WO2019007285A1 - 地佐辛类似物盐酸盐的晶型及无定型 - Google Patents

地佐辛类似物盐酸盐的晶型及无定型 Download PDF

Info

Publication number
WO2019007285A1
WO2019007285A1 PCT/CN2018/093721 CN2018093721W WO2019007285A1 WO 2019007285 A1 WO2019007285 A1 WO 2019007285A1 CN 2018093721 W CN2018093721 W CN 2018093721W WO 2019007285 A1 WO2019007285 A1 WO 2019007285A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
amorphous
formula
crystalline form
form according
Prior art date
Application number
PCT/CN2018/093721
Other languages
English (en)
French (fr)
Inventor
张杨
伍文韬
李志祥
Original Assignee
山东丹红制药有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东丹红制药有限公司 filed Critical 山东丹红制药有限公司
Priority to JP2019558686A priority Critical patent/JP6983910B2/ja
Priority to ES18829100T priority patent/ES2925355T3/es
Priority to US16/611,926 priority patent/US11339119B2/en
Priority to CN201880044436.7A priority patent/CN110891929B/zh
Priority to EP18829100.9A priority patent/EP3608306B1/en
Publication of WO2019007285A1 publication Critical patent/WO2019007285A1/zh
Priority to US17/738,373 priority patent/US11897830B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/26Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups bound to carbon atoms of at least one six-membered aromatic ring and amino groups bound to acyclic carbon atoms or to carbon atoms of rings other than six-membered aromatic rings of the same carbon skeleton
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/21Esters, e.g. nitroglycerine, selenocyanates
    • A61K31/215Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids
    • A61K31/216Esters, e.g. nitroglycerine, selenocyanates of carboxylic acids of acids having aromatic rings, e.g. benactizyne, clofibrate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/58Ring systems containing bridged rings containing three rings
    • C07C2603/76Ring systems containing bridged rings containing three rings containing at least one ring with more than six ring members
    • C07C2603/80Ring systems containing bridged rings containing three rings containing at least one ring with more than six ring members containing eight-membered rings

Definitions

  • the present invention relates to a crystalline form and an amorphous form of dexrazin analog hydrochloride, and in particular to a crystalline form of the compound of formula (I) and an amorphous form of the compound of formula (II).
  • Dizocine chemical name (-)-[5R-(5 ⁇ ,11 ⁇ ,13S*)]-13-amino-5,6,7,8,9,10,11,12-octahydro-5-A Base-5,11-methylenebenzocyclodecen-3-ol, a typical opioid alkaloid analgesic developed by Astra, Sweden. This class of drugs works by stimulating opioid receptors. The analgesic effect of dizocine is stronger than that of pentazocine, a ⁇ receptor agonist and a mu receptor antagonist. Dizocine is less addictive and is suitable for treating pain in patients with moderate to severe pain, visceral colic and advanced cancer after surgery. Due to its good tolerance and safety, dextrozine is expected to be an opioid alkaloid analgesic with good market prospects.
  • Different solid forms of the pharmaceutically active ingredient may have different properties. Changes in properties of different solid forms can provide improved formulations, for example, ease of synthesis or handling, increased stability and shelf life. Changes in properties caused by different solid forms can also improve the final dosage form. Different solid forms of the pharmaceutically active ingredient can also produce polycrystalline or other crystalline forms, thereby providing more opportunities to assess changes in the properties of a solid active pharmaceutical ingredient.
  • the crystal form of the compound of the formula (I) of the present invention and the amorphous form of the compound of the formula (II) are simple, and relatively stable, less affected by photothermal humidity, and convenient for preparation.
  • the invention provides a crystalline form of a compound of formula (I),
  • the X-ray powder diffraction pattern of the crystalline form of the compound of formula (I) is included in the 2 ⁇ values of 13.07 ° ⁇ 0.2 °, 15.30 ° ⁇ 0.2 °, 16.84 ° ⁇ 0.2 °, 18.51 ° ⁇ Characteristic peaks of 0.2°, 21.44° ⁇ 0.2°, 23.18° ⁇ 0.2°, 24.04° ⁇ 0.2°, and 26.20° ⁇ 0.2°.
  • the X-ray powder diffraction pattern of the crystalline form of the compound of formula (I) is shown in Figure 4.
  • the X-ray powder diffraction pattern of the crystalline form of the compound of formula (I) is shown in Table 1.
  • the DSC curve for the crystalline form of the compound of formula (I) comprises two endothermic peaks at 73.71 ° C ⁇ 3 ° C and 245.82 ° C ⁇ 3 ° C.
  • the DSC curve for the crystalline form of the compound of formula (I) is shown in Figure 5.
  • the TGA curve for the crystalline form of the compound of formula (I) is reduced by 5.812% at 120.00 °C ⁇ 3 °C; the weight is reduced by 6.5748% at 200.12 °C ⁇ 3 °C.
  • the crystalline form of the compound of formula (I) wherein the TGA profile of the crystalline form is as shown in FIG.
  • the amorphous MDSC curve of the compound of formula (II) undergoes a glass transition at 79.07 °C ⁇ 3 °C.
  • the amorphous MDSC curve for the compound of formula (II) is shown in Figure 2.
  • the TGA curve of the compound of formula (II) is reduced by 4.270% at 120.00 ° C and by 5.1553% at 199.60 ° C ⁇ 3 ° C.
  • the TGA curve for the compound of formula (II) is shown in Figure 3.
  • intermediate compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, combinations thereof with other chemical synthesis methods, and those skilled in the art.
  • Well-known equivalents, preferred embodiments include, but are not limited to, embodiments of the invention.
  • the solvent used in the present invention is commercially available.
  • the present invention uses the following abbreviations:
  • DMF N,N-dimethylformamide
  • Boc 2 O Boc anhydride
  • EDCI 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride
  • DMAP 4- Methylaminopyridine.
  • Test method Approximately 10-20 mg samples were used for XRPD detection.
  • Test method A sample ( ⁇ 1 mg) was placed in a DSC aluminum pan for testing, and the sample was heated from room temperature to 300 ° C at a heating rate of 10 ° C/min under 50 mL/min N 2 .
  • MDSC Modulated Differential Scanning Calorimeter
  • Test method Take the sample ( ⁇ 2mg) and put it into the DSC aluminum pot for testing. Under the condition of 50mL/min N 2 , the temperature rise rate of 2 °C/min, amplitude 1 °C, period 60s, heat the sample from 0 °C to 200 °C.
  • Test method The sample (2 to 5 mg) was placed in a TGA platinum gold pot for testing, and the sample was heated from room temperature to a weight loss of 20% at a heating rate of 10 ° C/min under the condition of 25 mL/min N 2 .
  • the analysis method is as follows:
  • Figure 1 is an amorphous XRPD spectrum of the compound of formula (II).
  • Figure 2 is an amorphous MDSC spectrum of the compound of formula (II).
  • Figure 3 is an amorphous TGA spectrum of the compound of formula (II).
  • Figure 4 is an XRPD spectrum of the crystalline form of the compound of formula (I).
  • Figure 5 is a DSC chart of the crystal form of the compound of the formula (I).
  • Figure 6 is a TGA spectrum of the crystalline form of the compound of formula (I).
  • the crude product 1-5 (202.0 g, 875.75 mmol) was dissolved in anhydrous dichloromethane (4.0 L) at 25 ° C, and the powdery anhydrous aluminum trichloride (105.1 g, 788.17 mmol) was added in one portion. The solution was stirred at 20 ° C for 7 minutes. The reaction solution was poured into a stirred 1 L of ice water, and the mixture was evaporated. 10:1 (v:v)) was isolated and purified to give compound 1-6.
  • compound 1-6 (1.0kg, 5.15mol) was dissolved in anhydrous toluene (4.0L), and methyl magnesium bromide (3M, 2.1L, 5.15mol) was added dropwise under ice water bath. During the process, the internal temperature was kept below 10 ° C, and then the reaction solution was slowly warmed to 25 ° C and stirring was continued for 16 hours. The reaction solution was poured into 4 L of a saturated aqueous solution of ammonium chloride, and the mixture was separated. The aqueous phase was extracted twice with 5 L of ethyl acetate. -7, this compound was used in the next reaction without further purification.
  • the compound had an ee of 58.7% and RRT of 1.782 and 1.954, respectively.
  • the compound had an ee value of 99.1% and RRT of 2.726 and 3.205, respectively.
  • the compound had an ee value of 99.5% and RRT of 3.228 and 3.966, respectively.
  • the XRPD test results are shown in Figure 1.
  • the MDSC and TGA test results are shown in Figure 2 and Figure 3.
  • a crystal form of the compound of the formula (I) is placed in the bottom of the glass vial and spread into a thin layer.
  • Samples placed under high temperature and high humidity conditions are sealed with aluminum foil paper, and small holes are placed on the aluminum foil paper to ensure that the sample can be in full contact with ambient air.
  • the sample placed under illumination (5000lx) is sealed with a cap and sealed with a cap.
  • the membrane was further sealed, and the sample was sealed at room temperature, and XRPD was detected on the 5th and 10th days.
  • the test results were compared with the initial test results of 0 days, and the crystal form of the samples did not change. The test results are shown in Table 2 below.
  • the hygroscopicity of the amorphous sample was examined. (The wettability of compounds was determined according to the method of the Fourth Edition of the Chinese Pharmacopoeia 2015).
  • m 1 1,m 1 2,m 1 3 Three dry stoppered glass weighing bottles were taken and weighed and weighed as m 1 1,m 1 2,m 1 3 . Take a proper amount of the drug substance sample, tiling it into a weighing bottle of a predetermined weight (the thickness of the sample is about 1 mm), and then accurately weigh the weight, which is denoted as m 2 1, m 2 2, m 2 3 .
  • the weighing bottle was placed open and placed in a desiccator with a saturated ammonium chloride solution placed under the cap, the desiccator lid was placed, and the desiccator was placed in an incubator at 25 ° C for 24 hours.
  • Table 5 shows the hygroscopicity results of the amorphous samples of the compound represented by formula (II)
  • the metabolism of the compound in rats was evaluated by the drug metabolism experiments in rats by using the values of C max , t 1/2 , AUC, MRT and B/P ratio of the compounds in the body as indicators.
  • test compound was mixed with an appropriate amount of sesame oil, vortexed and sonicated to prepare a uniform suspension of 25 ⁇ mol/mL.
  • SD rats of 6 to 9 weeks old (Shanghai Slack Laboratory Animals Co., Ltd.) were selected and administered with a suspension of the test compound by intramuscular injection at a dose of 20 ⁇ mol/kg or 40 ⁇ mol/kg.
  • the supernatant solution was analyzed for LC-MS/MS method (if the test drug was a prodrug, the prodrug and the parent drug concentration after hydrolysis were simultaneously analyzed), and the pharmacokinetic parameters were calculated using Phoenix WinNonlin software (Pharsight, USA).
  • Compound A is the free base before compound 1-16 is salted
  • Compound B is the free base before the salt formation of the compound of formula (II)
  • the results of intramuscular injection test showed that the sesame oil suspension of the carboxylic acid diester prodrug of Compound A was slowly hydrolyzed into the parent drug compound A after being slowly released in the body by intramuscular injection, which significantly prolonged the parent drug compound A.
  • the retention time in rats and the decrease in C max so as to prolong the duration of drug action and improve safety.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Emergency Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Saccharide Compounds (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明涉及地佐辛类似物盐酸盐的晶型及无定型,具体涉及式(I)所示化合物的晶型及式(II)所示化合物的无定型,其晶型的X-射线粉末衍射图谱包含在2θ值为13.1°±0.2°、16.8±0.2°和18.5±0.2°的特征峰,其无定型的X-射线粉末衍射图谱如图1所示。

Description

地佐辛类似物盐酸盐的晶型及无定型
相关申请的交叉引用
本申请主张2017年07月03日提交的中国专利申请CN201710532702.8的优先权,其内容在此并入本申请。
技术领域
本发明涉及地佐辛类似物盐酸盐的晶型及无定型,具体涉及式(I)所示化合物的晶型及式(II)所示化合物的无定型。
背景技术
地佐辛,化学名为(-)-[5R-(5α,11α,13S*)]-13-氨基-5,6,7,8,9,10,11,12-八氢-5-甲基-5,11-亚甲基苯并环癸烯-3-酚,属于一种典型的阿片生物碱类镇痛药,由瑞典Astra公司研发。该类药物通过激动阿片受体而发挥作用。地佐辛镇痛作用强于喷他佐辛,是κ受体激动剂,也是μ受体拮抗剂。地佐辛成瘾性小,适用于治疗手术后中等至剧烈疼痛、内脏绞痛及晚期癌症患者的疼痛。由于地佐辛有良好的耐受性和安全性,有望成为市场前景良好的阿片生物碱类镇痛药。
地佐辛结构如下:
Figure PCTCN2018093721-appb-000001
药物活性成分的不同固态形式可能具有不同的性质。不同固态形式在性质方面的改变可以提供改良配方,例如,易于合成或处理、提高稳定性和保质期。不同固态形式所导致的性质改变也可以改进最终的剂型。药物活性成分的不同固态形态还可以产生多晶或其他晶型,从而提供更多的机会来评估一个固体的活性药物成分的性质变化。
技术效果
本发明的式(I)所示化合物的晶型及(II)所示化合物的无定型的制备工艺简单,并且相对比较稳定、受光热湿度影响较小,便于制剂。
发明内容
一方面,本发明提供了式(I)所示化合物的晶型,
Figure PCTCN2018093721-appb-000002
其X-射线粉末衍射图谱包含在2θ值为13.07°±0.2°、16.84°±0.2°和18.51°±0.2°的特征峰。
本发明的一些方案中,式(I)所示化合物的晶型的X-射线粉末衍射图谱包含在2θ值为13.07°±0.2°、 15.30°±0.2°、16.84°±0.2°、18.51°±0.2°、21.44°±0.2°、23.18°±0.2°、24.04°±0.2°和26.20°±0.2°的特征峰。
本发明的一些方案中,式(I)所示化合物的晶型的X-射线粉末衍射图谱如图4所示。
本发明的一些方案中,式(I)所示化合物的晶型的X-射线粉末衍射图谱如表1所示。
表1式(I)所示化合物的晶型的XRPD衍射数据
Figure PCTCN2018093721-appb-000003
本发明的一些方案中,式(I)所示化合物的晶型的DSC曲线包含在73.71℃±3℃和245.82℃±3℃两个吸热峰。
本发明的一些方案中,式(I)所示化合物的晶型的DSC曲线如图5所示。
本发明的一些方案中,式(I)所示化合物的晶型的TGA曲线在120.00℃±3℃时,重量减少了5.812%;在200.12℃±3℃时,重量减少了6.5748%。
本发明的一些方案中,式(I)所示化合物的晶型其中所述晶型的TGA曲线如图6所示。
另一方面,式(II)所示化合物的无定型,
Figure PCTCN2018093721-appb-000004
其X-射线粉末衍射图谱如图1所示。
本发明的一些方案中,式(II)所示化合物的无定型的MDSC曲线在79.07℃±3℃发生玻璃化转变。
本发明的一些方案中,式(II)所示化合物的无定型的MDSC曲线如图2所示。
本发明的一些方案中,式(II)所示化合物的TGA曲线在120.00℃时,重量减少了4.270%,在199.60℃±3℃时,重量减少了5.1553%。
本发明的一些方案中,式(II)所示化合物的TGA曲线如图3所示。
定义和说明
除非另有说明,本文所用的下列术语和短语旨在含有下列含义。一个特定的短语或术语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。当本文出现商品名时,旨在指代其对应的商品或其活性成分。
本发明的中间体化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
本发明具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本发明的化学变化及其所需的试剂和物料。为了获得本发明的化合物,有时需要本领域技术人员在已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
下面会通过实施例具体描述本发明,这些实施例并不意味着对本发明的任何限制。
本发明所使用的所有溶剂是市售的,无需进一步纯化即可使用。
本发明所使用的溶剂可经市售获得。
本发明采用下述缩略词:
DMF:N,N-二甲基甲酰胺;Boc 2O:Boc酸酐;EDCI:1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐;DMAP:4-二甲氨基吡啶。
仪器及分析方法
1.1粉末X-射线衍射(X-ray powder diffractometer,XRPD)
仪器型号:布鲁克D8 advance X-射线衍射仪
测试方法:大约10~20mg样品用于XRPD检测。
详细的XRPD参数如下:
光管:Cu,kα,
Figure PCTCN2018093721-appb-000005
光管电压:40kV,光管电流:40mA
发散狭缝:0.60mm
探测器狭缝:10.50mm
防散射狭缝:7.10mm
扫描范围:4-40deg
步径:0.02deg
步长:0.12秒
样品盘转速:15rpm
1.2差式扫描量热法(Differential Scanning Calorimeter,DSC)
仪器型号:TA Q2000差示扫描量热仪
测试方法:取样品(~1mg)置于DSC铝锅内进行测试,在50mL/min N 2条件下,以10℃/min的升温速率,加热样品从室温到300℃。
1.3调制温度式差示扫描量热法(Modulated Differential Scanning calorimeter,MDSC)
仪器型号:TA Q2000差示扫描量热仪
测试方法:取样品(~2mg)置于DSC铝锅内进行测试,在50mL/min N 2条件下,以2℃/min的升温速率,振幅1℃,周期60s,加热样品从0℃到200℃。
1.4热重分析(Thermal Gravimetric Analyzer,TGA)
仪器型号:TA Q5000热重分析仪
测试方法:取样品(2~5mg)置于TGA铂金锅内进行测试,在25mL/minN 2条件下,以10℃/min的升温速率,加热样品从室温到失重20%。
1.5高效液相色谱(High Performance Liquid Chromatograph,HPLC)
仪器型号:安捷伦1200高效液相色谱仪
分析方法如下:
表A HPLC分析含量测定方法
Figure PCTCN2018093721-appb-000006
表B HPLC分析有关物质测定方法
Figure PCTCN2018093721-appb-000007
附图说明
图1为式(II)所示化合物的无定型的XRPD谱图。
图2为式(II)所示化合物的无定型的MDSC谱图。
图3为式(II)所示化合物的无定型的TGA谱图。
图4为式(I)所示化合物的晶型的XRPD谱图。
图5为式(I)所示化合物的晶型的DSC谱图。
图6为式(I)所示化合物的晶型的TGA谱图。
具体实施方式
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本文已经详细地描述了本发明,其中也公开了其具体实施例方式,对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
制备实施例
中间体I-3的制备:
Figure PCTCN2018093721-appb-000008
将化合物I-1(100.0g,339.69mmol)和化合物I-2(133.8g,509.54mmol)溶于无水甲苯(1.0L)中,反应液升温至120℃继续搅拌16小时。热过滤,将过滤的得到的固体重新分散在500mL甲苯中,加热至回流,热过滤,真空干燥得到化合物I-3,该化合物不经进一步纯化直接用于下一步反应。
1H NMR(400MHz,CD 3OD):δ8.98-8.97(d,J=4.4Hz,1H),8.46(s,2H),8.32-8.27(m,2H),8.19-8.15(m,1H),7.99-7.98(m,1H),7.88-7.82(m,2H),6.67(s,1H),5.75-5.66(m,1H),5.47-5.42(m,1H),5.20-5.16(m,2H),5.05-5.02(m,1H),4.62-4.60(m,1H),4.08-4.05(m,1H),3.75-3.65(m,1H),3.52-3.46(m,1H),3.43-3.40(m,1H),2.76(brs,1H),2.34-2.26(m,2H),2.12(brs,1H),1.95-1.90(m,1H),1.49-1.44(m,1H);LCMS(ESI)m/z:521.1[M+1] +
实施例1:化合物1的合成
Figure PCTCN2018093721-appb-000009
步骤1:化合物1-2的制备
将化合物1-1(5.0kg,24.58mol)加入到无水二氯甲烷(31.0L)中,然后一次性加入丁二酸酐(2.7kg,27.18mol)和三氯化铝(6.7kg,50.32mol),反应液在20-25℃下继续搅拌20小时。将反应液缓慢倒入60L冰中搅拌淬灭,并加入1L浓盐酸,继续搅拌5分钟,有大量白色固体生成。过滤,滤饼用5L水洗涤,真空干燥得到化合物1-2。
1H NMR(400MHz,CDCl 3):δ8.19-8.16(m,1H),6.69-6.66(d,J=12.4Hz,1H),3.98(s,3H),3.30-3.26(m,2H),2.82-2.79(m,2H)。LCMS(ESI)m/z:304.9[M+1] +
步骤2:化合物1-3的制备
20℃下,将化合物1-2(7.5kg,24.61mol)加入到三氟乙酸(8.9kg,78.52mol,5.81L)中,缓慢分批 加入三乙基硅烷(8.8kg,76.06mol),反应液升温至95℃继续搅拌16小时。反应液冷却至室温,加入10L石油醚,有大量粉色固体析出。过滤,滤饼用10L石油醚洗涤,真空干燥,得到化合物1-3。
1H NMR(400MHz,CD 3OD):δ7.43-7.41(d,J=8.0Hz,1H),6.86-6.83(d,J=11.6Hz,1H),3.87(s,3H),2.65-2.61(t,J=7.6Hz,2H),2.34-2.30(t,J=7.6Hz,2H),1.91-1.83(m,2H)。LCMS(ESI)m/z:290.8[M+1] +
步骤3:化合物1-4的制备
在氩气气氛下,将化合物1-3(1.1kg,3.92mol)溶到甲醇(4.5L)中,然后向所得溶液中加入湿钯碳(80.0g,10%),氢气置换三次,反应液在2.5Mpa和50℃的高压釜中继续搅拌48小时。反应液降温,缓慢取出反应液,加入500mL浓盐酸搅拌均匀,过滤,滤饼用2L甲醇洗涤。合并后的滤液用50%的氢氧化钠水溶液调节pH至10~11。减压除去有机溶剂,用4L乙酸乙酯萃取两次,合并后的有机相用无水硫酸钠干燥,浓缩,得到粗品化合物1-4,该化合物不经进一步纯化,直接用于下一步反应。
1H NMR(400MHz,CD 3OD):δ7.10-7.05(m,1H),6.65-6.28(m,2H),3.80(s,3H),2.67-2.63(t,J=7.2Hz,2H),2.40-2.36(t,J=7.6Hz,2H),1.97-1.89(m,2H)。
步骤4:化合物1-5的制备
15℃下,将化合物1-4(596.0g,2.81mol)溶于无水二氯甲烷(2.0L)中,加入2mL无水DMF,缓慢滴加草酰氯(427.8g,3.37mol,295.01mL),反应液在该温度下继续搅拌0.5小时。反应液减压除去有机溶剂,粗产物中加入200mL无水二氯甲烷,减压除去有机溶剂,所得粗产品化合物1-5不经纯化直接用于下一步反应。
步骤5:化合物1-6的制备
25℃下,将粗产物1-5(202.0g,875.75mmol)溶于无水二氯甲烷(4.0L)中,一次性加入粉末状无水三氯化铝(105.1g,788.17mmol),反应液在20℃下继续搅拌7分钟。将反应液倒入搅拌的1L冰水中,分液,水相用1L二氯甲烷萃取一次,合并有机相,减压除去有机溶剂,所得粗产物经硅胶柱层析(石油醚∶乙酸乙酯=10∶1(v∶v))分离纯化,得到化合物1-6。
1H NMR(400MHz,CDCl 3):δ7.37-7.36(d,J=2.4Hz,1H),6.85-6.82(m,1H),3.84(s,3H),2.90-2.87(t,J=6.4Hz,2H),2.68-2.65(t,J=6.4Hz,2H),2.17-2.11(m,2H)。
步骤6:化合物1-7的制备
氮气保护下,将化合物1-6(1.0kg,5.15mol)溶于无水甲苯(4.0L)中,冰水浴条件下滴加甲基溴化镁(3M,2.1L,5.15mol),滴加过程中保持内温不超过10℃,然后反应液缓慢升温至25℃并继续搅拌16小时。将反应液倒入4L饱和的氯化铵水溶液中,分液,水相用5L乙酸乙酯萃取两次,合并后的有机相用3L饱和食盐水洗涤一次,减压除去有机溶剂,得到化合物1-7,该化合物没有经过进一步纯化直接用于下一步反应。
1H NMR(400MHz,CDCl 3):δ6.98-6.97(d,J=1.6Hz,1H),6.56-6.53(m,1H),3.87(s,3H),2.70-2.67(m,2H),1.99-1.80(m,4H),1.56(s,3H)。
步骤7:化合物1-8的制备
25℃下,将粗产物1-7(1.8kg,8.75mol)溶于乙腈(1.0L)中,加入6N盐酸(2.5L),反应液继续搅拌16小时。加入4L乙酸乙酯,分液,水相用5L乙酸乙酯萃取三次,合并后的有机相用3L饱和食盐水洗涤,减压除去有机溶剂,得到粗产物1-8,该化合物不经进一步纯化直接用于下一步反应。
1H NMR(400MHz,CDCl 3):δ6.63-6.62(d,J=2.0Hz,1H),6.51-6.48(m,1H),5.93-5.90(m,1H),3.80(s,3H),2.73-2.69(t,J=8.0Hz,2H),2.25-2.22(m,2H),2.04-2.03(d,J=3.2Hz,3H)。
步骤8:化合物1-9的制备
25℃下,将化合物1-8(493.0g,2.56mol)溶于丙酮(2.0L)和水(2.0L)的混合溶剂中,加入碳酸氢钠(861.8g,10.26mol),然后分批缓慢加入过硫酸氢钾(1.0kg,1.67mol),加料过程中控制内温不超过30℃,反应液在该温度下继续搅拌1.5小时。缓慢地向反应液中加入2L饱和亚硫酸钠水溶液,用淀粉碘化钾试纸检测不变蓝,静置,取出上清液,固体用1.5L二氯甲烷洗涤三次,合并上清液和二氯甲烷洗涤液,分液,水相用6L二氯甲烷萃取,合并后的有机相用6L饱和食盐水洗涤,无水硫酸钠干燥,过滤,减压浓缩,浓缩过程中用淀粉碘化钾试纸检测均不变蓝,得到粗产物1-9,该化合物不经进一步纯化直接用于下一步反应。
步骤9:化合物1-10的制备
0℃下,将粗品化合物1-9(450.0g,2.16mol)溶于无水二氯甲烷(3.0L)中,向所得溶液中缓慢滴加三氟化硼乙醚复合物(30.7g,216.00mmol,26.67mL)的无水二氯甲烷(100mL)溶液,反应液继续搅拌30分钟。将反应液缓慢倒入1.5L饱和碳酸钠溶液中,分出有机相,水相用1.5L二氯甲烷萃取两次,合并后的有机相用2L饱和食盐水洗涤,无水硫酸钠干燥,过滤,减压除去有机溶剂,所得粗产物经硅胶柱层析(石油醚∶乙酸乙酯=15∶1(v∶v))分离纯化,得到化合物1-10。
1H NMR(400MHz,CDCl 3):δ6.59-6.52(m,2H),3.79(s,3H),3.49-3.47(m,1H),3.14-3.10(m,1H),2.99-2.85(m,1H),2.58-2.48(m,2H),1.46-1.44(d,J=7.6Hz,3H)。
步骤10:化合物1-11的制备
0℃下,将化合物1-10(448.0g,2.15mol)和1,5-二溴戊烷(1.5kg,6.45mol)溶于甲苯(30.0L)和二氯甲烷(3.0L)的混合溶剂中,然后加入化合物I-3(119.8g,215.00mmol),氮气气氛下,缓慢滴加50%的氢氧化钾水溶液(3.0L),反应液升温至15℃继续搅拌20小时。加入6L饱和食盐水,分液,水相用6L乙酸乙酯萃取,合并后的有机相减压除去有机溶剂,所得粗产物经硅胶柱层析(石油醚∶乙酸乙酯=20∶1(v∶v))分离纯化,得到化合物1-11。
1H NMR(400MHz,CDCl 3):δ6.63-6.62(d,J=2.0Hz,1H),6.56-6.53(m,1H),3.81(s,3H),3.34-3.30(t,J=7.2Hz,2H),3.14-3.10(m,1H),2.95-2.85(m,1H),2.65-2.57(m,2H),2.23-2.08(m,1H),1.77-1.73(m,2H),1.70-1.58(m,1H),1.39(s,3H),1.34-1.30(m,2H),0.97-0.94(m,2H)。
该化合物的ee值为58.7%,RRT分别为1.782和1.954。
步骤11:化合物1-12的制备
0℃下,将化合物11(1.1kg,3.05mol)溶于二甲亚砜(7.0L)中,缓慢分批加入叔丁醇钠(351.8g,3.66mol),并保持内温不超过30℃,继续搅拌30分钟。将反应液缓慢倒入6L冰水中,加入6L乙酸乙酯,分液,水相用20L乙酸乙酯萃取,合并后的有机相用20L饱和食盐水洗涤,减压除去有机溶剂,所得粗产物经硅胶柱层析(石油醚∶乙酸乙酯=20∶1(v∶v))分离纯化,得到化合物1-12。
1H NMR(400MHz,CDCl 3):δ6.54-6.53(d,J=2.0Hz,1H),6.47-6.43(m,1H),3.72(s,3H),3.02-2.98(m,1H),2.86-2.80(m,1H),2.70-2.68(m,1H),2.35-2.25(m,1H),1.81-1.78(m,1H),1.71-1.68(m,2H),1.52-1.47(m,4H),1.27(s,3H),1.26-1.23(m,2H)。
步骤12:化合物1-13的制备
将化合物1-12(882.0g,3.19mol)溶于乙醇(3.0L)中,然后向所得溶液中加入吡啶(2.5kg,31.92mol,2.58L)和盐酸羟胺(2.2kg,31.92mol),反应液升温至100℃继续搅拌24小时。将反应液倒入6L乙酸乙酯中,加入4L水,分液,水相用4L乙酸乙酯萃取两次,合并后的有机相用4L盐酸(4N)洗涤,4L饱和食盐水洗涤,无水硫酸钠干燥,减压除去有机溶剂,得到粗产物1-13,该化合物不经进一步纯化直接用于下一步反应。
1H NMR(400MHz,CDCl 3):δ6.57-6.56(d,J=1.6Hz,1H),6.44-6.39(m,1H),3.74-3.66(m,4H),2.88-2.84(m,1H),2.78-2.76(m,1H),2.21-2.20(m,1H),2.08-2.03(m,1H),1.56-1.48(m,6H),1.46(s,3H),1.45-1.40(m,2H)。
步骤13:化合物1-14的制备
将化合物1-13(404.0g,1.39mol)溶于甲醇(7.0L)中,加入氨水(130.3g,929.02mmol,143.13mL),在氩气气氛下加入雷尼镍(377.8g,2.20mol),氢气置换3次,反应液在3Mpa氢气和80-85℃高压釜中继续搅拌72小时。冷却至室温,在氩气气氛下,过滤,用1L甲醇洗涤滤饼,减压除去有机溶剂得到粗产品1-14,该化合物不经进一步纯化直接用于下一步反应。
1H NMR(400MHz,CDCl 3):δ6.57-6.56(d,J=1.6Hz,1H),6.44-6.39(m,1H),3.74-3.66(m,4H),2.88-2.84(m,1H),2.78-2.76(m,1H),2.21-2.20(m,1H),2.08-2.03(m,1H),1.56-1.48(m,6H),1.46(s,3H),1.45-1.40(m,2H)。
步骤14:化合物1-15的制备
将化合物1-14(756.0g,2.73mol)溶于乙酸乙酯(750mL)和甲醇(2.3L)的混合溶液中,然后向其中加入D-酒石酸(250.0g,1.67mol),反应液升温至80-85℃继续搅拌1小时,有白色固体生成,加入水(750mL),反应液在80-85℃继续搅拌2小时,缓慢冷却至室温,静置24小时。过滤,滤饼用1L乙酸乙酯洗涤,真空干燥,得到化合物1-15的酒石酸盐。
1H NMR(400MHz,CD 3OD):δ6.67-6.66(m,1H),6.63-6.60(m,1H),4.40(s,2H),3.78(s,3H),3.68-3.65(m,1H),2.93-2.90(m,2H),2.56-2.54(m,1H),1.97-1.85(m,2H),1.78-1.70(m,2H),1.61-1.57(m,3H),1.49(s,3H),1.21-1.18(m,1H),0.90-0.84(m,2H)。LCMS(ESI)m/z:278.1[M+1] +
该化合物的ee值为99.1%,RRT分别为2.726和3.205。
步骤15:化合物1-16的制备
将化合物1-15(162.0g,378.98mmol)加入40%的氢溴酸水溶液(710mL)中,反应液升温至120℃继续搅拌72小时。冷却,过滤,滤饼用1.5L水洗涤,真空干燥得到化合物1-16的氢溴酸盐。
1H NMR(400MHz,CD 3OD):δ6.67-6.66(d,J=0.8Hz,1H),6.47-6.43(m,1H),3.69-3.67(m,1H),2.93-2.90(m,2H),2.57-2.55(m,1H),1.98-1.92(m,2H),1.79-1.59(m,5H),1.48(s,3H),1.24-1.21(m,1H),0.92-0.89(m,2H)。LCMS(ESI)m/z:264.0[M+1] +
该化合物的ee值为99.5%,RRT分别为3.228和3.966。
步骤16:化合物1-17的制备
将化合物1-16(170.1g,494.05mmol)溶于无水四氢呋喃(1200mL)中,加入三乙胺(104.0mL,750.3mmol),缓慢滴加(Boc)2O(108.2g,495.81mmol),反应在30℃下继续搅拌16小时。将反应液倒入到 2L水中,用800mL乙酸乙酯萃取,分液,水相用800mL乙酸乙酯萃取2次。合并后的有机相用1L饱和食盐水洗涤,无水硫酸钠干燥,减压除去有机溶剂。将粗品加热,并分散于1200mL正庚烷和乙酸乙酯(5∶1(v∶v))的混合溶剂中,静置过夜,过滤,滤饼真空干燥得到化合物1-17。
1H NMR(400MHz,CD 3OD):δ6.52-6.51(d,J=1.2Hz,1H),6.39-6.34(m,1H),4.04-4.00(m,1H),2.89-2.76(m,2H),2.30-2.29(m,1H),1.83-1.71(m,4H),1.58-1.51(m,12H),1.28-1.26(m,4H),0.96-0.90(m,2H)。LCMS(ESI)m/z:308.0[M-56+1] +
步骤17:化合物1-18的制备
将化合物1-17(155.1g,426.72mmol)加入到无水二氯甲烷(2.0L)中,依次加入DMAP(26.1g,213.36mmol),癸二酸(43.2g,213.36mmol)和EDCI(106.3g,554.73mmol),反应液在30℃下继续搅拌16小时。将反应液倒入到2L水中,分液,水相用850mL二氯甲烷萃取两次。合并后有机相用1.5L饱和食盐水洗涤,无水硫酸钠干燥,减压除去有机溶剂,所得粗产物经硅胶柱层析(石油醚∶乙酸乙酯=10∶1-3∶1(v∶v))分离纯化,得到化合物1-18。
1H NMR(400MHz,CDCl 3):δ6.76(s,2H),6.71-6.69(m,2H),4.96-4.93(d,J=10.4Hz,2H),4.13-4.09(m,2H),2.96-2.85(m,4H),2.58-2.54(t,J=7.6Hz,1H),2.42(brs,2H),1.79-1.51(m,31H),1.49-1.28(m,21H),0.96-0.90(m,4H)。LCMS(ESI)m/z:893.6[M+1] +
步骤18:化合物1的制备
将化合物1-18(120.0g,134.39mmol)溶于乙酸乙酯(410mL)中,一次性加入4M的氯化氢的乙酸乙酯溶液(500mL),反应液在室温下继续搅拌2小时至没有气体产生。氮气气氛下过滤,滤饼用300mL乙酸乙酯洗涤,真空干燥,得到化合物1的盐酸盐。
1H NMR(400MHz,CD 3OD):δ6.83(s,2H),6.73-6.71(m,2H),4.03-4.00(m,2H),2.93-2.89(m,4H),2.52-2.49(m,6H),1.90-1.86(m,4H),1.69-1.63(m,8H),1.52-1.49(m,6H),1.41(s,6H),1.40-1.33(m,8H),1.18-1.12(m,2H),0.79-0.72(m,4H)。LCMS(ESI)m/z:693.5[M+1] +
化合物1-11和化合物1-15的手性分析方法如下表C所示:
表C化合物1-11和化合物1-15的手性分析方法
Figure PCTCN2018093721-appb-000010
化合物1-16的手性分析方法如下表D所示:
表D化合物1-16的手性分析方法
Figure PCTCN2018093721-appb-000011
实施例2:式(II)所示化合物无定型样品的制备
取适量原料化合物1加入玛瑙研钵中研磨60min即得。
XRPD检测结果见图1,MDSC及TGA检测结果见图2及图3。
实施例3:式(I)所示化合物晶型样品的制备
取200mg原料化合物1,加入2.0mL乙腈-水混合溶剂(90∶10,v∶v)。37℃条件下磁力搅拌两天,离心后将残留固体样品置于真空干燥箱中(35℃)干燥3天。
XRPD检测结果见图4及表1,DSC及TGA检测结果见图5及图6。
表征实施例
实施例1:固体稳定性试验
1.式(I)所示化合物晶型的固体稳定性试验
依据《原料药与制剂稳定性实验指导原则》(中国药典2015版四部通则9001),考察化合物在高温(60℃,敞口),高湿(RT/92.5%RH,敞口),光照(5000lx,密闭)条件下放置5天、10天的稳定性。
取式(I)所示化合物的晶型样品适量置于玻璃样品瓶的底部,摊成薄薄一层。高温及高湿条件下放置的样品用铝箔纸封瓶口,并在铝箔纸上扎些小孔,保证样品能与环境空气充分接触,光照(5000lx)条件下放置的样品用瓶盖密封并用封口膜进一步密闭,为室温密闭放样,于第5天、10天取样进行XRPD检测。检测结果与0天的初始检测结果进行比较,结果样品晶型都未发生变化,试验结果见下表2。
表2式(I)所示化合物晶型的固体稳定性试验
Figure PCTCN2018093721-appb-000012
结果显示,该化合物晶型在高温,高湿和光照条件下均稳定,未发生变化。
2.式(II)所示化合物无定型样品的固体稳定性试验
无定型样品在高温高湿(40℃/相对湿度75.0%,密封)加速条件下的稳定性。
称取样品约1.4g装入双层LDPE袋中,每层LDPE袋分别扎扣密封,再将LDPE袋子和药用干燥剂放入铝箔袋中并热封,放入高温高湿条件下,第30天取样进行检测,检测结果与0天的初始检测结果进行比较。试验结果见下表3。
表3式(II)所示化合物无定型的固体稳定性试验
试验条件 时间点 含量(%) 总杂质(%)
- 0天 99.3 1.56
高温高湿(40℃/相对湿度75.0%,密封) 30天 97.8 1.96
结果显示,该化合物无定型的固体在高温高湿密封条件下相对稳定,总杂质没有明显增加。
3.式(II)所示化合物无定型样品的溶解度实验
检测无定型样品在pH1.0/2.0(盐酸溶液),pH3.8/4.5/5.5(醋酸盐缓冲液),pH6.0/6.8/7.4(磷酸盐缓冲液)和水中的平衡溶解度。(根据中国药典《普通口服固体制剂溶出度试验技术指导原则》配制)。
取9个8mL玻璃瓶分别加入5mL不同的媒介(pH1.0,pH2.0,pH3.8,pH4.5,pH5.5,pH6.0,pH6.8,pH7.4缓冲液,纯水),各加入适量的无定型样品,使其为混悬液。将磁子加入到上述样品中,置于磁力搅拌器上进行搅拌(温度为37℃)。
24小时后,将所取样品离心,上层样品取澄清液用HPLC测定其浓度并测定其pH值(结果见表4)。
表4式(II)所示化合物无定型样品在不同pH媒介中的溶解度结果
Figure PCTCN2018093721-appb-000013
结果显示,化合物的无定型固体在盐酸溶液、醋酸盐缓冲液和水中易溶,在磷酸盐缓冲液中微溶或不溶。
4.式(II)所示化合物无定型样品的引湿性试验
检测无定型样品的引湿性。(根据中国药典2015年版四部通则的方法对化合物进行引湿性测定)。
取3只干燥的具塞玻璃称量瓶,称定重量,记为m 11,m 12,m 13。取原料药样品适量,平铺于已称 定重量的称量瓶中(样品的厚度约1mm),然后精密称定重量,记为m 21,m 22,m 23。将称量瓶敞口放置,并与瓶盖一起置于下部放置氯化铵饱和溶液的干燥器内,盖好干燥器盖子,然后将干燥器置于25℃的恒温箱内,放置24小时。放置24小时后,盖好称量瓶盖,然后取出精密称定重量,记为m 31,m 32,m 33。引湿性增重计算,计算公式如下:增重百分率=100%×(m 3-m 2)/(m 2-m 1)。(引湿性结果见表5)。
表5式(II)所示化合物无定型样品的引湿性结果
Figure PCTCN2018093721-appb-000014
实验结论:根据吸湿性测试结果,无定型样品平均引湿增重为5.24%,小于15%但不小于2%,该化合物有引湿性。
药物代谢实验
实验目的:
通过大鼠体内药物代谢实验,以化合物在体内的C max、t 1/2、AUC、MRT和B/P ratio等数值为指标,来评价化合物在大鼠体内的代谢情况。
1.大鼠肌肉注射母体化合物A及其前药B(具体结构如式A和式B所示)的药代动力学研究
测试化合物与适量芝麻油混合,涡旋并超声,制备得到25μmol/mL的均匀混悬液。选取6至9周龄的SD大鼠(上海斯莱克实验动物有限责任公司),肌肉注射给予测试化合物的混悬液,剂量为20μmol/kg或40μmol/kg。收集一定时间的全血,加入沉淀剂(乙腈、甲醇及分析内标)并离心。上清溶液以LC-MS/MS方法分析药物浓度(如果测试药物为前药,则同时分析前药和水解后的母体药物浓度),并用Phoenix WinNonlin软件(美国Pharsight公司)计算药代参数。
Figure PCTCN2018093721-appb-000015
表6化合物A羧酸二酯前药肌肉注射药代实验结果
Figure PCTCN2018093721-appb-000016
Figure PCTCN2018093721-appb-000017
注:所有化合物的给药量均为20μmol/kg。每20μmol羧酸二酯前药理论上可水解出40μmol化合物21的有效成份。
ND=不能确定(由于未端消除相不能充分定义,参数不能确定)
化合物A为化合物1-16成盐前的游离碱
化合物B为式(II)所示化合物成盐前的游离碱
肌肉注射药代实验结果证明:化合物A的羧酸二酯前药的芝麻油悬浮液通过肌注给药后,在体内缓慢释放后,很快水解成母体药物化合物A,能够显著延长母体药物化合物A在大鼠体内的保留时间,并降低C max,从而达到延长药物作用时间和提高安全性的目的。

Claims (12)

  1. 式(I)所示化合物的晶型,
    Figure PCTCN2018093721-appb-100001
    其X-射线粉末衍射图谱包含在2θ值为13.07°±0.2°、16.84°±0.2°和18.51°±0.2°的特征峰。
  2. 根据权利要求1所述的晶型,其X-射线粉末衍射图谱包含在2θ值为13.07°±0.2°、15.30°±0.2°、16.84°±0.2°、18.51°±0.2°、21.44°±0.2°、23.18°±0.2°、24.04°±0.2°和26.20°±0.2°的特征峰。
  3. 根据权利要求2所述的晶型,其X-射线粉末衍射图谱如图4所示。
  4. 根据权利要求1所述的晶型,其中所述晶型的DSC曲线包含在73.71℃±3℃和245.82℃±3℃两个吸热峰。
  5. 根据权利要求4所述的晶型,其中所述晶型的DSC曲线如图5所示。
  6. 根据权利要求1所述的晶型,其中所述晶型的TGA曲线在120.00℃±3℃时,重量减少了5.812%;在200.12℃±3℃时,重量减少了6.5748%。
  7. 根据权利要求6所述的晶型,其中所述晶型的TGA曲线如图6所示。
  8. 式(II)所示化合物的无定型,
    Figure PCTCN2018093721-appb-100002
    其X-射线粉末衍射图谱如图1所示。
  9. 根据权利要求8所述的无定型,其中所述无定型的MDSC曲线在79.07℃±3℃发生玻璃化转变。
  10. 根据权利要求9所述的无定型,其中所述无定型的MDSC曲线如图2所示。
  11. 根据权利要求8所述的无定型,其中所述无定型的TGA曲线在120.00℃时,重量减少了4.270%,在199.60℃±3℃时,重量减少了5.1553%。
  12. 根据权利要求11所述的无定型,其中所述无定型的TGA曲线如图3所示。
PCT/CN2018/093721 2017-07-03 2018-06-29 地佐辛类似物盐酸盐的晶型及无定型 WO2019007285A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019558686A JP6983910B2 (ja) 2017-07-03 2018-06-29 デゾシン類似体塩酸塩の結晶形及び非晶質
ES18829100T ES2925355T3 (es) 2017-07-03 2018-06-29 Forma cristalina y forma amorfa de clorhidrato análogo de dezocina
US16/611,926 US11339119B2 (en) 2017-07-03 2018-06-29 Crystal form and amorphous form of dezocine analogue hydrochloride
CN201880044436.7A CN110891929B (zh) 2017-07-03 2018-06-29 地佐辛类似物盐酸盐的晶型及无定型
EP18829100.9A EP3608306B1 (en) 2017-07-03 2018-06-29 Crystal form and amorphous form of dezocine analogue hydrochloride
US17/738,373 US11897830B2 (en) 2017-07-03 2022-05-06 Crystal form and amorphous form of dezocine analogue hydrochloride

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710532702.8 2017-07-03
CN201710532702 2017-07-03

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/611,926 A-371-Of-International US11339119B2 (en) 2017-07-03 2018-06-29 Crystal form and amorphous form of dezocine analogue hydrochloride
US17/738,373 Division US11897830B2 (en) 2017-07-03 2022-05-06 Crystal form and amorphous form of dezocine analogue hydrochloride

Publications (1)

Publication Number Publication Date
WO2019007285A1 true WO2019007285A1 (zh) 2019-01-10

Family

ID=64950591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093721 WO2019007285A1 (zh) 2017-07-03 2018-06-29 地佐辛类似物盐酸盐的晶型及无定型

Country Status (6)

Country Link
US (2) US11339119B2 (zh)
EP (1) EP3608306B1 (zh)
JP (1) JP6983910B2 (zh)
CN (1) CN110891929B (zh)
ES (1) ES2925355T3 (zh)
WO (1) WO2019007285A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10414718B2 (en) * 2016-01-04 2019-09-17 Shandong Danhong Pharmaceutical Co., Ltd. Dezocine analogue
CN114524717A (zh) * 2020-11-23 2022-05-24 江西博腾药业有限公司 一种1,2,3,4-四氢萘衍生物及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976696A (en) * 1973-12-03 1976-08-24 American Home Products Corporation Benzobicycloalkane amines
US3979434A (en) * 1973-12-03 1976-09-07 American Home Products Corporation Benzobicycloalkane amines
US4001331A (en) * 1972-06-14 1977-01-04 American Home Products Corporation Benzobicycloalkane
US4034041A (en) * 1975-03-13 1977-07-05 American Home Products Corporation 1,3-Bridged amino tetralins
CN102503840A (zh) * 2011-12-15 2012-06-20 扬子江药业集团江苏海慈生物药业有限公司 一种地佐辛的制备方法
WO2017118375A1 (zh) * 2016-01-04 2017-07-13 南京明德新药研发股份有限公司 地佐辛类似物
WO2018090982A1 (zh) * 2016-11-17 2018-05-24 上海海雁医药科技有限公司 苯并二环烷烃衍生物、其制法及其用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4540806A (en) * 1983-12-22 1985-09-10 American Home Products Corporation Benzocycloalkane amines
FR2897614B1 (fr) * 2006-02-20 2008-05-23 Urogene Forme cristalline du chlorhydrate de la besipirdine, procedes de preparation et utilisations
US20100286186A1 (en) * 2009-04-02 2010-11-11 Shire Llc Novel dicarboxylic acid linked amino acid and peptide prodrugs of opioids and uses thereof
CN104257615B (zh) * 2014-09-15 2017-09-01 扬子江药业集团有限公司 一种地佐辛冻干药物组合物及其制备方法
CN105924382B (zh) * 2016-06-20 2018-08-03 扬子江药业集团北京海燕药业有限公司 S-马尼地平盐酸盐i晶型及其制备方法
WO2019007441A1 (zh) * 2017-07-04 2019-01-10 山东丹红制药有限公司 一种包含地佐辛类似物酯的缓释混悬液及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4001331A (en) * 1972-06-14 1977-01-04 American Home Products Corporation Benzobicycloalkane
US3976696A (en) * 1973-12-03 1976-08-24 American Home Products Corporation Benzobicycloalkane amines
US3979434A (en) * 1973-12-03 1976-09-07 American Home Products Corporation Benzobicycloalkane amines
US4034041A (en) * 1975-03-13 1977-07-05 American Home Products Corporation 1,3-Bridged amino tetralins
CN102503840A (zh) * 2011-12-15 2012-06-20 扬子江药业集团江苏海慈生物药业有限公司 一种地佐辛的制备方法
WO2017118375A1 (zh) * 2016-01-04 2017-07-13 南京明德新药研发股份有限公司 地佐辛类似物
WO2018090982A1 (zh) * 2016-11-17 2018-05-24 上海海雁医药科技有限公司 苯并二环烷烃衍生物、其制法及其用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3608306A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10414718B2 (en) * 2016-01-04 2019-09-17 Shandong Danhong Pharmaceutical Co., Ltd. Dezocine analogue
CN114524717A (zh) * 2020-11-23 2022-05-24 江西博腾药业有限公司 一种1,2,3,4-四氢萘衍生物及其制备方法和应用

Also Published As

Publication number Publication date
US11339119B2 (en) 2022-05-24
US20210147341A1 (en) 2021-05-20
EP3608306A4 (en) 2021-01-20
CN110891929B (zh) 2022-06-07
JP6983910B2 (ja) 2021-12-17
EP3608306A1 (en) 2020-02-12
US11897830B2 (en) 2024-02-13
CN110891929A (zh) 2020-03-17
US20220259140A1 (en) 2022-08-18
JP2020525401A (ja) 2020-08-27
ES2925355T3 (es) 2022-10-17
EP3608306B1 (en) 2022-05-25

Similar Documents

Publication Publication Date Title
JP6850922B2 (ja) Jakキナーゼ阻害剤としてのナフチリジン化合物
JP6705833B2 (ja) イブルチニブとカルボン酸との共結晶
CN104781272A (zh) 奥贝胆酸的制备、用途和固体形式
JPH07215937A (ja) 3,3,4−トリ置換ピペリジニル−n−アルキルカルボン酸塩および中間体
JP6240164B2 (ja) ピロール誘導体の結晶及びその製造方法
US11897830B2 (en) Crystal form and amorphous form of dezocine analogue hydrochloride
TW201217338A (en) Crystalline oxalate salts of a diamide compound
TW201718516A (zh) 組蛋白去乙醯酶抑制劑之晶形
ES2402748T3 (es) Compuestos de aminotetralina como antagonistas del receptor de opioide mu
KR20110017452A (ko) 무스칼린 수용체 길항제로서 활성인 신규한 화합물
MX2013010702A (es) Nueva forma cristalina vii de la agomelatina, sus metodos de preparacion, aplicaciones y composiciones farmaceuticas que la contienen.
EP2601176A1 (en) Novel salts of saxagrliptin with organic di-acids
WO2023193563A1 (zh) 一种噻吩并吡啶化合物的晶型a、制备方法及其药物组合物
TWI519533B (zh) 1-{(2S)-2-胺基-4-[2,4-雙(三氟甲基)-5,8-二氫吡啶并[3,4-d]嘧啶-7(6H)-基]-4-側氧丁基}-5,5-二氟哌啶-2-酮酒石酸鹽之水合物
JP5650657B2 (ja) 3−カルボキシプロピル−アミノテトラリン化合物の結晶形態
JP2009209068A (ja) カリウムチャネル開口薬
EP3604284B1 (en) Crystalline eltrombopag monoethanolamine salt form d
WO2014142056A1 (ja) ピロリジン-3-イル酢酸誘導体の塩およびその結晶
AU2014354085A1 (en) Novel 3-azabicyclo[3.1.0]hexane derivative and use thereof for medical purposes
TWI843372B (zh) 用於降解突變kras蛋白之化合物及其應用
MXPA01012328A (es) Polimorfos de un citrato de (2-benzhidril- 1-azabiciclo(2.2.2) oct-3-il- (5-iso- propil-2- metoxibencil) -amina como antagonistas del receptor de nk-1.
CA3213086A1 (en) Process for preparation of cabozantinib
US20220235030A1 (en) Selective histamine h3 antagonist acid addition salts and process for the preparation thereof
US20200002282A1 (en) Forms of (R)-N-(4-chlorophenyl)-2-(cis-4-(6-fluoroquinolin-4-yl)cyclohexyl)propanamide
US20100305159A1 (en) Crystalline form of piperidine compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18829100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019558686

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018829100

Country of ref document: EP

Effective date: 20191106

NENP Non-entry into the national phase

Ref country code: DE