WO2019004074A1 - Liquid crystal display device and driving method therefor - Google Patents

Liquid crystal display device and driving method therefor Download PDF

Info

Publication number
WO2019004074A1
WO2019004074A1 PCT/JP2018/023777 JP2018023777W WO2019004074A1 WO 2019004074 A1 WO2019004074 A1 WO 2019004074A1 JP 2018023777 W JP2018023777 W JP 2018023777W WO 2019004074 A1 WO2019004074 A1 WO 2019004074A1
Authority
WO
WIPO (PCT)
Prior art keywords
data signal
voltage
polarity
gradation
positive
Prior art date
Application number
PCT/JP2018/023777
Other languages
French (fr)
Japanese (ja)
Inventor
美鈴 根来
長和 藤本
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2019004074A1 publication Critical patent/WO2019004074A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals

Definitions

  • the present invention relates to a liquid crystal display device having a plurality of pixel formation portions arranged in a matrix and a method of driving the same.
  • the active matrix liquid crystal display device is arranged in a matrix corresponding to a plurality of data signal lines, a plurality of scanning signal lines intersecting them, a plurality of data signal lines, and the plurality of scanning signal lines.
  • a liquid crystal panel as a display unit including a plurality of pixel formation units is provided, and each pixel formation unit includes a pixel capacitance and a switching element.
  • a switching element a thin film transistor (hereinafter, referred to as "TFT") is usually used.
  • TFT thin film transistor
  • the pixel capacitance in each pixel formation portion is formed of a pixel electrode and a common electrode (also referred to as "counter electrode") facing the pixel electrode with the liquid crystal interposed therebetween, and the pixel electrode is used as the switching element. It is connected to the corresponding data signal line through the TFT, and the corresponding scanning signal line is connected to the gate terminal of the TFT.
  • the plurality of data signal lines are connected to a source driver as a data signal line drive circuit, and the plurality of scan signal lines are connected to a gate driver as a scan signal line drive circuit.
  • the data signal line drive circuit applies a plurality of data signals representing an image to be displayed to the plurality of data signal lines, and the scan signal line drive circuit performs a plurality of scans for sequentially selecting the plurality of scan signal lines. A signal is applied to the plurality of scan signal lines.
  • a voltage representing each pixel of the image to be displayed is applied to the pixel electrode in the corresponding pixel formation portion, and a voltage corresponding to the difference between the voltage of the pixel electrode and the voltage of the common electrode in each pixel formation portion is liquid crystal Applied to the Further, light is emitted from the backlight as a planar light source on the back of the liquid crystal panel. As a result, the liquid crystal in each pixel formation portion changes the light transmittance according to the applied voltage, and the image represented by the plurality of data signals is displayed on the liquid crystal panel.
  • Patent Document 1 two scanning lines (scanning signal lines) are assigned to each pixel row consisting of pixels aligned in the horizontal direction, and the two scanning lines are arranged in one horizontal period.
  • a liquid crystal display device configured to write display voltages with one signal line (data signal line) to each pixel of two pixel columns formed of pixels arranged in the vertical direction by continuously selecting scanning lines is used.
  • data signal line data signal line
  • the invention described in Patent Document 1 relates to the voltage supplied to the signal line when the even-numbered pixel of the display pixel is selected and the signal line when the odd-numbered pixel of the display pixel is selected. It is configured such that the potential of the front stage pixel and the potential of the rear stage pixel become equal by switching the voltage supplied to the circuit and correcting the gradation voltage of the front stage pixel.
  • This inversion drive method Several methods are known as this inversion drive method, but line inversion that inverts the polarity of the voltage applied to the liquid crystal every predetermined number of one or more display lines so that the display quality is not deteriorated by the inversion drive.
  • a driving method, a dot inversion driving method in which the polarity of the voltage applied to the liquid crystal is inverted for each pixel formation portion, or the like is used. Therefore, the polarity of the data signal applied from the source driver to each data signal line is usually inverted every one horizontal period or every predetermined number of two or more horizontal periods.
  • Patent Document 1 discloses a display defect problem based on a pixel potential difference generated due to inversion driving between an immediately preceding pixel and a succeeding pixel interposing a single signal line, and a configuration for solving the problem. Although it is described, the description regarding the malfunction of the gate driver by the noise resulting from the inversion drive, the suppression method of such a malfunction, etc. is not seen.
  • liquid crystal display device that prevents a malfunction of a driving circuit due to noise caused by inversion driving and suppresses a display defect due to the malfunction.
  • Some embodiments of the present invention may include a plurality of data signal lines, a plurality of scan signal lines intersecting the plurality of data signal lines, a matrix along the plurality of data signal lines and the plurality of scan signal lines.
  • a liquid crystal display device having a display portion including a plurality of pixel formation portions arranged in a shape of A scanning signal line drive circuit for selectively driving the plurality of scanning signal lines;
  • the plurality of data signals are generated including a plurality of buffers to which the plurality of data signal lines are respectively connected, and a plurality of data signals whose polarity is inverted at predetermined time intervals with reference to a predetermined center voltage.
  • a data signal line drive circuit applied to the signal line,
  • the change speed of any one data signal in the polarity inversion is the plurality
  • the plurality of data signals are generated so as to have a predetermined low change rate smaller than the change rate corresponding to the through rate of the buffer.
  • a gradation voltage generation circuit that generates a plurality of positive and negative polarity gradation voltages; Among the plurality of positive and negative polarity gradation voltages, at least one of the plurality of positive and negative polarity gradation voltages is provided inside or outside the data signal line drive circuit, and at least one of the positive and negative polarity gradation voltages is greater than a predetermined value.
  • the gradation voltage changes toward the central voltage at a change rate corresponding to the low change rate, and immediately after the point of inversion Gradation voltage conversion that converts the plurality of positive and negative polarity gradation voltages into a plurality of positive and negative polarity DA conversion gradation voltages by replacing the voltage with a waveform that returns to the gradation voltage at speed.
  • the data signal line drive circuit is configured such that, for each of the plurality of data signal lines, the polarity of the data signal to be applied to the data signal line out of the plurality of positive and negative polarity gradation voltages for DA conversion is The gradation voltage for positive polarity or negative polarity DA conversion according to the image to be displayed on the display unit is selected to be inverted every predetermined time, and the selected gradation voltage for positive polarity or negative polarity DA conversion is selected. It applies to the said data signal line as a data signal.
  • a plurality of data signal lines, a plurality of scan signal lines intersecting the plurality of data signal lines, the plurality of data signal lines and the plurality of scan signal lines are provided. It is a driving method of a liquid crystal display device having a display unit including a plurality of pixel formation units arranged in a matrix.
  • the data in the polarity inversion is any one of the data
  • the plurality of data signals are generated such that the change rate of the signal is a predetermined low change rate smaller than the change rate corresponding to the slew rate of the buffer.
  • the negative polarity gradation voltage is changed from the gradation voltage to the central voltage of polarity inversion at a change rate corresponding to the low change speed immediately before the polarity inversion point of the data signal and immediately after the inversion point
  • the plurality of positive polarity and negative polarity gradation voltages are converted into a plurality of positive polarity and negative polarity DA conversion floors by replacing the voltage of the waveform that returns to the gradation voltage at a change rate corresponding to the low change rate.
  • a plurality of data signals generated by DA conversion processing based on the plurality of positive polarity and negative polarity DA conversion gradation voltages are applied to the plurality of data signal lines in the display unit.
  • FIG. 7 is a signal waveform diagram for describing the operation of the slope addition circuit included in the gradation voltage slope circuit in the first embodiment.
  • FIG. 5 is a signal waveform diagram showing an operation of the liquid crystal display device according to the first embodiment. It is a block diagram for demonstrating the structure of the gradation voltage slope circuit in the liquid crystal display device which concerns on 2nd Embodiment. It is a signal waveform diagram which shows operation
  • FIG. 8 is a block diagram showing a configuration example (hereinafter referred to as “conventional example”) of a typical active matrix liquid crystal display device.
  • the liquid crystal display device shown in FIG. 8 includes a liquid crystal panel as a display unit 100, a source driver 300 as a data signal line drive circuit, a gate driver 400 as a scanning signal line drive circuit, a display control circuit 200, and a power supply circuit. And 600.
  • the back light for irradiating light in the back is required, and this liquid crystal display device is equipped also with such a back light (not shown).
  • the back lights and their drive circuits are well known in their own construction and related constructions and will not be described because they are not directly related to the features of the respective embodiments described later.
  • source lines SL1 to SLM as a plurality of (M) data signal lines and gate lines GL1 to GLN as a plurality of (N) scanning signal lines intersecting the plurality of source lines SL1 to SLM.
  • M data signal lines
  • a plurality of (M ⁇ N) pixel formation portions 10 arranged in a matrix along the plurality of source lines SL1 to SLM and the plurality of gate lines GL1 to GLN are provided.
  • Each pixel formation portion 10 corresponds to any one of the plurality of source lines SL1 to SLM and corresponds to one to any of the plurality of gate lines GL1 to GLN. As shown in FIG. 8, in each pixel formation portion 10, switching is performed in which the source terminal as one conduction terminal is connected to the corresponding source line SLj and the gate terminal as the control terminal is connected to the corresponding gate line GLi.
  • a capacity Clc is formed.
  • an auxiliary capacitance electrode is disposed on the substrate on which the TFT 12 is formed in the display unit 100, and the storage capacitance Cs is parallel to the liquid crystal capacitance Clc. Is formed.
  • a pixel capacitance Cp for holding a voltage corresponding to pixel data is constituted by a liquid crystal capacitance Clc and a storage capacitance Cs.
  • a parasitic capacitance (hereinafter referred to as “gate-source parasitic capacitance”) Cgs exists between the gate terminal and the source terminal of the TFT 12.
  • a parasitic capacitance also exists between the source line SLj and the gate line GLi, and in the following, this parasitic capacitance is also included in the gate-source parasitic capacitance Cgs.
  • the voltage of the data signal Sj applied to the source line SLj changes significantly, the change causes noise in the gate line GLi via the parasitic capacitance Cgs.
  • the display control circuit 200 is realized, for example, as a single IC (Integrated Circuit) called a control IC.
  • the display control circuit 200 receives an input signal Din including image data representing an image to be displayed and timing control information from the outside of the liquid crystal display device, and based on the input signal Din, the digital image signal DA and the data side control signal SCT. And the scan side control signal GCT.
  • the digital image signal DA and the data side control signal SCT are input to the source driver 300, and the scan side control signal GCT is input to the gate driver 400.
  • Data-side control signal SCT includes data-side start pulse signal SSP, data-side clock signal SCK, latch strobe signal LS, and polarity control signal Cpn
  • scan-side control signal GCT includes scan-side start pulse signal GSP and the scan side.
  • Clock signal GCK is included.
  • the source driver 300 includes a data signal conversion circuit 310, a DA conversion circuit 320, and an output buffer circuit 330.
  • the data-side control signals SCT from the display control circuit 200 the data-side start pulse signal SSP, the data-side clock signal SCK, and the latch strobe signal LS are input to the data signal conversion circuit 310.
  • Data signal conversion circuit 310 includes a shift register and a sampling latch circuit operated by data side clock signal SCK, etc., and start pulses included in data side start pulse signal SSP are sequentially selected by the shift register according to data side clock signal SCK.
  • the output buffer circuit 330 includes a plurality of buffers respectively connected to the source lines SL1 to SLn, and data in which the analog image signals A1 to AN are inverted in polarity every predetermined time via the plurality of buffers. It outputs as the signals S1 to SN.
  • the plurality of buffers function as voltage followers.
  • the data signals S1 to SN output from the output buffer circuit 330 are respectively applied to the source lines SL1 to SLN as driving image signals.
  • the gate driver 400 includes a shift register operated by the scanning clock signal GCK from the display control circuit 200. In this shift register, the start pulse included in the scanning start pulse signal GSP from the display control circuit 200 is scanned The data is sequentially transferred according to the side clock signal GCK.
  • the gate driver 400 generates scanning signals G1 to GN sequentially becoming active (high level) according to the transfer, and applies these scanning signals G1 to GN to the gate lines GL1 to GL1N in the display unit 100, respectively. Thus, the gate lines GL1 to GLN are sequentially selected in each frame period.
  • the power supply circuit 600 is a power supply voltage required for each part of the present liquid crystal display device, that is, a logic power supply voltage VpwL supplied to digital circuits included in the source driver 300 and the gate driver 400, and an analog circuit included in the source driver 300.
  • the common voltage Vcom is supplied to the common electrode Ec and the auxiliary electrode Es in the display unit 100.
  • a voltage for the auxiliary electrode different from the common voltage Vcom is generated and supplied to the auxiliary electrode Es. It is also good.
  • the absolute values of the positive polarity and negative polarity gradation voltages VPk and VNk are larger as the subscript k is smaller. Therefore, in the case of the normally black system, the positive polarity and negative polarity gradation voltages VP1 and VN1 correspond to the maximum luminance gradation (white display).
  • a planar light source (not shown) is provided as a backlight on the rear surface of the liquid crystal panel as the display unit 100, and light is emitted from the backlight to the rear surface of the liquid crystal panel.
  • the liquid crystal panel in the present embodiment is a transmissive type, when the liquid crystal panel is a reflective type, it is not necessary to provide a backlight unit.
  • the data signals S1 to SM generated based on the external input signal Din are applied to the source lines SL1 to SLM under the control of the display control circuit 200, In synchronization with this, scanning signals G1 to GN generated based on an external input signal Din (timing control information included therein) are applied to the gate lines GL1 to GLN, respectively.
  • the pixel capacitance Cp of pixel formation unit 10 corresponding to the voltage indicating each pixel data of the image to be displayed. And the voltage held in each pixel capacitance Cp is rewritten every one frame period.
  • the liquid crystal panel as the display unit 100 changes the light transmittance by applying a voltage according to the image signal DA to the liquid crystal layer, and displays the image represented by the image signal DA.
  • the source driver 300 and the gate driver 400 that constitute the drive circuit of the display unit 100 are components separate from the display unit 100, but instead of this, At least a part of the source driver 300 and the gate driver 400 may be formed integrally with the pixel circuit (simultaneously in the same process) on the substrate of the liquid crystal panel as the display portion 100 using the TFT. This point is the same in each embodiment described later.
  • each small rectangle indicates a pixel
  • “(+)” added below “black” or “white” in the small rectangle is a positive electrode for the liquid crystal portion corresponding to the pixel indicated by the small rectangle.
  • Negative voltage is applied to the liquid crystal portion corresponding to the pixel indicated by the small rectangle when “( ⁇ )” is attached under black or “white”. It is shown that a voltage is applied, and the polarity of the voltage here is based on the voltage of the common electrode Ec, that is, the common voltage Vcom.
  • FIG. 10 is an internal view for generating the polarity control signal Cpn, the data signal S1 of the first column, and the scanning signal G2 of the second row by the gate driver 400 when displaying the evaluation image shown in FIG. It is a signal waveform diagram which shows control signal Gct2 (For example, the signal corresponded to the start pulse signal GSP or clock signal GCK etc. by the side of scanning), and the scanning signals G2 and G3.
  • control signal Gct2 For example, the signal corresponded to the start pulse signal GSP or clock signal GCK etc. by the side of scanning
  • “row” refers to a series of pixels or pixel forming portions 10 in the extending direction of the gate line GLi
  • “column” refers to a series of pixels or pixel forming portions 10 in the extending direction of the source line SLj. I say something.
  • a normally black liquid crystal panel is used as the display unit 100. Therefore, when the voltage applied to the liquid crystal (absolute value) is minimum, black is displayed (minimum luminance display) and application to the liquid crystal is performed. When the voltage (absolute value) is maximum, white display (maximum luminance display) is performed. Therefore, when the polarity of the data signal Sj indicating white display is inverted, the voltage change of the source line SLj to which the data signal Sj is applied becomes maximum. That is, as can be seen from FIG. 10, when the evaluation image of FIG. 9 is displayed in the above-described conventional example, for example, the fourth horizontal period from the third horizontal period to the fourth horizontal period, which is the third row scanning period.
  • noise is generated in the internal control signal Gct2 for generating the scanning signal G2 in the second row, and this noise causes a pulse not originally present (circled by a dotted circle in FIG. 10).
  • a pulse may appear in the scanning signal G2 etc. in the second row.
  • the evaluation image of FIG. 9 is displayed, the data of the even-numbered columns is switched from the first horizontal period which is the scanning period of the first row to the second horizontal period which is the scanning period of the second row.
  • the voltage change of the signals S2, S4,... That is, the voltage change of the even source lines SL2, SL4,.
  • the scanning signal Gi becomes active (at the high level in the conventional example and each embodiment described later) at an incorrect timing, and a display defect occurs.
  • the cause of the malfunction of the gate driver 400 that causes a display defect is the voltage of the data signal Sj, for example, from the negative polarity gradation voltage VN1 corresponding to the maximum gradation (white display).
  • VN1 negative polarity gradation voltage
  • the voltage of the source line SLj sharply and largely changes as when changing to the positive polarity gradation voltage VP1 corresponding to the key adjustment (white display) (see the change of the data signal Sod at the time ta shown in FIG. 10) Noise is generated in the gate line GLi via the capacitance Cgs.
  • an inversion time point (hereinafter referred to as “maximum change inversion time point”) at which the voltage change amount (absolute value) before and after the polarity inversion time point of data signal Sj becomes maximum.
  • maximum change inversion time point at which the voltage change amount (absolute value) before and after the polarity inversion time point of data signal Sj becomes maximum.
  • the central voltage here, a central voltage of the range in which the data signal Sj changes may be used instead of the common voltage Vcom.
  • FIG. 1 is a block diagram showing the configuration of the liquid crystal display device according to the present embodiment.
  • the liquid crystal display device according to this embodiment is a normally black type active matrix liquid crystal display device as in the conventional example shown in FIG. 8, and includes a liquid crystal panel as the display unit 100 and a data signal line drive circuit.
  • a source driver 300, a gate driver 400 as a scanning signal line drive circuit, a display control circuit 200, and a power supply circuit 600 are provided.
  • the positive polarity and the negative polarity gradation voltage having the maximum absolute value (hereinafter referred to as “positive polarity and negative polarity maximum gradation voltage” or simply “maximum gradation voltage”)
  • a gradation voltage slope circuit 620 which performs the above conversion processing on VP1 and VN1 is provided.
  • the configuration other than the gradation voltage slope circuit 620 in this embodiment is the same as that of the conventional example shown in FIG. 8, and therefore, the same or corresponding parts will be denoted by the same reference symbols and detailed description thereof will be omitted (FIG. And Figure 8). The following description will focus on the configuration and operation associated with the grayscale voltage slope circuit 620.
  • the logic power supply voltage VpwL is supplied to the digital circuit in the source driver 300 and the gate driver 400 and the data side drive voltage VpwS is The scan side drive voltage VpwG is supplied to the analog circuit in the source driver 300 and is supplied to the analog circuit in the gate driver 400.
  • FIG. 2 is a block diagram showing the configuration of the gradation voltage slope circuit 620 in the present embodiment.
  • the gradation voltage slope circuit 620 includes a slope addition circuit 622 that converts the gradation voltages VPk and VNk (1 ⁇ k ⁇ n) into gradation slope voltages VsPk and VsNk described later.
  • a maximum gradation voltage (a positive polarity and a negative polarity gradation voltage having a maximum absolute value) is added to the slope addition circuit 622.
  • VP1 and VN1 are input, and a polarity control signal Cpn from the display control circuit 200 is input.
  • the polarity control signal Cpn is a signal indicating the polarity of each data signal Sj
  • the output buffer circuit 330 in the source driver 300 outputs the positive polarity data signal Sj when the polarity control signal Cpn is, for example, high level (H level). It outputs a negative data signal Sj when it is at low level (L level).
  • the polarity of the data signal Sj is a voltage polarity based on the common voltage Vcom, and corresponds to the polarity of the voltage applied to the liquid crystal in the display unit 100 based on the data signal Sj.
  • FIG. 3 is a signal waveform diagram for explaining the operation of the slope addition circuit 622.
  • the slope addition circuit 622 immediately before the polarity inversion time point (time tr1, tr2, tr3 shown in FIG. 3) of the input gradation voltages VPk, VNk (1 ⁇ k ⁇ n) based on the polarity control signal Cpn. It is a circuit for converting into a voltage with a sloped waveform (hereinafter referred to as “gradation slope voltage”) immediately after that.
  • gradation slope voltage a voltage with a sloped waveform
  • the slope addition circuit 622 in this embodiment converts only the maximum gray scale voltages VP1 and VN1 into the gray scale slope voltage and outputs them as the maximum DA conversion gray scale voltages VsP1 and VsN1.
  • the negative polarity maximum DA conversion gradation voltage VsN1 increases at a predetermined rate of change from the negative maximum gradation voltage VN1 toward the common voltage Vcom immediately before the inversion time trk of the polarity of each data signal Sj.
  • the waveform decreases at a predetermined change rate and returns to the negative maximum gradation voltage VN1.
  • Each change speed here corresponds to the change speed immediately before and after the maximum change inversion point of data signal Sj, and is set to a value sufficiently smaller than the change speed at the maximum change inversion of data signal Sj in the conventional example. Be done.
  • each change rate is set to a value smaller than at least the change rate corresponding to the slew rate of the plurality of buffers described in output buffer circuit 330, and more specifically, the source line at the polarity reversal at the maximum change reversal point.
  • An appropriate value of each change rate is determined based on computer simulation, experiments, etc. so that the noise generated in the gate line GLi due to the voltage change of SLj is sufficiently reduced.
  • the “slew rate” corresponds to the amount of change (absolute value) per unit time of the corresponding output voltage (the voltage of the data signal) when a stepped voltage is input to output buffer circuit 330. .
  • the DA conversion circuit 320 converts the internal image signals D1 to DN, which are digital image signals sequentially output from the data signal conversion circuit 310, line by line, into positive and negative polarities.
  • n positive polarity DA conversions are performed according to the digital value indicated by the corresponding internal image signal Dj.
  • the output buffer circuit 330 Based on the polarity control signal Cpn, the output buffer circuit 330 outputs each such analog image signal Aj as a data signal Sj via a voltage follower as a positive polarity buffer, if it is positive polarity, When the signal has a negative polarity, it is output as a data signal Sj via a voltage follower as a negative polarity buffer.
  • These data signals S1 to SM are applied to source lines SL1 to SLM in the display unit 100, respectively.
  • a bipolar buffer may be used which functions as a voltage follower regardless of whether the analog image signal Aj is positive or negative.
  • the gate driver 400 generates scanning signals G1 to GN similar to the above-described conventional example based on timing control information included in an external input signal Din and applies them to the gate lines GL1 to GLN in the display unit 100.
  • the display unit 100 the source lines SL1 to SLM and the gate lines GL1 to GLN
  • the pixel formation corresponding to the voltage indicating each pixel data of the image to be displayed is formed.
  • the voltage applied to and held by the pixel capacitance Cp of the unit 10 and the voltage held by each pixel capacitance Cp is rewritten every one frame period.
  • the liquid crystal panel as the display unit 100 changes the transmittance of light from a backlight (not shown) by applying a voltage according to the image signal DA to the liquid crystal layer, thereby representing the image signal DA. Display an image.
  • each source line SLj in the display unit 100 corresponds to the waveform of the DA conversion gradation voltage VsPa or VsNa corresponding to the data signal Sj applied thereto.
  • VsPa or VsNa the waveform of the DA conversion gradation voltage
  • FIG. 4 is a signal waveform diagram showing the operation of the liquid crystal display device according to the present embodiment.
  • the maximum DA conversion gradation voltages VsP1 and VsN1 corresponding to white display are generated as waveforms to which a slope is added at the time of polarity inversion of each data signal Sj.
  • the voltage of the data signal Sod of the odd-numbered column such as the data signal S1 (voltage of the source line SLod of the odd-numbered column) is as shown in FIG.
  • the first to sixth display periods first to sixth horizontal periods
  • VsPn, VsNn, VsN1, VsP1, VsPn, and VsNn respectively.
  • the voltage change of the odd-numbered source line SLod becomes maximum immediately before and after the polarity inversion time point tr2 when switching from the third horizontal period to the fourth horizontal period.
  • the rate of change of the voltage is at least smaller than the rate of change corresponding to the slew rate of each buffer in the output buffer circuit 330, and the change of the voltage of the source line SLj at the reversal of polarity at the maximum change reversal point Small enough compared to the speed (see Figures 4 and 10).
  • the noise generated in the gate line GLi is reduced. It is possible to suppress display defects caused by the malfunction of
  • Second embodiment> a slope is added to the DA conversion gradation voltages VsPk and VsNk used in the source driver 300 in order to reduce the rate of change of the voltage of the source line SLj in polarity inversion at the maximum change inversion time point.
  • the gradient is added at the maximum gradation voltage (absolute value Is the maximum positive polarity and negative polarity gradation voltage) VP1 and VN1 only (see FIG. 2 and FIG. 3).
  • the gradation voltages VsPk, VsNk for DA conversion are generated by adding a slope to the gradation voltage VP2, VN2 having the second largest absolute value in addition to the gradation voltage VP1, VN1 having the largest absolute value. It is also good.
  • a liquid crystal display device having such a configuration will be described as a second embodiment.
  • the configuration of the liquid crystal display device according to this embodiment is the same as that of the first embodiment except for the configuration of the gradation voltage slope circuit 620 (see FIG. 1). Therefore, in the configuration in the present embodiment, the same or corresponding parts as in the configuration in the first embodiment are given the same reference numerals, and the detailed description is omitted. The following description will focus on the configuration and operation associated with the grayscale voltage slope circuit 620.
  • FIG. 5 is a block diagram showing the configuration of the gradation voltage slope circuit 620 in the present embodiment.
  • the polarity control signal Cpn is a signal having the same function as the polarity control signal Cpn in the first embodiment.
  • FIG. 6 is a signal waveform diagram showing the operation of the liquid crystal display device according to the present embodiment.
  • the slope addition circuit 622 in the present embodiment is based on the polarity control signal Cpn and, like the first embodiment, is the maximum floor immediately before and after the polarity inversion time point of the data signal Sj.
  • the quasi-maximum floor immediately before and after the polarity inversion time point of the data signal Sj is generated.
  • the gradation throat voltages of the waveforms in which the tuning voltages VP2 and VN2 are inclined are generated as the quasi-maximum DA conversion gradation voltages VsP2 and VsN2.
  • the grayscale voltage VsP2 for positive polarity quasi-maximum D / A conversion decreases at a predetermined rate of change from the quasi-maximum gradation voltage VP2 to the common voltage Vcom immediately before the time of reversal of the polarity of each data signal Sj. Immediately after this, the waveform rises at a predetermined change rate and returns to the quasi-maximum gradation voltage VP2.
  • the grayscale voltage VsN2 for negative maximum quasi-maximum DA conversion rises at a predetermined rate of change from the quasi-maximum grayscale voltage VN2 to the common voltage Vcom immediately before the time of inversion of the polarity of each data signal Sj.
  • the waveform decreases at a predetermined change rate and returns to the quasi-maximum gradation voltage VN2.
  • Each change rate here is also set to a value sufficiently smaller than the change rate at the time of the inversion of the data signal Sj in the conventional example.
  • each change rate is set to a value smaller than at least a change rate corresponding to the slew rate of the plurality of buffers described in output buffer circuit 330, and more specifically, source line SLj at the polarity inversion at the time of inversion.
  • the appropriate value of each change rate is determined based on computer simulation, experiments, etc. so that the noise generated in the gate line GLi is sufficiently reduced by the voltage change of.
  • These data signals S1 to SM are applied to source lines SL1 to SLM in the display unit 100, respectively.
  • the data signal Sj to be applied has a positive polarity
  • an image obtained by correcting the evaluation image shown in FIG. 9 to have the second highest luminance gradation on the fifth and sixth lines referred to as “corrected evaluation image”
  • the voltage (voltage of the source line SLod of the odd-numbered column) of the data signal Sod of the odd-numbered column such as the data signal S1 is the display period of the first to sixth rows (first In the period from the sixth horizontal period) to VsPn, VsNn, VsN1, VsP1, VsP2, and VsN2, respectively.
  • the voltage change of the odd-numbered source line SLod becomes maximum immediately before and after the polarity inversion time tr2 when switching from the third horizontal period to the fourth horizontal period, and the fifth horizontal period switches to the sixth horizontal period
  • the voltage change of the odd-numbered source line SLod becomes the second largest immediately before and after the time polarity inversion time point tr3.
  • the voltage changes of the odd-numbered source lines SLod immediately before and after the polarity inversion time point tr2 correspond to the waveforms of the maximum DA conversion gradation voltages VsP1 and VsN1, and immediately before and immediately after the polarity inversion time point tr3.
  • the voltage change of the odd-numbered source line SLod corresponds to the waveform of the gradation voltages VsP2 and VsN2 for quasi-maximum D / A conversion (refer to two ovals shown by dotted lines in FIG. 4). Therefore, the rate of change of the voltage of the odd-numbered source line SLod immediately before and after these polarity inversion time points tr2 and tr3 is higher than that of the data signal Sj at the polarity inversion time of the polarity inversion time points tr2 and tr3 in the conventional example. Is sufficiently small, at least less than the rate of change corresponding to the slew rate of each buffer in the output buffer circuit 330.
  • the change speed of the voltage of the source line SLj in the polarity inversion where the voltage change is maximum also decreases.
  • the noise generated in the gate line GLi is further reduced, so that display defects caused by a malfunction in the gate driver 400 due to the noise caused by the inversion driving can be suppressed more reliably.
  • the gradation voltage slope circuit 620 is provided as a component separate from the source driver 300 and the like, but the configuration in which the gradation voltage slope circuit 620 is included in the source driver 300, for example, an IC (for realizing the source driver 300)
  • the configuration may be built in an integrated circuit.
  • a liquid crystal display device having such a configuration will be described as a third embodiment.
  • FIG. 7 is a block diagram showing the configuration of the liquid crystal display device according to the present embodiment.
  • the liquid crystal display device according to the present embodiment includes the gray scale voltage slope circuit 620 in the source driver 300, and in this respect, the first and the third embodiments have the gray scale voltage slope circuit 620 provided outside the source driver 300. This differs from the liquid crystal display (FIG. 1) according to the second embodiment.
  • the other configuration in this embodiment is the same as that of the first or second embodiment. Therefore, in the configuration in the present embodiment, the same or corresponding parts as those in the configuration in the first and second embodiments are given the same reference numerals, and detailed description will be omitted.
  • the configuration of the gradation voltage slope circuit 620 included in the source driver 300 in this embodiment may be any configuration of the gradation voltage slope circuit 620 in the first and second embodiments (FIG. 2). , See Figure 5).
  • the rate of change in the voltage is reduced.
  • noise generated in the gate line GLi is reduced, so that display defects caused by a malfunction in the gate driver 400 due to noise caused by inversion driving can be suppressed.
  • the first to third embodiments have been described by taking a normally black liquid crystal display device as an example, but the present invention can also be applied to a normally white liquid crystal display device. That is, even in the normally white liquid crystal display device, when the voltage change in the polarity inversion of the voltage of the source line is larger than a predetermined amount, the change in the voltage is reduced so that the noise generated in the gate line due to the voltage change is reduced. By providing the configuration for reducing the speed, the same effects as those of the first to third embodiments can be obtained.
  • the 2H dot inversion drive method is adopted, but another dot inversion drive method or a line inversion drive method is adopted. Also, the application of the present invention is possible.
  • the gradation voltage VPk, VNk (k) whose absolute value is larger than a predetermined value among Slope voltages VsPk and VsNk are generated (FIGS. 2 to 6).
  • the configuration for reducing the rate of change in voltage when the amount of change in voltage in polarity inversion of the source line is larger than a predetermined amount is not limited to this.
  • a configuration may be provided to adjust the slew rate of the buffer that outputs the signal Sj.
  • Source line (data signal line) (j 1 to M)
  • Cgs Gate-source parasitic capacitance
  • Cpn Polarity control signal
  • VsPk ... gradation signal for positive polarity DA conversion (k 1 to n)
  • VsNk ... gradation signal for negative polarity DA conversion (k 1 to n)
  • Vcom common voltage (center voltage)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Abstract

[Problem] To disclose a liquid crystal display device capable of preventing a driving circuit from malfunctioning due to noise caused by inversion drive and thereby suppressing defective display resulting from the malfunction. In the liquid crystal display device, a gradation-voltage slope circuit (620) converts gradation voltages VPk, VNk (k = 1 to n) output from a power supply circuit (600) to gradation voltages for DA conversion VsPk, VsNk (k = 1 to n), and a source driver (300) generates data signals (G1 to GN) to be applied to the data signal lines (GL1 to GLN) for a display unit via DA convertor circuit (320) or the like using these gradation voltages for DA conversion VsPk, VsNk (k = 1 to n). Thereby, when the voltage change during the polarity inversion of data signal lines (SLj) is greater than a prescribed amount, the rate of change of the voltage during the polarity inversion decreases, to thus reduce the noise generated in the scanning signal lines (GLi) due to the change in voltage.

Description

液晶表示装置およびその駆動方法Liquid crystal display device and driving method thereof
 本発明は、マトリクス状に配置された複数の画素形成部を有する液晶表示装置およびその駆動方法に関する。 The present invention relates to a liquid crystal display device having a plurality of pixel formation portions arranged in a matrix and a method of driving the same.
 アクティブマトリクス型の液晶表示装置は、複数のデータ信号線と、それらに交差する複数の走査信号線と、当該複数のデータ信号線および当該複数の走査信号線に対応してマトリクス状に配置された複数の画素形成部とを含む表示部としての液晶パネルを備えており、各画素形成部は画素容量とスイッチング素子とを含んでいる。ここで、スイッチング素子としては、通常、薄膜トランジスタ(以下「TFT」という)が使用される。各画素形成部における画素容量は、画素電極と、液晶を挟んでその画素電極と対向する共通電極(「対向電極」ともいう)とによって形成されており、当該画素電極は、上記スイッチング素子としてのTFTを介して対応するデータ信号線に接続され、そのTFTのゲート端子には対応する走査信号線が接続される。 The active matrix liquid crystal display device is arranged in a matrix corresponding to a plurality of data signal lines, a plurality of scanning signal lines intersecting them, a plurality of data signal lines, and the plurality of scanning signal lines. A liquid crystal panel as a display unit including a plurality of pixel formation units is provided, and each pixel formation unit includes a pixel capacitance and a switching element. Here, as a switching element, a thin film transistor (hereinafter, referred to as "TFT") is usually used. The pixel capacitance in each pixel formation portion is formed of a pixel electrode and a common electrode (also referred to as "counter electrode") facing the pixel electrode with the liquid crystal interposed therebetween, and the pixel electrode is used as the switching element. It is connected to the corresponding data signal line through the TFT, and the corresponding scanning signal line is connected to the gate terminal of the TFT.
 上記複数のデータ信号線はデータ信号線駆動回路としてのソースドライバに接続され、複数の走査信号線は走査信号線駆動回路としてのゲートドライバに接続される。データ信号線駆動回路は、表示すべき画像を表す複数のデータ信号を上記複数のデータ信号線に印加し、走査信号線駆動回路は、上記複数の走査信号線を順次選択するための複数の走査信号を上記複数の走査信号線に印加する。これにより、表示すべき画像の各画素を表す電圧が対応する画素形成部における画素電極に与えられ、各画素形成部においてその画素電極の電圧と共通電極の電圧との差に相当する電圧が液晶に印加される。また、液晶パネルの背面には面状光源としてのバックライトから光が照射される。その結果、各画素形成部における液晶はその印加電圧に応じて光の透過率を変化させ、上記複数のデータ信号の表す画像が液晶パネルに表示される。 The plurality of data signal lines are connected to a source driver as a data signal line drive circuit, and the plurality of scan signal lines are connected to a gate driver as a scan signal line drive circuit. The data signal line drive circuit applies a plurality of data signals representing an image to be displayed to the plurality of data signal lines, and the scan signal line drive circuit performs a plurality of scans for sequentially selecting the plurality of scan signal lines. A signal is applied to the plurality of scan signal lines. Thus, a voltage representing each pixel of the image to be displayed is applied to the pixel electrode in the corresponding pixel formation portion, and a voltage corresponding to the difference between the voltage of the pixel electrode and the voltage of the common electrode in each pixel formation portion is liquid crystal Applied to the Further, light is emitted from the backlight as a planar light source on the back of the liquid crystal panel. As a result, the liquid crystal in each pixel formation portion changes the light transmittance according to the applied voltage, and the image represented by the plurality of data signals is displayed on the liquid crystal panel.
 なお、以下の開示に関連して、特許文献1には、水平方向に並ぶ画素からなる各画素列に対し2本の走査線(走査信号線)を割り当て、1水平期間内に当該2本の走査線を連続的に選択することで、垂直方向に並ぶ画素からなる2つの画素列の各画素に1本の信号線(データ信号線)で表示電圧を書き込むように構成された液晶表示装置が記載されている。このような構成によれば、通常の構成に比べ信号線データの出力ドライバの数が半減するが、当該液晶表示装置の反転駆動に起因する表示不良が問題になることがある。すなわち、1本の信号線を挟んで隣り合う画素において、先に書き込まれた画素(前段画素)の電位が、後から書き込まれる画素(後段画素)の逆極性の電位により書き込み時に変調を受け、その結果、前段画素と後段画素とで画素電位に相違が生じて縦スジムラの発生による表示不良が引き起こされることがある。この問題を解決すべく特許文献1に記載の発明は、表示画素の偶数番目の画素が選択される時に信号線に供給される電圧と、表示画素の奇数番目の画素が選択される時に信号線に供給される電圧とを切り換え、前段画素の階調電圧の補正により前段画素の電位と後段画素の電位とが同等になるように構成されている。 Incidentally, in connection with the following disclosure, in Patent Document 1, two scanning lines (scanning signal lines) are assigned to each pixel row consisting of pixels aligned in the horizontal direction, and the two scanning lines are arranged in one horizontal period. A liquid crystal display device configured to write display voltages with one signal line (data signal line) to each pixel of two pixel columns formed of pixels arranged in the vertical direction by continuously selecting scanning lines is used. Have been described. According to such a configuration, although the number of output drivers of signal line data is reduced to half as compared with the normal configuration, a display defect due to the inversion drive of the liquid crystal display may be a problem. That is, in adjacent pixels sandwiching one signal line, the potential of the previously written pixel (previous stage pixel) is modulated at the time of writing by the opposite polarity potential of the later written pixel (following stage pixel), As a result, a difference occurs in the pixel potential between the front-stage pixel and the rear-stage pixel, which may cause a display defect due to the generation of the longitudinal streak unevenness. In order to solve this problem, the invention described in Patent Document 1 relates to the voltage supplied to the signal line when the even-numbered pixel of the display pixel is selected and the signal line when the odd-numbered pixel of the display pixel is selected. It is configured such that the potential of the front stage pixel and the potential of the rear stage pixel become equal by switching the voltage supplied to the circuit and correcting the gradation voltage of the front stage pixel.
日本国特開平10-171412号公報Japanese Patent Application Laid-Open No. 10-171412
 液晶表示装置では、液晶の劣化を防止するために、画素電極に与えられる電圧の極性が共通電極の電圧(共通電圧)を基準として一定時間毎に反転するように液晶パネルを駆動する反転駆動方式が採用されている。この反転駆動方式としては幾つかの方式が知られているが、反転駆動によって表示品質が低下しないように、1以上の所定数の表示ライン毎に液晶への印加電圧の極性を反転させるライン反転駆動方式や、1つの画素形成部毎に液晶への印加電圧の極性を反転させるドット反転駆動方式等が使用されることが多い。このため、ソースドライバから各データ信号線に印加されるデータ信号の極性は、通常、1水平期間毎または2以上の所定数の水平期間毎に反転する。 In a liquid crystal display device, an inversion driving method of driving a liquid crystal panel so that the polarity of a voltage applied to a pixel electrode is inverted at regular intervals with reference to the voltage (common voltage) of a common electrode in order to prevent deterioration of liquid crystal. Is adopted. Several methods are known as this inversion drive method, but line inversion that inverts the polarity of the voltage applied to the liquid crystal every predetermined number of one or more display lines so that the display quality is not deteriorated by the inversion drive. In many cases, a driving method, a dot inversion driving method in which the polarity of the voltage applied to the liquid crystal is inverted for each pixel formation portion, or the like is used. Therefore, the polarity of the data signal applied from the source driver to each data signal line is usually inverted every one horizontal period or every predetermined number of two or more horizontal periods.
 液晶表示装置では、このような反転駆動方式が採用されていることから、表示すべき画像によっては、表示パネルにおけるノイズによりゲートドライバが誤動作し、表示不良が発生することがある。上記特許文献1には、1本の信号線を挟んで隣り合う前段画素と後段画素との間で反転駆動に起因して生じる画素電位差に基づく表示不良の問題およびそれを解決するための構成が記載されているが、反転駆動に起因するノイズによるゲートドライバの誤動作やそのような誤動作の抑制方法等に関する記載は見られない。 In the liquid crystal display device, since such a reverse drive method is adopted, depending on the image to be displayed, noise in the display panel may cause the gate driver to malfunction and cause a display failure. Patent Document 1 discloses a display defect problem based on a pixel potential difference generated due to inversion driving between an immediately preceding pixel and a succeeding pixel interposing a single signal line, and a configuration for solving the problem. Although it is described, the description regarding the malfunction of the gate driver by the noise resulting from the inversion drive, the suppression method of such a malfunction, etc. is not seen.
 そこで、反転駆動に起因するノイズによる駆動回路の誤動作を防止し当該誤動作による表示不良を抑制した液晶表示装置を提供することが望まれている。 Therefore, it is desirable to provide a liquid crystal display device that prevents a malfunction of a driving circuit due to noise caused by inversion driving and suppresses a display defect due to the malfunction.
 本発明のいくつかの実施形態は、複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に沿ってマトリクス状に配置された複数の画素形成部とを含む表示部を有する液晶表示装置であって、
 前記複数の走査信号線を選択的に駆動する走査信号線駆動回路と、
 前記複数のデータ信号線がそれぞれ接続される複数のバッファを含み、所定の中心電圧を基準として極性が所定時間毎に反転する複数のデータ信号を生成し前記複数のバッファを介して前記複数のデータ信号線に印加するデータ信号線駆動回路とを備え、
 前記データ信号線駆動回路は、前記複数のデータ信号の極性反転においていずれかのデータ信号の変化量が所定量よりも大きい場合には当該極性反転における当該いずれかのデータ信号の変化速度が前記複数のバッファのスルーレートに相当する変化速度よりも小さい所定の低変化速度となるように、前記複数のデータ信号を生成する。
Some embodiments of the present invention may include a plurality of data signal lines, a plurality of scan signal lines intersecting the plurality of data signal lines, a matrix along the plurality of data signal lines and the plurality of scan signal lines. A liquid crystal display device having a display portion including a plurality of pixel formation portions arranged in a shape of
A scanning signal line drive circuit for selectively driving the plurality of scanning signal lines;
The plurality of data signals are generated including a plurality of buffers to which the plurality of data signal lines are respectively connected, and a plurality of data signals whose polarity is inverted at predetermined time intervals with reference to a predetermined center voltage. And a data signal line drive circuit applied to the signal line,
In the data signal line drive circuit, when the amount of change of any data signal is larger than a predetermined amount in the polarity inversion of the plurality of data signals, the change speed of any one data signal in the polarity inversion is the plurality The plurality of data signals are generated so as to have a predetermined low change rate smaller than the change rate corresponding to the through rate of the buffer.
 上記いくつかの実施形態の好ましい構成は、
 複数の正極性および負極性階調電圧を生成する階調電圧生成回路と、
 前記データ信号線駆動回路の内部または外部に設けられ、前記複数の正極性および負極性階調電圧のうち絶対値が所定値よりも大きい少なくとも1つの正極性および負極性階調電圧のそれぞれを、前記複数のデータ信号の極性の反転時点の直前に当該階調電圧から前記低変化速度に対応する変化速度で前記中心電圧に向かって変化し当該反転時点の直後に前記低変化速度に対応する変化速度で当該階調電圧に戻るような波形の電圧に置き換えることにより、前記複数の正極性および負極性階調電圧を複数の正極性および負極性DA変換用階調電圧に変換する階調電圧変換回路とを更に備え、
 前記データ信号線駆動回路は、前記複数のデータ信号線のそれぞれにつき、前記複数の正極性および負極性DA変換用階調電圧の中から、当該データ信号線に印加すべきデータ信号の極性が前記所定時間毎に反転するように前記表示部に表示すべき画像に応じた正極性または負極性DA変換用階調電圧を選択し、当該選択された正極性または負極性DA変換用階調電圧をデータ信号として当該データ信号線に印加する。
Preferred configurations of the above several embodiments are:
A gradation voltage generation circuit that generates a plurality of positive and negative polarity gradation voltages;
Among the plurality of positive and negative polarity gradation voltages, at least one of the plurality of positive and negative polarity gradation voltages is provided inside or outside the data signal line drive circuit, and at least one of the positive and negative polarity gradation voltages is greater than a predetermined value. Immediately before the point of time of polarity inversion of the plurality of data signals, the gradation voltage changes toward the central voltage at a change rate corresponding to the low change rate, and immediately after the point of inversion Gradation voltage conversion that converts the plurality of positive and negative polarity gradation voltages into a plurality of positive and negative polarity DA conversion gradation voltages by replacing the voltage with a waveform that returns to the gradation voltage at speed. Further comprising a circuit and
The data signal line drive circuit is configured such that, for each of the plurality of data signal lines, the polarity of the data signal to be applied to the data signal line out of the plurality of positive and negative polarity gradation voltages for DA conversion is The gradation voltage for positive polarity or negative polarity DA conversion according to the image to be displayed on the display unit is selected to be inverted every predetermined time, and the selected gradation voltage for positive polarity or negative polarity DA conversion is selected. It applies to the said data signal line as a data signal.
 本発明の他のいくつかの実施形態は、複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に沿ってマトリクス状に配置された複数の画素形成部とを含む表示部を有する液晶表示装置の駆動方法であって、
 前記複数の走査信号線を選択的に駆動する走査信号線駆動ステップと、
 所定の中心電圧を基準として極性が所定時間毎に反転する複数のデータ信号を生成し、当該複数のデータ信号を複数のバッファを介して前記複数のデータ信号線に印加するデータ信号線駆動ステップとを備え、
 前記データ信号線駆動ステップでは、前記複数のデータ信号の極性反転においていずれかのデータ信号の変化量が所定量よりも大きい場合には当該極性反転における当該いずれかのデータ信号の変化速度が前記複数のバッファのスルーレートに相当する変化速度よりも小さい所定の低変化速度となるように、前記複数のデータ信号が生成される。
According to other embodiments of the present invention, a plurality of data signal lines, a plurality of scan signal lines intersecting the plurality of data signal lines, the plurality of data signal lines and the plurality of scan signal lines are provided. It is a driving method of a liquid crystal display device having a display unit including a plurality of pixel formation units arranged in a matrix.
A scanning signal line driving step of selectively driving the plurality of scanning signal lines;
A data signal line driving step of generating a plurality of data signals whose polarity is inverted at predetermined time intervals with reference to a predetermined center voltage, and applying the plurality of data signals to the plurality of data signal lines via a plurality of buffers; Equipped with
In the data signal line driving step, when the change amount of any data signal is larger than a predetermined amount in polarity inversion of the plurality of data signals, the change speed of any one data signal in the polarity inversion is the plurality The plurality of data signals are generated to have a predetermined low change rate smaller than the change rate corresponding to the through rate of the buffer.
 本発明の上記いくつかの実施形態によれば、表示部における複数のデータ信号の極性反転においていずれかのデータ信号の変化量が所定量よりも大きい場合には当該極性反転における当該いずれかのデータ信号の変化速度がバッファのスルーレートに相当する変化速度よりも小さい所定の低変化速度となるように、上記複数のデータ信号が生成される。これにより、データ信号の極性反転によるデータ信号線の電圧変化が画素形成部の寄生容量を介して走査信号線に影響を与えることにより生じるノイズが低減される。このため、当該ノイズによる走査信号線の誤動作が防止され、その誤動作による表示不良が抑制される。 According to the above embodiments of the present invention, when the amount of change in any data signal is larger than a predetermined amount in the polarity inversion of the plurality of data signals in the display unit, the data in the polarity inversion is any one of the data The plurality of data signals are generated such that the change rate of the signal is a predetermined low change rate smaller than the change rate corresponding to the slew rate of the buffer. Thereby, the noise caused by the voltage change of the data signal line due to the polarity inversion of the data signal affecting the scanning signal line through the parasitic capacitance of the pixel formation portion is reduced. Therefore, the malfunction of the scanning signal line due to the noise is prevented, and the display failure due to the malfunction is suppressed.
 本発明の上記いくつかの実施形態の好ましい構成によれば、階調電圧生成回路により生成される複数の正極性および負極性階調電圧のうち絶対値が所定値よりも大きい少なくとも1つの正極性および負極性階調電圧のそれぞれを、データ信号の極性の反転時点の直前に当該階調電圧から上記低変化速度に対応する変化速度で極性反転の中心電圧に向かって変化し当該反転時点の直後に上記低変化速度に対応する変化速度で当該階調電圧に戻るような波形の電圧に置き換えることにより、上記複数の正極性および負極性階調電圧が複数の正極性および負極性DA変換用階調電圧に変換される。表示部における複数のデータ信号線には、このような複数の正極性および負極性DA変換用階調電圧に基づくDA変換処理により生成される複数のデータ信号が印加される。これにより、データ信号の極性反転によるデータ信号線の電圧変化が大きい場合には当該極性反転における当該データ信号線の変化速度が低くなるので、当該極性反転おけるデータ信号線の電圧変化によって走査信号線に生じるノイズが低減される。このため、当該ノイズによる走査信号線の誤動作が防止され、その誤動作による表示不良が抑制される。 According to a preferable configuration of the above-described some embodiments of the present invention, at least one positive polarity having a larger absolute value than a predetermined value among a plurality of positive polarity and negative polarity gradation voltage generated by the gradation voltage generation circuit And the negative polarity gradation voltage is changed from the gradation voltage to the central voltage of polarity inversion at a change rate corresponding to the low change speed immediately before the polarity inversion point of the data signal and immediately after the inversion point The plurality of positive polarity and negative polarity gradation voltages are converted into a plurality of positive polarity and negative polarity DA conversion floors by replacing the voltage of the waveform that returns to the gradation voltage at a change rate corresponding to the low change rate. Converted to regulated voltage. A plurality of data signals generated by DA conversion processing based on the plurality of positive polarity and negative polarity DA conversion gradation voltages are applied to the plurality of data signal lines in the display unit. Thereby, when the voltage change of the data signal line due to the polarity inversion of the data signal is large, the change speed of the data signal line in the polarity inversion becomes low. Therefore, the scanning signal line is changed by the voltage change of the data signal line in the polarity inversion. Noise generated in the Therefore, the malfunction of the scanning signal line due to the noise is prevented, and the display failure due to the malfunction is suppressed.
第1の実施形態に係る液晶表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the liquid crystal display device which concerns on 1st Embodiment. 上記第1の実施形態における階調電圧スロープ回路の構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of the gradation voltage slope circuit in the said 1st Embodiment. 上記第1の実施形態における階調電圧スロープ回路に含まれるスロープ付加回路の動作を説明するための信号波形図である。FIG. 7 is a signal waveform diagram for describing the operation of the slope addition circuit included in the gradation voltage slope circuit in the first embodiment. 上記第1の実施形態に係る液晶表示装置の動作を示す信号波形図である。FIG. 5 is a signal waveform diagram showing an operation of the liquid crystal display device according to the first embodiment. 第2の実施形態に係る液晶表示装置における階調電圧スロープ回路の構成を説明するためのブロック図である。It is a block diagram for demonstrating the structure of the gradation voltage slope circuit in the liquid crystal display device which concerns on 2nd Embodiment. 上記第2の実施形態に係る液晶表示装置の動作を示す信号波形図である。It is a signal waveform diagram which shows operation | movement of the liquid crystal display device which concerns on the said 2nd Embodiment. 第3の実施形態に係る液晶表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the liquid crystal display device which concerns on 3rd Embodiment. 従来例に係る液晶表示装置の構成を示すブロック図である。It is a block diagram which shows the structure of the liquid crystal display device which concerns on a prior art example. 上記従来例における表示例を印加電圧の極性パターンと共に示す図である。It is a figure which shows the example of a display in the said prior art example with the polarity pattern of applied voltage. 上記従来例における問題を説明するための信号波形図である。It is a signal waveform diagram for demonstrating the problem in the said prior art example.
<0.基礎検討>
 既述のように液晶表示装置では、反転駆動方式が採用されていることから、表示すべき画像によっては、表示パネルにおけるノイズによりゲートドライバが誤動作し、表示不良が発生することがある。本願発明者はこの問題の原因および当該誤動作の発生機構について検討した。以下では、各実施形態を説明する前にこの検討の内容および結果につき説明する。
<0. Basic study>
As described above, in the liquid crystal display device, since the inversion driving method is adopted, depending on the image to be displayed, the noise in the display panel may cause the gate driver to malfunction and cause a display defect. The inventor examined the cause of this problem and the mechanism of occurrence of the malfunction. In the following, the contents and results of this examination will be described before describing each embodiment.
 図8は、通常のアクティブマトリクス型液晶表示装置の一構成例(以下「従来例」という)を示すブロック図である。図8に示す液晶表示装置は、表示部100としての液晶パネルと、データ信号線駆動回路としてのソースドライバ300と、走査信号線駆動回路としてのゲートドライバ400と、表示制御回路200と、電源回路600とを備えている。また、表示部100としての液晶パネルにおいて画像を表示するにはその背面に光を照射するためのバックライトが必要であり、この液晶表示装置は、このようなバックライト(不図示)も備えている。バックライトおよびその駆動回路については、それら自身の構成および関連する構成は周知であって後述の各実施形態の特徴とは直接には関係しないので説明を省略する。 FIG. 8 is a block diagram showing a configuration example (hereinafter referred to as “conventional example”) of a typical active matrix liquid crystal display device. The liquid crystal display device shown in FIG. 8 includes a liquid crystal panel as a display unit 100, a source driver 300 as a data signal line drive circuit, a gate driver 400 as a scanning signal line drive circuit, a display control circuit 200, and a power supply circuit. And 600. Moreover, in order to display an image in the liquid crystal panel as the display part 100, the back light for irradiating light in the back is required, and this liquid crystal display device is equipped also with such a back light (not shown). There is. The back lights and their drive circuits are well known in their own construction and related constructions and will not be described because they are not directly related to the features of the respective embodiments described later.
 表示部100には、複数(M本)のデータ信号線としてのソースラインSL1~SLMと当該複数のソースラインSL1~SLMに交差する複数(N本の)走査信号線としてのゲートラインGL1~GLNとが配設されており、当該複数のソースラインSL1~SLMおよび当該複数のゲートラインGL1~GLNに沿ってマトリクス状に配置された複数(M×N個)の画素形成部10が設けられている。 In the display unit 100, source lines SL1 to SLM as a plurality of (M) data signal lines and gate lines GL1 to GLN as a plurality of (N) scanning signal lines intersecting the plurality of source lines SL1 to SLM. Are provided, and a plurality of (M × N) pixel formation portions 10 arranged in a matrix along the plurality of source lines SL1 to SLM and the plurality of gate lines GL1 to GLN are provided. There is.
 各画素形成部10は、上記複数のソースラインSL1~SLMのいずれか1つに対応すると共に上記複数のゲートラインGL1~GLNのいずれかに1つに対応する。図8に示すように、各画素形成部10は、対応するソースラインSLjに一方の導通端子としてのソース端子が接続されると共に対応するゲートラインGLiに制御端子としてのゲート端子が接続されたスイッチング素子としての薄膜トランジスタ(TFT)12と(i=1~N、j=1~M)、そのTFT12の他方の導通端子としてのドレイン端子に接続された画素電極Epと、上記複数(M×N個)の画素形成部10に共通に設けられた液晶層と、上記複数(M×N個)の画素形成部10に共通に設けられ当該液晶層を挟んで画素電極Epと対向するように配置された共通電極Ecとを備えている。各画素形成部10において画素電極Epと共通電極Ecとそれらの間に挟まれた液晶層とにより、画素の階調値を示す画素データに相当する電圧を保持するための画素容量Cpとしての液晶容量Clcが形成されている。なお図8に示すように、通常、液晶容量Clcに確実に電圧を保持すべく、表示部100においてTFT12が形成される基板に補助容量電極が配設されて液晶容量Clcに並列に補助容量Csが形成されている。この場合、画素データに相当する電圧を保持するための画素容量Cpは、液晶容量Clcと補助容量Csとから構成されることになる。 Each pixel formation portion 10 corresponds to any one of the plurality of source lines SL1 to SLM and corresponds to one to any of the plurality of gate lines GL1 to GLN. As shown in FIG. 8, in each pixel formation portion 10, switching is performed in which the source terminal as one conduction terminal is connected to the corresponding source line SLj and the gate terminal as the control terminal is connected to the corresponding gate line GLi. A thin film transistor (TFT) 12 as an element and (i = 1 to N, j = 1 to M), a pixel electrode Ep connected to a drain terminal as the other conduction terminal of the TFT 12, and the plurality (M × N) Liquid crystal layer provided in common to the pixel formation portion 10) and the plurality of (M.times.N) pixel formation portions 10 in common, and disposed so as to face the pixel electrode Ep with the liquid crystal layer interposed therebetween. And a common electrode Ec. A liquid crystal as a pixel capacitance Cp for holding a voltage corresponding to pixel data indicating a gradation value of a pixel by the pixel electrode Ep, the common electrode Ec, and the liquid crystal layer sandwiched therebetween in each pixel formation portion 10 A capacity Clc is formed. As shown in FIG. 8, normally, in order to reliably hold the voltage in the liquid crystal capacitance Clc, an auxiliary capacitance electrode is disposed on the substrate on which the TFT 12 is formed in the display unit 100, and the storage capacitance Cs is parallel to the liquid crystal capacitance Clc. Is formed. In this case, a pixel capacitance Cp for holding a voltage corresponding to pixel data is constituted by a liquid crystal capacitance Clc and a storage capacitance Cs.
 上記構成の画素形成部10において、図8に示すように、TFT12のゲート端子とソース端子との間に寄生容量(以下「ゲート・ソース間寄生容量」という)Cgsが存在する。なお、ソースラインSLjとゲートラインGLiとの間にも寄生容量が存在し、以下では、この寄生容量も上記ゲート・ソース間寄生容量Cgsに含まれるものとする。後述のように、ソースラインSLjに印加されるデータ信号Sjの電圧が大きく変化すると、その変化が当該寄生容量Cgsを介してゲートラインGLiにノイズを発生させる。 In the pixel formation portion 10 of the above configuration, as shown in FIG. 8, a parasitic capacitance (hereinafter referred to as “gate-source parasitic capacitance”) Cgs exists between the gate terminal and the source terminal of the TFT 12. A parasitic capacitance also exists between the source line SLj and the gate line GLi, and in the following, this parasitic capacitance is also included in the gate-source parasitic capacitance Cgs. As described later, when the voltage of the data signal Sj applied to the source line SLj changes significantly, the change causes noise in the gate line GLi via the parasitic capacitance Cgs.
 表示制御回路200は、例えばコントロールICと呼ばれる1個のIC(Integrated Circuit)として実現される。この表示制御回路200は、表示すべき画像を表す画像データおよびタイミング制御情報を含む入力信号Dinを液晶表示装置の外部から受け取り、この入力信号Dinに基づき、デジタル画像信号DAおよびデータ側制御信号SCTと走査側制御信号GCTとを生成する。デジタル画像信号DAおよびデータ側制御信号SCTはソースドライバ300に入力され、走査側制御信号GCTはゲートドライバ400に入力される。データ側制御信号SCTは、データ側スタートパルス信号SSP、データ側クロック信号SCK、ラッチストローブ信号LS、および、極性制御信号Cpnを含み、走査側制御信号GCTは、走査側スタートパルス信号GSPおよび走査側クロック信号GCKを含む。 The display control circuit 200 is realized, for example, as a single IC (Integrated Circuit) called a control IC. The display control circuit 200 receives an input signal Din including image data representing an image to be displayed and timing control information from the outside of the liquid crystal display device, and based on the input signal Din, the digital image signal DA and the data side control signal SCT. And the scan side control signal GCT. The digital image signal DA and the data side control signal SCT are input to the source driver 300, and the scan side control signal GCT is input to the gate driver 400. Data-side control signal SCT includes data-side start pulse signal SSP, data-side clock signal SCK, latch strobe signal LS, and polarity control signal Cpn, and scan-side control signal GCT includes scan-side start pulse signal GSP and the scan side. Clock signal GCK is included.
 図8に示すようにソースドライバ300は、データ信号変換回路310、DA変換回路320、および、出力バッファ回路330を備えている。データ信号変換回路310には、表示制御回路200からのデータ側制御信号SCTのうちデータ側スタートパルス信号SSP、データ側クロック信号SCK、およびラッチストローブ信号LSが入力される。データ信号変換回路310は、データ側クロック信号SCKによって動作するシフトレジスタおよびサンプリングラッチ回路等を含んでおり、データ側スタートパルス信号SSPに含まれるスタートパルスをデータ側クロック信号SCKにしたがってシフトレジスタで順次転送し、その転送に応じてデジタル画像信号DSを順次サンプリングし、1ライン分がサンプリングされる毎に発生するラッチストローブ信号LSのパルス(ラッチパルス)によりデジタル画像信号DSを1ライン分ずつ順次保持すると共に、内部画像信号D1~DNとして出力する。DA変換回路320は、1ライン分の画像信号である当該内部画像信号D1~DNを、後述の正極性および負極性階調電圧VPk,VNk(k=1~n)に基づきアナログ画像信号A1~ANに変換する。出力バッファ回路330は、ソースラインSL1~SLnにそれぞれ接続される複数のバッファを含み、これらのアナログ画像信号A1~ANを当該複数のバッファをそれぞれを介して、所定時間毎に極性の反転するデータ信号S1~SNとして出力する。これら複数のバッファは電圧ホロワとして機能する。出力バッファ回路330から出力されたデータ信号S1~SNは、駆動用画像信号としてソースラインSL1~SLNにそれぞれ印加される。 As shown in FIG. 8, the source driver 300 includes a data signal conversion circuit 310, a DA conversion circuit 320, and an output buffer circuit 330. Among the data-side control signals SCT from the display control circuit 200, the data-side start pulse signal SSP, the data-side clock signal SCK, and the latch strobe signal LS are input to the data signal conversion circuit 310. Data signal conversion circuit 310 includes a shift register and a sampling latch circuit operated by data side clock signal SCK, etc., and start pulses included in data side start pulse signal SSP are sequentially selected by the shift register according to data side clock signal SCK. Transfer, sequentially sampling the digital image signal DS according to the transfer, and sequentially holding the digital image signal DS one line at a time by the pulse (latch pulse) of the latch strobe signal LS generated each time one line is sampled And output as internal image signals D1 to DN. The DA conversion circuit 320 converts the internal image signals D1 to DN, which are image signals for one line, into analog image signals A1 to A based on positive and negative gradation voltages VPk and VNk (k = 1 to n) described later. Convert to AN. The output buffer circuit 330 includes a plurality of buffers respectively connected to the source lines SL1 to SLn, and data in which the analog image signals A1 to AN are inverted in polarity every predetermined time via the plurality of buffers. It outputs as the signals S1 to SN. The plurality of buffers function as voltage followers. The data signals S1 to SN output from the output buffer circuit 330 are respectively applied to the source lines SL1 to SLN as driving image signals.
 ゲートドライバ400は、表示制御回路200からの走査側クロック信号GCKによって動作するシフトレジスタを備えており、このシフトレジスタにおいて、表示制御回路200からの走査側スタートパルス信号GSPに含まれるスタートパルスが走査側クロック信号GCKに従って順次転送される。ゲートドライバ400は、その転送に応じて順次アクティブ(ハイレベル)となる走査信号G1~GNを生成し、これらの走査信号G1~GNを表示部100におけるゲートラインGL1~GL1Nにそれぞれ印加する。これにより、各フレーム期間においてゲートラインGL1~GLNが順次選択される。 The gate driver 400 includes a shift register operated by the scanning clock signal GCK from the display control circuit 200. In this shift register, the start pulse included in the scanning start pulse signal GSP from the display control circuit 200 is scanned The data is sequentially transferred according to the side clock signal GCK. The gate driver 400 generates scanning signals G1 to GN sequentially becoming active (high level) according to the transfer, and applies these scanning signals G1 to GN to the gate lines GL1 to GL1N in the display unit 100, respectively. Thus, the gate lines GL1 to GLN are sequentially selected in each frame period.
 電源回路600は、本液晶表示装置の各部で必要とされる電源電圧、すなわち、ソースドライバ300およびゲートドライバ400に含まれるデジタル回路に供給されるロジック電源電圧VpwL、ソースドライバ300に含まれるアナログ回路に供給されるデータ側駆動電圧VpwS、ゲートドライバ400に含まれるアナログ回路に供給される走査側駆動電圧VpwG、ソースドライバ300に含まれるDA変換回路320に供給される正極性および負極性階調電圧VPk,VNk(k=1~n)、および、共通電圧Vcomを生成する。共通電圧Vcomは、表示部100における共通電極Ecおよび補助電極Esに供給されるが、これに代えて、共通電圧Vcomと異なる補助電極用電圧を生成して補助電極にEsに供給するようにしてもよい。以下において、正極性および負極性階調電圧VPk,VNkの絶対値は、添え字kが小さいほど大きいものとする。したがって、ノーマリブラック方式の場合には、正極性および負極性階調電圧VP1,VN1が最大輝度階調(白表示)に対応する。 The power supply circuit 600 is a power supply voltage required for each part of the present liquid crystal display device, that is, a logic power supply voltage VpwL supplied to digital circuits included in the source driver 300 and the gate driver 400, and an analog circuit included in the source driver 300. Data-side drive voltage VpwS supplied to the scan side, scan-side drive voltage VpwG supplied to the analog circuit included in the gate driver 400, and positive and negative polarity gradation voltages supplied to the DA conversion circuit 320 included in the source driver 300. VPk and VNk (k = 1 to n) and a common voltage Vcom are generated. The common voltage Vcom is supplied to the common electrode Ec and the auxiliary electrode Es in the display unit 100. Instead, a voltage for the auxiliary electrode different from the common voltage Vcom is generated and supplied to the auxiliary electrode Es. It is also good. In the following, it is assumed that the absolute values of the positive polarity and negative polarity gradation voltages VPk and VNk are larger as the subscript k is smaller. Therefore, in the case of the normally black system, the positive polarity and negative polarity gradation voltages VP1 and VN1 correspond to the maximum luminance gradation (white display).
 表示部100としての液晶パネルの背面には、図示しない面状光源がバックライトして設けられており、このバックライトから液晶パネルの背面に光が照射される。なお、本実施形態における液晶パネルは透過型であるが、液晶パネルが反射型である場合には、バックライトユニットは設ける必要がない。 A planar light source (not shown) is provided as a backlight on the rear surface of the liquid crystal panel as the display unit 100, and light is emitted from the backlight to the rear surface of the liquid crystal panel. Although the liquid crystal panel in the present embodiment is a transmissive type, when the liquid crystal panel is a reflective type, it is not necessary to provide a backlight unit.
 上記のようにして表示部100としての液晶パネルでは、表示制御回路200による制御の下、外部からの入力信号Dinに基づき生成されるデータ信号S1~SMがソースラインSL1~SLMにそれぞれ印加され、これと同期して、外部からの入力信号Din(に含まれるタイミング制御情報)に基づき生成される走査信号G1~GNがゲートラインGL1~GLNにそれぞれ印加される。このようにして表示部100(のソースラインSL1~SLMおよびゲートラインGL1~GLN)が駆動されることにより、表示すべき画像の各画素データを示す電圧が対応する画素形成部10の画素容量Cpに与えられて保持され、各画素容量Cpに保持された電圧は1フレーム期間毎に書き換えられる。これにより表示部100としての液晶パネルは、上記画像信号DAに応じた電圧を液晶層に印加されることで光の透過率を変化させ、上記画像信号DAの表す画像を表示する。 As described above, in the liquid crystal panel as the display unit 100, the data signals S1 to SM generated based on the external input signal Din are applied to the source lines SL1 to SLM under the control of the display control circuit 200, In synchronization with this, scanning signals G1 to GN generated based on an external input signal Din (timing control information included therein) are applied to the gate lines GL1 to GLN, respectively. By driving display unit 100 (source lines SL1 to SLM and gate lines GL1 to GLN) in this manner, the pixel capacitance Cp of pixel formation unit 10 corresponding to the voltage indicating each pixel data of the image to be displayed. And the voltage held in each pixel capacitance Cp is rewritten every one frame period. Thereby, the liquid crystal panel as the display unit 100 changes the light transmittance by applying a voltage according to the image signal DA to the liquid crystal layer, and displays the image represented by the image signal DA.
 なお、図8に示した液晶表示装置では、表示部100の駆動回路を構成するソースドライバ300およびゲートドライバ400は、表示部100とは別個の構成要素とされているが、これに代えて、ソースドライバ300およびゲートドライバ400の少なくとも一部が表示部100としての液晶パネルの基板上にTFTを用いて画素回路と一体的に(同一プロセスで同時に)形成された構成であってもよい。この点は後述の各実施形態においても同様である。 In the liquid crystal display device shown in FIG. 8, the source driver 300 and the gate driver 400 that constitute the drive circuit of the display unit 100 are components separate from the display unit 100, but instead of this, At least a part of the source driver 300 and the gate driver 400 may be formed integrally with the pixel circuit (simultaneously in the same process) on the substrate of the liquid crystal panel as the display portion 100 using the TFT. This point is the same in each embodiment described later.
 上記のような従来例に係る液晶表示装置において、表示部100としてノーマリブラック方式の液晶パネルが使用され、かつ2Hドット反転駆動方式が採用されているものとし、図9に示すように白の小領域と黒の小領域とが交互に配置される画像(以下「評価用画像」という)を表示する場合を考える。ここで、「2Hドット反転駆動方式」とは、同一フレーム内において液晶への印加電圧がゲートラインGLjの延びる方向には1画素形成部毎に反転しソースラインSLiの延びる方向には2画素形成部毎に反転する反転駆動方式をいう。図9において各小矩形は画素を示しており、小矩形における“黒”または“白”の下に付されている“(+)”は、その小矩形の示す画素に対応する液晶部分に正極性の電圧が印加されていることを示し、黒”または“白”の下に“(-)”が付されている場合には、その小矩形の示す画素に対応する液晶部分に負極性の電圧が印加されていることを示している。なお、ここでの電圧の極性は、共通電極Ecの電圧すなわち共通電圧Vcomを基準としている。 In the liquid crystal display device according to the conventional example as described above, it is assumed that a normally black liquid crystal panel is used as the display unit 100, and the 2H dot inversion driving method is adopted, as shown in FIG. A case will be considered in which an image in which small areas and black small areas are alternately arranged (hereinafter referred to as "evaluation image") is displayed. Here, in the “2H dot inversion driving method”, the voltage applied to the liquid crystal in the same frame is inverted every one pixel formation portion in the extending direction of the gate line GLj, and two pixels are formed in the extending direction of the source line SLi. Invert drive method to invert every part. In FIG. 9, each small rectangle indicates a pixel, and “(+)” added below “black” or “white” in the small rectangle is a positive electrode for the liquid crystal portion corresponding to the pixel indicated by the small rectangle. Negative voltage is applied to the liquid crystal portion corresponding to the pixel indicated by the small rectangle when “(−)” is attached under black or “white”. It is shown that a voltage is applied, and the polarity of the voltage here is based on the voltage of the common electrode Ec, that is, the common voltage Vcom.
 図10は、上記従来例において図9に示す評価用画像を表示する場合における極性制御信号Cpn、1列目のデータ信号S1、ゲートドライバ400で2行目の走査信号G2を生成するための内部制御信号Gct2(例えば走査側のスタートパルス信号GSPまたはクロック信号GCK等に相当する信号)、および、走査信号G2,G3を示す信号波形図である。ここで「行」とは、ゲートラインGLiの延びる方向に画素または画素形成部10が連なったものをいい、「列」とは、ソースラインSLjの延びる方向に画素または画素形成部10が連なったものをいう。 FIG. 10 is an internal view for generating the polarity control signal Cpn, the data signal S1 of the first column, and the scanning signal G2 of the second row by the gate driver 400 when displaying the evaluation image shown in FIG. It is a signal waveform diagram which shows control signal Gct2 (For example, the signal corresponded to the start pulse signal GSP or clock signal GCK etc. by the side of scanning), and the scanning signals G2 and G3. Here, “row” refers to a series of pixels or pixel forming portions 10 in the extending direction of the gate line GLi, and “column” refers to a series of pixels or pixel forming portions 10 in the extending direction of the source line SLj. I say something.
 上記従来例では、表示部100としてノーマリブラック方式の液晶パネルが使用されていることから、液晶への印加電圧(絶対値)が最小のときに黒表示(最小輝度表示)となり液晶への印加電圧(絶対値)が最大のときに白表示(最大輝度表示)となる。このため、白表示を示すデータ信号Sjの極性が反転するとき、そのデータ信号Sjが印加されるソースラインSLjの電圧変化が最大となる。すなわち、図10からわかるように、上記従来例において図9の評価用画像を表示する場合には、例えば3行目の走査期間である第3水平期間から4行目の走査期間である第4水平期間への切り替わり時点taにおいて、奇数列目のデータ信号S1,S3,…の変化すなわち奇数列目のソースラインSL1,SL3,…の電圧変化が最大となる(以下、奇数列目のデータ信号を総称的に“Sod”で示し、奇数列目のソースラインを総称的に“SLod”で示すものとする)。この時点taの極性反転におけるソースラインSLodの大きな電圧変化が奇数列目の各画素形成部10におけるゲート・ソース間寄生容量Cgsを介して各ゲートラインGLi(i=1~N)の電圧に影響を与え、これがノイズとしてゲートドライバ400に伝達されてゲートドライバ400を誤動作させる可能性がある。図10に示すように、例えば2行目の走査信号G2を生成するための内部制御信号Gct2においてノイズが発生し、このノイズにより、本来は存在しないパルス(図10において点線の円で囲まれたパルス)が2行目の走査信号G2等に現れることがある。また図9の評価用画像を表示する場合には、1行目の走査期間である第1水平期間から2行目の走査期間である第2水平期間への切り替わり時において、偶数列目のデータ信号S2,S4,…の電圧変化すなわち偶数列目のソースラインSL2,SL4,…の電圧変化が最大となる。この時点におけるソースラインSL2,SL4,…の大きな電圧変化も偶数列目の各画素形成部10におけるゲート・ソース間寄生容量Cgsを介して各ゲートラインGLi(i=1~N)の電圧に影響を与え、これがノイズとしてゲートドライバ400に伝達される。 In the above-described conventional example, a normally black liquid crystal panel is used as the display unit 100. Therefore, when the voltage applied to the liquid crystal (absolute value) is minimum, black is displayed (minimum luminance display) and application to the liquid crystal is performed. When the voltage (absolute value) is maximum, white display (maximum luminance display) is performed. Therefore, when the polarity of the data signal Sj indicating white display is inverted, the voltage change of the source line SLj to which the data signal Sj is applied becomes maximum. That is, as can be seen from FIG. 10, when the evaluation image of FIG. 9 is displayed in the above-described conventional example, for example, the fourth horizontal period from the third horizontal period to the fourth horizontal period, which is the third row scanning period. At the switching time ta to the horizontal period, changes in the data signals S1, S3,... In the odd columns, ie, voltage changes in the source lines SL1, SL3,. Is generically referred to as "Sod", and the source lines in odd columns are generically referred to as "SLod". A large voltage change of the source line SLod in polarity inversion at this time ta affects the voltage of each gate line GLi (i = 1 to N) through the gate-source parasitic capacitance Cgs in each pixel formation portion 10 in the odd column This may be transmitted to the gate driver 400 as noise to cause the gate driver 400 to malfunction. As shown in FIG. 10, for example, noise is generated in the internal control signal Gct2 for generating the scanning signal G2 in the second row, and this noise causes a pulse not originally present (circled by a dotted circle in FIG. 10). A pulse may appear in the scanning signal G2 etc. in the second row. Further, when the evaluation image of FIG. 9 is displayed, the data of the even-numbered columns is switched from the first horizontal period which is the scanning period of the first row to the second horizontal period which is the scanning period of the second row. The voltage change of the signals S2, S4,..., That is, the voltage change of the even source lines SL2, SL4,. The large voltage change of the source lines SL2, SL4, ... at this time also affects the voltage of each gate line GLi (i = 1 to N) through the gate-source parasitic capacitance Cgs in each pixel formation portion 10 in the even-numbered column This is transmitted to the gate driver 400 as noise.
 上記のようなノイズによってゲートドライバ400が誤動作すると、誤ったタイミングで走査信号Giがアクティブ(本従来例および後述の各実施形態ではハイレベル)となり、表示不良が発生する。 When the gate driver 400 malfunctions due to the noise as described above, the scanning signal Gi becomes active (at the high level in the conventional example and each embodiment described later) at an incorrect timing, and a display defect occurs.
<1.第1の実施形態>
 上記の基礎検討からわかるように、表示不良を発生させるゲートドライバ400の誤動作の原因は、データ信号Sjの電圧が、例えば最大階調(白表示)に対応する負極性階調電圧VN1から最大階調(白表示)に対応する正極性階調電圧VP1に変化する時のようにソースラインSLjの電圧が急峻に大きく変化すること(図10に示す時点taにおけるデータ信号Sodの変化参照)により寄生容量Cgsを介してゲートラインGLiにノイズが生じることにある。そこで、このようなノイズの発生を防止するために、データ信号Sjの極性反転時点のうちその前後での電圧変化量(絶対値)が最大となる反転時点(以下「最大変化反転時点」といい、図10に示す例では時点taに相当する)の直前および直後において当該データ信号Sjの電圧変化を緩やかにすること(データ信号Sjの変化速度を小さくすること)が考えられる。これはデータ信号Sjの波形に対し最大変化反転時点の直前および直後に傾斜を付けることに相当する。
<1. First embodiment>
As can be seen from the above basic study, the cause of the malfunction of the gate driver 400 that causes a display defect is the voltage of the data signal Sj, for example, from the negative polarity gradation voltage VN1 corresponding to the maximum gradation (white display). As the voltage of the source line SLj sharply and largely changes as when changing to the positive polarity gradation voltage VP1 corresponding to the key adjustment (white display) (see the change of the data signal Sod at the time ta shown in FIG. 10) Noise is generated in the gate line GLi via the capacitance Cgs. Therefore, in order to prevent the generation of such noise, an inversion time point (hereinafter referred to as “maximum change inversion time point”) at which the voltage change amount (absolute value) before and after the polarity inversion time point of data signal Sj becomes maximum. In the example shown in FIG. 10, it is conceivable to moderate the voltage change of the data signal Sj immediately before and immediately after (corresponding to the time point ta) (reduce the change speed of the data signal Sj). This corresponds to adding a slope to the waveform of the data signal Sj immediately before and after the maximum change inversion point.
 このような考え方に基づき第1の実施形態では、データ信号Sjの最大変化反転時点の直前および直後で変化速度を低下させるために、電源回路600から出力される階調電圧VPk,VNk(k=1~n)のうち絶対値が最大の正極性および負極性階調電圧(上記従来例では白表示に対応する正極性および負極性階調電圧)VX1(X=P,N)が、データ信号Sjの極性が反転する各時点の直前に当該階調電圧VX1から当該データ信号Sjの中心電圧としての共通電圧Vcomに向かって変化し当該時点の直後に当該階調電圧VX1に戻るようような波形の電圧VsX1に変換される(後述の図3参照)。なお、ここでの中心電圧として、共通電圧Vcomに代えて、データ信号Sjの変化する範囲の中心の電圧を使用してもよい。以下、第1の実施形態に係る液晶表示装置の詳細について説明する。 Based on such a concept, in the first embodiment, in order to reduce the change speed immediately before and after the maximum change inversion time point of the data signal Sj, the gray scale voltages VPk, VNk (k = Among 1 to n), positive and negative gradation voltages having the maximum absolute value (in the above-mentioned conventional example, positive and negative gradation voltages corresponding to white display) VX1 (X = P, N) are data signals A waveform that changes from the gradation voltage VX1 to the common voltage Vcom as the center voltage of the data signal Sj immediately before each time when the polarity of Sj is reversed and returns to the gradation voltage VX1 immediately after the time Voltage VsX1 (see FIG. 3 described later). As the central voltage here, a central voltage of the range in which the data signal Sj changes may be used instead of the common voltage Vcom. The details of the liquid crystal display device according to the first embodiment will be described below.
<1.1 構成および動作>
 図1は、本実施形態に係る液晶表示装置の構成を示すブロック図である。本実施形態に係る液晶表示装置は、図8に示す従来例と同様、ノーマリブラック方式のアクティブマトリクス型液晶表示装置であって、表示部100としての液晶パネルと、データ信号線駆動回路としてのソースドライバ300と、走査信号線駆動回路としてのゲートドライバ400と、表示制御回路200と、電源回路600とを備えている。これに加えて本実施形態に係る液晶表示装置は、絶対値が最大の正極性および負極性階調電圧(以下「正極性および負極性最大階調電圧」または単に「最大階調電圧」という)VP1,VN1に上記の変換処理を施す階調電圧スロープ回路620を備えている。本実施形態における階調電圧スロープ回路620以外の構成は、図8に示す従来例と同様であるので、同一または対応する部分には同一の参照符号を付して詳しい説明を省略する(図1および図8参照)。以下では、階調電圧スロープ回路620に関連する構成および動作を中心に説明する。
<1.1 Configuration and operation>
FIG. 1 is a block diagram showing the configuration of the liquid crystal display device according to the present embodiment. The liquid crystal display device according to this embodiment is a normally black type active matrix liquid crystal display device as in the conventional example shown in FIG. 8, and includes a liquid crystal panel as the display unit 100 and a data signal line drive circuit. A source driver 300, a gate driver 400 as a scanning signal line drive circuit, a display control circuit 200, and a power supply circuit 600 are provided. In addition to this, in the liquid crystal display device according to the present embodiment, the positive polarity and the negative polarity gradation voltage having the maximum absolute value (hereinafter referred to as “positive polarity and negative polarity maximum gradation voltage” or simply “maximum gradation voltage”) A gradation voltage slope circuit 620 which performs the above conversion processing on VP1 and VN1 is provided. The configuration other than the gradation voltage slope circuit 620 in this embodiment is the same as that of the conventional example shown in FIG. 8, and therefore, the same or corresponding parts will be denoted by the same reference symbols and detailed description thereof will be omitted (FIG. And Figure 8). The following description will focus on the configuration and operation associated with the grayscale voltage slope circuit 620.
 図1に示すように、上記従来例と同様、電源回路600から出力される電源電圧のうち、ロジック電源電圧VpwLはソースドライバ300およびゲートドライバ400におけるデジタル回路に供給され、データ側駆動電圧VpwSはソースドライバ300におけるアナログ回路に供給され、走査側駆動電圧VpwGはゲートドライバ400におけるアナログ回路に供給される。しかし本実施形態では、電源回路600から出力される階調電圧VPk,VNk(k=1~n)は、ソースドライバ300におけるDA変換回路320に直接に入力されるのではなく、図1に示すように、階調電圧変換回路としての階調電圧スロープ回路620を介し、DA変換用階調電圧VsPk,VsNk(k=1~n)としてDA変換回路320に入力される。 As shown in FIG. 1, among the power supply voltages output from the power supply circuit 600, the logic power supply voltage VpwL is supplied to the digital circuit in the source driver 300 and the gate driver 400 and the data side drive voltage VpwS is The scan side drive voltage VpwG is supplied to the analog circuit in the source driver 300 and is supplied to the analog circuit in the gate driver 400. However, in the present embodiment, the gradation voltages VPk and VNk (k = 1 to n) output from the power supply circuit 600 are not directly input to the DA conversion circuit 320 in the source driver 300, and are shown in FIG. As described above, the D / A conversion circuit 320 is input as the D / A conversion gradation voltages VsPk and VsNk (k = 1 to n) through the gradation voltage slope circuit 620 as the gradation voltage conversion circuit.
 図2は、本実施形態における階調電圧スロープ回路620の構成を示すブロック図である。この階調電圧スロープ回路620は、階調電圧VPk,VNk(1≦k≦n)を後述の階調スロープ電圧VsPk,VsNkに変換するスロープ付加回路622を含んでいる。本実施形態では、このスロープ付加回路622に、電源回路600からの階調電圧VPk,VNk(k=1~n)のうち最大階調電圧(絶対値が最大の正極性および負極性階調電圧)VP1,VN1が入力されると共に、表示制御回路200からの極性制御信号Cpnが入力される。極性制御信号Cpnは、各データ信号Sjの極性を指示する信号であり、ソースドライバ300における出力バッファ回路330は、極性制御信号Cpnが例えばハイレベル(Hレベル)のとき正極性のデータ信号Sjを出力し、ローレベル(Lレベル)のときに負極性のデータ信号Sjを出力する。ここで、データ信号Sjの極性は、共通電圧Vcomを基準とする電圧極性であり、表示部100においてそのデータ信号Sjに基づき液晶に印加される電圧の極性に対応する。 FIG. 2 is a block diagram showing the configuration of the gradation voltage slope circuit 620 in the present embodiment. The gradation voltage slope circuit 620 includes a slope addition circuit 622 that converts the gradation voltages VPk and VNk (1 ≦ k ≦ n) into gradation slope voltages VsPk and VsNk described later. In this embodiment, among the gradation voltages VPk and VNk (k = 1 to n) from the power supply circuit 600, a maximum gradation voltage (a positive polarity and a negative polarity gradation voltage having a maximum absolute value) is added to the slope addition circuit 622. ) VP1 and VN1 are input, and a polarity control signal Cpn from the display control circuit 200 is input. The polarity control signal Cpn is a signal indicating the polarity of each data signal Sj, and the output buffer circuit 330 in the source driver 300 outputs the positive polarity data signal Sj when the polarity control signal Cpn is, for example, high level (H level). It outputs a negative data signal Sj when it is at low level (L level). Here, the polarity of the data signal Sj is a voltage polarity based on the common voltage Vcom, and corresponds to the polarity of the voltage applied to the liquid crystal in the display unit 100 based on the data signal Sj.
 図3は、スロープ付加回路622の動作を説明するための信号波形図である。スロープ付加回路622は、入力された階調電圧VPk,VNk(1≦k≦n)を極性制御信号Cpnに基づきデータ信号Sjの極性反転時点(図3に示す時刻tr1,tr2,tr3)の直前および直後において傾斜の付された波形の電圧(以下「階調スロープ電圧」という)に変換するための回路である。ただし本実施形態におけるスロープ付加回路622は、図2および図3に示すように、最大階調電圧VP1,VN1のみを階調スロープ電圧に変換し最大DA変換用階調電圧VsP1,VsN1として出力する。図3に示すように、正極性の最大DA変換用階調電圧VsP1は、各データ信号Sjの極性の反転時点trk(k=1,2,3)の直前に正極性最大階調電圧VP1から共通電圧Vcomに向かって所定の変化速度で低下し当該反転時点trkの直後に所定の変化速度で上昇して正極性最大階調電圧VP1に戻る波形となっている。また、負極性の最大DA変換用階調電圧VsN1は、各データ信号Sjの極性の反転時点trkの直前に負極性最大階調電圧VN1から共通電圧Vcomに向かって所定の変化速度で上昇し当該反転時点trkの直後に所定の変化速度で低下して負極性最大階調電圧VN1に戻る波形となっている。ここでの各変化速度は、データ信号Sjの最大変化反転時点の直前および直後での変化速度に対応し、従来例におけるデータ信号Sjの最大変化反転時の変化速度よりも十分に小さい値に設定される。すなわち、各変化速度は、少なくとも出力バッファ回路330における既述の複数のバッファのスルーレートに相当する変化速度よりも小さい値に設定され、具体的には、最大変化反転時点の極性反転におけるソースラインSLjの電圧変化によってゲートラインGLiに生じるノイズが十分に低減されるように、計算機シミュレーションや実験等に基づいて各変化速度の適切な値が決定される。なお、ここでの「スルーレート」は、出力バッファ回路330にステップ状の電圧が入力された場合における対応する出力電圧(データ信号の電圧)の単位時間当たりの変化量(絶対値)に相当する。 FIG. 3 is a signal waveform diagram for explaining the operation of the slope addition circuit 622. The slope addition circuit 622 immediately before the polarity inversion time point (time tr1, tr2, tr3 shown in FIG. 3) of the input gradation voltages VPk, VNk (1 ≦ k ≦ n) based on the polarity control signal Cpn. It is a circuit for converting into a voltage with a sloped waveform (hereinafter referred to as “gradation slope voltage”) immediately after that. However, as shown in FIG. 2 and FIG. 3, the slope addition circuit 622 in this embodiment converts only the maximum gray scale voltages VP1 and VN1 into the gray scale slope voltage and outputs them as the maximum DA conversion gray scale voltages VsP1 and VsN1. . As shown in FIG. 3, the positive polarity maximum DA conversion gradation voltage VsP1 is generated from the positive polarity maximum gradation voltage VP1 immediately before the polarity inversion time point trk (k = 1, 2, 3) of each data signal Sj. The voltage decreases toward the common voltage Vcom at a predetermined change rate, and increases at a predetermined change rate immediately after the inversion time point trk to return to the positive polarity maximum gradation voltage VP1. In addition, the negative polarity maximum DA conversion gradation voltage VsN1 increases at a predetermined rate of change from the negative maximum gradation voltage VN1 toward the common voltage Vcom immediately before the inversion time trk of the polarity of each data signal Sj. Immediately after the inversion time point trk, the waveform decreases at a predetermined change rate and returns to the negative maximum gradation voltage VN1. Each change speed here corresponds to the change speed immediately before and after the maximum change inversion point of data signal Sj, and is set to a value sufficiently smaller than the change speed at the maximum change inversion of data signal Sj in the conventional example. Be done. That is, each change rate is set to a value smaller than at least the change rate corresponding to the slew rate of the plurality of buffers described in output buffer circuit 330, and more specifically, the source line at the polarity reversal at the maximum change reversal point. An appropriate value of each change rate is determined based on computer simulation, experiments, etc. so that the noise generated in the gate line GLi due to the voltage change of SLj is sufficiently reduced. Here, the “slew rate” corresponds to the amount of change (absolute value) per unit time of the corresponding output voltage (the voltage of the data signal) when a stepped voltage is input to output buffer circuit 330. .
 電源回路600から出力される階調電圧VPk,VNk(k=1~n)のうち最大階調電圧VP1,VN1以外の階調電圧VPk,VNk(k=2~n)は、階調電圧スロープ回路620に入力されるが、階調スロープ電圧に変換されることなく、そのままDA変換用階調電圧VsPk,VsNk(k=2~n)として階調電圧スロープ回路620から出力される。 Of the gray scale voltages VPk and VNk (k = 1 to n) output from the power supply circuit 600, the gray scale voltages VPk and VNk (k = 2 to n) other than the maximum gray scale voltages VP1 and VN1 are gray scale voltage slopes. The signal is input to the circuit 620 but is output from the gray scale voltage slope circuit 620 as the gray scale voltages for DA conversion VsPk, VsNk (k = 2 to n) without being converted into the gray scale slope voltage.
 上記のようにして階調電圧スロープ回路620から出力されるDA変換用階調電圧VsPk,VsNk(k=1~n)は、ソースドライバ300におけるDA変換回路320に入力される。本実施形態におけるソースドライバ300では、DA変換回路320は、データ信号変換回路310から1ライン分ずつ順次出力されるデジタル画像信号である内部画像信号D1~DNを、正極性および負極性のDA変換用階調電圧VPk,VNk(k=1~n)に基づきアナログ画像信号A1~ANに変換する。より詳しくは、DA変換回路320は、極性制御信号Cpnに基づき正極性のデータ信号Sjを出力すべき場合には、対応する内部画像信号Djの示すデジタル値に応じてn個の正極性DA変換用階調電圧VsPk(k=1~n)から1つのDA変換用階調電圧VsPaを選択してアナログ画像信号Ajとして出力し、 極性制御信号Cpnに基づき負極性のデータ信号Sjを出力すべき場合には、対応する内部画像信号Djの示すデジタル値に応じてn個の負極性DA変換用階調電圧VsNk(k=1~n)から1つのDA変換用階調電圧VsNaを選択してアナログ画像信号Ajとして出力する。 The gradation voltages for DA conversion VsPk and VsNk (k = 1 to n) outputted from the gradation voltage slope circuit 620 as described above are inputted to the DA conversion circuit 320 in the source driver 300. In the source driver 300 according to the present embodiment, the DA conversion circuit 320 converts the internal image signals D1 to DN, which are digital image signals sequentially output from the data signal conversion circuit 310, line by line, into positive and negative polarities. The analog image signals A1 to AN are converted based on the gray scale voltages VPk and VNk (k = 1 to n). More specifically, when the DA conversion circuit 320 is to output the positive polarity data signal Sj based on the polarity control signal Cpn, n positive polarity DA conversions are performed according to the digital value indicated by the corresponding internal image signal Dj. One DA conversion gradation voltage VsPa is selected from the gradation voltages VsPk (k = 1 to n) and output as the analog image signal Aj, and the data signal Sj of negative polarity should be output based on the polarity control signal Cpn. In this case, one DA conversion grayscale voltage VsNa is selected from n negative polarity DA conversion grayscale voltages VsNk (k = 1 to n) in accordance with the digital value indicated by the corresponding internal image signal Dj. It outputs as an analog image signal Aj.
 出力バッファ回路330は、極性制御信号Cpnに基づき、このような各アナログ画像信号Ajを、それが正極性の場合には、正極性バッファとしての電圧ホロワを介してデータ信号Sjとして出力し、それが負極性の場合には、負極性バッファとしての電圧ホロワを介してデータ信号Sjとして出力する。これらのデータ信号S1~SMは表示部100におけるソースラインSL1~SLMにそれぞれ印加される。なお、正極性および負極性バッファに代えて、アナログ画像信号Ajが正極性か負極性かに拘わらず電圧ホロワとして機能する双極性のバッファを使用してもよい。 Based on the polarity control signal Cpn, the output buffer circuit 330 outputs each such analog image signal Aj as a data signal Sj via a voltage follower as a positive polarity buffer, if it is positive polarity, When the signal has a negative polarity, it is output as a data signal Sj via a voltage follower as a negative polarity buffer. These data signals S1 to SM are applied to source lines SL1 to SLM in the display unit 100, respectively. Note that, instead of the positive and negative polarity buffers, a bipolar buffer may be used which functions as a voltage follower regardless of whether the analog image signal Aj is positive or negative.
 一方、ゲートドライバ400は、外部からの入力信号Dinに含まれるタイミング制御情報に基づき上記従来例と同様の走査信号G1~GNを生成して表示部100におけるゲートラインGL1~GLNにそれぞれ印加する。本実施形態においても、このようにして表示部100(のソースラインSL1~SLMおよびゲートラインGL1~GLN)が駆動されることにより、表示すべき画像の各画素データを示す電圧が対応する画素形成部10の画素容量Cpに与えられて保持され、各画素容量Cpに保持された電圧は1フレーム期間毎に書き換えられる。これにより表示部100としての液晶パネルは、上記画像信号DAに応じた電圧を液晶層に印加されることでバックライト(不図示)からの光の透過率を変化させ、上記画像信号DAの表す画像を表示する。 On the other hand, the gate driver 400 generates scanning signals G1 to GN similar to the above-described conventional example based on timing control information included in an external input signal Din and applies them to the gate lines GL1 to GLN in the display unit 100. Also in the present embodiment, by driving the display unit 100 (the source lines SL1 to SLM and the gate lines GL1 to GLN) in this manner, the pixel formation corresponding to the voltage indicating each pixel data of the image to be displayed is formed. The voltage applied to and held by the pixel capacitance Cp of the unit 10 and the voltage held by each pixel capacitance Cp is rewritten every one frame period. Thereby, the liquid crystal panel as the display unit 100 changes the transmittance of light from a backlight (not shown) by applying a voltage according to the image signal DA to the liquid crystal layer, thereby representing the image signal DA. Display an image.
<1.2 作用および効果>
 上記からわかるように、表示部100における各ソースラインSLjの電圧波形は、それに印加されるデータ信号Sjに対応するDA変換用階調電圧VsPaまたはVsNaの波形に相当する。以下、これを前提として本実施形態の作用および効果を説明する。
<1.2 Action and effect>
As understood from the above, the voltage waveform of each source line SLj in the display unit 100 corresponds to the waveform of the DA conversion gradation voltage VsPa or VsNa corresponding to the data signal Sj applied thereto. Hereinafter, the operation and effects of the present embodiment will be described on the premise of this.
 図4は、本実施形態に係る液晶表示装置の動作を示す信号波形図である。既述のように本実施形態では、ソースドライバ300においてデータ信号Sj(j=1~M)を生成するために使用されるDA変換用階調電圧VsPk,VsNk(k=1~n)のうち白表示に対応する最大DA変換用階調電圧VsP1,VsN1は、図4に示すように、各データ信号Sjの極性反転時において傾斜が付加された波形として生成される。一方、黒表示に対応する絶対値が最小のDA変換用階調電圧VsPn,VsNnを含む他のDA変換用階調電圧VsPk,VsNk(k=2~n)は、傾斜の付加されない固定電圧である。 FIG. 4 is a signal waveform diagram showing the operation of the liquid crystal display device according to the present embodiment. As described above, in the present embodiment, the DA conversion gradation voltages VsPk and VsNk (k = 1 to n) used to generate the data signal Sj (j = 1 to M) in the source driver 300. As shown in FIG. 4, the maximum DA conversion gradation voltages VsP1 and VsN1 corresponding to white display are generated as waveforms to which a slope is added at the time of polarity inversion of each data signal Sj. On the other hand, the other DA conversion gradation voltages VsPk and VsNk (k = 2 to n) including the DA conversion gradation voltages VsPn and VsNn which have the smallest absolute value corresponding to black display are fixed voltages to which no inclination is applied. is there.
 本実施形態では、図9に示した評価用画像を表示する場合、データ信号S1等の奇数列目のデータ信号Sodの電圧(奇数列目のソースラインSLodの電圧)は、図4に示すように、1行目から6行目の表示期間(第1から第6水平期間)ではそれぞれVsPn、VsNn、VsN1、VsP1、VsPn、VsNnである。この場合、第3水平期間から第4水平期間に切り替わる時の極性反転時点tr2の直前および直後において奇数番目のソースラインSLodの電圧変化が最大になる。この最大変化反転時点の直前および直後での奇数番目のソースラインSLodの電圧の変化は、最大DA変換用階調電圧VsP1,VsN1の波形に対応しているので(図4に示す点線の楕円内参照)、当該電圧の変化速度は、少なくとも出力バッファ回路330内の各バッファのスルーレートに相当する変化速度よりも小さく、従来例における最大変化反転時点の極性反転でのソースラインSLjの電圧の変化速度に比べ十分に小さい(図4および図10参照)。このため、最大変化反転時点tr2での奇数番目のソースラインSLodの電圧変化が画素形成部10におけるゲート・ソース間寄生容量Cgsを介してゲートラインGLjに影響を与えることにより生じるノイズが従来に比べて大幅に軽減され(図4に示す内部制御信号Gct2の波形参照)、当該ノイズによるゲートドライバ400での誤動作の発生が抑制される。 In the present embodiment, when the evaluation image shown in FIG. 9 is displayed, the voltage of the data signal Sod of the odd-numbered column such as the data signal S1 (voltage of the source line SLod of the odd-numbered column) is as shown in FIG. In the first to sixth display periods (first to sixth horizontal periods), VsPn, VsNn, VsN1, VsP1, VsPn, and VsNn, respectively. In this case, the voltage change of the odd-numbered source line SLod becomes maximum immediately before and after the polarity inversion time point tr2 when switching from the third horizontal period to the fourth horizontal period. Since changes in the voltages of the odd-numbered source lines SLod immediately before and after the maximum change inversion point correspond to the waveforms of the maximum DA conversion gradation voltages VsP1 and VsN1 (within the ellipse of the dotted line shown in FIG. 4). (Refer to the above), the rate of change of the voltage is at least smaller than the rate of change corresponding to the slew rate of each buffer in the output buffer circuit 330, and the change of the voltage of the source line SLj at the reversal of polarity at the maximum change reversal point Small enough compared to the speed (see Figures 4 and 10). Therefore, noise caused by the voltage change of the odd-numbered source line SLod at the maximum change inversion time tr2 affecting the gate line GLj through the gate-source parasitic capacitance Cgs in the pixel formation portion 10 is higher than that in the prior art. Therefore, the occurrence of a malfunction in the gate driver 400 due to the noise is suppressed (see the waveform of the internal control signal Gct2 shown in FIG. 4).
 このように本実施形態によれば、最大変化反転時点の極性反転におけるソースラインSLjの電圧の変化速度を低下させることにより、ゲートラインGLiに生じるノイズが低減されるので、そのノイズによるゲートドライバ400の誤動作によって生じる表示不良を抑えることができる。 As described above, according to the present embodiment, by reducing the rate of change of the voltage of the source line SLj at the polarity inversion at the maximum change inversion point, the noise generated in the gate line GLi is reduced. It is possible to suppress display defects caused by the malfunction of
<2.第2の実施形態>
 上記第1の実施形態では、最大変化反転時点の極性反転におけるソースラインSLjの電圧の変化速度を低下させるために、ソースドライバ300で使用されるDA変換用階調電圧VsPk,VsNkに傾斜が付加されているが(図1、図4参照)、電源回路600から出力される階調電圧VPk,VNk(k=1~n)のうち傾斜が付加されるのは、最大階調電圧(絶対値が最大の正極性および負極性階調電圧)VP1,VN1のみである(図2、図3参照)。しかし、電源回路600から出力される全ての階調電圧VPk,VNk(k=1~n)、または、これらの階調電圧VPk,VNk(k=1~n)のうち絶対値が所定基準値よりも大きい階調電圧VPk,VNk(k=1~k1、1<k1<n)につき傾斜を付加することにより、DA変換用階調電圧VsPk,VsNkを生成してもよい。例えば、絶対値が最大の階調電圧VP1,VN1に加えて絶対値が2番目に大きい階調電圧VP2,VN2にも傾斜を付加することによりDA変換用階調電圧VsPk,VsNkを生成してもよい。以下、このような構成の液晶表示装置を第2の実施形態として説明する。
<2. Second embodiment>
In the first embodiment, a slope is added to the DA conversion gradation voltages VsPk and VsNk used in the source driver 300 in order to reduce the rate of change of the voltage of the source line SLj in polarity inversion at the maximum change inversion time point. Although the gradation voltages VPk and VNk (k = 1 to n) output from the power supply circuit 600 are added (refer to FIGS. 1 and 4), the gradient is added at the maximum gradation voltage (absolute value Is the maximum positive polarity and negative polarity gradation voltage) VP1 and VN1 only (see FIG. 2 and FIG. 3). However, all gradation voltages VPk and VNk (k = 1 to n) output from the power supply circuit 600 or absolute values of these gradation voltages VPk and VNk (k = 1 to n) are predetermined reference values. The gradation voltages VsPk, VsNk for DA conversion may be generated by adding a slope to the gradation voltages VPk, VNk (k = 1 to k1, 1 <k1 <n) larger than the above. For example, the gradation voltages VsPk, VsNk for DA conversion are generated by adding a slope to the gradation voltage VP2, VN2 having the second largest absolute value in addition to the gradation voltage VP1, VN1 having the largest absolute value. It is also good. Hereinafter, a liquid crystal display device having such a configuration will be described as a second embodiment.
 本実施形態に係る液晶表示装置の構成は、階調電圧スロープ回路620の構成を除き、上記第1の実施形態と同様である(図1参照)。そこで、本実施形態における構成のうち上記第1の実施形態における構成と同一または対応する部分には同一の参照符号を付して詳しい説明を省略する。以下では、階調電圧スロープ回路620に関連する構成および動作を中心に説明する。 The configuration of the liquid crystal display device according to this embodiment is the same as that of the first embodiment except for the configuration of the gradation voltage slope circuit 620 (see FIG. 1). Therefore, in the configuration in the present embodiment, the same or corresponding parts as in the configuration in the first embodiment are given the same reference numerals, and the detailed description is omitted. The following description will focus on the configuration and operation associated with the grayscale voltage slope circuit 620.
 図5は、本実施形態における階調電圧スロープ回路620の構成を示すブロック図である。この階調電圧スロープ回路620に含まれるスロープ付加回路622には、極性制御信号Cpnが入力されると共に、電源回路600からの階調電圧VPk,VNk(k=1~n)のうち絶対値が最大の正極性および負極性階調電圧(最大階調電圧)VP1,VN1に加えて、絶対値が2番目に大きい正極性および負極性階調電圧(以下「準最大階調電圧」という)VP2,VN2も入力される。極性制御信号Cpnは、上記第1の実施形態における極性制御信号Cpnと同じ機能を有する信号である。 FIG. 5 is a block diagram showing the configuration of the gradation voltage slope circuit 620 in the present embodiment. The polarity control signal Cpn is input to the slope addition circuit 622 included in the gradation voltage slope circuit 620, and the absolute value of the gradation voltages VPk and VNk (k = 1 to n) from the power supply circuit 600 is In addition to the maximum positive polarity and negative polarity gradation voltage (maximum gradation voltage) VP1 and VN1, positive and negative polarity gradation voltage (hereinafter referred to as "quasi-maximum gradation voltage") VP2 having the second largest absolute value , VN2 are also input. The polarity control signal Cpn is a signal having the same function as the polarity control signal Cpn in the first embodiment.
 図6は、本実施形態に係る液晶表示装置の動作を示す信号波形図である。図5および図6に示すように、本実施形態におけるスロープ付加回路622は、極性制御信号Cpnに基づき、上記第1の実施形態と同様にデータ信号Sjの極性反転時点の直前および直後において最大階調電圧VP1,VN1に傾斜を付けた波形の階調スロート電圧を最大DA変換用階調電圧VsP1,VsN1として生成することに加えて、データ信号Sjの極性反転時点の直前および直後において準最大階調電圧VP2,VN2に傾斜を付けた波形の階調スロート電圧を準最大DA変換用階調電圧VsP2,VsN2として生成する。正極性の準最大DA変換用階調電圧VsP2は、各データ信号Sjの極性の反転時点の直前に当該準最大階調電圧VP2から共通電圧Vcomに向かって所定の変化速度で低下し当該反転時点の直後に所定の変化速度で上昇して当該準最大階調電圧VP2に戻る波形となっている。また、負極性の準最大DA変換用階調電圧VsN2は、各データ信号Sjの極性の反転時点の直前に当該準最大階調電圧VN2から共通電圧Vcomに向かって所定の変化速度で上昇し当該反転時点の直後に所定の変化速度で低下して当該準最大階調電圧VN2に戻る波形となっている。ここでの各変化速度も、従来例におけるデータ信号Sjの当該反転時の変化速度よりも十分に小さい値に設定される。すなわち、各変化速度は、少なくとも出力バッファ回路330における既述の複数のバッファのスルーレートに相当する変化速度よりも小さい値に設定され、具体的には、当該反転時点の極性反転におけるソースラインSLjの電圧変化によってゲートラインGLiに生じるノイズが十分に低減されるように、計算機シミュレーションや実験等に基づいて各変化速度の適切な値が決定される。 FIG. 6 is a signal waveform diagram showing the operation of the liquid crystal display device according to the present embodiment. As shown in FIGS. 5 and 6, the slope addition circuit 622 in the present embodiment is based on the polarity control signal Cpn and, like the first embodiment, is the maximum floor immediately before and after the polarity inversion time point of the data signal Sj. In addition to the generation of the gradation throat voltage of the waveform in which the tuning voltages VP1 and VN1 are inclined as the maximum DA conversion gradation voltages VsP1 and VsN1, the quasi-maximum floor immediately before and after the polarity inversion time point of the data signal Sj. The gradation throat voltages of the waveforms in which the tuning voltages VP2 and VN2 are inclined are generated as the quasi-maximum DA conversion gradation voltages VsP2 and VsN2. The grayscale voltage VsP2 for positive polarity quasi-maximum D / A conversion decreases at a predetermined rate of change from the quasi-maximum gradation voltage VP2 to the common voltage Vcom immediately before the time of reversal of the polarity of each data signal Sj. Immediately after this, the waveform rises at a predetermined change rate and returns to the quasi-maximum gradation voltage VP2. In addition, the grayscale voltage VsN2 for negative maximum quasi-maximum DA conversion rises at a predetermined rate of change from the quasi-maximum grayscale voltage VN2 to the common voltage Vcom immediately before the time of inversion of the polarity of each data signal Sj. Immediately after the inversion time point, the waveform decreases at a predetermined change rate and returns to the quasi-maximum gradation voltage VN2. Each change rate here is also set to a value sufficiently smaller than the change rate at the time of the inversion of the data signal Sj in the conventional example. That is, each change rate is set to a value smaller than at least a change rate corresponding to the slew rate of the plurality of buffers described in output buffer circuit 330, and more specifically, source line SLj at the polarity inversion at the time of inversion. The appropriate value of each change rate is determined based on computer simulation, experiments, etc. so that the noise generated in the gate line GLi is sufficiently reduced by the voltage change of.
 電源回路600から出力される階調電圧VPk,VNk(k=1~n)のうち最大階調電圧VP1,VN1および準最大階調電圧VP2,VN2以外の階調電圧VPk,VNk(k=3~n)は、階調電圧スロープ回路620に入力されるが、階調スロープ電圧に変換されることなく、そのままDA変換用階調電圧VsPk,VsNk(k=3~n)として階調電圧スロープ回路620から出力される。 Among the gradation voltages VPk and VNk (k = 1 to n) outputted from the power supply circuit 600, the gradation voltages VPk and VNk other than the maximum gradation voltages VP1 and VN1 and the quasi-maximum gradation voltages VP2 and VN2 To n) are input to the gray scale voltage slope circuit 620, but are not converted into the gray scale slope voltage, and the gray scale voltage slope is directly used as the gray scale voltages VsPk, VsNk (k = 3 to n) for DA conversion. It is output from the circuit 620.
 上記のようにして階調電圧スロープ回路620から出力されるDA変換用階調電圧VsPk,VsNk(k=1~n)は、ソースドライバ300におけるDA変換回路320に入力され、これらのDA変換用階調電圧VsPk,VsNk(k=1~n)を用い、上記第1の実施形態と同様にして、ソースドライバ300においてデータ信号S1~SMが生成される。 The gradation voltages for D / A conversion VsPk, VsNk (k = 1 to n) outputted from the gradation voltage slope circuit 620 as described above are inputted to the D / A conversion circuit 320 in the source driver 300, and these D / A conversion circuits Similar to the first embodiment, data signals S1 to SM are generated in the source driver 300 using the gradation voltages VsPk and VsNk (k = 1 to n).
 これらのデータ信号S1~SMは表示部100におけるソースラインSL1~SLMにそれぞれ印加される。ソースラインSLj(j=1~M)の電圧波形は、印加すべきデータ信号Sjが正極性の場合には、対応する内部画像信号Djの示すデジタル値に応じて正極性のDA変換用階調電圧VsPk(k=1~n)から選ばれた1つのDA変換用階調電圧VsPaに相当し、一方、印加すべきデータ信号Sjが負極性の場合には、対応する内部画像信号Djの示すデジタル値に応じて負極性のDA変換用階調電圧VsNk(k=1~n)から選ばれた1つのDA変換用階調電圧VsNaに相当する。 These data signals S1 to SM are applied to source lines SL1 to SLM in the display unit 100, respectively. When the data signal Sj to be applied has a positive polarity, the voltage waveform of the source line SLj (j = 1 to M) has a positive polarity gradation for DA conversion according to the digital value indicated by the corresponding internal image signal Dj. This corresponds to one DA conversion gradation voltage VsPa selected from the voltages VsPk (k = 1 to n), and when the data signal Sj to be applied is negative, the corresponding internal image signal Dj indicates This corresponds to one DA conversion gradation voltage VsNa selected from the negative polarity gradation conversion voltage VsNk (k = 1 to n) according to the digital value.
 上記のような本実施形態において、図9に示した評価用画像を第5行目および第6行目で2番目に高い輝度の階調となるように修正した画像(「修正評価画像」という)を表示する場合を考える。この場合、データ信号S1等の奇数列目のデータ信号Sodの電圧(奇数列目のソースラインSLodの電圧)は、図6に示すように、1行目から6行目の表示期間(第1から第6水平期間)ではそれぞれVsPn、VsNn、VsN1、VsP1、VsP2、VsN2となる。この場合、第3水平期間から第4水平期間に切り替わる時の極性反転時点tr2の直前および直後において奇数番目のソースラインSLodの電圧変化が最大になり、第5水平期間から第6水平期間に切り替わる時の極性反転時点tr3の直前および直後において奇数番目のソースラインSLodの電圧変化が2番目に大きなものとなる。ここで、極性反転時点tr2の直前および直後での奇数番目のソースラインSLodの電圧変化は、最大DA変換用階調電圧VsP1,VsN1の波形に対応し、極性反転時点tr3の直前および直後での奇数番目のソースラインSLodの電圧変化は、準最大DA変換用階調電圧VsP2,VsN2の波形に対応している(図4において点線で示される2つの楕円内参照)。したがって、これらの極性反転時点tr2,tr3の直前および直後での奇数番目のソースラインSLodの電圧の変化速度は、従来例における極性反転時点tr2,tr3の極性反転でのデータ信号Sjの変化速度よりも十分に小さく、少なくとも出力バッファ回路330内の各バッファのスルーレートに相当する変化速度よりも小さい。このため、最大変化反転時点tr2の極性反転における奇数番目のソースラインSLodの電圧変化がゲート・ソース間寄生容量Cgsを介してゲートラインGLjに影響を与えることにより生じるノイズのみならず、反転時点tr3の極性反転における奇数番目のソースラインSLodの2番目に大きな電圧変化がゲート・ソース間寄生容量Cgsを介してゲートラインGLjに影響を与えることにより生じるノイズも、従来に比べて大幅に軽減される(図6に示す内部制御信号Gct2の波形参照)。その結果、上記第1の実施形態に比べ、反転駆動に起因するノイズによるゲートドライバ400での誤動作の発生がより確実に抑制される。 In the present embodiment as described above, an image obtained by correcting the evaluation image shown in FIG. 9 to have the second highest luminance gradation on the fifth and sixth lines (referred to as “corrected evaluation image” Consider the case of displaying). In this case, the voltage (voltage of the source line SLod of the odd-numbered column) of the data signal Sod of the odd-numbered column such as the data signal S1 is the display period of the first to sixth rows (first In the period from the sixth horizontal period) to VsPn, VsNn, VsN1, VsP1, VsP2, and VsN2, respectively. In this case, the voltage change of the odd-numbered source line SLod becomes maximum immediately before and after the polarity inversion time tr2 when switching from the third horizontal period to the fourth horizontal period, and the fifth horizontal period switches to the sixth horizontal period The voltage change of the odd-numbered source line SLod becomes the second largest immediately before and after the time polarity inversion time point tr3. Here, the voltage changes of the odd-numbered source lines SLod immediately before and after the polarity inversion time point tr2 correspond to the waveforms of the maximum DA conversion gradation voltages VsP1 and VsN1, and immediately before and immediately after the polarity inversion time point tr3. The voltage change of the odd-numbered source line SLod corresponds to the waveform of the gradation voltages VsP2 and VsN2 for quasi-maximum D / A conversion (refer to two ovals shown by dotted lines in FIG. 4). Therefore, the rate of change of the voltage of the odd-numbered source line SLod immediately before and after these polarity inversion time points tr2 and tr3 is higher than that of the data signal Sj at the polarity inversion time of the polarity inversion time points tr2 and tr3 in the conventional example. Is sufficiently small, at least less than the rate of change corresponding to the slew rate of each buffer in the output buffer circuit 330. Therefore, not only the noise caused by the voltage change of the odd-numbered source line SLod in the polarity inversion of the maximum change inversion time tr2 affecting the gate line GLj through the gate-source parasitic capacitance Cgs, but also the inversion time tr3. Noise caused by the second largest voltage change of the odd-numbered source line SLod in the polarity inversion of the gate line GLj via the gate-source parasitic capacitance Cgs is also significantly reduced compared to the prior art (Refer to the waveform of the internal control signal Gct2 shown in FIG. 6). As a result, compared to the first embodiment, the occurrence of a malfunction in the gate driver 400 due to the noise caused by the inversion drive can be more reliably suppressed.
 このように本実施形態によれば、電圧変化が最大となる極性反転におけるソースラインSLjの電圧の変化速度に加えて電圧変化が2番目に大きな極性反転におけるソースラインSLjの電圧の変化速度も低下することにより、ゲートラインGLiに生じるノイズが更に低減されるので、反転駆動に起因するノイズによるゲートドライバ400での誤動作によって生じる表示不良をより確実に抑えることができる。 As described above, according to the present embodiment, in addition to the change speed of the voltage of the source line SLj in the polarity inversion where the voltage change is maximum, the change speed of the voltage of the source line SLj in the second largest polarity change also decreases. By doing this, the noise generated in the gate line GLi is further reduced, so that display defects caused by a malfunction in the gate driver 400 due to the noise caused by the inversion driving can be suppressed more reliably.
<3.第3の実施形態>
 上記第1および第2の実施形態では、電源回路600から出力される階調電圧VPk,VNk(k=1~n)をDA変換用階調電圧VsPk,VsNk(k=1~n)に変換する階調電圧スロープ回路620は、ソースドライバ300等とは別の構成要素として設けられているが、階調電圧スロープ回路620がソースドライバ300に含まれる構成、例えばソースドライバ300を実現するIC(Integrated Circuit)に内蔵される構成であってもよい。以下、このような構成の液晶表示装置を第3の実施形態として説明する。
<3. Third embodiment>
In the first and second embodiments, the gradation voltages VPk and VNk (k = 1 to n) output from the power supply circuit 600 are converted to the gradation voltages VsPk and VsNk (k = 1 to n) for DA conversion. The gradation voltage slope circuit 620 is provided as a component separate from the source driver 300 and the like, but the configuration in which the gradation voltage slope circuit 620 is included in the source driver 300, for example, an IC (for realizing the source driver 300) The configuration may be built in an integrated circuit. Hereinafter, a liquid crystal display device having such a configuration will be described as a third embodiment.
 図7は、本実施形態に係る液晶表示装置の構成を示すブロック図である。本実施形態に係る液晶表示装置は、階調電圧スロープ回路620をソースドライバ300内に含んでおり、この点で、階調電圧スロープ回路620をソースドライバ300の外部に備えている上記第1および第2の実施形態に係る液晶表示装置(図1)と相違する。本実施形態における他の構成は、上記第1または第2の実施形態と同様である。そこで、本実施形態における構成のうち上記第1および第2の実施形態における構成と同一または対応する部分には同一の参照符号を付して詳しい説明を省略する。なお、本実施形態においてソースドライバ300に含まれる階調電圧スロープ回路620の構成は、上記第1および第2の実施形態における階調電圧スロープ回路620のいずれの構成であってもよい(図2、図5参照)。 FIG. 7 is a block diagram showing the configuration of the liquid crystal display device according to the present embodiment. The liquid crystal display device according to the present embodiment includes the gray scale voltage slope circuit 620 in the source driver 300, and in this respect, the first and the third embodiments have the gray scale voltage slope circuit 620 provided outside the source driver 300. This differs from the liquid crystal display (FIG. 1) according to the second embodiment. The other configuration in this embodiment is the same as that of the first or second embodiment. Therefore, in the configuration in the present embodiment, the same or corresponding parts as those in the configuration in the first and second embodiments are given the same reference numerals, and detailed description will be omitted. The configuration of the gradation voltage slope circuit 620 included in the source driver 300 in this embodiment may be any configuration of the gradation voltage slope circuit 620 in the first and second embodiments (FIG. 2). , See Figure 5).
 このような本実施形態によれば、上記第1および第2の実施形態と同様、ソースラインSLjの極性反転での電圧の変化量が所定量よりも大きい場合に当該電圧の変化速度を低下させることによりゲートラインGLiに生じるノイズが低減されるので、反転駆動に起因するノイズによるゲートドライバ400での誤動作によって生じる表示不良を抑えることができる。 According to the present embodiment, as in the first and second embodiments, when the amount of change in voltage in polarity inversion of the source line SLj is larger than a predetermined amount, the rate of change in the voltage is reduced. As a result, noise generated in the gate line GLi is reduced, so that display defects caused by a malfunction in the gate driver 400 due to noise caused by inversion driving can be suppressed.
<4.変形例>
 本発明は、上記第1から第3の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない限りにおいて種々の変形を施すことができる。なお、本発明の趣旨を逸脱せず矛盾を生じない範囲において上記第1から第3の実施形態および後述の変形例を任意に組み合わせて実施することも可能である。
<4. Modified example>
The present invention is not limited to the above first to third embodiments, and various modifications can be made without departing from the spirit of the present invention. The first to third embodiments and the modifications described later can be implemented in any combination without departing from the spirit of the present invention and causing no contradiction.
 上記第1から第3の実施形態については、ノーマリブラック方式の液晶表示装置を例に挙げて説明したが、ノーマリホワイト方式の液晶表示装置に対しても本発明の適用が可能である。すなわち、ノーマリホワイト方式の液晶表示装置においても、ソースラインの電圧の極性反転における電圧変化が所定量よりも大きい場合に当該電圧変化によってゲートラインに生じるノイズが低減されるように当該電圧の変化速度を低下させる構成を備えることにより、上記第1から第3の実施形態と同様の効果を得ることができる。 The first to third embodiments have been described by taking a normally black liquid crystal display device as an example, but the present invention can also be applied to a normally white liquid crystal display device. That is, even in the normally white liquid crystal display device, when the voltage change in the polarity inversion of the voltage of the source line is larger than a predetermined amount, the change in the voltage is reduced so that the noise generated in the gate line due to the voltage change is reduced. By providing the configuration for reducing the speed, the same effects as those of the first to third embodiments can be obtained.
 また上記第1から第3の実施形態では、2Hドット反転駆動方式が採用されているが、他のドット反転駆動方式が採用されている場合やライン反転駆動方式が採用されている場合であっても、本発明の適用が可能である。 In the first to third embodiments, the 2H dot inversion drive method is adopted, but another dot inversion drive method or a line inversion drive method is adopted. Also, the application of the present invention is possible.
 また上記第1から第3の実施形態では、ソースラインの極性反転における電圧の変化量が所定量よりも大きい場合に当該電圧の変化速度を低下させるために、階調電圧VPk、VNk(k=1~n)のうちその絶対値が所定値よりも大きい階調電圧VPk,VNk(k=1~k1、1≦k1≦n)に対しスロープ付加回路622により傾斜を付加することにより、階調スロープ電圧VsPk,VsNkが生成される(図2~図6)。しかし、ソースラインの極性反転における電圧の変化量が所定量よりも大きい場合に当該電圧の変化速度を低下させるための構成は、これに限定されるものではない。例えばこれに代えて又はこれと共に、ソースドライバ300内の出力バッファ回路330において、データ信号Sjの変化が所定量よりも大きい場合にその変化によってゲートラインに生じるノイズが低減されるように、そのデータ信号Sjを出力するバッファのスルーレートを調整する構成を設けてもよい。 In the first to third embodiments, when the amount of change in voltage in polarity inversion of the source line is larger than a predetermined amount, the gradation voltage VPk, VNk (k The gradation addition circuit 622 adds an inclination to the gradation voltages VPk and VNk (k = 1 to k1, 1 ≦ k1 ≦ n) whose absolute value is larger than a predetermined value among Slope voltages VsPk and VsNk are generated (FIGS. 2 to 6). However, the configuration for reducing the rate of change in voltage when the amount of change in voltage in polarity inversion of the source line is larger than a predetermined amount is not limited to this. For example, instead of or in addition to this, in output buffer circuit 330 in source driver 300, when the change in data signal Sj is larger than a predetermined amount, the noise generated in the gate line due to the change is reduced. A configuration may be provided to adjust the slew rate of the buffer that outputs the signal Sj.
<5.その他>
 本願は、2017年6月30日に出願された「液晶表示装置およびその駆動方法」という名称の日本国特願2017-128875号に基づく優先権を主張する出願であり、この日本国出願の内容は引用することによって本願の中に含まれる。
<5. Other>
The present application is an application for claiming priority based on Japanese Patent Application No. 2017-128875 entitled "Liquid Crystal Display Device and Method of Driving the Same" filed on June 30, 2017, the contents of which is incorporated herein by reference. Is included in the present application by reference.
 10   …画素形成部
 12   …薄膜トランジスタ(スイッチング素子)
 100  …表示部(液晶パネル)
 200  …表示制御回路
 300  …ソースドライバ(データ信号線駆動回路)
 320  …DA変換回路
 330  …出力バッファ回路(複数のバッファ)
 400  …ゲートドライバ(走査信号線駆動回路)
 600  …電源回路
 620  …階調電圧スロープ回路(階調電圧変換回路)
 622  …スロープ付加回路
 GLi  …ゲートライン(走査信号線)(i=1~N)
 SLj  …ソースライン(データ信号線)(j=1~M)
 Cgs  …ゲート・ソース間寄生容量
 Cpn  …極性制御信号
 VPk  …正極性階調信号(k=1~n)
 VNk  …負極性階調信号(k=1~n)
 VsPk …正極性DA変換用階調信号(k=1~n)
 VsNk …負極性DA変換用階調信号(k=1~n)
 Vcom …共通電圧(中心電圧)
10 ... pixel formation portion 12 ... thin film transistor (switching element)
100 ... Display (Liquid crystal panel)
200 ... display control circuit 300 ... source driver (data signal line drive circuit)
320 ... DA conversion circuit 330 ... Output buffer circuit (multiple buffers)
400 ... gate driver (scan signal line drive circuit)
600 ... power supply circuit 620 ... gradation voltage slope circuit (gradation voltage conversion circuit)
622 ... Slope added circuit GLi ... Gate line (scanning signal line) (i = 1 to N)
SLj ... Source line (data signal line) (j = 1 to M)
Cgs: Gate-source parasitic capacitance Cpn: Polarity control signal VPk: Positive polarity gradation signal (k = 1 to n)
VNk ... Negative tone signal (k = 1 to n)
VsPk ... gradation signal for positive polarity DA conversion (k = 1 to n)
VsNk ... gradation signal for negative polarity DA conversion (k = 1 to n)
Vcom ... common voltage (center voltage)

Claims (11)

  1.  複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に沿ってマトリクス状に配置された複数の画素形成部とを含む表示部を有する液晶表示装置であって、
     前記複数の走査信号線を選択的に駆動する走査信号線駆動回路と、
     前記複数のデータ信号線がそれぞれ接続される複数のバッファを含み、所定の中心電圧を基準として極性が所定時間毎に反転する複数のデータ信号を生成し前記複数のバッファを介して前記複数のデータ信号線に印加するデータ信号線駆動回路とを備え、
     前記データ信号線駆動回路は、前記複数のデータ信号の極性反転においていずれかのデータ信号の変化量が所定量よりも大きい場合には当該極性反転における当該いずれかのデータ信号の変化速度が前記複数のバッファのスルーレートに相当する変化速度よりも小さい所定の低変化速度となるように、前記複数のデータ信号を生成する、液晶表示装置。
    A plurality of data signal lines, a plurality of scanning signal lines intersecting the plurality of data signal lines, a plurality of pixel formation portions arranged in a matrix along the plurality of data signal lines and the plurality of scanning signal lines A liquid crystal display device having a display portion including
    A scanning signal line drive circuit for selectively driving the plurality of scanning signal lines;
    The plurality of data signals are generated including a plurality of buffers to which the plurality of data signal lines are respectively connected, and a plurality of data signals whose polarity is inverted at predetermined time intervals with reference to a predetermined center voltage. And a data signal line drive circuit applied to the signal line,
    In the data signal line drive circuit, when the amount of change of any data signal is larger than a predetermined amount in the polarity inversion of the plurality of data signals, the change speed of any one data signal in the polarity inversion is the plurality The liquid crystal display device, wherein the plurality of data signals are generated so as to have a predetermined low change rate smaller than a change rate corresponding to a through rate of the buffer.
  2.  複数の正極性および負極性階調電圧を生成する階調電圧生成回路と、
     前記データ信号線駆動回路の内部または外部に設けられ、前記複数の正極性および負極性階調電圧のうち絶対値が所定値よりも大きい少なくとも1つの正極性および負極性階調電圧のそれぞれを、前記複数のデータ信号の極性の反転時点の直前に当該階調電圧から前記低変化速度に対応する変化速度で前記中心電圧に向かって変化し当該反転時点の直後に前記低変化速度に対応する変化速度で当該階調電圧に戻るような波形の電圧に置き換えることにより、前記複数の正極性および負極性階調電圧を複数の正極性および負極性DA変換用階調電圧に変換する階調電圧変換回路とを更に備え、
     前記データ信号線駆動回路は、前記複数のデータ信号線のそれぞれにつき、前記複数の正極性および負極性DA変換用階調電圧の中から、当該データ信号線に印加すべきデータ信号の極性が前記所定時間毎に反転するように前記表示部に表示すべき画像に応じた正極性または負極性DA変換用階調電圧を選択し、当該選択された正極性または負極性DA変換用階調電圧をデータ信号として当該データ信号線に印加する、請求項1に記載の液晶表示装置。
    A gradation voltage generation circuit that generates a plurality of positive and negative polarity gradation voltages;
    Among the plurality of positive and negative polarity gradation voltages, at least one of the plurality of positive and negative polarity gradation voltages is provided inside or outside the data signal line drive circuit, and at least one of the positive and negative polarity gradation voltages is greater than a predetermined value. Immediately before the point of time of polarity inversion of the plurality of data signals, the gradation voltage changes toward the central voltage at a change rate corresponding to the low change rate, and immediately after the point of inversion Gradation voltage conversion that converts the plurality of positive and negative polarity gradation voltages into a plurality of positive and negative polarity DA conversion gradation voltages by replacing the voltage with a waveform that returns to the gradation voltage at speed. Further comprising a circuit and
    The data signal line drive circuit is configured such that, for each of the plurality of data signal lines, the polarity of the data signal to be applied to the data signal line out of the plurality of positive and negative polarity gradation voltages for DA conversion is The gradation voltage for positive polarity or negative polarity DA conversion according to the image to be displayed on the display unit is selected to be inverted every predetermined time, and the selected gradation voltage for positive polarity or negative polarity DA conversion is selected. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is applied as a data signal to the data signal line.
  3.  前記階調電圧変換回路は、前記複数の正極性および負極性階調電圧のうち絶対値が最大である正極性および負極性階調電圧のそれぞれを、前記複数のデータ信号の極性の反転時点の直前に当該階調電圧から前記低変化速度に対応する変化速度で前記中心電圧に向かって変化し当該反転時点の直後に前記低変化速度に対応する変化速度で当該階調電圧に戻るような波形の電圧に置き換えることにより、前記複数の正極性および負極性階調電圧を前記複数の正極性および負極性DA変換用階調電圧に変換する、請求項2に記載の液晶表示装置。 The gradation voltage conversion circuit is configured to select one of the plurality of positive and negative gradation voltages that has the largest absolute value, the positive and negative gradation voltages, at the time when the polarity of the plurality of data signals is inverted. A waveform that immediately changes from the gradation voltage to the central voltage at a change rate corresponding to the low change rate, and immediately returns to the gradation voltage at a change rate corresponding to the low change rate immediately after the inversion time point 3. The liquid crystal display device according to claim 2, wherein the plurality of positive polarity and negative polarity gradation voltages are converted into the plurality of positive polarity and negative polarity DA conversion gradation voltages by replacing with the voltage of.
  4.  前記階調電圧変換回路は、前記階調電圧生成回路により生成される前記複数の正極性および負極性階調電圧のうち絶対値が前記所定値よりも大きい複数の正極性および負極性階調電圧のそれぞれを、前記複数のデータ信号の極性の反転時点の直前に当該階調電圧から前記低変化速度に対応する変化速度で前記中心電圧に向かって変化し当該反転時点の直後に前記低変化速度に対応する変化速度で当該階調電圧に戻るような波形の電圧に置き換えることにより、前記階調電圧生成回路により生成される前記複数の正極性および負極性階調電圧を前記複数の正極性および負極性DA変換用階調電圧に変換する、請求項2に記載の液晶表示装置。 The gradation voltage conversion circuit is configured to generate a plurality of positive polarity and negative polarity gradation voltages having an absolute value larger than the predetermined value among the plurality of positive polarity and negative polarity gradation voltages generated by the gradation voltage generation circuit. Each of the plurality of data signals is changed toward the central voltage at a change rate corresponding to the low change rate immediately before the point of time when the polarity of the plurality of data signals is reversed; By replacing the plurality of positive and negative polarity gradation voltages generated by the gradation voltage generation circuit with the plurality of positive and negative polarity voltages by replacing the voltage of the waveform that returns to the gradation voltage at a change speed corresponding to The liquid crystal display device according to claim 2, wherein the liquid crystal display device is converted into a gradation voltage for negative polarity DA conversion.
  5.  前記階調電圧変換回路は、前記複数の正極性および負極性階調電圧のそれぞれを、前記複数のデータ信号の極性の反転時点の直前に当該階調電圧から前記低変化速度に対応する変化速度で前記中心電圧に向かって変化し当該反転時点の直後に前記低変化速度に対応する変化速度で当該階調電圧に戻るような波形の電圧に置き換えることにより、前記複数の正極性および負極性階調電圧を前記複数の正極性および負極性DA変換用階調電圧に変換する、請求項2に記載の液晶表示装置。 The gradation voltage conversion circuit changes each of the plurality of positive polarity and negative polarity gradation voltages at a rate corresponding to the low change rate from the gradation voltage immediately before the point of time when the polarity of the plurality of data signals is inverted. By replacing the voltage of such a waveform that changes toward the central voltage and returns to the gradation voltage at a change rate corresponding to the low change rate immediately after the inversion time point. The liquid crystal display device according to claim 2, wherein the tuning voltage is converted into the plurality of gradation voltages for positive and negative polarity DA conversion.
  6.  複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に沿ってマトリクス状に配置された複数の画素形成部とを含む表示部を有する液晶表示装置であって、
     前記複数の走査信号線を選択的に駆動する走査信号線駆動回路と、
     前記複数のデータ信号線がそれぞれ接続される複数のバッファを含み、所定の中心電圧を基準として極性が所定時間毎に反転する複数のデータ信号を生成し前記複数のバッファを介して前記複数のデータ信号線に印加するデータ信号線駆動回路とを備え、
     前記データ信号線駆動回路は、前記複数のデータ信号の極性反転においていずれかのデータ信号の変化量が所定量よりも大きい場合には、当該極性反転における当該いずれかのデータ信号の変化速度が、当該極性反転における変化量が当該所定量以下であるデータ信号の変化速度よりも小さくなるように、前記複数のデータ信号を生成する、液晶表示装置。
    A plurality of data signal lines, a plurality of scanning signal lines intersecting the plurality of data signal lines, a plurality of pixel formation portions arranged in a matrix along the plurality of data signal lines and the plurality of scanning signal lines A liquid crystal display device having a display portion including
    A scanning signal line drive circuit for selectively driving the plurality of scanning signal lines;
    The plurality of data signals are generated including a plurality of buffers to which the plurality of data signal lines are respectively connected, and a plurality of data signals whose polarity is inverted at predetermined time intervals with reference to a predetermined center voltage. And a data signal line drive circuit applied to the signal line,
    In the data signal line drive circuit, when the amount of change in any data signal is larger than a predetermined amount in the polarity inversion of the plurality of data signals, the rate of change in any one of the data signals in the polarity inversion is The liquid crystal display device, wherein the plurality of data signals are generated such that a change amount in the polarity inversion is smaller than a change rate of the data signal whose amount is smaller than the predetermined amount.
  7.  複数の正極性および負極性階調電圧を生成する階調電圧生成回路と、
     前記データ信号線駆動回路の内部または外部に設けられ、前記複数の正極性および負極性階調電圧のうち絶対値が所定値よりも大きい少なくとも1つの正極性および負極性階調電圧のそれぞれを、前記複数のデータ信号の極性の反転時点の直前に当該階調電圧から前記低変化速度に対応する変化速度で前記中心電圧に向かって変化し当該反転時点の直後に前記低変化速度に対応する変化速度で当該階調電圧に戻るような波形の電圧に置き換えることにより、前記複数の正極性および負極性階調電圧を複数の正極性および負極性DA変換用階調電圧に変換する階調電圧変換回路とを更に備え、
     前記データ信号線駆動回路は、前記複数のデータ信号線のそれぞれにつき、前記複数の正極性および負極性DA変換用階調電圧の中から、当該データ信号線に印加すべきデータ信号の極性が前記所定時間毎に反転するように前記表示部に表示すべき画像に応じた正極性または負極性DA変換用階調電圧を選択し、当該選択された正極性または負極性DA変換用階調電圧をデータ信号として当該データ信号線に印加する、請求項6に記載の液晶表示装置。
    A gradation voltage generation circuit that generates a plurality of positive and negative polarity gradation voltages;
    Among the plurality of positive and negative polarity gradation voltages, at least one of the plurality of positive and negative polarity gradation voltages is provided inside or outside the data signal line drive circuit, and at least one of the positive and negative polarity gradation voltages is greater than a predetermined value. Immediately before the point of time of polarity inversion of the plurality of data signals, the gradation voltage changes toward the central voltage at a change rate corresponding to the low change rate, and immediately after the point of inversion Gradation voltage conversion that converts the plurality of positive and negative polarity gradation voltages into a plurality of positive and negative polarity DA conversion gradation voltages by replacing the voltage with a waveform that returns to the gradation voltage at speed. Further comprising a circuit and
    The data signal line drive circuit is configured such that, for each of the plurality of data signal lines, the polarity of the data signal to be applied to the data signal line out of the plurality of positive and negative polarity gradation voltages for DA conversion is The gradation voltage for positive polarity or negative polarity DA conversion according to the image to be displayed on the display unit is selected to be inverted every predetermined time, and the selected gradation voltage for positive polarity or negative polarity DA conversion is selected. 7. The liquid crystal display device according to claim 6, wherein the liquid crystal display device is applied as the data signal to the data signal line.
  8.  複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に沿ってマトリクス状に配置された複数の画素形成部とを含む表示部を有する液晶表示装置の駆動方法であって、
     前記複数の走査信号線を選択的に駆動する走査信号線駆動ステップと、
     所定の中心電圧を基準として極性が所定時間毎に反転する複数のデータ信号を生成し、当該複数のデータ信号を複数のバッファを介して前記複数のデータ信号線に印加するデータ信号線駆動ステップとを備え、
     前記データ信号線駆動ステップでは、前記複数のデータ信号の極性反転においていずれかのデータ信号の変化量が所定量よりも大きい場合には当該極性反転における当該いずれかのデータ信号の変化速度が前記複数のバッファのスルーレートに相当する変化速度よりも小さい所定の低変化速度となるように、前記複数のデータ信号が生成される、駆動方法。
    A plurality of data signal lines, a plurality of scanning signal lines intersecting the plurality of data signal lines, a plurality of pixel formation portions arranged in a matrix along the plurality of data signal lines and the plurality of scanning signal lines And a driving method of a liquid crystal display device having a display portion including
    A scanning signal line driving step of selectively driving the plurality of scanning signal lines;
    A data signal line driving step of generating a plurality of data signals whose polarity is inverted at predetermined time intervals with reference to a predetermined center voltage, and applying the plurality of data signals to the plurality of data signal lines via a plurality of buffers; Equipped with
    In the data signal line driving step, when the change amount of any data signal is larger than a predetermined amount in polarity inversion of the plurality of data signals, the change speed of any one data signal in the polarity inversion is the plurality The plurality of data signals are generated to have a predetermined low change rate smaller than the change rate corresponding to the through rate of the buffer.
  9.  複数の正極性および負極性階調電圧を生成する階調電圧生成ステップと、
     前記複数の正極性および負極性階調電圧のうち絶対値が所定値よりも大きい少なくとも1つの正極性および負極性階調電圧のそれぞれを、前記複数のデータ信号の極性の反転時点の直前に当該階調電圧から前記低変化速度に対応する変化速度で前記中心電圧に向かって変化し当該反転時点の直後に前記低変化速度に対応する変化速度で当該階調電圧に戻るような波形の電圧に置き換えることにより、前記複数の正極性および負極性階調電圧を複数の正極性および負極性DA変換用階調電圧に変換する階調電圧変換ステップとを更に備え、
     前記データ信号線駆動ステップは、
      前記複数のデータ信号線のそれぞれにつき、前記複数の正極性および負極性DA変換用階調電圧の中から、当該データ信号線に印加すべきデータ信号の極性が前記所定時間毎に反転するように前記表示部に表示すべき画像に応じた正極性または負極性DA変換用階調電圧を選択する電圧選択ステップと、
      前記複数のデータ信号線のそれぞれにつき前記階調電圧選択ステップにより選択された正極性または負極性DA変換用階調電圧をデータ信号として当該データ信号線に印加する信号印加ステップとを含む、請求項8に記載の駆動方法。
    A gradation voltage generation step of generating a plurality of positive polarity and negative polarity gradation voltages;
    Each of at least one positive polarity and negative polarity gradation voltage of which the absolute value is larger than a predetermined value among the plurality of positive polarity and negative polarity gradation voltages is immediately before the point of time when the polarity of the plurality of data signals is reversed. The voltage changes from a gray scale voltage toward the central voltage at a change rate corresponding to the low change rate, and returns to the gray scale voltage immediately after the inversion time point and returns to the gray scale voltage at a change rate corresponding to the low change rate. And a gradation voltage conversion step of converting the plurality of positive and negative polarity gradation voltages into a plurality of positive and negative polarity DA conversion gradation voltages by replacement.
    The data signal line driving step
    In each of the plurality of data signal lines, the polarity of the data signal to be applied to the data signal line is inverted at predetermined time intervals among the plurality of positive polarity and negative polarity DA conversion gradation voltages. A voltage selection step of selecting a positive polarity or negative polarity DA conversion gradation voltage according to an image to be displayed on the display unit;
    Applying a positive polarity or negative polarity DA conversion gradation voltage selected in the gradation voltage selection step for each of the plurality of data signal lines as a data signal to the data signal line. The driving method according to 8.
  10.  複数のデータ信号線と、前記複数のデータ信号線と交差する複数の走査信号線と、前記複数のデータ信号線および前記複数の走査信号線に沿ってマトリクス状に配置された複数の画素形成部とを含む表示部を有する液晶表示装置の駆動方法であって、
     前記複数の走査信号線を選択的に駆動する走査信号線駆動ステップと、
     所定の中心電圧を基準として極性が所定時間毎に反転する複数のデータ信号を生成し、当該複数のデータ信号を複数のバッファを介して前記複数のデータ信号線に印加するデータ信号線駆動ステップとを備え、
     前記データ信号線駆動ステップでは、前記複数のデータ信号の極性反転においていずれかのデータ信号の変化量が所定量よりも大きい場合には、当該極性反転における当該いずれかのデータ信号の変化速度が、当該極性反転における変化量が当該所定量以下であるデータ信号の変化速度よりも小さくなるように、前記複数のデータ信号が生成される、駆動方法。
    A plurality of data signal lines, a plurality of scanning signal lines intersecting the plurality of data signal lines, a plurality of pixel formation portions arranged in a matrix along the plurality of data signal lines and the plurality of scanning signal lines And a driving method of a liquid crystal display device having a display portion including
    A scanning signal line driving step of selectively driving the plurality of scanning signal lines;
    A data signal line driving step of generating a plurality of data signals whose polarity is inverted at predetermined time intervals with reference to a predetermined center voltage, and applying the plurality of data signals to the plurality of data signal lines via a plurality of buffers; Equipped with
    In the data signal line driving step, when the change amount of any data signal is larger than a predetermined amount in the polarity inversion of the plurality of data signals, the change speed of the data signal in the polarity inversion is The driving method, wherein the plurality of data signals are generated such that the amount of change in the polarity inversion is smaller than the rate of change of the data signal whose amount is less than the predetermined amount.
  11.  複数の正極性および負極性階調電圧を生成する階調電圧生成ステップと、
     前記複数の正極性および負極性階調電圧のうち絶対値が所定値よりも大きい少なくとも1つの正極性および負極性階調電圧のそれぞれを、前記複数のデータ信号の極性の反転時点の直前に当該階調電圧から前記低変化速度に対応する変化速度で前記中心電圧に向かって変化し当該反転時点の直後に前記低変化速度に対応する変化速度で当該階調電圧に戻るような波形の電圧に置き換えることにより、前記複数の正極性および負極性階調電圧を複数の正極性および負極性DA変換用階調電圧に変換する階調電圧変換ステップとを更に備え、
     前記データ信号線駆動ステップは、
      前記複数のデータ信号線のそれぞれにつき、前記複数の正極性および負極性DA変換用階調電圧の中から、当該データ信号線に印加すべきデータ信号の極性が前記所定時間毎に反転するように前記表示部に表示すべき画像に応じた正極性または負極性DA変換用階調電圧を選択する電圧選択ステップと、
      前記複数のデータ信号線のそれぞれにつき前記階調電圧選択ステップにより選択された正極性または負極性DA変換用階調電圧をデータ信号として当該データ信号線に印加する信号印加ステップとを含む、請求項10に記載の駆動方法。
    A gradation voltage generation step of generating a plurality of positive polarity and negative polarity gradation voltages;
    Each of at least one positive polarity and negative polarity gradation voltage of which the absolute value is larger than a predetermined value among the plurality of positive polarity and negative polarity gradation voltages is immediately before the point of time when the polarity of the plurality of data signals is reversed. The voltage changes from a gray scale voltage toward the central voltage at a change rate corresponding to the low change rate, and returns to the gray scale voltage immediately after the inversion time point and returns to the gray scale voltage at a change rate corresponding to the low change rate. And a gradation voltage conversion step of converting the plurality of positive and negative polarity gradation voltages into a plurality of positive and negative polarity DA conversion gradation voltages by replacement.
    The data signal line driving step
    In each of the plurality of data signal lines, the polarity of the data signal to be applied to the data signal line is inverted at predetermined time intervals among the plurality of positive polarity and negative polarity DA conversion gradation voltages. A voltage selection step of selecting a positive polarity or negative polarity DA conversion gradation voltage according to an image to be displayed on the display unit;
    Applying a positive polarity or negative polarity DA conversion gradation voltage selected in the gradation voltage selection step for each of the plurality of data signal lines as a data signal to the data signal line. The driving method according to 10.
PCT/JP2018/023777 2017-06-30 2018-06-22 Liquid crystal display device and driving method therefor WO2019004074A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-128875 2017-06-30
JP2017128875 2017-06-30

Publications (1)

Publication Number Publication Date
WO2019004074A1 true WO2019004074A1 (en) 2019-01-03

Family

ID=64742860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023777 WO2019004074A1 (en) 2017-06-30 2018-06-22 Liquid crystal display device and driving method therefor

Country Status (1)

Country Link
WO (1) WO2019004074A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113299A (en) * 2008-11-10 2010-05-20 Sharp Corp Drive circuit for liquid crystal display, drive method of drive circuit for liquid crystal display, and liquid crystal display
JP2011128477A (en) * 2009-12-21 2011-06-30 Oki Semiconductor Co Ltd Source driver of liquid crystal panel
US20130113848A1 (en) * 2011-11-04 2013-05-09 Samsung Electronics Co., Ltd. Display device and driving method of display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010113299A (en) * 2008-11-10 2010-05-20 Sharp Corp Drive circuit for liquid crystal display, drive method of drive circuit for liquid crystal display, and liquid crystal display
JP2011128477A (en) * 2009-12-21 2011-06-30 Oki Semiconductor Co Ltd Source driver of liquid crystal panel
US20130113848A1 (en) * 2011-11-04 2013-05-09 Samsung Electronics Co., Ltd. Display device and driving method of display device

Similar Documents

Publication Publication Date Title
KR101252854B1 (en) Liquid crystal panel, data driver, liquid crystal display device having the same and driving method thereof
US20050253829A1 (en) Display device and display device driving method
KR100884993B1 (en) Liquid crystal display and driving method thereof
US8542177B2 (en) Data driving apparatus and display device comprising the same
US20100265234A1 (en) Driver and display apparatus using the same
JP4390469B2 (en) Image display device, signal line drive circuit used in image display device, and drive method
JP5955098B2 (en) Liquid crystal display device, data line driving circuit, and liquid crystal display device driving method
JP2004012872A (en) Display device and its driving method
WO2016084735A1 (en) Data signal line drive circuit, display device provided with same, and method for driving same
WO2010087051A1 (en) Display device and display device driving method
WO2013047363A1 (en) Scanning signal line drive circuit and display device equipped with same
JP2006030529A (en) Drive circuit for electrooptical device, driving method for electrooptical device, and electrooptical device and electronic equipment
US20110267323A1 (en) Electro-optical apparatus and electronics device
US7002563B2 (en) Driving method for flat-panel display device
JPH11282434A (en) Planar display device
JP2008216893A (en) Flat panel display device and display method thereof
JP2006011199A (en) Data-side drive circuit of flat panel display device
WO2019004074A1 (en) Liquid crystal display device and driving method therefor
JP2008233283A (en) Liquid crystal display device and driving method thereof
KR20080111318A (en) Liquid crystal display and driving method thereof
JP4605199B2 (en) Liquid crystal display device and driving method thereof
JP2000276110A (en) Liquid crystal display device
JP2009216852A (en) Electrooptical device and method for driving electrooptical device
JP3318667B2 (en) Liquid crystal display
WO2012102225A1 (en) Display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP