WO2019004351A1 - スパッタ装置 - Google Patents

スパッタ装置 Download PDF

Info

Publication number
WO2019004351A1
WO2019004351A1 PCT/JP2018/024572 JP2018024572W WO2019004351A1 WO 2019004351 A1 WO2019004351 A1 WO 2019004351A1 JP 2018024572 W JP2018024572 W JP 2018024572W WO 2019004351 A1 WO2019004351 A1 WO 2019004351A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
target
swinging
glass substrate
rocking
Prior art date
Application number
PCT/JP2018/024572
Other languages
English (en)
French (fr)
Inventor
俊則 金子
哲宏 大野
Original Assignee
株式会社アルバック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アルバック filed Critical 株式会社アルバック
Priority to US16/321,666 priority Critical patent/US11473188B2/en
Priority to KR1020197002524A priority patent/KR102182582B1/ko
Priority to CN201880002937.9A priority patent/CN109563615B/zh
Priority to JP2018563188A priority patent/JP6579726B2/ja
Publication of WO2019004351A1 publication Critical patent/WO2019004351A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases

Definitions

  • the present invention relates to a sputtering apparatus, and more particularly to a technique suitable for use in film formation having a magnetron cathode.
  • a sputtering apparatus and more particularly to a technique suitable for use in film formation having a magnetron cathode.
  • Patent Document 1 in a film forming apparatus having a magnetron cathode, a system is known in which a magnet is moved relative to a target for the purpose of improving the utilization efficiency of the target.
  • Patent Document 3 in recent years, when a plurality of types of film formation processes are continuously performed, the amount of film formation tends to increase, so particle generation in the processing chamber is not caused. There has been an increasing demand to further reduce the required film formation area.
  • the present invention has been made in view of the above circumstances, and aims to achieve the following objects. 1. To enable relative movement of the target and the substrate and maintain the uniformity of the film formed on the substrate. 2. Save space for the device. 3. To reduce particle generation regardless of the increase in the amount of film formation. 4. To maintain film formation characteristics and reduce particle generation regardless of driving on the cathode side which causes particle generation. 5. Prevent the deterioration of membrane characteristics.
  • a sputtering apparatus is an apparatus for forming a film on a substrate to be processed by sputtering, which is a vacuum chamber, and a target provided on a surface of a cathode provided in the vacuum chamber;
  • a substrate holding unit provided in the vacuum chamber so as to face the target, on which the substrate to be processed is installed, and a swinging unit that allows the substrate holding unit to swing relative to the target,
  • the swing area of the substrate to be processed in the substrate holding unit is set smaller than the erosion area of the target.
  • the substrate holding unit is disposed at both end positions of the processing target substrate in the swinging direction of the substrate holding unit, and extends in a direction intersecting the swinging direction. You may provide the existing longitudinal shield.
  • the vacuum chamber is disposed at an end portion of the longitudinal adhesion attachment plate in a direction crossing the swing direction, and disposed at both end positions of the substrate to be processed The anti-adhesion plate may be provided not synchronized with the swinging of the substrate holding unit.
  • the length of the longitudinal shield may be set larger than the dimension between the lateral shields facing each other in the direction intersecting the swing direction.
  • the dimension in the swinging direction of the horizontal adhesion preventing plate is set larger than the outer boundary dimension of the swinging range of the vertical adhesion preventing plate in the swinging direction. It is also good.
  • the dimension of the lateral adhesion preventing plate in the swinging direction may be set smaller than the dimension of the target in the swinging direction.
  • the rocking portion has a rocking shaft extending in the rocking direction, and is rocked to rock the substrate holding portion in the axial direction of the rocking shaft. You may have a drive part.
  • the rocking shaft is connected to a rotational driving unit capable of rotating the rocking shaft around an axis, and the substrate is held by the rotation of the rocking shaft.
  • a rotational drive unit may be provided to enable rotational movement between the two.
  • a magnetron magnetic circuit disposed on the back of the cathode and generating a magnetron plasma, and swinging the magnetron magnetic circuit with respect to the back of the cathode accordingly
  • a magnetic circuit swing unit that causes the plasma to move on the surface of the target when generating
  • a sputtering apparatus is an apparatus for forming a film on a substrate to be processed by sputtering, which is a vacuum chamber, and a target provided on a surface of a cathode provided in the vacuum chamber;
  • a substrate holding unit provided in the vacuum chamber so as to face the target, on which the substrate to be processed is installed, and a swinging unit that allows the substrate holding unit to swing relative to the target,
  • the swing area of the substrate to be processed in the substrate holding unit is set smaller than the erosion area of the target.
  • a sputtering apparatus provided with a swingable target in which the target swings.
  • a swingable target not only the target but also a casing (internal chamber) surrounding a wire or a magnetic circuit connected to the target is provided in the film formation chamber.
  • the housing exposes the surface of the target to the front space.
  • the case is a swinging part, and when swinging the target, the case also swings in the film forming chamber.
  • not only deposits attached during film formation are deposited on the surface of the region shown by the hatched lines in FIG. 12, but also the side of the housing not facing the glass substrate. Deposits are also deposited on the back side.
  • the surface area on which the deposit is deposited is increased.
  • the deposit accompanying the film formation is deposited only on the surface of the region indicated by the hatching in FIG.
  • the housing since the housing is not provided, deposits do not deposit on the side surface and the back surface of the housing. That is, the surface area on which deposits are deposited can be reduced.
  • the present embodiment can reduce the area on which the deposit adheres to the rocking portion to about 2/3 to 1/2 as compared with the case of the rocking target. In this example, it is possible to reduce the area to which the deposit adheres by about 1.5 to 2 times the area of the swinging portion that constitutes the swingable target.
  • the substrate holding unit is disposed at both end positions of the processing target substrate in the swinging direction of the substrate holding unit, and extends in a direction intersecting the swinging direction. Equipped with a longitudinal shield.
  • the vacuum chamber is disposed at an end of the longitudinal adhesion plate in a direction crossing the swing direction, and is disposed at both end positions of the processing substrate. And, it has a side anti-adhesion plate which is not synchronized with the swing of the substrate holding part.
  • the longitudinal shield As a result, in the substrate to be processed having a rectangular contour, the peripheral edges of the two longitudinal sides located at mutually opposite positions are covered by the longitudinal shield.
  • this lateral attachment plate it is possible to perform film formation on the target substrate while covering the edge of the target substrate extending in the lateral direction.
  • the lateral attachment plate is disposed at a position corresponding to the end of the target in the direction orthogonal to the swing direction.
  • the lateral attachment plate covers all of the edge areas of the substrate to be processed that are opposite to each other. For this reason, it becomes possible to cover the four sides of the to-be-processed substrate which has a rectangular outline, and to perform uniform film-forming on the whole surface of a to-be-processed substrate by a vertical attachment board and a horizontal attachment board.
  • the length of the longitudinal shield is set to be larger than the dimension between the lateral shields opposed to each other in the direction crossing the swing direction.
  • the film-forming particles hit from the target reach the surface of the substrate to be processed disposed between the longitudinal shield plates facing each other.
  • the surface to which the film formation particles reach is a film formation region. In the film formation region, uniform film formation becomes possible.
  • region of a to-be-processed substrate can be covered with a vertical attachment board and a horizontal attachment board.
  • the dimension in the swinging direction of the horizontal attachment preventing plate is set larger than the outer boundary dimension of the swing range of the vertical attachment preventing plate in the swinging direction.
  • the dimension of the side anti-adhesion plate in the swinging direction is set smaller than the dimension of the target in the swinging direction.
  • the dimension of the target in the swing direction means the maximum dimension of the region capable of generating film-forming particles when the sputtering apparatus includes a plurality of targets.
  • the dimension of the lateral attachment plate may be set so that at least the distance between the inner ends of the lateral attachment plates facing each other is smaller than the dimension of the target in the direction orthogonal to the swing direction. The distance between the outer ends of the lateral adhesion plates facing each other can also extend beyond the region in the rocking direction of the target capable of generating film-forming particles.
  • the rocking portion has a rocking shaft extending in a rocking direction
  • the rocking drive is configured to rock the substrate holding portion in the axial direction of the rocking shaft.
  • the swinging shaft is connected to a rotational driving unit capable of rotating the swinging shaft around an axis, and the substrate holding unit is rotated by the swinging of the swinging shaft.
  • a rotational driving unit capable of rotating the swinging shaft around an axis
  • the substrate holding unit is rotated by the swinging of the swinging shaft.
  • the substrate holding unit in the vacuum chamber is rotated, and the substrate to be processed is placed on and removed from the substrate holding unit at the horizontal mounting position, and the substrate to be processed held by the substrate holding unit at the vertical processing position. It is possible to raise the processing surface along the substantially straight direction so as to face the target and to swing it to form a film.
  • a magnetron magnetic circuit disposed on the back of the cathode and generating a magnetron plasma, and the magnetron magnetic circuit is oscillated with respect to the back of the cathode, And a magnetic circuit swing unit configured to cause plasma when generated to move on the surface of the target.
  • the substrate to be processed can be swung in magnetron sputtering to achieve film formation uniformity.
  • film formation can be suitably performed with the swing of the magnetron magnetic circuit and the swing of the substrate to be processed as a predetermined speed and swing range.
  • the swing range of the processing target substrate can be set to be smaller than the swing range of the magnetron magnetic circuit.
  • the aspect of the present invention it is possible to cope with the increased amount of film formation by reducing the generation of particles in the vacuum chamber while improving the uniformity of film formation in a state in which the target substrate and the target are swung. As a result, it is possible to improve the yield and to reduce the volume of the device to save space.
  • FIG. 1 is a schematic plan view showing a sputtering apparatus according to the present embodiment.
  • reference numeral 1 denotes the sputtering apparatus.
  • the sputtering apparatus 1 is, for example, in the case of forming a TFT (Thin Film Transistor) on a substrate made of glass or the like in a manufacturing process of a liquid crystal display, vacuum relative to a target substrate made of glass or resin. It is an interback type vacuum processing apparatus that performs heat treatment, film formation treatment, etching treatment, and the like in an environment.
  • TFT Thin Film Transistor
  • the sputtering apparatus 1 is, as shown in FIG. 1, a load / unload chamber 2 for carrying in / out a substantially rectangular glass substrate 11 (substrate to be treated) and a glass substrate 11 such as ZnO-based or In 2 O 2.
  • a transfer chamber positioned between the deposition chamber 4 and the load / unload chamber 2 (vacuum chamber), and a pressure-resistant deposition chamber 4 (vacuum chamber) for forming a film such as a three- system transparent conductive film by sputtering. 3 and.
  • the sputtering apparatus 1 according to the present embodiment is shown as a side sputtering type in FIG. 1 but may be a sputtering down type or a sputter up type.
  • the sputtering apparatus 1 is provided with a film forming chamber 4A (vacuum chamber) and a load / unload chamber 2A (vacuum chamber).
  • the plurality of chambers 2, 2 ⁇ / b> A, 4, 4 ⁇ / b> A are formed to surround the periphery of the transfer chamber 3.
  • Such a chamber will be configured, for example, to include two load / load chambers (vacuum chambers) formed adjacent to each other and a plurality of processing chambers (vacuum chambers).
  • one load / unload chamber 2 is a load chamber for loading the glass substrate 11 from the outside toward the inside of the sputtering apparatus 1 (vacuum processing apparatus), and the other load / unload chamber 2A is a sputtering apparatus 1 is an unloading chamber for unloading the glass substrate 11 from the inside to the outside of the chamber 1;
  • a configuration may be employed in which the film forming chamber 4 and the film forming chamber 4A perform different film forming steps.
  • a partition valve may be formed between the chambers 2, 2A, 4 and 4A and the transfer chamber 3 as described above.
  • a positioning member that can be aligned by setting the mounting position of the glass substrate 11 carried in from the outside of the sputtering apparatus 1 may be disposed.
  • the load / unload chamber 2 is also provided with a roughing exhaust device (roughing exhaust means, low vacuum exhaust device) such as a rotary pump for rough vacuuming the chamber.
  • a transfer device 3a (transfer robot) is disposed inside the transfer chamber 3, as shown in FIG. 1, a transfer device 3a (transfer robot) is disposed.
  • the transfer device 3a has a rotation shaft, a robot arm attached to the rotation shaft, a robot hand formed at one end of the robot arm, and a vertical movement device for moving the robot hand up and down.
  • the robot arm is composed of first and second active arms which can be bent relative to each other, and first and second driven arms.
  • the transfer device 3 a can move the glass substrate 11 as the transferred object between each of the chambers 2, 2 ⁇ / b> A, 4, 4 ⁇ / b> A and the transfer chamber 3.
  • FIG. 2 is a perspective view showing a part of the film forming chamber in the present embodiment
  • FIG. 3 is a front view showing a film forming port portion of the film forming chamber in the present embodiment.
  • a supply device for supplying a film forming material
  • a backing plate 6 cathode, A cathode electrode
  • a power supply for applying a sputtering voltage of negative potential to the backing plate 6
  • a gas introducing device gas introducing means
  • turbo molecules for vacuuming the inside of the film forming chamber 4
  • a high vacuum evacuation device such as a pump is provided.
  • the backing plate 6 is erected at a position farthest from the transfer port 4 a of the transfer chamber 3 (see FIG. 4).
  • a target 7 is fixed on the front side of the backing plate 6 facing substantially parallel to the glass substrate 11.
  • the backing plate 6 plays the role of an electrode for applying a sputtering voltage of negative potential to the target 7.
  • the backing plate 6 is connected to a power supply that applies a sputtering voltage of negative potential.
  • a magnetron magnetic circuit for forming a predetermined magnetic field on the target 7 and generating a magnetron plasma is provided. Further, the magnetron magnetic circuit is mounted on a swing mechanism and configured to be able to swing by a drive device for swinging the magnetic circuit.
  • the target 7 is configured by arranging a plurality of long targets having a track shape. Although FIG. 12 shows eight long targets, the number of long targets is not limited to eight.
  • the sputtering apparatus 1 may include a magnetic circuit swing unit.
  • the magnetic circuit swinging portion swings the magnetron magnetic circuit with respect to the back side of the backing plate 6, and in response to that, the plasma when generating the magnetron plasma moves along the surface of the target 7.
  • the inside of the film forming chamber 4 is composed of a front space 41 where the surface of the glass substrate 11 is exposed during film formation, and a back space 42 located on the back side of the glass substrate 11.
  • a backing plate 6 to which the target 7 is fixed is disposed in the front space 41.
  • the back side space 42 of the film forming chamber 4 is provided with a film forming port 4 b opened to the front side space 41.
  • the glass substrate 11 is shaken in the lateral direction (direction indicated by symbol AX) so that the target 7 and the surface 11a to be treated face each other during film formation.
  • a substrate holding unit 10 substrate holding means which holds the substrate in a movable manner is provided.
  • the substrate holding unit 10 includes a swinging shaft 12 extending substantially parallel to the transfer port 4 a and / or the film forming port 4 b at a lower position of the back side space 42, and a swinging shaft 12, a holding portion 13 attached to the rear surface of the glass substrate 11 and a longitudinal edge 11Y of the glass substrate 11 facing the holding portion 13 and a longitudinal shield covering a region 10R to which the film forming material in the substrate holder 10 adheres. And a mounting plate 15 (first adhesion preventing plate).
  • the substrate holding portion 10 such as the rocking shaft 12 and the like, and the side adhesion preventing plate 21 (second adhesion preventing plate) constitute a rocking portion (rocking means).
  • the longitudinal shield plate 15 is disposed at both end positions of the glass substrate 11 in the swing direction indicated by reference numeral AX, and extends in a direction intersecting the swing direction.
  • a lateral adhesion preventing plate 21 is provided at each of the upper position and the lower position of the film forming port 4 b.
  • the lateral anti-sticking plate 21 is disposed at the end of the longitudinal anti-sticking plate 15 in the direction intersecting with the swinging direction indicated by reference numeral AX, and is disposed at both end positions of the glass substrate 11. It does not synchronize with.
  • the length of the longitudinal shield plate 15 is larger than the dimension between the lateral shield plates 21 opposed to each other in the direction intersecting with the swing direction indicated by reference numeral AX.
  • a rocking drive unit 20 (rotational driving unit) is connected to the rocking shaft 12 so as to be rockable in the axial direction AX.
  • the swing drive unit 20 also has a rotation drive unit that causes the swing shaft 12 to rotate around the axis (rotational direction indicated by symbol R) simultaneously with the swing of the swing shaft 12.
  • the swing drive unit 20 (rotation drive unit) is disposed outside the film forming chamber (vacuum chamber).
  • a substantially rectangular flat holding portion 13 is attached to the swinging shaft 12 via an attachment member 12a.
  • the position of the plane of the holding portion 13 does not coincide with the position of the axis of the rocking shaft 12.
  • the holding portion 13 is configured to be capable of moving the glass substrate 11 to be held following the rotation (rotational direction R) around the axis of the rocking shaft 12 and the rocking in the axial direction AX.
  • the holding portion 13 is capable of rotational operation by rotation around the axis of the rocking shaft 12 by the rotational drive portion 20.
  • a horizontal mounting position at which the holding portion 13 is disposed along the substantially horizontal direction above the swing shaft 12, and a vertical processing position at which the holding portion 13 is disposed to rise along the substantially vertical direction The rotation operation of the holding unit 13 is performed between
  • the conveyance port 4a is located in the extension line of the surface of the holding
  • the surface of the holding unit 13 disposed at the vertical processing position is located so as to substantially close the film forming port 4 b.
  • the surface of the glass substrate 11 faces the backing plate 6, and film formation on the surface of the glass substrate 11 becomes possible.
  • the holding portion 13 is rocked in the lateral direction (direction indicated by reference numeral AX) of the film forming port 4 b by the rocking driving portion 20 rocking in the axial direction of the rocking shaft 12. It is possible to move.
  • the substrate holding unit 10 is provided in the holding unit 13. Further, in the substrate holding unit 10, a lift pin (not shown) and a lift pin moving unit (not shown) for moving the lift pin up and down are arranged.
  • the lift pins project upward from the upper surface of the holding portion 13 disposed at the horizontal mounting position when the glass substrate 11 is carried in or carried out by the drive of the lift pin moving portion, and the glass substrate is above the holding portion 13 Support 11
  • the lift pin moving unit may be configured to move the lift pin up and down by a drive device such as a drive motor disposed outside the film forming chamber 4 (vacuum chamber).
  • the lift pin moving unit can drive the lift pins while keeping the chamber 4 sealed. With this configuration, when the glass substrate 11 is carried in or out of the film forming chamber 4, the glass substrate 11 can be freely transferred between the holding unit 13 and the robot hand of the transfer device 3 a.
  • the longitudinal shield plate 15 is provided parallel to the holding portion 13 disposed at the horizontal mounting position.
  • the two vertical attachment plates 15 facing each other are disposed at both end positions of the glass substrate 11 in the lateral direction, and are provided to extend in the longitudinal direction so as to cover the longitudinal edge 11Y.
  • the longitudinal shield plate 15 is capable of moving the longitudinal shield plate 15 and the holding portion 13 so as to be separated from and close to each other. That is, the vertical shield plate 15 is provided such that the distance between the vertical shield plate 15 and the holding portion 13 is variable. Under the present circumstances, the distance which the vertical attachment board 15 and the holding part 13 space apart changes in a perpendicular direction, maintaining the parallel attachment board 15 and the holding part 13 mutually parallel state.
  • the substrate holding unit 10 can be driven so as to change the distance between the vertical adhesion preventing plate 15 and the holding unit 13, and the glass substrate 11 is held between the vertical adhesion preventing plate 15 and the holding unit 13 to form a glass.
  • the substrate 11 can be held and released.
  • the vertical shield plate 15 can move up and down while maintaining the parallel state with respect to the holding unit 13 by, for example, a lift pin moving unit (not shown) or the like.
  • the longitudinal adhesion-preventing plate 15 has a region 10 R where the film forming material in the substrate holder 10 is not desired to be attached and the periphery of the glass substrate 11 supported by the holder 13. It is formed in a shape along longitudinal edge 11Y which is both ends in the left-right direction of glass substrate 11 so as to cover the non-film formation region which becomes longitudinal edge 11Y.
  • the vertical attachment preventing plate 15 can be rotated in synchronization with the holding portion 13 by the rotation of the swing shaft 12 in a state in which the glass substrate 11 is held.
  • the longitudinal shield plate 15 is positioned so as to substantially close the film formation port 4b when the holding unit 13 is disposed at the vertical processing position, and swings in synchronization with the horizontal swinging operation of the holding unit 13 Is configured to
  • the horizontal direction shape of the vertical adhesion preventing plate 15 is set such that the vertical adhesion preventing plate 15 does not contact the left and right ends of the film forming port 4b when the holding portion 13 is swung at the vertical processing position.
  • the vertical shield plate 15 is configured not to be separated from the holding portion 13.
  • a substrate guide or the like integrated with the portion 13 can also be provided.
  • the substrate guide a structure capable of supporting the glass substrate 11 in contact with the outer peripheral end surface of the glass substrate 11 is preferably employed.
  • two lateral anti-adhesion plates 21 disposed at the upper end position and the lower end position of the film forming port 4b and facing each other are provided to extend in the lateral direction.
  • the end of the horizontal adhesion preventing plate 21 located near the center of the film forming port 4 b is the upper end 15 U (end) and the lower end 15 L (end) of the vertical adhesion preventing plate 15, and the upper and lower ends of the glass substrate 11.
  • the lateral adhesion plate 21 has a region from the upper end portion of the outer periphery of the substrate holding portion 10 to the upper end portion of the outer peripheral portion of the glass substrate 11 and a lower end portion of the outer peripheral portion of the glass substrate 11 from the lower end portion of the outer periphery of the substrate holding portion 10 It is provided to cover the area up to.
  • the lateral anti-adhesion plate 21 is provided in a portion other than the glass substrate 11 so as to cover the region to which the particles struck from the target 7 of the backing plate 6 adhere.
  • the lateral dimension of the lateral attachment plate 21 is set equal to the lateral dimension of the film formation port 4b, and the lateral attachment plate 21 extends over the entire length in the lateral direction of the film formation aperture 4b. ing.
  • the vertical shield plate 15 and the horizontal shield plate 21 are combined into a frame shape when the holding portion 13 is disposed at the vertical processing position.
  • the vertical adhesion preventing plate is such that the film forming material reaches the surface 11 a (surface) of the glass substrate 11. Openings 15a and 21a penetrating in the thickness direction of 15 are formed.
  • the inclined portions 15 b and 21 b have inclined surfaces such that the thickness of the inclined portions 15 b and 21 b decreases in the direction from the outside to the center of the glass substrate 11. That is, the openings 15a and 21a are formed such that the opening areas of the openings 15a and 21a are reduced in the direction from the front surface side to the rear surface of the vertical adhesion preventing plate 15 and the horizontal adhesion preventing plate 21.
  • the inclined portions 15b and 21b are formed on the inner peripheral surfaces of the openings 15a and 21a.
  • the glass substrate 11 carried into the interior from the outside of the sputtering apparatus 1 is first placed on the positioning member in the load / unload chamber 2 so that the glass substrate 11 is disposed at a predetermined position on the positioning member. Aligned to
  • the glass substrate 11 placed on the positioning member of the load / unload chamber 2 is supported by the robot hand of the transfer device 3 a (transfer robot) and taken out of the load / unload chamber 2. Then, the glass substrate 11 is transferred to the film forming chamber 4 via the transfer chamber 3.
  • FIGS. 4 to 9 are schematic side views showing steps performed in the film forming chamber in the present embodiment.
  • the description of the portions such as the inclined portions 15b and 21b is omitted.
  • the vertical shield board 15 is disposed at a preparation position separated from the holding unit 13 by a lift pin moving unit (not shown).
  • the glass substrate 11 that has reached the film forming chamber 4 is placed on the holding unit 13 of the substrate holding unit 10 by the transfer device 3 a (transfer robot).
  • the glass substrate 11 supported by the transfer device 3a substantially parallel to the longitudinal shield plate 15 and the holding portion 13 is, as shown by an arrow A in FIG.
  • the holding portion 13 is inserted from the outside to the inside in the direction parallel to the surface of the holding portion 13.
  • the lift pin moving unit moves the lift pins above the surface of the holding unit 13, and the lift pins project above the surface of the holding unit 13 to receive the glass substrate 11.
  • the robot hand of the transfer device 3 a approaches the holding unit 13, and the glass substrate 11 is aligned at a predetermined in-plane position of the holding unit 13.
  • the glass substrate 11 is placed on the holding portion 13.
  • the arm of the transfer robot 3 a retracts to the transfer chamber 3.
  • the lift pins of the lift pin moving unit provided in the substrate holding unit 10 are lowered, and the glass substrate 11 is stored below the holding unit 13, whereby the glass substrate 11 is supported by the holding unit 13.
  • the longitudinal shield plate 15 descends toward the holding portion 13 and approaches by the lift pin moving portion (not shown).
  • the longitudinal shield plate 15 is stopped, the front and back surfaces of the glass substrate 11 are held between the longitudinal shield plate 15 and the holding portion 13 by a support portion (not shown) or the like.
  • the glass substrate 11 is held by the substrate holding unit 10 in a state of being aligned as a film formation processing position.
  • the glass substrate 11 can also be supported by a substrate guide or the like provided on the longitudinal shield plate 15 or the holding portion 13.
  • the holding portion 13 and the longitudinal shield attached to the rocking shaft 12 via the mounting member 12a In a state where the glass substrate 11 is held by the plate 15, the holding portion 13 and the longitudinal attachment prevention plate 15 rotate around the axis of the swing shaft 12 and rise so as to reach the vertical processing position. As a result, the film formation port 4 b is substantially closed by the vertical attachment preventing plate 15 and the holding portion 13, and the vertical attachment preventing plate 15 approaches the horizontal attachment preventing plate 21.
  • the longitudinal shield plates 15 and the lateral shield plates 21 which are close to each other are combined into a frame shape, and the glass substrate 11 is formed by the frame-shaped vertical shield plates 15 and the horizontal shield plates 21.
  • the entire circumference (the vertical edge 11Y, the edge 11U, the edge 11L) of the peripheral portion of the processing surface 11a is covered so as not to reach the film forming material.
  • the glass substrate 11 exposed to the openings 15 a and 21 a formed by the frame-shaped longitudinal shield 15 and the horizontal shield 21 faces the target 7 of the backing plate 6.
  • the glass substrate 11 disposed at the vertical processing position and held by the substrate holding unit 10 is held with the surface 11 a (surface to be processed) of the glass substrate 11 and the surface of the backing plate 6 substantially parallel.
  • the film forming process is performed in the film forming chamber 4.
  • the gas introduction apparatus supplies a sputtering gas and a reaction gas to the film forming chamber 4, and an external power supply applies a sputtering voltage to the backing plate 6.
  • a predetermined magnetic field is formed on the target 7 by a magnetron magnetic circuit. Ions of the sputtering gas excited by plasma in the front space 41 of the film forming chamber 4 collide with the target 7 of the backing plate 6 to cause particles of the film forming material to fly out. Then, after the ejected particles and the reaction gas are combined, the particles adhere to the glass substrate 11 to form a predetermined film on the surface of the glass substrate 11.
  • the rocking shaft 12 is rocked in the axial direction by the rocking drive unit 20 in the film forming step, as shown in FIG.
  • the holding portion 13 swings in the left-right direction.
  • the held glass substrate 11 is moved relative to the backing plate 6 in the lateral direction.
  • FIG. 10 and FIG. 11 are schematic top views showing swinging of the deposition preventing plate (longitudinal deposition preventing plate 15 and horizontal deposition preventing plate 21) in the present embodiment.
  • the holding unit 13 reciprocates as indicated by reference numerals D1 and D2. Specifically, viewed from the backing plate 6 of FIG. 10, the holder 13 moves along the direction from the position PL of the left end of the film forming port 4b to the position PR of the right end, that is, along the direction D1. Do. Further, viewed from the backing plate 6 of FIG.
  • the holding portion 13 moves along the direction from the position PR of the right end of the film forming port 4b to the position PL of the left end, that is, the direction D2. That is, in the region between the position PR and the position PL, the holding unit 13 reciprocates along the directions D1 and D2. As a result, the glass substrate 11 held by the holding unit 13 and the backing plate 6 move relative to each other, and the in-plane uniformity of the film characteristics of the sputtered film formed on the glass substrate 11 is maintained.
  • FIG. 12 is a schematic front view showing the relationship between the target 7 in the present embodiment and a region (swing region) in which the substrate swings with respect to the target 7.
  • FIG. 13 is a schematic front view showing the positional relationship between the glass substrate 11 and the deposition preventing plate (the vertical deposition preventing plate 15 and the horizontal deposition preventing plate 21) in the present embodiment.
  • the position of the glass substrate 11 that moves with the reciprocating movement of the holding unit 13 and the position of the target 7 are superimposed.
  • FIG. 13 a portion where the longitudinal shield plate 15 and the lateral shield plate 21 overlap is omitted, and one shield plate in which the longitudinal shield plate 15 and the lateral shield plate 21 are integrally combined is provided. It is shown.
  • the target 7 has a configuration in which eight long targets having a track shape are arranged.
  • a portion shown by a broken line inside the outline of the long target indicates the erosion formed on the exposed surface of the target 7 by sputtering.
  • the erosion shape also has a track shape.
  • the long target located near the position PR (see FIGS. 10 and 11) of the film forming port 4b is the right end target 7R, and the position PL of the film forming port 4b
  • the long target located near is the left end target 7L.
  • An area from the right edge to the left edge of the target 7 and an area from the upper edge to the lower edge of the target 7 are erosion areas 7E.
  • the area from the right edge to the left edge of the target 7 is the lateral dimension 7EX of the erosion area 7E
  • the area from the upper edge to the lower edge of the target 7 is the vertical dimension of the erosion area 7E 7EZ.
  • the lateral dimension 7EX of the erosion area 7E corresponds to the distance between the erosion 7RE produced at the right edge of the right end target 7R and the erosion 7LE produced at the left edge of the left end target 7L.
  • the glass substrate 11 is surrounded by the vertical shield plate 15 and the horizontal shield plate 21, and is exposed to the front space 41 through the openings 15 a and 21 a as shown in FIG. It is opposite to.
  • the reference numeral 11WX is a distance between the left end 15aR (opening 15a) of the right longitudinal shield 15ER and the right end 15aL (opening 15a) of the left longitudinal shield 15EL, that is, exposed to the front space 41 Width of the glass substrate 11 (the dimension in the lateral direction).
  • Reference numeral 11WZ is a distance between the lower end 21aL (inward end, opening 21a) of the upper side lateral attachment plate 21EU and the upper end 21aU (inward end, opening 21a) of the lower side lateral attachment plate 21EL. That is, it is the vertical width (vertical dimension) of the glass substrate 11 exposed to the front space 41. Also in FIG. 12, the lower end 21aL, the upper end 21aU, and the vertical width WZ of the glass substrate 11 are shown by broken lines.
  • the reference numeral 11MR denotes the glass substrate when the holding unit 13 moves along the direction D1 as shown in FIG. 10 and the holding unit 13 comes closest to the position PR of the right end of the film forming port 4b.
  • the position of 11 is shown.
  • the holder 13 moves along the direction D2, and the holder 13 approaches the position PL of the left end of the film forming port 4b most. It shows the position.
  • the glass substrate 11 having a horizontal width 11WX is opposed to the target 7. That is, while the glass substrate 11 swings along with the reciprocation of the holding unit 13 and while repeatedly reaching the positions 11MR and 11ML, film-forming particles that fly out of the target 7 by sputtering are deposited on the glass substrate 11.
  • a region between the right end 11ER of the glass substrate 11 when the glass substrate 11 reaches the position 11MR and the left end 11EL of the glass substrate 11 when the glass substrate 11 reaches the position 11ML is a swinging region. 50.
  • the swing region 50 means a region in which the glass substrate 11 is exposed to the front space 41 while the holding unit 13 reciprocates along the axial direction AX by the swing drive unit 20.
  • the swing area 50 is set smaller than the lateral dimension 7EX of the erosion area 7E in the target 7, as shown by a broken line in FIG.
  • the erosion area 7E of the target 7 means an area where film deposition particles are ejected from the target 7 and sputter deposition can be performed almost uniformly, regardless of the contour of the actual target 7.
  • the region between the left end 15bL and the right end 15bR described above is a swing range 15SR
  • the outer boundary dimension 15D of the swing range corresponds to the distance between the left end 15bL and the right end 15bR.
  • the dimension 21SR (the distance between the outer end portions) in the swing direction in the lateral attachment plate 21 is larger than the outer boundary dimension 15D. Therefore, since it is possible to cover all the swing range 15SR of the vertical shield plate 15 by the horizontal shield plate 21, even if the glass substrate 11 is rocked during the film forming process, It is possible to maintain the state of covering the end portions of the glass substrate 11 and the longitudinal shield plate 15 in the orthogonal direction.
  • the dimension 21SR of the side anti-adhesion plate 21 in the swinging direction is set smaller than the dimension of the target 7 in the swinging direction. Therefore, uniform film formation becomes possible in all the regions where the lateral adhesion preventing plate 21 extends in the swing direction. Thereby, it becomes possible to form a film uniformly on the entire surface of the swinging glass substrate 11.
  • the distance between the lower end 21aL of the upper horizontal shield 21EU and the upper end 21aU of the lower horizontal shield 21EL that is, the vertical width WZ of the glass substrate 11 exposed to the front space 41 is shown in FIG. As indicated by the broken line, it is set smaller than the vertical dimension 7EZ of the erosion area 7E in the target 7. Thereby, since the swing area 50 of the glass substrate 11 is set smaller than the erosion area 7E of the target 7, uniformity of film formation can be obtained.
  • the glass substrate 11 on which the film forming process has been completed is rotated by the rotation drive unit 20 and is held by the holding unit 13 and the vertical attachment plate 15. Around the axis, it rotates in the opposite direction to the arrow C shown in FIG. As shown in FIG. 7, the pivoting operation is performed until the glass substrate 11 reaches the horizontal mounting position.
  • the vertical shield board 15 is raised by the lift pin moving part in the direction opposite to the arrow B shown in FIG. 7 to be in the state shown in FIG.
  • the glass substrate 11 is taken out from between the longitudinal shield plate 15 and the holding portion 13 in the direction opposite to the arrow A in FIG. 5 by the transfer device 3a (transfer robot). Furthermore, the glass substrate 11 is finally carried out of the load / unload chamber 2 via the transfer chamber 3 to the outside. Note that other processes can be performed in other chambers.
  • the substrate holding unit 10 can be swung to improve the uniformity of film formation. Furthermore, the attached material in the back side space 42 during film formation by the vertical adhesion prevention plate 15 swinging in synchronization with the holding portion 13 and the horizontal adhesion prevention plate 21 attached to the film forming port 4 b of the film forming chamber 4 It is possible to reduce the generation of particles and to reduce the generation of particles.
  • a sputtering apparatus provided with a swingable target in which the target swings is known.
  • a swingable target not only the target but also a casing (internal chamber) surrounding a wire or a magnetic circuit connected to the target is provided in the film formation chamber.
  • the housing exposes the surface of the target to the front space 41 as shown in FIG.
  • the case is a swinging part, and when swinging the target, the case also swings in the film forming chamber.
  • the deposit associated with the film formation is deposited only on the surface of the region indicated by the hatching in FIG.
  • the housing since the housing is not provided, deposits do not deposit on the side surface and the back surface of the housing. That is, the surface area on which deposits are deposited can be reduced.
  • the present embodiment can reduce the area on which the deposit adheres to the rocking portion to about 2/3 to 1/2 as compared with the case of the rocking target. In this example, it is possible to reduce the area to which the deposit adheres by about 1.5 to 2 times the area of the swinging portion that constitutes the swingable target.
  • the volume of the film forming chamber 4 can be reduced and space saving can be achieved as compared with the case of the swingable target. Further, by disposing the swing drive unit 20 (rotation drive unit) outside the film forming chamber (vacuum chamber), it is possible to reduce the particle generation amount.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本発明のスパッタ装置は、スパッタリング法で被処理基板上に成膜を行う装置であって、真空チャンバと、前記真空チャンバ内に設けられたカソードの表面に設けられたターゲットと、前記ターゲットに対向するように前記真空チャンバ内に設けられ被処理基板が設置される基板保持部と、前記基板保持部を前記ターゲットに対して揺動可能とする揺動部とを備える。前記基板保持部における前記被処理基板の揺動領域は、前記ターゲットのエロージョン領域より小さく設定されている。

Description

スパッタ装置
 本発明は、スパッタ装置に関し、特に、マグネトロンカソードを有する成膜に用いて好適な技術に関する。
 本願は、2017年6月28日に日本に出願された特願2017-126261号に基づき優先権を主張し、その内容をここに援用する。
 特許文献1に記載されるように、マグネトロンカソードを有する成膜装置においては、ターゲットの利用効率を向上するためなどを目的として、マグネットをターゲットに対して移動させる方式が知られている。
 また、特許文献1に開示の技術のように、成膜の均一性向上等の目的のために、マグネットの移動に加え、カソードおよびターゲットを成膜基板に対して揺動させることも知られている。
 特許文献1に開示された技術のようにマグネットあるいはカソードを揺動させる装置においては、揺動中の擦動部から発生する塵は必ず存在する。
 このため、特許文献1には開示されていないが、発生したパーティクルがスパッタ処理室内における成膜に悪影響を及ぼすことを防止する目的で、マグネットおよび/またはカソードを揺動させる駆動部を収納して密閉するための内部チャンバをスパッタ処理室内に設けることが必要となっていた(特許文献2)。
日本国特開2009-41115号公報 日本国特開2012-158835号公報 日本国特許第5869560号公報
 しかしながら、処理チャンバ内では、不必要に成膜された付着物が発生することになるが、この付着物が、新たなパーティクル発生の原因となる可能性がある。特に、揺動するカソード等、可動する部分から発生するパーティクルが顕著であるという問題がある。このため、この問題を解決したいという要求があった。
 さらに、マグネットおよび/またはカソードの構成部品の重量が大きいため、この構成部品を揺動させるには大出力の駆動系が必要である。さらに、上記構成部品には、冷却水・電力の供給等のために可動接続部分が必要である。このような装置で真空密閉状態を維持可能とするためには、真空密閉構造が複雑化し、製造コストも上昇し、装置全体の容積も増大する可能性があるという問題がある。特に、大型の基板に対してスパッタ処理を行うような装置の容積が増加する場合では、容積の増加分は、処理装置が配置された建屋の配置にまで影響を及ぼす。このため、処理装置の省スペース化が求められており、このような問題を解決したいという要求があった。
 また、特許文献3に開示されるように、近年では、複数種類の成膜処理を連続して行う場合など、成膜量が増加する傾向にあるため、処理チャンバ内におけるパーティクル発生原因となる不必要な成膜面積をより一層削減したいという要求が高まっていた。
 本発明は、上記の事情に鑑みてなされたもので、以下の目的を達成しようとするものである。
1.ターゲットと基板とを相対的に移動することを可能とし、基板に形成される膜の均一性を維持すること。
2.装置の省スペース化を図ること。
3.成膜量の増加にかかわらず、パーティクル発生の低減を図ること。
4.パーティクル発生の原因となるカソード側の駆動によらずに、成膜特性の維持とパーティクル発生の低減を図ること。
5.膜特性の低下を防止すること。
 本発明の一態様に係るスパッタ装置は、スパッタリング法で被処理基板上に成膜を行う装置であって、真空チャンバと、前記真空チャンバ内に設けられたカソードの表面に設けられたターゲットと、前記ターゲットに対向するように前記真空チャンバ内に設けられ被処理基板が設置される基板保持部と、前記基板保持部を前記ターゲットに対して揺動可能とする揺動部と、を備え、前記基板保持部における前記被処理基板の揺動領域が前記ターゲットのエロージョン領域より小さく設定されている。
 本発明の一態様に係るスパッタ装置においては、前記基板保持部は、前記基板保持部の揺動方向における前記被処理基板の両端位置に配置され、かつ、前記揺動方向と交差する方向に延在する縦防着板を備えてもよい。
 本発明の一態様に係るスパッタ装置においては、前記真空チャンバは、前記揺動方向と交差する方向における前記縦防着板の端部に配置され、前記被処理基板の両端位置に配置され、かつ、前記基板保持部の揺動とは同期しない横防着板を備えてもよい。
 本発明の一態様に係るスパッタ装置においては、前記縦防着板の長さは、前記揺動方向と交差する方向において互いに対向する前記横防着板の間の寸法よりも大きく設定されてもよい。
 本発明の一態様に係るスパッタ装置においては、前記横防着板における前記揺動方向の寸法は、前記揺動方向における前記縦防着板の揺動範囲の外側境界寸法よりも大きく設定されてもよい。
 本発明の一態様に係るスパッタ装置においては、前記揺動方向における前記横防着板の寸法が、前記揺動方向における前記ターゲットの寸法よりも小さく設定されてもよい。
 本発明の一態様に係るスパッタ装置においては、前記揺動部が、揺動方向に延在する揺動軸を有し、前記揺動軸の軸線方向に前記基板保持部を揺動させる揺動駆動部を有してもよい。
 本発明の一態様に係るスパッタ装置においては、前記揺動軸には、前記揺動軸を軸線周りに回動可能な回転駆動部に接続され、前記揺動軸の回動により、前記基板保持部が、略水平方向位置とされた前記被処理基板を載置・取り出しする水平載置位置と、前記被処理基板の被処理面を略鉛直方向に沿うように立ち上げた鉛直処理位置との間で回転動作可能とする回動駆動部が設けられてもよい。
 本発明の一態様に係るスパッタ装置においては、前記カソードの背面に配置されマグネトロンプラズマを発生させるマグネトロン磁気回路と、前記マグネトロン磁気回路を前記カソードの背面に対して揺動させ、それに応じてマグネトロンプラズマを発生させた際のプラズマがターゲットの表面を移動するようにする磁気回路揺動部と、を有してもよい。
 本発明の一態様に係るスパッタ装置は、スパッタリング法で被処理基板上に成膜を行う装置であって、真空チャンバと、前記真空チャンバ内に設けられたカソードの表面に設けられたターゲットと、前記ターゲットに対向するように前記真空チャンバ内に設けられ被処理基板が設置される基板保持部と、前記基板保持部を前記ターゲットに対して揺動可能とする揺動部と、を備え、前記基板保持部における前記被処理基板の揺動領域が前記ターゲットのエロージョン領域より小さく設定されている。これにより、ターゲットを揺動させることなく、被処理基板とターゲットとの相対位置を変化させつつ成膜を行うことが可能となる。このため、ターゲットを揺動させる構成を設けることなく、成膜の均一性を維持することができる。これにより、ターゲットを揺動させる構成を設けた場合に比べて、真空チャンバ内で、成膜に伴う付着物等から発生するパーティクルを極めて少なくすることが可能となるとともに、装置の省スペース化を図ることができる。
 例えば、ターゲットが揺動する揺動式ターゲットを備えたスパッタ装置が知られている。揺動式ターゲットが採用されている装置においては、ターゲットだけでなく、ターゲットに接続される配線や磁気回路を囲う筐体(内部チャンバ)が成膜室内に設けられている。筐体は、ターゲットの表面を前側空間に露出させる。この筐体は、揺動部分であり、ターゲットを揺動する際に、筐体も成膜室内で揺動する。
 このような揺動式ターゲットを備えた構成の場合、成膜に伴う付着物が、図12の斜線で示された領域の表面に堆積されるだけでなく、ガラス基板に対向しない筐体の側面や裏面にも付着物が堆積されてしまう。換言すると、揺動式ターゲットを備えた構造では、付着物が堆積する表面積が増加する。
 これに対し、本発明の一態様に係るスパッタ装置によれば、図12の斜線で示された領域の表面のみに、成膜に伴う付着物が堆積する。換言すると、揺動式ターゲットとは異なり、筐体を備えていないため、筐体の側面や裏面に付着物が堆積することがない。即ち、付着物が堆積する表面積を削減することができる。
 一例として、本実施形態は、揺動式ターゲットの場合と比べて、揺動部分に付着物が付着する面積を2/3~1/2程度に削減することが可能となる。
 この例においては、揺動式ターゲットを構成する揺動部分の面積に対して、付着物が付着する面積を1.5~2倍程度、削減可能である。
 これにより、パーティクル発生を低減し、パーティクルの影響による成膜不具合の発生を低減することが可能となる。また、成膜量が増えた場合でも歩留まりの向上と、装置メンテナンス時間の削減による作業性の向上と、装置稼働率の向上とを図り、製造コストが削減可能となるという効果を奏することができる。
 本発明の一態様に係るスパッタ装置において、前記基板保持部は、前記基板保持部の揺動方向における前記被処理基板の両端位置に配置され、かつ、前記揺動方向と交差する方向に延在する縦防着板を備える。これにより、被処理基板を揺動する際に、ターゲットから成膜粒子に到達する被処理基板以外の領域を縦防着板によって覆うことで、基板保持部に直接成膜材料が付着することを防止することができる。
 また、本発明の一態様に係るスパッタ装置において、前記真空チャンバは、前記揺動方向と交差する方向における前記縦防着板の端部に配置され、前記被処理基板の両端位置に配置され、かつ、前記基板保持部の揺動とは同期しない横防着板を備える。これにより、矩形輪郭を有する被処理基板において互いに反対の位置にある縦方向の二辺の周辺縁部が縦防着板によって覆われる。この横防着板によって、横方向に延在する被処理基板の縁部を覆った状態で、被処理基板への成膜を行うことができる。しかも、横防着板は、揺動方向と直交する方向におけるターゲットの端部に対応する位置に配置される。さらに、横防着板は、互いに反対の位置にある被処理基板の縁部となる領域の全てを覆う。このため、縦防着板および横防着板によって、矩形輪郭を有する被処理基板の四辺を覆って被処理基板の全面で均一な成膜を行うことが可能となる。
 本発明の一態様に係るスパッタ装置は、前記縦防着板の長さは、前記揺動方向と交差する方向において互いに対向する前記横防着板の間の寸法よりも大きく設定される。これにより、互いに対向する縦防着板の間に配置された被処理基板の表面に、ターゲットから叩き出された成膜粒子が到達する。この被処理基板において、成膜粒子が到達する表面は、成膜領域となる。成膜領域においては、均一な成膜が可能となる。被処理基板の非成膜領域となる被処理基板の全周に位置する外側領域を、縦防着板と横防着板とで覆うことができる。
 また、前記横防着板における前記揺動方向の寸法は、前記揺動方向における前記縦防着板の揺動範囲の外側境界寸法よりも大きく設定される。これにより、横防着板によって、縦防着板の揺動範囲を全て覆うことが可能となるため、成膜処理中に被処理基板の揺動をさせても、揺動方向と直交する方向における被処理基板および縦防着板の端部を覆った状態を維持することができる。
 また、前記揺動方向における前記横防着板の寸法が、前記揺動方向における前記ターゲットの寸法よりも小さく設定される。これにより、揺動方向において横防着板が延在する全ての領域において、均一成膜が可能となる。これにより、揺動する被処理基板の全面において、均一成膜が可能となる。
 ここで、揺動方向における前記ターゲットの寸法とは、スパッタ装置が複数のターゲットを備える場合には、成膜粒子を発生可能な領域の最大寸法を意味している。
 また、横防着板の寸法は、少なくとも、互いに対向する横防着板の内側端部の間の距離が、揺動方向に直交する方向におけるターゲットの寸法よりも小さく設定されていればよく、互いに対向する横防着板の外側端部の間の距離は、成膜粒子を発生可能なターゲットの揺動方向における領域よりはみ出していることもできる。
 本発明の一態様に係るスパッタ装置は、前記揺動部が、揺動方向に延在する揺動軸を有し、前記揺動軸の軸線方向に前記基板保持部を揺動させる揺動駆動部を有する。これにより、真空チャンバの外部に揺動駆動部を配置して、この揺動駆動部によって揺動軸を往復動作させることにより、真空チャンバ内の基板保持部を揺動させることが可能となる。
 本発明の一態様に係るスパッタ装置は、前記揺動軸には、前記揺動軸を軸線周りに回動可能な回転駆動部に接続され、前記揺動軸の回動により、前記基板保持部が、略水平方向位置とされた前記被処理基板を載置・取り出しする水平載置位置と、前記被処理基板の被処理面を略鉛直方向に沿うように立ち上げた鉛直処理位置との間で回転動作可能とする回動駆動部が設けられる。これにより、真空チャンバの外部に回転駆動部を配置して、この回転駆動部によって揺動軸を回転動作させる。従って、真空チャンバ内の基板保持部を回転させて、水平載置位置において基板保持部に被処理基板を載置・取り出しするとともに、鉛直処理位置において基板保持部に保持された被処理基板の被処理面を略直方向に沿うように立ち上げてターゲットと対向する状態にするとともに揺動させて成膜することが可能となる。
 本発明の一態様に係るスパッタ装置は、前記カソードの背面に配置されマグネトロンプラズマを発生させるマグネトロン磁気回路と、前記マグネトロン磁気回路を前記カソードの背面に対して揺動させ、それに応じてマグネトロンプラズマを発生させた際のプラズマがターゲットの表面を移動するようにする磁気回路揺動部と、を有する。これにより、マグネトロンスパッタにおいて被処理基板を揺動させて、成膜の均一性を達成することが可能となる。このとき、マグネトロン磁気回路の揺動と、被処理基板の揺動とを、所定の速度・揺動範囲として、成膜を好適に行うことができる。
 具体的には、マグネトロン磁気回路の揺動範囲に対して、被処理基板の揺動範囲が小さくなるように設定することが可能である。あるいは、マグネトロン磁気回路の揺動周期に対して、被処理基板の揺動周期が大きくなるように設定することが可能である。
 本発明の態様によれば、被処理基板とターゲットとを揺動した状態で成膜の均一性を向上させつつ、真空チャンバ内におけるパーティクルの発生を低減して、増大する成膜量に対応可能としても歩留まりの向上を図るとともに、装置の容積を削減して省スペース化を図ることができるという効果を奏することが可能となる。
本発明の実施形態に係るスパッタ装置を示す模式平面図である。 本発明の実施形態に係るスパッタ装置における成膜室の一部を示す斜視図である。 本発明の実施形態に係るスパッタ装置における防着板の揺動を示す正面図である。 本発明の実施形態に係るスパッタ装置における成膜室にて行われる工程を示す模式側面図である。 本発明の実施形態に係るスパッタ装置における成膜室にて行われる工程を示す模式側面図である。 本発明の実施形態に係るスパッタ装置における成膜室にて行われる工程を示す模式側面図である。 本発明の実施形態に係るスパッタ装置における成膜室にて行われる工程を示す模式側面図である。 本発明の実施形態に係るスパッタ装置における成膜室にて行われる工程を示す模式側面図である。 本発明の実施形態に係るスパッタ装置における成膜室にて行われる工程を示す模式側面図である。 本発明の実施形態に係るスパッタ装置における防着板の揺動を示す模式上面図である。 本発明の実施形態に係るスパッタ装置における防着板の揺動を示す模式上面図である。 本発明の実施形態に係るスパッタ装置におけるターゲットと、ターゲットに対して基板が揺動する揺動領域との関係を示す模式正面図である。 本発明の実施形態に係るスパッタ装置における基板と防着板との関係を示す模式正面図である。
 以下、本発明の実施形態に係るスパッタ装置を、図面に基づいて説明する。なお、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
 図1は、本実施形態に係るスパッタ装置を示す模式平面図であり、図1において、符号1は、スパッタ装置である。
 本実施形態に係るスパッタ装置1は、例えば、液晶ディスプレイの製造工程においてガラス等からなる基板上にTFT(Thin Film Transistor)を形成する場合など、ガラスや樹脂からなる被処理基板に対して、真空環境下で加熱処理、成膜処理、エッチング処理等を行うインターバック式の真空処理装置とされる。
 スパッタ装置1は、図1に示すように、略矩形のガラス基板11(被処理基板)を搬入/搬出するロード・アンロード室2と、ガラス基板11上に、例えば、ZnO系やIn系の透明導電膜等の被膜をスパッタリング法により形成する耐圧の成膜室4(真空チャンバ)と、成膜室4とロード・アンロード室2(真空チャンバ)との間に位置する搬送室3と、を備えている。本実施形態に係るスパッタ装置1は、図1において、サイドスパッタ式として示しているが、スパッタダウン式、あるいは、スパッタアップ式とすることもできる。
 なお、スパッタ装置1には、成膜室4A(真空チャンバ)とロード・アンロード室2A(真空チャンバ)とが設けられている。これら複数のチャンバ2、2A、4、4Aは、搬送室3の周囲を取り囲むように形成されている。こうしたチャンバは、例えば、互いに隣接して形成された2つのロード・アンロード室(真空チャンバ)と、複数の処理室(真空チャンバ)とを有して構成されることになる。例えば、一方のロード・アンロード室2は、外部からスパッタ装置1(真空処理装置)の内部に向けてガラス基板11を搬入するロード室であり、他方のロード・アンロード室2Aは、スパッタ装置1の内部から外部にガラス基板11を搬出するアンロード室である。また、成膜室4と成膜室4Aとが異なる成膜工程を行う構成が採用されてもよい。
 こうしたそれぞれのチャンバ2、2A、4、4Aと搬送室3との間には、仕切りバルブが形成されていればよい。
 ロード・アンロード室2には、スパッタ装置1の外部から搬入されたガラス基板11の載置位置を設定してアライメント可能な位置決め部材が配置されていてもよい。
 ロード・アンロード室2には、また、この室内を粗真空引きするロータリーポンプ等の粗引き排気装置(粗引き排気手段、低真空排気装置)が設けられる。
 搬送室3の内部には、図1に示すように、搬送装置3a(搬送ロボット)が配置されている。
 搬送装置3aは、回転軸と、この回転軸に取り付けられたロボットアームと、ロボットアームの一端に形成されたロボットハンドと、ロボットハンドを上下動させる上下動装置とを有している。ロボットアームは、互いに屈曲可能な第一、第二の能動アームと、第一、第二の従動アームとから構成されている。搬送装置3aは、被搬送物であるガラス基板11を、チャンバ2、2A、4、4Aの各々と搬送室3との間で移動させることができる。
 図2は、本実施形態における成膜室の一部を示す斜視図であり、図3は、本実施形態における成膜室の成膜口部分を示す正面図である。
 成膜室4の内部には、図1、図2に示すように、成膜材料を供給する供給装置(供給手段)として機能し、立設されたターゲット7を保持するバッキングプレート6(カソード、カソード電極)と、バッキングプレート6に負電位のスパッタ電圧を印加する電源と、この室内にガスを導入するガス導入装置(ガス導入手段)と、成膜室4の内部を高真空引きするターボ分子ポンプ等の高真空排気装置(高真空排気手段)と、が設けられている。成膜室4の内部において、バッキングプレート6は、搬送室3の搬送口4aから最も遠い位置に立設される(図4参照)。
 ガラス基板11と略平行に対面するバッキングプレート6の前面側にはターゲット7が固定される。バッキングプレート6は、ターゲット7に対して負電位のスパッタリング電圧を印加する電極の役割を果たす。バッキングプレート6は、負電位のスパッタリング電圧を印加する電源に接続されている。
 バッキングプレート6の裏側(カソードの背面)には、ターゲット7上に所定の磁場を形成し、マグネトロンプラズマを発生さるためのマグネトロン磁気回路が設置されている。また、マグネトロン磁気回路は、揺動機構に装着され、磁気回路揺動用駆動装置により揺動できるように構成されている。なお、ターゲット7は、後述する図12に示すように、トラック形状を有する複数の長尺ターゲットが並んで構成されている。図12は、8つの長尺ターゲットを示しているが、長尺ターゲットの個数は、8つに限定されない。
 なお、本実施形態に係るスパッタ装置1は、磁気回路揺動部を備えてもよい。この磁気回路揺動部は、マグネトロン磁気回路をバッキングプレート6の裏側に対して揺動させ、それに応じてマグネトロンプラズマを発生させた際のプラズマがターゲット7の表面に沿って移動する。
 成膜室4の内部は、図1に示すように、成膜時にガラス基板11の表面が露出する前側空間41と、ガラス基板11の裏面側に位置する裏側空間42とで構成されている。前側空間41には、ターゲット7が固定されたバッキングプレート6が配置される。
 成膜室4の裏側空間42には、図1、図2に示すように、前側空間41に開口する成膜口4bが設けられている。
 裏側空間42内部には、図1、図2に示すように、成膜中にターゲット7と被処理面11aとが対向するように、ガラス基板11を横方向(符号AXに示す方向)に揺動可能に保持する基板保持部10(基板保持手段)が設けられている。
 基板保持部10は、図2、図3に示すように、裏側空間42の下側位置で搬送口4aおよび/または成膜口4bと略並行に延在する揺動軸12と、揺動軸12に取り付けられガラス基板11の裏面を保持する保持部13と、保持部13に対向してガラス基板11の縦縁部11Yおよび基板保持部10における成膜材料が付着する領域10Rを覆う縦防着板15(第1防着板)と、を備える。揺動軸12等の基板保持部10および横防着板21(第2防着板)は、揺動部(揺動手段)を構成する。
 特に、縦防着板15は、符号AXに示す揺動方向におけるガラス基板11の両端位置に配置され、かつ、揺動方向と交差する方向に延在する。
 また、成膜室4には、成膜口4bの上位置及び下位置の各々に横防着板21が設けられる。横防着板21は、符号AXに示す揺動方向と交差する方向における縦防着板15の端部に配置され、ガラス基板11の両端位置に配置され、かつ、基板保持部10の揺動とは同期しない。
 縦防着板15の長さは、符号AXに示す揺動方向と交差する方向において互いに対向する横防着板21の間の寸法よりも大きい。
 揺動軸12には、図2に示すように、揺動駆動部20(回動駆動部)が接続されており、軸線方向AXに揺動可能とされている。また、揺動駆動部20は、揺動軸12の揺動と同時に、揺動軸12を軸線周り(符号Rに示す回転方向)に回動させる回転駆動部も兼ね備えている。揺動駆動部20(回転駆動部)は、成膜室(真空チャンバ)の外側に配置されている。
 揺動軸12には、取り付け部材12aを介して、略矩形平板状の保持部13が取り付けられている。保持部13の平面の位置は、揺動軸12の軸線の位置と一致していない。揺動軸12の軸線周りの回動(回転方向R)および軸線方向AXへの揺動に追従して、保持部13は、保持するガラス基板11を移動可能とされている。
 保持部13は、図2に示すように、回転駆動部20による揺動軸12の軸線周りの回動により、回転動作が可能である。揺動軸12よりも上側において、保持部13が略水平方向に沿うように配置される水平載置位置と、保持部13が略鉛直方向に沿うように立ち上げるように配置された鉛直処理位置との間で、保持部13の回転動作が行われる。
 水平載置位置に配置された保持部13の表面の延長線には、搬送口4aが位置している。水平載置位置において、保持部13は、搬送室3から搬送されたガラス基板11を載置可能となる。
 鉛直処理位置に配置された保持部13の表面は、ほぼ成膜口4bを塞ぐように位置する。この場合、ガラス基板11の表面がバッキングプレート6と対向し、ガラス基板11の表面に対する成膜が可能となる。保持部13は、鉛直処理位置に配置された際に、揺動駆動部20による揺動軸12の軸線方向への揺動によって、成膜口4bの横方向(符号AXに示す方向)に揺動可能となっている。
 基板保持部10には、図2に示すように、保持部13に設けられている。また、基板保持部10には、リフトピン(不図示)と、このリフトピンを上下動させるリフトピン移動部(不図示)とが配置されている。リフトピンは、リフトピン移動部の駆動によって、ガラス基板11の搬入又は搬出の際に、水平載置位置に配置された保持部13の上面より上方に突出して、保持部13よりも上側にてガラス基板11を支持する。
 リフトピン移動部は、成膜室4(真空チャンバ)の外側に配置された駆動モータ等の駆動装置により、リフトピンを上下方向に進退させる構成とされることができる。リフトピン移動部は、チャンバ4の密閉を維持した状態で、リフトピンを駆動することが可能である。この構成により、成膜室4に対するガラス基板11の搬入又は搬出の際に、保持部13と搬送装置3aのロボットハンドと間において、ガラス基板11の受け渡しが自在に可能となる。
 縦防着板15は、図2、図3に示すように、水平載置位置に配置された保持部13に対して並行に設けられる。互いに対向する2枚の縦防着板15は、ガラス基板11の横方向における両端位置に配置され、縦縁部11Yを覆うように縦方向に延在して設けられる。
 縦防着板15は、縦防着板15と保持部13とを互いに離間および近接するように移動可能である。即ち、縦防着板15と保持部13とが離間する距離が可変となるように、縦防着板15は設けられている。この際、縦防着板15と保持部13とは互いに並行状態を維持しながら、鉛直方向において、縦防着板15と保持部13とが離間する距離が変化する。
 基板保持部10は、縦防着板15と保持部13とが離間する距離を変化するように駆動可能であり、縦防着板15と保持部13とでガラス基板11を挟持して、ガラス基板11を保持・解放することができる。
 縦防着板15は、例えば、リフトピン移動部(不図示)などにより、保持部13に対して並行状態を維持したまま、上下動が可能である。
 縦防着板15は、図2、図3に示すように、基板保持部10における成膜材料が付着してほしくない領域10Rと、保持部13に支持されたガラス基板11の周縁のうちの縦縁部11Yとなる非成膜領域とを覆うように、ガラス基板11の左右方向の両端となる縦縁部11Yに沿った形状に形成される。
 縦防着板15は、ガラス基板11を挟持した状態で、揺動軸12の回動動作による保持部13と同期して回動動作が可能とされている。
 縦防着板15は、保持部13が鉛直処理位置に配置された際に、ほぼ成膜口4bを塞ぐように位置するとともに、保持部13の横方向の揺動動作に同期して揺動する構成とされる。保持部13が鉛直処理位置において揺動された際に縦防着板15が成膜口4bの左右端に接触しないように、縦防着板15の横方向形状が設定される。
 なお、保持部13の回動動作中および保持部13が鉛直処理位置に配置された際に、縦防着板15は、保持部13から離間しないように構成されている。
 さらに、基板保持部10には、ガラス基板11の縦方向における端部の位置を規制しつつガラス基板11を支持する支持部として、縦防着板15と一体とされた支持枠、あるいは、保持部13と一体とされた基板ガイドなどを設けることもできる。特に、基板ガイドとしては、ガラス基板11の外周端面部に当接してガラス基板11を支持可能な構造が採用されることが好ましい。
 図2、図3に示すように、成膜口4bの上端位置及び下端位置に配置され、かつ、互いに対向する2枚の横防着板21が横方向に延在して設けられている。成膜口4bの中心の近くに位置する横防着板21の端部は、縦防着板15の上端15U(端部)及び下端15L(端部)および、ガラス基板11の上端及び下端となる縁部11U、11Lを覆うように配置される。
 横防着板21は、基板保持部10の外周における上端部分からガラス基板11の外周部分の上端部分までの領域と、基板保持部10の外周における下端部分からガラス基板11の外周部分の下端部分までの領域とを覆うように設けられている。横防着板21は、ガラス基板11以外の部分において、バッキングプレート6のターゲット7から叩き出された粒子が付着する領域を覆うように設けられている。
 横防着板21の横方向の寸法は、成膜口4bの横方向の寸法と等しく設定されており、横防着板21は、成膜口4bの横方向における全長に亘って延在している。
 縦防着板15と横防着板21とは、図2、図3に示すように、保持部13が鉛直処理位置に配置された際に、組み合わされて枠状となる。この状態で、縦防着板15と横防着板21とで囲まれた中央部には、成膜材料がガラス基板11の被処理面11a(表面)に到達するように、縦防着板15の厚さ方向に貫通する開口部15a、21aが形成される。この開口部15a、21aの縁部を形成する縦防着板15と横防着板21のうち、バッキングプレート6に対向する縦防着板15の表面側の部分と横防着板21の表面側の部分には、傾斜部15b、21bが形成されている。傾斜部15b、21bは、ガラス基板11の外側から中心に向かう方向において、傾斜部15b、21bの厚さが減少するような傾斜面を有する。つまり、開口部15a、21aは、縦防着板15及び横防着板21の表面側から裏面側に向かう方向において開口部15a、21aの開口面積が縮小するように形成されており、これにより、開口部15a、21aの内周面には傾斜部15b、21bが形成される。
 次に、本実施形態に係るスパッタ装置1において、基板保持部10によってガラス基板11が保持された状態でのガラス基板11に対する成膜について説明する。
 まず、スパッタ装置1の外部から内部に搬入されたガラス基板11は、まず、ロード・アンロード室2内の位置決め部材に載置され、ガラス基板11が、位置決め部材上で所定位置に配置するようにアライメントされる。
 次に、ロード・アンロード室2の位置決め部材に載置されたガラス基板11が搬送装置3a(搬送ロボット)のロボットハンドで支持され、ロード・アンロード室2から取り出される。そして、ガラス基板11は、搬送室3を経由して成膜室4へ搬送される。
 図4~図9は、本実施形態における成膜室にて行われる工程を示す模式側面図である。なお、図4~図9において、傾斜部15b、21b等の部位については、説明を省略している。
 このとき、成膜室4では、図4に示すように、基板保持部10において、回転駆動部20によって揺動軸12が回転され、保持部13および縦防着板15が水平載置位置に配置される。さらに、図示しないリフトピン移動部によって、縦防着板15は、保持部13から離間した準備位置に配置されている。
 この状態で、成膜室4へ到達したガラス基板11が、搬送装置3a(搬送ロボット)によって基板保持部10の保持部13上に載置される。
 具体的に説明すると、まず、搬送装置3a(搬送ロボット)によって縦防着板15および保持部13に対して略並行状態に支持されたガラス基板11は、図5に矢印Aで示すように、互いに離間した保持部13と縦防着板15との間に、保持部13の面に平行な方向における外側から内側に向けて挿入される。このとき、リフトピン移動部は、リフトピンを保持部13の表面よりも上方に移動させ、リフトピンは、ガラス基板11を受け取るために、保持部13の表面よりも上方に突出した状態となっている。
 次いで、図6に示すように、搬送装置3a(搬送ロボット)のロボットハンドが保持部13に近接することで、保持部13の所定の面内の位置にガラス基板11がアライメントされた状態として、保持部13上にガラス基板11が載置される。ここで、ガラス基板11の受け渡しが行われた後、搬送ロボット3aのアームが、搬送室3へ後退する。そして、基板保持部10に設けられたリフトピン移動部のリフトピンが下降し、保持部13の下側にガラス基板11が格納されることによって、ガラス基板11は保持部13に支持される。
 次いで、図示しないリフトピン移動部により、図7に矢印Bで示すように、縦防着板15が保持部13に向けて下降して近接する。
 縦防着板15の停止により、図示しない支持部等によりガラス基板11の表面及び裏面が縦防着板15と保持部13とにより挟持される。この状態で、ガラス基板11が成膜処理位置としてアライメントされた状態で基板保持部10に保持される。この際、ガラス基板11は、縦防着板15または保持部13に設けられた基板ガイドなどによって支持されることも可能である。
 次いで、回転駆動部20により揺動軸12が回動されることで、図8に矢印Cで示すように、取り付け部材12aを介して揺動軸12に取り付けられた保持部13と縦防着板15とによってガラス基板11が保持された状態で、保持部13及び縦防着板15は、揺動軸12の軸線周りに回動し、鉛直処理位置に到達するように立ち上がる。
 これにより、縦防着板15と保持部13とによって成膜口4bがほぼ閉塞された状態となるとともに、縦防着板15が横防着板21に近接する。
 互いに近接した縦防着板15及び横防着板21は、図3に示すように、組み合わされて枠状となり、枠状の縦防着板15と横防着板21とによって、ガラス基板11の被処理面11aの周縁部の全周(縦縁部11Y、縁部11U、縁部11L)が、成膜材料が到達しないように覆われた状態となる。なお、枠状の縦防着板15と横防着板21とによって形成された開口部15a、21aに露出したガラス基板11がバッキングプレート6のターゲット7に対して対向した状態となる。
 この鉛直処理位置に配置され、基板保持部10に保持されたガラス基板11は、ガラス基板11の表面11a(被処理面)とバッキングプレート6の表面とが略平行な状態で保持され、この状態で成膜室4内において成膜工程が行われる。
 成膜工程においては、ガス導入装置は成膜室4にスパッタガスと反応ガスとを供給し、外部の電源はバッキングプレート6にスパッタ電圧を印加する。また、マグネトロン磁気回路によりターゲット7上に所定の磁場を形成する。成膜室4の前側空間41内でプラズマにより励起されたスパッタガスのイオンが、バッキングプレート6のターゲット7に衝突して成膜材料の粒子を飛び出させる。そして、飛び出した粒子と反応ガスとが結合した後、粒子がガラス基板11に付着することにより、ガラス基板11の表面に所定の膜が形成される。
 このとき、本実施形態に係るインターバック式反応性スパッタ装置(スパッタ装置1)では、成膜工程において、揺動駆動部20により揺動軸12が軸方向に揺動されることで、図9に矢印Dで示すように、保持部13が左右方向に揺動する。保持部13を駆動することで、保持されたガラス基板11がバッキングプレート6に対して横方向に相対移動する。
 成膜工程における基板揺動について説明する。
 図10、図11は、本実施形態における防着板(縦防着板15、横防着板21)の揺動を示す模式上面図である。
 図10、図11に示した成膜工程においては、保持部13は、符号D1、D2に示すように往復動作を行う。具体的に、図10のバッキングプレート6から見て、保持部13は、成膜口4bの左側端部の位置PLから右側端部の位置PRに向けた方向、即ち、方向D1に沿って移動する。
 さらに、図11のバッキングプレート6から見て、保持部13は、成膜口4bの右側端部の位置PRから左側端部の位置PLに向けた方向、即ち、方向D2に沿って移動する。
 即ち、位置PR及び位置PLの間の領域において、方向D1、D2に沿って、保持部13は往復動作する。これにより、保持部13によって保持されたガラス基板11とバッキングプレート6とが相対的に移動し、ガラス基板11上に形成されるスパッタ膜における膜特性の面内均一性を維持する。
 このとき、図9に示すように成膜口4bの上辺側US及び下辺側LSは、横防着板21によって閉塞されているため、成膜粒子は、横防着板21に遮られて裏側空間42に到達しない。また、成膜粒子は、保持部13に付着しない。
 また、図3に示すように成膜口4bの右辺側Rと左辺側Lは、縦防着板15によって覆われているため、成膜粒子は、縦防着板15に遮られて裏側空間42に到達しない。また、また、成膜粒子は、保持部13に付着しない。
 これにより、裏側空間42に対する成膜粒子の侵入が防止され、保持部13における成膜粒子の付着が防止される。従って、成膜粒子の付着物に起因するパーティクルの発生を低減することができる。
 図12は、本実施形態におけるターゲット7と、ターゲット7に対して基板が揺動する領域(揺動領域)との関係を示す模式正面図である。図13は、本実施形態におけるガラス基板11と防着板(縦防着板15、横防着板21)との位置関係を示す模式正面図である。
 図12においては、保持部13の往復移動に伴って移動するガラス基板11の位置と、ターゲット7の位置とが重ね合わされている。
 図13においては、縦防着板15と横防着板21とが重なる部分が省略されており、縦防着板15及び横防着板21が一体的に組み合わされた一つの防着板が示されている。
 図12に示すように、ターゲット7は、トラック形状を有する8つの長尺ターゲットが配列した構成を有する。長尺ターゲットの各々において、長尺ターゲットの外形よりも内側にて破線で示された部分は、スパッタリングによってターゲット7の露出面に形成されたエロージョンを示している。エロージョンの形状も、トラック形状を有する。
 ターゲット7を構成する8つの長尺ターゲットのうち、成膜口4bの位置PR(図10、図11参照)の近くに位置する長尺ターゲットは右端ターゲット7Rであり、成膜口4bの位置PL(図10、図11参照)の近くに位置する長尺ターゲットは左端ターゲット7Lである。
 ターゲット7の右縁部から左縁部までの領域、及び、ターゲット7の上縁部から下縁部までの領域は、エロージョン領域7Eである。エロージョン領域7Eのうち、ターゲット7の右縁部から左縁部までの領域はエロージョン領域7Eの横寸法7EXであり、ターゲット7の上縁部から下縁部までの領域はエロージョン領域7Eの縦寸法7EZである。
 エロージョン領域7Eの横寸法7EXは、右端ターゲット7Rの右縁部に生じたエロージョン7REと、左端ターゲット7Lの左縁部に生じたエロージョン7LEとの間の距離に相当する。
 図13に示すように、ガラス基板11は、縦防着板15及び横防着板21によって囲まれており、図8に示すように開口部15a、21aを通じて前側空間41に露出し、ターゲット7に対向している。
 符号11WXは、右側の縦防着板15ERの左端15aR(開口部15a)と左側の縦防着板15ELの右端15aL(開口部15a)との間の距離であり、即ち、前側空間41に露出するガラス基板11の横幅(横方向の寸法)である。
 符号11WZは、上側の横防着板21EUの下端21aL(内側端部、開口部21a)と下側の横防着板21ELの上端21aU(内側端部、開口部21a)との間の距離であり、即ち、前側空間41に露出するガラス基板11の縦幅(縦方向の寸法)である。
 なお、図12においても、下端21aL、上端21aU、及びガラス基板11の縦幅WZが破線で示されている。
 図12において、符号11MRは、図10に示すように保持部13が方向D1に沿って移動して、保持部13が成膜口4bの右側端部の位置PRに最も近づいたときのガラス基板11の位置を示している。
 また、符号11MLは、図11に示すように保持部13が方向D2に沿って移動して、保持部13が成膜口4bの左側端部の位置PLに最も近づいたときのガラス基板11の位置を示している。
 ガラス基板11の位置11MR、11MLの各々において、横幅11WXを有するガラス基板11はターゲット7に対向している。即ち、保持部13の往復動作に伴ってガラス基板11が揺動するとともに位置11MR、11MLに繰り返して到達しながら、スパッタリングによってターゲット7から飛び出した成膜粒子がガラス基板11上に堆積する。
 図12において、ガラス基板11が位置11MRに到達した時のガラス基板11の右端11ERと、ガラス基板11が位置11MLに到達した時のガラス基板11の左端11ELとの間の領域は、揺動領域50である。揺動領域50は、揺動駆動部20によって軸線方向AXに沿って保持部13が往復移動している間にガラス基板11が前側空間41に曝される領域を意味する。
 揺動領域50は、図12に破線で示すように、ターゲット7におけるエロージョン領域7Eの横寸法7EXより小さく設定されている。ここで、ターゲット7のエロージョン領域7Eとは、ターゲット7から成膜粒子が飛び出してほぼ均一にスパッタ成膜ができる領域を意味し、実際のターゲット7の輪郭には拘らない。
 次に、揺動領域50におけるガラス基板11の揺動に伴って縦防着板15が前側空間41に曝される領域について説明する。
 図10及び図12に示すように、方向D1に沿ってガラス基板11が移動すると、前側空間41に曝される左側の縦防着板15ELの領域が徐々に大きくなる。また、ガラス基板11が位置11MRに到達した時、前側空間41に曝される左側の縦防着板15ELの領域が最も大きくなる。このとき、図13に示す左側の縦防着板15ELの左端15bLは、前側空間41に露出しないため、ターゲット7から叩き出された粒子が左端15bLの側面を通じて、前側空間41に到達しない。
 同様に、図11及び図12に示すように、方向D2に沿ってガラス基板11が移動すると、前側空間41に曝される右側の縦防着板15ERの領域が徐々に大きくなる。また、ガラス基板11が位置11MLに到達した時、前側空間41に曝される右側の縦防着板15ERの領域が最も大きくなる。このとき、図13に示す右側の縦防着板15ERの右端15bRは、前側空間41に露出しないため、ターゲット7から叩き出された粒子が右端15bRの側面を通じて、前側空間41に到達しない。
 また、上述した左端15bLと右端15bRとの間の領域は、揺動範囲15SRであり、揺動範囲の外側境界寸法15Dは、左端15bLと右端15bRとの間の距離に相当する。横防着板21における揺動方向の寸法21SR(外側端部の間の距離)は、外側境界寸法15Dよりも大きい。
 このため、横防着板21によって、縦防着板15の揺動範囲15SRを全て覆うことが可能となるため、成膜処理中にガラス基板11の揺動をさせても、揺動方向と直交する方向におけるガラス基板11および縦防着板15の端部を覆った状態を維持することができる。
 また、揺動方向における横防着板21の寸法21SRは、揺動方向におけるターゲット7の寸法よりも小さく設定されている。これにより、揺動方向において横防着板21の延在する全ての領域において均一成膜が可能となる。これにより、揺動するガラス基板11の全面に対して均一に成膜することが可能となる。
 また、上側の横防着板21EUの下端21aLと下側の横防着板21ELの上端21aUとの間の距離、即ち、前側空間41に露出するガラス基板11の縦幅WZは、図12に破線で示すように、ターゲット7におけるエロージョン領域7Eの縦寸法7EZより小さく設定されている。
 これにより、ガラス基板11の揺動領域50がターゲット7のエロージョン領域7Eより小さく設定されているため、成膜の均一性を得ることができる。
 成膜処理が終了したガラス基板11は、回転駆動部20により揺動軸12が回動されることで、保持部13と縦防着板15とによって保持された状態で、揺動軸12の軸線周りで、図8に示す矢印Cとは逆方向に回動する。図7に示すように、ガラス基板11が水平載置位置に到達するまで、回動動作が行われる。
 次いで、リフトピン移動部によって、縦防着板15は、図7に示す矢印Bとは逆方向に上昇し、図6に示す状態となる。その後、縦防着板15と保持部13との間から、ガラス基板11は、搬送装置3a(搬送ロボット)によって、図5の矢印Aと逆方向に取り出される。さらに、ガラス基板11は、搬送室3を介して最終的にロード・アンロード室2から外部に搬出される。なお、他のチャンバにおいて、その他の処理を行うことも可能である。
 本実施形態に係るスパッタ装置1によれば、基板保持部10を揺動可能として成膜の均一性を向上することができる。さらに、保持部13と同期して揺動する縦防着板15と、成膜室4の成膜口4bに取り付けられた横防着板21とにより、成膜中における裏側空間42における付着物の発生を削減し、パーティクル発生を低減することが可能となる。
(揺動式ターゲットと上述した実施形態に係るターゲットとの比較)
 上述した実施形態とは異なる構造として、例えば、ターゲットが揺動する揺動式ターゲットを備えたスパッタ装置が知られている。揺動式ターゲットが採用されている装置においては、ターゲットだけでなく、ターゲットに接続される配線や磁気回路を囲う筐体(内部チャンバ)が成膜室内に設けられている。筐体は、図12に示すようにターゲットの表面を前側空間41に露出させる。この筐体は、揺動部分であり、ターゲットを揺動する際に、筐体も成膜室内で揺動する。
 このような揺動式ターゲットを備えた構成の場合、成膜に伴う付着物が、図12の斜線で示された領域の表面に堆積されるだけでなく、ガラス基板に対向しない筐体の側面や裏面にも付着物が堆積されてしまう。換言すると、揺動式ターゲットを備えた構造では、付着物が堆積する表面積が増加する。
 これに対し、本実施形態に係るスパッタ装置1によれば、図12の斜線で示された領域の表面のみに、成膜に伴う付着物が堆積する。換言すると、揺動式ターゲットとは異なり、筐体を備えていないため、筐体の側面や裏面に付着物が堆積することがない。即ち、付着物が堆積する表面積を削減することができる。
 一例として、本実施形態は、揺動式ターゲットの場合と比べて、揺動部分に付着物が付着する面積を2/3~1/2程度に削減することが可能となる。
 この例においては、揺動式ターゲットを構成する揺動部分の面積に対して、付着物が付着する面積を1.5~2倍程度、削減可能である。
 同時に、本実施形態によれば、揺動式ターゲットの場合に比べて、成膜室4の容積を削減し、省スペース化を図ることができる。また、揺動駆動部20(回転駆動部)が、成膜室(真空チャンバ)の外側に配置されていることにより、パーティクル発生量を削減することが可能となる。
 本発明の好ましい実施形態を説明し、上記で説明してきたが、これらは本発明の例示的なものであり、限定するものとして考慮されるべきではないことを理解すべきである。追加、省略、置換、およびその他の変更は、本発明の範囲から逸脱することなく行うことができる。従って、本発明は、前述の説明によって限定されていると見なされるべきではなく、請求の範囲によって制限されている。
 1 スパッタ装置(成膜装置)、2、2A ロード・アンロード室(真空チャンバ)、3 搬送室(真空チャンバ)、3a 搬送装置(搬送ロボット)、3a 搬送装置、3a 搬送ロボット、4、4A 成膜室(真空チャンバ)、4a 搬送口、4b 成膜口、6 バッキングプレート(カソード、カソード電極)、7 ターゲット、7E エロージョン領域、7L 左端ターゲット、7LE、7RE エロージョン、7R 右端ターゲット、10 基板保持部(保持手段)、10R 領域、11a 被処理面(表面)、11EL、15aR、15bL 左端、11ER、15aL、15bR 右端、11L、11U 縁部、11ML、11MR、PL、PR 位置、11WX 横幅、11Y 縦縁部、11 ガラス基板(被処理基板)、12 揺動軸(揺動部、揺動手段)、12a 取り付け部材、13 保持部、15、15EL、15ER 縦防着板、15a、21a 開口部、15b、21b 傾斜部、15L、21aL 下端、15SR 揺動範囲、15U、21aU 上端、20 揺動駆動部(回転駆動部)、21、21EL、21EU 横防着板、41 前側空間、42 裏側空間、50 揺動領域、AX 軸線方向、LS 下辺側、R 回転方向、R 右辺側。

Claims (9)

  1.  スパッタリング法で被処理基板上に成膜を行う装置であって、
     真空チャンバと、
     前記真空チャンバ内に設けられたカソードの表面に設けられたターゲットと、
     前記ターゲットに対向するように前記真空チャンバ内に設けられ被処理基板が設置される基板保持部と、
     前記基板保持部を前記ターゲットに対して揺動可能とする揺動部と、を備え、
     前記基板保持部における前記被処理基板の揺動領域が前記ターゲットのエロージョン領域より小さく設定されている、
     スパッタ装置。
  2.  前記基板保持部は、
     前記基板保持部の揺動方向における前記被処理基板の両端位置に配置され、かつ、前記揺動方向と交差する方向に延在する縦防着板を備える、
     請求項1に記載のスパッタ装置。
  3.  前記真空チャンバは、
     前記揺動方向と交差する方向における前記縦防着板の端部に配置され、前記被処理基板の両端位置に配置され、かつ、前記基板保持部の揺動とは同期しない横防着板を備える、
     請求項2に記載のスパッタ装置。
  4.  前記縦防着板の長さは、前記揺動方向と交差する方向において互いに対向する前記横防着板の間の寸法よりも大きく設定される、
     請求項3に記載のスパッタ装置。
  5.  前記横防着板における前記揺動方向の寸法は、前記揺動方向における前記縦防着板の揺動範囲の外側境界寸法よりも大きく設定される、
     請求項3に記載のスパッタ装置。
  6.  前記揺動方向における前記横防着板の寸法が、前記揺動方向における前記ターゲットの寸法よりも小さく設定される、
     請求項4または請求項5に記載のスパッタ装置。
  7.  前記揺動部が、揺動方向に延在する揺動軸を有し、前記揺動軸の軸線方向に前記基板保持部を揺動させる揺動駆動部を有する、
     請求項1から請求項6のいずれか一項に記載のスパッタ装置。
  8.  前記揺動軸には、前記揺動軸を軸線周りに回動可能な回転駆動部に接続され、
     前記揺動軸の回動により、前記基板保持部が、略水平方向位置とされた前記被処理基板を載置・取り出しする水平載置位置と、前記被処理基板の被処理面を略鉛直方向に沿うように立ち上げた鉛直処理位置との間で回転動作可能とする回動駆動部が設けられる、
     請求項7に記載のスパッタ装置。
  9.  前記カソードの背面に配置されマグネトロンプラズマを発生させるマグネトロン磁気回路と、
     前記マグネトロン磁気回路を前記カソードの背面に対して揺動させ、それに応じてマグネトロンプラズマを発生させた際のプラズマがターゲットの表面を移動するようにする磁気回路揺動部と、
     を有する、
     請求項1から請求項8のいずれか一項に記載のスパッタ装置。
PCT/JP2018/024572 2017-06-28 2018-06-28 スパッタ装置 WO2019004351A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/321,666 US11473188B2 (en) 2017-06-28 2018-06-28 Sputtering apparatus
KR1020197002524A KR102182582B1 (ko) 2017-06-28 2018-06-28 스퍼터 장치
CN201880002937.9A CN109563615B (zh) 2017-06-28 2018-06-28 溅射装置
JP2018563188A JP6579726B2 (ja) 2017-06-28 2018-06-28 スパッタ装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-126261 2017-06-28
JP2017126261 2017-06-28

Publications (1)

Publication Number Publication Date
WO2019004351A1 true WO2019004351A1 (ja) 2019-01-03

Family

ID=64742046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024572 WO2019004351A1 (ja) 2017-06-28 2018-06-28 スパッタ装置

Country Status (6)

Country Link
US (1) US11473188B2 (ja)
JP (1) JP6579726B2 (ja)
KR (1) KR102182582B1 (ja)
CN (1) CN109563615B (ja)
TW (1) TWI686493B (ja)
WO (1) WO2019004351A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288832B2 (ja) * 2019-10-01 2023-06-08 キヤノントッキ株式会社 回転駆動装置
WO2022059644A1 (ja) * 2020-09-17 2022-03-24 株式会社アルバック スパッタ装置
CN117413085A (zh) 2021-11-26 2024-01-16 株式会社爱发科 溅射装置
CN114525486A (zh) * 2022-02-15 2022-05-24 东莞市峰谷纳米科技有限公司 溅射镀膜设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088213A (ja) * 1994-06-23 1996-01-12 Casio Comput Co Ltd スパッタ法およびその装置
JPH09256143A (ja) * 1996-03-21 1997-09-30 Nissin Electric Co Ltd 基体処理装置
WO2010044257A1 (ja) * 2008-10-16 2010-04-22 株式会社アルバック スパッタリング装置、薄膜形成方法及び電界効果型トランジスタの製造方法
JP2015147953A (ja) * 2014-02-04 2015-08-20 株式会社アルバック 成膜方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7105221B2 (en) * 2001-07-19 2006-09-12 Toray Industries, Inc. Circuit board, laminated member for circuit board, and method for making laminated member for circuit board
US20050056535A1 (en) 2003-09-15 2005-03-17 Makoto Nagashima Apparatus for low temperature semiconductor fabrication
US7101466B2 (en) * 2003-09-19 2006-09-05 Kdf Electronic + Vacuum Services Inc Linear sweeping magnetron sputtering cathode and scanning in-line system for arc-free reactive deposition and high target utilization
US20070131538A1 (en) * 2005-12-13 2007-06-14 Makoto Nagashima Systems and methods for back-biased face target sputtering
US20080121620A1 (en) * 2006-11-24 2008-05-29 Guo G X Processing chamber
KR20090058993A (ko) 2007-12-05 2009-06-10 엘지디스플레이 주식회사 마그네트론 스퍼터링장치 및 구동방법
JP5004931B2 (ja) 2008-11-25 2012-08-22 株式会社アルバック スパッタ源、スパッタリング装置、及びスパッタリング方法
KR20130099194A (ko) * 2011-04-12 2013-09-05 가부시키가이샤 아루박 타겟 및 타겟의 제조 방법
CN105671500B (zh) 2011-04-26 2018-10-12 株式会社爱发科 阴极单元
JP2013093279A (ja) 2011-10-27 2013-05-16 Hitachi High-Technologies Corp 有機elデバイス製造装置
CN105908145B (zh) 2011-11-04 2018-11-09 因特瓦克公司 线性扫描溅射系统和方法
JP2013204097A (ja) 2012-03-28 2013-10-07 Hitachi High-Technologies Corp 成膜装置および成膜方法
JP2012158835A (ja) 2012-05-15 2012-08-23 Ulvac Japan Ltd スパッタ成膜装置
CN103290377B (zh) 2012-06-13 2015-05-06 成都天马微电子有限公司 磁控管溅射方法、磁控溅射电极及其装置
US9640372B2 (en) * 2012-11-15 2017-05-02 Applied Materials, Inc. Method and system for maintaining an edge exclusion shield
KR102123455B1 (ko) 2013-01-30 2020-06-17 엘지디스플레이 주식회사 스퍼터링 장치 및 산화물 반도체 물질의 스퍼터링 방법
KR102141130B1 (ko) 2013-08-29 2020-08-04 가부시키가이샤 알박 반응성 스퍼터 장치
CN104404466A (zh) 2014-12-26 2015-03-11 合肥京东方光电科技有限公司 磁控溅射镀膜方法及系统
KR102083443B1 (ko) 2015-04-15 2020-03-02 가부시키가이샤 알박 기판홀딩기구, 성막 장치, 및 기판의 홀딩방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088213A (ja) * 1994-06-23 1996-01-12 Casio Comput Co Ltd スパッタ法およびその装置
JPH09256143A (ja) * 1996-03-21 1997-09-30 Nissin Electric Co Ltd 基体処理装置
WO2010044257A1 (ja) * 2008-10-16 2010-04-22 株式会社アルバック スパッタリング装置、薄膜形成方法及び電界効果型トランジスタの製造方法
JP2015147953A (ja) * 2014-02-04 2015-08-20 株式会社アルバック 成膜方法

Also Published As

Publication number Publication date
CN109563615B (zh) 2021-07-30
JP6579726B2 (ja) 2019-09-25
TWI686493B (zh) 2020-03-01
KR102182582B1 (ko) 2020-11-24
CN109563615A (zh) 2019-04-02
US20210285094A1 (en) 2021-09-16
TW201905226A (zh) 2019-02-01
KR20190022767A (ko) 2019-03-06
JPWO2019004351A1 (ja) 2019-06-27
US11473188B2 (en) 2022-10-18

Similar Documents

Publication Publication Date Title
WO2019004351A1 (ja) スパッタ装置
US11479848B2 (en) Film forming apparatus and method
US11211233B2 (en) Film formation apparatus
US11948784B2 (en) Tilted PVD source with rotating pedestal
JP7389917B2 (ja) スパッタ装置
WO2022030189A1 (ja) 表面処理装置および表面処理方法
KR20220103038A (ko) 성막 장치 및 성막 방법
JP4111375B2 (ja) スパッタリング装置
WO1999060617A1 (fr) Appareil de pulverisation cathodique et unite magnetron
JP5836485B2 (ja) スパッタリング装置およびスパッタリング方法
JP2011089146A (ja) スパッタリング装置およびスパッタリング方法
TW202202645A (zh) 用於物理氣相沉積(pvd)的多半徑磁控管及其使用方法
WO2023186295A1 (en) Deposition source, deposition source arrangement and deposition apparatus
JP2023084397A (ja) 成膜方法及び成膜装置
JPH08144058A (ja) マグネトロンスパッタリング方法および装置
JP2022188433A (ja) 成膜装置
CN115537743A (zh) 成膜装置、成膜方法、及电子器件的制造方法
JP2023049164A (ja) マグネトロンスパッタリング装置用のカソードユニット及びマグネトロンスパッタリング装置
JP2007119843A (ja) スパッタ成膜装置
JP2011231341A (ja) スパッタリング装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018563188

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197002524

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18824780

Country of ref document: EP

Kind code of ref document: A1