WO2019007188A1 - 双面polo电池及其制备方法 - Google Patents

双面polo电池及其制备方法 Download PDF

Info

Publication number
WO2019007188A1
WO2019007188A1 PCT/CN2018/090560 CN2018090560W WO2019007188A1 WO 2019007188 A1 WO2019007188 A1 WO 2019007188A1 CN 2018090560 W CN2018090560 W CN 2018090560W WO 2019007188 A1 WO2019007188 A1 WO 2019007188A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
silicon wafer
sided
double
passivation
Prior art date
Application number
PCT/CN2018/090560
Other languages
English (en)
French (fr)
Inventor
刘阳
孙铁囤
姚伟忠
Original Assignee
常州亿晶光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州亿晶光电科技有限公司 filed Critical 常州亿晶光电科技有限公司
Publication of WO2019007188A1 publication Critical patent/WO2019007188A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of solar cell preparation, in particular to a double-sided POLO battery and a preparation method thereof.
  • the back passivation battery is an emerging high-efficiency battery technology, which effectively deactivates the backside of the battery and reduces the emissivity of the back surface, thereby effectively absorbing the long-wavelength light, which makes the battery efficiency have a big leap. And due to the intervention of the passivation layer, the warpage of the battery sheet is also improved.
  • the metal and semiconductor contact negative charge values in conventional batteries are approximately 4000 amps/cm 2 and are between 100 and 300 if passivated. At present, PERC passivation effect is better, but PERC also has two shortcomings. The first is that PERC still has some metal and semiconductor contact, and the other is that the back surface of PERC is point contact, which increases the distance of carrier transport. .
  • the technical problem to be solved by the present invention is to provide a double-sided POLO battery in order to solve the problem of high negative charge generated by contact between metal and semiconductor in the prior art, and lateral transmission of small or multiple points of point contact.
  • the preparation method thereof in order to overcome the above disadvantages, the POLO (POLy-Si on passivating interfacial Oxides) battery is designed, and the double-sided passivation is performed by using a silicon oxide plus polysilicon layer, the effect of which is not only passivating the surface defects, but also increasing the weakness.
  • the response of light also inactivates the contact between the metal and the semiconductor, reducing the contact negative charge value; the second is because it is fully passivated, there is no point contact, the base region has no lateral transmission of minority or multiple, and the third is polysilicon. For indirect bandgap, current loss is small.
  • a double-sided POLO battery comprising a silicon wafer substrate, wherein the silicon wafer substrate is provided with an SiOx tunneling oxide layer, a polysilicon layer and an ITO conductive layer from the inside to the outside. Film layer.
  • a method for preparing a double-sided POLO battery comprising sequentially performing double-sided cleaning and texturing on a silicon wafer, full passivation, ion implantation, plating conductive film and screen printing, wherein the whole passivation process is performed by using silicon oxide and polysilicon Passivation forms a fully passivated layer.
  • the invention adds polysilicon to double-sided passivation, solves the problem of high negative charge of metal-semiconductor contact of PERC battery, and improves current loss caused by point contact.
  • the specificity of the full passivation includes:
  • the SiOx tunneling oxide layer (2) is first prepared on both sides of the silicon wafer by wet chemical or wet oxygen method or ultraviolet method, and then prepared by PECVD or LPCVD on the double-sided SiOx tunneling oxide layer (2) of the silicon wafer.
  • the polysilicon layer (3) is doped with the front side and the back side of the silicon wafer by ion implantation, respectively, and finally a non-contact full passivation layer is formed by silicon oxide and polysilicon.
  • the preparation method of the double-sided POLO battery includes specific steps:
  • the tunneling oxide layer is prepared, and the SiOx tunneling oxide layer (2) is grown on both sides of the silicon wafer by wet chemical or wet ozone method or ultraviolet method, and the film thickness is controlled to be 1 to 10 nm, and then annealed;
  • a passivation layer using PECVD or LPCVD to prepare a polysilicon layer (3) on the double-sided SiOx tunneling oxide layer (2) of the silicon wafer, the film thickness of which is controlled to be 1-20 nm;
  • the silicon wafer of the completed ITO film is screen-sintered, and the back electrode and the positive electrode are silk-printed.
  • the invention has the beneficial effects that the double-sided POLO battery of the invention and the preparation method thereof use double-layer passivation by using silicon oxide and polysilicon layer, and the effect thereof is not only passivating the surface defects of the surface of the silicon wafer, but also increasing the weak light.
  • the response also inactivates the metal-to-semiconductor contact on the back side, reducing the contact negative charge value; the second is due to full passivation, no point contact, and the base region (base region) has no lateral transmission of fewer or more sub-portions.
  • the third is that polysilicon is an indirect band gap and the current loss is small.
  • FIG. 1 is a schematic view showing the structure of a battery prepared by the present invention.
  • silicon substrate 2, SiOx tunneling oxide layer, 3, polysilicon layer, 4, ITO conductive film layer.
  • a preferred embodiment of the present invention is a double-sided POLO battery comprising a silicon wafer substrate 1 having SiOx tunneling oxide layers 2 and polysilicon disposed on the both sides of the wafer substrate 1 from the inside to the outside.
  • a method for preparing a double-sided POLO battery comprising: double-sided cleaning and texturing on a silicon wafer, full passivation, ion implantation, degree conductive film and screen printing, and passivation using silicon oxide and polysilicon in a full passivation process A full passivation layer is formed.
  • the specific steps include:
  • the tunneling oxide layer is prepared, and the SiOx tunneling oxide layer 2 is grown on both sides of the silicon wafer by wet chemical or wet ozone method or ultraviolet method, and the film thickness is controlled to be 1 to 10 nm, and then annealed;
  • a passivation layer using PECVD or LPCVD to prepare a polysilicon layer (3) on the double-sided SiOx tunneling oxide layer 2 of the silicon wafer, the film thickness of which is controlled to be 1-20 nm;
  • Ion implantation is performed by ion implantation on the front and back sides of the silicon wafer to form P + Ploy-Si layer and N + Ploy-Si layer respectively; finally, non-contact full passivation is formed by silicon oxide and polysilicon.
  • PERC point contact type, the preparation method of the POLO battery of the present invention, the metal and the semiconductor are not in contact, and the point contact with the PERC is non-contact type.
  • the silicon wafer of the completed ITO film is screen-sintered, and the back electrode and the positive electrode are silk-printed.
  • the specificity of the full passivation includes:

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及太阳能电池制备技术领域,尤其涉及一种双面POLO电池及其制备方法,利用氧化硅加多晶硅层进行双面钝化,其作用一是不仅钝化了硅片表面的表面缺陷,增加弱光的响应,也钝化了背面的金属与半导体的接触,减少了接触负电荷值;其二是由于是全钝化,没有点接触,其基区没有少子或多子的横向传输,其三是多晶硅为间接带隙,电流损失小。

Description

双面POLO电池及其制备方法 技术领域
本发明涉及太阳能电池制备技术领域,尤其涉及一种双面POLO电池及其制备方法。
背景技术
目前,背钝化电池作为一种新兴的高效电池技术,有效的钝化了电池背面复合,并降低了背面的发射率,从而有效的吸收了长波段的光,使得电池效率有了大的飞跃;并且由于钝化层的介入,电池片的翘曲度也得到了一定的改善。
常规的电池中的金属和半导体接触负电荷值大概在4000费安/平方厘米,若进行钝化后其值在100~300之间。目前PERC钝化效果较好,但PERC也存在两个缺点,第一是PERC仍有部分的金属与半导体的接触,另一个是PERC的背表面是点接触,增大了载流子运输的距离。
发明内容
本发明要解决的技术问题是:为了解决现有技术中金属与半导体的接触产生的较高负电荷,点接触的少子或多子的横向传输的技术问题,本发明提供一种双面POLO电池及其制备方法,本发明为克服上述缺点,设计POLO(POLy-Si on passivating interfacial Oxides)电池,利用氧化硅加多晶硅层进行双面钝化,其作用一是不仅钝化了表面缺陷,增加弱光的响应,也钝化了金属与半导体的接触,减少了接触负电荷值;其二是由于是全钝化,没有点接触,其基区没有少子或多子的横向传输,其三是多晶硅为间接带隙,电流损失小。
本发明解决其技术问题所采用的技术方案是:一种双面POLO电池,包括硅片基底,所述硅片基底的双面由内向外依次设置有SiOx隧穿氧化层、多晶硅层以及ITO导电薄膜层。
一种双面POLO电池的制备方法,包括对硅片依次进行双面清洗制绒、全钝化、离子注入、镀导电薄膜和丝网印刷,所述全钝化工艺中采用氧化硅加多晶硅进行钝化形成全钝化层。本发明加入了多晶硅进行双面钝化,解决PERC电池的金属与半导体接触的高负电荷问题,并改善因点接触造成的电流损失。
所述全钝化的具体包括:
利用湿法化学或湿氧法或紫外法在硅片的双面先制备SiOx隧穿氧化层(2),再利用PECVD或LPCVD在硅片的双面的SiOx隧穿氧化层(2)上制备多晶硅层(3),再利用离子注入分别对硅片的正面和背面进行掺杂,最终制备得到由氧化硅加多晶硅形成非接触式的全钝化层。
所述的双面POLO电池的制备方法,具体步骤包括:
清洗制绒,将硅片在HCl/HNO 3混合溶液中清洗,去除表面损伤层、切割线痕以及金属离子等,利用NaOH进行表面制绒,因各向异性反应,表面生成金字塔结构;
制备隧穿氧化层,利用湿法化学或湿法臭氧法或紫外法在硅片的双面进行生长SiOx隧穿氧化层(2),其膜厚控制在1~10nm,随后对其进行退火;
钝化层,利用PECVD或LPCVD在硅片的双面的SiOx隧穿氧化层(2)上制备多晶硅层(3),其膜厚控制在1~20nm;
离子注入,分别对硅片的正面和背面进行离子注入,分别形成P +Ploy-Si层和N +Ploy-Si层;
镀导电膜,利用PVD在硅片的双面,即在P +Ploy-Si层和N +Ploy-Si层沉积导电薄膜ITO,双面其方阻控制在20~200Ω;
丝网印刷,将完成ITO薄膜的硅片进行丝网印刷烧结,丝印出背电极和正电极即可。
本发明的有益效果是,本发明的双面POLO电池及其制备方法,利用氧化硅加多晶硅层进行双面钝化,其作用一是不仅钝化了硅片表面的表面缺陷,增加弱光的响应,也钝化了背面的金属与半导体的接触,减少了接触负电荷值;其二是由于是全钝化,没有点接触,其基区(基底区域)没有少子或多子的横向传输,其三是多晶硅为间接带隙,电流损失小。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明制备的电池结构示意图。
图中:1、硅片基底,2、SiOx隧穿氧化层,3、多晶硅层,4、ITO导电薄膜层。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
如图1所示,是本发明最优实施例,一种双面POLO电池,包括硅片基底1,所述硅片基底1的双面由内向外依次设置有SiOx隧穿氧化层2、多晶硅层3以及ITO导电薄膜层4。
一种双面POLO电池的制备方法,包括对硅片依次进行双面清洗制绒、全钝化、离子注入、度导电薄膜和丝网印刷,全钝化工艺中采用氧化硅加多晶硅进行钝化形成全钝化层。
具体步骤包括:
清洗制绒,将硅片在HCl/HNO 3混合溶液中清洗,去除表面损伤层、切割线痕以及金属离子等,利用NaOH进行表面制绒,因各向异性反应,表面生成金字塔结构;
制备隧穿氧化层,利用湿法化学或湿法臭氧法或紫外法在硅片的双面进行生长SiOx隧穿氧化层2,其膜厚控制在1~10nm,随后对其进行退火;
钝化层,利用PECVD或LPCVD在硅片的双面的SiOx隧穿氧化层2上制备多晶硅层(3),其膜厚控制在1~20nm;
离子注入,分别对硅片的正面和背面进行离子注入进行掺杂,分别形成P +Ploy-Si层和N +Ploy-Si层;最终制备得到由氧化硅加多晶硅形成非接触式的全钝化层;(PERC是点接触式的,本发明的POLO电池的制备方法,金属和半导体是没有接触的,相对PERC的点接触,这就是非接触式的。)
镀导电膜,利用PVD在硅片的双面,即在P +Ploy-Si层和N +Ploy-Si层沉积导电薄膜ITO,双面其方阻控制在20~200Ω;
丝网印刷,将完成ITO薄膜的硅片进行丝网印刷烧结,丝印出背电极和正电极即可。所述全钝化的具体包括:
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (4)

  1. 一种双面POLO电池,其特征在于:包括硅片基底(1),所述硅片基底(1)的双面由内向外依次设置有SiOx隧穿氧化层(2)、多晶硅层(3)以及ITO导电薄膜层(4)。
  2. 一种双面POLO电池的制备方法,包括对硅片依次进行双面清洗制绒、全钝化、离子注入、镀导电薄膜和丝网印刷,其特征在于:所述全钝化工艺中采用氧化硅加多晶硅进行钝化形成全钝化层。
  3. 如权利要求2所述的双面POLO电池的制备方法,其特征在于:所述全钝化的具体包括:
    利用湿法化学或湿氧法或紫外法在硅片的双面先制备SiOx隧穿氧化层(2),再利用PECVD或LPCVD在硅片的双面的SiOx隧穿氧化层(2)上制备多晶硅层(3),再利用离子注入分别对硅片的正面和背面进行掺杂,最终制备得到由氧化硅加多晶硅形成非接触式的全钝化层。
  4. 如权利要求2所述的双面POLO电池的制备方法,其特征在于:具体步骤包括:
    清洗制绒,将硅片在HCl/HNO 3混合溶液中清洗,去除表面损伤层、切割线痕以及金属离子等,利用NaOH进行表面制绒,因各向异性反应,表面生成金字塔结构;
    制备隧穿氧化层,利用湿法化学或湿法臭氧法或紫外法在硅片的双面进行生长SiOx隧穿氧化层(2),其膜厚控制在1~10nm,随后对其进行退火;
    钝化层,利用PECVD或LPCVD在硅片的双面的SiOx隧穿氧化层(2)上制备多晶硅层(3),其膜厚控制在1~20nm;
    离子注入,分别对硅片的正面和背面进行离子注入,分别形成P +Ploy-Si层和N +Ploy-Si层;
    镀导电膜,利用PVD在硅片的双面,即在P +Ploy-Si层和N +Ploy-Si层沉积导电薄膜ITO,双面其方阻控制在20~200Ω;
    丝网印刷,将完成ITO薄膜的硅片进行丝网印刷烧结,丝印出背电极和正电极即可。
PCT/CN2018/090560 2017-07-07 2018-06-11 双面polo电池及其制备方法 WO2019007188A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710549208.2A CN107342332A (zh) 2017-07-07 2017-07-07 双面polo电池及其制备方法
CN201710549208.2 2017-07-07

Publications (1)

Publication Number Publication Date
WO2019007188A1 true WO2019007188A1 (zh) 2019-01-10

Family

ID=60218523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090560 WO2019007188A1 (zh) 2017-07-07 2018-06-11 双面polo电池及其制备方法

Country Status (2)

Country Link
CN (1) CN107342332A (zh)
WO (1) WO2019007188A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342332A (zh) * 2017-07-07 2017-11-10 常州亿晶光电科技有限公司 双面polo电池及其制备方法
CN107994093A (zh) * 2017-12-04 2018-05-04 孙健春 一种太阳能电池及其制造方法
CN108538952A (zh) * 2018-05-18 2018-09-14 东方环晟光伏(江苏)有限公司 晶体硅高效太阳能电池结构及其制作方法
CN109935659A (zh) * 2019-03-21 2019-06-25 河海大学常州校区 一种p型太阳能电池的制备方法
CN110061086A (zh) * 2019-04-04 2019-07-26 国家电投集团西安太阳能电力有限公司 一种hbc太阳能电池
CN110649104A (zh) * 2019-09-19 2020-01-03 苏州拓升智能装备有限公司 一种高光电转化效率的太阳能电池
CN111048625B (zh) * 2019-12-26 2021-10-22 浙江晶科能源有限公司 一种钝化接触p型电池的制备方法
CN111326606A (zh) * 2020-03-11 2020-06-23 苏州光汇新能源科技有限公司 N型分片太阳能电池结构及其制作方法
CN111640826A (zh) * 2020-06-10 2020-09-08 蒙城县比太新能源发展有限公司 一种利用选择性接触导电的电池制备方法
CN117525180B (zh) * 2024-01-05 2024-03-12 通威太阳能(眉山)有限公司 太阳电池及其制备方法、光伏组件
CN117525179B (zh) * 2024-01-05 2024-04-02 通威太阳能(眉山)有限公司 太阳电池及其制备方法、光伏组件

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100233840A1 (en) * 2003-10-30 2010-09-16 Georgia Tech Research Corporation Silicon solar cells and methods of fabrication
CN104952943A (zh) * 2009-04-21 2015-09-30 泰特拉桑有限公司 高效率太阳能电池结构及制造方法
CN105742391A (zh) * 2016-04-27 2016-07-06 中国科学院宁波材料技术与工程研究所 一种隧穿硅氧氮层钝化接触太阳能电池及其制备方法
CN107342332A (zh) * 2017-07-07 2017-11-10 常州亿晶光电科技有限公司 双面polo电池及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4092757A1 (en) * 2013-04-03 2022-11-23 Lg Electronics Inc. Method for fabricating a solar cell
CN105185866B (zh) * 2015-08-15 2017-07-28 常州天合光能有限公司 一种高效钝化接触晶体硅太阳电池的制备方法
CN106784128A (zh) * 2015-11-20 2017-05-31 上海神舟新能源发展有限公司 前发射结背面隧道氧化钝化接触高效电池的制作方法
CN205657066U (zh) * 2016-04-28 2016-10-19 乐叶光伏科技有限公司 一种背面钝化接触电池电极结构

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100233840A1 (en) * 2003-10-30 2010-09-16 Georgia Tech Research Corporation Silicon solar cells and methods of fabrication
CN104952943A (zh) * 2009-04-21 2015-09-30 泰特拉桑有限公司 高效率太阳能电池结构及制造方法
CN105742391A (zh) * 2016-04-27 2016-07-06 中国科学院宁波材料技术与工程研究所 一种隧穿硅氧氮层钝化接触太阳能电池及其制备方法
CN107342332A (zh) * 2017-07-07 2017-11-10 常州亿晶光电科技有限公司 双面polo电池及其制备方法

Also Published As

Publication number Publication date
CN107342332A (zh) 2017-11-10

Similar Documents

Publication Publication Date Title
WO2019007188A1 (zh) 双面polo电池及其制备方法
JP7212786B2 (ja) 結晶シリコン太陽電池およびその製造方法
TWI746424B (zh) 以改良之前接觸式異質接面製程來製造太陽能電池的方法及其太陽能電池
CN110707159A (zh) 一种正背面全面积接触钝化的p型晶硅太阳电池及其制备方法
CN109686816B (zh) 钝化接触n型太阳电池的制备方法
WO2019119817A1 (zh) 一种太阳能异质结电池及其制备方法
TW201340351A (zh) 具有寬能帶間隙半導體材料之射極區的太陽能電池
CN111739982B (zh) 一种选择性发射极的制备方法和太阳能电池
CN108666393A (zh) 太阳能电池的制备方法及太阳能电池
CN110190137B (zh) 一种用于正面接触钝化的双层钝化膜及其制备方法
WO2023093604A1 (zh) 太阳能电池以及太阳能电池的制备方法
WO2022142343A1 (zh) 太阳能电池及其制备方法
WO2023184955A1 (zh) 太阳能电池及其制备方法
WO2023123814A1 (zh) 一种ibc太阳能电池及其制备方法
CN112635592A (zh) 一种太阳能电池及其制作方法
CN116093207A (zh) 一种背接触太阳能电池及其制作方法
TW201515244A (zh) 太陽電池及太陽電池模組
WO2015064354A1 (ja) 太陽電池
CN110571299B (zh) 一种自对准式埋栅钝化接触晶硅太阳电池及其制备方法
CN115458612A (zh) 一种太阳电池及其制备方法
WO2019007189A1 (zh) 单面polo电池及其制备方法
CN115332366A (zh) 一种背钝化接触异质结太阳电池及其制备方法
CN208336240U (zh) 太阳能电池及太阳能电池组件
CN117747678A (zh) 一种超薄隧穿氧化钝化接触太阳能电池及其制作方法
TWM517422U (zh) 具有局部鈍化的異質接面太陽能電池結構

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18828843

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18828843

Country of ref document: EP

Kind code of ref document: A1