WO2019007106A1 - 一种柔性触控基板及其制备方法、触控显示装置 - Google Patents

一种柔性触控基板及其制备方法、触控显示装置 Download PDF

Info

Publication number
WO2019007106A1
WO2019007106A1 PCT/CN2018/079807 CN2018079807W WO2019007106A1 WO 2019007106 A1 WO2019007106 A1 WO 2019007106A1 CN 2018079807 W CN2018079807 W CN 2018079807W WO 2019007106 A1 WO2019007106 A1 WO 2019007106A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch
substrate
flexible
touch electrode
groove
Prior art date
Application number
PCT/CN2018/079807
Other languages
English (en)
French (fr)
Inventor
许占齐
张明
张言萍
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP18807844.8A priority Critical patent/EP3650998B1/en
Priority to US16/307,742 priority patent/US11360611B2/en
Publication of WO2019007106A1 publication Critical patent/WO2019007106A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0412Digitisers structurally integrated in a display
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/01Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate comprising only passive thin-film or thick-film elements formed on a common insulating substrate
    • H01L27/016Thin-film circuits
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04102Flexible digitiser, i.e. constructional details for allowing the whole digitising part of a device to be flexed or rolled like a sheet of paper
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04107Shielding in digitiser, i.e. guard or shielding arrangements, mostly for capacitive touchscreens, e.g. driven shields, driven grounds

Definitions

  • the present disclosure relates to the field of touch technologies, and in particular, to a flexible touch substrate, a method for fabricating the same, and a touch display device.
  • the flexible touch display device is a touch display device capable of bending.
  • the flexible touch display device can realize bending with less curvature than a general touch display device.
  • a flexible touch substrate includes: a flexible substrate and a touch electrode pattern disposed on the first surface of the flexible substrate; the first portion disposed on the flexible substrate At least one groove on at least one of a surface and a second surface opposite the first surface, the projection of the groove on the base substrate being located in a gap between the touch electrode patterns Within the projection on the substrate substrate.
  • the groove has a depth of about 5-10 ⁇ m.
  • the groove is strip-shaped; the extending direction of the groove is parallel to the extending direction of the bending axis of the flexible substrate.
  • the touch electrode pattern includes: a plurality of rows of first touch electrode bridges and a plurality of rows of second touch electrodes, wherein the second touch electrodes are cross-insulated with the first touch electrodes.
  • the second touch electrode includes a plurality of second sub-touch electrodes spaced apart from each other by the first touch electrodes and a second sub-touch electrode connected adjacent to each other in a row direction and The bridge of the first touch electrode insulation.
  • the flexible touch substrate further includes: an insulation pattern between the second sub-touch electrodes adjacent in the row direction and covering the first contact electrode, wherein the bridge portion is located in the insulation On the pattern.
  • the flexible touch substrate further includes: a bridge portion between the second sub-electrodes adjacent in a row direction and an insulation pattern on the bridge portion, wherein the first touch electrode is located On the insulation pattern.
  • the flexible touch substrate further includes a protective layer disposed on a side of the touch electrode pattern away from the flexible substrate.
  • the flexible touch substrate further includes a protective film disposed on a side of the protective layer away from the touch electrode pattern.
  • a touch display device including the above flexible touch substrate.
  • a third aspect provides a method for fabricating a flexible touch substrate, comprising: forming a touch electrode pattern on a first surface of the flexible substrate; and on the first surface of the flexible substrate At least one groove is formed on at least one of the opposite second surfaces of the first surface, and a projection of the groove on the base substrate is located in a gap between the touch electrode patterns in the lining Inside the projection on the base substrate.
  • the touch electrode pattern includes: a plurality of rows of first touch electrodes and a plurality of rows of second touch electrodes, wherein the second touch electrodes are separated by the first touch electrodes a plurality of second sub-touch electrodes; after the recess is formed on the flexible substrate, the method further includes: forming an insulating film on the touch electrode pattern; patterning the insulating film, Forming an insulating pattern between the second sub-touch electrodes adjacent in the row direction and covering the first contact electrode; forming a conductive film on the insulating pattern; patterning the conductive film to form Connecting a bridge portion adjacent to the second sub-touch electrode.
  • the touch electrode pattern includes: a plurality of rows of first touch electrodes and a plurality of rows of second touch electrodes, wherein the second touch electrodes comprise a plurality of spaced apart by the first touch electrodes a second sub-touch electrode; before the forming the touch electrode pattern on the flexible substrate, the method further comprises: forming a conductive film; patterning the conductive film to form a bridge, wherein The bridge portion is configured to connect the second sub-touch electrodes adjacent to each other in the row direction to be formed; forming an insulating film on the bridge portion; and bridging the insulating film to form an insulation pattern, The insulating pattern is used to insulate the second sub-touch electrode to be formed from the first electrode.
  • the method further includes: forming a protective layer.
  • the method further comprises: attaching a protective film on the protective layer.
  • 1(a) is a schematic structural view of a flexible touch substrate not bent
  • FIG. 1(b) is a schematic structural view of a flexible touch substrate when bent
  • FIG. 2(a) is a schematic structural view 1 of a flexible touch substrate provided by an embodiment of the present disclosure
  • FIG. 2(b) is a schematic structural view of a flexible touch substrate when it is bent according to an embodiment of the present disclosure
  • FIG. 2(c) is a schematic structural view 2 of a flexible touch substrate provided by an embodiment of the present disclosure
  • FIG. 2(d) is a schematic structural view 3 of a flexible touch substrate provided by an embodiment of the present disclosure
  • FIG. 3(a) is a schematic structural view showing a groove formed on a flexible substrate according to an embodiment of the present disclosure
  • FIG. 3(b) is a schematic structural view of a flexible substrate substrate when it is bent according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a touch electrode pattern according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of forming a first touch electrode and a second touch electrode on a flexible substrate according to an embodiment of the present disclosure
  • Figure 6 is a cross-sectional view taken along line EE' of Figure 5;
  • FIG. 7 is a schematic structural diagram 4 of a flexible touch substrate provided by an embodiment of the present disclosure.
  • FIG. 8( a ) is a schematic structural diagram 5 of a flexible touch substrate provided by an embodiment of the present disclosure.
  • FIG. 8(b) is a schematic structural view of the flexible touch substrate of FIG. 8(a) when bent;
  • FIG. 9 is a schematic flow chart of a method for fabricating a flexible touch substrate according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of forming a touch electrode pattern on a flexible substrate according to an embodiment of the present disclosure
  • FIG. 11 is a schematic structural diagram of attaching a flexible substrate to a carrier substrate according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of forming a groove on a flexible substrate formed with a touch electrode pattern according to an embodiment of the present disclosure
  • FIG. 13 is a schematic structural diagram of forming an insulation pattern on a touch electrode pattern according to an embodiment of the present disclosure
  • FIG. 14 is a schematic structural diagram of forming a bridge portion on an insulation pattern according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of forming a bridge portion, an insulation pattern, and a touch electrode pattern on a flexible substrate according to an embodiment of the present disclosure
  • FIG. 16 is a schematic structural diagram of forming a protective layer on a bridge portion according to an embodiment of the present disclosure
  • FIG. 17 is a schematic structural diagram of attaching a protective film on a protective layer according to an embodiment of the present disclosure.
  • 10-flexible substrate 101-groove; 20-touch electrode pattern; 201-first touch electrode; 202-second sub-touch electrode; 203-second touch electrode; 30-bridge portion; - Insulation pattern; 50-protective layer; 60-protective film; 70-optical transparent adhesive; 80-bearing substrate.
  • the terms “upper”, “lower”, “left”, “right”, “vertical”, “horizontal”, “top”, “bottom” and The derivative should refer to the public text.
  • the terms “overlay”, “on top of”, “positioned on” or “positioned on top of” mean that a first element, such as a first structure, exists in a second element, such as a second structure. Above, wherein an intermediate element such as an interface structure may exist between the first element and the second element.
  • the term “contacting” means connecting a first element such as a first structure and a second element such as a second structure, with or without other elements at the interface of the two elements.
  • a flexible touch substrate in a flexible touch product is a touch electrode pattern 20 prepared on a flexible substrate 10 , so that only a curvature with a small curvature can be achieved.
  • the flexible substrate 10 When bending with a large curvature, as shown in FIG. 1(b), the flexible substrate 10 generates a large stress, and the stress concentrates on the contact surface of the flexible substrate 10 and the touch electrode pattern 20 due to the flexible substrate.
  • the stress of the substrate 10 and the touch electrode pattern 20 is not matched. Therefore, if the large stress cannot be released, the touch electrode pattern 20 on the flexible substrate 10 is easily deformed or cracked, thereby causing touch.
  • the sensitivity is reduced, even the touch failure, which greatly affects the reliability of the use of flexible touch products.
  • the embodiment of the present disclosure provides a flexible touch substrate, as shown in FIGS. 2( a ) to 2 ( d ), including: a flexible substrate substrate 10 and a touch disposed on the first surface of the flexible substrate substrate 10 Control electrode pattern 20; flexible substrate substrate 10 is provided with at least one groove on a surface perpendicular to its thickness direction (ie, at least one of the first surface and the second surface opposite to the first surface) 101.
  • the projection of the groove 101 on the base substrate is located within the projection of the gap between the touch electrode patterns 20 on the substrate.
  • the flexible touch substrate provided by the embodiment of the disclosure can prevent the touch electrode pattern from being deformed or broken when the flexible touch substrate is bent, and can realize large curvature bending.
  • the flexible substrate substrate is provided with at least one groove
  • the groove can release the stress generated by the bending; on the other hand, the stress caused by the bending of the flexible substrate substrate is Focusing on the bottom of the groove, the stress direction of the flexible substrate is consistent with the stress direction of the touch electrode pattern, so that the touch electrode pattern can be prevented from being deformed or broken. Based on this, the flexible touch substrate can realize large curvature bending, and can avoid deformation or cracking of the touch electrode pattern when bending, thereby improving the reliability of the flexible touch substrate.
  • the material of the flexible substrate 10 is not limited, and may be, for example, PET (Polyethylene terephthalate) or COP (Cyclo-olefin polymer). Wait.
  • the material of the touch electrode pattern 20 is a transparent material.
  • the material of the touch electrode pattern 20 may be, for example, at least one of ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide).
  • the touch electrode pattern 20 there are two surfaces perpendicular to the thickness direction of the flexible substrate 10, one is a surface on which one side of the touch electrode pattern 20 is formed (ie, the first surface), and the other is formed with touch.
  • the surface opposite to the surface of one side of the electrode pattern 20 ie, the second surface).
  • the groove 101 may be disposed on the surface of the flexible substrate 10 on the side where the touch electrode pattern 20 is formed as shown in FIG. 2( a ); or may be disposed as shown in FIG. 2( c ) On the surface of the flexible substrate 10 opposite to the surface on which the touch electrode pattern 20 is formed (that is, on the side of the flexible substrate from the touch electrode pattern); of course, it may be as shown in FIG. 2 ( d) is shown on both surfaces of the flexible substrate 10 perpendicular to the thickness direction thereof.
  • the number of the grooves 101 provided on the flexible base substrate 10 and the depth of the groove 101 are not limited, and may be appropriately set as needed.
  • the embodiments of the present disclosure are optional, and the grooves 101 are evenly distributed in the gap between the touch electrode patterns 20.
  • the stress direction of the flexible substrate 10 is consistent with the stress direction of the touch electrode pattern 20 , and the groove 101 can release the flexible substrate 10 .
  • the stress (tension and compressive stress) generated by the bending, so that the touch electrode pattern 20 does not break, the flexible touch substrate can achieve bending of a large curvature.
  • the embodiment of the present disclosure provides a flexible touch substrate. Since the flexible substrate substrate 10 is provided with a plurality of grooves 101, when the flexible touch substrate is bent, on the one hand, the groove 101 can release the stress caused by the bending. On the other hand, the stress generated by the bending of the flexible substrate 10 is concentrated on the bottom of the groove 101, and the stress direction of the flexible substrate 10 is consistent with the direction of the stress received by the touch electrode pattern 20, thereby avoiding The touch electrode pattern 20 is deformed or broken. Based on this, the flexible touch substrate can achieve large curvature bending, and when the bending, the touch electrode pattern 20 can be prevented from being deformed or broken, and the reliability of the flexible touch substrate is improved.
  • the groove 101 is located on a surface (ie, a first surface) of the side of the base substrate 10 on which the touch electrode pattern 20 is formed.
  • the touch electrode pattern 20 and the flexible substrate 10 may or may not be in contact with each other, and the touch electrode pattern 20 and the flexible Other film layers may be disposed between the base substrates 10. Since the touch electrode pattern 20 and the flexible substrate substrate 10 have the surface contact of the groove 101, the stress generated by the interface where the touch electrode pattern 20 and the flexible substrate substrate 10 are contacted can be more effectively released from the groove 101. The touch electrode pattern 20 is further prevented from being broken, and thus the optional touch electrode pattern 20 and the flexible substrate substrate 10 of the present disclosure have surface contact of the groove 101.
  • the groove 101 is disposed on the surface on the side on which the touch electrode pattern 20 is formed, with respect to the surface on which the groove 101 is disposed on the side opposite to the side on which the touch electrode pattern 20 is formed. Therefore, the groove 101 is close to the touch electrode pattern 20.
  • the stress generated by the flexible substrate 10 can be released from the groove 101, so that the touch electrode pattern 20 can be better prevented from being broken.
  • the thickness of the flexible substrate 10 is generally about 100 ⁇ m. If the depth of the groove 101 is too large, the flexible substrate may be broken when the flexible touch substrate is bent; if the depth of the groove 101 is deep If the flexible touch substrate is bent, the stress released by the groove 101 is small, so that the problem that the touch electrode pattern 20 is broken can not be effectively avoided. Based on this, in the embodiment of the present disclosure, the depth of the groove 101 is about 5 to 10 ⁇ m.
  • FIGS. 3(a) and 3(b) the groove 101 is strip-shaped, and the extending direction and flexibility of the groove 101 are The extending directions of the bending axes AA' of the base substrate 10 are parallel.
  • FIG. 3(a) is a schematic view of the flexible substrate 10 before being bent
  • FIG. 3(b) is a view after the a side and the b side of the flexible substrate 10 are bent.
  • the touch electrode pattern 20 includes: a plurality of rows of first touch electrodes 201 and a plurality of rows of second touch electrodes, wherein each row of second touch electrodes includes spaces separated by first touch electrodes 201 A plurality of second sub-touch electrodes 202 are opened.
  • the projection of the groove 101 on the flexible substrate 10 on the substrate substrate is located in the projection of the gap between the touch electrode patterns 20 on the substrate, and the specific position of the groove 101 is not limited. For example, as shown in FIG. 4, it is set at position A, B, C or D.
  • FIG. 4 of the present disclosure only schematically shows several arrangement positions of the groove 101 (the dotted line frame is the groove 101), and does not show all the grooves on the flexible substrate substrate 10. 101.
  • the optional groove 101 of the present disclosure is evenly distributed on the flexible substrate substrate 10.
  • the flexible touch substrate further includes: as shown in FIG. 5 and FIG. 6, connecting the bridge portions 30 of the second sub-touch electrodes 202 adjacent in the row direction to form a plurality of parallel second touch electrodes 203, and second The touch electrode 203 is cross-insulated with the first touch electrode 201.
  • the material of the bridge portion 30 is not limited, and may be, for example, a metal material or the same material as the touch electrode pattern 20 .
  • the second touch electrode 203 is insulated from the first touch electrode 201. Therefore, an insulating pattern 40 is disposed between the bridge portion 30 and the first touch electrode 201 as shown in FIG. 6.
  • FIG. 5 is not illustrated.
  • the insulating pattern 40 is taken out. As shown in FIG. 6 , the insulating pattern 40 may be located between the two second sub-touch electrodes 202 adjacent in the row direction and cover the first contact electrode 201 , wherein the bridging portion 30 is located on the insulating pattern 40 .
  • the flexible touch substrate may further include: a bridge portion 30 between the two second sub-electrodes 202 adjacent in the row direction and an insulation pattern 40 on the bridge portion 30 .
  • the second touch electrode 201 is located on the insulation pattern 40.
  • the first touch electrode 201 is a sensing electrode (Rx), and the second touch electrode 203 is a driving electrode (Tx).
  • the first touch electrode 201 is a driving electrode
  • the second touch electrode 203 is Induction electrode.
  • the touch function can be implemented by the first and second touch electrodes 201 and 203 that are crossed and insulated.
  • the flexible touch substrate further includes a protective layer (OC) 50 disposed on a side of the touch electrode pattern 20 away from the flexible substrate 10 .
  • OC protective layer
  • the material of the protective layer 50 is not limited, and may be, for example, at least one of silicon nitride (SiN x ), silicon oxide (SiO x ), or silicon oxynitride (SiN x O y ).
  • the protective layer 50 is disposed on the touch electrode pattern 20, so that the touch electrode pattern 20 can be prevented from being damaged, and the touch electrode pattern 20 is protected.
  • the flexible touch substrate is a mother board, and includes a plurality of sub-flexible touch substrates during the manufacturing process. After the flexible touch substrate is formed, a plurality of sub-flexible touch substrates are formed by cutting, and the cutting is easy to cause The flexible touch substrate is scratched, and thus the embodiment of the present disclosure is further optional. As shown in FIGS. 8( a ) and 8 ( b ), the flexible touch substrate further includes a cover (eg, attached) on the protective layer 50 . The protective film 60 on the side of the touch electrode pattern 20 is away.
  • the protective film 60 may be attached to the protective layer 50 by an optical Clear Resin (OCR).
  • OCR optical Clear Resin
  • the protective film 60 since the protective film 60 is disposed above the protective layer 50 and the protective film 60 is in contact with the external environment, the protective film 60 has a relatively high hardness with respect to the protective layer 50.
  • the protective film 60 is attached on the protective layer 50, so that scratches caused by the flexible touch substrate during transportation or cutting can be further prevented.
  • FIG. 8( a ) is a schematic structural view of a flexible touch substrate that is not bent
  • FIG. 8( b ) is a schematic structural view of the flexible touch substrate when bent, and it can be seen that When the flexible touch substrate is bent, the stress generated by the flexible substrate 10 itself can be released through the recess 101 on the flexible substrate 10, so that the touch electrode pattern 20 can be prevented from being deformed or broken.
  • Embodiments of the present disclosure provide a touch display device including the above flexible touch substrate.
  • the touch display device provided by the embodiment of the present disclosure may be any device that displays an image regardless of motion (eg, video) or fixed (eg, still image) and regardless of text or picture. More specifically, it is contemplated that the described embodiments can be implemented in or associated with a variety of electronic devices such as, but not limited to, mobile phones, wireless devices, personal data assistants (PDAs).
  • PDAs personal data assistants
  • the touch display device may also be a touch display panel.
  • the embodiment of the present disclosure provides a touch display device including a flexible touch substrate. Since the flexible substrate 10 includes at least one groove 101, when the flexible touch substrate is bent, on the one hand, the groove 101 can release the stress caused by the bending; on the other hand, the stress caused by the bending of the flexible substrate 10 is concentrated on the bottom of the groove 101, and the stress direction and the touch electrode pattern 20 received by the flexible substrate 10 at this time. The direction of stress received is uniform, so that the touch electrode pattern 20 can be prevented from being deformed or broken. Based on this, the touch display device can realize large curvature bending, and when the bending, the touch electrode pattern 20 can be prevented from being deformed or broken, and the reliability of the touch display device is improved.
  • the embodiment of the present disclosure further provides a method for preparing a flexible touch substrate, as shown in FIG. 9 , including:
  • a touch electrode pattern 20 is formed on the first surface of the flexible substrate 10.
  • the material of the flexible base substrate 10 is not limited, and may be, for example, PET or COP.
  • the material of the touch electrode pattern 20 is a transparent material.
  • the material of the touch electrode pattern 20 may be, for example, at least one of ITO or IZO.
  • the preparation process of the touch electrode pattern 20 is not limited.
  • the touch electrode pattern 20 can be prepared by a yellow light process. Specifically, a conductive film (Deposition) is deposited first, and then photolithography is applied. The glue is then formed into a touch electrode pattern 20 by an exposure (Photo), development, and etching (Etch) process.
  • the preparation method further includes:
  • the flexible substrate 10 is attached to the carrier substrate 80 through an optically transparent adhesive 70.
  • the hardness of the carrier substrate 80 is greater than the hardness of the flexible substrate substrate 10.
  • the carrier substrate 80 may be, for example, glass.
  • At least one groove 101 is formed on a side surface (ie, a first surface) of the flexible substrate substrate 10 on which the touch electrode pattern 20 is formed, and the groove 101 is on the substrate substrate.
  • the projections located between the touch electrode patterns 20 are projected within the projection on the substrate.
  • the groove is disposed on the first surface of the flexible substrate substrate in FIG. 12, the groove may be disposed on the second surface of the flexible substrate substrate opposite to the first surface, as needed. It is also possible to arrange the grooves on both the first surface and the second surface of the flexible substrate.
  • the groove 101 may be formed on a surface of the flexible substrate 10 on which the touch electrode pattern 20 is formed by a dry etching process such as a laser etching process.
  • the number of the grooves 101 provided on the flexible base substrate 10 is not limited, and may be set as needed.
  • the embodiments of the present disclosure are optional, and the grooves 101 are evenly distributed in the gap between the touch electrode patterns 20.
  • the depth of the formed groove 101 is not limited. In the embodiment of the present disclosure, the depth of the groove 101 is about 5 to 10 ⁇ m.
  • the stress generated by the bending can be released from the groove 101 as much as possible, and the stress direction of the flexible substrate 10 when bent is The direction of the stress when the touch electrode pattern 20 is bent is the same, and thus the embodiment of the present disclosure is optional, as shown in FIGS. 3( a ) and 3 ( b ), the groove 101 is strip-shaped, and the extending direction of the groove 101 It is parallel to the extending direction of the bending axis AA' of the flexible base substrate 10.
  • the embodiment of the present disclosure provides a method for manufacturing a flexible touch substrate. Since the flexible substrate 10 includes a plurality of grooves 101, when the flexible touch substrate is bent, on the one hand, the groove 101 can be released due to bending. On the other hand, the stress caused by the bending of the flexible substrate 10 is concentrated on the bottom of the groove 101, and the stress direction of the flexible substrate 10 is consistent with the direction of the stress received by the touch electrode pattern 20, and thus The touch electrode pattern 20 can be prevented from being deformed or broken. Based on this, the flexible touch substrate can achieve large curvature bending, and when the bending, the touch electrode pattern 20 can be prevented from being deformed or broken, and the reliability of the flexible touch substrate is improved.
  • the touch electrode pattern 20 includes: a plurality of rows of first touch electrodes 201 and a plurality of rows of second touch electrodes, wherein the second touch electrodes are separated by the first touch electrodes 201 A plurality of second sub-touch electrodes 202.
  • the method further includes: forming an insulating film as shown in FIG. 13, and patterning the insulating film to form a second sub-touch electrode 202 adjacent in the row direction and covering the first touch electrode
  • the insulating pattern 40 is formed as shown in FIG. 14; as shown in FIG.
  • a conductive film is formed, and the conductive film is patterned to form a bridge portion 30 connecting the second sub-touch electrodes 202 adjacent in the row direction, and the bridge portion 30 is used for the square
  • the second sub-touch electrodes 202 adjacent to each other are connected to form a second touch electrode 203.
  • the material of the insulating pattern 40 is not limited, and may be, for example, at least one of silicon nitride, silicon oxide, or silicon oxynitride.
  • the insulating pattern 40 can be prepared by a yellow light process. Specifically, the insulating pattern 40 is formed by applying a photoresist, exposure, development, and etching process.
  • the material of the bridge portion 30 is not limited, and may be, for example, a metal material or the same material as the touch electrode pattern 20 .
  • the bridge portion 30 can be formed simultaneously with a metal trace on the flexible touch substrate.
  • the touch function can be implemented by the first touch electrode 201 and the second touch electrode 203.
  • the touch electrode pattern 20 includes: a plurality of rows of first touch electrodes 201 and a plurality of rows of second touch electrodes, wherein the second touch electrodes include spaces separated by the first touch electrodes 201
  • the plurality of second sub-touch electrodes 202 are opened; before the step S100, as shown in FIG.
  • the method further includes: forming a conductive film, and patterning the conductive film to form the bridge portion 30, wherein the bridge portion 30 is used for Connecting adjacent second sub-touch electrodes 202 to be formed in the row direction; forming an insulating film, patterning the insulating film to form an insulating pattern 40 on the bridge portion 30, and the insulating pattern 40 is used for the to-be-formed portion
  • the second sub-touch electrode 202 is insulated from the first electrode 201.
  • the bridge portion 30 and the insulating pattern 40 are formed first, and then the touch electrode pattern 20 is formed. After the touch electrode pattern 20 is formed, when the groove 101 is formed on the flexible substrate substrate 10, the bridge portion 30 and The insulating pattern 40 blocks the position of the gap between the partial touch electrode patterns 20, and thus the region of the flexible substrate 10 that is blocked by the bridge portion 30 and the insulating pattern 40 cannot form the groove 101. Referring to FIG. 4, the groove 101 cannot be provided at the position A, and the groove can be provided at the position B, the position C, and the position D.
  • the bridge portion 30 and the insulating pattern 40 may be formed first, and then the touch electrode pattern 20 is formed.
  • the bridge portion 30 connects the second sub-touch electrodes of the adjacent rows of the touch electrode patterns 20, thereby A touch electrode 201 and a second touch electrode 203 can implement a touch function.
  • the method further includes: forming the protective layer 50 .
  • the protective layer 50 may be formed by a yellow light process. Specifically, a protective layer film is first formed, and then a photoresist is coated, and then the protective layer 50 is formed by an exposure, development, and etching process.
  • the material of the protective layer 50 is not limited, and may be, for example, at least one of silicon nitride, silicon oxide, or silicon oxynitride.
  • the protective layer 50 is formed on the touch electrode pattern 20, so that the touch electrode pattern 20 can be prevented from being damaged, and the touch electrode pattern 20 is protected.
  • the method further includes: attaching a protective film 60 on the protective layer 50 .
  • the protective film 60 may be attached to the protective layer 50 using a photoresist.
  • the protective film 60 since the protective film 60 is disposed above the protective layer 50 and the protective film 60 is in contact with the external environment, the protective film 60 has a relatively high hardness with respect to the protective layer 50.
  • the protective film 60 is attached on the protective layer 50, so that scratches caused by the flexible touch substrate during transportation or cutting can be further prevented.
  • the flexible substrate substrate 10 can be peeled off from the carrier substrate 80 to obtain a flexible touch substrate as shown in FIG. 8(a).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Position Input By Displaying (AREA)

Abstract

本公开文本实施例提供一种柔性触控基板及其制备方法、触控显示装置,涉及触控技术领域,在柔性触控基板弯曲时,可避免触控电极图案变形或断裂,且可实现大曲率弯曲。该柔性触控基板包括:柔性衬底基板和设置在所述柔性衬底基板的第一表面上的触控电极图案;设置在所述柔性衬底基板的所述第一表面和与所述第一表面相对的第二表面中的至少一者上的至少一个凹槽,所述凹槽在所述衬底基板上的投影位于所述触控电极图案之间的间隙在所述衬底基板上的投影内。

Description

一种柔性触控基板及其制备方法、触控显示装置
相关申请的交叉引用
本申请要求于2017年7月5日递交的中国专利申请第201710544165.9号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开文本涉及触控技术领域,尤其涉及一种柔性触控基板及其制备方法、触控显示装置。
背景技术
目前,越来越多的具有触控功能的电子产品被广泛应用于人们的日常生活及工作中。随着科技的不断进步,人们对于电子产品的各方面的要求也在不断提升,例如要求电子产品能够实现随意弯曲折叠,柔性触控显示装置便是在这种大趋势下产生。柔性触控显示装置,顾名思义就是能够进行弯曲的触控显示装置,这种柔性触控显示装置相对一般的触控显示装置来说,能够实现较小曲率的弯曲。
发明内容
本公开文本的实施例采用如下技术方案:
第一方面,提供一种柔性触控基板,包括:柔性衬底基板和设置在所述柔性衬底基板的第一表面上的触控电极图案;设置在所述柔性衬底基板的所述第一表面和与所述第一表面相对的第二表面中的至少一者上的至少一个凹槽,所述凹槽在所述衬底基板上的投影位于所述触控电极图案之间的间隙在所述衬底基板上的投影内。
可选的,所述凹槽的深度为约5~10μm。
可选的,所述凹槽为条状;所述凹槽的延伸方向与所述柔性衬底 基板的弯曲轴的延伸方向相平行。
可选的,触控电极图案包括:多列第一触控电极桥接部和多行第二触控电极,所述第二触控电极与所述第一触控电极交叉绝缘。
可选地,所述第二触控电极包括多个由所述第一触控电极彼此间隔开的第二子触控电极和连接沿行方向上相邻的所述第二子触控电极且与所述第一触控电极绝缘的桥接部。
可选地,所述柔性触控基板还包括:位于行方向上相邻的所述第二子触控电极之间且覆盖所述第一接触电极的绝缘图案,其中所述桥接部位于所述绝缘图案上。
可选地,所述柔性触控基板还包括:位于行方向上相邻的所述第二子电极之间的桥接部以及位于所述桥接部上的绝缘图案,其中所述第一触控电极位于所述绝缘图案上。
可选的,所述柔性触控基板还包括设置在所述触控电极图案远离所述柔性衬底基板一侧上的保护层。
进一步可选的,所述柔性触控基板还包括设置在所述保护层远离所述触控电极图案一侧上的保护膜。
第二方面,提供一种触控显示装置,包括上述的柔性触控基板。
第三方面,提供一种柔性触控基板的制备方法,包括:在所述柔性衬底基板的第一表面上形成触控电极图案;在所述柔性衬底基板的所述第一表面和与所述第一表面相对的第二表面的至少一者上形成有至少一个凹槽,所述凹槽在所述衬底基板上的投影位于所述触控电极图案之间的间隙在所述衬底基板上的投影内。
可选的,所述触控电极图案包括:多列第一触控电极和和多行第二触控电极,其中,所述第二触控电极包括由所述第一触控电极间隔开的多个第二子触控电极;在所述柔性衬底基板上形成所述凹槽之后,所述方法还包括:在所述触控电极图案上形成绝缘薄膜;对所述绝缘膜进行构图,以形成位于行方向上相邻的所述第二子触控电极之间且覆盖所述第一接触电极的绝缘图案;在所述绝缘图案上形成导电薄膜; 对所述导电薄膜进行构图,以形成连接相邻所述第二子触控电极的桥接部。
可选的,所述触控电极图案包括:多列第一触控电极和多行第二触控电极,其中所述第二触控电极包括由所述第一触控电极间隔开的多个第二子触控电极;在所述柔性衬底基板上形成所述触控电极图案之前,所述方法还包括:形成导电薄膜;对所述导电薄膜进行构图以形成桥接部,其中,所述桥接部用于将待形成的沿行方向相邻的所述第二子触控电极连接;在所述桥接部上形成绝缘薄膜;对所述绝缘膜进行桥接部,以形成绝缘图案,所述绝缘图案用于将待形成的所述第二子触控电极与所述第一电极相绝缘。
可选的,在形成所述触控电极图案、绝缘图案和桥接部之后,所述方法还包括:形成保护层。
进一步可选的,在形成保护层之后,所述方法还包括:在所述保护层上贴附保护膜。
附图说明
为了更清楚地说明本公开文本实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1(a)为一种柔性触控基板未弯曲的结构示意图;
图1(b)为一种柔性触控基板弯曲时的结构示意图;
图2(a)为本公开文本实施例提供的一种柔性触控基板的结构示意图一;
图2(b)为本公开文本实施例提供的一种柔性触控基板弯曲时的结构示意图;
图2(c)为本公开文本实施例提供的一种柔性触控基板的结构示意图二;
图2(d)为本公开文本实施例提供的一种柔性触控基板的结构示意图三;
图3(a)为本公开文本实施例提供的一种柔性衬底基板上形成凹槽的结构示意图;
图3(b)为本公开文本实施例提供的一种柔性衬底基板弯曲时的结构示意图;
图4为本公开文本实施例提供的一种触控电极图案的结构示意图;
图5为本公开文本实施例提供的一种在柔性衬底基板上形成第一触控电极和第二触控电极的结构示意图;
图6为图5中EE′向剖视示意图;
图7为本公开文本实施例提供的一种柔性触控基板的结构示意图四;
图8(a)为本公开文本实施例提供的一种柔性触控基板的结构示意图五;
图8(b)为图8(a)的柔性触控基板弯曲时的结构示意图;
图9为本公开文本实施例提供的一种柔性触控基板的制备方法的流程示意图;
图10为本公开文本实施例提供的一种在柔性衬底基板上形成触控电极图案的结构示意图;
图11为本公开文本实施例提供的一种将柔性衬底基板贴附在承载基板上的结构示意图;
图12为本公开文本实施例提供的一种在形成有触控电极图案的柔性衬底基板上形成凹槽的结构示意图;
图13为本公开文本实施例提供的一种在触控电极图案上形成绝缘图案的结构示意图;
图14为本公开文本实施例提供的一种在绝缘图案上形成桥接部 的结构示意图;
图15为本公开文本实施例提供的一种在柔性衬底基板上形成桥接部、绝缘图案和触控电极图案的结构示意图;
图16为本公开文本实施例提供的一种在桥接部上形成保护层的结构示意图;
图17为本公开文本实施例提供的一种在保护层上贴附保护膜的结构示意图。
10-柔性衬底基板;101-凹槽;20-触控电极图案;201-第一触控电极;202-第二子触控电极;203-第二触控电极;30-桥接部;40-绝缘图案;50-保护层;60-保护膜;70-光学透明胶;80-承载基板。
具体实施方式
下面将结合本公开文本实施例中的附图,对本公开文本实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开文本一部分实施例,而不是全部的实施例。基于本公开文本中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开文本保护的范围。
当介绍本公开文本的元素及其实施例时,除非上下文中另外明确地指出,否则在本文和所附权利要求中所使用的词语的单数形式包括复数,反之亦然。因而,当提及单数时,通常包括相应术语的复数。用语“包含”、“包括”、“含有”和“具有”旨在包括性的并且表示可以存在除所列要素之外的另外的要素。
出于下文表面描述的目的,如其在附图中被标定方向那样,术语“上”、“下”、“左”、“右”“垂直”、“水平”、“顶”、“底”及其派生词应涉及公开文本。术语“上覆”、“在……顶上”、“定位在……上”或者“定位在……顶上”意味着诸如第一结构的第一要素存在于诸如第二结构的第二要素上,其中,在第一要素和第二要素之间可存在诸如界面结构的中间要素。术语“接触”意味着连接诸如第一结构的第一要素和诸如第二结构的第二要素,而在两 个要素的界面处可以有或者没有其它要素。
如图1(a)所示,一种柔性触控产品中的柔性触控基板是在柔性衬底基板10上制备触控电极图案(Sensor)20,这样只能实现较小曲率的弯曲。在较大曲率弯曲时,如图1(b)所示,柔性衬底基板10会产生较大的应力,应力集中于柔性衬底基板10和触控电极图案20的接触面,由于柔性衬底基板10和触控电极图案20的应力不匹配,因而较大的应力如果不能释放,则很容易使柔性衬底基板10上的触控电极图案20发生变形或破裂(Crack),从而导致触控灵敏度下降,甚至是触控失效,因此大大影响了柔性触控产品使用的可靠性。
本公开文本实施例提供一种柔性触控基板,如图2(a)-图2(d)所示,包括:柔性衬底基板10和设置在柔性衬底基板10的第一表面上的触控电极图案20;柔性衬底基板10在垂直于其厚度方向的表面上(即,第一表面和与所述第一表面相对的第二表面中的至少一者上)设置有至少一个凹槽101,凹槽101在衬底基板上的投影位于触控电极图案20之间的间隙在衬底基板上的投影内。公开文本实施例提供的柔性触控基板能够在柔性触控基板弯曲时避免触控电极图案变形或断裂,且可实现大曲率弯曲。由于柔性衬底基板设置有至少一个凹槽,因而在柔性触控基板弯曲时,一方面,凹槽可以释放因弯曲而产生的应力;另一方面,柔性衬底基板因弯曲而产生的应力会集中于凹槽底部,此时柔性衬底基板受到的应力方向与触控电极图案受到的应力方向一致,因而可以避免触控电极图案变形或破裂。基于此,柔性触控基板可以实现大曲率弯曲,且在弯曲时,可避免触控电极图案变形或破裂,提高了柔性触控基板使用的可靠性
需要说明的是,第一,对于柔性衬底基板10的材料不进行限定,例如可以是PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)或COP(Cyclo—olefinpolymer,环烯烃聚合物)等。
第二,当柔性触控基板用于显示时,触控电极图案20的材料为透明材料。示例的,触控电极图案20的材料例如可以为ITO(Indium Tin  Oxide,氧化铟锡)或IZO(Indium Zinc Oxide,氧化铟锌)中的至少一种。
第三,柔性衬底基板10的垂直于其厚度方向的表面有两个,一个是形成有触控电极图案20的一侧的表面(即,第一表面),另一个是与形成有触控电极图案20的一侧的表面相对的表面(即,第二表面)。
基于此,凹槽101可以如图2(a)所示,设置在柔性衬底基板10的形成有触控电极图案20的一侧的表面;也可以是如图2(c)所示,设置在柔性衬底基板10的与形成有触控电极图案20的一侧的表面相对的表面上(即,柔性衬底基板的远离触控电极图案一侧上);当然也可以是如图2(d)所示,在柔性衬底基板10的垂直于其厚度方向的两个表面均设置。
在此基础上,对于柔性衬底基板10上设置的凹槽101的个数和凹槽101的深度不进行限定,可以根据需要进行相应设置。本公开文本实施例可选,凹槽101在触控电极图案20之间的间隙内均匀分布。
参考图2(a)和图2(b),柔性触控基板弯曲时,柔性衬底基板10的应力方向与触控电极图案20的应力方向一致,且凹槽101可以释放柔性衬底基板10弯曲产生的应力(张应力和压应力),因此触控电极图案20不会发生破裂,柔性触控基板可以实现较大曲率的弯折。
本公开文本实施例提供一种柔性触控基板,由于柔性衬底基板10设置有多个凹槽101,因而在柔性触控基板弯曲时,一方面,凹槽101可以释放因弯曲而产生的应力;另一方面,柔性衬底基板10因弯曲而产生的应力会集中于凹槽101底部,此时柔性衬底基板10受到的应力方向与触控电极图案20受到的应力方向一致,因而可以避免触控电极图案20变形或破裂。基于此,柔性触控基板可以实现大曲率弯曲,且在弯曲时,可避免触控电极图案20变形或破裂,提高了柔性触控基板使用的可靠性。
可选的,如图2(a)和图2(b)所示,凹槽101位于衬底基板10的形成有触控电极图案20的一侧的表面(即,第一表面)上。
其中,凹槽101位于形成有触控电极图案20的一侧的表面上时,触控电极图案20和柔性衬底基板10之间可以直接接触,也可以不接触,触控电极图案20和柔性衬底基板10之间可以设置有其它膜层。由于触控电极图案20与柔性衬底基板10具有凹槽101的表面接触,这样可以更有效地使触控电极图案20和柔性衬底基板10接触的界面产生的应力从凹槽101中释放,进一步防止触控电极图案20破裂,因而本公开文本实施例可选触控电极图案20和柔性衬底基板10具有凹槽101的表面接触。
本公开文本实施例,相对于将凹槽101设置在与形成有触控电极图案20的一侧的表面相对的表面,将凹槽101设置在形成有触控电极图案20的一侧的表面上,这样凹槽101靠近触控电极图案20,当柔性触控基板弯曲时,柔性衬底基板10产生的应力可以从凹槽101释放,从而可以更好地避免触控电极图案20破裂。
需要说明的是,柔性衬底基板10的厚度一般为100μm左右,若凹槽101的深度太大,则柔性触控基板弯曲时,可能会导致柔性衬底基板10断裂;若凹槽101的深度太小,则柔性触控基板弯曲时,凹槽101释放的应力较小,从而不能有效避免触控电极图案20破裂的问题。基于此,本公开文本实施例可选的,凹槽101的深度为约5~10μm。
由于现有的柔性触控产品大多数都是在一个方向上弯曲,因而为了使弯曲产生的应力尽可能都可以从凹槽101中释放,且柔性衬底基板10弯曲时的应力方向与触控电极图案20弯曲时的应力方向相同,因而本公开文本实施例可选的,如图3(a)和图3(b)所示,凹槽101为条状,凹槽101的延伸方向与柔性衬底基板10的弯曲轴AA’的延伸方向相平行。参考图3(a)和图3(b),图3(a)为柔性衬底基板10未弯曲前的示意图,图3(b)为柔性衬底基板10的a边和b边弯曲后的示意图。
可选的,如图4所示,触控电极图案20包括:多列第一触控电极201和多行第二触控电极,每行第二触控电极包括由第一触控电极201 间隔开的多个第二子触控电极202。
基于上述,柔性衬底基板10上的凹槽101在衬底基板上的投影位于触控电极图案20之间的间隙在衬底基板上的投影内,对于凹槽101的具体设置位置不进行限定,例如可以如图4所示,设置在位置A处、B处、C处或D处。
需要说明的是,本公开文本说明书附图4仅示意性地绘示出凹槽101的几种设置位置(虚线框为凹槽101),并没有示意出柔性衬底基板10上的所有凹槽101,本公开文本实施例可选凹槽101均匀分布在柔性衬底基板10上。
柔性触控基板还包括:如图5和图6所示,连接沿行方向上相邻的第二子触控电极202的桥接部30,以形成多个平行的第二触控电极203,第二触控电极203与第一触控电极201交叉绝缘。
其中,对于桥接部30的材料不进行限定,例如可以为金属材料或与触控电极图案20材料相同。
此处,由于第二触控电极203与第一触控电极201交叉绝缘,因而如图6所示在桥接部30与第一触控电极201之间设置有绝缘图案40,附图5未示意出绝缘图案40。如图6所示,绝缘图案40可以位于行方向上相邻的两个第二子触控电极202之间且覆盖第一接触电极201,其中,桥接部30位于绝缘图案40上。
在一个实施例中,如图15所示,柔性触控基板还可以包括:位于行方向上相邻的两个第二子电极202之间的桥接部30以及位于桥接部30上的绝缘图案40,其中,第二触控电极201位于绝缘图案40上。
此外,可以是第一触控电极201为感应电极(Rx),第二触控电极203为驱动电极(Tx);也可以是第一触控电极201为驱动电极,第二触控电极203为感应电极。
本公开文本实施例,通过交叉且绝缘的第一触控电极201和第二触控电极203便可以实现触控功能。
可选的,如图7所示,柔性触控基板还包括设置在触控电极图案 20远离柔性衬底基板10一侧上的保护层(OC)50。
其中,对于保护层50的材料不进行限定,例如可以是氮化硅(SiN x)、氧化硅(SiO x)或氮氧化硅(SiN xO y)中的至少一种。
本公开文本实施例,在触控电极图案20上设置保护层50,从而可以防止触控电极图案20受到破损,保护触控电极图案20。
本领域技术人员应该明白,柔性触控基板为母板,在制作过程中包括多个子柔性触控基板,柔性触控基板在制作完成后,通过切割形成多个子柔性触控基板,而切割容易导致柔性触控基板划伤,因而本公开文本实施例进一步可选的,如图8(a)和图8(b)所示,柔性触控基板还包括设置(例如,贴附)在保护层50远离触控电极图案20一侧的保护膜60。
此处,可以通过光学透明胶(Optical Clear Resin,简称OCR)将保护膜60贴附在保护层50上。
需要说明的是,由于保护膜60设置在保护层50的上方,保护膜60与外界环境接触,因而保护膜60相对于保护层50,硬度较大。
本公开文本实施例,在保护层50上贴附保护膜60,从而可以进一步防止柔性触控基板在运输或切割过程中导致的划伤。
参考图8(a)和图8(b)所示,图8(a)为柔性触控基板未弯曲的结构示意图,图8(b)为柔性触控基板弯曲时的结构示意图,可以看出,柔性触控基板弯曲时,柔性衬底基板10本身产生的应力可以通过柔性衬底基板10上的凹槽101释放,从而可以避免触控电极图案20变形或破裂。
本公开文本实施例提供一种触控显示装置,包括上述的柔性触控基板。
其中,本公开文本实施例提供的触控显示装置可以是显示不论运动(例如,视频)还是固定(例如,静止图像)的且不论文字还是图画的图像的任何装置。更明确地说,预期所述实施例可实施在多种电子装置中或与多种电子装置关联,所述多种电子装置例如(但不限于)移动电 话、无线装置、个人数据助理(PDA)、手持式或便携式计算机、GPS接收器/导航器、相机、MP4视频播放器、摄像机、游戏控制台、手表、时钟、计算器、电视监视器、平板显示器、计算机监视器、汽车显示器(例如,里程表显示器等)、导航仪、座舱控制器和/或显示器、相机视图的显示器(例如,车辆中后视相机的显示器)、电子相片、电子广告牌或指示牌、投影仪、建筑结构、包装和美学结构(例如,对于一件珠宝的图像的显示器)等,此外,触控显示装置还可以是触控显示面板。
本公开文本实施例提供一种触控显示装置,触控显示装置包括柔性触控基板,由于柔性衬底基板10包括至少一个凹槽101,因而在柔性触控基板弯曲时,一方面,凹槽101可以释放因弯曲而产生的应力;另一方面,柔性衬底基板10因弯曲而产生的应力会集中于凹槽101底部,此时柔性衬底基板10受到的应力方向与触控电极图案20受到的应力方向一致,因而可以避免触控电极图案20变形或破裂。基于此,触控显示装置可以实现大曲率弯曲,且在弯曲时,可避免触控电极图案20变形或破裂,提高了触控显示装置使用的可靠性。
本公开文本实施例还提供一种柔性触控基板的制备方法,如图9所示,包括:
S100、如图10所示,在柔性衬底基板10的第一表面上形成触控电极图案20。
其中,对于柔性衬底基板10的材料不进行限定,例如可以是PET或COP等。
此处,当柔性触控基板用于显示时,触控电极图案20的材料为透明材料。示例的,触控电极图案20的材料例如可以为ITO或IZO中的至少一种。
在此基础上,对于触控电极图案20的制备过程不进行限定,例如可以通过黄光工艺制备触控电极图案20,具体的,先沉积导电薄膜(Deposition,简称Dep),再涂布光刻胶,之后再通过曝光(Photo)、 显影以及刻蚀(Etch)工艺形成触控电极图案20。
需要说明的是,由于柔性衬底基板10较软,易于弯曲,因而可能不易于在柔性衬底基板10上形成触控电极图案20。基于此,可以在步骤S100之前,所述制备方法还包括:
如图11所示,将柔性衬底基板10通过光学透明胶70贴附在承载基板80上。
其中,承载基板80的硬度大于柔性衬底基板10的硬度。承载基板80例如可以是玻璃。
S101、如图12所示,在柔性衬底基板10的形成有触控电极图案20的一侧表面(即,第一表面)上形成至少一个凹槽101,凹槽101在衬底基板上的投影位于触控电极图案20之间的间隙在衬底基板上的投影内。需要说明,虽然图12中以凹槽设置在柔性衬底基板的第一表面上为示例,也可以根据需要,将凹槽设置在柔性衬底基板的与第一表面相对的第二表面上,也可以将凹槽设置在柔性衬底基板的第一表面和第二表面二者上。
其中,可以利用干刻工艺例如激光刻蚀工艺在柔性衬底基板10的、形成有触控电极图案20的一侧表面形成凹槽101。
此处,对于柔性衬底基板10上设置的凹槽101的数量不进行限定,可以根据需要进行相应设置。本公开文本实施例可选,凹槽101在触控电极图案20之间的间隙内均匀分布。在此基础上,对于形成的凹槽101的深度不进行限定,本公开文本实施例可选的,凹槽101的深度为约5~10μm。
此外,由于现有的柔性触控产品大多数都是在一个方向上弯曲,因而为了使弯曲产生的应力尽可能都可以从凹槽101中释放,且柔性衬底基板10弯曲时的应力方向与触控电极图案20弯曲时的应力方向相同,因而本公开文本实施例可选的,如图3(a)和图3(b)所示,凹槽101为条状,凹槽101的延伸方向与柔性衬底基板10的弯曲轴AA’的延伸方向相平行。
本公开文本实施例提供一种柔性触控基板的制备方法,由于柔性衬底基板10包括多个凹槽101,因而在柔性触控基板弯曲时,一方面,凹槽101可以释放因弯曲而产生的应力;另一方面,柔性衬底基板10因弯曲而产生的应力会集中于凹槽101底部,此时柔性衬底基板10受到的应力方向与触控电极图案20受到的应力方向一致,因而可以避免触控电极图案20变形或破裂。基于此,柔性触控基板可以实现大曲率弯曲,且在弯曲时,可避免触控电极图案20变形或破裂,提高了柔性触控基板使用的可靠性。
可选的,如图4所示,触控电极图案20包括:多列第一触控电极201以及多行第二触控电极,其中第二触控电极包括由第一触控电极201间隔开的多个第二子触控电极202。在步骤S101之后,上述方法还包括:如图13所示,形成绝缘薄膜,对绝缘膜进行构图工艺,形成位于行方向上相邻的第二子触控电极202之间且覆盖第一触控电极201的形成绝缘图案40;如图14所示,形成导电薄膜,对导电薄膜进行构图,以形成连接行方向上相邻的第二子触控电极202的桥接部30,桥接部30用于将行方向上相邻的的第二子触控电极202连接,以形成第二触控电极203。
其中,对于绝缘图案40的材料不进行限定,例如可以是氮化硅、氧化硅或氮氧化硅中的至少一种。在此基础上,可以利用黄光工艺制备绝缘图案40,具体的,通过涂布光刻胶、曝光、显影以及刻蚀工艺形成绝缘图案40。
此处,对于桥接部30的材料不进行限定,例如可以为金属材料或与触控电极图案20材料相同。当桥接部30的材料为金属材料时,桥接部30可以和柔性触控基板上的金属(Metal)走线同时形成。
本公开文本实施例,通过第一触控电极201和第二触控电极203便可以实现触控功能。
可选的,如图4所示,触控电极图案20包括:多列第一触控电极201和多行第二触控电极,其中,第二触控电极包括由第一触控电极 201间隔开的多个第二子触控电极202;在步骤S100之前,如图15所示,上述方法还包括:形成导电薄膜,对导电薄膜进行构图以形成桥接部30,其中,桥接部30用于将位于行方向上的待形成的相邻的第二子触控电极202连接;形成绝缘薄膜,对绝缘薄膜进行构图以在桥接部30上形成绝缘图案40,绝缘图案40用于将待形成的所述第二子触控电极202与第一电极绝缘201。
需要说明的是,先形成桥接部30和绝缘图案40,再形成触控电极图案20,在形成触控电极图案20之后,在柔性衬底基板10上形成凹槽101时,由于桥接部30和绝缘图案40遮挡了部分触控电极图案20之间的间隙位置,因此柔性衬底基板10上被桥接部30和绝缘图案40遮挡的区域不能形成凹槽101。参考图4,不能在位置A处设置凹槽101,可以在位置B、位置C和位置D处设置凹槽。
本公开文本实施例,可以先形成桥接部30和绝缘图案40,再形成触控电极图案20,桥接部30将触控电极图案20中相邻排的第二子触控电极连接,从而通过第一触控电极201和第二触控电极203便可以实现触控功能。
可选的,如图16所示,在形成触控电极图案20、绝缘图案40和桥接部30之后,上述方法还包括:形成保护层50。
其中,可以通过黄光工艺形成保护层50,具体的,先形成保护层薄膜,再涂布光刻胶,之后再通过曝光、显影以及刻蚀工艺形成保护层50。
此处,对于保护层50的材料不进行限定,例如可以是氮化硅、氧化硅或氮氧化硅中的至少一种。
本公开文本实施例,在触控电极图案20上形成保护层50,从而可以防止触控电极图案20受到破损,保护触控电极图案20。
进一步可选的,如图17所示,在形成保护层50之后,上述方法还包括:在保护层50上贴附保护膜60。
此处,可以利用光刻胶将保护膜60贴附在保护层50上。
需要说明的是,由于保护膜60设置在保护层50的上方,保护膜60与外界环境接触,因而保护膜60相对于保护层50,硬度较大。
本公开文本实施例,在保护层50上贴附保护膜60,从而可以进一步防止柔性触控基板在运输或切割过程中导致的划伤。
基于上述,当柔性触控基板上的膜层都制备完成后,可以将柔性衬底基板10从承载基板80上剥离,以得到如图8(a)所示的柔性触控基板。
以上所述,仅为本公开文本的具体实施方式,但本公开文本的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开文本揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开文本的保护范围之内。因此,本公开文本的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种柔性触控基板,包括:柔性衬底基板,和设置在所述柔性衬底基板的第一表面上的触控电极图案;
    设置在所述柔性衬底基板的所述第一表面和与所述第一表面相对的第二表面中的至少一者上的至少一个凹槽,所述凹槽在所述衬底基板上的投影位于所述触控电极图案之间的间隙在所述衬底基板上的投影内。
  2. 根据权利要求1所述的柔性触控基板,其中,所述凹槽的深度为约5~10μm。
  3. 根据权利要求1所述的柔性触控基板,其中,所述凹槽为条状;所述凹槽的延伸方向与所述柔性衬底基板的弯曲轴的延伸方向相平行。
  4. 根据权利要求1所述的柔性触控基板,其中,所述触控电极图案包括:多列第一触控电极、和多行第二触控电极,所述第二触控电极与所述第一触控电极交叉绝缘。
  5. 根据权利要求4所述的柔性触控基板,其中,所述第二触控电极包括多个由所述第一触控电极彼此间隔开的第二子触控电极和连接沿行方向上相邻的所述第二子触控电极且与所述第一触控电极绝缘的桥接部。
  6. 根据权利要求5所述的柔性触控基板,其中,所述柔性触控基板还包括:位于行方向上相邻的所述第二子触控电极之间且覆盖所述第一接触电极的绝缘图案,其中所述桥接部位于所述绝缘图案上。
  7. 根据权利要求5所述的柔性触控基板,其中,所述柔性触控基板还包括:位于所述桥接部上的绝缘图案,其中所述第一触控电极位于所述绝缘图案上。
  8. 根据权利要求1所述的柔性触控基板,其中,所述柔性触控基板还包括设置在所述触控电极图案远离所述柔性衬底基板一侧上的保护层。
  9. 根据权利要求8所述的柔性触控基板,其中,所述柔性触控基板还包括设置在所述保护层远离所述触控电极图案一侧上的保护膜。
  10. 一种触控显示装置,包括权利要求1-9任一项所述的柔性触控基板。
  11. 一种柔性触控基板的制备方法,其中,包括:
    在所述柔性衬底基板的第一表面上形成触控电极图案;
    在所述柔性衬底基板的所述第一表面和与所述第一表面相对的第二表面的至少一者上形成至少一个凹槽,所述凹槽在所述衬底基板上的投影位于所述触控电极图案之间的间隙在所述衬底基板上的投影内。
  12. 根据权利要求11所述的柔性触控基板的制备方法,其中,所述触控电极图案包括:多列第一触控电极和多行第二触控电极,其中,所述第二触控电极包括由所述第一触控电极间隔开的多个第二子触控电极,
    在所述柔性衬底基板上形成所述凹槽之后,所述方法还包括:
    在所述触控电极图案上形成绝缘薄膜;
    对所述绝缘膜进行构图,以形成位于行方向上相邻的所述第二子触控电极之间且覆盖所述第一接触电极的绝缘图案;
    在所述绝缘图案上形成导电薄膜;
    对所述导电薄膜进行构图,以形成连接行方向上相邻的所述第二子触控电极的桥接部。
  13. 根据权利要求11所述的柔性触控基板的制备方法,其中,所述触控电极图案包括:多列第一触控电极和多行第二触控电极,其中,所述第二触控电极包括被所述第一触控电极间隔开的多个第二子触控电极,
    在所述柔性衬底基板上形成所述触控电极图案之前,所述方法还包括:
    形成导电薄膜;
    对所述导电薄膜进行构图工艺以形成桥接部,其中,所述桥接部 用于将位于行方向上的待形成的相邻的所述第二子触控电极连接;
    在所述桥接部上形成绝缘薄膜;
    对所述绝缘薄膜进行构图,桥接部以形成绝缘图案。
  14. 根据权利要求12或13所述的柔性触控基板的制备方法,其中,在形成所述触控电极图案、绝缘图案和桥接部之后,所述方法还包括:形成保护层。
  15. 根据权利要求14所述的柔性触控基板的制备方法,其中,在形成保护层之后,所述方法还包括:在所述保护层上贴附保护膜。
PCT/CN2018/079807 2017-07-05 2018-03-21 一种柔性触控基板及其制备方法、触控显示装置 WO2019007106A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18807844.8A EP3650998B1 (en) 2017-07-05 2018-03-21 Flexible touch substrate, preparation method for same, and touch display device
US16/307,742 US11360611B2 (en) 2017-07-05 2018-03-21 Flexible touch substrate, preparation method thereof and touch display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710544165.9A CN107315507B (zh) 2017-07-05 2017-07-05 一种柔性触控基板及其制备方法、触控显示装置
CN201710544165.9 2017-07-05

Publications (1)

Publication Number Publication Date
WO2019007106A1 true WO2019007106A1 (zh) 2019-01-10

Family

ID=60180663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079807 WO2019007106A1 (zh) 2017-07-05 2018-03-21 一种柔性触控基板及其制备方法、触控显示装置

Country Status (4)

Country Link
US (1) US11360611B2 (zh)
EP (1) EP3650998B1 (zh)
CN (1) CN107315507B (zh)
WO (1) WO2019007106A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107315507B (zh) * 2017-07-05 2020-06-30 京东方科技集团股份有限公司 一种柔性触控基板及其制备方法、触控显示装置
JP7172211B2 (ja) * 2017-07-28 2022-11-16 Tdk株式会社 導電性基板、電子装置及び表示装置
CN111433720A (zh) * 2017-12-26 2020-07-17 深圳市柔宇科技有限公司 曲面触控板、制作方法及电子设备
CN108227990A (zh) * 2018-01-03 2018-06-29 京东方科技集团股份有限公司 触控基板及显示装置
US11411296B2 (en) * 2018-03-07 2022-08-09 The Research Foundation For The State University Of New York State Flexible radio frequency assemblies, components thereof and related methods
CN108388379B (zh) * 2018-03-15 2021-05-25 京东方科技集团股份有限公司 触控面板、其制作方法及显示装置
CN108415607B (zh) * 2018-03-28 2021-03-23 京东方科技集团股份有限公司 触控结构及制作方法、触控面板及显示设备
CN108762576B (zh) * 2018-06-11 2022-04-15 业成科技(成都)有限公司 触控模组及其制作方法
CN109377879B (zh) * 2018-10-18 2021-01-29 京东方科技集团股份有限公司 柔性显示面板及其制造方法、显示装置
CN111078042B (zh) * 2018-10-19 2022-04-01 昆山工研院新型平板显示技术中心有限公司 一种触控显示屏及制备方法
CN111326668A (zh) * 2018-12-14 2020-06-23 昆山工研院新型平板显示技术中心有限公司 显示屏体、显示装置及显示屏体的制造方法
CN110134288A (zh) * 2019-05-31 2019-08-16 业成科技(成都)有限公司 触控面板、应用其的触控显示模组及触控面板的制作方法
CN110570759B (zh) * 2019-08-09 2021-02-09 华为技术有限公司 触控屏、屏幕模组和电子设备
CN110570764A (zh) * 2019-08-23 2019-12-13 武汉华星光电半导体显示技术有限公司 一种显示面板及其制作方法
KR20210045576A (ko) * 2019-10-16 2021-04-27 삼성디스플레이 주식회사 터치 센서 및 이를 구비한 표시 장치
KR20210058528A (ko) * 2019-11-14 2021-05-24 엘지디스플레이 주식회사 디스플레이 장치
CN111240067B (zh) * 2020-02-28 2022-10-18 京东方科技集团股份有限公司 一种显示面板及其制造方法、显示装置
TWI791302B (zh) * 2021-10-12 2023-02-01 大陸商宸美(廈門)光電有限公司 觸控面板及其製造方法
CN114399958A (zh) * 2022-03-15 2022-04-26 维沃移动通信有限公司 显示模组和电子设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129082A (zh) * 2016-06-24 2016-11-16 上海天马微电子有限公司 一种触控显示面板和装置
CN106227380A (zh) * 2016-07-19 2016-12-14 上海天马微电子有限公司 一种触控传感器、柔性触控显示面板以及电子设备
CN107315507A (zh) * 2017-07-05 2017-11-03 京东方科技集团股份有限公司 一种柔性触控基板及其制备方法、触控显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102100440B1 (ko) * 2013-02-05 2020-04-14 삼성디스플레이 주식회사 플렉서블 터치 스크린 패널
CN103455203A (zh) * 2013-08-30 2013-12-18 京东方科技集团股份有限公司 触摸屏、其制作方法及显示装置
CN203480463U (zh) * 2013-08-30 2014-03-12 京东方科技集团股份有限公司 触摸屏及显示装置
KR102136392B1 (ko) * 2013-09-05 2020-07-22 삼성디스플레이 주식회사 플렉서블 표시장치 및 터치 스크린 패널의 제조 방법
JP2016091948A (ja) * 2014-11-10 2016-05-23 パイオニア株式会社 発光装置
KR102312260B1 (ko) * 2015-01-09 2021-10-13 삼성디스플레이 주식회사 플렉서블 터치 패널 및 플렉서블 표시 장치
KR102305462B1 (ko) 2015-04-30 2021-09-27 삼성디스플레이 주식회사 가요성 윈도우 기판 및 이를 구비한 가요성 표시 장치
KR102367249B1 (ko) * 2015-07-28 2022-02-25 삼성디스플레이 주식회사 플렉서블 터치 패널 및 플렉서블 터치 패널의 제조 방법
CN104991679B (zh) * 2015-07-31 2018-06-05 合肥鑫晟光电科技有限公司 触摸基板及其制作方法、触摸显示装置
US10303315B2 (en) * 2016-04-22 2019-05-28 Samsung Display Co., Ltd. Flexible display device
CN106354314B (zh) * 2016-08-30 2019-08-13 上海天马微电子有限公司 一种触控结构以及制作方法
CN106252526B (zh) * 2016-09-22 2018-03-16 上海天马微电子有限公司 一种有机发光显示面板以及制作方法
US10217957B2 (en) * 2016-10-13 2019-02-26 Sharp Kabushiki Kaisha Organic EL display device and method of manufacturing organic EL display device
KR102343509B1 (ko) * 2017-06-19 2021-12-27 삼성디스플레이 주식회사 패널 하부 시트 및 이를 포함하는 표시 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106129082A (zh) * 2016-06-24 2016-11-16 上海天马微电子有限公司 一种触控显示面板和装置
CN106227380A (zh) * 2016-07-19 2016-12-14 上海天马微电子有限公司 一种触控传感器、柔性触控显示面板以及电子设备
CN107315507A (zh) * 2017-07-05 2017-11-03 京东方科技集团股份有限公司 一种柔性触控基板及其制备方法、触控显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3650998A4 *

Also Published As

Publication number Publication date
US20210223883A1 (en) 2021-07-22
CN107315507A (zh) 2017-11-03
EP3650998A1 (en) 2020-05-13
EP3650998A4 (en) 2021-03-24
CN107315507B (zh) 2020-06-30
EP3650998B1 (en) 2024-07-03
US11360611B2 (en) 2022-06-14

Similar Documents

Publication Publication Date Title
WO2019007106A1 (zh) 一种柔性触控基板及其制备方法、触控显示装置
CN111384101B (zh) 柔性显示设备和包括柔性显示设备的电子装置
US11360517B2 (en) Flexible display apparatus
KR101908501B1 (ko) 터치 스크린 일체형 유기 발광 표시 장치 및 이의 제조 방법
TWI576734B (zh) 觸控裝置
KR20210047616A (ko) 폴더블 디스플레이 장치
US20180224583A1 (en) Optical structure, method for manufacturing optical structure, display substrate and display device
TWI782380B (zh) 顯示裝置
CN106502439B (zh) 触控显示设备
WO2018149125A1 (zh) 触控基板及其制备方法、触控显示装置
WO2020124812A1 (zh) 覆盖窗结构及柔性显示装置
TW201009774A (en) Flexible display panel, manufacturing method thereof, electro-optical apparatus and manufacturing method thereof
WO2018210073A1 (zh) Oled触控显示基板及其制备方法、以及触控显示装置
US10008670B2 (en) Laminate, method of peeling laminate, and method of manufacturing flexible device
KR102442043B1 (ko) 폴더블 표시장치
US11877469B2 (en) Display device and manufacturing method thereof
US20210202853A1 (en) Display apparatus
WO2022095670A1 (zh) 显示模组及其装配方法、显示装置
KR102557962B1 (ko) 터치스크린을 구비하는 평판표시장치 및 그의 제조방법
CN113130559B (zh) 显示装置
KR101233349B1 (ko) 유기 발광 표시 장치 제조 방법
WO2024001616A1 (zh) 显示面板及显示装置
TW201502895A (zh) 觸控面板、觸控顯示面板及製作觸控面板之方法
CN117835751A (zh) 显示面板及显示装置
TWM472206U (zh) 觸控面板及觸控顯示面板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018807844

Country of ref document: EP

Effective date: 20181221

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18807844

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE