WO2019010818A1 - 一种显示基板的蒸镀装置、蒸镀设备及蒸镀方法 - Google Patents

一种显示基板的蒸镀装置、蒸镀设备及蒸镀方法 Download PDF

Info

Publication number
WO2019010818A1
WO2019010818A1 PCT/CN2017/102357 CN2017102357W WO2019010818A1 WO 2019010818 A1 WO2019010818 A1 WO 2019010818A1 CN 2017102357 W CN2017102357 W CN 2017102357W WO 2019010818 A1 WO2019010818 A1 WO 2019010818A1
Authority
WO
WIPO (PCT)
Prior art keywords
vapor deposition
mask
incident angle
porous plate
evaporation
Prior art date
Application number
PCT/CN2017/102357
Other languages
English (en)
French (fr)
Inventor
唐凡
陈永胜
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US15/736,660 priority Critical patent/US20190017163A1/en
Publication of WO2019010818A1 publication Critical patent/WO2019010818A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • the present invention relates to the field of organic light emitting diode displays, and in particular to a vapor deposition device, a vapor deposition device, and a vapor deposition method for a display substrate.
  • the preparation method of the OLED panel is mainly a fine metal mask (FMM) method, but in the FMM evaporation process, due to the thickness of the mask, the acute angle of the via, and the height of the surface of the attached substrate, the incident angle of the material is a shadow pattern.
  • the size has a large influence, the material has a large incident angle, and the corresponding shadow pattern is large, which limits the preparation of the high-resolution panel. This needs to be improved in two ways.
  • the thickness of the mask it is necessary to reduce the thickness of the mask, increase the acute angle of the via of the mask, and reduce the height of the surface of the attached substrate to improve, but the thickness of the mask is difficult to be reduced, which is limited by the etching process of the mask preparation, and the sharp angle of the mask is greatly increased. It is also difficult to increase.
  • improving the evaporation source and increasing the incident angle of the material to the attached substrate the conventional method is to increase the distance between the evaporation source and the attached substrate, but this aspect will increase the size of the cavity, and correspondingly also cause The problem of reduced material utilization and difficulty in reducing the degree of vacuum.
  • the existing evaporation source mainly adopts an angle limiting plate beside the evaporation source nozzle, and the spacing between the nozzle and the nozzle is small, and the uniformity of the film thickness is good, but the small spacing between the nozzle and the nozzle affects the setting of the angle limiting plate, which is A mutually restrictive relationship.
  • SUNIC proposed a planar evaporation source solution to solve the problem of shadow pattern.
  • the SUNIC technical solution first deposits an organic material on the surface of an attached substrate, and then places the attached substrate. Below the mask, the material on the surface of the attached substrate is evaporated to the target substrate by flashing. Since the attached substrate corresponds to a planar evaporation source, the incident angle of the deposited particles to the attached substrate is approximately 90° perpendicular incidence.
  • the shadow pattern can be reduced to less than 1 um, and in this way SUNIC claims to be able to produce devices with resolutions up to 2500.
  • this method requires first deposition of organic materials on the surface of the attached substrate, requiring a long TACT.
  • the invention mainly provides a vapor deposition device, a vapor deposition method and a vapor deposition device for displaying a substrate, so as to solve the vapor deposition operation in the prior art, since the incident angle of the vapor deposition particles is large, the vapor deposition on the attached substrate is caused. The shadow pattern formed by the particles is large, so that the problem of preparation of the high resolution panel is limited.
  • An evaporation device for displaying a substrate for vapor-depositing a target material to a surface of an attached substrate comprising: an evaporation source, a regulating mechanism, and a mask; wherein the adjusting mechanism can inject the incident angle of the evaporation source to be smaller than And vapor-deposited particles equal to a preset incident angle are filtered, and the vapor-deposited particles having an incident angle greater than the predetermined incident angle pass through the mask and are deposited at a target position of the attached substrate, the incident The angle is an acute angle formed by the incident direction of the vapor deposition particles and the surface of the mask corresponding thereto.
  • An evaporation device for displaying a substrate comprising: an evaporation device for vaporizing a target material to a surface of an adhesion substrate, the evaporation device comprising an evaporation source, a regulating mechanism and a mask;
  • the regulating mechanism may filter the vapor deposition particles whose incident angle of the evaporation source is less than or equal to a preset incident angle, and pass the vapor deposition particles whose incident angle is greater than the preset incident angle
  • the mask is deposited at a target position of the attached substrate, and the incident angle is an acute angle formed by an incident direction of the vapor-deposited particles and a surface of the mask corresponding thereto.
  • An evaporation method for displaying a substrate comprising:
  • an evaporation device for vapor-depositing a display substrate of a target material to a surface of an attached substrate, comprising: an evaporation source, a regulating mechanism, and a mask; wherein the adjusting mechanism can inject the incident angle of the evaporation source to be smaller than And vapor-deposited particles equal to a preset incident angle are filtered, and the vapor-deposited particles having an incident angle greater than the predetermined incident angle pass through the mask and are deposited at a target position of the attached substrate, the incident The angle is an acute angle formed by the incident direction of the vapor deposition particles and the surface of the mask corresponding thereto; and the deposition substrate is subjected to a vapor deposition operation using the vapor deposition device to form a predetermined pattern on the adhesion substrate.
  • the invention has the beneficial effects that, different from the prior art, the present invention increases the incident angle of the evaporation source by less than or equal to the preset incident angle by adding a regulating mechanism between the evaporation source and the mask.
  • the particles are filtered, and the vapor deposition particles having an incident angle greater than a preset incident angle pass through the mask and are deposited at a target position of the attached substrate.
  • the incident angle of the vapor deposition particles since the incident angle of the vapor deposition particles is large, the shadow pattern formed by the vapor deposition particles incident on the adhesion substrate is large, so that the problem of preparation of the high resolution panel is limited.
  • FIG. 1 is a partial structural view showing an embodiment of a vapor deposition device for a display substrate of the present invention
  • FIG. 2 is a partial structural view showing a portion of a vapor deposition device of a display substrate according to an embodiment of the present invention, in which a vapor deposition particle is deposited on an adhesion substrate after being deposited on a bonding substrate;
  • FIG. 3 is a partial structural schematic view of a porous plate of an embodiment of a vapor deposition device for a display substrate of the present invention
  • FIG. 4 is a schematic view showing another part of a porous plate of an embodiment of a vapor deposition device for a display substrate of the present invention
  • FIG. 5 is a schematic structural view showing still another part of a porous plate of an embodiment of a vapor deposition device for a display substrate of the present invention
  • FIG. 6 is a partial structural schematic view showing an embodiment of an evaporation apparatus of a display substrate of the present invention.
  • Fig. 7 is a flow chart showing the steps of an embodiment of a vapor deposition method for a display substrate of the present invention.
  • the vapor deposition apparatus 100 for the display substrate of the present invention for vapor-depositing the target material to the surface of the adhesion substrate 11, which includes the evaporation source 14 .
  • the regulating mechanism and the mask 12 are provided.
  • the regulating mechanism may filter the vapor deposition particles injected by the evaporation source 14 with an incident angle a less than or equal to a preset incident angle, and cause the incidence angle a to be greater than the preset incident angle.
  • the particles pass through the mask 12 and are deposited at a target position of the attached substrate 11, and the incident angle a is an incident direction of the vapor-deposited particles and a surface of the mask 12 or a surface of the attached substrate 11 corresponding thereto. An acute angle formed.
  • the adjusting mechanism may be a porous plate 13 , and the porous plate 13 is provided with a plurality of first through holes 131 , and the distance between the porous plate 13 and the vapor deposition source 14 is a first predetermined pitch, a spacing between the perforated plate 13 and the mask 12 is a second predetermined spacing, and a spacing between the mask 12 and the attached substrate 11 is a third predetermined spacing, the first The preset spacing, the second predetermined spacing, and the third predetermined spacing may only pass the vapor deposition particles having an incident angle a greater than the predetermined incident angle through the first via 131 and deposited on The target position of the substrate 11 is attached.
  • a predetermined pattern 20 is formed on the adhesion substrate 11.
  • the thickness of the middle portion of the predetermined pattern 20 is generally uniform, but the thickness of the two sides is not uniform, but has a slope shape.
  • the preset pattern 20 of such a sloped shape portion is referred to as a hatching pattern 21.
  • the portion in the middle of the preset pattern 20 has substantially no effect on the display effect, but the shadow pattern 21 has a large negative influence on the display effect, resulting in uneven brightness on the entire pixel, so we need to minimize the coverage area of the shadow pattern 21.
  • the vapor deposition device 100 of the display substrate of the present invention further includes a vapor deposition chamber 10, the vapor deposition chamber 10 is a vacuum enclosure, the evaporation source 14, the perforated plate 13 and The mask plate 12 is disposed in the vapor deposition chamber 10 and arranged in parallel at intervals in the vapor deposition direction.
  • the distance between the porous plate 13 and the reticle 12 can be adjusted, or the distance between the evaporation source 14, the porous plate 13 and the reticle 12 can be Make adjustments.
  • the cross-sectional shape of the first via hole 131 may be one of a circular shape, a square shape, a trapezoidal shape or a prism shape, or other shapes.
  • the first via 131 of FIG. 3 has a circular cross-sectional shape
  • the first via 131 of FIG. 4 has a square shape
  • the first via 131 of FIG. 5 has a rectangular cross-sectional shape.
  • a diagram in which the cross-sectional shape of a via hole 131 is trapezoidal or prismatic is omitted.
  • the size of the plurality of first via holes 131 on the perforated plate 13 may be uniform or non-uniform in size, and they may be arranged in a uniform arrangement or a non-uniform arrangement.
  • the first via hole 131 on the porous plate 13 has a pore diameter ranging from 1 mm to 100 mm, optionally 10 mm, 20 mm, 50 mm or 80 mm, and the porous plate 13 has a thickness ranging from 0.1 mm to 10 mm, and optionally 0.2 mm and 0.5 mm. 0.7mm or 0.8mm.
  • the mask plate 12 is provided with a plurality of second via holes 121, and the aperture of the first via hole 131 is larger than the aperture of the second via hole 121, so that one of the first via holes
  • the 131 may correspond to the plurality of the second via holes 121, and it is not necessary to translate the attached substrate 11 relative to the perforated plate 13 during the evaporation process.
  • One of the first via holes 131 may correspond to the plurality of the second via holes 121, and it is not necessary to translate the attached substrate 11 relative to the perforated plate 13 during the evaporation process.
  • a projection of the mask 12 on the attachment substrate 11 is located within a projection of the perforated plate 13 on the attachment substrate 11, or a projection of the perforated plate 13 on the attachment substrate 11 is located
  • the mask 12 is within the projection on the attached substrate 11.
  • the area of the mask 12 is larger than the area of the attached substrate 11, and the mask 12 covers the attached substrate 11 in the vapor deposition direction
  • the area of the porous plate 13 is larger than the area of the attached substrate 11, and the porous plate 13 covers the mask in the evaporation direction. 12.
  • the first predetermined pitch between the attached substrate 11 and the reticle 12 is small in practice, not as large as shown in FIG. 1 (FIG. 1 is a representation of the distance between the two for good visual effect). Larger), the attached substrate 11 and the reticle 12 are substantially laminated.
  • the vapor deposition particles pass through the mask 12 to adhere.
  • the shadow pattern 21 is generated by the acute angle of the second via 121 of the mask 12 and its height. The smaller the incident angle a of the vapor deposition particles, the corresponding vapor deposition particles are on the adhesion substrate 11.
  • the shadow pattern 21 produced by the deposition is also larger.
  • the incident angle a of the vapor deposition particles is usually 50 to 70°, and theoretically, when the angle between the vapor deposition particles and the adhesion substrate 11 is 90°, the mask plate 12 is opposed to the vapor deposition particles.
  • the deposition effect is zero, and there is no shadow pattern 21, which is an ideal situation. In reality, there is no such evaporation source 14 .
  • the planar evaporation source 14 is used, the angle between the vapor deposition particles and the attached substrate 11 can reach 80. Above °, but the planar evaporation source 14 has a series of problems, such as the need to co-steam, doping, etc.
  • a porous plate 13 is disposed between the mask plate 12 and the evaporation source 14, and the vapor deposition particles from the evaporation source 14 are incident when passing through the porous plate 13.
  • the vapor deposition particles having a small angle a are filtered by the perforated plate 13, and the vapor deposition particles having a large incident angle a pass through the perforated plate 13 and are deposited on the target position of the adhesion substrate 11 through the mask plate 12.
  • the first via 131 of the perforated plate 13 is heated during use, and the heating temperature is greater than the evaporation temperature of the vapor-deposited particles to prevent deposition of vapor-deposited particles in the first via 131 of the perforated plate 13 during the evaporation process. This causes the first via hole 131 to clog or the effective opening area of the first via hole 131 to decrease. At the same time, the vapor deposition particles having a small incident angle a are bounced after hitting the first via 131 of the heated porous plate, and the rebound portion can also be deposited on the attached substrate 11 through the porous plate 13.
  • the distance of the perforated plate 13 from the evaporation source 14 and the reticle 12 can be adjusted to meet the requirements of uniformity of film thickness, small hatching pattern 21, and large material utilization.
  • the evaporation source 14 may be a linear evaporation source 14, the evaporation source 14 scans the porous plate 13 to complete vapor deposition, and the evaporation source 14 may also be an organic spray evaporation source 14, and the material ejection head scans the porous plate 13 to complete the evaporation. Plating operation.
  • the incident angle a can be made larger than the preset incident angle, so that the coverage area of the shadow pattern 21 on the attached substrate 11 can be greatly reduced, and the vapor deposition device of the display substrate having the perforated plate 13 can be greatly reduced.
  • 100 can handle the preparation of high-resolution panels.
  • the corresponding shadow pattern 21 in the pixel is small, the luminance of the pixel is more uniform, and the cathode and the anode are short-circuited (A-C). The probability of a short).
  • the incident angle a of the vapor-deposited particles passing through the perforated plate 13 is reduced, and the distance between the vapor deposition source 14 and the attached substrate 11 can be further reduced, and the utilization ratio of the material can be improved.
  • the vapor deposition particles sprayed by the vapor deposition source 14 having an incident angle a less than or equal to a preset incident angle are filtered and incident.
  • the vapor deposition particles having an angle a greater than a preset incident angle pass through the mask 12 and are deposited at a target position of the attached substrate 11,
  • the first via 131 of the porous plate 13 is heated during the vapor deposition process, so that the temperature of the first via 131 is greater than the evaporation temperature, and the first via of the vapor-deposited particles in the porous plate 13 during the evaporation process is avoided.
  • the deposition in 131 causes the first via hole 131 to be blocked or the effective opening area of the first via hole 131 to be reduced, which solves the problem that the incidence angle of the vapor deposition particles is large due to the large incidence angle of the vapor deposition particles in the prior art evaporation operation.
  • the hatching pattern formed by the vapor deposition particles on the adhesion substrate 11 is large, so that the problem of preparation of the high resolution panel is limited.
  • the vapor deposition apparatus 200 of the display substrate of the present invention includes the vapor deposition apparatus 100 of the display substrate as described in the first embodiment, since the vapor deposition apparatus 100 of the display substrate has already been The detailed description is given in the first embodiment, and the description will not be repeated here.
  • the vapor deposition particles sprayed by the vapor deposition source 14 having an incident angle a less than or equal to a preset incident angle are filtered and incident.
  • the vapor deposition particles having an angle a greater than a preset incident angle pass through the mask 12 and are deposited at a target position of the attached substrate 11,
  • the first via 131 of the porous plate 13 is heated during the vapor deposition process, so that the temperature of the first via 131 is greater than the evaporation temperature, and the first via of the vapor-deposited particles in the porous plate 13 during the evaporation process is avoided.
  • the deposition in 131 causes the first via hole 131 to be blocked or the effective opening area of the first via hole 131 to be reduced, which solves the problem that the incidence angle of the vapor deposition particles is large due to the large incidence angle of the vapor deposition particles in the prior art evaporation operation.
  • the hatching pattern formed by the vapor deposition particles on the adhesion substrate 11 is large, so that the problem of preparation of the high resolution panel is limited.
  • FIG. 7 FIG. 1 and FIG. 2
  • FIG. 7 , FIG. 1 and FIG. 2 can be seen to show the evaporation method of the display substrate of the present invention, which comprises the following steps:
  • Step S101 Providing a vapor deposition device 100 for depositing a display substrate of a target material on the surface of the adhesion substrate 11, comprising a vapor deposition source 14, a regulating mechanism, and a mask 12.
  • the regulating mechanism may filter the vapor deposition particles injected by the evaporation source 14 with an incident angle a less than or equal to a preset incident angle, and cause the incidence angle a to be greater than the preset incident angle.
  • the particles pass through the mask 12 and are deposited at a target position of the attached substrate 11, and the incident angle a is an acute angle formed by the incident direction of the vapor-deposited particles and the surface of the mask 12 corresponding thereto.
  • Step S102 performing an evaporation operation on the adhesion substrate 11 using the vapor deposition device to form a preset pattern 20 on the adhesion substrate 11.
  • the regulating mechanism is a porous plate 13, and the porous plate 13 is provided with a plurality of first through holes 131, and the first through holes 131 are heated in the evaporation process. And the temperature of the first via hole 131 is kept higher than the evaporation temperature. Further, the porous plate 13 is not heated except for the first via 131, in order to prevent it from being thermally expanded.
  • the distance between the porous plate 13 and the reticle 12 can be adjusted, or the distance between the evaporation source 14, the porous plate 13 and the reticle 12 can be Make adjustments.
  • the vapor deposition particles sprayed by the vapor deposition source 14 having an incident angle a less than or equal to a preset incident angle are filtered and incident.
  • the vapor deposition particles having an angle a greater than a preset incident angle pass through the mask 12 and are deposited at a target position of the attached substrate 11,
  • the first via hole 131 is heated during the vapor deposition process, so that the temperature of the first via hole 131 is greater than the vapor deposition temperature, so as to prevent deposition of the vapor deposition particles in the first via hole 131 of the porous plate 13 during the evaporation process.
  • the vapor deposition particles on the upper surface have a large hatching pattern, so that the problem of preparation of the high resolution panel is limited.

Abstract

一种显示基板的蒸镀装置(100),用于向附着基板(11)表面蒸镀目标材料,其包括蒸镀源(14)、调控机构与掩模板(12);其中,调控机构可将蒸镀源(14)喷射的入射角(a)小于或等于预设入射角的蒸镀粒子进行过滤,并使入射角(a)大于预设入射角的蒸镀粒子通过掩模板(12),且沉积在附着基板(11)的目标位置,入射角(a)为蒸镀粒子的入射方向和与其对应的掩模板(12)表面形成的锐角。还包括一种蒸镀设备及蒸镀方法。

Description

一种显示基板的蒸镀装置、蒸镀设备及蒸镀方法
【技术领域】
本发明涉及有机发光二极管显示器领域,特别是涉及一种显示基板的蒸镀装置、蒸镀设备及蒸镀方法。
【背景技术】
目前,中小尺寸的有机发光二极管(Organic Light-Emitting Diode, UIV OLED)面板的制备方法主要为精细金属掩模板(FMM)方法,但在FMM蒸镀过程中,由于受掩模板的厚度、过孔的锐角及附着基板表面高度的影响,材料入射角度对阴影图案大小影响很大,材料入射角度大,相应的阴影图案大,这限制了高分辨率面板的制备。这需要从两方面进行提高。一方面,需要减少掩模板厚度,增大掩模板过孔的锐角,减小附着基板表面高度来进行改进,但是掩模板厚度减小困难,受掩模板制备蚀刻工艺限制,掩模板过孔锐角大幅增大也很困难。另一方面,改进蒸镀源,增大材料对附着基板的入射角度,传统方法为增大蒸镀源与附着基板间的距离但是这一方面会增大腔体的尺寸,相应地也会导致材料利用率下降及真空度难以降低的问题。
现有蒸镀源主要采用在蒸镀源喷嘴旁设置角度限制板,喷嘴与喷嘴间的间距小相应膜厚均匀性好,但喷嘴与喷嘴间小的间距影响了角度限制板的设置,这是一个相互制约的关系。
本申请的发明人在长期研发中发现,2016年SUNIC公司提出一种平面蒸镀源方案解决阴影图案的问题,SUNIC技术方案为先在一附着基板表面沉积有机材料,然后将此附着基板置于掩模板下方,采用闪蒸的方式将此附着基板表面的材料蒸镀到目标基板,由于此附着基板相当于平面蒸镀源,蒸镀粒子对附着基板的入射角接近于90°垂直入射,相应阴影图案可以减小到小于1um,用此方法SUNIC宣称可以制备高达2500分辨率的器件。然而此方法需要先在附着基板表面沉积有机材料,需要较长的TACT time(节拍),为了满足共蒸和掺杂的需求采用闪蒸方法,附着基板所需被加热温度远高于材料的蒸镀温度,这带来了材料分解的风险,闪蒸的加热方式也带来一定困难。同时,材料的利用率也是大为减小。
【发明内容】
本发明主要提供一种显示基板的蒸镀装置、蒸镀方法及蒸镀设备,以解决现有技术的蒸镀操作中,由于蒸镀粒子入射角较大,导致入射到附着基板上的蒸镀粒子形成的阴影图案较大,以致限制了高分辨率面板的制备的问题。
为解决上述技术问题,本发明采用的一技术方案如下:
一种显示基板的蒸镀装置,用于向附着基板表面蒸镀目标材料,其包括蒸镀源、调控机构与掩模板;其中,所述调控机构可将所述蒸镀源喷射的入射角小于或等于预设入射角的蒸镀粒子进行过滤,并使入射角大于所述预设入射角的所述蒸镀粒子通过所述掩模板,且沉积在所述附着基板的目标位置,所述入射角为所述蒸镀粒子的入射方向和与其对应的所述掩模板表面形成的锐角。
为解决上述技术问题,本发明采用的另一技术方案如下:
一种显示基板的蒸镀设备,其包括一蒸镀装置,所述蒸镀装置用于向附着基板表面蒸镀目标材料,所述蒸镀装置包括蒸镀源、调控机构与掩模板;
其中,所述调控机构可将所述蒸镀源喷射的入射角小于或等于预设入射角的蒸镀粒子进行过滤,并使入射角大于所述预设入射角的所述蒸镀粒子通过所述掩模板,且沉积在所述附着基板的目标位置,所述入射角为所述蒸镀粒子的入射方向和与其对应的所述掩模板表面形成的锐角。
为解决上述技术问题,本发明采用的又一技术方案如下:
一种显示基板的蒸镀方法,其包括:
提供一用于向附着基板表面蒸镀目标材料的显示基板的蒸镀装置,其包括蒸镀源、调控机构与掩模板;其中,所述调控机构可将所述蒸镀源喷射的入射角小于或等于预设入射角的蒸镀粒子进行过滤,并使入射角大于所述预设入射角的所述蒸镀粒子通过所述掩模板,且沉积在所述附着基板的目标位置,所述入射角为所述蒸镀粒子的入射方向和与其对应的所述掩模板表面形成的锐角;使用所述蒸镀装置对所述附着基板进行蒸镀操作,以在附着基板上形成预设图案。
本发明的有益效果是:区别于现有技术的情况,本发明通过在蒸镀源和掩模板之间增加一个调控机构,将蒸镀源喷射的入射角小于或等于预设入射角的蒸镀粒子进行过滤,并使入射角大于预设入射角的蒸镀粒子通过所述掩模板,且沉积在所述附着基板的目标位置, 解决了现有技术的蒸镀操作中,由于蒸镀粒子入射角较大,导致入射到附着基板上的蒸镀粒子形成的阴影图案较大,以致限制了高分辨率面板的制备的问题。
【附图说明】
图1是本发明的显示基板的蒸镀装置一实施方式的部分结构示意图;
图2是本发明的显示基板的蒸镀装置一实施方式的蒸镀粒子穿过掩模板后沉积在附着基板上形成目标图案的部分结构示意图;
图3是本发明的显示基板的蒸镀装置一实施方式的多孔板的部分结构示意图;
图4是本发明的显示基板的蒸镀装置一实施方式的多孔板的另一部分结构示意图;
图5是本发明的显示基板的蒸镀装置一实施方式的多孔板的又一部分结构示意图;
图6是本发明的显示基板的蒸镀设备一实施方式的部分结构示意图;
图7是本发明的显示基板的蒸镀方法一实施方式的实施步骤流程示意图。
【具体实施方式】
实施例一
请参阅图1和图2,结合图1和图2进行分析,我们可以得到,本发明的显示基板的蒸镀装置100,用于向附着基板11表面蒸镀目标材料,其包括蒸镀源14、调控机构与掩模板12。
其中,所述调控机构可将所述蒸镀源14喷射的入射角a小于或等于预设入射角的蒸镀粒子进行过滤,并使入射角a大于所述预设入射角的所述蒸镀粒子通过所述掩模板12,且沉积在所述附着基板11的目标位置,所述入射角a为所述蒸镀粒子的入射方向和与其对应的所述掩模板12表面或附着基板11表面所形成的锐角。
在本实施例中,所述调控机构可选为一多孔板13,所述多孔板13上设有多个第一过孔131,所述多孔板13与所述蒸镀源14的间距为第一预设间距,所述多孔板13与所述掩模板12的间距为第二预设间距,所述掩模板12与所述附着基板11的间距为第三预设间距,所述第一预设间距、所述第二预设间距与所述第三预设间距可仅使入射角a大于所述预设入射角的所述蒸镀粒子通过所述第一过孔131,且沉积在所述附着基板11的目标位置。蒸镀粒子穿过多孔板13和掩模板12之后,在附着基板11上形成预设图案20,预设图案20中部的厚度一般比较均匀,但是两边的厚度就不均匀,而是呈斜坡式形状,这种斜坡式形状部分的预设图案20称为阴影图案21。预设图案20中部的部分对于显示效果基本上没有影响,但是阴影图案21对于显示效果有很大的负面影响,导致整个像素上的亮度不均匀,因此我们需要尽量减少阴影图案21的覆盖面积。
在本实施例中,本发明的显示基板的蒸镀装置100还包括蒸镀腔体10,所述蒸镀腔体10为一真空封闭空间,所述蒸镀源14、所述多孔板13与所述掩模板12设于所述蒸镀腔体10内,并在蒸镀方向上依次平行间隔地排列。
在本实施例中,所述多孔板13与所述掩模板12之间的距离可调节,或所述蒸镀源14、所述多孔板13与所述掩模板12两两之间的距离可进行调节。
请参阅图3、图4和图5,所述第一过孔131的横截面形状可选为圆形、方形、梯形或棱形中的一种,或者是其它形状。其中,图3的第一过孔131的横截面形状为圆形,图4的第一过孔131的横截面形状为正方形,如图5的第一过孔131的横截面形状为长方形,第一过孔131的横截面形状为梯形或棱形的图省略。多孔板13上的多个第一过孔131的尺寸可选为大小均匀或不均匀,它们的排列方式可选为均匀排列,也可选为非均匀排列。多孔板13上的第一过孔131的孔径范围为1mm~100mm,可选为10mm、20mm、50mm或80mm,多孔板13的厚度范围为0.1mm~10mm,可选为0.2mm、0.5mm、0.7mm或0.8mm。
在本实施例中,所述掩模板12上设有多个第二过孔121,所述第一过孔131的孔径大于所述第二过孔121的孔径,使得一个所述第一过孔131可以对应多个所述第二过孔121,在蒸镀过程中无需使所述附着基板11相对所述多孔板13平移。使得一个所述第一过孔131可以对应多个所述第二过孔121,在蒸镀过程中无需使所述附着基板11相对所述多孔板13平移。所述掩模板12在所述附着基板11上的投影位于所述多孔板13在所述附着基板11上的投影之内,或所述多孔板13在所述附着基板11上的投影位于所述掩模板12在所述附着基板11上的投影之内。掩模板12的面积大于附着基板11的面积,并且掩模板12在蒸镀方向上覆盖附着基板11,多孔板13的面积大于附着基板11的面积,并且多孔板13在蒸镀方向上覆盖掩模板12。
在本实施例中,附着基板11和掩模板12之间的第一预设间距在实际中很小,没有图1所示的那么大(图1是为了视觉效果好才将两者的间距表示得大一些),附着基板11和掩模板12是基本上是层叠在一起的。
结合图2进行说明,我们将蒸镀粒子的入射方向与附着基板11间所形成的较小角度即锐角定义为入射角a,如图2所示,蒸镀粒子在穿过掩模板12到达附着基板11的过程中,受到掩模板12的第二过孔121的锐角及其高度的影响,会产生阴影图案21,蒸镀粒子的入射角a越小,相应地蒸镀粒子在附着基板11上沉积产生的阴影图案21也就越大。传统蒸镀方法的时候,蒸镀粒子的入射角a通常在50~70°,从理论上说,当蒸镀粒子与附着基板11间的角度为90°的时候,掩模板12对蒸镀粒子的沉积影响为零,没有阴影图案21,这是一种理想情况,现实中没有这样的蒸镀源14,使用平面蒸镀源14的时候,蒸镀粒子与附着基板11间的角度能达到80°以上,但是平面蒸镀源14有一系列的问题,如不能满足共蒸、掺杂的需求等。
如图1和图2所示,本发明技术方案在掩模板12与蒸镀源14之间设置一多孔板13,从蒸镀源14出来的蒸镀粒子在通过多孔板13的时候,入射角a小的蒸镀粒子被多孔板13过滤,入射角a大的蒸镀粒子通过多孔板13后再通过掩模板12沉积在附着基板11的目标位置。多孔板13的第一过孔131在使用过程中被加热,加热温度大于所蒸镀粒子的蒸镀温度,以避免在蒸镀过程中蒸镀粒子在多孔板13的第一过孔131中沉积,导致第一过孔131堵塞或第一过孔131的有效开口面积减少现象的发生。同时,部分入射角a小的蒸镀粒子碰到加热的多孔板的第一过孔131后会被反弹,反弹部分也可通过多孔板13沉积到附着基板11上。多孔板13距离蒸镀源14与掩模板12的距离可以调节,以满足膜厚均匀性、较小阴影图案21和较大材料利用率的要求。蒸镀源14可以为线性蒸镀源14,蒸镀源14扫描多孔板13完成蒸镀,蒸镀源14也可以为有机喷射蒸镀源14,材料喷射头对多孔板13进行扫描,完成蒸镀操作。
结合图2分析,我们可以得出结论:当入射角a较大时,相应的阴影图案21的覆盖面积就小,反之阴影图案21的覆盖面积就大。对于有多孔板13的蒸镀装置,可以使得入射角a大于预设入射角,这样就可以大大减小阴影图案21在附着基板11上的覆盖面积,有多孔板13的显示基板的蒸镀装置100就可以应对高分辨率面板的制备。同时,由于像素内对应的阴影图案21小,像素的发光亮度就更均匀,也减少了阴极和阳极短接(A-C short)的概率。另外由于多孔板13的设置,穿过多孔板13的蒸镀粒子的入射角a减小,可以进一步减少蒸镀源14与附着基板11之间的距离,提高材料的利用率。
本发明通过在蒸镀源14和掩模板12之间增加一个调控机构即多孔板13,将蒸镀源14喷射的入射角a小于或等于预设入射角的蒸镀粒子进行过滤,并使入射角a大于预设入射角的蒸镀粒子通过所述掩模板12,且沉积在所述附着基板11的目标位置, 同时在蒸镀过程中对多孔板13的第一过孔131进行加热,使第一过孔131的温度大于蒸镀温度,避免在蒸镀过程中蒸镀粒子在多孔板13的第一过孔131中沉积,导致第一过孔131堵塞或使第一过孔131的有效开口面积减少现象的发生,解决了现有技术的蒸镀操作中,由于蒸镀粒子入射角a较大,导致入射到附着基板11上的蒸镀粒子形成的阴影图案较大,以致限制了高分辨率面板的制备的问题。
实施例二
请参阅图6,结合图6可以看到,本发明的显示基板的蒸镀设备200,其包括如实施例一所述的显示基板的蒸镀装置100,由于该显示基板的蒸镀装置100已经在实施例一中进行了详细的说明,在此不再重复进行说明。
本发明通过在蒸镀源14和掩模板12之间增加一个调控机构即多孔板13,将蒸镀源14喷射的入射角a小于或等于预设入射角的蒸镀粒子进行过滤,并使入射角a大于预设入射角的蒸镀粒子通过所述掩模板12,且沉积在所述附着基板11的目标位置, 同时在蒸镀过程中对多孔板13的第一过孔131进行加热,使第一过孔131的温度大于蒸镀温度,避免在蒸镀过程中蒸镀粒子在多孔板13的第一过孔131中沉积,导致第一过孔131堵塞或使第一过孔131的有效开口面积减少现象的发生,解决了现有技术的蒸镀操作中,由于蒸镀粒子入射角a较大,导致入射到附着基板11上的蒸镀粒子形成的阴影图案较大,以致限制了高分辨率面板的制备的问题。
实施例三
请参阅图7、图1和图2,结合图7、图1和图2可以看到,本发明的显示基板的蒸镀方法,其包括以下步骤:
步骤S101:提供一用于向附着基板11表面蒸镀目标材料的显示基板的蒸镀装置100,其包括蒸镀源14、调控机构与掩模板12。
其中,所述调控机构可将所述蒸镀源14喷射的入射角a小于或等于预设入射角的蒸镀粒子进行过滤,并使入射角a大于所述预设入射角的所述蒸镀粒子通过所述掩模板12,且沉积在所述附着基板11的目标位置,所述入射角a为所述蒸镀粒子的入射方向和与其对应的所述掩模板12表面形成的锐角。
步骤S102:使用所述蒸镀装置对所述附着基板11进行蒸镀操作,以在所述附着基板11上形成预设图案20。
在本实施例中,所述调控机构为一多孔板13,所述多孔板13上设有多个第一过孔131,所述第一过孔131在蒸镀过程中处于被加热状态,且所述第一过孔131的温度保持高于蒸镀温度。另外,所述多孔板13除第一过孔131以外,其它部分不被加热,目的是避免其受热膨胀。
在本实施例中,所述多孔板13与所述掩模板12之间的距离可调节,或所述蒸镀源14、所述多孔板13与所述掩模板12两两之间的距离可进行调节。
本发明通过在蒸镀源14和掩模板12之间增加一个调控机构即多孔板13,将蒸镀源14喷射的入射角a小于或等于预设入射角的蒸镀粒子进行过滤,并使入射角a大于预设入射角的蒸镀粒子通过所述掩模板12,且沉积在所述附着基板11的目标位置, 同时在蒸镀过程中对第一过孔131进行加热,使第一过孔131的温度大于蒸镀温度,避免在蒸镀过程中蒸镀粒子在多孔板13的第一过孔131中沉积,导致第一过孔131堵塞或使第一过孔131的有效开口面积减少现象的发生,解决了现有技术的蒸镀操作中,由于蒸镀粒子入射角a较大,导致入射到附着基板11上的蒸镀粒子形成的阴影图案较大,以致限制了高分辨率面板的制备的问题。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (16)

  1. 一种显示基板的蒸镀装置,用于向附着基板表面蒸镀目标材料,其包括蒸镀源、调控机构与掩模板;
    其中,所述调控机构可将所述蒸镀源喷射的入射角小于或等于预设入射角的蒸镀粒子进行过滤,并使入射角大于所述预设入射角的所述蒸镀粒子通过所述掩模板,且沉积在所述附着基板的目标位置,所述入射角为所述蒸镀粒子的入射方向和与其对应的所述掩模板表面形成的锐角。
  2. 根据权利要求1所述的显示基板的蒸镀装置,其中,所述调控机构为一多孔板,所述多孔板上设有多个第一过孔,所述多孔板与所述蒸镀源的间距为第一预设间距,所述多孔板与所述掩模板的间距为第二预设间距,所述掩模板与所述附着基板的间距为第三预设间距,所述第一预设间距、所述第二预设间距与所述第三预设间距可仅使入射角大于所述预设入射角的所述蒸镀粒子通过所述第一过孔,且沉积在所述附着基板的目标位置。
  3. 根据权利要求2所述的显示基板的蒸镀装置,其中,还包括蒸镀腔体,所述蒸镀腔体为一真空封闭空间,所述蒸镀源、所述多孔板与所述掩模板设于所述蒸镀腔体内,并在蒸镀方向上依次平行间隔地排列。
  4. 根据权利要求2所述的显示基板的蒸镀装置,其中,所述多孔板与所述掩模板之间的距离可调节,或所述蒸镀源、所述多孔板与所述掩模板两两之间的距离可进行调节。
  5. 根据权利要求2所述的显示基板的蒸镀装置,其中,所述掩模板上设有多个第二过孔,所述第一过孔的孔径大于所述第二过孔的孔径,所述第一过孔的横截面形状为圆形、方形、梯形或棱形中的一种。
  6. 根据权利要求2所述的显示基板的蒸镀装置,其中,所述掩模板在所述附着基板上的投影位于所述多孔板在所述附着基板上的投影之内,或所述多孔板在所述附着基板上的投影位于所述掩模板在所述附着基板上的投影之内。
  7. 一种显示基板的蒸镀设备,其包括一蒸镀装置,所述蒸镀装置用于向附着基板表面蒸镀目标材料,所述蒸镀装置包括蒸镀源、调控机构与掩模板;
    其中,所述调控机构可将所述蒸镀源喷射的入射角小于或等于预设入射角的蒸镀粒子进行过滤,并使入射角大于所述预设入射角的所述蒸镀粒子通过所述掩模板,且沉积在所述附着基板的目标位置,所述入射角为所述蒸镀粒子的入射方向和与其对应的所述掩模板表面形成的锐角。
  8. 根据权利要求7所述的显示基板的蒸镀设备,其中,所述调控机构为一多孔板,所述多孔板上设有多个第一过孔,所述多孔板与所述蒸镀源的间距为第一预设间距,所述多孔板与所述掩模板的间距为第二预设间距,所述掩模板与所述附着基板的间距为第三预设间距,所述第一预设间距、所述第二预设间距与所述第三预设间距可仅使入射角大于所述预设入射角的所述蒸镀粒子通过所述第一过孔,且沉积在所述附着基板的目标位置。
  9. 根据权利要求8所述的显示基板的蒸镀设备,其中,所述蒸镀装置还包括蒸镀腔体,所述蒸镀腔体为一真空封闭空间,所述蒸镀源、所述多孔板与所述掩模板设于所述蒸镀腔体内,并在蒸镀方向上依次平行间隔地排列。
  10. 根据权利要求8所述的显示基板的蒸镀设备,其中,所述多孔板与所述掩模板之间的距离可调节。
  11. 根据权利要求8所述的显示基板的蒸镀设备,其中,所述蒸镀源、所述多孔板与所述掩模板两两之间的距离可进行调节。
  12. 根据权利要求8所述的显示基板的蒸镀设备,其中,所述掩模板上设有多个第二过孔,所述第一过孔的孔径大于所述第二过孔的孔径,所述第一过孔的横截面形状为圆形、方形、梯形或棱形中的一种。
  13. 根据权利要求8所述的显示基板的蒸镀设备,其中,所述掩模板在所述附着基板上的投影位于所述多孔板在所述附着基板上的投影之内,或所述多孔板在所述附着基板上的投影位于所述掩模板在所述附着基板上的投影之内。
  14. 一种显示基板的蒸镀方法,其包括:
    提供一用于向附着基板表面蒸镀目标材料的显示基板的蒸镀装置,其包括蒸镀源、调控机构与掩模板;
    其中,所述调控机构可将所述蒸镀源喷射的入射角小于或等于预设入射角的蒸镀粒子进行过滤,并使入射角大于所述预设入射角的所述蒸镀粒子通过所述掩模板,且沉积在所述附着基板的目标位置,所述入射角为所述蒸镀粒子的入射方向和与其对应的所述掩模板表面形成的锐角;
    使用所述蒸镀装置对所述附着基板进行蒸镀操作,以在所述附着基板上形成预设图案。
  15. 根据权利要求14所述的显示基板的蒸镀方法,其中,所述调控机构为一多孔板,所述多孔板上设有多个第一过孔,所述第一过孔在蒸镀过程中处于被加热状态,且所述第一过孔的温度保持高于蒸镀温度。
  16. 根据权利要求14所述的显示基板的蒸镀方法,其中,所述多孔板与所述掩模板之间的距离可调节,或所述蒸镀源、所述多孔板与所述掩模板两两之间的距离可进行调节。
PCT/CN2017/102357 2017-07-13 2017-09-20 一种显示基板的蒸镀装置、蒸镀设备及蒸镀方法 WO2019010818A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/736,660 US20190017163A1 (en) 2017-07-13 2017-09-20 Evaporation apparatus, evaporation equipment, and evaporation method of display substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710571114.5A CN107190232A (zh) 2017-07-13 2017-07-13 一种显示基板的蒸镀装置、蒸镀设备及蒸镀方法
CN201710571114.5 2017-07-13

Publications (1)

Publication Number Publication Date
WO2019010818A1 true WO2019010818A1 (zh) 2019-01-17

Family

ID=59883590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102357 WO2019010818A1 (zh) 2017-07-13 2017-09-20 一种显示基板的蒸镀装置、蒸镀设备及蒸镀方法

Country Status (2)

Country Link
CN (1) CN107190232A (zh)
WO (1) WO2019010818A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108130519A (zh) * 2018-01-31 2018-06-08 鄂尔多斯市源盛光电有限责任公司 一种基板支撑结构及蒸镀设备
CN114555854A (zh) * 2019-11-11 2022-05-27 韩商则舒穆公司 用于制造oled的掩模以及oled制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102860132A (zh) * 2010-05-18 2013-01-02 夏普株式会社 有机el元件的制造方法和制造装置
CN102959121A (zh) * 2010-08-30 2013-03-06 夏普株式会社 蒸镀方法、蒸镀装置以及有机el显示装置
WO2016171075A1 (ja) * 2015-04-22 2016-10-27 シャープ株式会社 蒸着装置および蒸着方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008150662A (ja) * 2006-12-18 2008-07-03 Seiko Epson Corp マスク蒸着法、有機エレクトロルミネッセンス装置の製造方法、およびマスク蒸着装置
US20130240870A1 (en) * 2010-12-21 2013-09-19 Sharp Kabushiki Kaisha Vapor deposition device, vapor deposition method and organic el display device
JPWO2012124512A1 (ja) * 2011-03-11 2014-07-17 シャープ株式会社 蒸着装置及び蒸着方法
JP6363333B2 (ja) * 2013-08-07 2018-07-25 シャープ株式会社 蒸着装置、及び、有機エレクトロルミネッセンス素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102860132A (zh) * 2010-05-18 2013-01-02 夏普株式会社 有机el元件的制造方法和制造装置
CN102959121A (zh) * 2010-08-30 2013-03-06 夏普株式会社 蒸镀方法、蒸镀装置以及有机el显示装置
WO2016171075A1 (ja) * 2015-04-22 2016-10-27 シャープ株式会社 蒸着装置および蒸着方法

Also Published As

Publication number Publication date
CN107190232A (zh) 2017-09-22

Similar Documents

Publication Publication Date Title
JP5064810B2 (ja) 蒸着装置および蒸着方法
US20180207677A1 (en) Vacuum evaporation apparatus
EP1746181A3 (en) Improved magnetron sputtering system for large-area substrates
JP2013053374A (ja) 蒸着装置及び薄膜製造方法
KR101942471B1 (ko) 증착 장치 및 이를 이용한 유기 발광 표시장치의 제조방법
KR20140006499A (ko) 증착 장치
US10510817B2 (en) Method for manufacturing OLED display device, OLED display device and OLED display apparatus
CN102899609B (zh) 掩膜板、制造有机发光显示面板的蒸镀装置及其方法
WO2018205432A1 (zh) 蒸发装置
WO2019010818A1 (zh) 一种显示基板的蒸镀装置、蒸镀设备及蒸镀方法
KR20130134708A (ko) 증착 장치 및 이를 이용한 유기 발광 표시장치의 제조방법
KR20170102615A (ko) 플렉서블 oled 소자 패턴 제작용 면증발 증착기
WO2019028959A1 (zh) 一种制造有机发光显示面板的基板及蒸镀装置
WO2019051975A1 (zh) 一种紫外辐照装置
US9303317B2 (en) Deposition apparatus
TW200537982A (en) A divided shadow mask device for fabricating organic light emitting diode display
CN110055498B (zh) 面蒸镀源及其制作方法、蒸镀方法、蒸镀装置
CN103726030B (zh) 沉积装置以及使用其的有机发光显示装置的制造方法
JP2017538039A (ja) 材料堆積システム及び材料堆積システムで材料を堆積する方法
WO2014023041A1 (zh) 有机电致发光二极管有机材料蒸镀用掩模装置
KR20170104103A (ko) 고해상도 오엘이디 패턴 증착용 곡면증발원
CN215163091U (zh) 一种真空蒸镀机的镀锅轨道保护结构
CN212270218U (zh) 一种用于点蒸发源的坩埚
WO2019051932A1 (zh) 一种像素排列结构及其制备方法
CN111378933B (zh) 蒸发源、蒸发源系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17917633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17917633

Country of ref document: EP

Kind code of ref document: A1