WO2019004135A1 - ガラスパネルユニットの製造方法 - Google Patents

ガラスパネルユニットの製造方法 Download PDF

Info

Publication number
WO2019004135A1
WO2019004135A1 PCT/JP2018/024025 JP2018024025W WO2019004135A1 WO 2019004135 A1 WO2019004135 A1 WO 2019004135A1 JP 2018024025 W JP2018024025 W JP 2018024025W WO 2019004135 A1 WO2019004135 A1 WO 2019004135A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
gas adsorbent
glass panel
panel unit
manufacturing
Prior art date
Application number
PCT/JP2018/024025
Other languages
English (en)
French (fr)
Inventor
阿部 裕之
瓜生 英一
長谷川 和也
将 石橋
野中 正貴
清水 丈司
治彦 石川
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2019526891A priority Critical patent/JPWO2019004135A1/ja
Priority to EP18824639.1A priority patent/EP3647291A4/en
Publication of WO2019004135A1 publication Critical patent/WO2019004135A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/677Evacuating or filling the gap between the panes ; Equilibration of inside and outside pressure; Preventing condensation in the gap between the panes; Cleaning the gap between the panes
    • E06B3/6775Evacuating or filling the gap during assembly
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/6612Evacuated glazing units
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66333Section members positioned at the edges of the glazing unit of unusual substances, e.g. wood or other fibrous materials, glass or other transparent materials
    • E06B2003/66338Section members positioned at the edges of the glazing unit of unusual substances, e.g. wood or other fibrous materials, glass or other transparent materials of glass
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66342Section members positioned at the edges of the glazing unit characterised by their sealed connection to the panes
    • E06B3/66357Soldered connections or the like
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/663Elements for spacing panes
    • E06B3/66309Section members positioned at the edges of the glazing unit
    • E06B3/66361Section members positioned at the edges of the glazing unit with special structural provisions for holding drying agents, e.g. packed in special containers
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B3/00Window sashes, door leaves, or like elements for closing wall or like openings; Layout of fixed or moving closures, e.g. windows in wall or like openings; Features of rigidly-mounted outer frames relating to the mounting of wing frames
    • E06B3/66Units comprising two or more parallel glass or like panes permanently secured together
    • E06B3/673Assembling the units
    • E06B3/67326Assembling spacer elements with the panes
    • E06B3/67334Assembling spacer elements with the panes by soldering; Preparing the panes therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/249Glazing, e.g. vacuum glazing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/22Glazing, e.g. vaccum glazing

Definitions

  • the present disclosure relates to a method of manufacturing a glass panel unit.
  • a method of manufacturing a highly heat insulating glass panel unit has been conventionally proposed.
  • the temperature (465 ° C.) higher than 434 ° C. which is the melting temperature of the sealing material
  • the melting furnace in a state where the sealing material and the adsorbent are disposed between the pair of plate glasses.
  • the whole is heated to the above, and a pair of sheet glass is joined through the melted sealing material.
  • an internal space is formed between the pair of plate glass and the sealing material.
  • exhaust from the internal space is performed while maintaining the temperature of the melting furnace at a temperature lower than 434 ° C. to activate the adsorbent at this temperature. After that, the internal space is sealed in a reduced pressure state.
  • the adsorbent when the heating temperature in the furnace is set low, the adsorbent is less likely to be activated by that amount, and as a result, the degree of vacuum tends to be reduced.
  • the manufacturing method of the glass panel unit which concerns on one aspect of this indication comprises a pillar arrangement
  • a pillar disposing step a plurality of pillars are disposed at a distance from each other on at least one of the first substrate including the glass panel and the second substrate including the glass panel.
  • a gas adsorbent disposing step a gas adsorbent containing a nonmetallic getter material having a porous structure is disposed on at least one of the first substrate and the second substrate.
  • the first substrate and the second substrate are bonded via a sealing material, and the plurality of pillars and the gas are interposed between the first substrate, the second substrate, and the sealing material. It forms an internal space in which the adsorber is located.
  • the depressurizing step the internal space is depressurized.
  • the sealing step the internal space is sealed in a reduced pressure state.
  • the gas adsorbent is activated.
  • the first substrate and the second substrate are bonded via the sealing material heated at a first temperature of 407 ° C. or lower.
  • the gas adsorbent is locally heated so that the gas adsorbent reaches a second temperature higher than the first temperature in the internal space.
  • FIG. 1 is a perspective view showing a glass panel unit according to an embodiment.
  • FIG. 2 is a plan view showing the above glass panel unit.
  • FIG. 3 is a cross-sectional view taken along line AA of FIG.
  • FIG. 4 is a perspective view showing one process of manufacturing the above glass panel unit.
  • FIG. 5 is a plan view showing the work-in-process of the above glass panel unit.
  • 6 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 8 is a fragmentary side view partially showing the manner in which the internal space of the work-in-process is sealed.
  • FIG. 8 is a fragmentary side view partially showing the manner in which the internal space of the work-in-process is sealed.
  • FIG. 9 is a fragmentary side view showing the activation of the gas adsorbent disposed in the inner space of the above.
  • FIG. 10 is a fragmentary side view showing a state in which the gas adsorbent is activated in the first modification.
  • FIG. 11 is a fragmentary side view showing a state in which the gas adsorbent is activated in the second modification.
  • FIG. 12 is a perspective view showing a work-in-process obtained in the manufacturing process of the third modification.
  • FIG. 13 is a graph showing the time change of the heating temperature in the furnace in the third modification.
  • FIG. 14 is a perspective view showing a glass composite obtained in the manufacturing process of Modification 3.
  • FIG. 15 is a perspective view showing how the above-described glass composite is cut.
  • FIGS. 1 to 3 First, a glass panel unit according to an embodiment will be described based on FIGS. 1 to 3.
  • the glass panel unit of one embodiment includes a first panel 1, a second panel 2, a seal portion 41, a hole sealing material 42, a plurality of pillars 43, and a gas adsorbent 44.
  • the first panel 1 and the second panel 2 face each other at a slight distance.
  • the first panel 1 and the second panel 2 are parallel to each other, and the seal portion 41, the plurality of pillars 43, and the gas adsorbent 44 are located between the first panel 1 and the second panel 2.
  • the first panel 1 includes a glass panel 15 and a low emission film 45 (see FIG. 3) joined to the glass panel 15.
  • the low radiation film 45 is a film containing a metal having low emissivity such as silver, and has a function of suppressing heat transfer due to radiation.
  • the second panel 2 includes a glass panel 25.
  • glass panel 15 and the glass panel 25 various panels formed of materials such as soda lime glass, high strain point glass, chemically strengthened glass, alkali-free glass, quartz glass, neoceram, physically strengthened glass and the like are used.
  • the facing surface 12 facing the second panel 2 of the first panel 1 is formed of the surface of the low radiation film 45.
  • the facing surface 22 facing the first panel 1 of the second panel 2 is constituted by the surface of the glass panel 25.
  • the seal portion 41 is formed in a frame shape using, for example, a glass frit having a low melting point.
  • the seal portion 41 is airtightly joined to the peripheral portion of the first panel 1 and the peripheral portion of the second panel 2 respectively.
  • the peripheral edge portions of the first panel 1 and the second panel 2 are airtightly joined via the seal portion 41.
  • the plurality of pillars 43 are distributed at a distance from each other. Each of the plurality of pillars 43 is positioned in contact with the opposing surfaces 12 and 22 of the first panel 1 and the second panel 2.
  • the plurality of pillars 43 are positioned so as to be surrounded by the frame-shaped seal portion 41, and function to maintain the distance between the first panel 1 and the second panel 2 at a predetermined distance. It is preferable that all or a part of the plurality of pillars 43 be formed of a resin such as polyimide.
  • the first panel 1 side of the first panel 1 and the second panel 2 has the exhaust hole 50, and the exhaust hole 50 is airtightly sealed by the hole sealing material 42. It is done.
  • the hole sealing material 42 is formed using, for example, a glass frit.
  • the exhaust hole 50 is a hole used to perform an exhaust operation in the process of manufacturing the glass panel unit (pressure reduction step described later), and penetrates the first panel 1.
  • the sealed space 51 surrounded by the first panel 1, the second panel 2 and the seal portion 41 is hermetically sealed in its entirety by the sealing of the exhaust hole 50.
  • the enclosed space 51 is an adiabatic space whose pressure has been reduced to, for example, a degree of vacuum of 0.1 Pa or less.
  • the plate 46 disposed in the exhaust hole 50 is a member used in the process of manufacturing the glass panel unit (the sealing process described later).
  • the exhaust hole 50 may be further filled with resin so as to cover the plate 46.
  • the manufacturing method of the glass panel unit of one Embodiment contains a pillar arrangement
  • the first substrate 10 and the second substrate 20 are prepared (see FIG. 4 and the like).
  • the first substrate 10 constitutes the first panel 1 of the glass panel unit after undergoing each process.
  • the second substrate 20 constitutes the second panel 2 of the glass panel unit after undergoing each process.
  • the first substrate 10 includes a glass panel 105 and a low emission film 450 bonded to the glass panel 105 (see FIG. 6).
  • the second substrate 20 includes a glass panel 205.
  • the glass panel 105 is referred to as a first glass panel 105
  • the glass panel 205 is referred to as a second glass panel 205.
  • the first glass panel 105 constitutes the glass panel 15 of the first panel 1 after each process.
  • the low emission film 450 constitutes the low emission film 45 of the first panel 1 after each process.
  • the second glass panel 205 constitutes the glass panel 25 of the second panel 2 after each process.
  • the plurality of pillars 43 are disposed on one surface (upper surface) of the second substrate 20 at a distance from each other.
  • the gas adsorbent 44 is arranged on one surface (upper surface) of the second substrate 20. Specifically, a paste-like gas adsorbent 44 containing a getter material is applied to one surface of the second substrate 20 using an application device such as a dispenser.
  • the getter material contained in the gas adsorbent 44 is a nonmetallic getter material having a porous structure, and is, for example, a zeolite-based, activated carbon or magnesium oxide getter material.
  • Zeolite-based getter materials include ion-exchanged zeolites.
  • the ion exchange material is, for example, K, NH 4 , Ba, Sr, Na, Ca, Fe, Al, Mg, Li, H, Cu.
  • the gas adsorbent 44 contains a nonmetallic getter material having a porous structure, it can effectively adsorb a gas having a large molecular weight.
  • the gas having a large molecular weight is, for example, a hydrocarbon-based gas (CH 4 , C 2 H 6 or the like) and ammonia gas (NH 3 ).
  • Either of the pillar disposing step and the gas adsorbent disposing step may be performed first, or both steps may be performed in parallel.
  • the first substrate 10 and the second substrate 20 are bonded via a frame-shaped sealing material 410.
  • the first substrate 10 and the second substrate 20 set so as to sandwich the sealing material 410 and the plurality of pillars 43 are heated at a first temperature (for example, 380 ° C.) in a furnace.
  • the first temperature is set to be higher than the melting point (for example, 340 ° C.) of the sealing material 410 and to be 407 ° C. or less, which is the ignition point of cotton.
  • the sealing material 410 once melted (softened) is cured by heating and is bonded to the first substrate 10 and the second substrate 20 so that the space between the first substrate 10, the second substrate 20 and the sealing material 410 is An internal space 510 in which the plurality of pillars 43 and the gas adsorbent 44 are located is formed.
  • the sealing material 410 constitutes the sealing portion 41 of the glass panel unit after each process.
  • the sealing material 410 is disposed in a frame shape on the outer peripheral portion of one surface of the second substrate 20 (second glass panel 205) using a suitable coating device (see FIG. 4).
  • the ridge 47 is disposed at a predetermined position on one surface of the second substrate 20 so as to have a partially cut-out annular (for example, C-shaped) shape using a suitable coating device.
  • the materials of the sealing material 410 and the crucible 47 are preferably the same material such as a glass frit.
  • the placement of the sealing material 410 and the weir 47 may be performed before the pillar placement step, may be performed after the pillar placement step, or may be performed in parallel with the pillar placement step. Also, the arrangement of the sealing material 410 and the weir 47 may be performed before the gas adsorbent arranging step, may be performed after the gas adsorbent arranging step, or in parallel with the gas adsorbent arranging step. May be performed.
  • the work in process 8 shown in FIGS. 5 and 6 is formed.
  • the work in process 8 is an article on the way of manufacturing the glass panel unit.
  • the depressurization step, the sealing step, and the activation step are further performed on the work in process 8.
  • This apparatus includes a pressure reducing mechanism 71, a heating mechanism 72, and a pressing mechanism 73.
  • the pressure reducing mechanism 71 includes an exhaust head 75 pressed against the work in process 8 and a connecting portion 753 connected to the exhaust head 75.
  • the decompression mechanism 71 is configured to decompress the internal space 510 formed in the work in process 8 through the exhaust hole 50 and maintain the same in a decompressed state.
  • the heating mechanism 72 is disposed on the opposite side of the work in process 8 to the exhaust head 75 (see FIG. 8).
  • the heating mechanism 72 is configured to heat the hole sealing material 42 inserted into the exhaust hole 50 in a noncontact manner.
  • the heating mechanism 72 includes an irradiator 720.
  • the irradiator 720 irradiates infrared rays from the outside to the hole sealing material 42 inserted in the exhaust hole 50 through the second substrate 20 (second glass panel 205) so as to heat the hole sealing material 42. It is configured.
  • the infrared radiation is preferably near infrared radiation.
  • the pressing mechanism 73 is provided on the exhaust head 75.
  • the pressing mechanism 73 is configured to press the hole sealing material 42 inserted into the exhaust hole 50 toward the second substrate 20 in a state where the internal space 510 is decompressed by the decompression mechanism 71.
  • the hole sealing material 42 and the plate 46 having a diameter smaller than that of the exhaust hole 50 are inserted into the exhaust hole 50 of the workpiece 8 (see FIG. 7).
  • the hole sealing material 42 is a solid sealing material formed using, for example, a glass frit.
  • the hole sealing material 42 has a block-like shape, but may have a cylindrical shape which penetrates up and down.
  • the plate 46 is disposed on the opposite side of the hole sealing material 42 to the second substrate 20.
  • the exhaust head 75 is airtightly pressed against the portion of the first substrate 10 surrounding the opening of the exhaust hole 50.
  • the hole sealing material 42 and the plate 46 are elastically pushed toward the second substrate 20.
  • the internal space 510 is sealed in a reduced pressure state using the heating mechanism 72 and the pressing mechanism 73.
  • the hole sealing material 42 is heated and melted by the heating mechanism 72, and the hole sealing material 42 is directed to the second substrate 20 by the biasing force exerted by the pressing mechanism 73 via the plate 46. Press down.
  • the hole sealing material 42 deforms in the inner space 510 until it hits the inner circumferential surface of the crucible 47.
  • the notched portion provided in the weir 47 is sealed by the deformed hole sealing material 42.
  • the exhaust hole 50 is sealed by the hole sealing material 42, and the internal space 510 is airtightly sealed in the reduced pressure state.
  • the internal space 510 constitutes the sealed space 51 of the glass panel unit after each process.
  • the gas adsorbent 44 disposed in the internal space 510 of the work-in-process 8 is locally heated to a second temperature (eg, 600 ° C.) by the local heating mechanism 6 shown in FIG.
  • the second temperature is higher than the activation temperature of the getter material contained in the gas adsorbent 44, preferably higher than 500 ° C., and more preferably higher than 600 ° C.
  • the second temperature is a temperature higher than the temperature (first temperature) when the sealing material 410 is melted in the bonding step.
  • the activation temperature of the getter material contained in the gas adsorbent 44 is higher than the first temperature.
  • the activation temperature of the getter material contained in the gas adsorbent 44 is higher than the first temperature and lower than the second temperature.
  • the local heating mechanism 6 includes an irradiator 61 configured to emit a laser beam.
  • the irradiator 61 can irradiate the laser light from the outside to the gas adsorbent 44 disposed in the internal space 510 through the second substrate 20 (second glass panel 205).
  • the gas adsorbent 44 is heated in a noncontact manner.
  • the activation step is preferably performed in parallel with the depressurization step. That is, while depressurizing the internal space 510 using the exhaust head 75, the gas adsorbent 44 is heated in a non-contact manner and locally, and is evacuated in the internal space 510 in a state of being evacuated. Preferably, 44 is activated.
  • the gas adsorbent 44 contains a nonmetallic getter material having a porous structure (for example, Cu ion-exchanged zeolite), the hydrocarbon-based gas adsorbed by the gas adsorbent 44 by local heating, Gas molecules such as ammonia are desorbed. Thereby, the gas adsorbent 44 is activated. Gas molecules desorbed from the gas adsorbent 44 are sucked through the exhaust hole 50 by the pressure reducing mechanism 71. The sealing process is performed when the gas adsorber 44 is fully activated by the activation process.
  • a nonmetallic getter material having a porous structure for example, Cu ion-exchanged zeolite
  • laser light is irradiated into the sealed internal space 510 in a reduced pressure state, and the gas adsorbent 44 is activated by local heating.
  • the glass panel unit obtained by the above manufacturing method has the sealed space 51 sealed in a reduced pressure state, and the sealed space 51 accommodates the fully activated gas adsorbent 44. Therefore, the fall of the degree of vacuum of sealed space 51 is controlled, and the heat insulation of the whole glass panel unit is maintained.
  • the gas (hydrocarbon-based gas) generated here is generated by the gas adsorbent 44 containing the getter material (zeolite, activated carbon, etc.) activated by the local heating. Gas, ammonia gas, etc.) is effectively adsorbed.
  • the plurality of pillars 43 are arranged on one surface of the second substrate 20 in the pillar arranging step, but the places where the plurality of pillars 43 are arranged are the first substrate 10 and the second substrate It may be at least one of the substrates 20.
  • the plurality of pillars 43 may be disposed on the first substrate 10, and the plurality of pillars 43 may be disposed in a dispersed manner on the first substrate 10 and the second substrate 20.
  • the gas adsorbent 44 is arranged on one surface of the second substrate 20 in the gas adsorbent arranging step, but the place where the gas adsorbent 44 is arranged is the first It may be at least one of the substrate 10 and the second substrate 20.
  • the gas adsorbent 44 may be disposed on the first substrate 10, and the gas adsorbent 44 may be disposed on both the first substrate 10 and the second substrate 20. Two or more gas adsorbers 44 may be used.
  • the first substrate 10 preferably does not include the low emission film 450.
  • the gas adsorber 44 includes a nonmetallic getter material having a porous structure
  • a metal getter material is included in addition to the nonmetallic getter material. It is also preferable to use one.
  • the metal getter material is a getter material having a metal surface capable of chemically adsorbing gas molecules, and is, for example, a zirconium-based getter material such as Zr-Al or Zr-V-Fe, or a titanium-based getter material.
  • a zirconium-based getter material such as Zr-Al or Zr-V-Fe
  • a titanium-based getter material When the gas adsorbent 44 contains metal getter, for the adsorption hardly gas molecules of a non-metallic getter materials (H 2 0, N 2, O 2, H 2, CO 2 , etc.), efficiently adsorbed can do.
  • activating the gas adsorbent 44 means activating the non-metallic getter material.
  • activating the gas adsorbent 44 means activating the nonmetallic getter material and the metal getter material.
  • the gas adsorber 44 is heated by the energy of laser light, but it is also possible to heat the gas adsorber 44 using the energy of other light such as infrared rays. is there.
  • the infrared radiation is preferably near infrared radiation.
  • the local heating mechanism 6a includes an irradiator 62 capable of emitting infrared light, as shown in the first modification shown in FIG. 10, for example.
  • the irradiator 62 irradiates infrared rays from the outside to the gas adsorbent 44 disposed in the internal space 510 through the second substrate 20 (second glass panel 205) to heat the gas adsorbent 44 in a noncontact manner. Is configured. Irradiation of infrared radiation may be performed through at least one of the first substrate 10 and the second substrate 20.
  • the metal member 63 disposed in the internal space 510 is heated by energization so as to be in contact with the gas adsorber 44 so as to contact the gas adsorber 44, and the gas adsorber 44 is locally heated via the metal member 63. It is also possible.
  • a bottomed groove 201 is formed in part of the surface of the second substrate 20 facing the first substrate 10.
  • the sheet-like metal member 63 is fixed to the bottom of the groove 201, and the solid gas adsorbent 44 is fixed on the metal member 63.
  • the place where the metal member 63 and the gas adsorbent 44 are disposed is not limited to the groove 201, and the metal member 63 and the gas adsorbent 44 may be disposed on the flat surface of the second substrate 20.
  • the local heating mechanism 6 b includes a coiled magnetic field generator 64.
  • the magnetic field generator 64 By setting the magnetic field generator 64 to the outside and supplying AC power thereto, an overcurrent can be generated in the metal member 63 and the metal member 63 can be inductively heated.
  • the gas adsorbent 44 can be locally heated in the inner space 510 via the non-contact heated metal member 63.
  • an electrode electrically connected to the metal member 63 may be drawn to the outside, and the electrode may be electrically connected to a power supply outside. Also in this case, it is possible to locally heat the gas adsorbent 44 through the electrically heated metal member 63.
  • the sealing material 410 disposed on the second substrate 20 includes a frame 410 a and a partition 410 b.
  • the partition 410b preferably has a higher melting point than the frame 410a, but the melting points of the partition 410b and the frame 410a may be the same.
  • the material of the sealing material 410 is preferably a material having a melting point of 300 ° C. or less.
  • a vanadium-based seal frit is preferably used as a material of the sealing material 410.
  • the partition 410b is formed in a straight line at a position surrounded by the frame 410a.
  • the workpiece 8a is formed through the bonding step.
  • an internal space 510 is formed between the first substrate 10, the second substrate 20, and the frame 410a.
  • the partition 410 b is located in the internal space 510.
  • the partition 410b partitions the inner space 510 into a first space 510a and a second space 510b. However, both ends of the partition 410b are not in contact with the frame 410a.
  • the exhaust hole 50 is formed through the second substrate 20 so as to be connected to the second space 510 b in the inner space 510.
  • the gas adsorbent 44 and the plurality of pillars 43 are disposed on the side of the first space 510 a in the internal space 510.
  • the interior space 510 of the work-in-process 8a includes two air passages 510c, 510d. Each of the two air passages 510c and 510d connects the first space 510a and the second space 510b. Each of the two air passages 510c and 510d is a gap formed between the partition 410b and the frame 410a.
  • the frame 410 a hardened after being softened by heating is airtightly bonded to the first substrate 10 and the second substrate 20.
  • the partition 410b is not substantially deformed.
  • FIG. 13 is a graph showing changes in heating temperature (in-furnace temperature). In the bonding step, heating at the first temperature t1 is performed for a first predetermined time T1.
  • the first temperature t1 is a temperature higher than the melting point of the frame 410a.
  • the first temperature t1 is 270 ° C., for example.
  • the first predetermined time T1 is, for example, 15 minutes.
  • the first space 510a is evacuated via the air passages 510c and 510d of the work-in-process 8a, the second space 510b, and the exhaust hole 50.
  • the evacuation is performed by, for example, a vacuum pump via an exhaust pipe 81 connected to the exhaust hole 50.
  • the work-in-process 8a is heated at a temperature t2 (see FIG. 13) lower than the first temperature t1 for a second predetermined time T2.
  • the temperature t2 is 250 ° C., for example.
  • the second predetermined time T2 is, for example, 60 minutes.
  • the activation step is performed in parallel with the pressure reduction step.
  • the gas adsorbent 44 disposed in the inner space 510 (first space 510a) of the work-in-process 8a is locally heated to a second temperature (eg, 600 ° C.) by, for example, irradiating a laser beam. .
  • the second temperature is higher than the activation temperature of the getter material contained in the gas adsorbent 44, preferably higher than 500 ° C., and more preferably higher than 600 ° C.
  • the second temperature is a temperature sufficiently higher than the first temperature t1 when the sealing material 410 is melted in the bonding step.
  • the second temperature is a temperature sufficiently higher than the temperature t2 at which the work-in-process 8a is heated in the decompression step, and is a temperature sufficiently higher than the temperature t3 at which the work-in-process 8a is heated in the sealing process described later.
  • the sealing process is performed after the activation process is completed.
  • the sealing step is performed in parallel with the depressurizing step.
  • the sealing step while the internal space 510 is being decompressed, the partition 410b is melted by heating, and the air passages 510c and 510d are closed by the deformed partition 410b.
  • the air passages 510c and 510d do not exist in the inner space 510 (see FIG. 14).
  • sealing the inner space includes the case where only a part (the first space 510 a) of the inner space 510 is sealed as in the third modification.
  • the work-in-process 8a is heated at a temperature t3 for a third predetermined time T3.
  • the temperature t3 is a temperature higher than the first temperature t1 and the temperature t2 and higher than the melting point of the partition 410b.
  • the temperature t3 is, for example, 300.degree.
  • the third predetermined time T3 is, for example, 30 minutes.
  • the glass composite 800 shown in FIG. 14 is obtained through the above-described steps.
  • a glass panel unit having the first space 510 a in a decompressed state can be obtained.
  • the glass composite 800 is cut at the portion where the partition 410b is located. It is also possible to cut the glass composite 800 at the portion where the second space 510 b is located.
  • the gas adsorbent 44 is activated in the furnace, but the timing of activation is not limited thereto.
  • the gas adsorbent 44 is activated by locally heating the gas adsorbent 44 outside the furnace. It is also good.
  • the gas adsorbent 44 may be activated to a certain extent in parallel with the pressure reduction step in the furnace to form the glass composite 800, and then the gas adsorbent 44 may be further activated outside the furnace. In this case, after the gas adsorber 44 is activated to some extent by the heating temperature in the furnace, the gas adsorber 44 is locally heated outside the furnace.
  • the gas adsorbent 44 contains a metal getter material in addition to the nonmetal getter material
  • local heating of the gas adsorbent 44 in the furnace activates both the nonmetal getter material and the metal getter material. It is also possible that local heating of the gas adsorber 44 outside the furnace can activate both the non-metallic getter material and the metallic getter material.
  • the non-metallic getter material may be activated to a certain extent by the heating temperature in the furnace to form the glass composite 800, and then the gas adsorbent 44 may be locally heated outside the furnace. In this case, local heating outside the furnace can further activate the nonmetallic getter material, and can activate the metallic getter material.
  • the gas adsorbent 44 includes a nonmetallic getter material and a metal getter material, it is possible to locally heat the gas adsorbent 44 by inductively heating the metal getter material contained in the gas adsorbent 44. .
  • the method for manufacturing a glass panel unit according to the first aspect includes a pillar disposing step, a gas adsorbent disposing step, a bonding step, a pressure reducing step, a sealing step, And an activation step.
  • the plurality of pillars (43) are spaced apart from each other on at least one of the first substrate (10) including the glass panel (105) and the second substrate (20) including the glass panel (205). Place.
  • the gas adsorbent arranging step the gas adsorbent (44) is arranged on at least one of the first substrate (10) and the second substrate (20).
  • the gas adsorbent (44) contains a nonmetallic getter material having a porous structure.
  • the first substrate (10) and the second substrate (20) are bonded via the sealing material (410), and the first substrate (10), the second substrate (20) and the sealing material (410) ), Forming an inner space (510) in which a plurality of pillars (43) and a gas adsorbent (44) are located.
  • the depressurization step the internal space (510) is depressurized.
  • the sealing step the internal space (510) is sealed in a reduced pressure state.
  • the gas adsorbent (44) is activated.
  • the first substrate (10) and the second substrate (20) are bonded via the sealing material (410) heated at a first temperature of 407 ° C. or less.
  • the gas adsorbent (44) is locally heated so that the gas adsorbent (44) reaches a second temperature higher than the first temperature in the internal space (510).
  • the method of manufacturing a glass panel unit of the first aspect since the heating temperature in the sealing step is suppressed, energy consumption at the time of manufacturing can be suppressed.
  • hydrocarbon gas is easily generated from organic substances such as remaining thread waste, and hydrocarbon gas is easily generated from the sealing material (410). Is effectively adsorbed by the gas adsorbent 44 containing nonmetallic getter material activated by local heating. Therefore, according to the method of manufacturing a glass panel unit of the first aspect, energy consumption at the time of manufacturing can be suppressed, and a reduction in the degree of vacuum of the internal space (510) can be effectively suppressed.
  • the manufacturing method of the glass panel unit of a 2nd aspect is further equipped with the following structure in the manufacturing method of the glass panel unit of a 1st aspect.
  • a gas is irradiated by energy of light irradiated to the gas adsorbent (44) through at least one of the first substrate (10) and the second substrate (20). Locally heat the adsorbent (44).
  • the gas adsorbent (44) disposed in the internal space (510) is locally heated without contact.
  • the manufacturing method of the glass panel unit of a 3rd aspect is further equipped with the following structure in the manufacturing method of the glass panel unit of a 2nd aspect.
  • a gas adsorbent (44) is locally heated with the energy of the laser beam irradiated to a gas adsorbent (44) at an activation process.
  • the gas adsorbent (44) disposed in the internal space (510) is locally heated in a noncontact manner by the laser light.
  • the manufacturing method of the glass panel unit of a 4th aspect is further equipped with the following structure in the manufacturing method of the glass panel unit of a 2nd aspect.
  • a gas adsorbent (44) is locally heated with the energy of the infrared rays irradiated to a gas adsorbent (44) at an activation process.
  • the gas adsorbent (44) disposed in the inner space (510) is locally heated in a noncontact manner by infrared light.
  • the manufacturing method of the glass panel unit of the 5th aspect is further equipped with the following structure in the manufacturing method of the glass panel unit of a 1st aspect.
  • the metal member (63) is further arranged to be in contact with the gas adsorbent (44), and heated in the activation step by energization.
  • the gas adsorber (44) is locally heated by the metal member (63).
  • the gas adsorbent (44) disposed in the internal space (510) is efficiently locally heated via the metal member (63).
  • the manufacturing method of the glass panel unit of a 6th aspect is equipped with the following structure in the manufacturing method of the glass panel unit of a 5th aspect.
  • the gas adsorbent (44) in the activation step, is locally heated by the induction-heated metal member (63).
  • the gas adsorbent (44) can be locally heated in the inner space (510) through the non-contact heated metal member (63). .
  • the manufacturing method of the glass panel unit of a 7th aspect is further equipped with the following structure in the manufacturing method of the glass panel unit of the 1st to 6th any one aspect.
  • the local heating of the gas adsorbent (44) in the activation step is performed in parallel with the pressure reduction step.
  • the gas released from the gas adsorbent (44) in the activation step is discharged from the inner space (510) in the pressure reduction step, the inner space (510) is obtained.
  • the vacuum degree of) is easily maintained.
  • a method of manufacturing a glass panel unit according to an eighth aspect of the present invention further includes the following configuration in the method of manufacturing a glass panel unit according to any one of the first through seventh aspects.
  • the non-metallic getter material is a zeolite-based, activated carbon or magnesium oxide getter material.
  • hydrocarbon gas and ammonia gas can be effectively adsorbed by the gas adsorbent (44).
  • a method of manufacturing a glass panel unit according to a ninth aspect of the present invention further includes the following configuration in the method of manufacturing a glass panel unit according to any one of the first to eighth aspects.
  • the gas adsorbent (44) further includes a metal getter material having a metal surface capable of adsorbing gas molecules.
  • first substrate 105 first glass panel
  • second substrate 205 second glass panel
  • sealing material 43 pillar 44 gas adsorber 510 internal space 63 metal member

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Securing Of Glass Panes Or The Like (AREA)

Abstract

製造時の消費エネルギーを抑えることができ、かつ、真空度の低下を効果的に抑えることができるガラスパネルユニットの製造方法を提案する。第一基板(10)と第二基板(20)を、407℃以下の第一温度で加熱した封着材(410)を介して、接合する。これにより、第一基板(10)と第二基板(20)の間に内部空間(510)を形成する。内部空間(510)には、非金属ゲッター材を含むガス吸着体(44)が配置されている。活性化工程において、ガス吸着体(44)を、第一温度よりも高い第二温度に至るように、局所加熱する。

Description

ガラスパネルユニットの製造方法
 本開示は、ガラスパネルユニットの製造方法に関する。
 断熱性の高いガラスパネルユニットを製造する方法が、従来提案されている。例えば特許文献1に開示される方法では、一対の板ガラスの間に封着材と吸着材を配した状態で、溶融炉において、封着材の溶融温度である434℃よりも高い温度(465℃)にまで全体を加熱し、溶融した封着材を介して一対の板ガラス同士を接合させる。これにより、一対の板ガラスと封着材の間に内部空間が形成される。
 次いで、溶融炉の温度を434℃よりも低い温度に維持しながら、内部空間からの排気を行い、このときの温度で吸着材を活性化させる。その後に、内部空間を減圧状態のままで封止する。
 上記した従来の製造方法では、一対の板ガラス同士を接合させるときに、炉内の温度を高温(465℃)に維持する必要があるので、製造時の消費エネルギーが大きい。
 製造時の消費エネルギーを抑えるためには、低融点の封着材を用い、封着時の加熱温度を低く設定することが考えられる。しかし、加熱温度が低いと、糸屑等の有機物が内部空間で燃焼せずに残存しやすくなる。内部空間に糸屑等の有機物が残存していると、有機物が経時変化して発生させるガスによって、真空度が低下する。また、加熱温度が低い場合には、封着材の溶媒が蒸発しきらずに残存し、残存した溶媒がガスを発生させることによって、真空度が低下する。
 加えて、炉内の加熱温度が低く設定されると、その分だけ吸着材が活性化され難くなり、結果的に真空度が低下しやすくなる。
国際公開第2014/136151号
 上記事情に鑑み、本開示は、製造時の消費エネルギーを抑えることができ、かつ、真空度の低下を効果的に抑えることができるガラスパネルユニットの製造方法を提案することを、目的とする。
 本開示の一様態に係るガラスパネルユニットの製造方法は、ピラー配置工程、ガス吸着体配置工程、接合工程、減圧工程、封止工程、及び活性化工程を備える。前記ピラー配置工程では、ガラスパネルを含む第一基板と、ガラスパネルを含む前記第二基板の少なくとも一方に、複数のピラーを、互いに距離をあけて配置する。前記ガス吸着体配置工程では、前記第一基板と前記第二基板の少なくとも一方に、多孔質構造を有する非金属ゲッター材を含んだガス吸着体を配置する。前記接合工程では、前記第一基板と前記第二基板を、封着材を介して接合させ、前記第一基板と前記第二基板と前記封着材の間に、前記複数のピラーと前記ガス吸着体が位置する内部空間を形成する。前記減圧工程では、前記内部空間を減圧させる。前記封止工程では、前記内部空間を減圧状態で封止する。前記活性化工程では、前記ガス吸着体を活性化させる。前記接合工程では、407℃以下の第一温度で加熱した前記封着材を介して、前記第一基板と前記第二基板を接合させる。前記活性化工程では、前記内部空間において、前記ガス吸着体が前記第一温度よりも高い第二温度に至るように、前記ガス吸着体を局所加熱する。
図1は、一実施形態のガラスパネルユニットを示す斜視図である。 図2は、同上のガラスパネルユニットを示す平面図である。 図3は、図2のA-A線断面図である。 図4は、同上のガラスパネルユニットを製造する一過程を示す斜視図である。 図5は、同上のガラスパネルユニットの仕掛品を示す平面図である。 図6は、図5のB-B線断面図である。 図7は、同上の仕掛品の内部空間を減圧する様子を一部破断して示す要部側面図である。 図8は、同上の仕掛品の内部空間を封止する様子を一部破断して示す要部側面図である。 図9は、同上の内部空間に配されたガス吸着体を活性化させる様子を一部破断して示す要部側面図である。 図10は、変形例1においてガス吸着体を活性化させる様子を一部破断して示す要部側面図である。 図11は、変形例2においてガス吸着体を活性化させる様子を一部破断して示す要部側面図である。 図12は、変形例3の製造過程で得られた仕掛品を示す斜視図である。 図13は、変形例3における炉内の加熱温度の時間変化を示すグラフである。 図14は、変形例3の製造過程で得られたガラス複合体を示す斜視図である。 図15は、同上のガラス複合体を切断する様子を示す斜視図である。
 (一実施形態)
 一実施形態のガラスパネルユニットとこれを製造する方法について、添付図面に基づいて説明する。添付図面においては、一実施形態のガラスパネルユニットの各構成を、模式的に示している。
 まず、一実施形態のガラスパネルユニットについて、図1から図3に基づいて説明する。
 一実施形態のガラスパネルユニットは、第一パネル1、第二パネル2、シール部41、孔封止材42、複数のピラー43、及びガス吸着体44を備える。
 第一パネル1と第二パネル2は、僅かな距離をあけて互いに対向して位置する。第一パネル1と第二パネル2は互いに平行であり、第一パネル1と第二パネル2の間に、シール部41、複数のピラー43、及びガス吸着体44が位置する。
 第一パネル1は、ガラスパネル15と、ガラスパネル15に接合された低放射膜45(図3参照)を含む。低放射膜45は、銀等の低放射性を有する金属を含有する膜であり、放射による伝熱を抑制する機能を有する。第二パネル2は、ガラスパネル25を含む。
 ガラスパネル15とガラスパネル25には、ソーダライムガラス、高歪点ガラス、化学強化ガラス、無アルカリガラス、石英ガラス、ネオセラム、物理強化ガラス等の材料で形成された各種パネルが、用いられる。
 第一パネル1の第二パネル2に対向する対向面12の大部分は、低放射膜45の表面で構成されている。第二パネル2の第一パネル1に対向する対向面22は、ガラスパネル25の表面で構成されている。
 シール部41は、例えば低融点のガラスフリットを用いて、枠状に形成されている。シール部41は、第一パネル1の周縁部と、第二パネル2の周縁部に、それぞれ気密に接合されている。第一パネル1と第二パネル2の互いの周縁部は、シール部41を介して気密に接合されている。
 複数のピラー43は、互いに距離をあけて分散配置されている。複数のピラー43の各々は、第一パネル1と第二パネル2の互いの対向面12,22に当たって位置している。
 複数のピラー43は、枠状のシール部41に囲まれて位置し、第一パネル1と第二パネル2の間の距離を、所定距離に維持するように機能する。複数のピラー43は、その全部又は一部がポリイミド等の樹脂で形成されていることが好ましい。
 一実施形態のガラスパネルユニットでは、第一パネル1と第二パネル2のうち、第一パネル1の側が排気孔50を有しており、排気孔50は孔封止材42によって気密に封止されている。孔封止材42は、例えばガラスフリットを用いて形成されている。排気孔50は、ガラスパネルユニットを製造する過程(後述の減圧工程)で、排気作業を行うために用いられる孔であり、第一パネル1を貫通している。
 第一パネル1と第二パネル2とシール部41に囲まれる密閉空間51は、排気孔50の封止によって、その全体が気密に封止されている。密閉空間51は、例えば0.1Pa以下の真空度に至るまで減圧された断熱空間である。
 排気孔50内に配置されたプレート46は、ガラスパネルユニットを製造する過程(後述の封止工程)で用いられた部材である。排気孔50には、更にプレート46を覆うように樹脂が詰められてもよい。
 次に、一実施形態のガラスパネルユニットを製造する方法について、説明する。
 一実施形態のガラスパネルユニットの製造方法は、ピラー配置工程、ガス吸着体配置工程、接合工程、減圧工程、封止工程、及び活性化工程を含む。
 各工程を行う準備段階では、第一基板10と第二基板20を準備する(図4等参照)。第一基板10は、各工程を経た後に、ガラスパネルユニットの第一パネル1を構成する。第二基板20は、各工程を経た後に、ガラスパネルユニットの第二パネル2を構成する。
 第一基板10は、ガラスパネル105と、ガラスパネル105に接合された低放射膜450を含む(図6参照)。第二基板20は、ガラスパネル205を含む。以下においては、ガラスパネル105を第一ガラスパネル105と称し、ガラスパネル205を第二ガラスパネル205と称する。
 第一ガラスパネル105は、各工程を経た後に、第一パネル1のガラスパネル15を構成する。低放射膜450は、各工程を経た後に、第一パネル1の低放射膜45を構成する。第二ガラスパネル205は、各工程を経た後に、第二パネル2のガラスパネル25を構成する。
 ピラー配置工程においては、図4等に示すように、第二基板20の一面(上面)に、複数のピラー43を、互いに距離をあけて配置する。
 ガス吸着体配置工程においては、第二基板20の一面(上面)に、ガス吸着体44を配置する。具体的には、ゲッター材を含んだペースト状のガス吸着体44を、ディスペンサー等の塗布装置を用いて、第二基板20の一面に塗布する。
 ガス吸着体44が含むゲッター材は、多孔質構造を有する非金属ゲッター材であり、一例としてゼオライト系、活性炭素又は酸化マグネシウムのゲッター材である。ゼオライト系のゲッター材は、イオン交換されたゼオライトを含む。イオン交換物質は、例えばK、NH、Ba、Sr、Na、Ca、Fe、Al、Mg、Li、H、Cuである。
 ガス吸着体44は、多孔質構造を有する非金属ゲッター材を含んでいることから、分子量の大きなガスを有効に吸着することができる。分子量の大きなガスは、例えば、炭化水素系ガス(CH、C等)、アンモニアガス(NH)である。
 ピラー配置工程とガス吸着体配置工程は、いずれが先に行われてもよいし、両工程が並行して行われてもよい。
 接合工程では、第一基板10と第二基板20を、枠状の封着材410を介して接合させる。具体的には、封着材410と複数のピラー43を挟み込んだ状態にセットした第一基板10と第二基板20を、炉内において第一温度(例えば380℃)で加熱する。第一温度は、封着材410の融点(例えば340℃)よりも高く、かつコットンの発火点である407℃以下となるように設定された温度である。
 加熱によりいったん溶融(軟化)した封着材410が硬化し、第一基板10と第二基板20に接合されることにより、第一基板10と第二基板20と封着材410の間には、複数のピラー43とガス吸着体44の位置する内部空間510が、形成される。封着材410は、各工程を経た後に、ガラスパネルユニットのシール部41を構成する。
 封着材410は、適宜の塗布装置を用いて、第二基板20(第二ガラスパネル205)の一面の外周部に、枠状に配置される(図4参照)。加えて、第二基板20の一面の所定箇所には、適宜の塗布装置を用いて、一部が切り欠かれた環状(例えばC字状)の形態を有するように、堰47が配置される。封着材410と堰47の材料は、ガラスフリット等の同一の材料であることが好ましい。
 封着材410と堰47の配置は、ピラー配置工程の前に行われてもよいし、ピラー配置工程の後に行われてもよいし、ピラー配置工程と並行して行われてもよい。また、封着材410と堰47の配置は、ガス吸着体配置工程の前に行われてもよいし、ガス吸着体配置工程の後に行われてもよいし、ガス吸着体配置工程と並行して行われてもよい。
 上記の各工程を経ることで、図5、図6に示す仕掛品8が形成される。仕掛品8は、ガラスパネルユニットを製造する途中の物品である。
 この仕掛品8に対して、減圧工程、封止工程、及び活性化工程を更に実行する。
 減圧工程と封止工程は、図7、図8に示す装置を用いて実行する。この装置は、減圧機構71、加熱機構72、及び押圧機構73を備える。
 減圧機構71は、仕掛品8に押し当てられる排気ヘッド75と、排気ヘッド75に繋がる接続部753を備える。減圧機構71は、仕掛品8に形成された内部空間510を、排気孔50を通じて減圧し、かつ、減圧状態で維持するように構成されている。
 加熱機構72は、仕掛品8に対して排気ヘッド75とは反対側に配置される(図8参照)。加熱機構72は、排気孔50に挿入された孔封止材42を、非接触で加熱するように構成されている。
 加熱機構72は、照射器720を含む。照射器720は、排気孔50に挿入された孔封止材42に対して、第二基板20(第二ガラスパネル205)を通じて外部から赤外線を照射し、孔封止材42を加熱するように構成されている。赤外線は、近赤外線であることが好ましい。
 押圧機構73は、排気ヘッド75に設けられている。押圧機構73は、減圧機構71によって内部空間510が減圧された状態で、排気孔50に挿入された孔封止材42を、第二基板20に向けて押し込むように構成されている。
 減圧工程においては、仕掛品8の排気孔50に、排気孔50よりも径の小さな孔封止材42とプレート46を挿入する(図7参照)。孔封止材42は、例えばガラスフリットを用いて形成された固形の封止材である。孔封止材42は、ブロック状の形状を有するが、上下に貫通した筒状の形状を有してもよい。プレート46は、孔封止材42を挟んで第二基板20とは反対側に配置される。
 次いで、排気ヘッド75を、第一基板10のうち排気孔50の開口を囲む部分に、気密に押し当てる。このとき、孔封止材42とプレート46は、第二基板20に向けて弾性的に押し込まれる。
 この状態で、排気ヘッド75内の空気を、接続部753を通じて吸引(図7中の白抜き矢印参照)すると、排気孔50を通じて、内部空間510の空気が真空引きされる。
 封止工程においては、加熱機構72と押圧機構73を用いて、内部空間510を減圧状態のままで封止する。
 封止工程では、加熱機構72によって孔封止材42を加熱して溶融させ、かつ、押圧機構73がプレート46を介して及ぼす付勢力によって、孔封止材42を第二基板20に向けて押し付ける。孔封止材42は、内部空間510内において堰47の内周面に当たるまで変形する。堰47に設けられた切欠き部分は、変形した孔封止材42によって封止される。
 これにより、排気孔50は孔封止材42によって封止され、内部空間510は、減圧状態のままで気密に封止される。この内部空間510が、各工程を経た後に、ガラスパネルユニットの密閉空間51を構成する。
 次に、活性化工程について説明する。
 活性化工程においては、仕掛品8の内部空間510に配置したガス吸着体44を、図10に示す局所加熱機構6によって、第二温度(例えば600℃)にまで局所加熱する。第二温度は、ガス吸着体44に含まれるゲッター材の活性化温度よりも高い温度であり、500℃よりも高い温度であることが好ましく、600℃よりも高い温度であることが更に好ましい。
 第二温度は、接合工程において封着材410を溶融させるときの温度(第一温度)よりも高い温度である。ガス吸着体44に含まれるゲッター材の活性化温度は、第一温度よりも高温である。
 言い換えると、ガス吸着体44に含まれるゲッター材の活性化温度は、第一温度よりも高い温度であり、かつ、第二温度よりも低い温度である。
 局所加熱機構6は、レーザー光を出射するように構成された照射器61を含む。照射器61は、内部空間510に配置されたガス吸着体44に対して、第二基板20(第二ガラスパネル205)を通じて外部からレーザー光を照射することができる。これにより、ガス吸着体44が非接触で加熱される。
 活性化工程は、減圧工程と並行して行うことが好ましい。つまり、排気ヘッド75を用いて内部空間510を減圧している最中に、ガス吸着体44を非接触でかつ局所的に加熱し、真空引きされている状態の内部空間510にてガス吸着体44を活性化させることが好ましい。
 ガス吸着体44には、多孔質構造を有する非金属ゲッター材(例えばCuイオン交換されたゼオライト)が含まれているので、局所加熱により、ガス吸着体44が吸着していた炭化水素系ガス、アンモニア等の気体分子が脱離する。これにより、ガス吸着体44が活性化される。ガス吸着体44から脱離した気体分子は、減圧機構71によって排気孔50を通じて吸引される。活性化工程によってガス吸着体44が十分に活性化された段階で、封止工程を実行する。
 活性化工程でのガス吸着体44の局所加熱を、封止工程の後に行うことも可能である。この場合、減圧状態で封止された内部空間510内にレーザー光を照射し、局所加熱によりガス吸着体44を活性化させる。
 以上の製造方法で得られるガラスパネルユニットは、減圧状態で封止された密閉空間51を有し、密閉空間51には、十分に活性化されたガス吸着体44が収容される。そのため、密閉空間51の真空度の低下が抑えられ、ガラスパネルユニットの全体の断熱性が保たれる。
 加えて、ガラスパネルユニットを製造するための工程では、炉内の温度が抑制されることから、製造時の消費エネルギーが抑えられるという利点がある。その反面、ガラスパネルユニットの密閉空間51に糸屑等の有機物が残存し、炭化水素系のガスが発生しやすくなる。また、炉内の温度が抑制されると、封着材410の溶媒が蒸発しきらずに残存し、炭化水素系のガスを発生させやすくなる。加えて、樹脂を含む各ピラー43からも、炭化水素系のガスやアンモニアガスが発生しやすい。
 これに対して、以上の製造方法で得られるガラスパネルユニットでは、局所加熱によって活性化されたゲッター材(ゼオライト、活性炭等)を含むガス吸着体44によって、ここで発生したガス(炭化水素系のガス、アンモニアガス等)が効果的に吸着される。
 (変形例)
 以下に例示するように、上述したガラスパネルユニット及びこれの製造方法は、適宜に設計変更が可能である。以下の説明において、上述した構成と同様の構成には同一符号を付し、詳しい説明を省略する。
 上述したガラスパネルユニットの製造方法では、ピラー配置工程において、第二基板20の一面に複数のピラー43を配置しているが、複数のピラー43を配置する箇所は、第一基板10と第二基板20の少なくとも一方でよい。複数のピラー43を第一基板10に配置することも有り得るし、複数のピラー43を第一基板10と第二基板20に分散して配置することも有り得る。
 同様に、上述したガラスパネルユニットの製造方法では、ガス吸着体配置工程において、第二基板20の一面にガス吸着体44を配置しているが、ガス吸着体44を配置する箇所は、第一基板10と第二基板20の少なくとも一方でよい。第一基板10にガス吸着体44を配置することも有り得るし、第一基板10と第二基板20の両方にガス吸着体44を配置することも有り得る。ガス吸着体44は2個以上でも構わない。
 また、上記したガラスパネルユニットの製造方法では、活性化工程において、第二基板20を通じてガス吸着体44にレーザー光を照射しているが、レーザー光の照射は、第一基板10と第二基板20の少なくとも一方を通じて行えばよい。第一基板10を通じてレーザー光を照射する場合には、第一基板10は低放射膜450を含まないことが好ましい。
 また、上記したガラスパネルユニットの製造方法では、ガス吸着体44として、多孔質構造を有する非金属ゲッター材を含んだものを用いているが、非金属ゲッター材に加えて金属ゲッター材を含んだものを用いることも好ましい。
 金属ゲッター材は、気体分子を化学吸着することのできる金属表面を有するゲッター材であり、例えばZr-Al、Zr-V-Fe等のジルコニウム系のゲッター材、又はチタン系のゲッター材である。ガス吸着体44に金属ゲッター材が含まれていると、非金属ゲッター材では吸着しにくい気体分子(H0、N、O、H、CO等)についても、効率的に吸着することができる。
 本開示において、ガス吸着体44を活性化させることは、非金属ゲッター材を活性化させることを意味する。ガス吸着体44が金属ゲッター材を更に含む場合には、ガス吸着体44を活性化させることは、非金属ゲッター材と金属ゲッター材を活性化させることを意味する。
 また、上記したガラスパネルユニットの製造方法では、レーザー光のエネルギーによってガス吸着体44を加熱しているが、赤外線等の他の光のエネルギーを用いてガス吸着体44を加熱することも可能である。赤外線は、近赤外線であることが好ましい。
 この場合、例えば図10に示す変形例1のように、局所加熱機構6aは、赤外線を照射することのできる照射器62を含む。照射器62は、内部空間510に配置されたガス吸着体44に対して、第二基板20(第二ガラスパネル205)を通じて外部から赤外線を照射し、ガス吸着体44を非接触で加熱するように構成されている。赤外線の照射は、第一基板10と第二基板20の少なくとも一方を通じて行えばよい。
 また、図11に示す変形例2のように、ガス吸着体44と接触するように内部空間510に配置した金属部材63を通電により加熱し、金属部材63を介してガス吸着体44を局所加熱することも可能である。
 変形例2では、第二基板20のうち第一基板10に対向する面の一部に、有底の溝201が形成されている。ガス吸着体配置工程では、溝201の底面に、シート状の金属部材63を固定し、この金属部材63の上に、固形のガス吸着体44を固定している。金属部材63とガス吸着体44を配置する箇所は溝201に限定されず、第二基板20の平坦な面上に、金属部材63とガス吸着体44を配置することも可能である。
 変形例2の活性化工程では、局所加熱機構6bは、コイル状の磁界発生器64を含む。磁界発生器64を外部にセットしてこれに交流電力を供給することで、金属部材63に過電流を生じさせ、金属部材63を誘導加熱することができる。変形例2の活性化工程では、非接触で加熱した金属部材63を介して、内部空間510においてガス吸着体44を局所的に加熱することができる。
 なお、金属部材63を通電加熱するための別の手段として、金属部材63に電気接続された電極を外部に引き出し、該電極を、外部において電源に電気接続させてもよい。この場合も、通電加熱された金属部材63を介して、ガス吸着体44を局所加熱することが可能である。
 また、図12から図15に示す変形例3の方法で、内部空間510を封止することも可能である。
 変形例3では、第二基板20に配置される封着材410が、枠410aと仕切り410b含んでいる。仕切り410bは枠410aよりも高い融点を有することが好ましいが、仕切り410bと枠410aの融点が同一でもよい。封着材410の材料は、300℃以下の融点を有する材料であることが好ましい。封着材410の材料としては、例えばバナジウム系のシールフリットを用いることが好ましい。仕切り410bは、枠410aに囲まれる位置で、直線状に形成されている。
 変形例3では、接合工程を経て仕掛品8aが形成される。仕掛品8aにおいては、第一基板10と第二基板20と枠410aの間に、内部空間510が形成されている。仕切り410bは、内部空間510に位置する。仕切り410bは、内部空間510を、第一空間510aと第二空間510bに仕切っている。ただし、仕切り410bの両端は、枠410aに接触していない。
 変形例3では、排気孔50は、内部空間510のうち第二空間510bの側につながるように、第二基板20に貫通形成されている。ガス吸着体44と複数のピラー43は、内部空間510のうち第一空間510aの側に配置されている。
 仕掛品8aの内部空間510は、二つの通気路510c,510dを含んでいる。二つの通気路510c,510dの各々は、第一空間510aと第二空間510bをつないでいる。二つの通気路510c,510dの各々は、仕切り410bと枠410aとの間に形成された隙間である。
 変形例3の接合工程では、加熱によりいったん軟化した後に硬化した枠410aが、第一基板10と第二基板20に対して気密に接合する。接合工程では、仕切り410bはほぼ変形しない。
 図13は、加熱温度(炉内温度)の変化を示すグラフである。接合工程では、第一温度t1での加熱を第一所定時間T1だけ行う。
 第一温度t1は、枠410aの融点よりも高い温度である。第一温度t1は、例えば270℃である。第一所定時間T1は、例えば15分である。
 変形例3の減圧工程では、仕掛品8aの通気路510c,510dと第二空間510bと排気孔50を介して、第一空間510aを真空引きする。ここでの真空引きは、例えば、排気孔50に接続した排気管81を介して、真空ポンプによって行う。
 減圧工程では、仕掛品8aを、第一温度t1よりも低い温度t2(図13参照)で、第二所定時間T2だけ加熱する。温度t2は、例えば250℃である。第二所定時間T2は、例えば60分である。
 変形例3では、活性化工程を、減圧工程と並行して行う。
 活性化工程においては、仕掛品8aの内部空間510(第一空間510a)に配置したガス吸着体44を、例えばレーザー光を照射することによって、第二温度(例えば600℃)にまで局所加熱する。第二温度は、ガス吸着体44に含まれるゲッター材の活性化温度よりも高い温度であり、500℃よりも高い温度であることが好ましく、600℃よりも高い温度であることが更に好ましい。
 第二温度は、接合工程において封着材410を溶融させるときの第一温度t1よりも十分に高い温度である。第二温度は、減圧工程で仕掛品8aを加熱する温度t2よりも十分に高い温度であり、また、後述の封止工程で仕掛品8aを加熱する温度t3よりも十分に高い温度である。
 変形例3では、活性化工程を完了した後に、封止工程を行う。封止工程は、減圧工程と並行して行う。
 封止工程では、内部空間510を減圧している最中に、仕切り410bを加熱により溶融させ、ここで変形した仕切り410bによって通気路510c,510dを塞ぐ。封止工程が完了した段階で、内部空間510に通気路510c,510dは存在しない(図14参照)。
 封止工程が完了した段階で、第一空間510aと第二空間510bは、変形した仕切り410bによって、気密に分離されている。本開示において「内部空間を封止する」とは、変形例3のように、内部空間510の一部(第一空間510a)だけを封止する場合を含む。
 図13に示すように、封止工程では、仕掛品8aを、温度t3で第三所定時間T3だけ加熱する。温度t3は、第一温度t1と温度t2よりも高く、かつ、仕切り410bの融点よりも高い温度である。温度t3は、例えば300℃である。第三所定時間T3は、例えば30分である。
 変形例3では、上述した各工程を経ることで、図14に示すガラス複合体800を得る。このガラス複合体800から、第二空間510bと排気孔50を有する部分805を除去することで、減圧状態の第一空間510aを有するガラスパネルユニットが得られる。
 図15に示すように、部分805を除去する工程(除去工程)では、仕切り410bが位置する部分でガラス複合体800を切断する。第二空間510bが位置する部分でガラス複合体800を切断することも可能である。
 変形例3では、炉内においてガス吸着体44を活性化させているが、活性化のタイミングはこれに限定されない。
 例えば、炉内での接合工程、減圧工程、及び封止工程を経てガラス複合体800を形成した後に、炉外においてガス吸着体44を局所加熱することで、ガス吸着体44を活性化させてもよい。
 また、炉内での減圧工程と並行してガス吸着体44をある程度だけ活性化させ、ガラス複合体800を形成した後に、炉外において、ガス吸着体44を更に活性化させてもよい。この場合、炉内の加熱温度によってガス吸着体44をある程度活性化させた後に、炉外において、ガス吸着体44を局所加熱する。
 ガス吸着体44が、非金属ゲッター材に加えて金属ゲッター材を含む場合には、炉内でのガス吸着体44の局所加熱によって、非金属ゲッター材と金属ゲッター材の両方を活性化させることも可能であるし、炉外でのガス吸着体44の局所加熱によって、非金属ゲッター材と金属ゲッター材の両方を活性化させることも可能である。また、炉内の加熱温度によって非金属ゲッター材をある程度だけ活性化させ、ガラス複合体800を形成した後に、炉外においてガス吸着体44を局所加熱してもよい。この場合、炉外での局所加熱により非金属ゲッター材を更に活性化させることができ、かつ、金属ゲッター材を活性化させることができる。
 ガス吸着体44が、非金属ゲッター材と金属ゲッター材を含む場合には、ガス吸着体44に含まれる金属ゲッター材を誘導加熱することで、ガス吸着体44を局所加熱することも可能である。
 (態様)
 上述した実施形態及びこれの各変形例から理解されるように、第1の態様のガラスパネルユニットの製造方法は、ピラー配置工程、ガス吸着体配置工程、接合工程、減圧工程、封止工程、及び活性化工程を備える。
 ピラー配置工程では、ガラスパネル(105)を含む第一基板(10)と、ガラスパネル(205)を含む第二基板(20)の少なくとも一方に、複数のピラー(43)を、互いに距離をあけて配置する。ガス吸着体配置工程では、第一基板(10)と第二基板(20)の少なくとも一方に、ガス吸着体(44)を配置する。ガス吸着体(44)は、多孔質構造を有する非金属ゲッター材を含んでいる。接合工程では、第一基板(10)と第二基板(20)を、封着材(410)を介して接合させ、第一基板(10)と第二基板(20)と封着材(410)の間に、複数のピラー(43)とガス吸着体(44)が位置する内部空間(510)を形成する。減圧工程では、内部空間(510)を減圧させる。封止工程では、内部空間(510)を減圧状態で封止する。活性化工程では、ガス吸着体(44)を活性化させる。接合工程では、407℃以下の第一温度で加熱した封着材(410)を介して、第一基板(10)と第二基板(20)を接合させる。活性化工程では、内部空間(510)において、ガス吸着体(44)が第一温度よりも高い第二温度に至るように、ガス吸着体(44)を局所加熱する。
 第1の態様のガラスパネルユニットの製造方法によれば、封止工程での加熱温度が抑制されるために、製造時の消費エネルギーが抑えられる。内部空間(501)においては、残存した糸屑等の有機物から炭化水素系のガスが発生しやすく、封着材(410)からも炭化水素系のガスが発生しやすいが、ここで発生したガスは、局所加熱で活性化された非金属ゲッター材を含むガス吸着体44によって、効果的に吸着される。そのため、第1の態様のガラスパネルユニットの製造方法によれば、製造時の消費エネルギーが抑えられ、かつ、内部空間(510)の真空度の低下が効果的に抑えられる。
 第2の態様のガラスパネルユニットの製造方法は、第1の態様のガラスパネルユニットの製造方法において、以下の構成を更に備える。第2の態様のガラスパネルユニットの製造方法において、活性化工程では、第一基板(10)と第二基板(20)の少なくとも一方を通じてガス吸着体(44)に照射する光のエネルギーによって、ガス吸着体(44)を局所加熱する。
 第2の態様のガラスパネルユニットの製造方法によれば、内部空間(510)に配置されるガス吸着体(44)が、非接触で局所加熱される。
 第3の態様のガラスパネルユニットの製造方法は、第2の態様のガラスパネルユニットの製造方法において、以下の構成を更に備える。第3の態様のガラスパネルユニットの製造方法において、活性化工程では、ガス吸着体(44)に照射するレーザー光のエネルギーによって、ガス吸着体(44)を局所加熱する。
 第3の態様のガラスパネルユニットの製造方法によれば、内部空間(510)に配置されるガス吸着体(44)が、レーザー光によって非接触で局所加熱される。
 第4の態様のガラスパネルユニットの製造方法は、第2の態様のガラスパネルユニットの製造方法において、以下の構成を更に備える。第4の態様のガラスパネルユニットの製造方法において、活性化工程では、ガス吸着体(44)に照射する赤外線のエネルギーによって、ガス吸着体(44)を局所加熱する。
 第4の態様のガラスパネルユニットの製造方法によれば、内部空間(510)に配置されるガス吸着体(44)が、赤外線によって非接触で局所加熱される。
 第5の態様のガラスパネルユニットの製造方法は、第1の態様のガラスパネルユニットの製造方法において、以下の構成を更に備える。第5の態様のガラスパネルユニットの製造方法において、ガス吸着体配置工程では、ガス吸着体(44)と接触するように金属部材(63)を更に配置し、活性化工程では、通電により加熱した金属部材(63)によって、ガス吸着体(44)を局所加熱する。
 第5の態様のガラスパネルユニットの製造方法によれば、内部空間(510)に配置されるガス吸着体(44)が、金属部材(63)を介して効率的に局所加熱される。
 第6の態様のガラスパネルユニットの製造方法は、第5の態様のガラスパネルユニットの製造方法において、以下の構成を更に備える。第6の態様のガラスパネルユニットの製造方法において、活性化工程では、誘導加熱した金属部材(63)によって、ガス吸着体(44)を局所加熱する。
 第6の態様のガラスパネルユニットの製造方法によれば、非接触で加熱した金属部材(63)を介して、内部空間(510)においてガス吸着体(44)を局所的に加熱することができる。
 第7の態様のガラスパネルユニットの製造方法は、第1から第6のいずれか一つの態様のガラスパネルユニットの製造方法において、以下の構成を更に備える。第7の態様のガラスパネルユニットの製造方法においては、活性化工程でのガス吸着体(44)の局所加熱を、減圧工程と並行して行う。
 第7の態様のガラスパネルユニットの製造方法によれば、活性化工程においてガス吸着体(44)から放出されたガスは、減圧工程において内部空間(510)から排出されるので、内部空間(510)の真空度が保たれやすい。
 第8の態様のガラスパネルユニットの製造方法は、第1から第7のいずれか一つの態様のガラスパネルユニットの製造方法において、以下の構成を更に備える。第8の態様のガラスパネルユニットの製造方法において、非金属ゲッター材は、ゼオライト系、活性炭素又は酸化マグネシウムのゲッター材である。
 第8の態様のガラスパネルユニットの製造方法によれば、ガス吸着体(44)によって、炭化水素系ガス、アンモニアガスを有効に吸着することができる。
 第9の態様のガラスパネルユニットの製造方法は、第1から第8のいずれか一つの態様のガラスパネルユニットの製造方法において、以下の構成を更に備える。第9の態様のガラスパネルユニットの製造方法において、ガス吸着体(44)は、気体分子を吸着することのできる金属表面を有する金属ゲッター材を、更に含む。
 第9の態様のガラスパネルユニットの製造方法によれば、非金属ゲッター材では吸着しにくい気体分子についても、有効に吸着することができる。
 10 第一基板
 105 (第一)ガラスパネル
 20 第二基板
 205 (第二)ガラスパネル
 410 封着材
 43 ピラー
 44 ガス吸着体
 510 内部空間
 63 金属部材

Claims (9)

  1.  ガラスパネルを含む第一基板と、ガラスパネルを含む第二基板の少なくとも一方に、複数のピラーを、互いに距離をあけて配置するピラー配置工程と、
     前記第一基板と前記第二基板の少なくとも一方に、多孔質構造を有する非金属ゲッター材を含んだガス吸着体を配置するガス吸着体配置工程と、
     前記第一基板と前記第二基板を、封着材を介して接合させ、前記第一基板と前記第二基板と前記封着材の間に、前記複数のピラーと前記ガス吸着体が位置する内部空間を形成する接合工程と、
     前記内部空間を減圧させる減圧工程と、
     前記内部空間を減圧状態で封止する封止工程と、
     前記ガス吸着体を活性化させる活性化工程と、を備え、
     前記接合工程では、407℃以下の第一温度で加熱した前記封着材を介して、前記第一基板と前記第二基板を接合させ、
     前記活性化工程では、前記内部空間において、前記ガス吸着体が前記第一温度よりも高い第二温度に至るように、前記ガス吸着体を局所加熱する
     ガラスパネルユニットの製造方法。
  2.  前記活性化工程では、前記第一基板と前記第二基板の少なくとも一方を通じて前記ガス吸着体に照射する光のエネルギーによって、前記ガス吸着体を局所加熱する
     請求項1のガラスパネルユニットの製造方法。
  3.  前記活性化工程では、前記ガス吸着体に照射するレーザー光のエネルギーによって、前記ガス吸着体を局所加熱する
     請求項2のガラスパネルユニットの製造方法。
  4.  前記活性化工程では、前記ガス吸着体に照射する赤外線のエネルギーによって、前記ガス吸着体を局所加熱する
     請求項2のガラスパネルユニットの製造方法。
  5.  前記ガス吸着体配置工程では、前記ガス吸着体と接触するように金属部材を更に配置し、
     前記活性化工程では、通電により加熱した前記金属部材によって、前記ガス吸着体を局所加熱する
     請求項1のガラスパネルユニットの製造方法。
  6.  前記活性化工程では、誘導加熱した金属部材によって、前記ガス吸着体を局所加熱する
     請求項5のガラスパネルユニットの製造方法。
  7.  前記活性化工程での前記ガス吸着体の局所加熱を、前記減圧工程と並行して行う
     請求項1から6のいずれか一項のガラスパネルユニットの製造方法。
  8.  前記非金属ゲッター材は、ゼオライト系、活性炭素又は酸化マグネシウムのゲッター材である
     請求項1から7のいずれか一項のガラスパネルユニットの製造方法。
  9.  前記ガス吸着体は、気体分子を吸着することのできる金属表面を有する金属ゲッター材を、更に含む
     請求項1から8のいずれか一項のガラスパネルユニットの製造方法。
PCT/JP2018/024025 2017-06-30 2018-06-25 ガラスパネルユニットの製造方法 WO2019004135A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019526891A JPWO2019004135A1 (ja) 2017-06-30 2018-06-25 ガラスパネルユニットの製造方法
EP18824639.1A EP3647291A4 (en) 2017-06-30 2018-06-25 MANUFACTURING METHOD FOR GLASS PANEL UNIT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017129892 2017-06-30
JP2017-129892 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019004135A1 true WO2019004135A1 (ja) 2019-01-03

Family

ID=64740692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/024025 WO2019004135A1 (ja) 2017-06-30 2018-06-25 ガラスパネルユニットの製造方法

Country Status (3)

Country Link
EP (1) EP3647291A4 (ja)
JP (1) JPWO2019004135A1 (ja)
WO (1) WO2019004135A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188424A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 ゲッタ材、ゲッタ材の製造方法、ゲッタ材含有組成物の製造方法、及びガラスパネルユニットの製造方法
WO2020026624A1 (ja) * 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法
JP2020121906A (ja) * 2019-01-31 2020-08-13 Ykk Ap株式会社 複層ガラスの製造方法および複層ガラス
WO2021225083A1 (ja) 2020-05-08 2021-11-11 パナソニックIpマネジメント株式会社 ガラスパネルユニット、ゲッタ材、ゲッタ材組成物、ガラスパネルユニットの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212610A (ja) * 2002-01-25 2003-07-30 Nippon Sheet Glass Co Ltd ガラスパネルのゲッター加熱方法とその加熱装置
WO2014136151A1 (ja) 2013-03-04 2014-09-12 パナソニック株式会社 複層ガラス、及び複層ガラスの製造方法
JP2015529623A (ja) * 2012-07-31 2015-10-08 ガーディアン・インダストリーズ・コーポレーション 活性ゲッターを含む真空断熱ガラス(vig)窓ユニットの製造方法
WO2016051762A1 (ja) * 2014-09-30 2016-04-07 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法
JP2016069232A (ja) * 2014-09-30 2016-05-09 パナソニックIpマネジメント株式会社 ガラスパネルユニット、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法
JP2016108799A (ja) * 2014-12-04 2016-06-20 パナソニックIpマネジメント株式会社 ガラスパネルユニット

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005231930A (ja) * 2004-02-18 2005-09-02 Nippon Sheet Glass Co Ltd ガラスパネルの製造方法、及びその製造方法により製造されたガラスパネル
US8500933B2 (en) * 2007-12-14 2013-08-06 Guardian Industries Corp. Localized heating of edge seals for a vacuum insulating glass unit, and/or unitized oven for accomplishing the same
US9416581B2 (en) * 2012-07-31 2016-08-16 Guardian Industries Corp. Vacuum insulated glass (VIG) window unit including hybrid getter and making same
DE112015002972T5 (de) * 2014-06-24 2017-03-09 Panasonic Intellectual Property Management Co., Ltd. Gasadsorbierende Vorrichtung und diese nutzender evakuierter Dämmstoff

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003212610A (ja) * 2002-01-25 2003-07-30 Nippon Sheet Glass Co Ltd ガラスパネルのゲッター加熱方法とその加熱装置
JP2015529623A (ja) * 2012-07-31 2015-10-08 ガーディアン・インダストリーズ・コーポレーション 活性ゲッターを含む真空断熱ガラス(vig)窓ユニットの製造方法
WO2014136151A1 (ja) 2013-03-04 2014-09-12 パナソニック株式会社 複層ガラス、及び複層ガラスの製造方法
WO2016051762A1 (ja) * 2014-09-30 2016-04-07 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法
JP2016069232A (ja) * 2014-09-30 2016-05-09 パナソニックIpマネジメント株式会社 ガラスパネルユニット、ガラスパネルユニットの組立て品、ガラスパネルユニットの製造方法
JP2016108799A (ja) * 2014-12-04 2016-06-20 パナソニックIpマネジメント株式会社 ガラスパネルユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3647291A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188424A1 (ja) * 2018-03-30 2019-10-03 パナソニックIpマネジメント株式会社 ゲッタ材、ゲッタ材の製造方法、ゲッタ材含有組成物の製造方法、及びガラスパネルユニットの製造方法
JPWO2019188424A1 (ja) * 2018-03-30 2021-03-25 パナソニックIpマネジメント株式会社 ゲッタ材、ゲッタ材の製造方法、ゲッタ材含有組成物の製造方法、及びガラスパネルユニットの製造方法
JP7008229B2 (ja) 2018-03-30 2022-01-25 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法
WO2020026624A1 (ja) * 2018-07-31 2020-02-06 パナソニックIpマネジメント株式会社 ガラスパネルユニットの製造方法
US11913277B2 (en) 2018-07-31 2024-02-27 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing glass panel unit
JP2020121906A (ja) * 2019-01-31 2020-08-13 Ykk Ap株式会社 複層ガラスの製造方法および複層ガラス
JP7084332B2 (ja) 2019-01-31 2022-06-14 Ykk Ap株式会社 複層ガラスの製造方法および複層ガラス
WO2021225083A1 (ja) 2020-05-08 2021-11-11 パナソニックIpマネジメント株式会社 ガラスパネルユニット、ゲッタ材、ゲッタ材組成物、ガラスパネルユニットの製造方法

Also Published As

Publication number Publication date
EP3647291A4 (en) 2020-07-01
EP3647291A1 (en) 2020-05-06
JPWO2019004135A1 (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
WO2019004135A1 (ja) ガラスパネルユニットの製造方法
JP6757912B2 (ja) ガラスパネルユニットの製造方法、建具の製造方法、ガラスパネルユニットの製造装置、及びガラスパネルユニット
WO2019004174A1 (ja) ガラスパネルユニット、建具、及びガス吸着体の活性化方法
WO2020026624A1 (ja) ガラスパネルユニットの製造方法
US20190084877A1 (en) Manufacturing method of glass panel unit
WO2020255974A1 (ja) ガラスパネルユニット、ガラスパネルユニットの製造方法、複合ゲッタ材、及びゲッタペースト
EP3778006A1 (en) Getter material, method for manufacturing getter material, method for manufacturing getter-material-containing composition, and method for manufacturing glass panel unit
JP4801752B2 (ja) ウェハ接合装置およびウェハ接合方法
JP6854456B2 (ja) ガス吸着ユニットの製造方法
JP6868836B2 (ja) ガラスパネルユニットの製造方法、建具の製造方法及びガス吸着ユニット
WO2019208002A1 (ja) ガラスパネルユニット、ガラス窓、ガラスパネルユニットの製造方法及びガラス窓の製造方法
WO2020075406A1 (ja) ガラスパネルユニット及びガラス窓
WO2020217779A1 (ja) ガラスパネルユニット、及びガラスパネルユニットの製造方法
WO2019230220A1 (ja) ガラスパネルユニットの製造方法
WO2019230221A1 (ja) ガラスパネルユニットの製造方法
WO2020203009A1 (ja) ガラスパネルユニット及びガラスパネルユニットの製造方法
JPWO2019208003A1 (ja) ガラスパネルユニット、及びガラスパネルユニットの製造方法
JP2013123669A (ja) 被処理ガス中の濃縮回収対象成分または被処理ガス中の水分の濃縮回収方法およびこの濃縮回収方法を用いた被処理ガス中の濃縮回収対象成分または被処理ガス中の水分の濃縮回収装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18824639

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019526891

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018824639

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018824639

Country of ref document: EP

Effective date: 20200130