WO2019006990A1 - 锂离子电池负极及其制备方法及锂离子电池制备方法 - Google Patents

锂离子电池负极及其制备方法及锂离子电池制备方法 Download PDF

Info

Publication number
WO2019006990A1
WO2019006990A1 PCT/CN2017/115528 CN2017115528W WO2019006990A1 WO 2019006990 A1 WO2019006990 A1 WO 2019006990A1 CN 2017115528 W CN2017115528 W CN 2017115528W WO 2019006990 A1 WO2019006990 A1 WO 2019006990A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
ion battery
lithium ion
positive electrode
mass
Prior art date
Application number
PCT/CN2017/115528
Other languages
English (en)
French (fr)
Inventor
吴江
崔娜娜
王民波
曹虎山
陈焕章
王少平
Original Assignee
福建猛狮新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 福建猛狮新能源科技有限公司 filed Critical 福建猛狮新能源科技有限公司
Publication of WO2019006990A1 publication Critical patent/WO2019006990A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the technical field of chemical power sources, in particular to a lithium ion battery anode, a preparation method thereof and a lithium ion battery preparation method.
  • lithium ion battery anodes use composite graphite anode materials on the market.
  • the batteries fabricated by this formula have the following disadvantages: 1. Poor thermal effect and poor high-temperature charging performance; 2. High temperature conditions, poor battery cycle and high internal resistance, The discharge is large; 3.
  • the electronic heat conduction network of the battery produced by the common process is relatively simple, and the cycle life is low at high temperatures.
  • the invention provides a lithium ion battery anode, a preparation method thereof and a lithium ion battery preparation method, which overcome the deficiencies of the lithium ion battery anode and the preparation method thereof in the background art.
  • the negative electrode of the lithium ion battery comprises composite graphite, a conductive agent, CNT, STOBA and a binder, and the mass ratio of the composite graphite, the conductive agent, the CNT, the STOBA and the binder is 94 to 97: 0.5 to 1.0: 0.1-0.5: 0.2 to 0.7: 2.0 to 5.0.
  • the STOBA is a high divergence oligomer.
  • a method for preparing a negative electrode of a lithium ion battery comprising:
  • Step 1 Weigh 94 to 97 parts by mass of composite graphite, 0.5 to 1.0 part by mass of a conductive agent, 0.1 to 0.5 parts by mass of CNT, 0.2 to 0.7 part by mass of STOBA, and 2.0 to 5.0 parts by mass. Binder
  • Step 2 mixing step 1 to weigh the good material to obtain a mixed powder
  • Step 3 adding the mixed powder prepared in the step 2 to a vacuum mixer, adding a NMP liquid, and stirring to prepare a negative electrode slurry;
  • Step 4 Applying the negative electrode slurry prepared in the step 3 to the negative electrode substrate, then rolling the negative electrode substrate coated with the negative electrode slurry, and then slicing and dividing the rolled negative electrode substrate coated with the negative electrode slurry. Then, a tab was welded thereon to prepare a negative electrode sheet.
  • the mixing time in the step 2 is 5 min to 15 min; and the stirring time in the step 3 is 2 h to 3 h.
  • a method for preparing a lithium ion battery comprising:
  • Step 1 Weigh 94 to 97 parts by mass of composite graphite, 0.5 to 1.0 part by mass of a conductive agent, 0.1 to 0.5 parts by mass of CNT, 0.2 to 0.7 part by mass of STOBA, and 2.0 to 5.0 parts by mass. Binder
  • Step 2 mixing step 1 to weigh the good material to obtain a mixed powder
  • Step 3 adding the mixed powder prepared in the step 2 to a vacuum mixer, adding a NMP liquid, and stirring to prepare a negative electrode slurry;
  • Step 4 Applying the negative electrode slurry prepared in the step 3 to the negative electrode substrate, then rolling the negative electrode substrate coated with the negative electrode slurry, and then slicing and dividing the rolled negative electrode substrate coated with the negative electrode slurry. Then soldering the tabs thereon to form a negative electrode sheet;
  • Step 5 Weigh the positive electrode material, the conductive agent, the binder and the NMP required for the positive electrode sheet into a positive electrode slurry, and spray the positive electrode slurry on the positive electrode substrate;
  • Step 6 drying the positive electrode substrate coated with the positive electrode slurry in step 5, rolling, slicing and slicing, and welding the tabs to form a positive electrode sheet;
  • Step 7 The negative electrode sheet prepared in the step 4 and the positive electrode sheet prepared in the step 6 are separated by a separator, and the whole of the positive electrode sheet, the separator and the negative electrode sheet are wound by an automatic winding machine, and the wound whole is placed in the steel shell. Then, the groove is grooved, and then the battery cap is spot-welded and the electrolyte is filled, and then detected to obtain a lithium ion battery.
  • the mixing time in the step 2 is 5 min to 15 min; and the stirring time in the step 3 is 2 h to 3 h.
  • the invention has the beneficial effects that the negative electrode of the lithium ion battery provided by the invention comprises the composite graphite negative electrode material, the conductive agent, the binder, the CNT, the STOBA, and the lithium ion battery prepared by using the negative electrode formula has high temperature cycle performance.
  • the invention has the advantages of low internal resistance, low self-discharge, and the preparation method of the lithium ion battery comprising the above negative electrode formula provided by the invention, the process is simple, and the obtained lithium ion battery has high temperature cycle performance.
  • FIG. 1 is a comparison diagram of a cycle curve of a MX18650-29P 2750 mAh lithium ion battery prepared by a method for preparing a lithium ion battery according to the present invention and a conventional 2750 mAh lithium ion battery at a high temperature of 55 ° C;
  • FIG. 2 is a comparison diagram of internal resistance of a MX18650-29P 2750 mAh lithium ion battery prepared by a lithium ion battery preparation method of the present invention and a conventional 2750 mAh lithium ion battery.
  • the anode of the lithium ion battery is composed of composite graphite, a conductive agent, CNT, STOBA and a binder, and the mass fraction ratio of the composite graphite, the conductive agent, the CNT, the STOBA and the binder is: 99.4 to 97: 0.5 to 1.0 : 0.1-0.5: 0.2 to 0.7: 2.0 to 5.0.
  • the STOBA is selected from a high-dividing oligomer; the conductive agent is selected from at least one of super P and KS-6; the CNT is a carbon nanotube; and the binder is pvdf.
  • the negative electrode material prepared by the negative electrode formulation is not limited to: composite graphite, lithium titanate, tin alloy, silicon alloy, etc.
  • the substrate coated with the negative electrode material prepared by the negative electrode formulation is not limited to: copper foil, aluminum foil, carbon coated aluminum foil, A carbon-coated copper foil or the like
  • the negative electrode sheet prepared by the negative electrode formula can be matched with the following but not limited to: ternary positive electrode material, lithium iron phosphate positive electrode material, lithium manganate positive electrode material, lithium vanadium phosphate positive electrode material, nickel cobalt aluminum positive electrode A material composed of a material such as a battery is used.
  • the negative electrode sheet prepared by the negative electrode formulation can be applied to the following lithium ion batteries of various assembly types such as a cylindrical lithium ion battery, a square lithium ion battery, a soft lithium ion battery, and the like.
  • a method for preparing a negative electrode of a lithium ion battery comprising:
  • Step 1 Weigh the above negative electrode material of the lithium ion battery, and pass the weighed negative electrode material through a 100 mesh sieve for use;
  • Step 2 The material weighed in step 1 is put into a V-type mixer, and mixed until uniform to prepare a mixed powder; wherein: the mixing time is 5 min to 15 min, and the uniform conditions of the mixing are as follows: ensuring that CNT and STOBA are invisible to the naked eye;
  • Step 3 adding the mixed powder prepared in step 2 to a vacuum mixer, adding NMP liquid, starting the revolution switch and the rotation switch to achieve stirring to obtain a negative electrode slurry; wherein: the stirring time is 2 h to 3 h; the NMP liquid Is N-methylpyrrolidone;
  • Step 4 Applying the negative electrode slurry prepared in the step 3 to the negative electrode substrate, then rolling the negative electrode substrate coated with the negative electrode slurry, and then slicing and dividing the rolled negative electrode substrate coated with the negative electrode slurry. Then soldering the tabs thereon to form a negative electrode sheet;
  • the method for preparing a lithium ion battery further includes the following steps:
  • Step 5 Weigh the positive electrode material, the conductive agent, the binder and the NMP required for the positive electrode sheet into a positive electrode slurry, and spray the positive electrode slurry on the positive electrode substrate;
  • Step 6 drying the positive electrode substrate sprayed with the positive electrode slurry in step 5, rolling, slicing, and welding the tabs to form a positive electrode sheet;
  • the positive electrode substrate such as aluminum foil or current collector;
  • Step 7 The negative electrode sheet prepared in the step 4 and the positive electrode sheet prepared in the step 6 are separated by a separator, and the automatic roll is used. Winding the whole of the positive electrode sheet, the separator and the negative electrode sheet, and then winding the whole body into the steel shell, then rolling the groove, then spot welding the battery cap and filling the electrolyte, and then detecting to obtain lithium ion battery.
  • the lithium ion battery prepared by the above formula and preparation method is compared with the lithium ion battery prepared by the common negative electrode material, and the lithium ion batteries of the two negative electrode formulations are tested at a high temperature of 55 ° C (discharged to 2.5 V, 0.5 C at 0.2 C).
  • the lithium-ion battery cycle life of the common negative electrode formula is 300 ⁇ 79.91%, the lithium of the negative electrode formula of the present invention
  • the cycle life of the ion battery is 300 ⁇ 85.6%, so the cycle performance of the lithium ion battery using the negative electrode formula of the invention at high temperature (55 ° C) is significantly higher than that of the ordinary lithium ion battery.
  • the increase of the internal resistance of the lithium ion battery of the present invention is smaller than that of the ordinary lithium ion battery.
  • the internal resistance of the battery is large, which will cause a large amount of Joule heat to cause the battery temperature to rise, which will cause the battery discharge working voltage to decrease, the discharge time to be shortened, and the battery performance and life life to be seriously affected.
  • the lithium ion battery prepared by the ordinary negative electrode material is numbered 0
  • the lithium ion battery of the following embodiment 1 is numbered 1
  • the lithium ion battery of the second embodiment is numbered 1
  • the third embodiment The lithium ion battery is numbered 3
  • the lithium ion battery of the fourth embodiment is numbered 4.
  • the components of the negative electrode were weighed according to the mass percentage: 95.5% composite graphite material, 0.7% conductive agent, 0.4% CNT, 3.2% binder, 0.2% STOBA, and the total mass percentage of the above components was 100. %.
  • the negative electrode material is weighed and passed through a 100 mesh sieve for use; the above materials are added to a V-type mixer and mixed for 5 minutes; then added to a vacuum mixer, and then NMP glue is added, and the stirring time is 3 hours; the stirred negative electrode slurry is sprayed.
  • On the negative electrode substrate dedicated to the negative electrode rolling, slitting, and welding the tabs to form a negative electrode sheet;
  • the positive electrode ternary, the conductive agent, the binder and the NMP required for the positive electrode sheet are weighed into a positive electrode slurry, and the positive electrode slurry is sprayed on the positive electrode substrate to form a positive electrode sheet;
  • the prepared positive electrode sheet, the prepared negative electrode sheet, and the separator are wound by an automatic winding machine diaphragm, loaded into a steel shell, and then subjected to rolling groove, spot welding battery cap, filling electrolyte, chemical conversion detection, and finally lithium is obtained. Ion battery.
  • the components of the negative electrode were weighed according to the mass percentage: 96% stone composite graphite material, 0.5% conductive agent, 0.3% CNT, 2.9% binder, 0.3% STOBA, and the sum of the mass percentages of the above components was 100%; the negative electrode material will be weighed through a 100 mesh sieve for use; the above materials are added to a V-type mixer for 5 minutes; then added to a vacuum mixer, and then the glue is added for 3 hours; the stirred negative electrode slurry Spray to the negative pole On the negative electrode substrate used, rolling, slitting, and welding the tabs to form a negative electrode sheet;
  • the positive electrode ternary, the conductive agent, the binder and the NMP required for the positive electrode sheet are weighed into a positive electrode slurry, and the positive electrode slurry is sprayed on the positive electrode substrate to form a positive electrode sheet;
  • the prepared positive electrode sheet, the prepared negative electrode sheet, and the separator are wound by an automatic winding machine diaphragm, loaded into a steel shell, and then subjected to rolling groove, spot welding battery cap, filling electrolyte, chemical conversion detection, and finally lithium is obtained. Ion battery.
  • the components of the negative electrode were weighed according to the mass percentage: 95% composite graphite material, 1.1% conductive agent, 0.2% CNT, 3.5% binder, 0.2% STOBA, and the total mass percentage of the above components was 100. %.
  • the negative electrode material is weighed and passed through a 100 mesh sieve for use; the above materials are added to a V-type mixer for 5 minutes; then added to a vacuum mixer, and then the glue is added for 3 hours; the stirred negative electrode slurry is sprayed to On the negative electrode substrate dedicated to the negative electrode, rolling, slitting, and welding the tabs to form a negative electrode sheet;
  • the positive electrode ternary, the conductive agent, the binder and the NMP required for the positive electrode sheet are weighed into a positive electrode slurry, and the positive electrode slurry is sprayed on the positive electrode substrate to form a positive electrode sheet;
  • the prepared positive electrode sheet, the prepared negative electrode sheet, and the separator are wound by an automatic winding machine diaphragm, loaded into a steel shell, and then subjected to rolling groove, spot welding battery cap, filling electrolyte, chemical conversion detection, and finally lithium is obtained. Ion battery.
  • the negative electrode components 94.5% composite graphite material, 1.1% conductive agent, 0.3% CNT, 4.0% binder, 0.1% STOBA, the total mass percentage of the above components is 100. %.
  • the negative electrode material is weighed and passed through a 100 mesh sieve for use; the above materials are added to a V-type mixer and mixed for 5 minutes; then added to a vacuum mixer, and then the glue is added for 3 hours; the stirred negative electrode slurry is sprayed to the negative electrode.
  • the roller is pressed, divided, and the electrode is welded to form a negative electrode sheet;
  • the positive electrode ternary, the conductive agent, the binder and the NMP required for the positive electrode sheet are weighed into a positive electrode slurry, and the positive electrode slurry is sprayed on the positive electrode substrate to form a positive electrode sheet;
  • the prepared positive electrode sheet, the prepared negative electrode sheet, and the separator are wound by an automatic winding machine diaphragm, loaded into a steel shell, and then subjected to rolling groove, spot welding battery cap, filling electrolyte, chemical conversion detection, and finally lithium is obtained. Ion battery.
  • Lithium ion battery anode, preparation method thereof and lithium ion battery preparation method comprising composite
  • the lithium ion battery prepared by the negative electrode material, the conductive agent, the binder, the CNT, and the STOBA has the advantages of high temperature cycle performance, low internal resistance, and low self-discharge.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

锂离子电池负极及其制备方法及锂离子电池制备方法。锂离子电池负极,包含复合石墨、导电剂、CNT、STOBA和粘结剂,所述复合石墨、导电剂、CNT、STOBA和粘结剂的质量份数比为:94~97:0.5~1.0:0.1-0.5:0.2~0.7:2.0~5.0。用这种负极配方制得的锂离子电池具有高温循环性能好、内阻低、自放电低的优点。

Description

锂离子电池负极及其制备方法及锂离子电池制备方法 技术领域
本发明涉及一种化学电源技术领域,尤其涉及一种锂离子电池负极及其制备方法及锂离子电池制备方法。
背景技术
随着动力市场和储能市场在人们生活中的使用范围越来越广,在使用过程中人们对电池性能要求也越来越严格。目前市场上锂离子电池负极使用复合石墨负极材料,使用该配方制造的电池存在有如下缺点:1、热效应差、高温充电性能差;2、高温度条件下,电池循环差、内阻高,自放电大;3、由普通工艺生产的电池电子导热网络比较单一,在高温度下循环寿命低。这些缺点严重影响人们的使用。
发明内容
本发明提供了锂离子电池负极及其制备方法及锂离子电池制备方法,其克服了背景技术中锂离子电池负极及其制备方法所存在的不足。
本发明解决其技术问题的所采用的技术方案之一是:
锂离子电池负极,包含复合石墨、导电剂、CNT、STOBA和粘结剂,所述复合石墨、导电剂、CNT、STOBA和粘结剂的质量份数比为:94~97:0.5~1.0:0.1-0.5:0.2~0.7:2.0~5.0。
一实施例之中:所述STOBA是高分歧寡聚物。
本发明解决其技术问题的所采用的技术方案之一是:
锂离子电池负极制备方法,包括:
步骤1:称取94~97质量份数的复合石墨、0.5~1.0质量份数的导电剂、0.1-0.5质量份数的CNT、0.2~0.7质量份数的STOBA和2.0~5.0质量份数的粘结剂;
步骤2:混合步骤1称取好的材料至均匀以制得混合粉末;
步骤3:将步骤2制得的混合粉末加入真空搅拌机中,再加入NMP液体,并搅拌以制得负极浆料;
步骤4:将步骤3制得的负极浆料涂到负极基体上,接着滚压涂有负极浆料的负极基体,再接着对滚压后的涂有负极浆料的负极基体进行切片分条,然后在其上焊接极耳制成负极片。
一实施例之中:所述步骤2中混合时间是5min~15min;所述步骤3中搅拌时间是2h~3h。
本发明解决其技术问题的所采用的技术方案之三是:
锂离子电池制备方法,包括:
步骤1:称取94~97质量份数的复合石墨、0.5~1.0质量份数的导电剂、0.1-0.5质量份数的CNT、0.2~0.7质量份数的STOBA和2.0~5.0质量份数的粘结剂;
步骤2:混合步骤1称取好的材料至均匀以制得混合粉末;
步骤3:将步骤2制得的混合粉末加入真空搅拌机中,再加入NMP液体,并搅拌以制得负极浆料;
步骤4:将步骤3制得的负极浆料涂到负极基体上,接着滚压涂有负极浆料的负极基体,再接着对滚压后的涂有负极浆料的负极基体进行切片分条,然后在其上焊接极耳制成负极片;
步骤5:称取正极片所需的正极材料、导电剂、粘结剂和NMP配成正极浆料,将正极浆料喷涂在正极基体上;
步骤6:将步骤5涂有正极浆料的正极基体烘干并滚压、切片分条、焊接极耳制成正极片;
步骤7:步骤4制得的负极片和步骤6制得的正极片利用隔膜隔离,用自动卷绕机卷绕正极片、隔膜和负极片的整体,再将卷绕的整体装入钢壳,再对其进行滚槽,接着点焊电池盖帽及加注电解液,然后检测,制得锂离子电池。
一实施例之中:所述步骤2中混合时间是5min~15min;所述步骤3中搅拌时间是2h~3h。
本技术方案与背景技术相比,它具有如下优点:
本发明的有益效果是:本发明提供的锂离子电池负极,包含有复合石墨负极材料、导电剂、粘结剂、CNT、STOBA,用这种负极配方制得的锂离子电池具有高温循环性能好、内阻低、自放电低的优点,本发明提供的包含有上述负极配方的锂离子电池制备方法,工序简单,所制得的锂离子电池高温循环性能好。
附图说明
下面结合附图和实施例对本发明作进一步说明。
图1是本发明一种锂离子电池制备方法所制得的MX18650-29P 2750mAh锂离子电池与普通2750mAh锂离子电池在高温55℃循环曲线对比效果图;
图2是本发明一种锂离子电池制备方法所制得的MX18650-29P 2750mAh锂离子电池与普通2750mAh锂离子电池内阻对比图。
具体实施方式
锂离子电池负极,由复合石墨、导电剂、CNT、STOBA和粘结剂组成,所述复合石墨、导电剂、CNT、STOBA和粘结剂的质量份数比为:99.4~97:0.5~1.0:0.1-0.5:0.2~0.7:2.0~5.0。所述STOBA选用高分歧寡聚物;所述导电剂选用super P,KS-6中的至少一种;CNT为碳纳米管;粘结剂为pvdf。该负极配方制备的负极材料不限于:复合石墨、钛酸锂、锡合金、硅合金等其中一种,该负极配方制备的负极材料涂覆的基体不限于:铜箔、铝箔、涂碳铝箔、涂炭铜箔等其中一种,该负极配方制备的负极片可搭配以下但不限于:三元正极材料、磷酸亚铁锂正极材料、锰酸锂正极材料、磷酸钒锂正极材料、镍钴铝正极材料等类型的正极材料使用组成的电池。该负极配方制备的负极片可应用于以下但不限于:圆柱形锂离子电池、方形锂离子电池、软包锂离子电池等各种装配类型的锂离子电池。
锂离子电池负极制备方法,包括:
步骤1:称取上述的锂离子电池负极材料,并将称取的负极材料过100目筛后备用;
步骤2:将步骤1称取好的材料投入V型混合机,混合至均匀以制得混合粉末;其中:混合时间是5min~15min,该混合均匀条件如:保证肉眼看不见CNT和STOBA;
步骤3:将步骤2制得的混合粉末加入真空搅拌机中,再加入NMP液体,启动公转开关和自转开关实现搅拌以制得负极浆料;其中:搅拌时间是2h~3h;所述的NMP液体为N–甲基吡咯烷酮;
步骤4:将步骤3制得的负极浆料涂到负极基体上,接着滚压涂有负极浆料的负极基体,再接着对滚压后的喷涂有负极浆料的负极基体进行切片分条,然后在其上焊接极耳制成负极片;
锂离子电池制备方法,还包括以下步骤:
步骤5:称取正极片所需的正极材料、导电剂、粘结剂和NMP配成正极浆料,将正极浆料喷涂在正极基体上;
步骤6:将步骤5喷涂有正极浆料的正极基体烘干并滚压、切片分条、焊接极耳制成正极片;其中:该正极基体如铝箔或集流体;
步骤7:步骤4制得的负极片和步骤6制得的正极片利用隔膜隔离,用自动卷 绕机卷绕正极片、隔膜和负极片的整体,再将卷绕的整体装入钢壳,再对其进行滚槽,接着点焊电池盖帽及加注电解液,然后检测,制得锂离子电池。
照上述配方及制备方法制备的锂离子电池和普通负极材料制备的锂离子电池进行对比,并测试两种负极配方的锂离子电池分别在高温55℃中(以0.2C放电至2.5V,0.5C充电至4.2V恒压,截止电流0.05C)相同的测试条件下进行循环测试的效果对比,由图1得知:普通负极配方的锂离子电池循环寿命300≥79.91%,本发明负极配方的锂离子电池循环寿命300≥85.6%,所以采用本发明负极配方的锂离子电池在高温(55℃)条件下循环性能明显高于普通锂离子电池的循环性能。
将普通锂离子电池和本发明的锂离子电池在循环过程中的内阻上升做对比,由图2显示,本发明的锂离子电池内阻上升幅度小于普通锂离子电池内阻的上升幅度。电池内阻大,会产生大量焦耳热引起电池温度升高,会导致电池放电工作电压降低,放电时间缩短,对电池性能、寿命造成严重影响。
图1和图2中,普通负极材料制备的锂离子电池的标号为0,下述的实施例1的锂离子电池的标号为1,实施例2的锂离子电池的标号为1,实施例3的锂离子电池的标号为3,实施例4的锂离子电池的标号为4。
实施例1
按照质量百分比分别称取负极各组分:95.5%的复合石墨材料,0.7%的导电剂,0.4%的CNT,3.2%的粘结剂,0.2%的STOBA,以上组分的质量百分比总和是100%。将称取负极材料过100目筛后备用;将上述物料加入V型混合机内混合5min;接着加入到真空搅拌机中,再加入NMP胶液,搅拌时间3小时;将搅拌好的负极浆料喷涂到负极专用的负极基体上,辊压、分条,焊接极耳制成负极片;
称取正极片所需的正极三元、导电剂、粘结剂、NMP配成正极浆料,将正极浆料喷涂在正极基体上制成正极片;
制备好的正极片、制备好的负极片、隔膜用自动卷绕机隔膜进行卷绕、装入钢壳,再进行滚槽、点焊电池盖帽、加注电解液、化成检测,最终制得锂离子电池。
实施例2
按照质量百分比分别称取负极各组分:96%的石复合石墨材料,0.5%的导电剂,0.3%的CNT,2.9%的粘结剂,0.3%的STOBA,以上组分的质量百分比总和是100%;将称取负极材料过100目筛后备用;将上述物料加入V型混合机内混合5min;接着加入到真空搅拌机中,再加入胶液,搅拌时间3h;将搅拌好的负极浆料喷涂到负极专 用的负极基体上,辊压、分条,焊接极耳制成负极片;
称取正极片所需的正极三元、导电剂、粘结剂、NMP配成正极浆料,将正极浆料喷涂在正极基体上制成正极片;
制备好的正极片、制备好的负极片、隔膜用自动卷绕机隔膜进行卷绕、装入钢壳,再进行滚槽、点焊电池盖帽、加注电解液、化成检测,最终制得锂离子电池。
实施例3
按照质量百分比分别称取负极各组分:95%的复合石墨材料,1.1%的导电剂,0.2%的CNT,3.5%的粘结剂,0.2%的STOBA,以上组分的质量百分比总和是100%。将称取负极材料过100目筛后备用;将上述物料加入V型混合机内混合分5min;接着加入到真空搅拌机中,再加入胶液,搅拌时间3h;将搅拌好的负极浆料喷涂到负极专用的负极基体上,辊压、分条,焊接极耳制成负极片;
称取正极片所需的正极三元、导电剂、粘结剂、NMP配成正极浆料,将正极浆料喷涂在正极基体上制成正极片;
制备好的正极片、制备好的负极片、隔膜用自动卷绕机隔膜进行卷绕、装入钢壳,再进行滚槽、点焊电池盖帽、加注电解液、化成检测,最终制得锂离子电池。
实施例4
按照质量百分比分别称取负极各组分,94.5%的复合石墨材料,1.1%的导电剂,0.3%的CNT,4.0%的粘结剂,0.1%的STOBA,以上组分的质量百分比总和是100%。将称取负极材料过100目筛后备用;将上述物料加入V型混合机内混合5min;接着加入到真空搅拌机中,再加入胶液,搅拌时间3h;将搅拌好的负极浆料喷涂到负极专用的负极基体上,辊压、分条,焊接极耳制成负极片;
称取正极片所需的正极三元、导电剂、粘结剂、NMP配成正极浆料,将正极浆料喷涂在正极基体上制成正极片;
制备好的正极片、制备好的负极片、隔膜用自动卷绕机隔膜进行卷绕、装入钢壳,再进行滚槽、点焊电池盖帽、加注电解液、化成检测,最终制得锂离子电池。
以上所述,仅为本发明较佳实施例而已,故不能依此限定本发明实施的范围,即依本发明专利范围及说明书内容所作的等效变化与修饰,皆应仍属本发明涵盖的范围内。
工业实用性
本发明一种锂离子电池负极及其制备方法及锂离子电池制备方法,包含有复合 负极材料、导电剂、粘结剂、CNT、STOBA,制得的锂离子电池具有高温循环性能好、内阻低、自放电低的优点。

Claims (10)

  1. 锂离子电池负极,包含复合石墨,其特征在于:还包含导电剂、CNT、STOBA和粘结剂,所述复合石墨、导电剂、CNT、STOBA和粘结剂的质量份数比为:94~97:0.5~1.0:0.1-0.5:0.2~0.7:2.0~5.0。
  2. 根据权利要求1所述的锂离子电池负极,其特征在于:所述STOBA是高分歧寡聚物。
  3. 根据权利要求1所述的锂离子电池负极,其特征在于:所述粘结剂为pvdf。
  4. 根据权利要求1所述的锂离子电池负极,其特征在于:所述导电剂选用super P,KS-6中的至少一种。
  5. 锂离子电池负极制备方法,其特征在于:包括:
    步骤1:称取94~97质量份数的复合石墨、0.5~1.0质量份数的导电剂、0.1-0.5质量份数的CNT、0.2~0.7质量份数的STOBA和2.0~5.0质量份数的粘结剂;
    步骤2:混合步骤1称取好的材料至均匀以制得混合粉末;
    步骤3:将步骤2制得的混合粉末加入真空搅拌机中,再加入NMP液体,并搅拌以制得负极浆料;
    步骤4:将步骤3制得的负极浆料涂到负极基体上,接着滚压涂有负极浆料的负极基体,再接着对滚压后的涂有负极浆料的负极基体进行切片分条,然后在其上焊接极耳制成负极片。
  6. 根据权利要求5所述的一种锂离子电池负极制备方法,其特征在于:所述步骤2中混合时间是5min~15min;所述步骤3中搅拌时间是2h~3h。
  7. 根据权利要求5所述的一种锂离子电池负极制备方法,其特征在于:所述粘结剂为pvdf;所述导电剂选用super P,KS-6中的至少一种。
  8. 锂离子电池制备方法,其特征在于:包括:
    步骤1:称取94~97质量份数的复合石墨、0.5~1.0质量份数的导电剂、0.1-0.5质量份数的CNT、0.2~0.7质量份数的STOBA和2.0~5.0质量份数的粘结剂;
    步骤2:混合步骤1称取好的材料至均匀以制得混合粉末;
    步骤3:将步骤2制得的混合粉末加入真空搅拌机中,再加入NMP液体,并搅 拌以制得负极浆料;
    步骤4:将步骤3制得的负极浆料涂到负极基体上,接着滚压涂有负极浆料的负极基体,再接着对滚压后的涂有负极浆料的负极基体进行切片分条,然后在其上焊接极耳制成负极片;
    步骤5:称取正极片所需的正极材料、导电剂、粘结剂和NMP配成正极浆料,将正极浆料喷涂在正极基体上;
    步骤6:将步骤5涂有正极浆料的正极基体烘干并滚压、切片分条、焊接极耳制成正极片;
    步骤7:步骤4制得的负极片和步骤6制得的正极片利用隔膜隔离,用自动卷绕机卷绕正极片、隔膜和负极片的整体,再将卷绕的整体装入钢壳,再对其进行滚槽,接着点焊电池盖帽及加注电解液,然后检测,制得锂离子电池。
  9. 根据权利要求8所述的锂离子电池制备方法,其特征在于:所述步骤2中混合时间是5min~15min;所述步骤3中搅拌时间是2h~3h。
  10. 根据权利要求8所述的锂离子电池制备方法,其特征在于:所述所述粘结剂为pvdf;所述导电剂选用super P,KS-6中的至少一种。
PCT/CN2017/115528 2017-07-07 2017-12-12 锂离子电池负极及其制备方法及锂离子电池制备方法 WO2019006990A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710552544.2A CN107464935A (zh) 2017-07-07 2017-07-07 锂离子电池负极及其制备方法及锂离子电池制备方法
CN201710552544.2 2017-07-07

Publications (1)

Publication Number Publication Date
WO2019006990A1 true WO2019006990A1 (zh) 2019-01-10

Family

ID=60544164

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115528 WO2019006990A1 (zh) 2017-07-07 2017-12-12 锂离子电池负极及其制备方法及锂离子电池制备方法

Country Status (2)

Country Link
CN (1) CN107464935A (zh)
WO (1) WO2019006990A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108448167A (zh) * 2018-02-08 2018-08-24 福建猛狮新能源科技有限公司 一种复合聚合物固态电解质及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887556A (zh) * 2014-03-13 2014-06-25 深圳格林德能源有限公司 一种动力储能聚合物锂离子电池及制备方法
CN104638234A (zh) * 2015-01-04 2015-05-20 深圳市贝特瑞新能源材料股份有限公司 一种负极活性物质、负极极片及其制备方法和锂离子电池
KR20160006414A (ko) * 2014-07-09 2016-01-19 주식회사 지엘비이 스피넬 리튬망간 산화물을 양극활물질로 하고, 음극에 리튬탄산염을 포함하는 리튬이차전지 및 그 제조방법
CN106450201A (zh) * 2016-11-01 2017-02-22 江苏海四达电源股份有限公司 高压实高容量锂离子电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100527491C (zh) * 2006-12-30 2009-08-12 财团法人工业技术研究院 含有改性马来酰亚胺的电池电极浆料组合物
CN105185986A (zh) * 2015-08-14 2015-12-23 江苏腾方新能源科技有限公司 高容量圆柱型18650锂离子电池及其制备方法
CN106299485A (zh) * 2016-10-19 2017-01-04 江苏海四达电源股份有限公司 高比能锂离子动力电池及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103887556A (zh) * 2014-03-13 2014-06-25 深圳格林德能源有限公司 一种动力储能聚合物锂离子电池及制备方法
KR20160006414A (ko) * 2014-07-09 2016-01-19 주식회사 지엘비이 스피넬 리튬망간 산화물을 양극활물질로 하고, 음극에 리튬탄산염을 포함하는 리튬이차전지 및 그 제조방법
CN104638234A (zh) * 2015-01-04 2015-05-20 深圳市贝特瑞新能源材料股份有限公司 一种负极活性物质、负极极片及其制备方法和锂离子电池
CN106450201A (zh) * 2016-11-01 2017-02-22 江苏海四达电源股份有限公司 高压实高容量锂离子电池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO, XINGZHI ET AL.: "Comparative Study on the Development of Cross-Strait", NEW MATERIALS INDUSTRY, 31 October 2015 (2015-10-31), pages 100 *

Also Published As

Publication number Publication date
CN107464935A (zh) 2017-12-12

Similar Documents

Publication Publication Date Title
WO2020125516A1 (zh) 锂金属电极及其制备方法、锂电池
US20130236785A1 (en) Electrode plate, preparing method therefor, super capacitor and lithium ion battery
WO2016206548A1 (zh) 一种锂电池高电压改性负极材料的制备方法
CN107482209B (zh) 一种用于液态和半液态金属电池的正极材料
US20130236786A1 (en) Electrode sheet and its preparation method and super capacitor and lithium ion battery
CN105742695B (zh) 一种锂离子电池及其制备方法
CN110752376B (zh) 一种原位形成金属-汞齐活性集流体的制备方法与应用
WO2020098275A1 (zh) 一种SiO 2包覆三元正极材料及其制备方法
CN106299331A (zh) 包含钛酸锂涂层的锂离子电池正极片及其制备方法和锂离子电池
CN102244233A (zh) 一种类石墨烯掺杂与包覆钛酸锂复合负极材料的制备方法
CN102427123A (zh) 锂离子二次电池及其正极片
CN110335996A (zh) 一种高容量锂离子电池负极及其应用
CN105375034B (zh) 一种锂离子电池集流体及其制备方法和一种锂离子电池
JP2007184261A (ja) リチウムイオン二次電池
CN112635773A (zh) 一种用于一次电池的正极极片和一次电池
CN104393291A (zh) 一种掺杂、包覆共改性的磷酸铁锂正极材料及其制备方法
CN110364681A (zh) 一种三重保护的高安全性的锂离子电池正极片
JP2023528650A (ja) ハイブリットキャパシタの正極、その調製方法および使用
CN108400340A (zh) 一种锂离子电池正极、其制备方法及锂离子电池
CN105185996A (zh) 一种混合动力汽车启动电源用方形锂离子电池及制造方法
WO2019006990A1 (zh) 锂离子电池负极及其制备方法及锂离子电池制备方法
CN115207280A (zh) 一种基于金属氧化物或其复合材料负极的双极性电极及双极性锂离子电池
WO2023050769A1 (zh) 一种锂离子电池及其制备方法
CN114784401A (zh) 一种长循环寿命锂离子电池及一种延长锂离子电池循环寿命的方法
WO2019000861A1 (zh) 锂离子电池正极及其制备方法及锂离子电池制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17916779

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17916779

Country of ref document: EP

Kind code of ref document: A1