WO2019009239A1 - 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 - Google Patents

二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 Download PDF

Info

Publication number
WO2019009239A1
WO2019009239A1 PCT/JP2018/025045 JP2018025045W WO2019009239A1 WO 2019009239 A1 WO2019009239 A1 WO 2019009239A1 JP 2018025045 W JP2018025045 W JP 2018025045W WO 2019009239 A1 WO2019009239 A1 WO 2019009239A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
secondary battery
active material
electrode active
carbon
Prior art date
Application number
PCT/JP2018/025045
Other languages
English (en)
French (fr)
Inventor
琴 斯
泰大 池田
陽祐 古池
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN201880044698.3A priority Critical patent/CN110832678B/zh
Priority to JP2019527693A priority patent/JP6908113B2/ja
Priority to EP18828751.0A priority patent/EP3651241A4/en
Publication of WO2019009239A1 publication Critical patent/WO2019009239A1/ja
Priority to US16/732,937 priority patent/US11329277B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/202Casings or frames around the primary casing of a single cell or a single battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/247Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for portable devices, e.g. mobile phones, computers, hand tools or pacemakers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present technology relates to a secondary battery provided with a negative electrode including a negative electrode current collector and a negative electrode active material layer, and a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device using the secondary battery.
  • Secondary batteries are considered not only for electronic devices but also for other applications. Examples of other applications are a battery pack removably mounted on an electronic device etc., an electric vehicle such as an electric car, an electric power storage system such as a home electric power server, and an electric tool such as an electric drill.
  • the secondary battery includes an electrolytic solution together with a positive electrode and a negative electrode
  • the negative electrode includes a negative electrode current collector and a negative electrode active material layer provided on the negative electrode current collector.
  • the negative electrode active material layer contains a negative electrode active material, and a carbon material such as graphite is used as the negative electrode active material.
  • the present technology has been made in view of such problems, and an object thereof is to provide a secondary battery, a battery pack, an electric vehicle, an electric power storage system, an electric tool, and an electronic device capable of obtaining excellent battery characteristics. It is to do.
  • a secondary battery includes: a positive electrode; (A) a negative electrode current collector; and a negative electrode active material layer provided on the negative electrode current collector and including a negative electrode active material;
  • a negative electrode active material includes a carbon-containing material and a silicon-containing material, and
  • C a negative electrode whose spread resistance distribution a / b of the negative electrode active material layer measured by using a scanning spread resistance microscope is 1.03 or more and 10 or less And an electrolytic solution.
  • Each of the battery pack, the electric vehicle, the electric power storage system, the electric power tool, and the electronic device according to an embodiment of the present technology includes a secondary battery, and the secondary battery has the same configuration as the above-described secondary battery of the present technology. It is possessed.
  • the “spreading resistance distribution a / b” is a parameter measured using a scanning spreading resistance microscope (SSRM) as described above.
  • SSRM scanning spreading resistance microscope
  • the negative electrode active material layer provided on the negative electrode current collector is separated from the lower layer (layer closer to the negative electrode current collector) and the upper layer (negative electrode current collector) in the thickness direction
  • the ratio of the spreading resistance a of the lower layer to the spreading resistance b of the upper layer in the case of being bisected in the layer on the side). The details of the method of measuring the spreading resistance distribution a / b and the measurement conditions will be described later.
  • carbon-containing material is a generic term for materials containing carbon as a constituent element, and may be a material (carbon material) containing only carbon as a constituent element.
  • silicon-containing material is a generic term for materials containing silicon as a constituent element, and may be a material containing only silicon as a constituent element (a single substance of silicon).
  • the spreading resistance distribution a / b of the negative electrode active material layer measured using a scanning spreading resistance microscope is 1.03 to 10, excellent battery characteristics are obtained. You can get The same effect can also be obtained in the battery pack, the electric vehicle, the power storage system, the electric tool, or the electronic device of the present technology.
  • effect described here is not necessarily limited, and may be any effect described in the present technology.
  • FIG. 5 is a cross-sectional view showing a configuration of a wound electrode body along a VV line shown in FIG. 4. It is a perspective view showing the composition of the example of application of a rechargeable battery (battery pack: single battery). It is a block diagram showing the structure of the battery pack shown in FIG.
  • Secondary battery (cylindrical) 1-1. Configuration 1-2. Physical properties of negative electrode 1-3. Operation 1-4. Manufacturing method 1-5. Action and effect 2. Secondary battery (laminated film type) 2-1. Configuration 2-2. Operation 2-3. Manufacturing method 2-4. Action and effect 3. Applications of Secondary Battery 3-1. Battery pack (single cell) 3-2. Battery pack (battery pack) 3-3. Electric vehicle 3-4. Power storage system 3-5. Electric tool
  • the secondary battery described here is, for example, a secondary battery using lithium as an electrode reactant, and more specifically, a battery capacity (a capacity of a negative electrode using a lithium absorption phenomenon and a lithium release phenomenon) ) Is obtained.
  • the “electrode reactant” is a substance used to advance an electrode reaction (charge-discharge reaction).
  • FIG. 1 shows the cross-sectional configuration of the secondary battery
  • FIG. 2 is an enlarged view of a part of the cross-sectional configuration of the wound electrode body 20 shown in FIG.
  • the secondary battery is, for example, a cylindrical secondary battery in which a wound electrode body 20, which is a battery element, is housed inside a cylindrical battery can 11, as shown in FIG.
  • the secondary battery includes, for example, a pair of insulating plates 12 and 13 and a wound electrode body 20 inside the battery can 11.
  • the battery can 11 has, for example, a hollow structure in which one end is closed and the other end is opened, and any one of conductive materials such as iron, aluminum, and their alloys, for example. Or contains two or more. For example, a metal material such as nickel may be plated on the surface of the battery can 11.
  • the pair of insulating plates 12 and 13 extend, for example, in a direction perpendicular to the winding circumferential surface of the winding electrode body 20, and are disposed so as to sandwich the winding electrode body 20 with each other.
  • a battery cover 14, a safety valve mechanism 15, and a thermal resistance element (PTC element) 16 are crimped to the open end of the battery can 11 via a gasket 17. Thereby, the battery can 11 is sealed.
  • PTC element thermal resistance element
  • the forming material of the battery cover 14 is, for example, the same as the forming material of the battery can 11.
  • Each of the safety valve mechanism 15 and the heat sensitive resistance element 16 is provided inside the battery cover 14, and the safety valve mechanism 15 is electrically connected to the battery cover 14 via the heat sensitive resistance element 16.
  • the disc plate 15A is reversed when the internal pressure of the battery can 11 becomes a predetermined value or more due to internal short circuit and external heating, etc., so the electrical connection between the battery cover 14 and the wound electrode body 20 is It is cut off.
  • the electrical resistance of the heat sensitive resistance element 16 increases with the temperature rise.
  • the gasket 17 contains, for example, one or more of insulating materials.
  • insulating materials For example, asphalt or the like may be applied to the surface of the gasket 17.
  • the wound electrode body 20 is formed, for example, by laminating the positive electrode 21 and the negative electrode 22 with each other via the separator 23 and then winding the positive electrode 21, the negative electrode 22, and the separator 23.
  • the wound electrode body 20 is impregnated with, for example, an electrolytic solution which is a liquid electrolyte.
  • a center pin 24 is inserted into a space (rolling center 20C) provided at the winding center of the winding electrode body 20.
  • the center pin 24 may be omitted.
  • the positive electrode lead 25 is connected to the positive electrode 21, and the positive electrode lead 25 includes, for example, one or more kinds of conductive materials such as aluminum.
  • the positive electrode lead 25 is electrically connected to the battery cover 14, for example, because it is connected to the safety valve mechanism 15.
  • the negative electrode lead 26 is connected to the negative electrode 22, and the negative electrode lead 26 includes, for example, one or more of conductive materials such as nickel.
  • the negative electrode lead 26 is electrically connected to the battery can 11, for example, because it is connected to the battery can 11.
  • the positive electrode 21 includes a positive electrode current collector 21A and two positive electrode active material layers 21B provided on both sides of the positive electrode current collector 21A.
  • the positive electrode active material layer 21B may be provided on one side of the positive electrode current collector 21A.
  • the positive electrode current collector 21A contains, for example, one or more of conductive materials such as aluminum, nickel, and stainless steel.
  • the positive electrode current collector 21A may be a single layer or a multilayer.
  • the positive electrode active material layer 21B contains one or more of positive electrode active materials capable of inserting and extracting lithium. However, the positive electrode active material layer 21B may further contain one or more of other materials such as a positive electrode binder and a positive electrode conductive agent.
  • the positive electrode active material is preferably a lithium-containing compound. This is because a high energy density can be obtained.
  • the type of lithium-containing compound is not particularly limited, and examples thereof include lithium-containing composite oxides and lithium-containing phosphoric acid compounds.
  • lithium-containing composite oxide is a generic term for oxides containing lithium and one or more other elements as constituent elements, and, for example, a crystal of layered rock salt type, spinel type, etc. It has a structure.
  • the "lithium-containing phosphoric acid compound” is a generic term for a phosphoric acid compound containing lithium and one or more other elements as constituent elements, and has, for example, a crystal structure such as an olivine type. This "other element” is an element other than lithium.
  • the type of the other element is not particularly limited, but among them, an element belonging to Groups 2 to 15 in the long period periodic table is preferable.
  • the other elements are, for example, nickel (Ni), cobalt (Co), manganese (Mn) and iron (Fe). This is because a high voltage can be obtained.
  • the lithium-containing composite oxide having a layered rock salt type crystal structure is, for example, a compound represented by each of the following formulas (1) to (3).
  • Li a Mn (1-bc) Ni b M 11 c O (2-d) F e (1)
  • M11 is cobalt (Co), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper (Cu), zinc)
  • a to e is 0.8
  • the following conditions are satisfied: a ⁇ 1.2, 0 ⁇ b ⁇ 0.5, 0 ⁇ c ⁇ 0.5, (b + c) ⁇ 1, ⁇ 0.1 ⁇ d ⁇ 0.2 and 0 ⁇ e ⁇ 0.1.
  • the composition of lithium varies depending on the charge and discharge state, and a is a value of a completely discharged state.
  • M12 is cobalt (Co), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper) And at least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), wherein a to d is 0.8 ⁇ a ⁇ 1.2, 0.005 ⁇ b ⁇ 0.5, ⁇ 0.1 ⁇ c ⁇ 0.2 and 0 ⁇ d ⁇ 0.1, provided that the composition of lithium depends on the charge and discharge state Differently, a is the value of the fully discharged state)
  • M13 is nickel (Ni), manganese (Mn), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper) And at least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), wherein a to d is 0.8 ⁇ a ⁇ 1.2, 0 ⁇ b ⁇ 0.5, ⁇ 0.1 ⁇ c ⁇ 0.2 and 0 ⁇ d ⁇ 0.1, provided that the composition of lithium differs depending on the charge / discharge state, a is the value of the completely discharged state)
  • lithium-containing composite oxide having a layered rock salt type crystal structure LiNiO 2 , LiCoO 2 , LiCo 0.98 Al 0.01 Mg 0.01 O 2 , LiNi 0.5 Co 0.2 Mn 0.3 O 2 , LiNi 0.8 Co 0.15 Al 0.05 O 2 LiNi 0.33 Co 0.33 Mn 0.33 O 2 , Li 1.2 Mn 0.52 Co 0.175 Ni 0.1 O 2 and Li 1.15 (Mn 0.65 Ni 0.22 Co 0.13 ) O 2 and the like.
  • the lithium-containing composite oxide having a layered rock salt type crystal structure contains nickel, cobalt, manganese and aluminum as constituent elements
  • the atomic ratio of nickel is preferably 50 atomic% or more. This is because a high energy density can be obtained.
  • the lithium-containing composite oxide having a spinel crystal structure is, for example, a compound represented by the following formula (4).
  • Li a Mn (2-b) M14 b O c F d (4) (M14 is cobalt (Co), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), chromium (Cr), iron (Fe), copper) And at least one of (Cu), zinc (Zn), molybdenum (Mo), tin (Sn), calcium (Ca), strontium (Sr) and tungsten (W), wherein a to d are 0.9 ⁇ a ⁇ 1.1, 0 ⁇ b ⁇ 0.6, 3.7 ⁇ c ⁇ 4.1 and 0 ⁇ d ⁇ 0.1, provided that the composition of lithium varies depending on the charge / discharge state, a Is the value of the completely discharged state.)
  • lithium-containing composite oxide having a spinel type crystal structure is LiMn 2 O 4 or the like.
  • the lithium-containing phosphoric acid compound having an olivine-type crystal structure is, for example, a compound represented by the following formula (5).
  • Li a M 15 PO 4 (5) (M15 is cobalt (Co), manganese (Mn), iron (Fe), nickel (Ni), magnesium (Mg), aluminum (Al), boron (B), titanium (Ti), vanadium (V), niobium) At least one of (Nb), copper (Cu), zinc (Zn), molybdenum (Mo), calcium (Ca), strontium (Sr), tungsten (W) and zirconium (Zr), a is 0.9 ⁇ a ⁇ 1.1, provided that the composition of lithium varies depending on the charge and discharge state, and a is a value of a completely discharged state)
  • lithium-containing phosphoric acid compound having an olivine type crystal structure LiFePO 4 , LiMnPO 4 , LiFe 0.5 Mn 0.5 PO 4 and LiFe 0.3 Mn 0.7 PO 4 and the like.
  • the lithium-containing composite oxide may be a compound represented by the following formula (6).
  • the positive electrode active material may be, for example, an oxide, a disulfide, a chalcogenide and a conductive polymer.
  • the oxides are, for example, titanium oxide, vanadium oxide and manganese dioxide.
  • Examples of the disulfide include titanium disulfide and molybdenum sulfide.
  • the chalcogenide is, for example, niobium selenide or the like.
  • the conductive polymer is, for example, sulfur, polyaniline and polythiophene.
  • the positive electrode binder contains, for example, one or more of synthetic rubber and polymer compound.
  • the synthetic rubber is, for example, styrene butadiene rubber, fluorine rubber and ethylene propylene diene.
  • the high molecular compounds are, for example, polyvinylidene fluoride and polyimide.
  • the positive electrode conductive agent contains, for example, one or more of conductive materials such as a carbon material.
  • This carbon material is, for example, graphite, carbon black, acetylene black and ketjen black.
  • the positive electrode conductive agent may contain a metal material, a conductive polymer, and the like.
  • the negative electrode 22 includes a negative electrode current collector 22A and two negative electrode active material layers 22B provided on both sides of the negative electrode current collector 22A.
  • the negative electrode active material layer 22B may be provided on one side of the negative electrode current collector 22A.
  • the negative electrode current collector 22A contains, for example, one or more of conductive materials such as copper, aluminum, nickel, and stainless steel.
  • the negative electrode current collector 22A may be a single layer or a multilayer.
  • the surface of the negative electrode current collector 22A is preferably roughened. This is because the adhesion of the negative electrode active material layer 22B to the negative electrode current collector 22A is improved by utilizing the so-called anchor effect. In this case, the surface of the negative electrode current collector 22A may be roughened at least in a region facing the negative electrode active material layer 22B.
  • the roughening method is, for example, a method of forming fine particles using electrolytic treatment. In the electrolytic treatment, since fine particles are formed on the surface of the negative electrode current collector 22A by the electrolytic method in the electrolytic cell, unevenness is provided on the surface of the negative electrode current collector 22A.
  • the copper foil produced by the electrolytic method is generally called an electrolytic copper foil.
  • the negative electrode active material layer 22B contains one or more of negative electrode active materials capable of inserting and extracting lithium. However, the negative electrode active material layer 22B may further contain any one or two or more of other materials such as a negative electrode binder and a negative electrode conductive agent.
  • the chargeable capacity of the negative electrode material is preferably larger than the discharge capacity of the positive electrode 21. That is, the electrochemical equivalent of the negative electrode material capable of inserting and extracting lithium is preferably larger than the electrochemical equivalent of the positive electrode 21.
  • the negative electrode active material contains a carbon-containing material and a silicon-containing material.
  • the type of carbon-containing material may be only one or two or more.
  • the number of types of silicon-containing materials may be only one, or two or more.
  • the “carbon-containing material” is a generic term for materials containing carbon as a constituent element as described above, and may be a material (carbon material) containing only carbon as a constituent element.
  • the negative electrode active material contains the carbon-containing material because the crystal structure of the carbon-containing material is unlikely to change at the time of lithium storage and lithium release, and a high energy density can be stably obtained.
  • the carbon-containing material also functions as a negative electrode conductive agent, the conductivity of the negative electrode active material layer 22B is improved.
  • the carbon-containing material is, for example, graphitizable carbon, non-graphitizable carbon, and graphite.
  • the spacing of the (002) plane relating to the non-graphitizable carbon is preferably 0.37 nm or more, and the spacing of the (002) plane relating to the graphite is preferably 0.34 nm or less.
  • the carbon-containing material is, for example, pyrolytic carbons, cokes, glassy carbon fibers, organic polymer compound fired bodies, activated carbon, carbon blacks and the like.
  • the cokes include pitch coke, needle coke and petroleum coke.
  • the organic polymer compound fired body is a fired product obtained by firing (carbonizing) a polymer compound such as a phenol resin and furan resin at an appropriate temperature.
  • the carbon-containing material may be, for example, low crystalline carbon heat-treated at a temperature of about 1000 ° C. or lower, or amorphous carbon.
  • the shape of the carbon-containing material may be any of fibrous, spherical, granular and scaly.
  • silicon-containing material is a generic term for materials containing silicon as a constituent element, and may be a material (a single substance of silicon) containing only silicon as a constituent element.
  • the reason why the negative electrode active material contains a silicon-containing material is that the silicon-containing material has the property of easily absorbing and desorbing lithium, so that extremely high energy density can be obtained.
  • the silicon-containing material may be a simple substance of silicon, an alloy of silicon, a compound of silicon, or two or more of them, or one or more of them may be The material may be at least partially contained.
  • the structure of the silicon-containing material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and two or more coexisting substances thereof.
  • single substance described here is a single substance in a general sense to the last, so the single substance may contain a trace amount of impurities. That is, the purity of a single substance is not necessarily limited to 100%.
  • an alloy in addition to the material which consists of two or more types of metal elements, “an alloy” includes the material containing one or more types of metal elements and one or more types of metalloid elements, and the “alloy” is not It may contain a metal element.
  • alloy includes the material containing one or more types of metal elements and one or more types of metalloid elements, and the "alloy” is not It may contain a metal element.
  • the definitions for each of the simple substance and the alloy described here are the same in the following.
  • the alloy of silicon is, for example, one of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as constituent elements other than silicon or It contains two or more types.
  • the compound of silicon contains, for example, one or more of carbon, oxygen, and the like as a constituent element other than silicon.
  • the compound of silicon may contain, for example, one or more of the series of elements described for the alloy of silicon as a constituent element other than silicon.
  • alloys of silicon and compounds of silicon are SiB 4 , SiB 6 , Mg 2 Si, Ni 2 Si, TiSi 2 , MoSi 2 , CoSi 2 , NiSi 2 , CaSi 2 , CrSi 2 , Cu 5 Si , FeSi 2 , MnSi 2 , NbSi 2 , TaSi 2 , VSi 2 , WSi 2 , ZnSi 2 , SiC, Si 3 N 4 , Si 2 N 2 O, SiO v (0 ⁇ v ⁇ 2), LiSiO, etc. .
  • v in SiOv may be 0.2 ⁇ v ⁇ 1.4.
  • the negative electrode active material contains both the carbon-containing material and the silicon-containing material because the advantages described below can be obtained.
  • Silicon-containing materials have the advantage of having a high theoretical capacity, but have the concern that they are easily expanded and shrunk during charge and discharge.
  • carbon-containing materials have the concern that the theoretical capacity is low, but have the advantage of being difficult to expand and contract during charge and discharge. Therefore, by using the carbon-containing material and the metal-containing material in combination, high theoretical capacity (in other words, battery capacity) can be obtained while suppressing expansion and contraction of the negative electrode active material during charge and discharge.
  • the carbon-containing material is, for example, in the form of particles (powder), and the silicon-containing material is, for example, in particles (powder).
  • the average particle size of the plurality of particulate carbon-containing materials is not particularly limited, and the average particle size of the plurality of particulate silicon-containing materials is not particularly limited.
  • the 10% particle diameter D10 of the plurality of particulate silicon-containing materials that may greatly affect the electrical resistance of the entire negative electrode active material layer 22B is preferably 1 ⁇ m to 5 ⁇ m. This is because the electrical resistance of the entire negative electrode active material layer 22B is stably and sufficiently lowered while securing the binding properties of the plurality of particulate silicon-containing materials.
  • a plurality of particulate silicon-containing materials are less likely to be bound to one another via the negative electrode binder, and thus a free negative electrode binder is generated. It becomes easy to do.
  • a plurality of particulate silicon-containing materials can easily move to the surface of the negative electrode active material 22B in the step of forming the negative electrode active material layer 22B (application step and drying step of the negative electrode mixture slurry) described later.
  • the plurality of particulate silicon-containing materials are likely to be localized in the negative electrode active material layer 22B. This may increase the electrical resistance of the entire negative electrode active material layer 22B.
  • the 10% particle diameter D10 is larger than 5 ⁇ m
  • the specific surface area of each of the plurality of particulate silicon-containing materials is increased, so that the negative electrode binder tends to be insufficient.
  • the plurality of particulate silicon-containing materials are less likely to be bound to one another via the negative electrode binder, and when charge and discharge are repeated, the plurality of particles bound to one another via the negative electrode binder Silicon-containing materials are likely to be separated from one another. This may reduce the binding properties of the plurality of particulate silicon-containing materials.
  • the relationship between the average particle diameter of the plurality of particulate carbon-containing materials and the average particle diameter of the plurality of particulate silicon-containing materials is not particularly limited.
  • the ratio (particle size ratio) of the median diameter D50 of the plurality of particulate silicon-containing materials to the median diameter D50 of the plurality of particulate carbon-containing materials is preferably 0.1 to 0.5.
  • a high energy density can be obtained while securing the binding properties of the plurality of particulate carbon-containing materials while securing the binding properties of the plurality of particulate silicon-containing materials, and the entire electrical conductivity of the negative electrode active material layer 22B This is because the resistance is stable and sufficiently reduced.
  • the value of the third decimal place is rounded off.
  • the average particle size of the plurality of particulate silicon-containing materials is too smaller than the average particle size of the plurality of particulate carbon-containing materials. Density may decrease.
  • the average particle size of the plurality of particulate silicon-containing materials is too large than the average particle size of the plurality of particulate carbon-containing materials. While the silicon-containing materials in the form of a solid are less likely to be bound to one another via the negative electrode binder, the electrical resistance of the entire negative electrode active material layer 22B may be increased.
  • the shape of the plurality of particulate carbon-containing materials is not particularly limited.
  • the average aspect ratio of the plurality of particulate carbon-containing materials is preferably 1.1 to 2.0. This is because the electrical resistance of the negative electrode active material layer 22B is less likely to vary while ensuring the dispersion stability and the structural stability of the plurality of particulate carbon-containing materials.
  • the average aspect ratio is smaller than 1.1, the plurality of particulate carbon-containing materials are easily deformed or broken in the preparation process of the negative electrode mixture described later, and the like, so the negative electrode active material layer 22B The overall electrical resistance may be prone to variation.
  • the average aspect ratio is greater than 2.0, it becomes difficult to disperse the plurality of particulate carbon-containing materials in the preparation step of the negative electrode mixture slurry described later, so the electricity of the entire negative electrode active material layer 22B is also The resistance may easily vary.
  • This average aspect ratio is calculated, for example, by the procedure described below.
  • the cross section (a plurality of particulate carbon-containing materials) of the negative electrode active material layer 22B is observed using a scanning electron microscope or the like.
  • the conditions such as the observation range and the observation magnification can be arbitrarily set.
  • the aspect ratio major axis dimension / minor axis by measuring each of the major axis dimension and the minor axis dimension for each carbon containing material. Calculate the dimensions.
  • the number of calculations of the aspect ratio is 100, that is, the number of carbon-containing materials for which the aspect ratio is calculated is 100.
  • the average aspect ratio is determined by calculating the average value of the 100 aspect ratios.
  • the mixing ratio of the carbon-containing material and the silicon-containing material is not particularly limited.
  • the content of the silicon-containing material in the negative electrode active material is 30% by weight It is preferably the following, and more preferably 5% by weight to 30% by weight. Since the mixing ratio of the carbon-containing material and the silicon-containing material is optimized, both suppression of expansion and contraction of the negative electrode active material during charge and discharge and securing of a high theoretical capacity are simultaneously achieved. When calculating the proportion of active material, the value of the second decimal place is rounded off.
  • the negative electrode active material may further contain one or more of other materials (other negative electrode active materials).
  • the type of the other material is not particularly limited as long as the material can occlude and release lithium.
  • metal-based material is, for example, a metal-based material.
  • the type of metal-based material may be only one or two or more.
  • the "metal-based material” is a generic name of a material containing one or more of metal elements and metalloid elements as constituent elements. This is because a high energy density can be obtained. However, the silicon-containing materials described above are excluded from the metal-based materials described herein.
  • the metal-based material may be a single element, an alloy, a compound, two or more of them, or a material containing at least a part of one or two or more of them. May be.
  • the structure of this metal-based material is, for example, a solid solution, a eutectic (eutectic mixture), an intermetallic compound, and a coexistence of two or more thereof.
  • the metal element is a metal element capable of forming an alloy with lithium
  • the metalloid element is a metalloid element capable of forming an alloy with lithium
  • the metal element and the metalloid element are, for example, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon (Si), germanium (Ge), Tin (Sn), lead (Pb), bismuth (Bi), cadmium (Cd), silver (Ag), zinc, hafnium (Hf), zirconium, yttrium (Y), palladium (Pd), platinum (Pt), etc. is there.
  • tin is preferred. This is because tin has the property of easily absorbing and desorbing lithium, so that extremely high energy density can be obtained.
  • the material containing tin as a constituent element may be a single substance of tin, an alloy of tin, a compound of tin, two or more of them, or one or two of them. It may be a material containing at least a part of the above phases.
  • the alloy of tin is, for example, one of silicon, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony, chromium and the like as a constituent element other than tin or the like It contains two or more types.
  • the compound of tin contains, for example, one or more of carbon, oxygen, and the like as a constituent element other than tin.
  • the compound of tin may contain, for example, one or more of the series of elements described for the alloy of tin as a constituent element other than tin.
  • alloys of tin and specific examples of compounds of tin are SnO w (0 ⁇ w ⁇ 2), SnSiO 3 , LiSnO and Mg 2 Sn.
  • the material containing tin as a constituent element is preferably a tin-containing material.
  • the "tin-containing material" is a general term for materials containing a second constituent element and a third constituent element together with tin which is a first constituent element.
  • the second constituent element is, for example, cobalt, iron, magnesium, titanium, vanadium, chromium, manganese, nickel, copper, zinc, gallium, zirconium, niobium, molybdenum, silver, indium, cesium (Ce), hafnium (Hf), One or more selected from tantalum, tungsten, bismuth and silicon.
  • the third constituent element is, for example, one or more of boron, carbon, aluminum, phosphorus and the like. This is because high battery capacity and excellent cycle characteristics can be obtained.
  • the tin-containing material is preferably a tin-cobalt carbon-containing material.
  • the "tin-cobalt carbon-containing material” is a generic term for materials containing tin, cobalt and carbon as constituent elements.
  • the content of carbon is 9.9% to 29.7% by mass, and the ratio of the content of tin and cobalt (Co / (Sn + Co)) is 20% to 70% by mass is there. This is because a high energy density can be obtained.
  • the tin-cobalt-carbon-containing material has a phase containing tin, cobalt and carbon as constituent elements, and the phase is preferably low crystalline or amorphous. Since this phase is a phase capable of reacting with lithium (reactive phase), excellent properties are obtained due to the presence of the reactive phase.
  • the half-width (diffraction angle 2 ⁇ ) of the diffraction peak obtained by X-ray diffraction of the reaction phase is 1 ° or more when the CuK ⁇ ray is used as the specific X-ray and the drawing speed is 1 ° / min. preferable. While lithium is occluded and released smoothly, the reactivity with the electrolytic solution is reduced.
  • the tin-cobalt carbon-containing material may have a phase in which a single element or a part of each constituent element is contained.
  • This reaction phase contains, for example, the above-described series of constituent elements, and is considered to be low in crystallization or amorphization mainly due to the presence of carbon.
  • the tin-cobalt carbon-containing material it is preferable that at least a part of the constituent elements carbon is bonded to the other constituent element metal element or metalloid element. This is because aggregation of tin and crystallization of tin are suppressed.
  • the bonding state of elements can be confirmed using, for example, X-ray photoelectron spectroscopy (XPS).
  • XPS X-ray photoelectron spectroscopy
  • Al-K ⁇ rays or Mg-K ⁇ rays are used as soft X-rays.
  • the energy is calibrated so that the peak of 4f orbital (Au4f) of gold atom is obtained at 84.0 eV.
  • the position at which the C1s peak of the surface contaminating carbon is detected is 284.8 eV, and the peak is used as the energy standard.
  • the waveform of the C1s peak is obtained in a state including the peak due to surface contamination carbon and the peak due to carbon in the tin-cobalt carbon-containing material. Therefore, for example, by analyzing peaks using commercially available software, the peak attributed to surface contamination carbon and the peak attributed to carbon in the tin-cobalt carbon-containing material are separated. In the analysis of the waveform, the position of the main peak present on the lowest binding energy side is used as the energy reference (284.8 eV).
  • the tin-cobalt carbon-containing material is not limited to a material containing only tin, cobalt and carbon as constituent elements.
  • the tin-cobalt-carbon-containing material may be, for example, in addition to tin, cobalt and carbon, any of silicon, iron, nickel, chromium, indium, niobium, germanium, titanium, molybdenum, aluminum, phosphorus, gallium and bismuth etc. You may contain 1 type or 2 types or more as a constitutent element.
  • tin-cobalt-iron-carbon-containing materials are also preferred.
  • the "tin-cobalt-iron-carbon-containing material" is a generic term for materials containing tin, cobalt, iron and carbon as constituent elements.
  • the composition of this tin-cobalt-iron-carbon-containing material is optional.
  • the content of iron is set to be small, the content of carbon is 9.9% by mass to 29.7% by mass, and the content of iron is 0.3% by mass to 5.9% by mass
  • the content ratio of tin and cobalt (Co / (Sn + Co)) is 30% by mass to 70% by mass.
  • the content of iron when the content of iron is set to be large, the content of carbon is 11.9 mass% to 29.7 mass%, and the content ratio of tin, cobalt and iron ((Co + Fe) / (Sn + Co + Fe)) Is 26.4% by mass to 48.5% by mass, and the ratio of the content of cobalt and iron (Co / (Co + Fe)) is 9.9% by mass to 79.5% by mass.
  • the physical properties (such as the half width) of the tin-cobalt-iron-carbon-containing material are, for example, the same as the physical properties of the above-mentioned tin-cobalt-carbon-containing material.
  • metal oxides and polymer compounds are, for example, metal oxides and polymer compounds.
  • the metal oxide is, for example, iron oxide, ruthenium oxide and molybdenum oxide.
  • the polymer compounds are, for example, polyacetylene, polyaniline and polypyrrole.
  • the negative electrode active material layer 22B is formed, for example, using any one or two or more of a coating method, a vapor phase method, a liquid phase method, a thermal spraying method and a sintering method (sintering method). It is done.
  • the application method is, for example, a method of applying a solution in which a mixture of a negative electrode active material and a negative electrode binder or the like is dissolved or dispersed in an organic solvent or the like to the negative electrode current collector 22A.
  • the gas phase method is, for example, physical deposition method and chemical deposition method. More specifically, vapor phase methods include, for example, vacuum evaporation, sputtering, ion plating, laser ablation, thermal chemical vapor deposition, chemical vapor deposition (CVD) and plasma chemical vapor deposition. Etc.
  • the liquid phase method is, for example, an electrolytic plating method and an electroless plating method.
  • the thermal spraying method is a method of spraying a molten or semi-molten negative electrode active material onto the negative electrode current collector 22A.
  • the baking method is, for example, a method of applying a solution to the negative electrode current collector 22A using a coating method, and then heat treating the solution at a temperature higher than the melting point of the negative electrode binder and the like.
  • the firing method is, for example, an atmosphere firing method, a reaction firing method, a hot press firing method, or the like.
  • the secondary battery in order to prevent lithium metal from being unintentionally deposited on the surface of the negative electrode 22 during charging, electricity of the negative electrode material capable of inserting and extracting lithium
  • the chemical equivalent is preferably larger than the electrochemical equivalent of the positive electrode.
  • the open circuit voltage at the full charge ie, the battery voltage
  • the same positive electrode active material is used as compared to the case where the open circuit voltage at the full charge is 4.20 V. Since the amount of released lithium per unit mass also increases, it is preferable to adjust the amount of the positive electrode active material and the amount of the negative electrode active material in consideration of that. This gives a high energy density.
  • the negative electrode binder contains, for example, one or more selected from synthetic rubber and polymer compounds.
  • the synthetic rubber is, for example, styrene butadiene rubber, fluorine rubber and ethylene propylene diene.
  • the high molecular compounds are, for example, polyvinylidene fluoride and polyimide.
  • the negative electrode binder preferably contains polyvinylidene fluoride. While being excellent in binding property, high physical durability and high chemical durability can be obtained.
  • the content of the negative electrode binder in the negative electrode active material layer 22B is not particularly limited. % Is preferred. This is because the cohesion is secured while maintaining a high battery capacity.
  • the content of the negative electrode binder when the content of the negative electrode binder is less than 2% by weight, the amount of the negative electrode binder is insufficient, and thus the binding property may be reduced. On the other hand, when the content of the negative electrode binder is more than 5% by weight, the content of the negative electrode binder becomes too large relative to the content of the negative electrode active material. Capacity) may be too low.
  • the weight-average molecular weight of polyvinylidene fluoride is not particularly limited, but is preferably 300,000 to 5,000,000 among others. This is because the electrical resistance of the negative electrode active material layer 22B is unlikely to vary.
  • the weight average molecular weight is less than 300,000, the negative electrode binder is likely to move to the vicinity of the surface of the negative electrode active material layer 22B in the step of forming the negative electrode active material layer 22B (drying step) described later. Therefore, the electrical resistance may easily vary in the thickness direction of the negative electrode active material layer 22B.
  • the weight average molecular weight is larger than 5,000,000, the dispersibility of the negative electrode binder is reduced in the preparation step of the negative electrode mixture slurry described later, so that the electrical resistance of the negative electrode active material layer 22B is dispersed overall. It may be easier.
  • the negative electrode conductive agent contains, for example, one or more of conductive materials such as a carbon material.
  • This carbon material is, for example, graphite, carbon black, acetylene black and ketjen black.
  • the shape of the carbon material is not particularly limited, and is, for example, any one or more of particulate, scaly and fibrous.
  • the positive electrode conductive agent is a conductive material, it may contain a metal material, a conductive polymer, and the like.
  • the negative electrode conductive agent preferably contains a fibrous carbon material and a scaly carbon material. This is because the electrical resistance of the entire negative electrode active material layer 22B is reduced, and the electrical resistance is less likely to vary.
  • the silicon-containing material is apt to expand and contract at the time of charge and discharge, the silicon-containing material is easily pulverized when charge and discharge are repeated.
  • the decomposition product of the electrolytic solution is deposited on the surface of the micronized silicon-containing material, the conductivity (electron conductivity) may be reduced inside the negative electrode active material layer 22B.
  • the negative electrode conductive agent contains a fibrous carbon material and a scaly carbon material
  • the fibrous carbon material can conduct long distance conductivity inside the negative electrode active material layer 22B. Is secured, and the scaly carbon material secures the conductivity of a short distance. Therefore, even if the silicon-containing material is pulverized, the electrical resistance of the entire negative electrode active material layer 22B is reduced, and the electrical resistance is less likely to vary.
  • the type of fibrous carbon material is not particularly limited, and is, for example, carbon fiber.
  • the type of the scaly carbon material is not particularly limited, and examples thereof include scaly graphite and carbon black.
  • the content of the negative electrode conductive agent in the negative electrode active material layer 22B is not particularly limited. That is, the content of the fibrous carbon material in the negative electrode active material layer 22B is not particularly limited, and the content of the scaly carbon material in the negative electrode active material layer 22B is not particularly limited.
  • the content of the fibrous carbon material in the negative electrode conductive agent that is, the ratio of the weight of the fibrous carbon material to the total of the weight of the fibrous carbon material and the weight of the scaly carbon material is 0.1 weight % To 3.0% by weight is preferable.
  • the content of the scaly carbon material in the negative electrode conductive agent that is, the ratio of the weight of the scaly carbon material to the total of the weight of the fibrous carbon material and the weight of the scaly carbon material is 0.1 weight % To 3.0% by weight is preferable. This is because the electric resistance of the whole of the negative electrode active material layer 22B is sufficiently reduced, so that the discharge capacity is hardly reduced even if charge and discharge are repeated.
  • the content of the fibrous carbon material is less than 0.1% by weight, it is difficult to ensure long-range conductivity inside the negative electrode active material layer 22B, so the negative electrode active material layer 22B is The overall electrical resistance may not be sufficiently reduced.
  • the content of the fibrous carbon material is greater than 3.0% by weight, the fibrous carbon material is less likely to be dispersed in the step of preparing the negative electrode mixture slurry described later. While the electrical resistance is not sufficiently lowered, the electrical resistance may easily vary.
  • the content of the scaly carbon material is less than 0.1% by weight, it is difficult for the conductivity of the short distance to be secured inside the negative electrode active material layer 22B.
  • the electrical resistance may not be sufficiently lowered.
  • the content of the scaly carbon material is greater than 3.0% by weight, decomposition reaction of the electrolyte on the surface of the scaly carbon material is caused due to the large specific surface area of the scaly carbon material. As a matter or the like tends to be deposited, the electrical resistance of the entire negative electrode active material layer 22B may not be sufficiently reduced.
  • the silicon-containing material expands and contracts vigorously during charge and discharge, the negative electrode active material layer 22B may be easily broken due to the presence of a large amount of scale-like carbon material.
  • the negative electrode active material layer 22B may further contain one or more of other materials.
  • the “other material” described here is a material other than the above-described negative electrode active material, negative electrode binder, and negative electrode conductive agent.
  • the type of the other material is not particularly limited, and examples thereof include polyvalent carboxylic acid and the like.
  • the binding property of the negative electrode binder is improved.
  • the binding property of the polyvinylidene fluoride is remarkably improved.
  • the polyvalent carboxylic acid is, for example, maleic acid.
  • the content of the polyvalent carboxylic acid in the negative electrode active material layer 22B can be arbitrarily set according to, for example, the content of the negative electrode binder.
  • the separator 23 is interposed, for example, between the positive electrode 21 and the negative electrode 22 as shown in FIG. Thereby, the separator 23 allows lithium ions to pass while preventing the short circuit of the current caused by the contact between the positive electrode 21 and the negative electrode 22.
  • the separator 23 contains, for example, any one or two or more types of porous films such as synthetic resin and ceramic, and may be a laminate of two or more types of porous films.
  • Synthetic resins are, for example, polytetrafluoroethylene, polypropylene and polyethylene.
  • the separator 23 may include, for example, the above-described porous film (base layer) and a polymer compound layer provided on one side or both sides of the base layer.
  • the adhesion of the separator 23 to the positive electrode 21 is improved, and the adhesion of the separator 23 to the negative electrode 22 is improved, so distortion of the wound electrode body 20 is suppressed.
  • the decomposition reaction of the electrolytic solution is suppressed, and the leakage of the electrolytic solution impregnated in the base material layer is also suppressed. Therefore, even if the charge and discharge are repeated, the resistance is hardly increased and the secondary battery Is less likely to swell.
  • the polymer compound layer contains, for example, one or more of polymer compounds such as polyvinylidene fluoride. It is because it is excellent in physical strength and electrochemically stable.
  • a solution in which the polymer compound is dissolved in an organic solvent or the like is applied to the base material layer, and then the base material layer is dried. Alternatively, for example, after immersing the base material layer in a solution, the base material layer may be dried.
  • the polymer compound layer may contain, for example, one or more of insulating particles such as inorganic particles.
  • insulating particles such as inorganic particles.
  • the types of inorganic particles are, for example, aluminum oxide and aluminum nitride.
  • the electrolyte contains a solvent and an electrolyte salt.
  • the electrolytic solution may further contain any one or more of other materials such as additives.
  • the solvent contains any one or more kinds of non-aqueous solvents such as organic solvents.
  • the electrolyte containing a non-aqueous solvent is a so-called non-aqueous electrolyte.
  • Nonaqueous solvents are, for example, cyclic carbonates, linear carbonates, lactones, linear carboxylic esters and nitriles (mononitriles). This is because excellent battery capacity, cycle characteristics and storage characteristics can be obtained.
  • Cyclic carbonates are, for example, ethylene carbonate, propylene carbonate and butylene carbonate.
  • the chain carbonate is, for example, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate and methyl propyl carbonate.
  • Lactones are, for example, ⁇ -butyrolactone and ⁇ -valerolactone.
  • the chain carboxylic acid ester is, for example, methyl acetate, ethyl acetate, methyl propionate, ethyl propionate, methyl butyrate, methyl isobutyrate, methyl trimethylacetate and ethyl trimethylacetate.
  • Nitriles are, for example, acetonitrile, methoxyacetonitrile and 3-methoxypropionitrile.
  • non-aqueous solvents are, for example, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, 1,3-dioxolane, 4-methyl-1,3-dioxolane, 1,3-dioxane, 1 And 4-dioxane, N, N-dimethylformamide, N-methyl pyrrolidinone, N-methyl oxazolidinone, N, N'-dimethyl imidazolidinone, nitromethane, nitroethane, sulfolane, trimethyl phosphate and dimethyl sulfoxide and the like. It is because the same advantage is obtained.
  • the non-aqueous solvent preferably contains one or more selected from ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate and ethyl methyl carbonate.
  • high battery capacity excellent cycle characteristics and excellent storage characteristics can be obtained.
  • high viscosity (high dielectric constant) solvents such as ethylene carbonate and propylene carbonate (for example, relative permittivity ⁇ ⁇ 30) and low viscosity solvents such as dimethyl carbonate, ethyl methyl carbonate and diethyl carbonate (for example, viscosity
  • the combination with ⁇ 1 mPa ⁇ s) is more preferable. This is because the dissociative nature of the electrolyte salt and the mobility of the ions are improved.
  • non-aqueous solvent may be, for example, unsaturated cyclic carbonate, halogenated carbonate, sulfonic acid ester, acid anhydride, dicyano compound (dinitrile compound), diisocyanate compound, phosphoric acid ester and a chain having a carbon-carbon triple bond It is a compound. This is because the chemical stability of the electrolytic solution is improved.
  • An unsaturated cyclic carbonate is a cyclic carbonate having one or more unsaturated bonds (carbon double bond or carbon double bond).
  • the unsaturated cyclic carbonate is, for example, vinylene carbonate, vinyl ethylene carbonate and methylene ethylene carbonate.
  • the content of the unsaturated cyclic carbonate in the non-aqueous solvent is not particularly limited, and is, for example, 0.01% by weight to 10% by weight.
  • the halogenated carbonate is a cyclic or chain carbonate containing one or more halogen elements as a constituent element.
  • the halogenated carbonate ester contains two or more halogens as constituent elements, the number of kinds of two or more halogens may be only one or two or more.
  • Cyclic halogenated carbonates are, for example, 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.
  • the chain halogenated carbonates are, for example, fluoromethyl methyl carbonate, bis (fluoromethyl) carbonate and difluoromethyl methyl carbonate.
  • the content of the halogenated carbonate in the non-aqueous solvent is not particularly limited, and is, for example, 0.01% by weight to 50% by weight.
  • Sulfonic acid esters are, for example, monosulfonic acid esters and disulfonic acid esters.
  • the content of sulfonic acid ester in the non-aqueous solvent is not particularly limited, and is, for example, 0.01% by weight to 10% by weight.
  • the monosulfonic acid ester may be a cyclic monosulfonic acid ester or a linear monosulfonic acid ester.
  • Cyclic monosulfonic acid esters are, for example, sultones such as 1,3-propane sultone and 1,3-propene sultone.
  • the linear monosulfonic acid ester is, for example, a compound in which a cyclic monosulfonic acid ester is cleaved halfway.
  • the disulfonic acid ester may be a cyclic disulfonic acid ester or a linear disulfonic acid ester.
  • the acid anhydride is, for example, carboxylic acid anhydride, disulfonic acid anhydride and carboxylic acid sulfonic acid anhydride.
  • Carboxylic anhydrides are, for example, succinic anhydride, glutaric anhydride and maleic anhydride.
  • disulfonic anhydride include anhydrous ethanedisulfonic acid and anhydrous propanedisulfonic acid.
  • Carboxylic acid sulfonic acid anhydrides are, for example, sulfobenzoic anhydride, sulfopropionic anhydride and sulfobutyric anhydride.
  • the content of the acid anhydride in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the dinitrile compound is, for example, a compound represented by NC-R1-CN (R1 is any of an alkylene group and an arylene group).
  • the dinitrile compounds are, for example, succinonitrile (NC-C 2 H 4 -CN ), glutaronitrile (NC-C 3 H 6 -CN ), adiponitrile (NC-C 4 H 8 -CN ) and phthalonitrile ( NC-C 6 H 4 -CN) and the like.
  • the content of the dinitrile compound in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the diisocyanate compound is, for example, a compound represented by OCN-R2-NCO (R2 is any of an alkylene group and an arylene group).
  • the diisocyanate compound is, for example, hexamethylene diisocyanate (OCN-C 6 H 12 -NCO).
  • the content of the diisocyanate compound in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the phosphoric acid ester is, for example, trimethyl phosphate and triethyl phosphate.
  • the content of phosphoric acid ester in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the chain compound having a carbon-carbon triple bond is a chain compound having one or more carbon-carbon triple bonds (—C ⁇ C—).
  • -OS ( O) 2 -CH 3 ) and the like.
  • the content of the chain compound having a carbon-carbon triple bond in the non-aqueous solvent is not particularly limited, and is, for example, 0.5% by weight to 5% by weight.
  • the electrolyte salt contains, for example, any one or more of salts such as lithium salts.
  • the electrolyte salt may contain, for example, a salt other than a lithium salt.
  • the salt other than lithium is, for example, a salt of a light metal other than lithium.
  • the lithium salt is, for example, lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium perchlorate (LiClO 4 ), lithium hexafluoride arsenate (LiAsF 6 ), tetraphenyl Lithium borate (LiB (C 6 H 5 ) 4 ), lithium methanesulfonate (LiCH 3 SO 3 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium tetrachloroaluminate (LiAlCl 4 ), hexafluoride
  • LiPF 6 lithium hexafluorophosphate
  • LiBF 4 lithium tetrafluoroborate
  • LiClO 4 lithium perchlorate
  • LiAsF 6 lithium hexafluoride arsenate
  • LiAsF 6 tetraphenyl Lithium borate
  • lithium hexafluorophosphate lithium tetrafluoroborate, lithium perchlorate and lithium hexafluoroarsenate are preferable, and lithium hexafluorophosphate is more preferable. . It is because internal resistance falls.
  • the content of the electrolyte salt is not particularly limited, but preferably 0.3 mol / kg to 3.0 mol / kg with respect to the solvent. It is because high ion conductivity is obtained.
  • FIG. 3 is an enlarged view of a part of the cross-sectional configuration of the negative electrode 22 shown in FIG. Note that FIG. 3 shows only one of the two negative electrode active material layers 22B shown in FIG. 2 in order to simplify the illustration.
  • the physical properties are optimized in order to optimize the electrical resistance distribution of the negative electrode active material layer 22B.
  • the electrical resistance distribution of the negative electrode active material layer 22B is a distribution of the electrical resistance of the negative electrode active material layer 22B mainly due to the electrical resistance in the vicinity of the silicon-containing material. Focusing on the electrical resistance in the vicinity of the silicon-containing material, it has the concern that the silicon-containing material has the advantage of high theoretical capacity as described above, but has a higher electrical resistance than the carbon-containing material. Therefore, the electrical resistance in the vicinity of the silicon-containing material greatly affects the electrical resistance of the entire negative electrode active material layer 22B.
  • the spread resistance distribution a / b of the negative electrode active material layer 22B measured using a scanning spread resistance microscope (SSRM) is 1.03 to 10.
  • SSRM scanning spread resistance microscope
  • the “spreading resistance distribution a / b” is a parameter measured using a scanning spreading resistance microscope as described above. Specifically, the spread resistance distribution a / b is, as shown in FIG. 3, a lower layer 22BX (a negative electrode collector in the thickness direction of the negative electrode active material layer 22B provided on the negative electrode collector 22A). Spreading resistance a ( ⁇ ) of lower layer 22BX to spreading resistance b ( ⁇ ) of upper layer 22BY when bisected into the layer closer to 22A and the upper layer 22BY (layer far from negative electrode current collector 22A) Ratio. When the spread resistance distribution a / b is calculated, the value of the third decimal place is rounded off.
  • This scanning spread resistance microscope two-dimensionally visualizes the electrical resistance distribution in a sample by applying a voltage to the sample and measuring the current flowing through the conductive probe using a wide-range logarithmic amplifier. It is an observation device.
  • the type of scanning spread resistance microscope used to measure the spread resistance distribution a / b is not particularly limited, and examples thereof include a scanning spread resistance microscope NanoNavi / E-sweep manufactured by Hitachi High-Tech Science Co., Ltd.
  • the negative electrode active material layer 22B contains a carbon-containing material and a silicon-containing material, for example, lithium is absorbed in the negative electrode 22 during charging, as described later, so that silicon and lithium can be used in the negative electrode 22. And an alloy thereof (Li x Si) is formed.
  • the secondary battery operates, for example, as follows.
  • lithium ions are released from the positive electrode 21 and the lithium ions are stored in the negative electrode 22 through the electrolytic solution.
  • lithium ions are released from the negative electrode 22 and the lithium ions are occluded by the positive electrode 21 through the electrolytic solution.
  • the secondary battery is manufactured, for example, by the following procedure.
  • the positive electrode 21 In the case of manufacturing the positive electrode 21, first, a positive electrode active material, a positive electrode binder, a positive electrode conductive agent, and the like are mixed to form a positive electrode mixture. Subsequently, the positive electrode mixture is dispersed in an organic solvent or the like to prepare a paste-like positive electrode mixture slurry. Finally, the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A, and then the positive electrode mixture slurry is dried to form the positive electrode active material layer 21B. Thereafter, the positive electrode active material layer 21B may be compression molded using a roll press machine or the like. In this case, the positive electrode active material layer 21B may be heated or compression molding may be repeated multiple times.
  • the negative electrode active material layer 22B is formed on both surfaces of the negative electrode current collector 22A by the same procedure as the manufacturing procedure of the negative electrode described above. Specifically, a negative electrode active material containing a carbon-containing material and a silicon-containing material, and a negative electrode binder and a negative electrode conductive agent are mixed to form a positive electrode mixture, and then the negative electrode mixture is used as an organic solvent. By dispersing, a paste-like negative electrode mixture slurry is prepared. After the negative electrode mixture slurry is applied to both sides of the negative electrode current collector 22A, the negative electrode mixture slurry is dried.
  • the positive electrode lead 25 is connected to the positive electrode current collector 21A using a welding method or the like, and the negative electrode lead 26 is connected to the negative electrode current collector 22A using a welding method or the like.
  • the positive electrode 21 and the negative electrode 22 are stacked on each other through the separator 23, and then the positive electrode 21, the negative electrode 22, and the separator 23 are wound to form a wound body.
  • the center pin 24 is inserted into the winding center 20C of the winding body.
  • the wound body is housed inside the battery can 11 while holding the wound body with the pair of insulating plates 12 and 13.
  • the positive electrode lead 25 is connected to the safety valve mechanism 15 using a welding method or the like
  • the negative electrode lead 26 is connected to the battery can 11 using a welding method or the like.
  • an electrolytic solution is injected into the inside of the battery can 11.
  • the battery cover 14, the safety valve mechanism 15, and the heat sensitive resistance element 16 are crimped to the open end of the battery can 11 through the gasket 17.
  • the wound electrode body 20 is enclosed inside the battery can 11, and thus the cylindrical secondary battery is completed.
  • the negative electrode active material layer 22B contains a carbon-containing material and a silicon-containing material as a negative electrode active material, and the negative electrode active material layer 22B is measured using a scanning spread resistance microscope.
  • the spread resistance distribution a / b is 1.03 to 10.
  • the electrical resistance distribution of the negative electrode active material layer 22B is optimized, so that the negative electrode is maintained while maintaining a high theoretical capacity.
  • the electrical resistance of the entire active material layer 22B is stably and sufficiently lowered. Therefore, high energy density can be obtained, and the discharge capacity is unlikely to decrease even if charge and discharge are repeated, so that excellent battery characteristics can be obtained.
  • the 10% particle diameter D10 of the plurality of particulate silicon-containing materials is 1 ⁇ m to 5 ⁇ m, and the particle size ratio is 0.1 to 0.5, bonding of the plurality of particulate carbon-containing materials Since the electrical resistance of the entire negative electrode active material layer 22B is stably and sufficiently lowered while ensuring the property and the binding property of the plurality of particulate silicon-containing materials, higher effects can be obtained.
  • the average aspect ratio of the plurality of particulate carbon-containing materials is 1.1 to 2.0, the negative electrode active material while securing the dispersion stability and the structural stability of the plurality of particulate carbon-containing materials Since the electrical resistance of the layer 22B hardly varies, higher effects can be obtained.
  • the active material ratio is 30% by weight or less, the suppression of the expansion and contraction of the negative electrode active material at the time of charge and discharge and the securing of a high theoretical capacity can be achieved at the same time.
  • the negative electrode conductive agent contains a fibrous carbon material and a scaly carbon material
  • the electric resistance of the whole of the negative electrode active material layer 22B is lowered and the electric resistance is less likely to vary, so that a higher effect is obtained.
  • the content of the fibrous carbon material in the negative electrode conductive agent is 0.1% by weight to 3.0% by weight
  • the content of the scaly carbon material in the negative electrode conductive agent is 0.1% by weight If% to 3.0% by weight, the electric resistance of the entire negative electrode active material layer 22B is sufficiently reduced, and the discharge capacity is unlikely to decrease even if charge and discharge are repeated, so that a higher effect can be obtained. it can.
  • the negative electrode binder contains polyvinylidene fluoride, not only excellent binding property can be obtained, but also high physical durability and high chemical durability can be obtained, so that higher effects can be obtained. .
  • the content of the negative electrode binder in the negative electrode active material layer is 2% by weight to 5% by weight, the binding property is maintained while maintaining the high battery capacity, and thus the effect is enhanced. You can get it.
  • the weight average molecular weight of polyvinylidene fluoride is 300,000 to 5,000,000, the electrical resistance of the negative electrode active material layer 22B is unlikely to vary, so that a higher effect can be obtained.
  • the negative electrode active material layer 22B contains a polyvalent carboxylic acid, and more specifically contains a maleic acid or the like, the binding property of the negative electrode binder is improved, so that a higher effect can be obtained. Can.
  • FIG. 4 shows a perspective view of another secondary battery
  • FIG. 5 is an enlarged sectional view of the wound electrode body 30 taken along the line VV shown in FIG.
  • FIG. 4 shows a perspective view of another secondary battery
  • FIG. 5 is an enlarged sectional view of the wound electrode body 30 taken along the line VV shown in FIG.
  • FIG. 4 shows the state which the winding electrode body 30 and the exterior member 40 mutually spaced apart is shown.
  • the wound electrode body 30 which is a battery element is housed inside a flexible (or flexible) film-like exterior member 40. It is a laminated film type secondary battery.
  • the exterior member 40 is one sheet of film that can be folded in the direction of the arrow R, and the wound electrode body 30 is housed in a part of the exterior member 40.
  • a recess 40U is provided.
  • the exterior member 40 is, for example, a laminate film in which a fusion bonding layer, a metal layer, and a surface protective layer are laminated in this order.
  • a fusion bonding layer for example, a metal layer, and a surface protective layer are laminated in this order.
  • the outer peripheral edge portion of the fusion layers are fused together.
  • the fusion layer contains, for example, any one or more of films such as polyethylene and polypropylene.
  • the metal layer contains, for example, any one or more of metal foils such as aluminum foil.
  • the surface protective layer contains, for example, any one or more of films such as nylon and polyethylene terephthalate.
  • the exterior member 40 is preferably an aluminum laminated film in which a polyethylene film, an aluminum foil, and a nylon film are laminated in this order.
  • the exterior member 40 may be, for example, a laminate film having another laminated structure, a single-layer polymer film such as polypropylene, or a single-layer metal foil such as aluminum.
  • the exterior member 40 is, for example, two films, and the two films may be bonded to each other via, for example, an adhesive.
  • wound electrode body For example, as shown in FIGS. 4 and 5, after the positive electrode 33 and the negative electrode 34 are stacked on each other through the separator 35 and the electrolyte layer 36, the wound electrode body 30 has the positive electrode 33, the negative electrode 34, and the separator. 35 and the electrolyte layer 36 are formed by winding. The outermost periphery of the wound electrode body 30 is protected by, for example, a protective tape 37.
  • the positive electrode lead 31 is connected to the positive electrode 33, and the positive electrode lead 31 is drawn out from the inside of the exterior member 40 to the outside.
  • the positive electrode lead 31 contains, for example, one or more of conductive materials such as aluminum.
  • the shape of the positive electrode lead 31 is, for example, a thin plate shape or a mesh shape.
  • the negative electrode lead 32 is connected to the negative electrode 34, and the negative electrode lead 32 is drawn out from the inside of the exterior member 40 to the outside.
  • the lead-out direction of the negative electrode lead 32 is, for example, the same as the lead-out direction of the positive electrode lead 31.
  • the negative electrode lead 32 contains, for example, one or more of conductive materials such as copper, nickel and stainless steel.
  • the shape of the negative electrode lead 32 is, for example, the same as the shape of the positive electrode lead 31.
  • an adhesive film 41 is inserted between the exterior member 40 and the positive electrode lead 31 in order to prevent the outside air from entering.
  • the adhesive film 41 contains, for example, one or more of materials having adhesiveness to the positive electrode lead 31, and more specifically, contains a polyolefin resin or the like.
  • the polyolefin resin is, for example, any one or more of polyethylene, polypropylene, modified polyethylene and modified polypropylene.
  • an adhesive film 42 having the same function as the adhesive film 41 is inserted between the exterior member 40 and the negative electrode lead 32.
  • the forming material of the adhesive film 42 is, for example, the same as the forming material of the adhesive film 41.
  • the positive electrode 33 includes, for example, a positive electrode current collector 33A and a positive electrode active material layer 33B, and the negative electrode 34 includes a negative electrode current collector 34A and a negative electrode active material layer 34B.
  • the configurations of the positive electrode current collector 33A, the positive electrode active material layer 33B, the negative electrode current collector 34A and the negative electrode active material layer 34B are, for example, the positive electrode current collector 21A, the positive electrode active material layer 21B, the negative electrode current collector 22A and the negative electrode
  • the structure is similar to that of each active material layer 22B.
  • the configuration of the separator 35 is, for example, the same as the configuration of the separator 23.
  • the negative electrode active material layer 33B of the negative electrode 33 contains a carbon-containing material and a silicon-containing material, and the physical properties (spreading resistance distribution a / b) of the negative electrode active material layer 33B are optimized.
  • the electrolyte layer 36 contains an electrolytic solution and a polymer compound.
  • the configuration of the electrolytic solution is, for example, the same as the configuration of the electrolytic solution used for the cylindrical secondary battery.
  • the electrolyte layer 36 described here is a so-called gel electrolyte, and in the electrolyte layer 36, an electrolytic solution is held by a polymer compound. This is because high ionic conductivity (for example, 1 mS / cm or more at room temperature) can be obtained, and leakage of the electrolytic solution can be prevented.
  • the electrolyte layer 36 may further contain one or more of other materials such as additives.
  • the polymer compound contains one or more of homopolymers and copolymers.
  • homopolymers include polyacrylonitrile, polyvinylidene fluoride, polytetrafluoroethylene, polyhexafluoropropylene, polyethylene oxide, polypropylene oxide, polyphosphazene, polysiloxane, polyvinyl fluoride, polyvinyl acetate, polyvinyl alcohol, and polymethacryl. Acid methyl acrylate, polyacrylic acid, polymethacrylic acid, styrene-butadiene rubber, nitrile-butadiene rubber, polystyrene and polycarbonate.
  • the copolymer is, for example, a copolymer of vinylidene fluoride and hexafluoropyrene.
  • the homopolymer is preferably polyvinylidene fluoride, and the copolymer is preferably a copolymer of vinylidene fluoride and hexafluoropyrene. It is because it is electrochemically stable.
  • the "solvent" contained in the electrolytic solution is a broad concept including not only liquid materials but also materials having ion conductivity capable of dissociating electrolyte salts. . For this reason, when using the high molecular compound which has ion conductivity, the high molecular compound is also contained in a solvent.
  • the electrolytic solution is impregnated into the wound electrode body 30 (the positive electrode 33, the negative electrode 34, and the separator 35).
  • the secondary battery operates, for example, as follows.
  • lithium ions are released from the positive electrode 33, and the lithium ions are occluded in the negative electrode 34 via the electrolyte layer 36.
  • lithium ions are released from the negative electrode 34, and the lithium ions are stored in the positive electrode 33 via the electrolyte layer 36.
  • the secondary battery provided with the gel electrolyte layer 36 is manufactured, for example, by the following three types of procedures.
  • the positive electrode 33 is produced by the same procedure as the production procedure of the positive electrode 21, and the negative electrode 34 is produced by the same procedure as the production procedure of the negative electrode 22.
  • the two positive electrode active material layers 33B are formed on both sides of the positive electrode current collector 33A, and in the case of producing the negative electrode 34, both surfaces of the negative electrode current collector 34A. To form two negative electrode active material layers 34B.
  • an electrolytic solution, a polymer compound, an organic solvent and the like are mixed, and then the mixture is stirred to prepare a precursor solution.
  • the precursor solution is dried to form a gel electrolyte layer 36.
  • the precursor solution is dried to form a gel electrolyte layer 36.
  • the positive electrode lead 31 is connected to the positive electrode current collector 33A using a welding method or the like
  • the negative electrode lead 32 is connected to the negative electrode current collector 34A using a welding method or the like.
  • the positive electrode 33 and the negative electrode 34 are wound around each other through the separator 35 and the electrolyte layer 36, and then the positive electrode 33, the negative electrode 34, the separator 35, and the electrolyte layer 36 are wound to obtain a wound electrode body.
  • Form 30 Thereafter, the protective tape 37 is attached to the outermost periphery of the wound electrode body 30.
  • the exterior member 40 is folded so as to sandwich the wound electrode body 30, and the outer peripheral edge portions of the exterior member 40 are adhered to each other using a heat fusion method or the like, whereby the inside of the exterior member 40 is wound.
  • the electrode assembly 30 is sealed.
  • the adhesive film 41 is inserted between the positive electrode lead 31 and the package member 40, and the adhesive film 42 is inserted between the negative electrode lead 32 and the package member 40.
  • each of the positive electrode 33 and the negative electrode 34 is manufactured according to the same procedure as the first procedure described above, and then the positive electrode lead 31 is connected to the positive electrode 33 using a welding method etc.
  • the negative electrode lead 32 is connected to 34.
  • the positive electrode 33 and the negative electrode 34 are stacked on each other through the separator 35, and then the positive electrode 33, the negative electrode 34, and the separator 35 are wound to form a wound body which is a precursor of the wound electrode body 30.
  • the protective tape 37 is attached to the outermost periphery of the wound body.
  • the exterior member 40 is folded so as to sandwich the wound electrode body 30, the remaining outer peripheral edge excluding the outer peripheral edge of one side of the exterior member 40 is adhered using a heat fusion method or the like. As a result, the wound body is housed inside the bag-like exterior member 40.
  • the mixture is stirred to prepare an electrolyte.
  • the composition is prepared.
  • the composition for electrolyte is injected into the inside of the bag-like exterior member 40, the exterior member 40 is sealed using a heat fusion method or the like.
  • a polymer compound is formed by thermally polymerizing the monomers in the composition for electrolyte.
  • the electrolytic solution is held by the polymer compound, so that the gel electrolyte layer 36 is formed.
  • a wound body is produced by the same procedure as the above-described second procedure except that a separator 35 in which two polymer compound layers are formed on both sides of a porous membrane (base material layer) is used. . Subsequently, the wound body is housed inside the bag-like exterior member 40. Subsequently, an electrolytic solution is injected into the inside of the exterior member 40, and then the opening of the exterior member 40 is sealed using a heat fusion method or the like. Subsequently, while heating the exterior member 40 while applying a weight to the exterior member 40, the separator 35 is adhered to the positive electrode 33 via the polymer compound layer, and the separator is attached to the negative electrode 34 via the polymer compound layer. Attach 35. As a result, the electrolytic solution is impregnated into the polymer compound layer, and the polymer compound layer is gelated, whereby the electrolyte layer 36 is formed.
  • the secondary battery is less likely to swell than in the first procedure. Further, in the third procedure, compared to the second procedure, since the solvent and the monomer (raw material of the polymer compound) and the like are less likely to remain in the electrolyte layer 36, the step of forming the polymer compound is well controlled. . Thereby, each of the positive electrode 33, the negative electrode 34, and the separator 35 is sufficiently in close contact with the electrolyte layer 36.
  • the negative electrode 34 has the same configuration as the negative electrode 22.
  • the electrical resistance distribution of the negative electrode active material layer 22B is optimized when the carbon-containing material and the silicon-containing material are used in combination, for the same reason as in the cylindrical secondary battery, so a high energy density is obtained. While being obtained, the discharge capacity is less likely to decrease even if charge and discharge are repeated. Therefore, excellent battery characteristics can be obtained.
  • Secondary batteries include machines, devices, instruments, devices and systems (aggregates of multiple devices) where secondary batteries can be used as a power source for driving or a power storage source for storing electric power, etc.
  • the secondary battery used as a power source may be a main power source or an auxiliary power source.
  • the main power supply is a power supply that is preferentially used regardless of the presence or absence of other power supplies.
  • the auxiliary power source may be, for example, a power source used instead of the main power source, or a power source switched from the main power source as needed.
  • the type of main power supply is not limited to the secondary battery.
  • the application of the secondary battery is, for example, as follows. They are electronic devices (including portable electronic devices) such as video cameras, digital still cameras, mobile phones, laptop computers, cordless phones, headphone stereos, portable radios, portable TVs, and portable information terminals. It is a portable household appliance such as an electric shaver. Storage devices such as backup power supplies and memory cards. It is a power tool such as a power drill and a power saw. It is a battery pack installed in a notebook computer as a removable power supply. Medical electronics such as pacemakers and hearing aids. It is an electric vehicle such as an electric car (including a hybrid car). It is a power storage system such as a household battery system for storing power in preparation for an emergency or the like. Of course, applications of the secondary battery may be applications other than the above.
  • the battery pack is a power supply using a secondary battery.
  • the battery pack may use a single cell or an assembled battery as described later.
  • the electric vehicle is a vehicle that operates (travels) using a secondary battery as a driving power source, and as described above, may be a car (such as a hybrid car) equipped with a driving source other than the secondary battery.
  • the power storage system is a system using a secondary battery as a power storage source.
  • the electric power tool is a tool in which a movable portion (for example, a drill or the like) moves using a secondary battery as a power source for driving.
  • the electronic device is a device that exhibits various functions as a power source (power supply source) for driving a secondary battery.
  • FIG. 6 shows a perspective view of a battery pack using single cells.
  • FIG. 7 shows a block configuration of the battery pack shown in FIG. FIG. 6 shows the battery pack in a disassembled state.
  • the battery pack described here is a simple battery pack (so-called soft pack) using one secondary battery, and is mounted, for example, on an electronic device represented by a smartphone.
  • this battery pack includes a power supply 111 which is a laminated film secondary battery and a circuit board 116 connected to the power supply 111.
  • the positive electrode lead 112 and the negative electrode lead 113 are attached to the power source 111.
  • a pair of adhesive tapes 118 and 119 is attached to both sides of the power supply 111.
  • a protection circuit (PCM: Protection Circuit) is formed on the circuit board 116.
  • the circuit board 116 is connected to the positive electrode 112 through the tab 114 and connected to the negative electrode lead 113 through the tab 115. Further, the circuit board 116 is connected to the connector-attached lead wire 117 for external connection.
  • the circuit board 116 is protected by the label 120 and the insulating sheet 121. By attaching the label 120, the circuit board 116, the insulating sheet 121, and the like are fixed.
  • the battery pack includes, for example, a power supply 111 and a circuit board 116 as shown in FIG.
  • the circuit board 116 includes, for example, a control unit 121, a switch unit 122, a PTC element 123, and a temperature detection unit 124.
  • the power source 111 can be connected to the outside through the positive electrode terminal 125 and the negative electrode terminal 127, so the power source 111 is charged and discharged through the positive electrode terminal 125 and the negative electrode terminal 127.
  • the temperature detection unit 124 detects a temperature using a temperature detection terminal (so-called T terminal) 126.
  • the control unit 121 controls the operation of the entire battery pack (including the usage state of the power supply 111).
  • the control unit 121 includes, for example, a central processing unit (CPU) and a memory.
  • the control unit 121 disconnects the switch unit 122 so that the charging current does not flow in the current path of the power supply 111. Further, for example, when a large current flows during charging, the control unit 121 cuts off the charging current by disconnecting the switch unit 122.
  • the control unit 121 disconnects the switch unit 122 to prevent the discharge current from flowing in the current path of the power supply 111. Further, for example, when a large current flows at the time of discharge, the control unit 121 cuts off the discharge current by disconnecting the switch unit 122.
  • the overcharge detection voltage is not particularly limited, but is, for example, 4.2V ⁇ 0.05V, and the overdischarge detection voltage is not particularly limited, but is, for example, 2.4V ⁇ 0.1 V.
  • the switch unit 122 switches the use state of the power supply 111, that is, the presence or absence of connection between the power supply 111 and an external device, in accordance with an instruction from the control unit 121.
  • the switch unit 122 includes, for example, a charge control switch and a discharge control switch.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the temperature detection unit 124 measures the temperature of the power supply 111 and outputs the measurement result of the temperature to the control unit 121.
  • the temperature detection unit 124 includes, for example, a temperature detection element such as a thermistor.
  • the measurement result of the temperature measured by the temperature detection unit 124 is used, for example, when the control unit 121 performs charge / discharge control during abnormal heat generation, or when the control unit 121 performs correction processing when calculating the remaining capacity. .
  • the circuit board 116 may not have the PTC element 123. In this case, the circuit board 116 may be additionally provided with a PTC element.
  • FIG. 8 shows a block configuration of a battery pack using a battery pack.
  • the battery pack includes, for example, a control unit 61, a power supply 62, a switch unit 63, a current measurement unit 64, a temperature detection unit 65, a voltage detection unit 66, and a switch control unit 67 in a housing 60. , A memory 68, a temperature detection element 69, a current detection resistor 70, and a positive electrode terminal 71 and a negative electrode terminal 72.
  • the housing 60 contains, for example, a plastic material or the like.
  • the control unit 61 controls the operation of the entire battery pack (including the usage state of the power supply 62).
  • the control unit 61 includes, for example, a CPU.
  • the power source 62 is a battery pack including two or more secondary batteries, and the connection form of the two or more secondary batteries may be in series, in parallel, or a combination of both.
  • the power supply 62 includes six secondary batteries connected in two parallel three series.
  • the switch unit 63 switches the use state of the power supply 62, that is, the presence or absence of connection between the power supply 62 and an external device, in accordance with an instruction from the control unit 61.
  • the switch unit 63 includes, for example, a charge control switch, a discharge control switch, a charging diode, and a discharging diode.
  • Each of the charge control switch and the discharge control switch is, for example, a semiconductor switch such as a field effect transistor (MOSFET) using a metal oxide semiconductor.
  • MOSFET field effect transistor
  • the current measuring unit 64 measures the current using the current detection resistor 70, and outputs the measurement result of the current to the control unit 61.
  • the temperature detection unit 65 measures the temperature using the temperature detection element 69, and outputs the measurement result of the temperature to the control unit 61.
  • the measurement result of the temperature is used, for example, when the control unit 61 performs charge / discharge control during abnormal heat generation, or when the control unit 61 performs correction processing when calculating the remaining capacity.
  • the voltage detection unit 66 measures the voltage of the secondary battery in the power supply 62, and supplies the control unit 61 with the measurement result of the analog-digital converted voltage.
  • the switch control unit 67 controls the operation of the switch unit 63 in accordance with the signals input from each of the current measurement unit 64 and the voltage detection unit 66.
  • the switch control unit 67 disconnects the switch unit 63 (charge control switch) to prevent the charging current from flowing in the current path of the power supply 62.
  • the power supply 62 can only discharge via the discharge diode. Note that, for example, when a large current flows during charging, the switch control unit 67 cuts off the charging current.
  • the switch control unit 67 disconnects the switch unit 63 (discharge control switch) to prevent the discharge current from flowing in the current path of the power supply 62.
  • the power source 62 can only charge via the charging diode.
  • the switch control unit 67 cuts off the discharge current, for example, when a large current flows during discharge.
  • the overcharge detection voltage is not particularly limited, but is, for example, 4.2V ⁇ 0.05V, and the overdischarge detection voltage is not particularly limited, but is, for example, 2.4V ⁇ 0.1 V.
  • the memory 68 includes, for example, an EEPROM which is a non-volatile memory.
  • EEPROM electrically erasable programmable read-only memory
  • the temperature detection element 69 measures the temperature of the power supply 62, and outputs the measurement result of the temperature to the control unit 61.
  • the temperature detection element 69 includes, for example, a thermistor.
  • Each of the positive electrode terminal 71 and the negative electrode terminal 72 is used for an external device (for example, a laptop personal computer) operated by using a battery pack, an external device (for example, a charger or the like) used for charging the battery pack, It is a terminal to be connected.
  • the power source 62 is charged and discharged via the positive electrode terminal 71 and the negative electrode terminal 72.
  • FIG. 9 shows a block configuration of a hybrid vehicle which is an example of the electric vehicle.
  • the electric vehicle includes, for example, a control unit 74, an engine 75, a power supply 76, a driving motor 77, a differential gear 78, a generator 79, and a transmission 80 in a metal casing 73. And a clutch 81, inverters 82 and 83, and various sensors 84.
  • the electric-powered vehicle includes, for example, a front wheel drive shaft 85 and a front wheel 86 connected to the differential 78 and the transmission 80, and a rear wheel drive shaft 87 and a rear wheel 88.
  • the electrically powered vehicle can travel, for example, using one of the engine 75 and the motor 77 as a drive source.
  • the engine 75 is a main power source, such as a gasoline engine.
  • the driving force (rotational force) of the engine 75 is transmitted to the front wheels 86 and the rear wheels 88 via the differential 78 as a driving unit, the transmission 80 and the clutch 81.
  • Ru Since the rotational power of engine 75 is transmitted to generator 79, generator 79 generates AC power using the rotational power, and the AC power is converted to DC power through inverter 83. Therefore, the DC power is stored in the power supply 76.
  • the motor 77 which is a conversion unit is used as a power source
  • the electric power (DC power) supplied from the power source 76 is converted into AC power via the inverter 82.
  • 77 drives.
  • the driving force (rotational force) converted from the electric power by the motor 77 is transmitted to the front wheel 86 and the rear wheel 88 via, for example, the differential 78 as a driving unit, the transmission 80 and the clutch 81.
  • the resistance at the time of deceleration is transmitted to the motor 77 as a rotational force, so that the motor 77 generates alternating current power using the rotational force. Good. Since this AC power is converted to DC power via inverter 82, it is preferable that the DC regenerative power be stored in power supply 76.
  • Control unit 74 controls the operation of the entire electric vehicle.
  • the control unit 74 includes, for example, a CPU.
  • the power source 76 includes one or more secondary batteries.
  • the power supply 76 may be connected to an external power supply and may store power by receiving power supply from the external power supply.
  • the various sensors 84 are used, for example, to control the rotational speed of the engine 75 and to control the opening degree of the throttle valve (throttle opening degree).
  • the various sensors 84 include, for example, one or more of a speed sensor, an acceleration sensor, an engine speed sensor, and the like.
  • the electric vehicle may be a vehicle (electric vehicle) that operates using only the power supply 76 and the motor 77 without using the engine 75.
  • FIG. 10 shows a block configuration of the power storage system.
  • the power storage system includes, for example, a control unit 90, a power supply 91, a smart meter 92, and a power hub 93 inside a house 89 such as a home or a commercial building.
  • the power supply 91 can be connected to, for example, the electric device 94 installed inside the house 89 and to the electric vehicle 96 stopped outside the house 89. Also, the power supply 91 is connected to, for example, a private generator 95 installed in a house 89 via a power hub 93, and is connected to an external centralized power system 97 via a smart meter 92 and the power hub 93. It is possible.
  • the electric device 94 includes, for example, one or more types of home appliances, and the home appliances are, for example, a refrigerator, an air conditioner, a television, a water heater, and the like.
  • the in-house generator 95 includes, for example, one or more of a solar power generator, a wind power generator, and the like.
  • the electric vehicle 96 includes, for example, any one or more of an electric car, an electric bike, a hybrid car and the like.
  • the centralized power system 97 includes, for example, any one or two or more of a thermal power plant, a nuclear power plant, a hydroelectric power plant, a wind power plant and the like.
  • the control unit 90 controls the operation of the entire power storage system (including the usage state of the power supply 91).
  • the control unit 90 includes, for example, a CPU.
  • the power supply 91 includes one or more secondary batteries.
  • the smart meter 92 is, for example, a network compatible power meter installed in the house 89 on the power demand side, and can communicate with the power supply side. Along with this, the smart meter 92 enables highly efficient and stable energy supply by controlling the balance between the demand and supply of power in the house 89 while communicating with the outside, for example.
  • the power storage system for example, power is stored in the power supply 91 from the centralized power system 97 which is an external power supply via the smart meter 92 and the power hub 93, and from a private generator 95 which is an independent power supply via the power hub 93.
  • power is stored in the power supply 91.
  • the electric power stored in the power supply 91 is supplied to the electric device 94 and the electric vehicle 96 according to the instruction of the control unit 90, so that the electric device 94 can be operated and the electric vehicle 96 can be charged.
  • the power storage system is a system that enables storage and supply of power in the house 89 using the power supply 91.
  • the power stored in the power supply 91 can be used as needed. For this reason, for example, it is possible to store the power from the centralized power system 97 in the power supply 91 at midnight, when the electricity charge is low, and use the power accumulated in the power supply 91 during the day when the electricity charge is high. it can.
  • the above-mentioned electric power storage system may be installed for every one house (one household), and may be installed for every two or more houses (plural households).
  • FIG. 11 shows a block configuration of the power tool.
  • the power tool described here is, for example, a power drill.
  • the power tool includes, for example, a control unit 99 and a power supply 100 inside a tool body 98.
  • a drill portion 101 which is a movable portion is attached to the tool body 98 so as to be operable (rotatable).
  • the tool body 98 contains, for example, a plastic material or the like.
  • the control unit 99 controls the operation of the entire power tool (including the usage state of the power supply 100).
  • the control unit 99 includes, for example, a CPU.
  • the power supply 100 includes one or more secondary batteries.
  • the control unit 99 supplies power from the power supply 100 to the drill unit 101 in response to the operation of the operation switch.
  • the positive electrode 33 When producing the positive electrode 33, first, 95 parts by mass of a positive electrode active material (lithium cobaltate), 3 parts by mass of a positive electrode binder (polyvinylidene fluoride), and 2 parts by mass of a positive electrode conductive agent (ketjen black) And the mixture was mixed to form a positive electrode mixture. Subsequently, the positive electrode mixture was charged into an organic solvent (N-methyl-2-pyrrolidone), and then the organic solvent was stirred to prepare a paste-like positive electrode mixture slurry.
  • a positive electrode active material lithium cobaltate
  • a positive electrode binder polyvinylidene fluoride
  • ketjen black a positive electrode conductive agent
  • the layer 33B was formed.
  • the positive electrode active material layer 33B was compression molded using a roll press.
  • a negative electrode active material containing a powdered carbon-containing material (mesocarbon microbeads (MCMB)) and a powdered silicon-containing material (silicon simple substance (Si)); A binder (polyvinylidene fluoride (PVDF)), a negative electrode conductive agent (carbon fiber (CF) which is a fibrous carbon material), a negative electrode conductive agent (carbon black (CB) which is a scaly carbon material)
  • PVDF polyvinylidene fluoride
  • CF carbon fiber
  • CB negative electrode conductive agent
  • the negative electrode mixture was obtained by mixing with a carboxylic acid (maleic acid (MA)).
  • a negative electrode mixture was obtained by the same procedure except that polyvalent carboxylic acid was not used.
  • the amount (% by weight), the particle diameter ratio, the active material ratio (%), and the spread resistance distribution a / b of the negative electrode active material layer 33B are as shown in Table 1. The details of the method of measuring the spread resistance distribution a / b and the measurement conditions are as described above.
  • the content (% by weight) is as shown in Table 2.
  • an organic solvent N-methyl-2-pyrrolidone
  • a self-revolution mixer to prepare a paste-like negative electrode mixture slurry.
  • an electrolyte salt lithium hexafluoride
  • a solvent ethylene carbonate and ethyl methyl carbonate
  • the positive electrode lead 31 made of aluminum was welded to the positive electrode current collector 33A, and the negative electrode lead 32 made of copper was welded to the negative electrode current collector 34A.
  • the adhesive film 42 polypropylene film
  • the positive electrode is formed by the same procedure as the preparation of the positive electrode 33 except that the positive electrode active material layer 33B is first formed only on one side of the positive electrode current collector 33A.
  • the test positive electrode 33 in which the positive electrode active material layer 33B was formed on one side of the current collector 33A was obtained.
  • the coin-type secondary battery was produced.
  • the secondary battery was charged to measure the electric capacity of the test positive electrode 33. In this case, constant-current charging was performed until the voltage reached 4.4 V at a current of 0.1 C, and constant-voltage charging was further performed until the current reached 0.01 C at a voltage of 4.4 V.
  • the charge capacity of the test positive electrode 33 was determined by calculating the electric capacity of the test positive electrode 33 per thickness of the positive electrode active material layer 33B.
  • the negative electrode is prepared according to the same procedure as the preparation of the negative electrode 34 except that the negative electrode active material layer 43B is first formed only on one side of the negative electrode current collector 34A.
  • a test negative electrode 34 having the negative electrode active material layer 34B formed on one side of the current collector 34A was obtained.
  • the coin-type secondary battery was produced.
  • the electric capacity of the test negative electrode 34 was measured by charging the secondary battery. In this case, constant current charging was performed until the voltage reached 0 V at a current of 0.1 C, and constant voltage charging was further performed until the current reached 0.01 C at a voltage of 0 V.
  • the charge capacity of the test negative electrode 34 was determined by calculating the electric capacity of the test negative electrode 34 per thickness of the negative electrode active material layer 34B.
  • Each of the thickness of the positive electrode active material layer 33B and the thickness of the negative electrode active material layer 34B was adjusted so as to be .9.
  • the negative electrode mixture The solid content concentration of the slurry and the application speed were changed.
  • the capacity retention rate (%) was determined by performing a cycle test.
  • the secondary battery was charged and discharged for one cycle in a normal temperature environment (23 ° C.). At the time of charging, the battery was charged until the voltage reached 4.35 V at a current of 0.2 C, and was further charged until the current reached 0.025 C at a voltage of 4.35 V. During discharge, the battery was discharged at a current of 0.2 C until the voltage reached 3.0 V.
  • 0.2 C is a current value which completely discharges the battery capacity in 5 hours
  • 0.025 C is a current value which completely discharges the battery capacity in 40 hours.
  • the discharge capacity of the second cycle was measured by charging and discharging the secondary battery again in the same environment for one cycle.
  • the charge and discharge conditions were the same except that the current at the time of charge and the current at the time of discharge were each changed to 0.5C.
  • 0.5 C is a current value that discharges the battery capacity in 4 hours.
  • the discharge capacity of the 50th cycle was measured by repeatedly charging and discharging the secondary battery until the total number of cycles reaches 50 cycles in the same environment.
  • capacity retention rate (%) (discharge capacity at 50th cycle / discharge capacity at second cycle) ⁇ 100 was calculated.
  • the capacity increase rate (%) of the negative electrode 34 was determined by conducting a comparison test of two types of secondary batteries.
  • a secondary battery was fabricated using both the carbon-containing material and the silicon-containing material as the negative electrode active material according to the above-described fabrication procedure of the secondary battery. Subsequently, in a normal temperature environment (23 ° C.), the secondary battery whose battery state was stabilized was charged and discharged for one cycle to measure the discharge capacity in the case where the carbon-containing material and the silicon-containing material were used in combination. The charge and discharge conditions in this case were the same as the charge and discharge conditions after the second cycle in the cycle test.
  • a secondary battery is manufactured by the same procedure except that only the carbon-containing material is used as the negative electrode active material, and the discharge capacity when only the carbon-containing material is used is It was measured.
  • capacity increase rate (%) (Discharge capacity when using carbon-containing material and silicon-containing material in combination-discharge capacity when using only carbon-containing material / discharge capacity when using only carbon-containing material) ⁇ 100 was calculated.
  • Each of the capacity retention rate and the capacity increase rate largely fluctuated according to the spread resistance distribution a / b.
  • the spreading resistance distribution a / b is 1.03 to 10 (Experimental Examples 1-1 to 1-8)
  • the spreading resistance distribution a / b is outside the above range (Experimental Example A high capacity retention rate was obtained while maintaining a high capacity increase rate as compared to 1-9 to 1-15).
  • the negative electrode conductive agent contained a fibrous carbon material and a scaly carbon material, a sufficient capacity retention rate was obtained, and a sufficient capacity increase rate was also obtained.
  • each of the capacity retention rate and the capacity increase rate is higher.
  • Example 2-1 to 2-8 As shown in Tables 3 and 4, the secondary battery was fabricated and the battery characteristics of the secondary battery were examined, in the same manner except that the average aspect ratio of the carbon-containing material was changed. In order to change the average aspect ratio, plural types of carbon-containing materials (mesocarbon microbeads) having different average aspect ratios were used.
  • Example 4-1 to 4-12 As shown in Tables 7 and 8, a secondary battery is fabricated by the same procedure except that the content of the negative electrode conductive agent (fibrous carbon material and scaly carbon material) is changed, and The battery characteristics of the secondary battery were examined. In order to change the content of the negative electrode conductive agent, the addition amounts of the fibrous carbon material and the scaly carbon material were changed.
  • the negative electrode conductive agent fibrous carbon material and scaly carbon material
  • a secondary battery is produced by the same procedure except that the content of the negative electrode binder (polyvinylidene fluoride) and the weight average molecular weight Mw are changed, and The battery characteristics of the secondary battery were examined.
  • the addition amount of polyvinylidene fluoride is changed, and in order to change the weight average molecular weight Mw, plural kinds of polyvinylidene fluorides having different weight average molecular weights Mw are used. Using.
  • the content of the negative electrode binder is 2% by weight to 5% by weight (Examples 1-1, 5-6, 5-7), the content of the negative electrode binder is in the above-mentioned range Each of the capacity retention rate and the capacity increase rate became higher as compared with the case of being outside (Examples 5 and 5-8).
  • the negative electrode active material layer contains a carbon-containing material and a silicon-containing material as a negative electrode active material, and the spreading resistance of the negative electrode active material layer measured using a scanning spread resistance microscope
  • the distribution a / b was 1.03 to 10
  • both the cycle characteristics and the capacitance characteristics were improved. Therefore, excellent battery characteristics were obtained in the secondary battery.
  • the battery element may have another structure such as a laminated structure.
  • the lithium ion secondary battery in which the capacity of the negative electrode is obtained by utilizing the lithium storage phenomenon and the lithium release phenomenon may be a lithium metal secondary battery in which the capacity of the negative electrode is obtained by utilizing the precipitation phenomenon of lithium and the dissolution phenomenon of lithium.
  • the capacity of the negative electrode active material capable of inserting and extracting lithium may be smaller than the capacity of the positive electrode, the capacity resulting from the lithium absorption phenomenon and the lithium release phenomenon and the lithium
  • It may be a secondary battery in which the capacity of the negative electrode is obtained based on the sum of the capacity resulting from the deposition phenomenon and the dissolution phenomenon of lithium.
  • sodium and potassium may be any other Group 1 element in any long period periodic table, or may be elements of Group 2 in the long periodic table such as magnesium and calcium, or other light metals such as aluminum.
  • the present technology can also be configured as follows. (1) Positive electrode, (A) a negative electrode current collector, and a negative electrode active material layer provided on the negative electrode current collector and containing a negative electrode active material; (B) the negative electrode active material includes a carbon-containing material and a silicon-containing material And (C) a negative electrode in which the spread resistance distribution a / b of the negative electrode active material layer measured by using a scanning spread resistance microscope is 1.03 or more and 10 or less, A secondary battery comprising an electrolyte and (2) The carbon-containing material is in the form of particles, and the silicon-containing material is in the form of particles.
  • the 10% particle diameter D10 ( ⁇ m) of the plurality of particulate silicon-containing materials is 1 ⁇ m or more and 5 ⁇ m or less
  • a ratio of a median diameter D50 ( ⁇ m) of the plurality of particulate silicon-containing materials to a median diameter D50 ( ⁇ m) of the plurality of particulate carbon-containing materials is 0.1 or more and 0.5 or less.
  • the secondary battery as described in said (1).
  • the carbon-containing material is in the form of a plurality of particles,
  • the average aspect ratio of the plurality of particulate carbon-containing materials is 1.1 or more and 2.0 or less.
  • the secondary battery as described in said (1) or (2).
  • the ratio (wt%) of the weight of the silicon-containing material to the total weight of the carbon-containing material and the weight of the silicon-containing material is 30 wt% or less.
  • the negative electrode active material layer further contains a negative electrode conductive agent,
  • the negative electrode conductive agent includes a fibrous carbon material and a scaly carbon material.
  • the proportion (wt%) of the weight of the fibrous carbon material to the total weight of the fibrous carbon material and the weight of the scaly carbon material is 0.1 wt% or more and 3.0 wt% or less Yes, The ratio (wt%) of the weight of the scaly carbon material to the total of the weight of the fibrous carbon material and the weight of the scaly carbon material is 0.1 wt% or more and 3.0 wt% or less is there,
  • the negative electrode further comprises a negative electrode binder,
  • the negative electrode binder includes polyvinylidene fluoride.
  • the ratio of the weight of the negative electrode binder to the weight of the negative electrode active material layer (% by weight) is 2% by weight or more and 5% by weight or less.
  • the secondary battery as described in said (7).
  • the weight average molecular weight of the polyvinylidene fluoride is 300,000 or more and 5,000,000 or less, The secondary battery as described in said (7) or (8).
  • the negative electrode active material layer further contains a polyvalent carboxylic acid.
  • the polyvalent carboxylic acid includes maleic acid, The secondary battery as described in said (10). (12) Being a lithium ion secondary battery, The secondary battery according to any one of the above (1) to (11).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Biophysics (AREA)
  • Computer Hardware Design (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

二次電池は、正極と、(A)負極集電体とその負極集電体の上に設けられると共に負極活物質を含む負極活物質層とを備え、(B)負極活物質が炭素含有材料およびケイ素含有材料を含み、(C)走査型広がり抵抗顕微鏡を用いて測定される負極活物質層の広がり抵抗分布a/bが1.03以上10以下である負極と、電解液とを備える。

Description

二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
 本技術は、負極集電体および負極活物質層を含む負極を備えた二次電池、ならびにその二次電池を用いた電池パック、電動車両、電力貯蔵システム、電動工具および電子機器に関する。
 携帯電話機などの多様な電子機器が広く普及しており、その電子機器の小型化、軽量化および長寿命化が要望されている。これに伴い、電源として、小型かつ軽量であると共に高いエネルギー密度を得ることが可能な二次電池の開発が進められている。
 二次電池は、電子機器に限らず、他の用途への適用も検討されている。他の用途の一例は、電子機器などに着脱可能に搭載される電池パック、電気自動車などの電動車両、家庭用電力サーバなどの電力貯蔵システム、および電動ドリルなどの電動工具である。
 具体的には、二次電池は、正極および負極と共に電解液を備えており、その負極は、負極集電体と、その負極集電体の上に設けられた負極活物質層とを含んでいる。この負極活物質層は、負極活物質を含んでおり、その負極活物質としては、黒鉛などの炭素材料が用いられている。
 負極の構成は、電池特性に大きな影響を及ぼすため、その負極の構成に関しては、さまざまな検討がなされている。具体的には、サイクル寿命などを改善するために、負極活物質としてケイ素などが用いられていると共に、そのケイ素などを含む負極の構成条件が適正化されている(例えば、特許文献1,2参照。)。
特許第4725489号明細書 特許第4432130号明細書
 二次電池が搭載される電子機器などは、益々、高性能化および多機能化している。これに伴い、電子機器などの使用頻度は増加していると共に、その電子機器などの使用環境は拡大している。よって、二次電池の電池特性に関しては、未だ改善の余地がある。
 本技術はかかる問題点に鑑みてなされたもので、その目的は、優れた電池特性を得ることが可能である二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器を提供することにある。
 本技術の一実施形態の二次電池は、正極と、(A)負極集電体とその負極集電体の上に設けられると共に負極活物質を含む負極活物質層とを備え、(B)負極活物質が炭素含有材料およびケイ素含有材料を含み、(C)走査型広がり抵抗顕微鏡を用いて測定される負極活物質層の広がり抵抗分布a/bが1.03以上10以下である負極と、電解液とを備えたものである。
 本技術の一実施形態の電池パック、電動車両、電力貯蔵システム、電動工具および電子機器のそれぞれは、二次電池を備え、その二次電池が上記した本技術の二次電池と同様の構成を有するものである。
 ここで、「広がり抵抗分布a/b」とは、上記したように、走査型広がり抵抗顕微鏡(SSRM:Scanning Spreading Resistance Microscopy)を用いて測定されるパラメータである。この広がり抵抗分布a/bは、負極集電体の上に設けられている負極活物質層を厚さ方向において下層(負極集電体に近い側の層)および上層(負極集電体から遠い側の層)に二等分した場合において、上層の広がり抵抗bに対する下層の広がり抵抗aの比である。広がり抵抗分布a/bの測定方法および測定条件などの詳細に関しては、後述する。
 また、「炭素含有材料」とは、炭素を構成元素として含む材料の総称であり、炭素だけを構成元素として含む材料(炭素材料)でもよい。また、「ケイ素含有材料」とは、ケイ素を構成元素として含む材料の総称であり、ケイ素だけを構成元素として含む材料(ケイ素の単体)でもよい。
 本技術の一実施形態の二次電池によれば、走査型広がり抵抗顕微鏡を用いて測定される負極活物質層の広がり抵抗分布a/bが1.03~10であるので、優れた電池特性を得ることができる。また、本技術の電池パック、電動車両、電力貯蔵システム、電動工具または電子機器においても、同様の効果を得ることができる。
 なお、ここに記載された効果は、必ずしも限定されるわけではなく、本技術中に記載されたいずれの効果であってもよい。
本技術の一実施形態の二次電池(円筒型)の構成を表す断面図である。 図1に示した巻回電極体の構成のうちの一部を拡大して表す断面図である。 図2に示した負極の構成のうちの一部を拡大して表す断面図である。 本技術の一実施形態の他の二次電池(ラミネートフィルム型)の構成を表す斜視図である。 図4に示したV-V線に沿った巻回電極体の構成を表す断面図である。 二次電池の適用例(電池パック:単電池)の構成を表す斜視図である。 図6に示した電池パックの構成を表すブロック図である。 二次電池の適用例(電池パック:組電池)の構成を表すブロック図である。 二次電池の適用例(電動車両)の構成を表すブロック図である。 二次電池の適用例(電力貯蔵システム)の構成を表すブロック図である。 二次電池の適用例(電動工具)の構成を表すブロック図である。
 以下、本技術の実施形態に関して、図面を参照して詳細に説明する。なお、説明する順序は、下記の通りである。

 1.二次電池(円筒型)
  1-1.構成
  1-2.負極の物性
  1-3.動作
  1-4.製造方法
  1-5.作用および効果
 2.二次電池(ラミネートフィルム型)
  2-1.構成
  2-2.動作
  2-3.製造方法
  2-4.作用および効果
 3.二次電池の用途
  3-1.電池パック(単電池)
  3-2.電池パック(組電池)
  3-3.電動車両
  3-4.電力貯蔵システム
  3-5.電動工具
<1.二次電池(円筒型)>
 まず、本技術の一実施形態の二次電池に関して説明する。
 ここで説明する二次電池は、例えば、電極反応物質としてリチウムを用いた二次電池であり、より具体的には、リチウムの吸蔵現象およびリチウムの放出現象を利用して電池容量(負極の容量)が得られるリチウムイオン二次電池である。この「電極反応物質」とは、電極反応(充放電反応)を進行させるために用いられる物質である。
<1-1.構成>
 まず、二次電池の構成に関して説明する。図1は、二次電池の断面構成を表していると共に、図2は、図1に示した巻回電極体20の断面構成のうちの一部を拡大している。
 この二次電池は、例えば、図1に示したように、円筒状の電池缶11の内部に、電池素子である巻回電極体20が収納されている円筒型の二次電池である。
 具体的には、二次電池は、例えば、電池缶11の内部に、一対の絶縁板12,13と、巻回電極体20とを備えている。
[電池缶]
 電池缶11は、例えば、一端部が閉鎖されると共に他端部が開放された中空構造を有しており、例えば、鉄、アルミニウムおよびそれらの合金などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。電池缶11の表面には、例えば、ニッケルなどの金属材料が鍍金されていてもよい。
 一対の絶縁板12,13は、例えば、巻回電極体20の巻回周面に対して垂直な方向に延在していると共に、巻回電極体20を互いに挟むように配置されている。
 電池缶11の開放端部には、例えば、電池蓋14と、安全弁機構15と、熱感抵抗素子(PTC素子)16とがガスケット17を介してかしめられている。これにより、電池缶11は密閉されている。
 電池蓋14の形成材料は、例えば、電池缶11の形成材料と同様である。安全弁機構15および熱感抵抗素子16のそれぞれは、電池蓋14の内側に設けられており、その安全弁機構15は、熱感抵抗素子16を介して電池蓋14と電気的に接続されている。
 この安全弁機構15では、内部短絡および外部加熱などに起因して電池缶11の内圧が一定以上になると、ディスク板15Aが反転するため、電池蓋14と巻回電極体20との電気的接続が切断される。大電流に起因する異常な発熱を防止するために、熱感抵抗素子16の電気抵抗は、温度の上昇に応じて増加する。
 ガスケット17は、例えば、絶縁性材料のうちのいずれか1種類または2種類以上を含んでいる。ガスケット17の表面には、例えば、アスファルトなどが塗布されていてもよい。
[巻回電極体]
 巻回電極体20は、例えば、セパレータ23を介して正極21と負極22とが互いに積層されたのち、その正極21、負極22およびセパレータ23が巻回されることにより形成されている。この巻回電極体20には、例えば、液状の電解質である電解液が含浸されている。
 巻回電極体20の巻回中心に設けられた空間(巻回中心20C)には、例えば、センターピン24が挿入されている。ただし、センターピン24は省略されてもよい。
 正極21には、正極リード25が接続されており、その正極リード25は、例えば、アルミニウムなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この正極リード25は、例えば、安全弁機構15に接続されているため、電池蓋14と電気的に導通している。
 負極22には、負極リード26が接続されており、その負極リード26は、例えば、ニッケルなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この負極リード26は、例えば、電池缶11に接続されているため、その電池缶11と電気的に導通している。
[正極]
 正極21は、例えば、図2に示したように、正極集電体21Aと、その正極集電体21Aの両面に設けられた2つの正極活物質層21Bとを含んでいる。ただし、正極集電体21Aの片面に1つの正極活物質層21Bだけが設けられていてもよい。
(正極集電体)
 正極集電体21Aは、例えば、アルミニウム、ニッケルおよびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この正極集電体21Aは、単層でもよいし、多層でもよい。
(正極活物質層)
 正極活物質層21Bは、リチウムを吸蔵および放出することが可能である正極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
(正極活物質)
 正極活物質は、リチウム含有化合物であることが好ましい。高いエネルギー密度が得られるからである。リチウム含有化合物の種類は、特に限定されないが、例えば、リチウム含有複合酸化物およびリチウム含有リン酸化合物などである。
 「リチウム含有複合酸化物」とは、リチウムと1種類または2種類以上の他元素とを構成元素として含む酸化物の総称であり、例えば、層状岩塩型およびスピネル型などのうちのいずれかの結晶構造を有している。「リチウム含有リン酸化合物」とは、リチウムと1種類または2種類以上の他元素とを構成元素として含むリン酸化合物の総称であり、例えば、オリビン型などの結晶構造を有している。この「他元素」とは、リチウム以外の元素である。
 他元素の種類は、特に限定されないが、中でも、長周期型周期表における2族~15族に属する元素であることが好ましい。具体的には、他元素は、例えば、ニッケル(Ni)、コバルト(Co)、マンガン(Mn)および鉄(Fe)などである。高い電圧が得られるからである。
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(1)~式(3)のそれぞれで表される化合物である。
 LiMn(1-b-c) NiM11(2-d)  ・・・(1)
(M11は、コバルト(Co)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、ジルコニウム(Zr)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~eは、0.8≦a≦1.2、0<b<0.5、0≦c≦0.5、(b+c)<1、-0.1≦d≦0.2および0≦e≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
 LiNi(1-b) M12(2-c)  ・・・(2)
(M12は、コバルト(Co)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0.005≦b≦0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
 LiCo(1-b) M13(2-c)  ・・・(3)
(M13は、ニッケル(Ni)、マンガン(Mn)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.8≦a≦1.2、0≦b<0.5、-0.1≦c≦0.2および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
 層状岩塩型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiNiO、LiCoO、LiCo0.98Al0.01Mg0.01、LiNi0.5 Co0.2 Mn0.3 、LiNi0.8 Co0.15Al0.05、LiNi0.33Co0.33Mn0.33、Li1.2 Mn0.52Co0.175 Ni0.1 およびLi1.15(Mn0.65Ni0.22Co0.13)Oなどである。
 なお、層状岩塩型の結晶構造を有するリチウム含有複合酸化物がニッケル、コバルト、マンガンおよびアルミニウムを構成元素として含む場合には、そのニッケルの原子比率は、50原子%以上であることが好ましい。高いエネルギー密度が得られるからである。
 スピネル型の結晶構造を有するリチウム含有複合酸化物は、例えば、下記の式(4)で表される化合物である。
 LiMn(2-b) M14 ・・・(4)
(M14は、コバルト(Co)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、クロム(Cr)、鉄(Fe)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、スズ(Sn)、カルシウム(Ca)、ストロンチウム(Sr)およびタングステン(W)のうちの少なくとも1種である。a~dは、0.9≦a≦1.1、0≦b≦0.6、3.7≦c≦4.1および0≦d≦0.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
 スピネル型の結晶構造を有するリチウム含有複合酸化物の具体例は、LiMnなどである。
 オリビン型の結晶構造を有するリチウム含有リン酸化合物は、例えば、下記の式(5)で表される化合物である。
 LiM15PO ・・・(5)
(M15は、コバルト(Co)、マンガン(Mn)、鉄(Fe)、ニッケル(Ni)、マグネシウム(Mg)、アルミニウム(Al)、ホウ素(B)、チタン(Ti)、バナジウム(V)、ニオブ(Nb)、銅(Cu)、亜鉛(Zn)、モリブデン(Mo)、カルシウム(Ca)、ストロンチウム(Sr)、タングステン(W)およびジルコニウム(Zr)のうちの少なくとも1種である。aは、0.9≦a≦1.1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、aは完全放電状態の値である。)
 オリビン型の結晶構造を有するリチウム含有リン酸化合物の具体例は、LiFePO、LiMnPO、LiFe0.5 Mn0.5 POおよびLiFe0.3 Mn0.7 POなどである。
 なお、リチウム含有複合酸化物は、下記の式(6)で表される化合物でもよい。
 (LiMnO(LiMnO1-x  ・・・(6)
(xは、0≦x≦1を満たす。ただし、リチウムの組成は充放電状態に応じて異なり、xは完全放電状態の値である。)
 この他、正極活物質は、例えば、酸化物、二硫化物、カルコゲン化物および導電性高分子でもよい。酸化物は、例えば、酸化チタン、酸化バナジウムおよび二酸化マンガンなどである。二硫化物は、例えば、二硫化チタンおよび硫化モリブデンなどである。カルコゲン化物は、例えば、セレン化ニオブなどである。導電性高分子は、例えば、硫黄、ポリアニリンおよびポリチオフェンなどである。
(正極結着剤)
 正極結着剤は、例えば、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、例えば、ポリフッ化ビニリデンおよびポリイミドなどである。
(正極導電剤)
 正極導電剤は、例えば、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。ただし、正極導電剤は、導電性材料であれば、金属材料および導電性高分子などを含んでいてよい。
[負極]
 負極22は、例えば、図2に示したように、負極集電体22Aと、その負極集電体22Aの両面に設けられた2つの負極活物質層22Bとを含んでいる。ただし、負極集電体22Aの片面に1つの負極活物質層22Bだけが設けられていてもよい。
(負極集電体)
 負極集電体22Aは、例えば、銅、アルミニウム、ニッケルおよびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この負極集電体22Aは、単層でもよいし、多層でもよい。
 負極集電体22Aの表面は、粗面化されていることが好ましい。いわゆるアンカー効果を利用して、負極集電体22Aに対する負極活物質層22Bの密着性が向上するからである。この場合には、少なくとも負極活物質層22Bと対向する領域において、負極集電体22Aの表面が粗面化されていればよい。粗面化の方法は、例えば、電解処理を利用して微粒子を形成する方法などである。電解処理では、電解槽中において電解法により負極集電体22Aの表面に微粒子が形成されるため、その負極集電体22Aの表面に凹凸が設けられる。電解法により作製された銅箔は、一般的に、電解銅箔と呼ばれている。
(負極活物質層)
 負極活物質層22Bは、リチウムを吸蔵および放出することが可能である負極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層22Bは、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
 充電途中において意図せずにリチウム金属が負極22の表面に析出することを抑制するために、負極材料の充電可能な容量は、正極21の放電容量よりも大きいことが好ましい。すなわち、リチウムを吸蔵および放出することが可能である負極材料の電気化学当量は、正極21の電気化学当量よりも大きいことが好ましい。
(負極活物質)
 負極活物質は、炭素含有材料およびケイ素含有材料を含んでいる。炭素含有材料の種類は、1種類だけでもよいし、2種類以上でもよい。また、ケイ素含有材料の種類は、1種類だけでもよいし、2種類以上でもよい。
(炭素含有材料)
 「炭素含有材料」とは、上記したように、炭素を構成元素として含む材料の総称であり、炭素だけを構成元素として含む材料(炭素材料)でもよい。負極活物質が炭素含有材料を含んでいるのは、リチウムの吸蔵時およびリチウムの放出時において炭素含有材料の結晶構造が変化しにくいため、高いエネルギー密度が安定して得られるからである。また、炭素含有材料は負極導電剤としても機能するため、負極活物質層22Bの導電性が向上するからである。
 炭素含有材料は、例えば、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。ただし、難黒鉛化性炭素に関する(002)面の面間隔は、0.37nm以上であることが好ましいと共に、黒鉛に関する(002)面の面間隔は、0.34nm以下であることが好ましい。
 より具体的には、炭素含有材料は、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、活性炭およびカーボンブラック類などである。このコークス類は、ピッチコークス、ニードルコークスおよび石油コークスなどを含む。有機高分子化合物焼成体は、フェノール樹脂およびフラン樹脂などの高分子化合物が適当な温度で焼成(炭素化)された焼成物である。この他、炭素含有材料は、例えば、約1000℃以下の温度で熱処理された低結晶性炭素でもよいし、非晶質炭素でもよい。なお、炭素含有材料の形状は、繊維状、球状、粒状および鱗片状のうちのいずれでもよい。
(ケイ素含有材料)
 「ケイ素含有材料」とは、上記したように、ケイ素を構成元素として含む材料の総称であり、ケイ素だけを構成元素として含む材料(ケイ素の単体)でもよい。負極活物質がケイ素含有材料を含んでいるのは、そのケイ素含有材料がリチウムを吸蔵および放出しやすい性質を有しているため、著しく高いエネルギー密度が得られるからである
 ケイ素含有材料は、ケイ素の単体でもよいし、ケイ素の合金でもよいし、ケイ素の化合物でもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に含む材料でもよい。このケイ素含有材料の組織は、例えば、固溶体、共晶(共融混合物)、金属間化合物およびそれらの2種類以上の共存物などである。
 ここで説明する「単体」とは、あくまで一般的な意味合いでの単体であるため、その単体は、微量の不純物を含んでいてもよい。すなわち、単体の純度は、必ずしも100%に限られない。また、「合金」には、2種類以上の金属元素からなる材料に加えて、1種類以上の金属元素と1種類以上の半金属元素とを含む材料も含まれ、その「合金」は、非金属元素を含んでいてもよい。ここで説明した単体および合金のそれぞれに関する定義は、以降においても同様である。
 ケイ素の合金は、例えば、ケイ素以外の構成元素として、スズ、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。ケイ素の化合物は、例えば、ケイ素以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。ただし、ケイ素の化合物は、例えば、ケイ素以外の構成元素として、ケイ素の合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。
 ケイ素の合金の具体例およびケイ素の化合物の具体例は、SiB、SiB、MgSi、NiSi、TiSi、MoSi、CoSi、NiSi、CaSi、CrSi、CuSi、FeSi、MnSi、NbSi、TaSi、VSi、WSi、ZnSi、SiC、Si、SiO、SiO(0<v≦2)、およびLiSiOなどである。なお、SiOにおけるvは、0.2<v<1.4でもよい。
 負極活物質が炭素含有材料およびケイ素含有材料の双方を含んでいるのは、以下で説明する利点が得られるからである。ケイ素含有材料は、理論容量が高いという利点を有する反面、充放電時において激しく膨張収縮しやすいという懸念点を有する。一方、炭素含有材料は、理論容量が低いという懸念点を有する反面、充放電時において膨張収縮しにくいという利点を有する。よって、炭素含有材料と金属含有材料とを併用することにより、充放電時において負極活物質の膨張収縮が抑制されながら、高い理論容量(言い換えれば電池容量)が得られる。
 炭素含有材料は、例えば、複数の粒子状(粉末状)であると共に、ケイ素含有材料は、例えば、複数の粒子状(粉末状)である。この場合において、複数の粒子状の炭素含有材料の平均粒径は、特に限定されないと共に、複数の粒子状のケイ素含有材料の平均粒径は、特に限定されない。
 中でも、負極活物質層22B全体の電気抵抗に大きな影響を及ぼす可能性がある複数の粒子状のケイ素含有材料の10%粒子径D10は、1μm~5μmであることが好ましい。複数の粒子状のケイ素含有材料の結着性を担保しながら、負極活物質層22B全体の電気抵抗が安定かつ十分に低下するからである。
 詳細には、10%粒子径D10が1μmよりも小さい場合には、複数の粒子状のケイ素含有材料が負極結着剤を介して互いに結着されにくくなるため、遊離の負極結着剤が発生しやすくなる。この場合には、後述する負極活物質層22Bの形成工程(負極合剤スラリーの塗布工程および乾燥工程)において、複数の粒子状のケイ素含有材料が負極活物質22Bの表面に移動しやすくなるため、その負極活物質層22B中において複数の粒子状のケイ素含有材料が局在化しやすくなる。これにより、負極活物質層22B全体の電気抵抗が増加する可能性がある。
 一方、10%粒子径D10が5μmよりも大きい場合には、複数の粒子状のケイ素含有材料のそれぞれの比表面積が増加するため、負極結着剤が不足しやすくなる。この場合には、複数の粒子状のケイ素含有材料が負極結着剤を介して互いに結着されにくくなると共に、充放電を繰り返すと負極結着剤を介して互いに結着されていた複数の粒子状のケイ素含有材料が互いに分離しやすくなる。これにより、複数の粒子状のケイ素含有材料の結着性が低下する可能性がある。
 この場合において、複数の粒子状の炭素含有材料の平均粒径と複数の粒子状のケイ素含有材料の平均粒径との関係は、特に限定されない。
 中でも、複数の粒子状の炭素含有材料のメジアン径D50に対する複数の粒子状のケイ素含有材料のメジアン径D50の比(粒径比)は、0.1~0.5であることが好ましい。複数の粒子状の炭素含有材料の結着性を担保すると共に、複数の粒子状のケイ素含有材料の結着性を担保しながら、高いエネルギー密度が得られると共に、負極活物質層22B全体の電気抵抗が安定かつ十分に低下するからである。なお、粒径比を算出する場合には、小数点第三位の値を四捨五入する。
 詳細には、粒径比が0.1よりも小さい場合には、複数の粒子状のケイ素含有材料の平均粒径が複数の粒子状の炭素含有材料の平均粒径よりも小さすぎるため、エネルギー密度が低下する可能性がある。
 一方、粒径比が0.5よりも大きい場合には、複数の粒子状のケイ素含有材料の平均粒径が複数の粒子状の炭素含有材料の平均粒径よりも大きすぎるため、複数の粒子状のケイ素含有材料が負極結着剤を介して互いに結着されにくくなると共に、負極活物質層22B全体の電気抵抗が上昇する可能性がある。
 また、例えば、炭素含有材料が複数の粒子状である場合、その複数の粒子状の炭素含有材料の形状は、特に限定されない。
 中でも、複数の粒子状の炭素含有材料の平均アスペクト比は、1.1~2.0であることが好ましい。複数の粒子状の炭素含有材料の分散安定性および構造安定性を担保しながら、負極活物質層22Bの電気抵抗がばらつきにくくなるからである
 詳細には、平均アスペクト比が1.1よりも小さい場合には、後述する負極合剤の調製工程などにおいて複数の粒子状の炭素含有材料が変形または破損しやすくなるため、負極活物質層22B全体の電気抵抗がばらつきやすくなる可能性がある。
 一方、平均アスペクト比が2.0よりも大きい場合には、後述する負極合剤スラリーの調製工程において複数の粒子状の炭素含有材料が分散されにくくなるため、やはり負極活物質層22B全体の電気抵抗がばらつきやすくなる可能性がある。
 この平均アスペクト比は、例えば、以下で説明する手順により算出される。最初に、走査型電子顕微鏡などを用いて負極活物質層22Bの断面(複数の粒子状の炭素含有材料)を観察する。観察範囲および観察倍率などの条件は、任意に設定可能である。続いて、負極活物質層22Bの断面の観察結果(顕微鏡写真)に基づいて、炭素含有材料ごとに長軸寸法および短軸寸法のそれぞれを測定することにより、アスペクト比=長軸寸法/短軸寸法を算出する。この場合には、アスペクト比の算出回数を100回、すなわちアスペクト比が算出される炭素含有材料の個数を100個とする。なお、長軸寸法および短軸寸法のそれぞれを測定するためには、人力で測定してもよいし、画像処理ソフトなどを用いて自動的に測定してもよい。最後に、100個のアスペクト比の平均値を算出することにより、平均アスペクト比を求める。
 なお、炭素含有材料とケイ素含有材料との混合比は、特に限定されない。
 中でも、負極活物質中におけるケイ素含有材料の含有量、すなわち炭素含有材料の重量とケイ素含有材料の重量との総和に対してケイ素含有材料の重量が占める割合(活物質割合)は、30重量%以下であることが好ましく、5重量%~30重量%であることがより好ましい。炭素含有材料とケイ素含有材料との混合比が適正化されるため、充放電時における負極活物質の膨張収縮の抑制と高い理論容量の確保とが両立されるからである。なお、活物質割合を算出する場合には、小数点第二位の値を四捨五入する。
(他の負極活物質)
 なお、負極活物質は、上記した炭素含有材料およびケイ素含有材料に加えて、さらに、他の材料(他の負極活物質)のうちのいずれか1種類または2種類以上を含んでいてもよい。他の材料の種類は、リチウムを吸蔵および放出することが可能な材料であれば、特に限定されない。
 他の材料は、例えば、金属系材料である。金属系材料の種類は、1種類だけでもよいし、2種類以上でもよい。この「金属系材料」とは、金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料の総称である。高いエネルギー密度が得られるからである。ただし、上記したケイ素含有材料は、ここで説明する金属系材料から除かれる。
 金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に含む材料でもよい。この金属系材料の組織は、例えば、固溶体、共晶(共融混合物)、金属間化合物およびそれらの2種類以上の共存物などである。
 金属元素は、リチウムと合金を形成することが可能な金属元素であると共に、半金属元素は、リチウムと合金を形成することが可能な半金属元素である。具体的には、金属元素および半金属元素は、例えば、マグネシウム(Mg)、ホウ素(B)、アルミニウム(Al)、ガリウム(Ga)、インジウム(In)、ケイ素(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)、ビスマス(Bi)、カドミウム(Cd)、銀(Ag)、亜鉛、ハフニウム(Hf)、ジルコニウム、イットリウム(Y)、パラジウム(Pd)および白金(Pt)などである。
 中でも、スズが好ましい。スズはリチウムを吸蔵および放出しやすい性質を有しているため、著しく高いエネルギー密度が得られるからである。
 スズを構成元素として含む材料は、スズの単体でもよいし、スズの合金でもよいし、スズの化合物でもよいし、それらのうちの2種類以上でもよいし、それらのうちの1種類または2種類以上の相を少なくとも一部に含む材料でもよい。
 スズの合金は、例えば、スズ以外の構成元素として、ケイ素、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモンおよびクロムなどのうちのいずれか1種類または2種類以上を含んでいる。スズの化合物は、例えば、スズ以外の構成元素として、炭素および酸素などのうちのいずれか1種類または2種類以上を含んでいる。なお、スズの化合物は、例えば、スズ以外の構成元素として、スズの合金に関して説明した一連の元素のうちのいずれか1種類または2種類以上を含んでいてもよい。
 スズの合金の具体例およびスズの化合物の具体例は、SnO(0<w≦2)、SnSiO、LiSnOおよびMgSnなどである。
 特に、スズを構成元素として含む材料は、スズ含有材料であることが好ましい。この「スズ含有材料」とは、第1構成元素であるスズと共に第2構成元素および第3構成元素を含む材料の総称である。第2構成元素は、例えば、コバルト、鉄、マグネシウム、チタン、バナジウム、クロム、マンガン、ニッケル、銅、亜鉛、ガリウム、ジルコニウム、ニオブ、モリブデン、銀、インジウム、セシウム(Ce)、ハフニウム(Hf)、タンタル、タングステン、ビスマスおよびケイ素などのうちのいずれか1種類または2種類以上である。第3構成元素は、例えば、ホウ素、炭素、アルミニウムおよびリンなどのうちのいずれか1種類または2種類以上である。高い電池容量および優れたサイクル特性などが得られるからである。
 中でも、スズ含有材料は、スズコバルト炭素含有材料であることが好ましい。この「スズコバルト炭素含有材料」とは、スズとコバルトと炭素とを構成元素として含む材料の総称である。このスズコバルト炭素含有材料では、例えば、炭素の含有量が9.9質量%~29.7質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が20質量%~70質量%である。高いエネルギー密度が得られるからである。
 スズコバルト炭素含有材料は、スズとコバルトと炭素とを構成元素として含む相を有しており、その相は、低結晶性または非晶質であることが好ましい。この相は、リチウムと反応することが可能な相(反応相)であるため、その反応相の存在に起因して優れた特性が得られる。反応相のX線回折により得られる回折ピークの半値幅(回折角2θ)は、特定X線としてCuKα線を用いると共に挿引速度を1°/minとした場合において、1°以上であることが好ましい。リチウムが円滑に吸蔵および放出されると共に、電解液との反応性が低減するからである。なお、スズコバルト炭素含有材料は、低結晶性または非晶質の相に加えて、各構成元素の単体または一部が含まれている相を有する場合もある。
 X線回折により得られた回折ピークが反応相に対応する回折ピークであるか否かを判断するためには、例えば、リチウムとの電気化学的反応の前後におけるX線回折チャートを比較すればよい。リチウムとの電気化学的反応の前後において回折ピークの位置が変化すれば、その回折ピークは反応相に対応する回折ピークである。この場合には、例えば、低結晶性または非晶質である反応相の回折ピークが2θ=20°~50°の範囲に検出される。この反応相は、例えば、上記した一連の構成元素を含んでおり、主に、炭素の存在に起因して低結晶化または非晶質化していると考えられる。
 スズコバルト炭素含有材料中では、構成元素である炭素のうちの少なくとも一部が他の構成元素である金属元素または半金属元素と結合していることが好ましい。スズの凝集およびスズの結晶化などが抑制されるからである。元素の結合状態に関しては、例えば、X線光電子分光法(XPS)を用いて確認可能である。市販の装置では、例えば、軟X線としてAl-Kα線またはMg-Kα線などが用いられる。炭素のうちの一部または全部が金属元素または半金属元素などと結合している場合には、炭素の1s軌道(C1s)の合成波のピークが284.5eVよりも低い領域に検出される。ただし、金原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正されていることとする。この場合には、通常、物質表面に表面汚染炭素が存在しているため、その表面汚染炭素のC1sのピークが検出される位置を284.8eVとして、そのピークをエネルギー基準とする。XPS測定において、C1sのピークの波形は、表面汚染炭素に起因するピークとスズコバルト炭素含有材料中の炭素に起因するピークとを含んだ状態で得られる。このため、例えば、市販のソフトウエアを用いてピークを解析することにより、表面汚染炭素に起因するピークとスズコバルト炭素含有材料中の炭素に起因するピークとを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。
 このスズコバルト炭素含有材料は、スズ、コバルトおよび炭素だけを構成元素として含む材料に限られない。このスズコバルト炭素含有材料は、例えば、スズ、コバルトおよび炭素に加えて、さらにケイ素、鉄、ニッケル、クロム、インジウム、ニオブ、ゲルマニウム、チタン、モリブデン、アルミニウム、リン、ガリウムおよびビスマスなどのうちのいずれか1種類または2種類以上を構成元素として含んでいてもよい。
 スズコバルト炭素含有材料の他、スズコバルト鉄炭素含有材料も好ましい。この「スズコバルト鉄炭素含有材料」とは、スズとコバルトと鉄と炭素とを構成元素として含む材料の総称である。このスズコバルト鉄炭素含有材料の組成は、任意である。一例を挙げると、鉄の含有量を少なめに設定する場合は、炭素の含有量が9.9質量%~29.7質量%、鉄の含有量が0.3質量%~5.9質量%、スズおよびコバルトの含有量の割合(Co/(Sn+Co))が30質量%~70質量%である。また、鉄の含有量を多めに設定する場合は、炭素の含有量が11.9質量%~29.7質量%、スズ、コバルトおよび鉄の含有量の割合((Co+Fe)/(Sn+Co+Fe))が26.4質量%~48.5質量%、コバルトおよび鉄の含有量の割合(Co/(Co+Fe))が9.9質量%~79.5質量%である。高いエネルギー密度が得られるからである。なお、スズコバルト鉄炭素含有材料の物性(半値幅など)は、例えば、上記したスズコバルト炭素含有材料の物性と同様である。
 また、他の材料は、例えば、金属酸化物および高分子化合物である。金属酸化物は、例えば、酸化鉄、酸化ルテニウムおよび酸化モリブデンなどである。高分子化合物は、例えば、ポリアセチレン、ポリアニリンおよびポリピロールなどである。
 なお、負極活物質層22Bは、例えば、塗布法、気相法、液相法、溶射法および焼成法(焼結法)などのうちのいずれか1種類または2種類以上の方法を用いて形成されている。
 塗布法は、例えば、負極活物質と負極結着剤などとの混合物が有機溶剤などに溶解または分散された溶液を負極集電体22Aに塗布する方法である。気相法は、例えば、物理堆積法および化学堆積法などである。より具体的には、気相法は、例えば、真空蒸着法、スパッタ法、イオンプレーティング法、レーザーアブレーション法、熱化学気相成長、化学気相成長(CVD)法およびプラズマ化学気相成長法などである。液相法は、例えば、電解鍍金法および無電解鍍金法などである。溶射法は、溶融状態または半溶融状態の負極活物質を負極集電体22Aに噴き付ける方法である。焼成法は、例えば、塗布法を用いて負極集電体22Aに溶液を塗布したのち、負極結着剤などの融点よりも高い温度で溶液を熱処理する方法である。この焼成法は、例えば、雰囲気焼成法、反応焼成法およびホットプレス焼成法などである。
 この二次電池では、上記したように、充電途中において負極22の表面にリチウム金属が意図せずに析出することを防止するために、リチウムを吸蔵および放出することが可能である負極材料の電気化学当量は、正極の電気化学当量よりも大きいことが好ましい。また、完全充電時の開回路電圧(すなわち電池電圧)が4.25V以上であると、その完全充電時の開回路電圧が4.20Vである場合と比較して、同じ正極活物質を用いても単位質量当たりのリチウムの放出量が多くなるため、そのことを考慮した上で正極活物質の量および負極活物質の量は調整されていることが好ましい。これにより、高いエネルギー密度が得られる。
(負極結着剤)
 負極結着剤は、例えば、合成ゴムおよび高分子化合物などのうちのいずれか1種類または2種類以上を含んでいる。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物は、例えば、ポリフッ化ビニリデンおよびポリイミドなどである。
 中でも、負極結着剤は、ポリフッ化ビニリデンを含んでいることが好ましい。結着性に優れていると共に、高い物理的耐久性および高い化学的耐久性が得られるからである。
 負極活物質層22B中における負極結着剤の含有量、すなわち負極活物質層22Bの重量に対して負極結着剤の重量が占める割合は、特に限定されないが、例えば、2重量%~5重量%であることが好ましい。高い電池容量を維持しながら、結着性が担保されるからである。
 詳細には、負極結着剤の含有量が2重量%よりも小さい場合には、その負極結着剤の量が不足するため、結着性が低下する可能性がある。一方、負極結着剤の含有量が5重量%よりも大きい場合には、負極結着剤の含有量が負極活物質の含有量に対して相対的に大きくなりすぎるため、電池容量(負極22の容量)が低下しすぎる可能性がある。
 ポリフッ化ビニリデンの重量平均分子量は、特に限定されないが、中でも、30万~500万であることが好ましい。負極活物質層22Bの電気抵抗がばらつきにくくなるからである。
 詳細には、重量平均分子量が30万よりも小さい場合には、後述する負極活物質層22Bの形成工程(乾燥工程)において負極結着剤が負極活物質層22Bの表面近傍に移動しやすくなるため、その負極活物質層22Bの厚さ方向において電気抵抗がばらつきやすくなる可能性がある。一方、重量平均分子量が500万よりも大きい場合には、後述する負極合剤スラリーの調製工程において負極結着剤の分散性が低下するため、負極活物質層22Bの電気抵抗が全体的にばらつきやすくなる可能性がある。
(負極導電剤)
 負極導電剤は、例えば、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。この炭素材料は、例えば、黒鉛、カーボンブラック、アセチレンブラックおよびケッチェンブラックなどである。炭素材料の形状は、特に限定されないが、例えば、粒子状、鱗片状および繊維状などのうちのいずれか1種類または2種類以上である。ただし、正極導電剤は、導電性材料であれば、金属材料および導電性高分子などを含んでいてもよい。
 中でも、負極導電剤は、繊維状炭素材料および鱗片状炭素材料を含んでいることが好ましい。負極活物質層22B全体の電気抵抗が低下すると共に、その電気抵抗がばらつきにくくなるからである。
 詳細には、上記したように、ケイ素含有材料は充放電時において激しく膨張収縮しやすいため、充放電を繰り返すとケイ素含有材料は微粉化しやすい。この場合には、微粉化されたケイ素含有材料の表面に電解液の分解物などが堆積するため、負極活物質層22Bの内部において導電性(電子伝導性)が低下する可能性がある。
 しかしながら、負極導電剤が繊維状炭素材料および鱗片状炭素材料を含んでいると、ケイ素含有材料が微粉化されても、負極活物質層22Bの内部では、繊維状炭素材料により長距離の導電性が担保されると共に、鱗片状炭素材料により短距離の導電性が担保される。よって、ケイ素含有材料が微粉化されても、負極活物質層22B全体の電気抵抗が低下すると共に、その電気抵抗がばらつきにくくなる。
 繊維状炭素材料の種類は、特に限定されないが、例えば、カーボンファイバーなどである。また、鱗片状炭素材料の種類は、特に限定されないが、例えば、鱗片状黒鉛およびカーボンブラックなどである。
 負極活物質層22B中における負極導電剤の含有量は、特に限定されない。すなわち、負極活物質層22B中における繊維状炭素材料の含有量は、特に限定されないと共に、負極活物質層22B中における鱗片状炭素材料の含有量は、特に限定されない。
 中でも、負極導電剤中における繊維状炭素材料の含有量、すなわち繊維状炭素材料の重量と鱗片状炭素材料の重量との総和に対して繊維状炭素材料の重量が占める割合は、0.1重量%~3.0重量%であることが好ましい。また、負極導電剤中における鱗片状炭素材料の含有量、すなわち繊維状炭素材料の重量と鱗片状炭素材料の重量との総和に対して鱗片状炭素材料の重量が占める割合は、0.1重量%~3.0重量%であることが好ましい。負極活物質層22B全体の電気抵抗が十分に低下するため、充放電を繰り返しても放電容量が減少しにくくなるからである。
 詳細には、繊維状炭素材料の含有量が0.1重量%よりも小さい場合には、負極活物質層22Bの内部において長距離の導電性が担保されにくくなるため、その負極活物質層22B全体の電気抵抗が十分に低下しない可能性がある。一方、繊維状炭素材料の含有量が3.0重量%よりも大きい場合には、後述する負極合剤スラリーの調製工程において繊維状炭素材料が分散されにくくなるため、負極活物質層22B全体の電気抵抗が十分に低下しないと共に、その電気抵抗がばらつきやすくなる可能性がある。
 また、鱗片状炭素材料の含有量が0.1重量%よりも小さい場合には、負極活物質層22Bの内部において短距離の導電性が担保されにくくなるため、その負極活物質層22B全体の電気抵抗が十分に低下しない可能性がある。一方、鱗片状炭素材料の含有量が3.0重量%よりも大きい場合には、鱗片状炭素材料の比表面積が大きいことに起因して、その鱗片状炭素材料の表面に電解液の分解反応物などが堆積しやすくなるため、負極活物質層22B全体の電気抵抗が十分に低下しない可能性がある。しかも、充放電時においてケイ素含有材料が激しく膨張収縮した際に、大量の鱗片状炭素材料の存在に起因して負極活物質層22Bが崩壊しやすくなる可能性もある。
(他の材料)
 なお、負極活物質層22Bは、さらに、他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。ここで説明する「他の材料」とは、上記した負極活物質、負極結着剤および負極導電剤以外の材料である。
 他の材料の種類は、特に限定されないが、例えば、多価カルボン酸などである。負極活物質層22Bが負極結着剤と共に多価カルボン酸を含んでいると、その負極結着剤の結着性が向上するからである。この場合には、特に、負極結着剤がポリフッ化ビニリデンを含んでいると、そのポリフッ化ビニリデンの結着性が著しく向上する。
 具体的には、多価カルボン酸は、例えば、マレイン酸などである。負極活物質層22B中における多価カルボン酸の含有量は、例えば、負極結着剤の含有量などに応じて任意に設定可能である。
[セパレータ]
 セパレータ23は、例えば、図2に示したように、正極21と負極22との間に介在している。これにより、セパレータ23は、正極21と負極22との接触に起因する電流の短絡を防止しながらリチウムイオンを通過させる。
 このセパレータ23は、例えば、合成樹脂およびセラミックなどの多孔質膜のうちのいずれか1種類または2種類以上を含んでおり、2種類以上の多孔質膜の積層体でもよい。合成樹脂は、例えば、ポリテトラフルオロエチレン、ポリプロピレンおよびポリエチレンなどである。
 特に、セパレータ23は、例えば、上記した多孔質膜(基材層)と、その基材層の片面または両面に設けられた高分子化合物層とを含んでいてもよい。正極21に対するセパレータ23の密着性が向上すると共に、負極22に対するセパレータ23の密着性が向上するため、巻回電極体20の歪みが抑制されるからである。これにより、電解液の分解反応が抑制されると共に、基材層に含浸された電解液の漏液も抑制されるため、充放電を繰り返しても、抵抗が上昇しにくくなると共に、二次電池が膨れにくくなる。
 高分子化合物層は、例えば、ポリフッ化ビニリデンなどの高分子化合物のうちのいずれか1種類または2種類以上を含んでいる。物理的強度に優れていると共に、電気化学的に安定だからである。この高分子化合物層を形成する場合には、例えば、有機溶剤などに高分子化合物が溶解された溶液を基材層に塗布したのち、その基材層を乾燥させる。または、例えば、溶液中に基材層を浸漬させたのち、その基材層を乾燥させてもよい。
 なお、高分子化合物層は、例えば、無機粒子などの絶縁性粒子のうちのいずれか1種類または2種類以上を含んでいてもよい。無機粒子の種類は、例えば、酸化アルミニウムおよび窒化アルミニウムなどである。
[電解液]
 電解液は、溶媒および電解質塩を含んでいる。ただし、電解液は、さらに、添加剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
(溶媒)
 溶媒は、有機溶剤などの非水溶媒のうちのいずれか1種類または2種類以上を含んでいる。非水溶媒を含む電解液は、いわゆる非水電解液である。
 非水溶媒は、例えば、環状炭酸エステル、鎖状炭酸エステル、ラクトン、鎖状カルボン酸エステルおよびニトリル(モノニトリル)である。優れた電池容量、サイクル特性および保存特性などが得られるからである。
 環状炭酸エステルは、例えば、炭酸エチレン、炭酸プロピレンおよび炭酸ブチレンなどである。鎖状炭酸エステルは、例えば、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルおよび炭酸メチルプロピルなどである。ラクトンは、例えば、γ-ブチロラクトンおよびγ-バレロラクトンなどである。鎖状カルボン酸エステルは、例えば、酢酸メチル、酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、酪酸メチル、イソ酪酸メチル、トリメチル酢酸メチルおよびトリメチル酢酸エチルなどである。ニトリルは、例えば、アセトニトリル、メトキシアセトニトリルおよび3-メトキシプロピオニトリルなどである。
 この他、非水溶媒は、例えば、1,2-ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,3-ジオキソラン、4-メチル-1,3-ジオキソラン、1,3-ジオキサン、1,4-ジオキサン、N,N-ジメチルホルムアミド、N-メチルピロリジノン、N-メチルオキサゾリジノン、N,N’-ジメチルイミダゾリジノン、ニトロメタン、ニトロエタン、スルホラン、燐酸トリメチルおよびジメチルスルホキシドなどでもよい。同様の利点が得られるからである。
 中でも、非水溶媒は、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルなどのうちのいずれか1種類または2種類以上を含んでいることが好ましい。高い電池容量、優れたサイクル特性および優れた保存特性などが得られるからである。この場合には、炭酸エチレンおよび炭酸プロピレンなどの高粘度(高誘電率)溶媒(例えば、比誘電率ε≧30)と、炭酸ジメチル、炭酸エチルメチルおよび炭酸ジエチルなどの低粘度溶媒(例えば、粘度≦1mPa・s)との組み合わせがより好ましい。電解質塩の解離性およびイオンの移動度が向上するからである。
 また、非水溶媒は、例えば、不飽和環状炭酸エステル、ハロゲン化炭酸エステル、スルホン酸エステル、酸無水物、ジシアノ化合物(ジニトリル化合物)、ジイソシアネート化合物、リン酸エステルおよび炭素間三重結合を有する鎖状化合物である。電解液の化学的安定性が向上するからである。
 不飽和環状炭酸エステルは、1個または2個以上の不飽和結合(炭素間二重結合または炭素間三重結合)を有する環状炭酸エステルである。この不飽和環状炭酸エステルは、例えば、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。非水溶媒中における不飽和環状炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。
 ハロゲン化炭酸エステルは、1個または2個以上のハロゲン元素を構成元素として含む環状または鎖状の炭酸エステルである。ハロゲン化炭酸エステルが2個以上のハロゲンを構成元素として含んでいる場合、その2個以上のハロゲンの種類は、1種類だけでもよいし、2種類以上でもよい。環状のハロゲン化炭酸エステルは、例えば、4-フルオロ-1,3-ジオキソラン-2-オンおよび4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどである。鎖状のハロゲン化炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ビス(フルオロメチル)および炭酸ジフルオロメチルメチルなどである。非水溶媒中におけるハロゲン化炭酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~50重量%である。
 スルホン酸エステルは、例えば、モノスルホン酸エステルおよびジスルホン酸エステルなどである。非水溶媒中におけるスルホン酸エステルの含有量は、特に限定されないが、例えば、0.01重量%~10重量%である。
 モノスルホン酸エステルは、環状モノスルホン酸エステルでもよいし、鎖状モノスルホン酸エステルでもよい。環状モノスルホン酸エステルは、例えば、1,3-プロパンスルトンおよび1,3-プロペンスルトンなどのスルトンである。鎖状モノスルホン酸エステルは、例えば、環状モノスルホン酸エステルが途中で切断された化合物などである。ジスルホン酸エステルは、環状ジスルホン酸エステルでもよいし、鎖状ジスルホン酸エステルでもよい。
 酸無水物は、例えば、カルボン酸無水物、ジスルホン酸無水物およびカルボン酸スルホン酸無水物などである。カルボン酸無水物は、例えば、無水コハク酸、無水グルタル酸および無水マレイン酸などである。ジスルホン酸無水物は、例えば、無水エタンジスルホン酸および無水プロパンジスルホン酸などである。カルボン酸スルホン酸無水物は、例えば、無水スルホ安息香酸、無水スルホプロピオン酸および無水スルホ酪酸などである。非水溶媒中における酸無水物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。
 ジニトリル化合物は、例えば、NC-R1-CN(R1は、アルキレン基およびアリーレン基のうちのいずれかである。)で表される化合物である。このジニトリル化合物は、例えば、スクシノニトリル(NC-C-CN)、グルタロニトリル(NC-C-CN)、アジポニトリル(NC-C-CN)およびフタロニトリル(NC-C-CN)などである。非水溶媒中におけるジニトリル化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。
 ジイソシアネート化合物は、例えば、OCN-R2-NCO(R2は、アルキレン基およびアリーレン基のうちのいずれかである。)で表される化合物である。このジイソシアネート化合物は、例えば、ヘキサメチレンジイソシアネート(OCN-C12-NCO)などである。非水溶媒中におけるジイソシアネート化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。
 リン酸エステルは、例えば、リン酸トリメチルおよびリン酸トリエチルなどである。非水溶媒中におけるリン酸エステルの含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。
 炭素間三重結合を有する鎖状化合物は、1個または2個以上の炭素間三重結合(-C≡C-)を有する鎖状の化合物である。この炭素間三重結合を有する鎖状化合物は、例えば、炭酸プロパルギルメチル(CH≡C-CH-O-C(=O)-O-CH)およびメチルスルホン酸プロパルギル(CH≡C-CH-O-S(=O)-CH)などである。非水溶媒中における炭素間三重結合を有する鎖状化合物の含有量は、特に限定されないが、例えば、0.5重量%~5重量%である。
(電解質塩)
 電解質塩は、例えば、リチウム塩などの塩のうちのいずれか1種類または2種類以上を含んでいる。ただし、電解質塩は、例えば、リチウム塩以外の塩を含んでいてもよい。このリチウム以外の塩は、例えば、リチウム以外の軽金属の塩などである。
 リチウム塩は、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)、過塩素酸リチウム(LiClO)、六フッ化ヒ酸リチウム(LiAsF)、テトラフェニルホウ酸リチウム(LiB(C)、メタンスルホン酸リチウム(LiCHSO)、トリフルオロメタンスルホン酸リチウム(LiCFSO)、テトラクロロアルミン酸リチウム(LiAlCl)、六フッ化ケイ酸二リチウム(LiSiF)、塩化リチウム(LiCl)および臭化リチウム(LiBr)などである。優れた電池容量、サイクル特性および保存特性などが得られるからである。
 中でも、六フッ化リン酸リチウム、四フッ化ホウ酸リチウム、過塩素酸リチウムおよび六フッ化ヒ酸リチウムのうちのいずれか1種類または2種類以上が好ましく、六フッ化リン酸リチウムがより好ましい。内部抵抗が低下するからである。
 電解質塩の含有量は、特に限定されないが、中でも、溶媒に対して0.3mol/kg~3.0mol/kgであることが好ましい。高いイオン伝導性が得られるからである。
<1-2.負極の物性>
 続いて、負極22の物性に関して説明する。図3は、図2に示した負極22の断面構成のうちの一部を拡大している。なお、図3では、図示内容を簡略化するために、図2に示した2つの負極活物質層22Bのうちの一方だけを示している。
 この負極22では、負極活物質層22Bが炭素含有材料およびケイ素含有材料を含んでいる場合において、その負極活物質層22Bの電気抵抗分布を適正化するために、物性が適正化されている。
 この負極活物質層22Bの電気抵抗分布とは、主に、ケイ素含有材料の近傍の電気抵抗に起因する負極活物質層22Bの電気抵抗の分布である。ケイ素含有材料の近傍の電気抵抗に着目しているのは、そのケイ素含有材料は、上記したように理論容量が高いという利点を有する反面、炭素含有材料よりも電気抵抗が高いという懸念点を有するため、そのケイ素含有材料の近傍の電気抵抗は、負極活物質層22B全体の電気抵抗に大きな影響を及ぼすからである。
 具体的には、走査型広がり抵抗顕微鏡(SSRM)を用いて測定される負極活物質層22Bの広がり抵抗分布a/bは、1.03~10である。上記したように、負極活物質層22Bが炭素含有材料およびケイ素含有材料を含んでいる場合において、その負極活物質層22Bの電気抵抗分布が適正化されるため、高い理論容量を維持しながら、負極活物質層22B全体の電気抵抗が安定かつ十分に低下するからである。これにより、高いエネルギー密度が得られると共に、充放電を繰り返しても放電容量が低下しにくくなる。
 この「広がり抵抗分布a/b」とは、上記したように、走査型広がり抵抗顕微鏡を用いて測定されるパラメータである。具体的には、広がり抵抗分布a/bは、図3に示したように、負極集電体22Aの上に設けられている負極活物質層22Bを厚さ方向において下層22BX(負極集電体22Aに近い側の層)および上層22BY(負極集電体22Aから遠い側の層)に二等分した場合において、その上層22BYの広がり抵抗b(Ω)に対する下層22BXの広がり抵抗a(Ω)の比である。なお、広がり抵抗分布a/bを算出する場合には、小数点第三位の値を四捨五入する。
 この走査型広がり抵抗顕微鏡は、試料に電圧を印加すると共に、ワイドレンジ対数アンプを用いて導電性探針に流れる電流を測定することにより、その試料中の電気抵抗分布を二次元的に可視化する観察機器である。
 広がり抵抗分布a/bを測定するために用いられる走査型広がり抵抗顕微鏡の種類は、特に限定されないが、例えば、株式会社日立ハイテクサイエンス製の走査型広がり抵抗顕微鏡 NanoNavi/E-sweepなどである。広がり抵抗分布a/bの測定条件は、例えば、高空間分解能=数nm~数十nm、検出深さ=数nm~数十nm、ダイナミックレンジ=10kΩ~100GΩとする。
 この広がり抵抗分布a/bに関しては、例えば、炭素含有材料およびケイ素含有材料に関する粒度分布(メジアン径D50)および平均アスペクト比などを調整することにより変更可能である。すなわち、炭素含有材料およびケイ素含有材料のそれぞれの粒体形状を変更することにより、上記した適正範囲内(=1.03~10)となるように広がり抵抗分布a/bを調整することが可能である。
 なお、負極活物質層22Bが炭素含有材料およびケイ素含有材料を含んでいる場合には、例えば、後述するように、充電時において負極22にリチウムが吸蔵されるため、その負極22ではケイ素とリチウムとの合金(LiSi)が形成される。この場合には、負極活物質層22Bの広がり抵抗分布a/bが適正な範囲内(=1.03~10)であると、上記した合金の組成を決定するxの値は、例えば、x=1.8~3.2になると考えられる。
<1-3.動作>
 続いて、二次電池の動作に関して説明する。この二次電池は、例えば、以下のように動作する。
 充電時には、正極21からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して負極22に吸蔵される。一方、放電時には、負極22からリチウムイオンが放出されると共に、そのリチウムイオンが電解液を介して正極21に吸蔵される。
 放電時の終止電圧は、特に限定されないが、中でも、3.0V以上であることが好ましく、3.1V以上であることがより好ましい。広がり抵抗分布a/bが適正な範囲内(=1.03~10)となるように制御されやすくなるからである。言い換えれば、充電時の負極22において形成される合金(LiSi)の組成(xの値)が上記した適正な組成(x=1.8~3.2)となるように制御されやすくなるからである。
<1-4.製造方法>
 続いて、二次電池の製造方法に関して説明する。この二次電池は、例えば、以下の手順により製造される。
 正極21を作製する場合には、最初に、正極活物質と、正極結着剤および正極導電剤などとを混合することにより、正極合剤とする。続いて、有機溶剤などに正極合剤を分散させることにより、ペースト状の正極合剤スラリーを調製する。最後に、正極集電体21Aの両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層21Bを形成する。こののち、ロールプレス機などを用いて正極活物質層21Bを圧縮成形してもよい。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成形を複数回繰り返してもよい。
 負極22を作製する場合には、上記した負極の製造手順と同様の手順により、負極集電体22Aの両面に負極活物質層22Bを形成する。具体的には、炭素含有材料およびケイ素含有材料を含む負極活物質と、負極結着剤および負極導電剤などとを混合することにより、正極合剤としたのち、有機溶剤などに負極合剤を分散させることにより、ペースト状の負極合剤スラリーを調製する。この負極合剤スラリーを負極集電体22Aの両面に塗布したのち、その負極合剤スラリーを乾燥させる。
 二次電池を組み立てる場合には、溶接法などを用いて正極集電体21Aに正極リード25を接続させると共に、溶接法などを用いて負極集電体22Aに負極リード26を接続させる。続いて、セパレータ23を介して正極21と負極22とを互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回体を形成する。続いて、巻回体の巻回中心20Cにセンターピン24を挿入する。
 続いて、一対の絶縁板12,13を用いて巻回体を挟みながら、その巻回体を電池缶11の内部に収納する。この場合には、溶接法などを用いて正極リード25を安全弁機構15に接続させると共に、溶接法などを用いて負極リード26を電池缶11に接続させる。続いて、電池缶11の内部に電解液を注入する。これにより、電解液が巻回体に含浸されるため、巻回電極体20が形成される。最後に、ガスケット17を介して電池缶11の開口端部に電池蓋14、安全弁機構15および熱感抵抗素子16をかしめる。
 これにより、電池缶11の内部に巻回電極体20が封入されるため、円筒型の二次電池が完成する。
<1-5.作用および効果>
 この円筒型の二次電池によれば、負極活物質層22Bが負極活物質として炭素含有材料およびケイ素含有材料を含んでおり、走査型広がり抵抗顕微鏡を用いて測定される負極活物質層22Bの広がり抵抗分布a/bが1.03~10である。この場合には、上記したように、炭素含有材料とケイ素含有材料とを併用した場合において、負極活物質層22Bの電気抵抗分布が適正化されるため、高い理論容量を維持しながら、その負極活物質層22B全体の電気抵抗が安定かつ十分に低下する。よって、高いエネルギー密度が得られると共に、充放電を繰り返しても放電容量が低下しにくくなるため、優れた電池特性を得ることができる。
 特に、複数の粒子状のケイ素含有材料の10%粒子径D10が1μm~5μmであると共に、粒径比が0.1~0.5であれば、複数の粒子状の炭素含有材料の結着性を担保すると共に複数の粒子状のケイ素含有材料の結着性を担保しながら、負極活物質層22B全体の電気抵抗が安定かつ十分に低下するため、より高い効果を得ることができる。
 また、複数の粒子状の炭素含有材料の平均アスペクト比が1.1~2.0であれば、複数の粒子状の炭素含有材料の分散安定性および構造安定性を担保しながら、負極活物質層22Bの電気抵抗がばらつきにくくなるため、より高い効果を得ることができる。
 また、活物質割合が30重量%以下であれば、充放電時における負極活物質の膨張収縮の抑制と高い理論容量の確保とが両立されるため、より高い効果を得ることができる。
 また、負極導電剤が繊維状炭素材料および鱗片状炭素材料を含んでいれば、負極活物質層22B全体の電気抵抗が低下すると共に、その電気抵抗がばらつきにくくなるため、より高い効果を得ることができる。この場合には、負極導電剤中における繊維状炭素材料の含有量が0.1重量%~3.0重量%であると共に、負極導電剤中における鱗片状炭素材料の含有量が0.1重量%~3.0重量%であれば、負極活物質層22B全体の電気抵抗が十分に低下することにより、充放電を繰り返しても放電容量が減少しにくくなるため、さらに高い効果を得ることができる。
 また、負極結着剤がポリフッ化ビニリデンを含んでいれば、優れた結着性が得られると共に、高い物理的耐久性および高い化学的耐久性も得られるため、より高い効果を得ることができる。この場合には、負極活物質層中における負極結着剤の含有量が2重量%~5重量%であれば、高い電池容量を維持しながら結着性が担保されるため、さらに高い効果を得ることができる。また、ポリフッ化ビニリデンの重量平均分子量が30万~500万であれば、負極活物質層22Bの電気抵抗がばらつきにくくなるため、さらに高い効果を得ることができる。
 また、負極活物質層22Bが多価カルボン酸を含んでおり、より具体的にはマレイン酸などを含んでいれば、負極結着剤の結着性が向上するため、より高い効果を得ることができる。
<2.二次電池(ラミネートフィルム型)>
 次に、本技術の一実施形態の他の二次電池に関して説明する。以下の説明では、既に説明した円筒型の二次電池の構成要素を随時引用する。
 図4は、他の二次電池の斜視構成を表していると共に、図5は、図4に示したV-V線に沿った巻回電極体30の断面構成を拡大している。なお、図4では、巻回電極体30と外装部材40とが互いに離間された状態を示している。
<2-1.構成>
 この二次電池は、例えば、図4に示したように、柔軟性(または可撓性)を有するフィルム状の外装部材40の内部に、電池素子である巻回電極体30が収納されているラミネートフィルム型の二次電池である。
[外装部材]
 外装部材40は、例えば、図4に示したように、矢印Rの方向に折り畳むことが可能な1枚のフィルムであり、その外装部材40の一部には、巻回電極体30を収納するための窪み40Uが設けられている。
 この外装部材40は、例えば、融着層と、金属層と、表面保護層とがこの順に積層されたラミネートフィルムである。二次電池の製造工程では、例えば、後述するように、融着層同士が巻回電極体30を介して互いに対向するように外装部材40が折り畳まれたのち、その融着層の外周縁部同士が融着される。
 融着層は、例えば、ポリエチレンおよびポリプロピレンなどのフィルムのうちのいずれか1種類または2種類以上を含んでいる。金属層は、例えば、アルミニウム箔などの金属箔のうちのいずれか1種類または2種類以上を含んでいる。表面保護層は、例えば、ナイロンおよびポリエチレンテレフタレートなどのフィルムのうちのいずれか1種類または2種類以上を含んでいる。
 中でも、外装部材40は、ポリエチレンフィルムと、アルミニウム箔と、ナイロンフィルムとがこの順に積層されたアルミラミネートフィルムであることが好ましい。
 ただし、外装部材40は、例えば、他の積層構造を有するラミネートフィルムでもよいし、ポリプロピレンなどの単層の高分子フィルムでもよいし、アルミニウムなどの単層の金属箔でもよい。また、外装部材40は、例えば、2枚のフィルムであり、その2枚のフィルムは、例えば、接着剤を介して互いに貼り合わされていてもよい。
[巻回電極体]
 巻回電極体30は、例えば、図4および図5に示したように、セパレータ35および電解質層36を介して正極33と負極34とが互いに積層されたのち、その正極33、負極34、セパレータ35および電解質層36が巻回されることにより形成されている。なお、巻回電極体30の最外周部は、例えば、保護テープ37により保護されている。
 正極33には、正極リード31が接続されており、その正極リード31は、外装部材40の内部から外部に導出されている。この正極リード31は、例えば、アルミニウムなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。正極リード31の形状は、例えば、薄板状または網目状である。
 負極34には、負極リード32が接続されており、その負極リード32は、外装部材40の内部から外部に導出されている。負極リード32の導出方向は、例えば、正極リード31の導出方向と同様である。この負極リード32は、例えば、銅、ニッケルおよびステンレスなどの導電性材料のうちのいずれか1種類または2種類以上を含んでいる。負極リード32の形状は、例えば、正極リード31の形状と同様である。
 外装部材40と正極リード31との間には、例えば、外気の侵入を防止するために密着フィルム41が挿入されている。この密着フィルム41は、例えば、正極リード31に対して密着性を有する材料のうちのいずれか1種類または2種類以上を含んでおり、より具体的には、ポリオレフィン樹脂などを含んでいる。このポリオレフィン樹脂は、例えば、ポリエチレン、ポリプロピレン、変性ポリエチレンおよび変性ポリプロピレンのうちのいずれか1種類または2種類以上などである。
 外装部材40と負極リード32との間には、例えば、密着フィルム41と同様の機能を有する密着フィルム42が挿入されている。密着フィルム42の形成材料は、例えば、密着フィルム41の形成材料と同様である。
[正極、負極、セパレータおよび電解液]
 正極33は、例えば、正極集電体33Aおよび正極活物質層33Bを含んでいると共に、負極34は、負極集電体34Aおよび負極活物質層34Bを含んでいる。正極集電体33A、正極活物質層33B、負極集電体34Aおよび負極活物質層34Bのそれぞれの構成は、例えば、正極集電体21A、正極活物質層21B、負極集電体22Aおよび負極活物質層22Bのそれぞれの構成と同様である。セパレータ35の構成は、例えば、セパレータ23の構成と同様である。
 すなわち、負極33の負極活物質層33Bは、炭素含有材料およびケイ素含有材料を含んでおり、その負極活物質層33Bの物性(広がり抵抗分布a/b)は適正化されている。
[電解質層]
 電解質層36は、電解液と、高分子化合物とを含んでいる。この電解液の構成は、例えば、円筒型の二次電池に用いられる電解液の構成と同様である。
 ここで説明する電解質層36は、いわゆるゲル状の電解質であり、その電解質層36中では、高分子化合物により電解液が保持されている。高いイオン伝導率(例えば、室温で1mS/cm以上)が得られると共に、電解液の漏液が防止されるからである。なお、電解質層36は、さらに、添加剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。
 高分子化合物は、単独重合体および共重合体などのうちのいずれか1種類または2種類以上を含んでいる。単独重合体は、例えば、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリヘキサフルオロプロピレン、ポリエチレンオキサイド、ポリプロピレンオキサイド、ポリフォスファゼン、ポリシロキサン、ポリフッ化ビニル、ポリ酢酸ビニル、ポリビニルアルコール、ポリメタクリル酸メチル、ポリアクリル酸、ポリメタクリル酸、スチレン-ブタジエンゴム、ニトリル-ブタジエンゴム、ポリスチレンおよびポリカーボネートなどである。共重合体は、例えば、フッ化ビニリデンとヘキサフルオロピレンとの共重合体などである。中でも、単独重合体は、ポリフッ化ビニリデンであることが好ましいと共に、共重合体は、フッ化ビニリデンとヘキサフルオロピレンとの共重合体であることが好ましい。電気化学的に安定だからである。
 ゲル状の電解質である電解質層36において、電解液に含まれる「溶媒」とは、液状の材料だけでなく、電解質塩を解離させることが可能なイオン伝導性を有する材料まで含む広い概念である。このため、イオン伝導性を有する高分子化合物を用いる場合には、その高分子化合物も溶媒に含まれる。
 なお、電解質層36に代えて電解液を用いてもよい。この場合には、電解液が巻回電極体30(正極33、負極34およびセパレータ35)に含浸される。
<2-2.動作>
 この二次電池は、例えば、以下のように動作する。
 充電時には、正極33からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して負極34に吸蔵される。一方、放電時には、負極34からリチウムイオンが放出されると共に、そのリチウムイオンが電解質層36を介して正極33に吸蔵される。
<2-3.製造方法>
 ゲル状の電解質層36を備えた二次電池は、例えば、以下の3種類の手順により製造される。
[第1手順]
 最初に、正極21の作製手順と同様の手順により正極33を作製すると共に、負極22の作製手順と同様の手順により負極34を作製する。具体的には、正極33を作製する場合には、正極集電体33Aの両面に2つの正極活物質層33Bを形成すると共に、負極34を作製する場合には、負極集電体34Aの両面に2つの負極活物質層34Bを形成する。
 続いて、電解液と、高分子化合物と、有機溶剤などとを混合したのち、その混合物を撹拌することにより、前駆溶液を調製する。続いて、正極33に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、ゲル状の電解質層36を形成する。また、負極34に前駆溶液を塗布したのち、その前駆溶液を乾燥させることにより、ゲル状の電解質層36を形成する。
 続いて、溶接法などを用いて正極集電体33Aに正極リード31を接続させると共に、溶接法などを用いて負極集電体34Aに負極リード32を接続させる。続いて、セパレータ35および電解質層36を介して正極33と負極34とを互いに巻回させたのち、その正極33、負極34、セパレータ35および電解質層36を巻回させることにより、巻回電極体30を形成する。こののち、巻回電極体30の最外周部に保護テープ37を貼り付ける。
 最後に、巻回電極体30を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40の外周縁部同士を接着させることにより、その外装部材40の内部に巻回電極体30を封入する。この場合には、正極リード31と外装部材40との間に密着フィルム41を挿入すると共に、負極リード32と外装部材40との間に密着フィルム42を挿入する。
[第2手順]
 最初に、上記した第1手順と同様の手順により、正極33および負極34のそれぞれを作製したのち、溶接法などを用いて正極33に正極リード31を接続させると共に、溶接法などを用いて負極34に負極リード32を接続させる。続いて、セパレータ35を介して正極33と負極34と互いに積層させたのち、その正極33、負極34およびセパレータ35を巻回させることにより、巻回電極体30の前駆体である巻回体を作製する。こののち、巻回体の最外周部に保護テープ37を貼り付ける。
 続いて、巻回電極体30を挟むように外装部材40を折り畳んだのち、熱融着法などを用いて外装部材40のうちの一辺の外周縁部を除いた残りの外周縁部を接着させることにより、袋状の外装部材40の内部に巻回体を収納する。
 続いて、電解液と、高分子化合物の原料であるモノマーと、重合開始剤と、必要に応じて重合禁止剤などの他の材料とを混合したのち、その混合物を撹拌することにより、電解質用組成物を調製する。続いて、袋状の外装部材40の内部に電解質用組成物を注入したのち、熱融着法などを用いて外装部材40を密封する。
 最後に、電解質用組成物中のモノマーを熱重合させることにより、高分子化合物を形成する。これにより、電解液が高分子化合物により保持されるため、ゲル状の電解質層36が形成される。
[第3手順]
 最初に、多孔質膜(基材層)の両面に2つの高分子化合物層が形成されたセパレータ35を用いることを除いて、上記した第2手順と同様の手順により、巻回体を作製する。続いて、袋状の外装部材40の内部に巻回体を収納する。続いて、外装部材40の内部に電解液を注入したのち、熱融着法などを用いて外装部材40の開口部を密封する。続いて、外装部材40に加重をかけながら、その外装部材40を加熱することにより、正極33に高分子化合物層を介してセパレータ35を密着させると共に、負極34に高分子化合物層を介してセパレータ35を密着させる。これにより、電解液が高分子化合物層に含浸すると共に、その高分子化合物層がゲル化するため、電解質層36が形成される。
 この第3手順では、第1手順と比較して、二次電池が膨れにくくなる。また、第3手順では、第2手順と比較して、溶媒およびモノマー(高分子化合物の原料)などが電解質層36中に残存しにくくなるため、高分子化合物の形成工程が良好に制御される。これにより、正極33、負極34およびセパレータ35のそれぞれが電解質層36に対して十分に密着される。
<2-4.作用および効果>
 このラミネートフィルム型の二次電池によれば、負極34が負極22と同様の構成を有している。この場合には、円筒型の二次電池と同様の理由により、炭素含有材料とケイ素含有材料とを併用した場合において負極活物質層22Bの電気抵抗分布が適正化されるため、高いエネルギー密度が得られると共に充放電を繰り返しても放電容量が低下しにくくなる。よって、優れた電池特性を得ることができる。
 ラミネートフィルム型の二次電池に関する他の作用および効果は、円筒型の二次電池に関する作用および効果と同様である。
<3.二次電池の用途>
 次に、上記した二次電池の適用例に関して説明する。
 二次電池の用途は、駆動用の電源または電力蓄積用の電力貯蔵源などとして二次電池を利用可能である機械、機器、器具、装置およびシステム(複数の機器などの集合体)などであれば、特に限定されない。電源として用いられる二次電池は、主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に用いられる電源である。補助電源は、例えば、主電源の代わりに用いられる電源でもよいし、必要に応じて主電源から切り替えられる電源でもよい。二次電池を補助電源として用いる場合には、主電源の種類は二次電池に限られない。
 二次電池の用途は、例えば、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、コードレス電話機、ヘッドホンステレオ、携帯用ラジオ、携帯用テレビおよび携帯用情報端末などの電子機器(携帯用電子機器を含む)である。電気シェーバなどの携帯用生活器具である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。着脱可能な電源としてノート型パソコンなどに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む)などの電動車両である。非常時などに備えて電力を蓄積しておく家庭用バッテリシステムなどの電力貯蔵システムである。もちろん、二次電池の用途は、上記以外の用途でもよい。
 中でも、二次電池は、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器などに適用されることが有効である。これらの用途では優れた電池特性が要求されるため、本技術の二次電池を用いることにより、有効に性能向上を図ることができるからである。なお、電池パックは、二次電池を用いた電源である。この電池パックは、後述するように、単電池を用いてもよいし、組電池を用いてもよい。電動車両は、二次電池を駆動用電源として作動(走行)する車両であり、上記したように、二次電池以外の駆動源を併せて備えた自動車(ハイブリッド自動車など)でもよい。電力貯蔵システムは、二次電池を電力貯蔵源として用いるシステムである。例えば、家庭用の電力貯蔵システムでは、電力貯蔵源である二次電池に電力が蓄積されているため、その電力を利用して家庭用の電気製品などを使用することが可能である。電動工具は、二次電池を駆動用の電源として可動部(例えばドリルなど)が可動する工具である。電子機器は、二次電池を駆動用の電源(電力供給源)として各種機能を発揮する機器である。
 ここで、二次電池のいくつかの適用例に関して具体的に説明する。なお、以下で説明する適用例の構成は、あくまで一例であるため、その適用例の構成は、適宜変更可能である。
<3-1.電池パック(単電池)>
 図6は、単電池を用いた電池パックの斜視構成を表している。図7は、図6に示した電池パックのブロック構成を表している。なお、図6では、電池パックが分解された状態を示している。
 ここで説明する電池パックは、1個の二次電池を用いた簡易型の電池パック(いわゆるソフトパック)であり、例えば、スマートフォンに代表される電子機器などに搭載される。この電池パックは、例えば、図6に示したように、ラミネートフィルム型の二次電池である電源111と、その電源111に接続される回路基板116とを備えている。この電源111には、正極リード112および負極リード113が取り付けられている。
 電源111の両側面には、一対の粘着テープ118,119が貼り付けられている。回路基板116には、保護回路(PCM:Protection・Circuit・Module )が形成されている。この回路基板116は、タブ114を介して正極112に接続されていると共に、タブ115を介して負極リード113に接続されている。また、回路基板116は、外部接続用のコネクタ付きリード線117に接続されている。なお、回路基板116が電源111に接続された状態において、その回路基板116は、ラベル120および絶縁シート121により保護されている。このラベル120が貼り付けられることにより、回路基板116および絶縁シート121などは固定されている。
 また、電池パックは、例えば、図7に示しているように、電源111と、回路基板116とを備えている。回路基板116は、例えば、制御部121と、スイッチ部122と、PTC素子123と、温度検出部124とを備えている。電源111は、正極端子125および負極端子127を介して外部と接続されることが可能であるため、その電源111は、正極端子125および負極端子127を介して充放電される。温度検出部124は、温度検出端子(いわゆるT端子)126を用いて温度を検出する。
 制御部121は、電池パック全体の動作(電源111の使用状態を含む)を制御する。この制御部121は、例えば、中央演算処理装置(CPU)およびメモリなどを含んでいる。
 この制御部121は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部122を切断させることにより、電源111の電流経路に充電電流が流れないようにする。また、制御部121は、例えば、充電時において大電流が流れると、スイッチ部122を切断させることにより、充電電流を遮断する。
 一方、制御部121は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部122を切断させることにより、電源111の電流経路に放電電流が流れないようにする。また、制御部121は、例えば、放電時において大電流が流れると、スイッチ部122を切断させることにより、放電電流を遮断する。
 なお、過充電検出電圧は、特に限定されないが、例えば、4.2V±0.05Vであると共に、過放電検出電圧は、特に限定されないが、例えば、2.4V±0.1Vである。
 スイッチ部122は、制御部121の指示に応じて、電源111の使用状態、すなわち電源111と外部機器との接続の有無を切り換える。このスイッチ部122は、例えば、充電制御スイッチおよび放電制御スイッチなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。なお、充放電電流は、例えば、スイッチ部122のON抵抗に基づいて検出される。
 温度検出部124は、電源111の温度を測定すると共に、その温度の測定結果を制御部121に出力する。この温度検出部124は、例えば、サーミスタなどの温度検出素子を含んでいる。なお、温度検出部124により測定される温度の測定結果は、異常発熱時において制御部121が充放電制御を行う場合、残容量の算出時において制御部121が補正処理を行う場合などに用いられる。
 なお、回路基板116は、PTC素子123を備えていなくてもよい。この場合には、別途、回路基板116にPTC素子が付設されていてもよい。
<3-2.電池パック(組電池)>
 図8は、組電池を用いた電池パックのブロック構成を表している。
 この電池パックは、例えば、筐体60の内部に、制御部61と、電源62と、スイッチ部63と、電流測定部64と、温度検出部65と、電圧検出部66と、スイッチ制御部67と、メモリ68と、温度検出素子69と、電流検出抵抗70と、正極端子71および負極端子72とを備えている。この筐体60は、例えば、プラスチック材料などを含んでいる。
 制御部61は、電池パック全体の動作(電源62の使用状態を含む)を制御する。この制御部61は、例えば、CPUなどを含んでいる。電源62は、2個以上の二次電池を含む組電池であり、その2個以上の二次電池の接続形式は、直列でもよいし、並列でもよいし、双方の混合型でもよい。一例を挙げると、電源62は、2並列3直列となるように接続された6個の二次電池を含んでいる。
 スイッチ部63は、制御部61の指示に応じて、電源62の使用状態、すなわち電源62と外部機器との接続の有無を切り換える。このスイッチ部63は、例えば、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでいる。充電制御スイッチおよび放電制御スイッチのそれぞれは、例えば、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などの半導体スイッチである。
 電流測定部64は、電流検出抵抗70を用いて電流を測定すると共に、その電流の測定結果を制御部61に出力する。温度検出部65は、温度検出素子69を用いて温度を測定すると共に、その温度の測定結果を制御部61に出力する。この温度の測定結果は、例えば、異常発熱時において制御部61が充放電制御を行う場合、残容量の算出時において制御部61が補正処理を行う場合などに用いられる。電圧検出部66は、電源62中における二次電池の電圧を測定すると共に、アナログ-デジタル変換された電圧の測定結果を制御部61に供給する。
 スイッチ制御部67は、電流測定部64および電圧検出部66のそれぞれから入力される信号に応じて、スイッチ部63の動作を制御する。
 このスイッチ制御部67は、例えば、電池電圧が過充電検出電圧に到達すると、スイッチ部63(充電制御スイッチ)を切断することにより、電源62の電流経路に充電電流が流れないようにする。これにより、電源62では、放電用ダイオードを介して放電だけが可能になる。なお、スイッチ制御部67は、例えば、充電時に大電流が流れると、充電電流を遮断する。
 また、スイッチ制御部67は、例えば、電池電圧が過放電検出電圧に到達すると、スイッチ部63(放電制御スイッチ)を切断することにより、電源62の電流経路に放電電流が流れないようにする。これにより、電源62では、充電用ダイオードを介して充電だけが可能になる。なお、スイッチ制御部67は、例えば、放電時に大電流が流れると、放電電流を遮断する。
 なお、過充電検出電圧は、特に限定されないが、例えば、4.2V±0.05Vであると共に、過放電検出電圧は、特に限定されないが、例えば、2.4V±0.1Vである。
 メモリ68は、例えば、不揮発性メモリであるEEPROMなどを含んでいる。このメモリ68には、例えば、制御部61により演算された数値、製造工程段階において測定された二次電池の情報(例えば、初期状態の内部抵抗など)などが記憶されている。なお、メモリ68に二次電池の満充電容量を記憶させておけば、制御部61が残容量などの情報を把握できる。
 温度検出素子69は、電源62の温度を測定すると共に、その温度の測定結果を制御部61に出力する。この温度検出素子69は、例えば、サーミスタなどを含んでいる。
 正極端子71および負極端子72のそれぞれは、電池パックを用いて稼働される外部機器(例えばノート型のパーソナルコンピュータなど)、電池パックを充電するために用いられる外部機器(例えば充電器など)などに接続される端子である。電源62は、正極端子71および負極端子72を介して充放電される。
<3-3.電動車両>
 図9は、電動車両の一例であるハイブリッド自動車のブロック構成を表している。
 この電動車両は、例えば、金属製の筐体73の内部に、制御部74と、エンジン75と、電源76と、駆動用のモータ77と、差動装置78と、発電機79と、トランスミッション80およびクラッチ81と、インバータ82,83と、各種センサ84とを備えている。この他、電動車両は、例えば、差動装置78およびトランスミッション80に接続された前輪用駆動軸85および前輪86と、後輪用駆動軸87および後輪88とを備えている。
 この電動車両は、例えば、エンジン75およびモータ77のうちのいずれか一方を駆動源として用いて走行することが可能である。エンジン75は、主要な動力源であり、例えば、ガソリンエンジンなどである。エンジン75を動力源とする場合には、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して、エンジン75の駆動力(回転力)が前輪86および後輪88に伝達される。なお、エンジン75の回転力が発電機79に伝達されるため、その回転力を利用して発電機79が交流電力を発生すると共に、その交流電力がインバータ83を介して直流電力に変換されるため、その直流電力が電源76に蓄積される。一方、変換部であるモータ77を動力源とする場合には、電源76から供給された電力(直流電力)がインバータ82を介して交流電力に変換されるため、その交流電力を利用してモータ77が駆動する。このモータ77により電力から変換された駆動力(回転力)は、例えば、駆動部である差動装置78、トランスミッション80およびクラッチ81を介して前輪86および後輪88に伝達される。
 なお、制動機構を介して電動車両が減速すると、その減速時の抵抗力がモータ77に回転力として伝達されるため、その回転力を利用してモータ77が交流電力を発生させるようにしてもよい。この交流電力はインバータ82を介して直流電力に変換されるため、その直流回生電力は電源76に蓄積されることが好ましい。
 制御部74は、電動車両全体の動作を制御する。この制御部74は、例えば、CPUなどを含んでいる。電源76は、1個または2個以上の二次電池を含んでいる。この電源76は、外部電源と接続されていると共に、その外部電源から電力供給を受けることにより、電力を蓄積させてもよい。各種センサ84は、例えば、エンジン75の回転数を制御すると共に、スロットルバルブの開度(スロットル開度)を制御するために用いられる。この各種センサ84は、例えば、速度センサ、加速度センサおよびエンジン回転数センサなどのうちのいずれか1種類または2種類以上を含んでいる。
 なお、電動車両がハイブリッド自動車である場合を例に挙げたが、その電動車両は、エンジン75を用いずに電源76およびモータ77だけを用いて作動する車両(電気自動車)でもよい。
<3-4.電力貯蔵システム>
 図10は、電力貯蔵システムのブロック構成を表している。
 この電力貯蔵システムは、例えば、一般住宅および商業用ビルなどの家屋89の内部に、制御部90と、電源91と、スマートメータ92と、パワーハブ93とを備えている。
 ここでは、電源91は、例えば、家屋89の内部に設置された電気機器94に接続されていると共に、家屋89の外部に停車された電動車両96に接続されることが可能である。また、電源91は、例えば、家屋89に設置された自家発電機95にパワーハブ93を介して接続されていると共に、スマートメータ92およびパワーハブ93を介して外部の集中型電力系統97に接続されることが可能である。
 なお、電気機器94は、例えば、1種類または2種類以上の家電製品を含んでおり、その家電製品は、例えば、冷蔵庫、エアコン、テレビおよび給湯器などである。自家発電機95は、例えば、太陽光発電機および風力発電機などのうちのいずれか1種類または2種類以上を含んでいる。電動車両96は、例えば、電気自動車、電気バイクおよびハイブリッド自動車などのうちのいずれか1種類または2種類以上を含んでいる。集中型電力系統97は、例えば、火力発電所、原子力発電所、水力発電所および風力発電所などのうちのいずれか1種類または2種類以上を含んでいる。
 制御部90は、電力貯蔵システム全体の動作(電源91の使用状態を含む)を制御する。この制御部90は、例えば、CPUなどを含んでいる。電源91は、1個または2個以上の二次電池を含んでいる。スマートメータ92は、例えば、電力需要側の家屋89に設置されるネットワーク対応型の電力計であり、電力供給側と通信することが可能である。これに伴い、スマートメータ92は、例えば、外部と通信しながら、家屋89における電力の需要と供給とのバランスを制御することにより、高効率で安定したエネルギー供給を可能とする。
 この電力貯蔵システムでは、例えば、外部電源である集中型電力系統97からスマートメータ92およびパワーハブ93を介して電源91に電力が蓄積されると共に、独立電源である自家発電機95からパワーハブ93を介して電源91に電力が蓄積される。この電源91に蓄積された電力は、制御部90の指示に応じて電気機器94および電動車両96に供給されるため、その電気機器94が稼働可能になると共に、その電動車両96が充電可能になる。すなわち、電力貯蔵システムは、電源91を用いて、家屋89内における電力の蓄積および供給を可能にするシステムである。
 電源91に蓄積された電力は、必要に応じて使用することが可能である。このため、例えば、電気使用料が安い深夜において、集中型電力系統97から電源91に電力を蓄積しておき、電気使用料が高い日中において、その電源91に蓄積された電力を用いることができる。
 なお、上記した電力貯蔵システムは、1戸(1世帯)ごとに設置されていてもよいし、複数戸(複数世帯)ごとに設置されていてもよい。
<3-5.電動工具>
 図11は、電動工具のブロック構成を表している。
 ここで説明する電動工具は、例えば、電動ドリルである。この電動工具は、例えば、工具本体98の内部に、制御部99と、電源100とを備えている。この工具本体98には、例えば、可動部であるドリル部101が稼働(回転)可能に取り付けられている。
 工具本体98は、例えば、プラスチック材料などを含んでいる。制御部99は、電動工具全体の動作(電源100の使用状態を含む)を制御する。この制御部99は、例えば、CPUなどを含んでいる。電源100は、1個または2個以上の二次電池を含んでいる。この制御部99は、動作スイッチの操作に応じて、電源100からドリル部101に電力を供給する。
 本技術の実施例に関して説明する。
(実験例1-1~1-15)
 以下の手順により、図4および図5に示したラミネートフィルム型のリチウムイオン二次電池を作製した。
 正極33を作製する場合には、最初に、正極活物質(コバルト酸リチウム)95質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(ケッチェンブラック)2質量部とを混合することにより、正極合剤とした。続いて、有機溶剤(N-メチル-2-ピロリドン)に正極合剤を投入したのち、その有機溶剤を撹拌することにより、ペースト状の正極合剤スラリーを調製した。続いて、コーティング装置を用いて正極集電体33A(アルミニウム箔,厚さ=10μm)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを温風乾燥させることにより、正極活物質層33Bを形成した。続いて、ロールプレス機を用いて正極活物質層33Bを圧縮成型した。最後に、正極活物質層33Bが形成された正極集電体33Aを帯状(長さ=800mm,幅=70mm)となるように切断した。
 負極34を作製する場合には、最初に、粉末状の炭素含有材料(メソカーボンマイクロビーズ(MCMB))および粉末状のケイ素含有材料(ケイ素の単体(Si))を含む負極活物質と、負極結着剤(ポリフッ化ビニリデン(PVDF))と、負極導電剤(繊維状炭素材料であるカーボンファイバー(CF))と、負極導電剤(鱗片状炭素材料であるカーボンブラック(CB))と、多価カルボン酸(マレイン酸(MA))とを混合することにより、負極合剤とした。この場合には、比較のために、多価カルボン酸を用いなかったことを除いて同様の手順により、負極合剤を得た。
 炭素含有材料に関するメジアン径D50(μm)、平均アスペクト比(AR:Aspect Ratio)および含有量(重量%)と、ケイ素含有材料に関する10%粒子径D10(μm)、メジアン径D50(μm)および含有量(重量%)と、粒径比と、活物質割合(%)と、負極活物質層33Bの広がり抵抗分布a/bとは、表1に示した通りである。なお、広がり抵抗分布a/bの測定方法および測定条件などに関する詳細は、上記した通りである。
 また、負極結着剤に関する重量平均分子量Mwおよび含有量(重量%)と、負極導電剤(繊維状炭素材料および鱗片状炭素材料)に関する含有量(重量%)と、多価カルボン酸の有無および含有量(重量%)とは、表2に示した通りである。
 続いて、負極合剤に有機溶剤(N-メチル-2-ピロリドン)を混合させたのち、自公転式ミキサを用いて混合物を混練および分散させることにより、ペースト状の負極合剤スラリーを調製した。続いて、コーティング装置を用いて負極集電体34A(銅箔,厚さ=12μm)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥(乾燥温度=120℃)させることにより、負極活物質層34B(厚さ=60μm)を形成した。続いて、ロールプレス機を用いて負極活物質層34Bを圧縮成型したのち、その負極活物質層34Bを真空乾燥した。この場合には、負極活物質層34Bの体積密度を1.8g/cmとした。最後に、負極活物質層34Bが形成された負極集電体34Aを帯状(長さ=500mm,幅=30mm)となるように切断した。
 電解液を調製する場合には、溶媒(炭酸エチレンおよび炭酸エチルメチル)に電解質塩(六フッ化酸リチウム)を加えたのち、その溶媒を撹拌した。この場合には、溶媒の混合比(重量比)を炭酸エチレン:炭酸エチルメチル=50:50とすると共に、電解質塩の含有量を溶媒に対して1mol/dm(=1mol/l)とした。
 二次電池を組み立てる場合には、最初に、正極集電体33Aにアルミニウム製の正極リード31を溶接すると共に、負極集電体34Aに銅製の負極リード32を溶接した。続いて、セパレータ35(微多孔性ポリエチレンフィルム,厚さ=25μm)を介して正極33と負極34とを互いに積層させたのち、その正極33、負極34およびセパレータ35を巻回させることにより、巻回体を形成した。こののち、巻回体の最外周部に保護テープ37を貼り付けた。続いて、巻回体を挟むように外装部材40(外側:ナイロンフィルム,厚さ=25μm/アルミニウム箔,厚さ=40μm/ポリプロピレンフィルム,厚さ=30μm:内側)を折り畳んだのち、その外装部材40のうちの3辺の外周縁部同士を熱融着した。この場合には、正極リード31と外装部材40との間に密着フィルム41(ポリプロピレンフィルム,厚さ=85μm)を挿入すると共に、負極リード32と外装部材40との間に密着フィルム42(ポリプロピレンフィルム,厚さ=85μm)を挿入した。最後に、外装部材40の内部に電解液を注入したのち、減圧環境中において外装部材40のうちの残りの1辺の外周縁部同士を熱融着した。これにより、巻回体に電解液が含浸されたため、巻回電極体30が形成された。
 よって、外装部材40の内部に巻回電極体30が封入されたため、ラミネートフィルム型の二次電池が完成した。
 この二次電池を作製する場合には、以下で説明する手順により、正極33の充電容量と負極34の充電容量との関係を設定した。
 正極33の充電容量を求める場合には、最初に、正極集電体33Aの片面だけに正極活物質層33Bを形成することを除いて、上記した正極33の作製手順と同様の手順により、正極集電体33Aの片面に正極活物質層33Bが形成された試験用の正極33を得た。続いて、試験極として試験用の正極33を用いると共に、対極としてリチウム金属を用いることにより、コイン型の二次電池を作製した。続いて、二次電池を充電させることにより、試験用の正極33の電気容量を測定した。この場合には、0.1Cの電流で電圧が4.4Vに到達するまで定電流充電したのち、さらに4.4Vの電圧で電流が0.01Cに到達するまで定電圧充電した。なお、0.1とは、電池容量(理論容量)を10時間で放電しきる電流値であると共に、0.01Cとは、電池容量を100時間で放電しきる電流値である。最後に、正極活物質層33Bの厚さ当たりにおける試験用の正極33の電気容量を算出することにより、その試験用の正極33の充電容量を求めた。
 負極34の充電容量を求める場合には、最初に、負極集電体34Aの片面だけに負極活物質層43Bを形成することを除いて、上記した負極34の作製手順と同様の手順により、負極集電体34Aの片面に負極活物質層34Bが形成された試験用の負極34を得た。続いて、試験極として負極34を用いると共に、対極としてリチウム金属を用いることにより、コイン型の二次電池を作製した。続いて、二次電池を充電させることにより、試験用の負極34の電気容量を測定した。この場合には、0.1Cの電流で電圧が0Vに到達するまで定電流充電したのち、さらに0Vの電圧で電流が0.01Cに到達するまで定電圧充電した。最後に、負極活物質層34Bの厚さ当たりにおける試験用の負極34の電気容量を算出することにより、その試験用の負極34の充電容量を求めた。
 正極33の充電容量と負極34の充電容量との関係を設定する場合には、負極34の充電容量に対する正極33の充電容量の比(=正極33の充電容量/負極34の充電容量)が0.9となるように、正極活物質層33Bの厚さおよび負極活物質層34Bの厚さのそれぞれを調整した。正極活物質層33Bの厚さを調整する場合には、正極合剤スラリーの固形分濃度および塗布速度などを変化させると共に、負極活物質層34Bの厚さを調整する場合には、負極合剤スラリーの固形分濃度および塗布速度などを変化させた。
 これらの二次電池の電池特性としてサイクル特および容量特性を調べたところ、表2に示した結果が得られた。
 サイクル特性を調べる場合には、サイクル試験を行うことにより、容量維持率(%)を求めた。
 サイクル試験では、最初に、電池状態を安定化させるために、常温環境中(23℃)において二次電池を1サイクル充放電させた。充電時には、0.2Cの電流で電圧が4.35Vに到達するまで充電したのち、さらに4.35Vの電圧で電流が0.025Cに到達するまで充電した。放電時には、0.2Cの電流で電圧が3.0Vに到達するまで放電した。0.2Cとは、電池容量を5時間で放電しきる電流値であると共に、0.025Cとは、電池容量を40時間で放電しきる電流値である。ここで説明した二次電池の電池状態を安定化させるための手順の内容は、以降においても同様である。
 続いて、同環境中において二次電池を再び1サイクル充放電させることにより、2サイクル目の放電容量を測定した。充放電条件は、充電時の電流および放電時の電流のそれぞれを0.5Cに変更したことを除いて、同様の条件とした。0.5Cとは、電池容量を4時間で放電しきる電流値である。
 続いて、同環境中においてサイクル数の合計が50サイクルに到達するまで二次電池を繰り返して充放電させることにより、50サイクル目の放電容量を測定した。
 最後に、容量維持率(%)=(50サイクル目の放電容量/2サイクル目の放電容量)×100を算出した。
 一方、容量特性を調べる場合には、2種類の二次電池の比較試験を行うことにより、負極34の容量増加率(%)を求めた。
 比較試験では、最初に、上記した二次電池の作製手順により、負極活物質として炭素含有材料およびケイ素含有材料の双方を用いて二次電池を作製した。続いて、常温環境中(23℃)において、電池状態が安定化された二次電池を1サイクル充放電させることにより、炭素含有材料とケイ素含有材料とを併用した場合の放電容量を測定した。この場合の充放電条件は、サイクル試験における2サイクル目以降の充放電条件と同様にした。
 続いて、負極活物質としてケイ素含有材料を用いずに炭素含有材料だけを用いたことを除いて同様の手順により、二次電池を作製したのち、炭素含有材料だけを用いた場合の放電容量を測定した。
 最後に、容量増加率(%)=(炭素含有材料とケイ素含有材料とを併用した場合の放電容量-炭素含有材料だけ用いた場合の放電容量/炭素含有材料だけ用いた場合の放電容量)×100を算出した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 容量維持率および容量増加率のそれぞれは、広がり抵抗分布a/bに応じて大きく変動した。この場合には、広がり抵抗分布a/bが1.03~10であると(実験例1-1~1-8)、その広がり抵抗分布a/bが上記した範囲外である場合(実験例1-9~1-15)と比較して、高い容量増加率を維持しつつ、高い容量維持率が得られた。
 特に、広がり抵抗分布a/bが適正な範囲内(=1.03~10)である場合には、以下の傾向が得られた。
 第1に、10%粒子径D10が1μm~5μmであると共に粒径比が0.1~0.5であると(実験例1-3~1-5)、容量維持率および容量増加率のそれぞれがより高くなった。
 第2に、負極結着剤がポリフッ化ビニリデンを含んでいると、十分な容量維持率が得られたと共に、十分な容量増加率も得られた。
 第3に、負極導電剤が繊維状炭素材料および鱗片状炭素材料を含んでいると、十分な容量維持率が得られたと共に、十分な容量増加率も得られた。
 第4に、負極活物質層34Bが多価カルボン酸を含んでいると(実験例1-1)、容量維持率および容量増加率のそれぞれがより高くなった。
(実験例2-1~2-8)
 表3および表4に示したように、炭素含有材料の平均アスペクト比を変更したことを除いて同様の手順により、二次電池を作製すると共に、その二次電池の電池特性を調べた。平均アスペクト比を変更するためには、その平均アスペクト比が異なる複数種類の炭素含有材料(メソカーボンマイクロビーズ)を用いた。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 平均アスペクト比が1.1~2である場合(実験例1-1,2-2~2-6)には、その平均アスペクト比が上記した範囲外である(実験例2-1,2-7,2-8)と比較して、容量維持率および容量増加率のそれぞれがより高くなった。
(実験例3-1~3-5)
 表5および表6に示したように、活物質割合を変更したことを除いて同様の手順により、二次電池を作製すると共に、その二次電池の電池特性を調べた。活物質割合を変更するためには、炭素含有材料とケイ素含有材料との混合比を変更した。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 活物質割合が30重量%以下である場合(実験例1-1,3-1~3-3)には、その活物質割合が上記した範囲外である(実験例3-4)と比較して、容量維持率および容量増加率のそれぞれがより高くなった。もちろん、広がり抵抗分布a/bが上記した範囲外である場合(実験例3-5)には、十分な容量維持率が得られないと共に十分な容量増加率も得られなかった。
(実験例4-1~4-12)
 表7および表8に示したように、負極導電剤(繊維状炭素材料および鱗片状炭素材料)の含有量を変更したことを除いて同様の手順により、二次電池を作製すると共に、その二次電池の電池特性を調べた。負極導電剤の含有量を変更するためには、繊維状炭素材料および鱗片状炭素材料のそれぞれの添加量を変更した。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
 繊維状炭素材料の含有量が0.1重量%~3重量%であると共に鱗片状炭素材料の含有量が0.1重量%~3重量%である場合(実験例1-1,4-3~4-8)には、両者の含有量が上記した範囲外である場合(実験例4-2,4-9)と比較して、容量維持率および容量増加率のそれぞれがより高くなった。もちろん、広がり抵抗分布a/bが上記した範囲外である場合(実験例4-1,4-10~4-12)には、十分な容量維持率が得られないと共に十分な容量増加率も得られなかった。
(実験例5-1~5-11)
 表9および表10に示したように、負極結着剤(ポリフッ化ビニリデン)の含有量および重量平均分子量Mwを変更したことを除いて同様の手順により、二次電池を作製すると共に、その二次電池の電池特性を調べた。負極結着剤の含有量を変更するためには、ポリフッ化ビニリデンの添加量を変更したと共に、重量平均分子量Mwを変更するためには、その重量平均分子量Mwが異なる複数種類のポリフッ化ビニリデンを用いた。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 負極結着剤の重量平均分子量Mwが30万~500万である場合(実験例1-1,5-2~5-10)には、その重量平均分子量Mwが上記した範囲外である場合(実験例5-1,5-11)と比較して、容量維持率および容量増加率のそれぞれがより高くなった。
 また、負極結着剤の含有量が2重量%~5重量%である場合(実験例1-1,5-6,5-7)には、その負極結着剤の含有量が上記した範囲外である場合(実験例5-5,5-8)と比較して、容量維持率および容量増加率のそれぞれがより高くなった。
 表1~表10に示した結果から、負極活物質層が負極活物質として炭素含有材料およびケイ素含有材料を含んでおり、走査型広がり抵抗顕微鏡を用いて測定される負極活物質層の広がり抵抗分布a/bが1.03~10であると、サイクル特性および容量特性がいずれも改善された。よって、二次電池において優れた電池特性が得られた。
 以上、一連の実施形態および実施例を挙げながら本技術を説明したが、その本技術に関しては、各実施形態および実施例において説明した態様に限定されず、種々の変形が可能である。
 具体的には、例えば、電池素子が巻回構造を有する場合に関して説明したが、これに限られない。例えば、電池素子が積層構造などの他の構造を有していてもよい。
 また、リチウムの吸蔵現象およびリチウムの放出現象を利用して負極の容量が得られるリチウムイオン二次電池に関して説明したが、これに限られない。例えば、リチウムの析出現象およびリチウムの溶解現象を利用して負極の容量が得られるリチウム金属二次電池でもよい。また、例えば、リチウムを吸蔵および放出することが可能な負極活物質の容量を正極の容量よりも小さくなるように設定することにより、リチウムの吸蔵現象およびリチウムの放出現象に起因する容量とリチウムの析出現象およびリチウムの溶解現象に起因する容量との和に基づいて負極の容量が得られる二次電池でもよい。
 また、電極反応物質としてリチウムを用いた二次電池に関して説明したが、これに限られない。例えば、ナトリウムおよびカリウムどの長周期型周期表における他の1族の元素でもよいし、マグネシウムおよびカルシウムなどの長周期型周期表における2族の元素でもよいし、アルミニウムなどの他の軽金属でもよい。
 なお、本明細書中に記載された効果はあくまで例示であって限定されるものではなく、また、他の効果があってもよい。
 なお、本技術は、以下のような構成を取ることも可能である。
(1)
 正極と、
 (A)負極集電体と、前記負極集電体の上に設けられると共に負極活物質を含む負極活物質層とを備え、(B)前記負極活物質が炭素含有材料およびケイ素含有材料を含み、(C)走査型広がり抵抗顕微鏡を用いて測定される前記負極活物質層の広がり抵抗分布a/bが1.03以上10以下である、負極と、
 電解液と
 を備えた、二次電池。
(2)
 前記炭素含有材料は複数の粒子状であると共に、前記ケイ素含有材料は複数の粒子状であり、
 前記複数の粒子状のケイ素含有材料の10%粒子径D10(μm)は、1μm以上5μm以下であり、
 前記複数の粒子状の炭素含有材料のメジアン径D50(μm)に対する前記複数の粒子状のケイ素含有材料のメジアン径D50(μm)の比は、0.1以上0.5以下である、
 上記(1)に記載の二次電池。
(3)
 前記炭素含有材料は、複数の粒子状であり、
 前記複数の粒子状の炭素含有材料の平均アスペクト比は、1.1以上2.0以下である、
 上記(1)または(2)に記載の二次電池。
(4)
 前記炭素含有材料の重量と前記ケイ素含有材料の重量との総和に対して前記ケイ素含有材料の重量が占める割合(重量%)は、30重量%以下である、
 上記(1)ないし(3)のいずれかに記載の二次電池。
(5)
 前記負極活物質層は、さらに、負極導電剤を含み、
 前記負極導電剤は、繊維状炭素材料および鱗片状炭素材料を含む、
 上記(1)ないし(4)のいずれかに記載の二次電池。
(6)
 前記繊維状炭素材料の重量と前記鱗片状炭素材料の重量との総和に対して前記繊維状炭素材料の重量が占める割合(重量%)は、0.1重量%以上3.0重量%以下であり、
 前記繊維状炭素材料の重量と前記鱗片状炭素材料の重量との総和に対して前記鱗片状炭素材料の重量が占める割合(重量%)は、0.1重量%以上3.0重量%以下である、
 上記(5)に記載の二次電池。
(7)
 前記負極は、さらに、負極結着剤を含み、
 前記負極結着剤は、ポリフッ化ビニリデンを含む、
 上記(1)ないし(6)のいずれかに記載の二次電池。
(8)
 前記負極活物質層の重量に対して前記負極結着剤の重量が占める割合(重量%)は、2重量%以上5重量%以下である、
 上記(7)に記載の二次電池。
(9)
 前記ポリフッ化ビニリデンの重量平均分子量は、30万以上500万以下である、
 上記(7)または(8)に記載の二次電池。
(10)
 前記負極活物質層は、さらに、多価カルボン酸を含む、
 上記(1)ないし(9)のいずれかに記載の二次電池。
(11)
 前記多価カルボン酸は、マレイン酸を含む、
 上記(10)に記載の二次電池。
(12)
 リチウムイオン二次電池である、
 上記(1)ないし(11)のいずれかに記載の二次電池。
(13)
 上記(1)ないし(12)のいずれかに記載の二次電池と、
 前記二次電池の動作を制御する制御部と、
 前記制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
 を備えた、電池パック。
(14)
 上記(1)ないし(12)のいずれかに記載の二次電池と、
 前記二次電池から供給された電力を駆動力に変換する変換部と、
 前記駆動力に応じて駆動する駆動部と、
 前記二次電池の動作を制御する制御部と
 を備えた、電動車両。
(15)
 上記(1)ないし(12)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される1または2以上の電気機器と、
 前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
 を備えた、電力貯蔵システム。
(16)
 上記(1)ないし(12)のいずれかに記載の二次電池と、
 前記二次電池から電力を供給される可動部と
 を備えた、電動工具。
(17)
 上記(1)ないし(12)のいずれかに記載の二次電池を電力供給源として備えた、電子機器。

Claims (17)

  1.  正極と、
     (A)負極集電体と、前記負極集電体の上に設けられると共に負極活物質を含む負極活物質層とを備え、(B)前記負極活物質が炭素含有材料およびケイ素含有材料を含み、(C)走査型広がり抵抗顕微鏡を用いて測定される前記負極活物質層の広がり抵抗分布a/bが1.03以上10以下である、負極と、
     電解液と
     を備えた、二次電池。
  2.  前記炭素含有材料は複数の粒子状であると共に、前記ケイ素含有材料は複数の粒子状であり、
     前記複数の粒子状のケイ素含有材料の10%粒子径D10(μm)は、1μm以上5μm以下であり、
     前記複数の粒子状の炭素含有材料のメジアン径D50(μm)に対する前記複数の粒子状のケイ素含有材料のメジアン径D50(μm)の比は、0.1以上0.5以下である、
     請求項1記載の二次電池。
  3.  前記炭素含有材料は、複数の粒子状であり、
     前記複数の粒子状の炭素含有材料の平均アスペクト比は、1.1以上2.0以下である、
     請求項1記載の二次電池。
  4.  前記炭素含有材料の重量と前記ケイ素含有材料の重量との総和に対して前記ケイ素含有材料の重量が占める割合(重量%)は、30重量%以下である、
     請求項1記載の二次電池。
  5.  前記負極活物質層は、さらに、負極導電剤を含み、
     前記負極導電剤は、繊維状炭素材料および鱗片状炭素材料を含む、
     請求項1記載の二次電池。
  6.  前記繊維状炭素材料の重量と前記鱗片状炭素材料の重量との総和に対して前記繊維状炭素材料の重量が占める割合(重量%)は、0.1重量%以上3.0重量%以下であり、
     前記繊維状炭素材料の重量と前記鱗片状炭素材料の重量との総和に対して前記鱗片状炭素材料の重量が占める割合(重量%)は、0.1重量%以上3.0重量%以下である、
     請求項5記載の二次電池。
  7.  前記負極は、さらに、負極結着剤を含み、
     前記負極結着剤は、ポリフッ化ビニリデンを含む、
     請求項1記載の二次電池。
  8.  前記負極活物質層の重量に対して前記負極結着剤の重量が占める割合(重量%)は、2重量%以上5重量%以下である、
     請求項7記載の二次電池。
  9.  前記ポリフッ化ビニリデンの重量平均分子量は、30万以上500万以下である、
     請求項7記載の二次電池。
  10.  前記負極活物質層は、さらに、多価カルボン酸を含む、
     請求項1記載の二次電池。
  11.  前記多価カルボン酸は、マレイン酸を含む、
     請求項10記載の二次電池。
  12.  リチウムイオン二次電池である、
     請求項1記載の二次電池。
  13.  二次電池と、
     前記二次電池の動作を制御する制御部と、
     前記制御部の指示に応じて前記二次電池の動作を切り換えるスイッチ部と
     を備え、
     前記二次電池は、
     正極と、
     (A)負極集電体と、前記負極集電体の上に設けられると共に負極活物質を含む負極活物質層とを備え、(B)前記負極活物質が炭素含有材料およびケイ素含有材料を含み、(C)走査型広がり抵抗顕微鏡を用いて測定される前記負極活物質層の広がり抵抗分布a/bが1.03以上10以下である、負極と、
     電解液と
     を備えた、電池パック。
  14.  二次電池と、
     前記二次電池から供給された電力を駆動力に変換する変換部と、
     前記駆動力に応じて駆動する駆動部と、
     前記二次電池の動作を制御する制御部と
     を備え、
     前記二次電池は、
     正極と、
     (A)負極集電体と、前記負極集電体の上に設けられると共に負極活物質を含む負極活物質層とを備え、(B)前記負極活物質が炭素含有材料およびケイ素含有材料を含み、(C)走査型広がり抵抗顕微鏡を用いて測定される前記負極活物質層の広がり抵抗分布a/bが1.03以上10以下である、負極と、
     電解液と
     を備えた、電動車両。
  15.  二次電池と、
     前記二次電池から電力を供給される1または2以上の電気機器と、
     前記二次電池からの前記電気機器に対する電力供給を制御する制御部と
     を備え、
     前記二次電池は、
     正極と、
     (A)負極集電体と、前記負極集電体の上に設けられると共に負極活物質を含む負極活物質層とを備え、(B)前記負極活物質が炭素含有材料およびケイ素含有材料を含み、(C)走査型広がり抵抗顕微鏡を用いて測定される前記負極活物質層の広がり抵抗分布a/bが1.03以上10以下である、負極と、
     電解液と
     を備えた、電力貯蔵システム。
  16.  二次電池と、
     前記二次電池から電力を供給される可動部と
     を備え、
     前記二次電池は、
     正極と、
     (A)負極集電体と、前記負極集電体の上に設けられると共に負極活物質を含む負極活物質層とを備え、(B)前記負極活物質が炭素含有材料およびケイ素含有材料を含み、(C)走査型広がり抵抗顕微鏡を用いて測定される前記負極活物質層の広がり抵抗分布a/bが1.03以上10以下である、負極と、
     電解液と
     を備えた、電動工具。
  17.  二次電池を電力供給源として備え、
     前記二次電池は、
     正極と、
     (A)負極集電体と、前記負極集電体の上に設けられると共に負極活物質を含む負極活物質層とを備え、(B)前記負極活物質が炭素含有材料およびケイ素含有材料を含み、(C)走査型広がり抵抗顕微鏡を用いて測定される前記負極活物質層の広がり抵抗分布a/bが1.03以上10以下である、負極と、
     電解液と
     を備えた、電子機器。
PCT/JP2018/025045 2017-07-03 2018-07-02 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器 WO2019009239A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880044698.3A CN110832678B (zh) 2017-07-03 2018-07-02 二次电池、电池包、电动车辆、电力储存系统、电动工具及电子设备
JP2019527693A JP6908113B2 (ja) 2017-07-03 2018-07-02 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
EP18828751.0A EP3651241A4 (en) 2017-07-03 2018-07-02 SECONDARY BATTERY, BATTERY PACK, ELECTRIC VEHICLE, ENERGY STORAGE SYSTEM, ELECTRIC TOOL AND ELECTRONIC DEVICE
US16/732,937 US11329277B2 (en) 2017-07-03 2020-01-02 Secondary battery, battery pack, electrically driven vehicle, electric power storage system, electric tool, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-130473 2017-07-03
JP2017130473 2017-07-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/732,937 Continuation US11329277B2 (en) 2017-07-03 2020-01-02 Secondary battery, battery pack, electrically driven vehicle, electric power storage system, electric tool, and electronic device

Publications (1)

Publication Number Publication Date
WO2019009239A1 true WO2019009239A1 (ja) 2019-01-10

Family

ID=64950910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/025045 WO2019009239A1 (ja) 2017-07-03 2018-07-02 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Country Status (5)

Country Link
US (1) US11329277B2 (ja)
EP (1) EP3651241A4 (ja)
JP (1) JP6908113B2 (ja)
CN (1) CN110832678B (ja)
WO (1) WO2019009239A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110911636A (zh) * 2019-11-14 2020-03-24 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
WO2021029126A1 (ja) * 2019-08-15 2021-02-18 株式会社村田製作所 電池
WO2024090206A1 (ja) * 2022-10-25 2024-05-02 パナソニックIpマネジメント株式会社 二次電池用負極及び二次電池

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6774621B2 (ja) * 2016-09-23 2020-10-28 株式会社オートネットワーク技術研究所 車載用蓄電部の制御装置及び車載用蓄電装置
KR20210000207A (ko) * 2019-06-24 2021-01-04 삼성에스디아이 주식회사 내부 단락 셀 검출 방법
CN117638068A (zh) * 2022-08-30 2024-03-01 宁德时代新能源科技股份有限公司 粘结剂、制备方法、正极浆料、二次电池、电池模块、电池包及用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009131161A1 (ja) * 2008-04-22 2009-10-29 Jfeケミカル株式会社 メソフェーズ小球体および炭素材料の製造方法ならびにリチウムイオン二次電池
JP4432130B2 (ja) 1998-12-02 2010-03-17 パナソニック株式会社 非水電解質二次電池
JP2011100745A (ja) * 2011-01-26 2011-05-19 Gs Yuasa Corp 非水電解質二次電池
JP4725489B2 (ja) 1998-05-13 2011-07-13 宇部興産株式会社 非水二次電池
WO2011090060A1 (ja) * 2010-01-20 2011-07-28 株式会社日立ハイテクノロジーズ 電気的特性測定装置及び方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092940B2 (en) * 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
KR101074783B1 (ko) * 2010-05-12 2011-10-19 삼성에스디아이 주식회사 전극 조성물, 리튬 전지용 전극, 이의 제조방법 및 리튬 이차전지
US10109856B2 (en) * 2013-09-27 2018-10-23 Sanyo Electric Co., Ltd. Negative electrode for nonaqueous electrolyte secondary batteries
US10069166B2 (en) * 2013-12-26 2018-09-04 Nec Corporation Cyclic sulfonic acid ester compound, non-aqueous electrolyte solution, and lithium ion secondary battery using same
JP2016181487A (ja) * 2015-03-25 2016-10-13 株式会社東芝 非水電解質電池用電極、非水電解質次電池および電池パック
EP3276707B1 (en) * 2015-03-27 2019-11-20 Nissan Motor Co., Ltd. Electrode for lithium-ion cell, lithium-ion cell, and method of manufacturing electrode for lithium-ion cell

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725489B2 (ja) 1998-05-13 2011-07-13 宇部興産株式会社 非水二次電池
JP4432130B2 (ja) 1998-12-02 2010-03-17 パナソニック株式会社 非水電解質二次電池
WO2009131161A1 (ja) * 2008-04-22 2009-10-29 Jfeケミカル株式会社 メソフェーズ小球体および炭素材料の製造方法ならびにリチウムイオン二次電池
WO2011090060A1 (ja) * 2010-01-20 2011-07-28 株式会社日立ハイテクノロジーズ 電気的特性測定装置及び方法
JP2011100745A (ja) * 2011-01-26 2011-05-19 Gs Yuasa Corp 非水電解質二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3651241A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021029126A1 (ja) * 2019-08-15 2021-02-18 株式会社村田製作所 電池
CN110911636A (zh) * 2019-11-14 2020-03-24 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
CN110911636B (zh) * 2019-11-14 2021-08-31 宁德新能源科技有限公司 负极材料及包含其的电化学装置和电子装置
WO2024090206A1 (ja) * 2022-10-25 2024-05-02 パナソニックIpマネジメント株式会社 二次電池用負極及び二次電池

Also Published As

Publication number Publication date
EP3651241A1 (en) 2020-05-13
US11329277B2 (en) 2022-05-10
US20200144603A1 (en) 2020-05-07
JP6908113B2 (ja) 2021-07-21
CN110832678B (zh) 2022-12-16
JPWO2019009239A1 (ja) 2020-05-21
CN110832678A (zh) 2020-02-21
EP3651241A4 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
US10522832B2 (en) Secondary battery-use positive electrode active material, secondary battery-use positive electrode, secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
WO2016009794A1 (ja) 二次電池用負極活物質、二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6908113B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
WO2014112420A1 (ja) 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US11695119B2 (en) Negative electrode for secondary battery, secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
JP7056638B2 (ja) 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6536690B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP7024791B2 (ja) 二次電池用負極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US20190348670A1 (en) Anode for secondary battery, secondary battery, battery pack, electric motor vehicle, power storage system, electric tool, and electronic device
WO2019013027A1 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
JP6597793B2 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US10290899B2 (en) Secondary battery, battery pack, electric vehicle, electric power storage system, electric power tool, and electronic apparatus
US11817572B2 (en) Secondary battery, battery pack, electrically driven vehicle, electric power storage system, electric tool, and electronic device
JP2015156280A (ja) 二次電池用活物質、二次電池用電極、二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器
US11532821B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, power tool, and electronic device
JPWO2017085994A1 (ja) 二次電池、電池パック、電動車両、電力貯蔵システム、電動工具および電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019527693

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018828751

Country of ref document: EP

Effective date: 20200203