communication transmission, which solves the above problem.
  • the a priori pseudorange is a pseudorange that estimates a prior state of the auxiliary reference station by using location information of the auxiliary reference station;
  • the pseudorange is a signal that the GNSS satellite can transmit a certain structure as a "pseudo-random noise code" according to the on-board clock, which is called a ranging code signal (ie, a coarse code C/A code or a fine code P code).
  • the propagation time ⁇ t includes the error that the satellite clock is not synchronized with the receiver clock, the satellite ephemeris error, the receiver measurement noise, and the delay error of the ranging code propagating in the atmosphere, etc., the distance value obtained thereby It is not the true geometric distance of the station star, which is customarily called "pseudo-range";
  • the determining, according to the pseudorange difference, the location of the receiver The quantity generally substitutes the position vector into the coarse time navigation equation to derive the position vector;
  • a high-sensitivity GNSS receiver can locate a coarse-grained navigation equation after capturing at least five GNSS satellite signals, but if such a coarse-time navigation equation is directly solved, there will be a problem of a whole millisecond flip.
  • the most common solution for the whole millisecond fuzzy problem is to provide the high-sensitivity GNSS receiver with the position coordinates of the auxiliary reference station, the satellite ephemeris and the reference time.
  • the receiver can eliminate the whole millisecond flipping problem based on the prior information. Thereby obtaining the full pseudorange of the corresponding satellite, and then obtaining the positioning result of the receiver by using the reconstructed coarse time navigation equation;
  • the coarse time refers to the rough time, which refers to the reference time with the time precision lower than 10ms, and a new state variable tc is introduced in the prior state update vector to represent the unknown rough.
  • the new matrix equation can be expressed as:
  • V (k) (e (k) ⁇ ⁇ (k) - ⁇ t (k) ) is the pseudorange rate, ⁇ (k) is the velocity vector of the satellite, and ⁇ t (k) is k The clock deviation rate of the satellite;
  • the reference time of the GNSS auxiliary reference station can be Inter-, position coordinates, current visible satellite number, message, observation Doppler frequency, ephemeris and other auxiliary information are transmitted to the GNSS receiver in a timely, accurate and stable manner, which solves the unreliability of the mobile Internet to transmit GNSS signal auxiliary information.
  • the problem has significantly improved the practical application range and user experience of high-sensitivity GNSS receivers.
  • FIG. 2 is a schematic diagram of a GNSS auxiliary information verification process in an assisted navigation and positioning method according to the present invention. and based on the method shown in FIG. 1 above, referring to FIG. 2, the method includes:
  • the current GNSS signal is not necessarily the best GNSS signal, and if such an inaccurate GNSS signal is used for subsequent calculation, the result is obtained. It must be inaccurate, that is, the final positioning is not accurate, and may even differ greatly from the actual position. Therefore, it is necessary to verify the current GNSS signal to select a more suitable GNSS signal, which can be positioned later. More precise.
  • the carrier part of the GNSS signal can be demodulated by the carrier generated locally by the receiver, and the GNSS signal after stripping off the carrier is correlated with the local reproduction code, and the correlation result is compared with the threshold, if it exceeds Threshold, it can be considered that the capture is successful, otherwise, the capture fails;
  • the above GNSS capture process is essentially two-dimensional correlation and search on the target GNSS signal in the two dimensions of frequency and code phase, when the two-dimensional correlation result
  • the maximum value passes the preset threshold, the capture is successful, and the frequency and code phase corresponding to the maximum value are the carrier Doppler frequency and the code phase initial value of the captured GNSS signal;
  • the maximum value obtained by a two-dimensional search often fails to pass the threshold, and the signal-to-noise ratio of the GNSS signal is often improved by a coherent and non-coherent accumulation method for a period of time.
  • the receiver either takes a long time to guess and trial and error to determine the carrier Doppler frequency of the captured GNSS signal, or A very complex signal processing model is used to estimate the carrier Doppler frequency, whichever solution can not provide a satisfactory customer experience. Therefore, when the weak GNSS signal is captured, the carrier Doppler frequency and the message information of the GNSS signal in the auxiliary reference time are given to the receiver through the CDRadio channel, which can solve the above problem well.
  • the successfully captured GNSS signal is tracked, multiplied by the locally generated two orthogonal carriers, and the carrier demodulation operation is completed, and then respectively with the local PN code generator.
  • the generated real-time code, the advance code of the leading half chip, and the hysteresis code of the delayed half chip are integrated, and the integrated result is transmitted to the carrier tracking loop and the code tracking loop for tracking, and the obtained tracking result is fed back to Local carrier and local code generators are adjusted;
  • the auxiliary information can be provided to the GNSS receiver in time, accurately and stably through the CDRadio channel compared to the prior art mobile communication transmission, which solves the above problem.
  • the methods for accumulating weak GNSS signals mainly include coherent accumulation and non-coherent accumulation; due to GNSS message inversion and the existence of unknown Doppler frequency between receiver and satellite, the coherent time of coherent accumulation will be very Large limits (generally no more than 40ms); although non-coherent accumulation is not affected by GNSS message flipping, pure non-coherent accumulation under weak GNSS signal conditions can have large square losses, resulting in incoherent fatigue The efficiency of the product is very low; in practice, people often perform coherent accumulation for a period of time before using non-coherent accumulation to get a better cumulative effect.
  • the preset threshold value can relatively increase the number of the GNSS signals captured, and find the GNSS signal that meets the requirements more quickly;
  • FIG. 3 is a schematic diagram of a pseudo-distance difference confirmation process in an assisted navigation and positioning method according to the present invention. and based on the method shown in FIG. 1, referring to FIG. 2, the method includes:
  • the pseudorange difference is an adjustable variable, and the pseudorange in this state is predicted according to the estimated prior state, and after the actual pseudorange measurement is performed, according to the predicted pseudorange and the actual pseudo.
  • the a priori pseudorange is a pseudorange that estimates an a priori state of the auxiliary reference station by using location information of the auxiliary reference station; the pseudorange is a GNSS satellite capable of transmitting according to a spaceborne clock.
  • a signal having a structure of "pseudo-random noise code” is called a ranging code signal (ie, a coarse code C/A code or a fine code P code); the signal is transmitted from the satellite for a time ⁇ t, and then reaches the receiver antenna;
  • the satellite ephemeris error, the receiver measurement noise, and the delay error of the ranging code propagating in the atmosphere, etc., and the distance value thus obtained is not the true geometric distance of the station star, which is customarily called "pseudo-range";
  • the advantage of high receiving sensitivity and strong anti-interference ability of the transmission mode of the mobile communication in the prior art by using the CDRadio channel enables fast, stable and accurate transmission of auxiliary information;
  • the pseudorange difference is more accurate, and the comparison of the pseudorange difference and the preset difference has a significant effect. If the pseudorange difference is too large, the positioning result is output, and the positioning result at this time cannot accurately reflect the current position.
  • the position of the receiver can be compared to effectively avoid the existence of such errors, and has a certain screening effect.
  • FIG. 4 is a schematic flowchart of generating a full pseudorange in an auxiliary navigation positioning method according to the present invention. and referring to FIG. 4, the method includes:
  • the expected full pseudorange of all the measured satellites is calculated, and then one satellite is selected as the reference satellite.
  • the superscript (0) is used to indicate the reference satellite, and the superscript is used. ) indicates other satellites.
  • N (0) the full pseudorange it reconstructs is N (0) + Z (0) ms, and Z (0) refers to the measured sub-millisecond pseudorange, expressed in milliseconds.
  • Z (0) refers to the measured sub-millisecond pseudorange, expressed in milliseconds.
  • N (0) contains the common deviation in the reconstructed full pseudorange, which can be represented by the following equation
  • r (0) is the true geometric distance to the satellite
  • d (0) is The error present is caused by a priori position and time error
  • ⁇ t (0) is the (known) satellite clock bias
  • b is the common bias
  • ⁇ (0) is the measurement error. All length units are expressed in light milliseconds (the distance traveled by light in a millisecond, nearly 300km).
  • FIG. 5 is a schematic flowchart of a scenario for implementing an auxiliary navigation and positioning method according to the present invention. and referring to FIG. 5, the method includes:
  • the auxiliary reference station 100 After the auxiliary reference station 100 receives the GNSS signal 200 sent by the GNSS satellite 500, the auxiliary information 110 is extracted;
  • the auxiliary information 110 assists the GNSS receiving terminal 400 in performing highly sensitive navigation positioning.
  • FIG. 6 is a schematic diagram of a functional module of a first embodiment of an auxiliary navigation and positioning system according to the present invention. with reference to FIG. 6, the system includes:
  • the receiving signal module 10 is configured to receive a current GNSS signal.
  • the power of the current GNSS signal is less than a preset power, and the carrier-to-noise ratio of the current GNSS signal is less than a preset carrier-to-noise ratio, the acquiring is performed by the GNSS auxiliary reference station.
  • the auxiliary information extraction module 20 is configured to extract, from the GNSS auxiliary information, a current visible star number, a carrier Doppler frequency of the GNSS auxiliary reference station observation satellite, a satellite ephemeris, and location information of the GNSS auxiliary reference station, and Reference time
  • the target signal confirmation module 30 is configured to: when the carrier Doppler frequency, the phase of the current GNSS signal spreading code, and the current visible star number satisfy a preset condition, capture the current GNSS signal and Tracking the current GNSS signal in time, and using the current GNSS signal in the reference time as the target GNSS signal;
  • the a priori pseudorange determination module 40 is configured to determine a priori pseudorange of the target GNSS signal according to the location information of the GNSS auxiliary reference station;
  • the full pseudorange generation module 50 is configured to calculate an expected fraction pseudorange of each satellite according to the satellite ephemeris, the location information of the GNSS auxiliary reference station, and the reference time, and select a satellite as a reference satellite, and according to the reference The expected fractional pseudorange of the satellite and the expected fractional pseudorange of other satellites generate a full pseudorange;
  • a determining location module 60 configured to calculate a pseudorange difference between the a priori estimated pseudorange and the full pseudorange, determining a location vector of the receiver according to the pseudorange difference, and receiving according to the The position vector of the machine determines the position information of the receiver to achieve assisted navigation positioning.
  • the determining location module 60 is further configured to determine whether the pseudorange difference is less than a preset difference, and determine whether the pseudorange difference is a required pseudorange difference; when the pseudorange difference When the value is smaller than the preset difference, determining that the pseudorange difference is the required pseudorange difference, and determining a position vector of the receiver according to the pseudorange difference; when the pseudorange difference When the value is greater than or equal to the preset difference, one satellite is reselected as the reference satellite, and the full pseudorange is regenerated, and the pseudorange difference is recalculated.
  • FIG. 7 is a schematic diagram of a functional module of a second embodiment of an auxiliary navigation and positioning system according to the present invention. and based on the method shown in FIG. 6, referring to FIG. 7, the system includes: a receiving signal module 10, an auxiliary information extracting module 20, and a target signal confirmation. Module 30, a priori estimation pseudorange The fixed module 40, the full pseudorange generating module 50, the determining location module 60 and the signal verifying module 11;
  • the signal verification module 11 is configured to verify the current GNSS signal, and if the verification passes, confirm that the current GNSS signal is the required current GNSS signal.
  • the signal verification module 11 is further configured to demodulate and strip the carrier Doppler frequency of the current GNSS signal according to the GNSS auxiliary information, and perform coherent demodulation and stripping of the GNSS signal. After the non-coherent accumulation is performed, the local recurrence code is correlated, and the correlated result is compared with a preset threshold. When the correlation result is greater than or equal to the preset threshold, the verification is passed. Confirm that the current GNSS signal is the desired current GNSS signal.
  • the signal verification module 11 is further configured to: when the result of the correlation is less than the preset threshold, verify that the current GNSS signal is not received.
  • the determining location module 60 is further configured to determine whether the pseudorange difference is less than a preset difference, and determine whether the pseudorange difference is a required pseudorange difference;
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • a storage medium such as ROM/RAM, disk
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, an air conditioner, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种辅助导航定位方法及系统。辅助导航定位方法包括:接收机接收当前GNSS信号,在当前GNSS信号的功率小于预设功率,并且当前GNSS信号的载噪比小于预设载噪比时,获取由GNSS辅助参考站(100)通过CDRadio信道(300)发送的GNSS辅助信息(110)(S1),根据GNSS辅助信息(110)完成对当前GNSS信号的捕获、跟踪及计算伪距差值以确定接收机的位置向量,并根据位置向量确定接收机的位置信息,以实现辅助导航定位。通过CDRadio信道(300)发送的GNSS信号辅助信息(110)来实现辅助导航定位,解决了移动互联网来传送GNSS信号辅助信息的不稳定问题,显著提升了高灵敏度GNSS接收机的实际应用范围和用户体验。

Description

辅助导航定位方法及系统 技术领域
本发明涉及通信领域,尤其涉及一种辅助导航定位方法及系统。
背景技术
进入21世纪后,卫星导航技术在市场上取得了巨大的成功,随着卫星导航技术的广泛应用,人们对它的要求也越来越高,例如人们希望在穿越浓密植被的山区或者在室内实时地获取自己的位置;但一般在浓密植被的山区或者在室内时,GNSS信号都比较弱,当卫星信号非常微弱时,由于信噪比极低,传统的接收机无法捕获到卫星信号;在弱GNSS信号情况下,会使用高灵敏度GNSS接收机往往需要采用累积的方法来提高被捕获、跟踪GNSS信号的信噪比,只有当GNSS信号的信噪比超过一定门限后才可完成对该GNSS信号的捕获和跟踪。高灵敏度GNSS接收机在捕获到至少五颗GNSS卫星信号后即可通过解粗时导航方程来进行定位,但如果直接解这样的粗时导航方程会存在整毫秒数翻转问题。目前针对整毫秒数模糊问题最常见的解决方案是给高灵敏度GNSS接收机提供辅助参考站的位置坐标、卫星星历以及参考时间,接收机根据这些先验信息就可以消除整毫秒数翻转问题,从而得到对应卫星的全伪距,再通过解重构的粗时导航方程就可得到接收机的定位结果。
现有技术中,GNSS信号辅助信息的主流传输方案是通过用移动互联网来完成的,由于互联网复杂的拓扑结构以及移动通信固有的覆盖范围小、延迟动态范围大、小区切换、多用户并发等特点,往往会导致GNSS辅助信息传输的不稳定,极大地影响了高灵敏度GNSS接收机的实际应用和用户体验。
上述内容仅用于辅助理解本发明的技术方案,并不代表承认上述内容是现有技术。
附图说明
图1为本发明一种辅助导航定位方法流程框图;
图2为本发明一种辅助导航定位方法中GNSS辅助信息验证的流程示意图;
图3为本发明一种辅助导航定位方法中伪距差值确认的流程示意图;
图4为本发明一种辅助导航定位方法中生成全伪距的流程示意图;
图5为本发明一种辅助导航定位方法实现场景流程示意图;
图6为本发明一种辅助导航定位系统第一实施例功能模块示意图;
图7为本发明一种辅助导航定位系统第二实施例功能模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
图1为本发明一种辅助导航定位方法流程框图,参照图1,所述方法包括:
S1、接收机接收当前GNSS信号,在所述当前GNSS信号的功率小于预设功率,并且所述当前GNSS信号的载噪比小于预设载噪比时,获取由GNSS辅助参考站通过CDRadio信道发送的GNSS辅助信息;
需要说明的是,所述GNSS信号的功率小于预设功率且载噪比小于预设载噪比是指在弱GNSS信号的情况下,一般为接收功率<-150dBm,C/N0<25dB·Hz的情况下,此时普通的卫星导航接收机不能在这些环境中工作,所以一般使用高灵敏度GNSS接收机,但高灵 敏度GNSS接收机往往需要采用累积的方法来提高被捕获、跟踪GNSS信号的信噪比,只有当GNSS信号的信噪比超过一定门限后才可以完成对该GNSS信号的捕获和跟踪;
可理解的是,所述GNSS辅助信息包括:所述GNSS辅助站参考时间、所述GNSS辅助站位置坐标、当前可见星号、对应卫星的电文、所述GNSS辅助站观测到的卫星的多普勒频率、卫星星历等;应理解的是,所述GNSS的全称是全球导航卫星系统(Global Navigation Satellite System),它是泛指所有的卫星导航系统,包括全球的、区域的和增强的,如美国的GPS、俄罗斯的Glonass、欧洲的Galileo、中国的北斗卫星导航系统,还涵盖在建和以后要建设的其他卫星导航系统。
可理解的是,所述CDRadio是中国数字音频(China Digital Radio)的简称。它是针对中国调频广播而专门设计的,通过使用非规则频谱分配、OFDM调制、LDPC纠错编码、时间分片和分层调制等关键技术,能够更有效地利用现有模拟调频频段间的频谱间隙、具有接收灵敏度高、抗干扰能力强等特点,同时使数字信号与模拟信号共生在同一频段,是全球独创的先进技术;
S2、从所述GNSS辅助信息中提取当前可见星星号、所述GNSS辅助参考站观测卫星的载波多普勒频率、卫星星历、所述GNSS辅助参考站的位置信息及参考时间;可理解的是,所述辅助信息包括所述辅助参考站时间、所述辅助站先验位置、和所述卫星星历,还包括当前可见星卫星号、电文、多普勒频率等能够对导航定位产生辅助作用的信息;
S3、当所述载波多普勒频率、当前GNSS信号扩频码的相位和所述当前可见星星号满足预设条件时,捕获所述当前GNSS信号并对在所述参考时间内的当前GNSS信号进行跟踪,将所述参考时间内的当前GNSS信号作为目标GNSS信号;
需要说明的是,所述捕获过程为在所述辅助参考时间内通过CDRadio信道将当前GNSS信号的载波多普勒频率和电文信息发送给接收机的过程,相比于现有技术中通过移动通信网发送的方式,采 用本发明的通过CDRadio信道发送,能够及时、准确和稳定的获取GNSS信号的载波多普勒频率和电文信息,能够缩短进行相干累计和非相干累计的累计时间,从而更快的提高GNSS信号的信噪比;
可理解的是GNSS导航信号可表示为:
Figure PCTCN2017089623-appb-000001
其中√2P为信号幅度,D(t)为当前GNSS信号的扩频码,C(t)为伪随机噪声码(PN),cos(2πfIF t+θ)为载波信号。
由上式可知,完整的GNSS信号主要由三个部分组成的,当前GNSS信号扩频码的相位D(t),PN码C(t),载波cos(2πfIF t+θ)。GNSS信号的载波部分可通过接收机本地产生的载波来解调,剥离掉载波后的GNSS信号在与本地复现的PN码作相关,将相关后的结果与门限进行比较,如果超过门限,即可认为捕获成功,反之,则是捕获失败;上述的GNSS捕获过程实质上就是在频率和PN码相位这两个维度上,对目标GNSS信号作二维相关和搜索,当二维相关结果的最大值通过预设门限时,则说明捕获成功,此最大值对应的频率和码相位就是被捕获GNSS信号的载波多普勒频率和PN码相位初值;
在具体实现中,当GNSS信号为弱信号时,一次二维搜索得到的最大值往往无法通过门限,常常会通过一段时间的相干和非相干累积的方法来提高GNSS信号的信噪比。但是如果在累积时间段内的GNSS信号的载波多普勒频率是未知的话,则接收机要么需要耗费很长时间来猜测和试错,才能确定被捕获GNSS信号的载波多普勒频率,要么通过采用非常复杂的信号处理模型来估计载波多普勒频率,而无论哪个方案都不能给用户提供满意的客户体验。因此在捕获弱GNSS信号时,通过CDRadio信道将辅助参考时间内GNSS信号的载波多普勒频率和电文信息给接收机,能够很好的解决上述问题。
应理解的是,当对GNSS信号捕获成功后,对捕获成功的GNSS信号进行跟踪,与本地生成的两路正交载波相乘,完成载波的解调操作,然后再分别与本地PN码发生器生成的即时码、超前半码片的超前码、滞后半码片的滞后码进行积分操作,将积分后的结果传给载波跟踪环路和码跟踪环路进行跟踪,得到的跟踪结果再反馈给本地载波 和本地码的发生器进行调整;
在具体实现中,当GNSS信号为弱信号时,一次积分的结果信噪比往往很差,从而导致跟踪不能锁定或者跟踪环路失锁,这时就需要通过一段时间的相干和非相干累积的方法来提高跟踪环路的输入信噪比。但是如果在累积时间段内的GNSS信号的导航电文是未知的话,则接收机需要耗费很长时间来猜测和试错,才能确定被跟踪GNSS信号的导航电文,而这样的方法是不能给用户提供满意的客户体验。因此在跟踪弱GNSS信号时,相比于现有技术中移动通信传输,通过CDRadio信道能够及时、准确和稳定地向GNSS接收机提供这些辅助信息,正好解决了上述问题。
S4、根据所述GNSS辅助参考站的位置信息确定所述目标GNSS信号的先验估计伪距;
需要说明的是,所述先验估计伪距为通过所述辅助参考站的位置信息估计所述辅助参考站的先验状态的伪距;
可以理解的是,所述伪距为GNSS卫星能够按照星载时钟发射某一结构为“伪随机噪声码”的信号,称为测距码信号(即粗码C/A码或精码P码);该信号从卫星发射经时间Δt后,到达接收机天线;用上述信号传播时间Δt乘以电磁波在真空中的速度c,就是卫星至接收机的空间几何距离ρ,即ρ=Δtc;实际上,由于传播时间Δt中包含有卫星时钟与接收机时钟不同步的误差、卫星星历误差、接收机测量噪声以及测距码在大气中传播的延迟误差等等,由此求得的距离值并非真正的站星几何距离,习惯上称之为“伪距”;
S5、根据所述卫星星历、所述GNSS辅助参考站的位置信息及参考时间计算各卫星的预期分数伪距,选取一颗卫星作为参考卫星,并根据所述参考卫星的预期分数伪距及其他卫星的预期分数伪距生成全伪距;
S6、计算所述先验估计伪距与所述全伪距之间的伪距差值,根据所述伪距差值确定所述接收机的位置向量,并根据所述接收机的位置向量确定所述接收机的位置信息,以实现辅助导航定位。
在具体实现中,所述根据所述伪距差值确定所述接收机的位置向 量一般将所述位置向量代入到粗时导航方程中,得出所述位置向量;
可理解的是,高灵敏度GNSS接收机在捕获到至少五颗GNSS卫星信号后即可通过解粗时导航方程来进行定位,但如果直接解这样的粗时导航方程会存在整毫秒数翻转问题。目前针对整毫秒数模糊问题最常见的解决方案是给高灵敏度GNSS接收机提供辅助参考站的位置坐标、卫星星历以及参考时间,接收机根据这些先验信息就可以消除整毫秒数翻转问题,从而得到对应卫星的全伪距,再通过解重构的粗时导航方程就可得到接收机的定位结果;
需要说明的是,在粗时导航方程中,粗时是指粗略时间,指的是时间精度低于10ms的参考时间,先验状态更新向量中将引入一个新的状态变量tc来表示未知的粗时误差,那么现在的状态更新向量为δx=[δxyzbtc]T。新的矩阵方程可表示为:
δz=Hδx+ε
其中,
Figure PCTCN2017089623-appb-000002
为新的观测矩阵,V(k)=(e(k)·γ(k)t (k))为伪距速率,γ(k)为卫星的速度向量,δt (k)表示k号卫星的时钟偏差速率;
如果H中至少有5个独立的行,那么我们就能解出δx,因此需要至少从5颗不同的卫星上获取伪距测量值。但由于引入了未知的偏差,解上面的五状态方程会存在毫秒整周期模糊问题。
在具体实现中,当人们在穿越浓密植被的山区或者在室内或者在进行高速移动时想要实时地获取自己的位置,但通过用一般移动互联网来完成辅助参考站的GNSS信号辅助信息传输,因为互联网复杂的拓扑结构以及移动通信固有的覆盖范围小、延迟动态范围大、小区切换、多用户并发等特点,往往会导致GNSS辅助信息传输的不稳定,极大地影响了高灵敏度GNSS接收机的实际应用和用户体验,但是采用本实施例中的CDRadio广播技术可将GNSS辅助参考站的参考时 间、位置坐标、当前可见星卫星号、电文、观测多普勒频率、星历等辅助信息及时、准确、稳定地传送给GNSS接收机,解决了移动互联网来传送GNSS信号辅助信息的不可靠性问题,显著提升了高灵敏度GNSS接收机的实际应用范围和用户体验。
图2为本发明一种辅助导航定位方法中GNSS辅助信息验证流程示意图;基于上述图1所示的方法,参照图2,所述方法包括:
S11、对所述当前GNSS信号进行验证,若验证通过,则确认所述当前GNSS信号为所需要的当前GNSS信号;
可以理解的是,若没有对当前GNSS信号进行验证的过程,那么当前GNSS信号不一定是最适合最好的GNSS信号,用这样一个并不准确的GNSS信号进行后续的计算的话,得出的结果肯定是不准确的,即最后的定位不是准确的,甚至有可能跟实际位置相差很大,因此很有必要对当前的GNSS信号进行验证,从而筛选出比较符合要求的GNSS信号,能够后面定位时更加精确。
S12、根据所述GNSS辅助信息将所述当前GNSS信号的载波多普勒频率进行解调和剥离,将解调和剥离后的所述GNSS信号进行相干和非相干积累后,与本地复现码进行相关;
需要说明的是,GNSS信号的载波部分可通过接收机本地产生的载波来解调,剥离掉载波后的GNSS信号在与本地复现码作相关,将相关后的结果与门限进行比较,如果超过门限,即可认为捕获成功,反之,则是捕获失败;上述的GNSS捕获过程实质上就是在频率和码相位这两个维度上,对目标GNSS信号作二维相关和搜索,当二维相关结果的最大值通过预设门限时,则说明捕获成功,此最大值对应的频率和码相位就是被捕获GNSS信号的载波多普勒频率和码相位初值;
S13、判断相关后的结果是否大于等于预设门限值;
S14、当所述相关后的结果大于等于所述预设门限值时,则验证通过,确认所述当前GNSS信号为所需要的当前GNSS信号;当所述相关后的结果小于所述预设门限值时,则验证不通过,重新接收当前 GNSS信号;
在具体实现中,当GNSS信号为弱信号时,一次二维搜索得到的最大值往往无法通过门限,常常会通过一段时间的相干和非相干累积的方法来提高GNSS信号的信噪比。但是如果在累积时间段内的GNSS信号的载波多普勒频率是未知的话,则接收机要么需要耗费很长时间来猜测和试错,才能确定被捕获GNSS信号的载波多普勒频率,要么通过采用非常复杂的信号处理模型来估计载波多普勒频率,而无论哪个方案都不能给用户提供满意的客户体验。因此在捕获弱GNSS信号时,通过CDRadio信道将辅助参考时间内GNSS信号的载波多普勒频率和电文信息给接收机,能够很好的解决上述问题。
应理解的是,当对GNSS信号捕获成功后,对捕获成功的GNSS信号进行跟踪,与本地生成的两路正交载波相乘,完成载波的解调操作,然后再分别与本地PN码发生器生成的即时码、超前半码片的超前码、滞后半码片的滞后码进行积分操作,将积分后的结果传给载波跟踪环路和码跟踪环路进行跟踪,得到的跟踪结果再反馈给本地载波和本地码的发生器进行调整;
在具体实现中,当GNSS信号为弱信号时,一次积分的结果信噪比往往很差,从而导致跟踪不能锁定或者跟踪环路失锁,这时就需要通过一段时间的相干和非相干累积的方法来提高跟踪环路的输入信噪比。但是如果在累积时间段内的GNSS信号的导航电文是未知的话,则接收机需要耗费很长时间来猜测和试错,才能确定被跟踪GNSS信号的导航电文,而这样的方法是不能给用户提供满意的客户体验。因此在跟踪弱GNSS信号时,相比于现有技术中移动通信传输,通过CDRadio信道能够及时、准确和稳定地向GNSS接收机提供这些辅助信息,正好解决了上述问题。
需要说明的是,对弱GNSS信号累积的方法主要有相干累积和非相干累积两种;由于GNSS电文翻转和接收机与卫星之间未知多普勒频率的存在,相干累积的相干时间会受到很大的限制(一般不会超过40ms);虽然非相干累积不受GNSS电文翻转的影响,但是在弱GNSS信号条件下的纯非相干累积会有很大的平方损耗,从而导致非相干累 积的效率很低;实际操作中,人们常常先进行一段时间的相干累积后,再使用非相干累积才会得到比较好的累积效果。
可以理解的是,由于CDRadio采用了LDPC信道编码、信道估计均衡、OFDM调制等关键技术,在保证较低的接收门限的同时,仍然维持了很低的误码率,因此根据所述CDRadio设置所述预设门限值能够相对地使捕获的所述GNSS信号数量跟多,更快速的找到符合要求的GNSS信号;
图3为本发明一种辅助导航定位方法中伪距差值确认流程示意图;基于上述图1所示的方法,参照图2,所述方法包括:
S51、计算所述先验估计伪距与所述全伪距之间的伪距差值;
可理解的是,所述伪距差值是一个可调变量,根据预估的先验状态,预测在此状态下的伪距,进行实际的伪距测量后,根据预计的伪距和实际伪距间的偏差来调整预估状态;
需要说明的是,所述先验估计伪距为通过所述辅助参考站的位置信息估计所述辅助参考站的先验状态的伪距;所述伪距为GNSS卫星能够按照星载时钟发射某一结构为“伪随机噪声码”的信号,称为测距码信号(即粗码C/A码或精码P码);该信号从卫星发射经时间Δt后,到达接收机天线;用上述信号传播时间Δt乘以电磁波在真空中的速度c,就是卫星至接收机的空间几何距离ρ,即ρ=Δtc;实际上,由于传播时间Δt中包含有卫星时钟与接收机时钟不同步的误差、卫星星历误差、接收机测量噪声以及测距码在大气中传播的延迟误差等等,由此求得的距离值并非真正的站星几何距离,习惯上称之为“伪距”;
S52、判断所述伪距差值是否小于预设差值,确定所述伪距差值是否为所需要的伪距差值;
S53、当所述伪距差值小于所述预设差值时,确定所述伪距差值为所述所需要的伪距差值,根据所述伪距差值确定所述接收机的位置向量;当所述伪距差值大于等于所述预设差值时,重新选取一颗卫星为所述参考卫星,重新生成所述全伪距,进而重新计算所述伪距差值; 当所述伪距差值大于等于所述预设差值时,调整所述辅助站先验位置或所述辅助站参考时间,重新计算出所述预期分数伪距,并结合所述参考卫星的分数伪距重新生成所述全伪距。
可理解的是,通过本实施例中利用CDRadio信道相比较于现有技术中移动通信的传输方式接收灵敏度高和抗干扰能力强的优点能够快速、稳定和准确的传输辅助信息;根据辅助信息得到的伪距差值更加精确,比较伪距差值与预设差值的大小具有比较明显作用,如果在伪距差值过大时输出定位结果,此时的定位结果并不能够准确的反映此时接收机的位置,进行比较能够有效避免这种误差的存在,有一定的筛选作用。
图4为本发明一种辅助导航定位方法中生成全伪距的流程示意图;基于上述图1所示的方法,参照图4,所述方法包括:
获取所述CDRadio发出的所述辅助站参考时间、卫星星历和辅助站先验位置计算出预期的分数伪距,结合参考卫星的分数伪距生成全伪距,将所述先验估计伪距与所述全伪距进行比较,获得伪距差值,利用所述伪距差值解粗时导航方程获得位置向量,当所述伪距差值小于预设差值时,根据所述位置向量输出定位结果。
需要说明的是,计算出所有测量卫星的期望全伪距,然后选择一颗卫星作为参考卫星,为了区别参考卫星和其他卫星,将使用上标(0)来表示参考卫星,用上标(k)表示其他卫星。给参考卫星赋一个整数值N(0),则它重构的全伪距为N(0)+Z(0)ms,Z(0)指测量的亚毫秒伪距,以毫秒为单位表示。接下来我们可以用这个指定的整数来构造其他的整毫秒值。
N(0)的赋值中包含有重构的全伪距中的公共偏差,可用下面的方程来表示
Figure PCTCN2017089623-appb-000003
这里r(0)是到卫星的真实几何距离,
Figure PCTCN2017089623-appb-000004
是从先验的(粗)发射时刻到先验位置估计的几何距离,d(0)
Figure PCTCN2017089623-appb-000005
中存在的误差,是由先验的位置和时间误差引起的,δt (0)是(已知)卫星时钟偏差,b是公共偏 差,ε(0)是测量误差。所有的长度单位都用光毫秒(光在一毫秒时间内传播的距离,接近300km)来表示。
对于卫星k则有:
Figure PCTCN2017089623-appb-000006
将上面的两式相减,得到
Figure PCTCN2017089623-appb-000007
Figure PCTCN2017089623-appb-000008
从上式可以看出,公共偏差b被正确地消除了,d(k),d(0)值取决于先验位置和时间的误差,如果-d(k)t (k)+b+ε(k)小于0.5光毫秒(约150km),则经过四舍五入操作后就变成了0,于是有
Figure PCTCN2017089623-appb-000009
式中的所有项均为已知的,因此也就消除了粗时导航方程中的毫秒整周期模糊问题。
图5为本发明一种辅助导航定位方法实现场景流程示意图;基于上述图1所示的方法,参照图5,所述方法包括:
辅助参考站100接收由GNSS卫星500发出的GNSS信号200后,提取出辅助信息110;
将所述辅助信息110通过所述CDRadio广播信道300发送给GNSS接收终端400;
所述辅助信息110辅助GNSS接收终端400进行高灵敏度的导航定位。
图6为本发明一种辅助导航定位系统第一实施例功能模块示意图;参照图6,所述系统包括:
接收信号模块10,用于接收当前GNSS信号,在所述当前GNSS信号的功率小于预设功率,并且所述当前GNSS信号的载噪比小于预设载噪比时,获取由GNSS辅助参考站通过CDRadio信道发送的GNSS辅助信息;
辅助信息提取模块20,用于从所述GNSS辅助信息中提取当前可见星星号、所述GNSS辅助参考站观测卫星的载波多普勒频率、卫星星历、所述GNSS辅助参考站的位置信息及参考时间;
目标信号确认模块30,用于当所述载波多普勒频率、当前GNSS信号扩频码的相位和所述当前可见星星号满足预设条件时,捕获所述当前GNSS信号并对在所述参考时间内的当前GNSS信号进行跟踪,将所述参考时间内的当前GNSS信号作为目标GNSS信号;
先验估计伪距确定模块40,用于根据所述GNSS辅助参考站的位置信息确定所述目标GNSS信号的先验估计伪距;
全伪距生成模块50,用于根据所述卫星星历、所述GNSS辅助参考站的位置信息及参考时间计算各卫星的预期分数伪距,选取一颗卫星作为参考卫星,并根据所述参考卫星的预期分数伪距及其他卫星的预期分数伪距生成全伪距;
确定位置模块60,用于计算所述先验估计伪距与所述全伪距之间的伪距差值,根据所述伪距差值确定所述接收机的位置向量,并根据所述接收机的位置向量确定所述接收机的位置信息,以实现辅助导航定位。
相应地,所述确定位置模块60,还用于判断所述伪距差值是否小于预设差值,确定所述伪距差值是否为所需要的伪距差值;当所述伪距差值小于所述预设差值时,确定所述伪距差值为所述所需要的伪距差值,根据所述伪距差值确定所述接收机的位置向量;当所述伪距差值大于等于所述预设差值时,重新选取一颗卫星为所述参考卫星,重新生成所述全伪距,进而重新计算所述伪距差值。
本实施例的相应说明,为避免冗余,参照图1中相应步骤对应的相关说明。
图7为本发明一种辅助导航定位系统第二实施例功能模块示意图;基于图6所示的方法,参照图7,所述系统包括:接收信号模块10、辅助信息提取模块20、目标信号确认模块30、先验估计伪距确 定模块40、全伪距生成模块50、确定位置模块60和信号验证模块11;
信号验证模块11,用于对所述当前GNSS信号进行验证,若验证通过,则确认所述当前GNSS信号为所需要的当前GNSS信号。相应地,所述信号验证模块11,还用于根据所述GNSS辅助信息将所述当前GNSS信号的载波多普勒频率进行解调和剥离,将解调和剥离后的所述GNSS信号进行相干和非相干积累后,与本地复现码进行相关,将相关后的结果与预设门限值进行比较,当所述相关后的结果大于等于所述预设门限值时,则验证通过,确认所述当前GNSS信号为所需要的当前GNSS信号。
相应地,所述信号验证模块11,还用于当所述相关后的结果小于所述预设门限值时,则验证不通过,重新接收当前GNSS信号。
相应地,所述确定位置模块60,还用于判断所述伪距差值是否小于预设差值,确定所述伪距差值是否为所需要的伪距差值;
当所述伪距差值小于所述预设差值时,确定所述伪距差值为所述所需要的伪距差值,根据所述伪距差值确定所述接收机的位置向量;
当所述伪距差值大于等于所述预设差值时,重新选取一颗卫星为所述参考卫星,重新生成所述全伪距,进而重新计算所述伪距差值。
本实施例的相应说明,为避免冗余,参照图1中相应步骤对应的相关说明。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实 现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种辅助导航定位方法,其特征在于,所述方法包括:
    接收机接收当前GNSS信号,在所述当前GNSS信号的功率小于预设功率,并且所述当前GNSS信号的载噪比小于预设载噪比时,获取由GNSS辅助参考站通过CDRadio信道发送的GNSS辅助信息;
    从所述GNSS辅助信息中提取当前可见星星号、所述GNSS辅助参考站观测卫星的载波多普勒频率、卫星星历、所述GNSS辅助参考站的位置信息及参考时间;
    当所述载波多普勒频率、当前GNSS信号扩频码的相位和所述当前可见星星号满足预设条件时,捕获所述当前GNSS信号并对在所述参考时间内的当前GNSS信号进行跟踪,将所述参考时间内的当前GNSS信号作为目标GNSS信号;
    根据所述GNSS辅助参考站的位置信息确定所述目标GNSS信号的先验估计伪距;
    根据所述卫星星历、所述GNSS辅助参考站的位置信息及参考时间计算各卫星的预期分数伪距,选取一颗卫星作为参考卫星,并根据所述参考卫星的预期分数伪距及其他卫星的预期分数伪距生成全伪距;
    计算所述先验估计伪距与所述全伪距之间的伪距差值,根据所述伪距差值确定所述接收机的位置向量,并根据所述接收机的位置向量确定所述接收机的位置信息,以实现辅助导航定位。
  2. 如权利要求1所述的方法,其特征在于,所述计算所述先验估计伪距与所述全伪距之间的伪距差值之后,所述方法还包括:
    判断所述伪距差值是否小于预设差值,确定所述伪距差值是否为所需要的伪距差值;
    当所述伪距差值小于所述预设差值时,确定所述伪距差值为所述所需要的伪距差值,根据所述伪距差值确定所述接收机的位置向量;
    当所述伪距差值大于等于所述预设差值时,重新选取一颗卫星为 所述参考卫星,重新生成所述全伪距,进而重新计算所述伪距差值。
  3. 如权利要求1所述的方法,其特征在于,所述获取由GNSS辅助参考站通过CDRadio信道发送的GNSS辅助信息之后,所述方法还包括:
    对所述当前GNSS信号进行验证,若验证通过,则确认所述当前GNSS信号为所需要的当前GNSS信号。
  4. 如权利要求3所述的方法,其特征在于,所述计算所述先验估计伪距与所述全伪距之间的伪距差值之后,所述方法还包括:
    判断所述伪距差值是否小于预设差值,确定所述伪距差值是否为所需要的伪距差值;
    当所述伪距差值小于所述预设差值时,确定所述伪距差值为所述所需要的伪距差值,根据所述伪距差值确定所述接收机的位置向量;
    当所述伪距差值大于等于所述预设差值时,重新选取一颗卫星为所述参考卫星,重新生成所述全伪距,进而重新计算所述伪距差值。
  5. 如权利要求3所述的方法,其特征在于,所述对所述辅助当前GNSS信号进行验证,具体包括:
    根据所述GNSS辅助信息将所述当前GNSS信号的载波多普勒频率进行解调和剥离,将解调和剥离后的所述GNSS信号进行相干和非相干积累后,与本地复现码进行相关,将相关后的结果与预设门限值进行比较,当所述相关后的结果大于等于所述预设门限值时,则验证通过,确认所述当前GNSS信号为所需要的当前GNSS信号。
  6. 如权利要求5所述的方法,其特征在于,所述计算所述先验估计伪距与所述全伪距之间的伪距差值之后,所述方法还包括:
    判断所述伪距差值是否小于预设差值,确定所述伪距差值是否为所需要的伪距差值;
    当所述伪距差值小于所述预设差值时,确定所述伪距差值为所述 所需要的伪距差值,根据所述伪距差值确定所述接收机的位置向量;
    当所述伪距差值大于等于所述预设差值时,重新选取一颗卫星为所述参考卫星,重新生成所述全伪距,进而重新计算所述伪距差值。
  7. 如权利要求5所述的方法,其特征在于,所述将相关后的结果与预设门限值进行比较之后,所述方法还包括:
    当所述相关后的结果小于所述预设门限值时,则验证不通过,重新接收当前GNSS信号。
  8. 如权利要求7所述的方法,其特征在于,所述计算所述先验估计伪距与所述全伪距之间的伪距差值之后,所述方法还包括:
    判断所述伪距差值是否小于预设差值,确定所述伪距差值是否为所需要的伪距差值;
    当所述伪距差值小于所述预设差值时,确定所述伪距差值为所述所需要的伪距差值,根据所述伪距差值确定所述接收机的位置向量;
    当所述伪距差值大于等于所述预设差值时,重新选取一颗卫星为所述参考卫星,重新生成所述全伪距,进而重新计算所述伪距差值。
  9. 一种辅助导航定位系统,其特征在于,所述系统包括:
    接收信号模块,用于接收当前GNSS信号,在所述当前GNSS信号的功率小于预设功率,并且所述当前GNSS信号的载噪比小于预设载噪比时,获取由GNSS辅助参考站通过CDRadio信道发送的GNSS辅助信息;
    辅助信息提取模块,用于从所述GNSS辅助信息中提取当前可见星星号、所述GNSS辅助参考站观测卫星的载波多普勒频率、卫星星历、所述GNSS辅助参考站的位置信息及参考时间;
    目标信号确认模块,用于当所述载波多普勒频率、当前GNSS信号扩频码的相位和所述当前可见星星号满足预设条件时,捕获所述当前GNSS信号并对在所述参考时间内的当前GNSS信号进行跟踪,将所述参考时间内的当前GNSS信号作为目标GNSS信号;
    先验估计伪距确定模块,用于根据所述GNSS辅助参考站的位置信息确定所述目标GNSS信号的先验估计伪距;
    全伪距生成模块,用于根据所述卫星星历、所述GNSS辅助参考站的位置信息及参考时间计算各卫星的预期分数伪距,选取一颗卫星作为参考卫星,并根据所述参考卫星的预期分数伪距及其他卫星的预期分数伪距生成全伪距;
    确定位置模块,用于计算所述先验估计伪距与所述全伪距之间的伪距差值,根据所述伪距差值确定所述接收机的位置向量,并根据所述接收机的位置向量确定所述接收机的位置信息,以实现辅助导航定位。
  10. 如权利要求9所述的系统,其特征在于,所述确定位置模块,还用于判断所述伪距差值是否小于预设差值,确定所述伪距差值是否为所需要的伪距差值;
    当所述伪距差值小于所述预设差值时,确定所述伪距差值为所述所需要的伪距差值,根据所述伪距差值确定所述接收机的位置向量;
    当所述伪距差值大于等于所述预设差值时,重新选取一颗卫星为所述参考卫星,重新生成所述全伪距,进而重新计算所述伪距差值。
  11. 如权利要求9所述的系统,其特征在于,所述系统还包括:
    信号验证模块,用于对所述当前GNSS信号进行验证,若验证通过,则确认所述当前GNSS信号为所需要的当前GNSS信号。
  12. 如权利要求11所述的系统,其特征在于,所述确定位置模块,还用于判断所述伪距差值是否小于预设差值,确定所述伪距差值是否为所需要的伪距差值;
    当所述伪距差值小于所述预设差值时,确定所述伪距差值为所述所需要的伪距差值,根据所述伪距差值确定所述接收机的位置向量;
    当所述伪距差值大于等于所述预设差值时,重新选取一颗卫星为所述参考卫星,重新生成所述全伪距,进而重新计算所述伪距差值。
  13. 如权利要求11所述的系统,其特征在于,所述信号验证模块,还用于根据所述GNSS辅助信息将所述当前GNSS信号的载波多普勒频率进行解调和剥离,将解调和剥离后的所述GNSS信号进行相干和非相干积累后,与本地复现码进行相关,将相关后的结果与预设门限值进行比较,当所述相关后的结果大于等于所述预设门限值时,则验证通过,确认所述当前GNSS信号为所需要的当前GNSS信号。
  14. 如权利要求13所述的系统,其特征在于,所述确定位置模块,还用于判断所述伪距差值是否小于预设差值,确定所述伪距差值是否为所需要的伪距差值;
    当所述伪距差值小于所述预设差值时,确定所述伪距差值为所述所需要的伪距差值,根据所述伪距差值确定所述接收机的位置向量;
    当所述伪距差值大于等于所述预设差值时,重新选取一颗卫星为所述参考卫星,重新生成所述全伪距,进而重新计算所述伪距差值。
  15. 如权利要求13所述的系统,其特征在于,所述信号验证模块,还用于当所述相关后的结果小于所述预设门限值时,则验证不通过,重新接收当前GNSS信号。
  16. 如权利要求15所述的系统,其特征在于,所述确定位置模块,还用于判断所述伪距差值是否小于预设差值,确定所述伪距差值是否为所需要的伪距差值;
    当所述伪距差值小于所述预设差值时,确定所述伪距差值为所述所需要的伪距差值,根据所述伪距差值确定所述接收机的位置向量;当所述伪距差值大于等于所述预设差值时,重新选取一颗卫星为所述参考卫星,重新生成所述全伪距,进而重新计算所述伪距差值。
PCT/CN2017/089623 2017-02-15 2017-06-22 辅助导航定位方法及系统 WO2018149076A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710082667.4A CN106908817B (zh) 2017-02-15 2017-02-15 辅助导航定位方法及系统
CN201710082667.4 2017-02-15

Publications (1)

Publication Number Publication Date
WO2018149076A1 true WO2018149076A1 (zh) 2018-08-23

Family

ID=59208817

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/089623 WO2018149076A1 (zh) 2017-02-15 2017-06-22 辅助导航定位方法及系统

Country Status (2)

Country Link
CN (1) CN106908817B (zh)
WO (1) WO2018149076A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111045056A (zh) * 2019-11-29 2020-04-21 交通运输部长江通信管理局 一种接收机消除干扰卫星信号的方法及装置
CN113466897A (zh) * 2021-07-06 2021-10-01 阎镜予 一种伪卫星接收机的定位解算方法、系统及其相关组件
CN113534196A (zh) * 2021-07-05 2021-10-22 阳光学院 基于虚拟gnss信号的室内二维高精度定位方法及系统
CN114236576A (zh) * 2021-12-13 2022-03-25 北京微纳星空科技有限公司 观测数据稳定度的确定方法、装置、电子设备及存储介质
CN114302323A (zh) * 2021-12-15 2022-04-08 中山大学 一种基于中长波的室内三维定位授时方法及系统
CN114609652A (zh) * 2022-03-11 2022-06-10 北京航空航天大学 一种极端电离层异常下的多频开环接收机跟踪方法及系统
CN113466897B (zh) * 2021-07-06 2024-05-17 上海方位角数据科技有限公司 一种伪卫星接收机的定位解算方法、系统及其相关组件

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110118978B (zh) * 2019-04-15 2020-05-19 中国人民解放军军事科学院国防科技创新研究院 基于低轨卫星的导航抗干扰系统及导航抗干扰方法
CN111045052B (zh) * 2019-10-14 2022-08-09 广东星舆科技有限公司 一种智能终端伪距差分定位及质量控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996022546A1 (en) * 1995-01-17 1996-07-25 The Board Of Trustees Of The Leland Stanford Junior University Wide area differential gps reference system and method
CN101206254A (zh) * 2007-12-20 2008-06-25 上海伽利略导航有限公司 室内定位全球定位系统接收机及辅助卫星导航定位系统
CN101206258A (zh) * 2007-12-20 2008-06-25 上海伽利略导航有限公司 一种高灵敏度辅助定位系统及其数据处理的方法
US20100231443A1 (en) * 2009-03-11 2010-09-16 Whitehead Michael L Removing biases in dual frequency gnss receivers using sbas
CN103364758A (zh) * 2012-03-28 2013-10-23 陈曦 一种导航定位方法与系统
CN103983995A (zh) * 2014-04-10 2014-08-13 深圳思凯微电子有限公司 差分定位方法、系统、调频广播发射机、导航信号接收机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6417801B1 (en) * 2000-11-17 2002-07-09 Global Locate, Inc. Method and apparatus for time-free processing of GPS signals
CN204854760U (zh) * 2015-08-13 2015-12-09 北京海尔集成电路设计有限公司 一种利用中国数字音频广播的导航终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996022546A1 (en) * 1995-01-17 1996-07-25 The Board Of Trustees Of The Leland Stanford Junior University Wide area differential gps reference system and method
CN101206254A (zh) * 2007-12-20 2008-06-25 上海伽利略导航有限公司 室内定位全球定位系统接收机及辅助卫星导航定位系统
CN101206258A (zh) * 2007-12-20 2008-06-25 上海伽利略导航有限公司 一种高灵敏度辅助定位系统及其数据处理的方法
US20100231443A1 (en) * 2009-03-11 2010-09-16 Whitehead Michael L Removing biases in dual frequency gnss receivers using sbas
CN103364758A (zh) * 2012-03-28 2013-10-23 陈曦 一种导航定位方法与系统
CN103983995A (zh) * 2014-04-10 2014-08-13 深圳思凯微电子有限公司 差分定位方法、系统、调频广播发射机、导航信号接收机

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111045056A (zh) * 2019-11-29 2020-04-21 交通运输部长江通信管理局 一种接收机消除干扰卫星信号的方法及装置
CN111045056B (zh) * 2019-11-29 2024-04-30 交通运输部长江通信管理局 一种接收机消除干扰卫星信号的方法及装置
CN113534196A (zh) * 2021-07-05 2021-10-22 阳光学院 基于虚拟gnss信号的室内二维高精度定位方法及系统
CN113534196B (zh) * 2021-07-05 2024-04-19 阳光学院 基于虚拟gnss信号的室内二维高精度定位方法及系统
CN113466897A (zh) * 2021-07-06 2021-10-01 阎镜予 一种伪卫星接收机的定位解算方法、系统及其相关组件
CN113466897B (zh) * 2021-07-06 2024-05-17 上海方位角数据科技有限公司 一种伪卫星接收机的定位解算方法、系统及其相关组件
CN114236576A (zh) * 2021-12-13 2022-03-25 北京微纳星空科技有限公司 观测数据稳定度的确定方法、装置、电子设备及存储介质
CN114302323A (zh) * 2021-12-15 2022-04-08 中山大学 一种基于中长波的室内三维定位授时方法及系统
CN114302323B (zh) * 2021-12-15 2023-11-07 中山大学 一种基于中长波的室内三维定位授时方法及系统
CN114609652A (zh) * 2022-03-11 2022-06-10 北京航空航天大学 一种极端电离层异常下的多频开环接收机跟踪方法及系统

Also Published As

Publication number Publication date
CN106908817A (zh) 2017-06-30
CN106908817B (zh) 2019-06-25

Similar Documents

Publication Publication Date Title
WO2018149076A1 (zh) 辅助导航定位方法及系统
US8059700B2 (en) Method of processing positioning signals, in particular for indoor applications
US7688261B2 (en) Global position system (GPS) user receiver and geometric surface processing for all-in-view coherent GPS signal PRN codes acquisition and navigation solution
US10018730B2 (en) Method and apparatus for determining a position of a GNSS receiver
TWI468718B (zh) 用於處理組合式導航信號的方法、裝置及製品
JP2007206065A (ja) 無線通信システムにおいて端末の速度を推定するための方法と装置
CN107817506B (zh) 扩频无线电通信信号的基于倒谱的多径抑制
US20040201779A1 (en) Symbol clock recovery for the ATSC digital television signal
CN104765052B (zh) 一种geo导航卫星高灵敏度载波跟踪方法
JP2009025292A (ja) テレビジョン信号の監視ユニット
JP6061316B2 (ja) Gnss受信機の位置を決定する方法及び装置
CN102854516A (zh) 一种gnss接收机中的载噪比估计方法及其系统
JP5302902B2 (ja) Gps信号を捕捉してユーザ受信機の場所を素早く求めるための方法およびシステム
CN105474042B (zh) 用于检测信号降级环境中的gnss卫星信号的方法和装置
EP1695451A1 (en) Gps receiver using differential correlation
KR101475036B1 (ko) GPS 및 Galileo 위성 신호의 주피크 특성을 이용한 위성 신호 멀티패스 추적 시스템
Khan et al. Acquisition strategies of GNSS receiver
CN107037457A (zh) 一种基于Inmarsat系统的星基增强接收机
CN104798307A (zh) 使用具有交错式伪随机码码相位跟踪的gnss系统及方法
Shanmugam New enhanced sensitivity detection techniques for GPS L 1 C/A and modernized signal acquisition
CN111458730A (zh) 基于多普勒残差估计的gnss载波跟踪方法及接收机
CN111801597A (zh) 针对独立gnss接收机的自辅助快速获取和首次固定
Siddakatte et al. Enhanced GNSS signal tracking in fading environments using frequency diversity
WO2019223870A1 (en) Method and apparatus for performing joint channel and time estimation in a gnss receiver
Muthuraman et al. Coarse time navigation: Equivalence of algorithms and reliability of time estimates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17897203

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17897203

Country of ref document: EP

Kind code of ref document: A1