WO2019002653A1 - Procedimiento de mínimo impacto ambiental y máxima recuperación de litio para la obtención de salmueras concentradas con mínimo contenido de impurezas a partir de salmueras que embeben los salares y salinas naturales - Google Patents

Procedimiento de mínimo impacto ambiental y máxima recuperación de litio para la obtención de salmueras concentradas con mínimo contenido de impurezas a partir de salmueras que embeben los salares y salinas naturales Download PDF

Info

Publication number
WO2019002653A1
WO2019002653A1 PCT/ES2018/070460 ES2018070460W WO2019002653A1 WO 2019002653 A1 WO2019002653 A1 WO 2019002653A1 ES 2018070460 W ES2018070460 W ES 2018070460W WO 2019002653 A1 WO2019002653 A1 WO 2019002653A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
brine
liquid phase
stage
concentration
Prior art date
Application number
PCT/ES2018/070460
Other languages
English (en)
French (fr)
Inventor
Daniel Ernesto Galli
Original Assignee
GRANDE VILLARINO, Alejandro María
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GRANDE VILLARINO, Alejandro María filed Critical GRANDE VILLARINO, Alejandro María
Priority to EP18823156.7A priority Critical patent/EP3647267A4/en
Priority to US16/626,819 priority patent/US11920211B2/en
Priority to CN201880055506.9A priority patent/CN111448164A/zh
Publication of WO2019002653A1 publication Critical patent/WO2019002653A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D3/00Halides of sodium, potassium or alkali metals in general
    • C01D3/04Chlorides
    • C01D3/06Preparation by working up brines; seawater or spent lyes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/08Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/46Sulfates
    • C01F11/462Sulfates of Sr or Ba
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/14Magnesium hydroxide
    • C01F5/22Magnesium hydroxide from magnesium compounds with alkali hydroxides or alkaline- earth oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/24Magnesium carbonates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention is related to the extraction and processing of the natural brines that saturate the evaporitic sediments of chemical and clastic origin, which make up different types of aquifers developed in the saline bodies of, for example, the Puna Argentina, of the Venezuelan Altiplano and of the Atacama Desert.
  • it refers to a method of maximum recovery and minimum environmental impact to obtain brines with a lithium ion concentration of approximately 80 g / dm 3 , with a minimum content of impurities, an attribute that makes them chemically appropriate for obtaining compounds of high purity lithium.
  • the present invention also comprises a method of recovery and minimal environmental impact to obtain other salts of interest for use in agriculture, in livestock and in industry.
  • Atacama are deposits that lie in endorheic basins that functioned as receptacles for contributions of insoluble material and liquids of the tectono-volcanic framework. These contributions were accumulated as chemical evaporite sediments and clastic sediments, where reservoirs of groundwater are developed, formed by brines carrying a large variety of ions. As a result of this accumulation process, the same saline body may contain one or more free, semi-confined and / or confined aquifers, which may or may not be interconnected and, in addition, may have different permeability so that the liquid phase, i.e. interstitial brine, circulate through them with greater or lesser ease.
  • brine that occupies the interstitial space of the aquifers is a dense, virtually neutral and homogeneous sodium chloride solution, which may include other anions such as sulfate, borates, carbonate or bicarbonate and other cations such as potassium, lithium, magnesium, calcium, barium, strontium, iron, rubidium and cesium.
  • the concentration of ions in the brine contained in the aquifers is the result of the balance between the recharge received and received, and what is lost by evapotranspiration and / or discharges that occur with other types of upper or lower aquifers and / or drainage to other hydrogeological sub-basins. This explains the different chemism of the saline bodies referred to, which are clearly complex, dynamic and fragile hydrogeological systems.
  • the mineral resources contained in the saline bodies are non-renewable natural resources because their natural availability, a measurable and quantifiable concept, decreases as their extraction evolves. Then, in addition to the extraction and processing process that is applied complies with what is specified in the previous paragraph, other necessary conditions must be met to ensure the sustainability of the operation over time. These other conditions are: to privilege the use of Human Resources of the populations near the place of location of the deposit and to make the necessary previsions so that future generations have the economic means to solve the problems that may arise from the exploitation of non-renewable natural resources.
  • Lithium salts particularly lithium carbonate and lithium citrate, are used in the treatment of mania and bipolar depression. It is a stabilizer of the mood.
  • Lithium chloride and lithium bromide have a high hygroscopicity so they are excellent drying agents.
  • Lithium stearate is a general purpose lubricant in high temperature applications.
  • Lithium is a highly active agent in the synthesis of organic compounds.
  • Lithium hydroxide is used in spacecraft and submarines to purify the air by extracting carbon dioxide.
  • lithium is not the only species of interest contained in natural brines.
  • Sodium Chloride It is used as raw material to produce salt for human consumption, as salt for industrial use, as salt loaves for direct use in livestock and as raw material for the production of mineralized salt for use in livestock.
  • Magnesite magnesium carbonate: If the natural brine has a high value of the magnesium / lithium ratio, for example greater than about 30, it is necessary to pretreat with sodium carbonate or trona.
  • the solid phase generated in this pretreatment is magnesite that is used in the steel industry, in construction, in the photographic industry. Magnesium is also obtained from magnesite for use in metallurgy to obtain light alloys, and magnesium salts that are used mainly in the pharmaceutical industry.
  • the sludge generated in the treatment process contains calcium sulfate and magnesium hydroxide. From these sludges it is possible to obtain: i) magnesium sulphate which is used as fertilizer; and ii) calcium sulfate used as a gypsum for agricultural use.
  • the processes known for the extraction and processing of the brines contained in the salares initially aim at obtaining lithium carbonate and / or lithium hydroxide and / or lithium chloride, as high purity solids.
  • the lithium in the brine is as lithium ion [Li + ], and the processes referred to can be identified as belonging to one of the following categories:
  • Figures 1 to 7 show in a generalized form the processes that are used in the prior art, and those that are proposed to be used for the extraction and processing of the brines contained in the salt flats.
  • O-P processes included in Figures 1, 2 and 3 are without return of adulterated brine to the salt, there are O-P processes with return; in these cases the flow that returns to the salt is generally lower than in the case of the S-O processes.
  • Figure 1 shows a process of concentration in evaporation pools with fractional crystallization, as described in patent US 7858057 B2 of December 28, 2010, applicable to brines with low content of anion sulfate.
  • These brines may be of natural occurrence, may be the result of a mixture of natural brines, for example, one with high calcium content mixed with another with high sulfate content, or may be the result of a natural brine treated with soluble salts of calcium or barium, for example calcium chloride or barium chloride, to reduce its content of sulfate anion, precipitating it as calcium sulfate or as barium sulfate, respectively.
  • the process of evaporation and fractional crystallization consists of a sequence of pools of solar evaporation. In these pools, first crystallizes and precipitates sodium chloride; then a mixture of sodium chloride and potassium chloride; the next is the pool in which crystallizes and precipitates carnallite (KCI.MgCI 2 .6H 2 O); in the pool that follows, between the salts which crystallize and precipitate, the bischofite (MgCl 2 .6H 2 0) is added; and in the last, between the salts that crystallize and precipitate, so does the lithic carnallite (LiCI.MgCI 2 .7H 2 O).
  • the concentrated brine which is obtained with approximately 6% w / w of lithium has a high boron content of about 0.8% w / w and a high magnesium content of about 1, 65% p / p.
  • boron is removed by extraction with an alcohol with the consequent cost of operation and of regeneration and replacement due to losses of this auxiliary fluid.
  • the magnesium is removed in a first stage by mixing the concentrated brine with the mother liquor from the lithium carbonate precipitation stage.
  • the solution from which lithium carbonate is obtained will increase the concentration of the other impurities contained in the concentrated brine; this means that it is necessary to purge part of the mother water, conditioning the quality of the product obtained and the degree of recovery to the purge regime applied.
  • the brine is concentrated as much as possible without crystallizing and precipitating salts containing lithium in its chemical formula; in this case, the salts that crystallize and precipitate in the pozas of initial concentration, previous to the treatment, contain as wet water concentrated natural brine, without contamination due to the effect of the treatment.
  • the salts that crystallize and precipitate in the pool of final concentration after the treatment do not contain, as wet water, concentrated natural brine, but rather treated and concentrated brine.
  • the treatment is done before starting the concentration process with fractional crystallization in pools of solar evaporation where the natural brine is treated, or a brine is treated that has some degree of concentration before of the treatment, lower than that corresponding to the process described in Figure 2. This improves the rate of evaporation by reducing the magnesium content in the brine that is concentrated in the pools.
  • the sludge obtained in the treatment plant contains calcium sulfate and magnesium hydroxide; From this sludge, with a simple leaching process, it is possible to obtain gypsum for agricultural use and magnesium sulphate that is used as fertilizer.
  • the effluent from the reagent regeneration plant is a solution of calcium chloride and magnesium chloride, which can not be discharged when salting.
  • the processes comprising Figure 4 are separation-obtaining (S-O) by physical chemical separation such as molecular filters, selective absorption towers or electrochemical processes.
  • S-O separation-obtaining
  • the conditioning may consist of heating the brine and / or reducing the concentration of some ions that could interfere with the separation process used.
  • the amount of natural brine that enters the conditioning process and the process of separation of the lithium from the liquid phase is also very large.
  • Figure 4 shows how this brine is subjected to a fractional crystallization process in pools of solar evaporation to avoid its return to the salt.
  • the natural brine is first treated to then enter the separation equipment by chemical processes.
  • the amount of brine with low lithium concentration, ie treated and exhausted brine, leaving the separation equipment is practically the same as that which enters the treatment plant; consequently, it is also very large.
  • This brine is subjected to a fractional crystallization process in pools of solar evaporation to avoid its return to the salt and to enable the obtaining of other compounds of commercial interest.
  • the salts that crystallize and precipitate in the different pools do not contain water as wet concentrated natural brine, but brine adulterated by the treatment and by the separation process. This determines that obtaining products of commercial interest from these salts is more expensive than in the case of the processes included in Figure 4.
  • the OP processes included in Figures 1 and 2 are of low specific consumption of thermal and mechanical energy, compared to the very high specific consumption of both forms of energy that have the SO processes included in Figures 4 and 5.
  • the process of Figure 3 has a significant specific consumption of thermal and mechanical energy in the process of reagent regeneration.
  • Both the treated and / or spent brine and any other liquid effluent such as for example an aqueous solution of calcium chloride and / or magnesium chloride, have different chemical composition and also different temperature, density, conductivity and / or viscosity; its return or discharge impacts modifying the physical properties, the ionic ratios and / or the chemical composition that characterize the natural brines contained in the aquifers of the saline deposit.
  • the return and / or discharge of the referred liquids is not always possible and can also produce an alteration of the initial natural hydrogeological conditions. Taking into account that this return and / or discharge can enter any of the aquifers that make up the hydrogeological system, these impacts can have short, medium and long term consequences, very difficult to predict.
  • Figure 1 schematically shows an O-P process of the prior art without return of exhausted brine to the salt for brines with low concentration of sulfate anion, which comprises a concentration in solar evaporation pools (PES) with fractional crystallization.
  • PES solar evaporation pools
  • Figure 2 schematically shows an OP process of the prior art without return of exhausted brine to the salt, which comprises a maximum lithium concentration in the natural brine concentrated in solar evaporation pools (PES).
  • Figure 3 schematically shows an OP process of the prior art without return of exhausted brine to the salt, which comprises an initial treatment or previous to the maximum concentration of lithium possible in the brine without treatment and with regeneration of reagents.
  • Figure 4 schematically shows an S-O process of the prior art without return of exhausted brine to the salt, which comprises a physical-chemical separation.
  • Figure 5 schematically shows an S-O process of the prior art without return of spent brine to the salt, which comprises a chemical separation.
  • Figure 6 schematically shows an S-O process of the prior art with return of exhausted brine to the salt, which comprises a physical-chemical separation.
  • Figure 7 schematically shows an S-O process of the prior art with return of exhausted brine to the salt, which comprises a chemical separation.
  • Figure 8 shows a flowchart of a preferred embodiment of the method according to the present invention.
  • Figure 9 shows a view of the experimental outdoor facility located in the Tres Morros site, province of Jujuy, Argentina, where the tests of Examples 1, 2, 3 and 4 were carried out.
  • Figure 10 shows a ternary diagram for 25 ° C in full line and 0 ° C in dotted line with the brine compositions of some salares, where the brines of the examples are indicated in the form of a rhombus.
  • Figure 1 1 shows the evolution in a ternary diagram of the brine of the Devils Salar according to Example 1, as the process according to the present invention is advanced during the field test carried out in the experimental center in the open located in the area of Tres Morros, province of Jujuy, Argentina.
  • Figure 12 shows a modified phase diagram, in which lithium is added as an additional element. This is, as the brine evolves, the percentage of lithium in proportion to the other elements (Mg ++ , K + , S0 4 ") increases, and in this modified diagram the evolution of the brine of the Devils Salar Example 1, as the process according to the present invention is advanced during the field test carried out in the experimental center outdoors located in the Tres Morros site, province of Jujuy, Argentina.
  • the process object of the present invention comprises an initial preconcentration stage with fractional crystallization of the natural brine in pools of solar evaporation, in order to reach the maximum concentration of lithium in the liquid phase without crystallizing and precipitating salts containing this element in its chemical formula.
  • the first compounds of commercial interest are separated, such as sodium chloride and potassium chloride, and the volume of the liquid phase is considerably reduced. If in the liquid phase with initial preconcentration the mass ratio of magnesium / lithium concentrations is lower than a certain value, preferably approximately 2, the process continues directly treating this liquid phase with lime and sodium sulfate, as described below. Otherwise, the procedure continues as described below.
  • the concentration of sulfate anions in the brine with initial preconcentration depends on the ambient temperature and, consequently, varies throughout the year.
  • this concentration is approximately 20% higher than that corresponding to the equilibrium concentration of sulphate anions in the liquid phase when it is cooled to approximately -7 ° C
  • the aforementioned reduction in volume makes it possible to face the next stage which consists in cooling this phase liquid until reaching a temperature preferably comprised between about -6 ° C and about -8 ° C.
  • this cooling can be run in natural crystallizers, taking advantage of the low temperatures of the winter months, or in mechanical equipment of crystallization by cooling.
  • the concentration of sulfate anions in the brine with initial pre-concentration which varies as a function of room temperature, is preferably about 20% less than that corresponding to the equilibrium concentration in the liquid phase when cooled to about -7 °. C, the cooling stage is not necessary.
  • the process continues with a stoichiometric chemical pretreatment to the sulfate anion content of the post-cooling liquid phase with an aqueous solution of calcium chloride or barium chloride. It is also possible to use calcium hydroxide, but as explained in the detailed description of the invention, this option is not convenient.
  • this new maximum value of lithium concentration is such that the mass ratio of magnesium / lithium concentrations is not less than about 2, it is possible to continue with the final pre-concentration process by adding to the last pools of this process the amount of potassium chloride necessary to avoid the crystallization of lithic carnallite.
  • the mass ratio of magnesium / lithium concentrations is considerably reduced by the crystallization and precipitation of magnesium and potassium salts, and the liquid phase is able to be subjected to a chemical treatment with a minimum addition of reagents to reduce the contents of magnesium, calcium, sulfate and boron.
  • This treatment is carried out in two stages: i) a first stage in which calcium hydroxide is added, for example in the form of a lime slurry, calculated in stoichiometric form with respect to the magnesium content, and an aqueous solution containing sulfate anions, which is obtained by dissolving in water or in the recycle solution of the precipitated salts in the cooling stage of anhydrous sodium sulphate or decahydrate, or of a mixture of both, calculated in stoichiometric form with respect to the content of calcium ions after precipitation of magnesium hydroxide; the sludge obtained in this first stage of the treatment is filtered and washed, recycling the washing water for the suspension and dissolution of the reagents used in this same stage; and ii) in the second stage, the liquid phase is treated with the necessary amount of an aqueous solution of sodium hydroxide to adjust the pH and ensure a minimum content of magnesium in the liquid phase, then adding an aqueous solution of sodium carbonate calculated stoich
  • the liquid phase obtained at the end of the final preconcentration has a lithium concentration higher than approximately 35 g / dm 3 , it is diluted during the treatment to minimize the loss of lithium in the generated sludge and, at the end thereof, has a content of lithium comprised between approximately 10.5 g / dm 3 and approximately 12 g / dm 3 .
  • the concentration of lithium after the final preconcentration is low, as described in the Salar del R ⁇ o Grande brine example, and it is not economically feasible to have potassium chloride, the pre-concentrated brine is subjected to the chemical treatment described, adding less amount of water with the reagents.
  • the liquid phase obtained after treatment is concentrated in solar evaporation pools until reaching concentrations between approximately 65 g / dm 3 and approximately 75 g / dm 3 .
  • the liquid phase obtained after treatment can also be concentrated in solar evaporation pools until reaching concentrations between approximately 65 g / dm 3 and approximately 75 g / dm 3 .
  • This concentrated brine can be transported to sites with good industrial infrastructure and has very low impurity content which facilitates the operation and minimizes the cost of obtaining compounds of very pure lithium.
  • the alternative of transporting preconcentrated brine with more than approximately 35 g / dm 3 of lithium to places with industrial infrastructure has important advantages since the economic technical point of view; in this case the chemical treatment is carried out in the same plant where the final concentration process is executed in mechanical evaporation equipment, and the concentrated brine also reaches concentrations between approximately 65 g / dm 3 and approximately 75 g / dm 3 , it has low impurity content and it is obtained in less time.
  • the process object of this invention allows to select for each case the best alternative of application of the seven stages that it comprises. For all possible alternatives, it has low mechanical and thermal energy requirements.
  • the process has a degree of recovery comprised between approximately 65% and approximately 75%.
  • the process object of the present invention is applicable on an industrial scale and is a procedure of minimum environmental impact, mainly because it is executed without return of exhausted and / or adulterated brine or any other liquid effluent when salting.
  • the present invention comprises a process for the extraction and processing of natural brines which aims to meet the conditions necessary from the point of view of the process, to be sustainable over time.
  • natural brines in general and in particular for those contained in any saline body of the Puna Argentina, the Venezuelan Altiplano, the Atacama Desert or any evaporite, this is achieved based on the following:
  • the pumping can be executed from a natural well constructed by excavating a shallow tank on the surface of the crystalline core of a free aquifer and / or from a deep well constructed with an equipment of drilling.
  • the process object of the present invention consists of a succession of stages that alternate preconcentration processes with crystallization and precipitation of salts in solar evaporation pools, with cooling processes, pre-treatment and treatment of preconcentrated brine, to end with a final concentration process of treated brine.
  • the process object of the present invention prioritizes the maximization of the degree of recovery avoiding the crystallization and precipitation of salts containing the lithium ion in its chemical formula. This is fulfilled in all stages comprising the procedure.
  • the method described in the present invention also prioritizes the maximization of the degree of recovery, minimizing the lithium content in the wetting solution retained by the crystals obtained post-curing and post-washing in the concentration and cooling processes, and optimizing the filtering operations and washing of the sludge obtained in the pre-treatment and treatment processes of the pre-concentrated brines.
  • the ionic ratios p / p corresponding to the brines contained in the majority of the salt flats, have magnesium / lithium values of less than 20, sulphate / lithium less than 70, boron / lithium less than 1.5. and potassium / lithium less than 40.
  • the process object of the present invention consists of the execution of the following stages:
  • the initial preconcentration and final preconcentration steps are concentration and fractional crystallization processes that use solar evaporation pools.
  • These stages may include one or more sub-stages defined by the concentration of lithium in the brine that enters the sub-step, and lithium concentration of the brine that leaves it.
  • each sub-step can be executed with one or more pools according to the volume of natural brine that is processed, the recommended size for the construction and operation of the pools, and the need to optimize the periodic process of harvesting the crystals deposited in the bottom of them.
  • stages of concentration after treatment and final concentration can also be executed using solar evaporation pools, with the same considerations described for the initial preconcentration and final preconcentration stages; but if it is chosen to transport the pre-concentrated or pre-concentrated brine and pre-concentrated to a place with better industrial infrastructure, these stages will be executed in mechanical evaporative crystallizers assisted with thermal energy.
  • Stage I begins by pumping natural brine into the pool (s) of its first sub-stage.
  • concentration of lithium in the pool (s) of the last sub-stage of this stage is that which corresponds to a considerable reduction in volume, preferably a concentration of lithium close to the maximum possible to reach without crystallizing and precipitating in This sub-step salts containing the lithium element in its chemical formula.
  • the volume of brine with initial preconcentration leaving stage I can result in a value between about 3% and about 20% of the volume of natural brine pumped to the brine. (s) pool (s) of its first sub-stage.
  • this period ends between June 1 and July 31 of the year in which the following period begins, which corresponds to the period of obtaining brine with initial preconcentration. This is so to minimize the size of the pools constructed especially for the accumulation of brine with initial preconcentration.
  • mechanical crystallization equipment is used due to cooling, there are no conditions for the end date of this loading period.
  • the duration of this period is a function of the concentration of lithium at the beginning and end of the stage, at the height of free brine that is specified for the operation of the wells of each sub-step, to the retention of brine in the bed of crystals deposited at the bottom of each pool and at the average evaporation rate during the loading period.
  • each well generates a concentrated liquid phase flow rate, which depends on the lithium concentration at which the well operates, the flow rate and the lithium concentration of the brine entering the well, and the rate of evaporation. But of this total flow, the pools only deliver the flow corresponding to the free liquid phase, retaining the entrapped flow in the effective porosity of the crystal bed and the flow rate corresponding to the wetting solution associated with the crystals. As the rate of evaporation varies throughout the year, for the same concentration of lithium in the brine that enters the well, the flow of this brine must change to keep the concentration of lithium at which the well operates constant.
  • the pool system In the case that it is necessary to process a minimum flow rate with a constant lithium concentration, as it may be the case of the existence of a rising well, the pool system should be designed for the average evaporation rate of the months with the lowest values , and another source of brine must be available, for example, pumping from a shallow tank or from a deep well. In any of these cases, if it is intended to maintain constant the concentration and flow rate of brine delivered by the stage, the level of the liquid phase of the wells it comprises must be adequately modified. Only in case the cooling stage is necessary and the natural conditions are chosen, this period must end between May 15 and 31 of each year for the same region.
  • the free liquid phase is pumped to an auxiliary pool with the capacity to also contain the drained brine from the crystal bed and the water of washing the precipitated salts.
  • the area of the auxiliary pool must be equal to the area of the pool that is in the process of cleaning.
  • the crystals are drained by ditching and the drained brine is also pumped to the auxiliary well.
  • the liquid phase to which the pool in the washing process operates has a lithium ion concentration greater than approximately 1.5 mg / dm 3 , it is necessary to wash the crystals by immersion adding a volume of water, preferably fresh water, equivalent to estimated volume for the effective porosity of the post-squeezed crystal bed.
  • the crystals, after washing, are drained again by ditching and all the washing water is pumped to the auxiliary pool.
  • the post-stretched and / or post-washed crystals are harvested and matched in an area specially designed for their accumulation for later use.
  • the brine contained in the auxiliary well is pumped back into the well that was cleaned, and the auxiliary well is used to clean another well.
  • the crystallized and precipitated salts in the first pools of initial preconcentration generally contain more than about 95% sodium chloride. Particularly those that crystallize and precipitate in pools that reach a lithium ion concentration of less than approximately 2.5 g / dm 3 , are those used to produce salt for human consumption, salt for industrial use, salt breads for direct use in livestock and as raw material for the production of mineralized salt for use in livestock.
  • stage V treating directly as described below, this brine with initial preconcentration. Otherwise, the procedure continues as described below.
  • stage I The concentration of sulphate in the liquid phase delivered by stage I depends on the temperature of the liquid phase and, consequently, varies throughout the year. When this concentration is between approximately 10% and approximately 20% higher than the concentration of sulfate anions that this liquid phase has after being cooled to approximately -7 ° C, it is necessary to execute stage I I. Otherwise, Stage II is not executed and the procedure continues with the execution of stage II I.
  • Stage II consists of a process of cooling the brine with initial preconcentration.
  • This cooling process can be executed continuously, using mechanical equipment of crystallization by cooling, decreasing the temperature of the pre-concentrated brine to temperatures between approximately -8 ° C and approximately -6 ° C.
  • the solids separated from the liquid phase mechanically are washed with a mass of fresh water approximately equal to 30% of the drained crystal mass.
  • the washing water is mixed with the liquid phase obtained and pumped to stage II I.
  • the crystals washed and drained mechanically are packed, and then used as raw material for the production of sodium sulfate and / or potassium sulphate. and / or potassium chloride.
  • Sodium sulphate is used mainly in the detergent industry and in the pulp industry.
  • Potassium sulfate and potassium chloride are used as fertilizers in agriculture.
  • the sodium sulfate obtained in this step is used as a reagent in the treatment corresponding to step V, which is described below; if it would be convenient to sell this sodium sulfate, the sulfate anions required in stage V may come from mirabilite containing sodium sulfate decahydrate and / or thenardite containing anhydrous sodium sulfate, minerals available, for example, in the aforementioned geographical region. .
  • the cooling process comprising stage II can also be executed taking advantage of low minimum and minimum absolute temperatures less than approximately -10 ° C and approximately -17 ° C, respectively, characteristics of the months of June and July in the high Cordillera to more than 3,600 meters above sea level, where more than 90% of the existing salt deposits in the Region are located.
  • This operation is carried out in natural crystallizers consisting of vats of large and shallow area of approximately 0.50 m, with leveled floors and floors and walls smoothed and waterproofed in natural or artificial form, for example, preferably with PVC or with membranes of HDPE polyethylene, minimizing the losses of the contained brine.
  • the brine is charged with initial preconcentration and left exposed to the natural cold during a time interval preferably comprised between approximately 7 and approximately 9 days.
  • salts containing, among other ions crystallize and precipitate to the sulfate anion.
  • the free liquid phase and the one obtained by runoff is pumped into accumulation pools from where it is fed to the pretreatment plant.
  • the drained crystals are washed by immersion, adding a quantity of fresh water to the crystallizers, preferably equal to that estimated for the effective porosity of the bed. of precipitated crystals.
  • the wash water obtained by runoff is also pumped to the same accumulation ponds.
  • the washed and drained crystals are harvested from the crystallizers and are packed, and then used as described for the use of mechanical crystallization equipment by cooling.
  • the free liquid phase and that obtained in this stage has a mass ratio of sulphate / lithium concentrations whose value is generally between approximately 10% and approximately 40% of the value corresponding to the natural brine.
  • the amount of reagents needed and the amount of sludge generated in the pretreatment are reduced, if the natural brine or the brine with initial preconcentration is pretreated. This, in addition to reducing the environmental impact of the process, maximizes the degree of recovery by minimizing the losses associated with the water of wetting of the generated sludge.
  • Stage II I consists of the chemical pretreatment of the brine resulting from stage II, in order to further reduce the value of the mass ratio of sulphate / lithium concentrations.
  • the brine is loaded in a stirred reactor, and mixed with the stoichiometric amount of cations that associate with the sulfate ions to form an insoluble salt; these cations are fed to the reactor in the form of an aqueous solution.
  • this pretreatment is carried out by stoichiometrically adding an aqueous solution of calcium chloride or an aqueous solution of barium chloride, in concentrations close to those corresponding to saturation, preferably of the order of approximately 90% of the value corresponding to the of saturation at room temperature; the solid and liquid phases of the heterogeneous mixture obtained are separated by centrifugation or filtering, washing the solid phase with an amount of fresh water approximately equal to one third of the mass of the generated sludge.
  • stage I II can also be carried out in continuous reactors and continuous solid liquid separation systems. The liquid phase and the washing water are mixed and pumped into the pool (s) of the first sub-stage of stage IV.
  • the solid phase obtained from the pretreatment can be calcium sulphate, which can be marketed as agricultural gypsum or barium sulfate, which is used as a filler material in rubber products, in paints as a permanent target, in linoleum and , among other applications, such as pharmacopoeia.
  • stage IV it is possible to continue the process of concentration and fractional crystallization in solar evaporation pools, thanks to the reduction of the sulphate content of the pretreated liquid phase.
  • sodium chloride and potassium chloride can crystallize and precipitate; in the following one can add the crystallization and precipitation of carnallite and in the next one, if a further sub-step, bischofita, would be convenient.
  • the concentration of lithium reached in this stage is the maximum possible to reach without precipitating salts that contain the lithium element in its chemical formula.
  • the mass ratio of magnesium / lithium concentrations by the crystallization and precipitation of magnesium and potassium salts, and the liquid phase is able to be subjected to a chemical treatment with the minimum possible addition of reagents to reduce the contents of magnesium, calcium, sulphate and boron.
  • the wells included in this stage also have a period of loading, a first period of operation without harvest and cleaning periods that alternate with the periods without subsequent harvest.
  • the procedure considers the alternative of transporting this brine to places with industrial infrastructure, for example, locating the raw and purified plants in the vicinity of a power plant making cogeneration possible, where stages V, VI and VII will be executed with greater efficiency.
  • this alternative has important advantages based on the considerations detailed below, when transporting a preconcentrated brine with, for example, about 2.78% w / w lithium:
  • stages VI and VII of final concentration are executed in evaporative crystallizers assisted with thermal energy. Under these conditions a greater recovery is achieved and approximately 15.5 t of distilled water are generated per ton of lithium carbonate; the distilled water obtained is used in the washing of the crystallized salts in stages VI and VI I.
  • the greater recovery resulting from the more efficient execution of the treatment and from stages VI and VII in a site with industrial infrastructure means lower specific consumption of reagents and lower specific generation of sludge.
  • the treated brine that has low content of calcium, magnesium and sulfate is concentrated in evaporative crystallizers assisted with thermal energy.
  • the concentrated brine with a lithium concentration between approximately 65 g / dm 3 and approximately 75 g / dm 3 and with a low content of impurities is obtained approximately 362 days before. If, in addition, the lithium carbonate plant is located on the same site, this product is obtained approximately 17 months after starting the pumping at the first pools of stage I, when the pools operate with approximately 0.20 m height of free brine.
  • this alternative also allows the possibility of purging and concentrating part of the recycle of the crude reactor to obtain other chemical species of interest present in the natural brine, such as, for example, rubidium and cesium.
  • Stage V consists of the chemical treatment of the brine obtained in the final preconcentration stage.
  • the aim of this treatment is to reduce the magnesium, calcium and sulfate contents to very low values, and also to reduce the boron content.
  • Stage V is executed in two sub-stages.
  • sub-step V.1 consists in charging the preconcentrated brine to a reactor provided with very good agitation and, maintaining the agitation, first add an amount of water to reduce the lithium concentration by about 50%, and then add a slurry of lime containing an amount of calcium hydroxide preferably calculated with approximately 10% in excess of the stoichiometric value to precipitate the total magnesium ions. Immediately afterwards and maintaining the agitation, add an aqueous solution containing a quantity of sulfate anions calculated in stoichiometric form to precipitate the calcium ions remaining in the liquid phase, after the addition of calcium hydroxide.
  • the calcium hydroxide is preferably added in the form of a lime slurry prepared in a preferred manner by suspending one ton of solid in a volume comprised between approximately 2.5 m 3 and approximately 3 m 3 of water, preferably fresh water, washing water of the sludge or recycled mother water from the "raw” and purified lithium carbonate plants.
  • the sulfate anions are added as an aqueous solution prepared, for example, by dissolving between about 0.300 tons and about 0.370 tons of anhydrous sodium sulfate in about one cubic meter of water, preferably fresh water, mud wash water or mother liquor. recycling of "crude” and purified lithium carbonate plants.
  • sulfate anions can also be done partially or totally by adding: i) sodium sulfate separated in the cooling stage, either as anhydrous sodium sulfate or as sodium sulfate decahydrate, reducing reagent costs) ; ii) mirabilita, thenardita or a mixture of these minerals, if they do not contain water soluble calcium, magnesium or boron compounds.
  • the solid and liquid phases of the heterogeneous mixture obtained after treatment are separated by centrifugation or filtration, preferably using a filter press, washing the solid phase with an amount of water, preferably fresh water, approximately equal to approximately 2 m 3 / t of solids dry obtained after treatment; the washing water is used to dilute the preconcentrated brine and / or to add the reagents used in this sub-step V.1.
  • the use of the filter press ensures that the lithium loss in the post-wash mud is less than about 0.20% of the dry mud mass. This leads to a degree of recovery in the treatment stage greater than about 95%.
  • the liquid phase obtained in the sub-step V.1 has a lithium concentration preferably comprised between approximately 11 g / dm 3 and approximately 13 g / dm 3 .
  • the concentration of lithium in the liquid phase delivered by stage IV can be less than about 35 g / dm 3 and, in some cases, much lower as in the case of the brine from the Salar del R ⁇ o Grande.
  • the process comprising this sub-step of the process consists in treating the brine obtained in V.1 in a stirred reactor to which is added the minimum necessary amount of an aqueous solution of sodium hydroxide with a low concentration, preferably less than about 150 g / dm 3 to ensure its stability, in order to increase the pH to approximately 1 1, 2 and thus minimize the content of magnesium ions in the liquid phase.
  • an aqueous solution of sodium carbonate is added, with the purpose of minimizing the content of calcium ions in the liquid phase.
  • the amount of sodium carbonate is calculated stoichiometrically from the content of calcium ions; the concentration of the aqueous sodium carbonate solution should preferably be equal to about 90% of the value corresponding to the saturation at room temperature. Then, and maintaining the stirring, an aqueous solution of barium chloride is added which preferably contains the stoichiometric amount of reagent necessary to precipitate all of the sulfate anions contained in this brine; the concentration of the aqueous solution of barium chloride should preferably be equal to about 90% of the value corresponding to the saturation at room temperature.
  • the heterogeneous mixture obtained is separated by centrifugation or filtering, washing the solid phase with a mass of fresh water approximately equal to one third of the mass of the generated sludge.
  • the processes included in sub-steps V.1 and V.2 of the process object of the present invention can also be executed in continuous reactors and continuous solid solid separation systems.
  • the preconcentrated and treated brine can be categorized as a brine with a low content of impurities considering that the mass ratios of ion / lithium concentrations are below the following values:
  • This brine is not saturated, has low density and low content of dissolved total solids (STD).
  • STD dissolved total solids
  • the treatment plant When it is not possible to reach in the pre-concentrated brine a lithium concentration greater than approximately 35 g / dm 3 without crystallizing salts containing lithium in its chemical formula, the treatment plant must be located in the vicinity of the site where the ponds operate. If, in addition, the brine entering the stage V is such that after treatment in the sub-steps V.1 and V.2 has a lithium concentration greater than about 9 g / dm 3 the process object of the present invention presents as alternative the obtaining of "crude" lithium carbonate from the preconcentrated and treated brine obtained in stage V.
  • the carbonate plant of "crude” lithium will be located in the same place where the pools and the treatment plant operate.
  • the purification of this "crude” by applying the purification process with carbon dioxide, filtering the lithium bicarbonate solution obtained after the carbonation process and using ion exchange resins to reduce the calcium content in this solution, will result in a product of high purity.
  • the liquid phase that delivers stage IV has a lithium concentration greater than approximately 35 g / dm 3
  • the alternative of transporting preconcentrated brine to sites with better industrial infrastructure is always better.
  • stages VI and VII it is convenient to continue with stages VI and VII to feed the lithium carbonate plant with concentrated brine and with a lower content of impurities.
  • stage IV In the case of not transporting preconcentrated brine due to the low concentration of lithium in the brines delivered by stage IV, if you choose not to produce "crude” lithium carbonate from the liquid phase that delivers stage V, even if the lithium concentration in this brine is greater than about 9 g / dm 3 , continue with the execution of stages VI and VII of final concentration, until reaching in the brine a concentration of lithium ion comprised between approximately 65 g / dm 3 and 75 g / dm 3 .
  • These stages can be executed in a system of solar pools in which crystals of sodium chloride will crystallize and precipitate mainly.
  • FL II Liquid phase that delivers stage II.
  • FL IV Liquid phase that delivers stage IV.
  • FL VII Liquid phase that delivers stage VII.
  • this alternative also offers the possibility of concentrating the recycling of the raw and purified product plants in such a way that it is possible to transport the same amount of liquid that is transported to the lithium carbonate plants to the pool sector; In this way the transport system between ponds and plants is optimized.
  • This alternative also allows the possibility of purging and concentrating part of the recycle of the crude reactor to obtain other chemical species present in the natural brine, for example, rubidium and cesium.
  • Figure 8 contains the flow diagram of the process object of the present invention, whose main characteristics are the following:
  • stage V of the brine with final preconcentration in two sub-stages.
  • first sub-step V.1 using as reagents calcium hydroxide and sodium sulfate, or other soluble sulphates in water of chemical or mining origin such as mirabilita or thenardita, to reduce the contents of magnesium, calcium and boron.
  • second sub-step V.2 using a minimum amount of sodium hydroxide, sodium carbonate and barium chloride to minimize the magnesium, calcium and sulfate contents.
  • the process object of the present invention allows to produce lithium carbonate and / or lithium hydroxide with the quality specifications required by different users, in a single plant located in a site with good industrial infrastructure, to which it is transported: i) brine preconcentrated with more than 35 g / dm 3 of lithium to perform stages V, VI and VI I and then produce the lithium compounds, and ii) brine treated and concentrated with more than 65 g / dm 3 of lithium to produce the Lithium compounds.
  • the volume needed to start the ECL is calculated based on the lithium ion content of the natural brine to be processed, and the volume to be obtained from concentrated brine at approximately 75 g / dm 3 , at the end of the process.
  • This final volume must be such that it allows to verify the process of obtaining some of the pure lithium compounds, for example, lithium carbonate.
  • this volume should be greater than about 3 dm 3 .
  • the initial volume for the field and laboratory tests must be greater than:
  • the lithium content is between approximately 350 mg / dm 3 to approximately 1,500 mg / dm 3 . This determines that the initial volume for the ECL is generally between approximately 220 dm 3 and approximately 920 dm 3 .
  • VSM Volume of solution of wetting of the precipitated salts
  • ⁇ Amount of water evaporated by the pond it is calculated by means of a mass balance.
  • Water for pumping in order to avoid crystallization in pipes and fittings, it is considered equal to approximately 0.5% of the flow of unsaturated brine pumped, and equal to approximately 1% of the flow that is pumped if it is a phase saturated liquid.
  • volume of the effective porosity of the crystal bed it is estimated based on the content of magnesium chloride in the liquid phase, according to the patent presented by UIrich E. G. (1971).
  • volume of liquid phase delivered by any of the solar evaporation ponds included in the procedure it is calculated by means of a mass balance that considers the volume of trapped brine, volume of effective porosity, and the volume of solution of wetting for the operation of the first period without harvest, and the percentages of recovery indicated in the previous point for the following periods without harvest. For any post-harvest operation period it is compared with the corresponding value extrapolated from the ECL.
  • Total volume of precipitated salts It is calculated with the mass and density, dry base, of the precipitated salts, the volume of the total porosity, volume of trapped brine plus the estimated empty space in approximately 5% of the total porosity, and the calculated volume of wetting solution.
  • Total volume of precipitated salts per unit mass calculated by dividing the total volume of precipitated salts by the mass of precipitated salts.
  • Average evaporation rate in the period it is obtained through tests, which are carried out over a year, in containers with a defined evaporation area and volume, determining the amount of water evaporated due to differences in weight. These tests are carried out for the different liquid phases to which the ponds operated in stages I, IV, VI and VII of the process operate, and the results are corrected with a factor preferably equal to 0.70 to obtain the value corresponding to the operation of the pools.
  • an assay is detailed to obtain values of evaporation rates at different concentrations and chemical composition of liquid phases.
  • Annual mass of water that evaporates each solar evaporation pool included in the procedure it is calculated with a mass balance that considers the annual mass of brine that enters, the annual mass of brine that it generates, the mass of precipitated solids, the mass annual water for pumping the brine that enters and, except for the first period without harvest, the water necessary to wash the precipitated salts after one year
  • Salt bed growth at the bottom of the ponds in two years it is calculated with the total volume of precipitated salts and the area of the pond. The result is preferably added approximately 0.15 m, which is the height of salt that is estimated to be left as a sacrifice for protection of the waterproofing blanket.
  • Free brine height it is predetermined.
  • the loading time of the pool system depends on this variable.
  • Charge time for each solar evaporation well included in the procedure, it is calculated with the final volume of the liquid phase for the charge period and the total annual volume of liquid phase generated by the well.
  • stages II, cooling; I II, pretreatment; and V, treatment are also obtained by extrapolation of the information obtained in the field and laboratory tests and the annual volumes delivered by stages I and IV.
  • stage II • in the example 1 the cooling process included in stage II is executed with a mechanical equipment of crystallization by cooling and the concentration corresponding to stages VI and VI I is executed in pools of solar evaporation.
  • stage II the cooling process included in stage II is executed with a mechanical cooling crystallization equipment, the pre-concentrated brine is transported and stages V, VI and VI I are executed in a site with industrial infrastructure.
  • stage I I the cooling process included in stage I I is executed taking advantage of the natural conditions and the concentration corresponding to stages VI and VII is carried out in solar evaporation ponds.
  • This Salar is a salt deposit located in the Puna Region of Argentina at more than 3,900 meters above sea level.
  • the brine (FL (I)) disposed in the three pools is left exposed to the solar evaporation process 4,050 meters above sea level for 10 days. On day 19, the precipitated crystals are separated from the liquid phase obtaining:
  • Theoretical precipitated mass 10,041 g Deviation 0.039 Mass of harvested crystals 10,855 g The specific amount of good quality pool salt that can be obtained in this Sub-step is of the order of 5.5 t / t of CLE, where: CLE: lithium carbonate equivalent
  • the brine FL (1.1) arranged in two tanks is left exposed to continue with the natural evaporation process at 4,050 masl for 23 days. On day 23, the precipitated crystals are separated from the liquid phase obtaining:
  • the precipitated solids SP (1.1) and SP (I.2) contain more than 90% of NaCl, then the solar evaporation processes (1.1) and (I.2) could be included in a single sub-step of the initial pre-concentration stage
  • the preconcentrated brine FL (I .2) is cooled to -7 ° C in a freezer located at 2,000 masl, for a period of 3 days, obtaining the following.
  • the specific amount of potassium salts of (chloride and sulfate) that can be obtained in this step is greater than 3.5 t / t of Lithium Carbonate (CL).
  • Liquid Phase FL (II I) that is weighed, density is measured, volume is calculated and analyzed:
  • the solids separated after treatment contain:
  • the solid obtained after addition of barium chloride is barium sulfate mixed with less than 10% of water-soluble substances.
  • SP (III) barium sulphate is obtained as a byproduct.
  • the FL (II I) is transported to the Salar de Diablillos on the 66th and at noon two plastic boxes with an area equal to 0.33 cm x 0.52 cm each are left loaded, to continue with the natural evaporation process and fractional crystallization.
  • the solids obtained are washed with a volume of water approximately equal to half of the volume that has post filtered.
  • the wash water is concentrated until it reaches the same lithium concentration as the FL (IV.1).
  • the resulting volume of the FL (IV.1) is:
  • the solid phase SP (IV.1) contains 96% NaCl and 3% KCI.
  • the liquid phase FL (IV.2) that is weighed, the density is measured, the volume is calculated and analyzed:
  • the solids obtained are washed with a mass of water approximately equal to half of the mass that has post filtered.
  • the wash water is concentrated until reaching the same lithium concentration of the FL (IV.2).
  • the resulting volume of FL (IV.2) is: 35.32 dm 3
  • the precipitated solids contain 12% potassium chloride and 76% sodium chloride and 12% carnallite.
  • the liquid phase FL (IV.3) that is weighed, the density is measured, the volume is calculated and analyzed:
  • the liquid phase FL (IV.4) that is weighed, the density is measured, the volume is calculated and analyzed:
  • the solids obtained are washed with a volume of water approximately equal to 60% of the volume that has post filtered.
  • the wash water is concentrated until it reaches the same lithium concentration as the FL (IV.4).
  • the resulting volume of the FL (IV.4) is:
  • V (FL (IV.4)) 7,536 dm 3
  • the brine FL (IV.4) is subjected to a treatment to reduce the contents of magnesium, calcium and boron.
  • the obtained 7,536 dm 3 (FL (IV.4)) are placed in a plastic container with a capacity of 30 dm 3 .
  • a suspension of calcium hydroxide prepared by suspending 1, 058 kg in 2,650 dm 3 of fresh water is added.
  • an aqueous solution prepared by dissolving 2,028 kg of anhydrous sodium sulfate in 5.5 dm 3 of fresh water at 35 ° C is added.
  • 754 cm 3 of a 4 N sodium hydroxide solution is added, ensuring a pH value greater than 1 1, 3.
  • the heterogeneous mixture obtained after treatment is separated by centrifugation obtaining the following.
  • the solids obtained are centrifuged, washed by suspending them in 9.5 dm 3 of fresh water and centrifuged again.
  • the wash water is concentrated until reaching the same lithium concentration of the FL (V.1).
  • the resulting volume of the FL (V.1) is:
  • V (FL (V.1)) 22,514 dm 3
  • Total post-wash mass SP (V. l) H 39%
  • the sludges SP (V.1) contain 62% calcium sulphate dihydrate and 24% magnesium hydroxide. By leaching these sludges with sulfuric acid and separating the phases, it is possible to obtain the following, per ton of lithium carbonate equivalent:
  • the amount of moles of sulphate required for step V.1 can be added in whole or in part as potassium sulfate and sodium sulfate obtained in cooling stage I I.
  • the amount of moles of sulphate required for step V.1 can be added in whole or in part as potassium sulfate and sodium sulfate obtained in cooling stage I I.
  • the cooling stage 17 moles of sulphate are obtained, and in the treatment stage it is necessary to add 14.3 moles of sulphate, which means that it is not necessary to incorporate sodium sulphate. as a reagent.
  • the 22,514 dm 3 obtained (FL (V.1)) are placed in a plastic container with a capacity of 30 dm 3 . Shaking manually with a plastic shovel, add an aqueous solution prepared by dissolving 306 g of barium chloride dihydrate in 1.4 dm 3 of fresh water. The heterogeneous mixture obtained is separated by filtration and washing, obtaining the following.
  • the liquid phase FL (includes the wash water) that is weighed, the density is measured, the volume is calculated and analyzed:
  • the precipitated solids SP (V.2) contain more than 95% barium sulfate dihydrate.
  • STAGE VI Concentration after treatment
  • the precipitated solids are washed with 400 cm 3 of water.
  • the wash water is concentrated until it reaches the lithium concentration in the FL (VII) and mixed with it.
  • the resulting volume of the FL (VI) is:
  • V (FL (VI)) 7.02 dm 3
  • the SP (VI) solids contain more than 98% of the sodium chloride.
  • the FL (VI) is left exposed to ventilation with forced convection in the laboratory, to continue the evaporation process.
  • the precipitated crystals are separated from the liquid phase obtaining the following.
  • the precipitated solids are washed with 500 cm 3 of water.
  • the wash water is concentrated until it reaches the lithium concentration in the FL (VII) and mixed with it.
  • the resulting volume of the FL (VII) is:
  • V FL (VII) 2.87 dm 3
  • SP solids (VI I) contain more than 98% sodium chloride.
  • Brackish water water that has a density less than 1 .100 g / dm.
  • stage I Auxiliary well for stage I: 390,000 m 2
  • This stage is executed in a mechanical equipment of crystallization by cooling and is detailed for the highest brine flow, that is, the one corresponding to the post harvest period for the operation of the pool system.
  • the cooling is carried out with a pre-cooling stage, in which the liquid phase cooled and with low content of sulphate anions, which leaves the refrigeration equipment at -7 ° C, interacts in a heat exchanger, with the brine to be cooled. It has an initial temperature of 16 ° C. As a result of this pre-cooling the brine to be cooled enters the crystallization equipment by cooling to 0 ° C.
  • Lithium concentration 4,680 g / dm 3
  • Liquid phase post Subou V.1 Volume (following periods without harvest): 210,198 m 3
  • Lithium concentration 1 1, 150 g / dm 3
  • Gypsum for agricultural use 1, 7 1
  • Lithium concentration 10,679 g / dm 3
  • the natural brine is not saturated and, consequently, the amount of solids crystallized and precipitated in stage I is low.
  • concentration of lithium reached in the initial preconcentration stage is of the order of 4.7 g / dm 3
  • later it was verified that with this brine it is possible to reach values of the order of 8 g / dm 3 This substantially reduces volume by reducing costs and facilitating the operation of stages II and I II.
  • This Salar is a salt deposit located in the Puna Region of Argentina at more than 3800 meters above sea level.
  • the lithium content in the natural brine with which the ECL is made is 0.380 g / dm 3 and the volume defined to start the test is 842 dm 3 .
  • the brine FL (i) is left exposed to the solar evaporation process until day 50. That same day the crystals of the liquid phase are separated, obtaining:
  • the harvested crystals are washed with 144 kg of fresh water. This mass of water is approximately equal to half the mass of crystals harvested. The wash water is concentrated until it reaches the same concentration of lithium as the FL (1.1).
  • the brine FL (1.1) is loaded in a pool and left exposed to continue with the solar evaporation process until day 78. On that day the solids are separated from the liquid phase, obtaining the following.
  • Vsm (1.2) 1, 3 dm 3
  • the harvested crystals are washed with 30 kg of fresh water. This mass of water is approximately equal to half the mass of crystals harvested. The wash water is concentrated until reaching the same concentration of lithium as the FL (I.2)
  • the FL (I .2) is transported to a laboratory where it is cooled to minus seven degrees centigrade (-7 ° C) in a freezer for a period of 18 days, obtaining the following.
  • the harvested crystals are washed with 1 kg of fresh water. This mass of water is approximately equal to half the mass of crystals harvested.
  • the wash water is concentrated until it reaches the same concentration of lithium as the FL (I II).
  • the concentration process is continued by solar evaporation, and on day 129 the phases are separated obtaining:
  • stage IV.2 did not crystallize salts containing lithium in its chemical formula, as evidenced by the low lithium content in the SP (IV.2) salts, in the laboratory it was verified that when about 200 evaporated cm 3 of water, the concentration of lithium in the liquid phase decreased indicating the crystallization of lytic carnallite, and the Mg / Li ratio also decreased, indicating the simultaneous crystallization of bischofite. This occurs because of the low concentration of potassium and the high concentration of magnesium. It was then decided to add to the FL (IV.2) an aqueous solution prepared by dissolving 1, 169 kg of KCI in 4,136 dm 3 of fresh water, obtaining:
  • the harvested crystals are washed with 4.6 kg of fresh water. This mass of water is approximately equal to half the mass of crystals harvested. The wash water is concentrated until it reaches the same concentration of lithium as the FL (IV.2).
  • the 7.95 dm 3 obtained (FL (IV.3)) are placed in a plastic container with a capacity of 30 dm 3 .
  • a suspension of calcium hydroxide prepared by suspending 1, 665 kg in 3,100 dm 3 of fresh water is added.
  • a solution prepared by dissolving 3.169 kg of anhydrous sodium sulfate in 6.3 dm3 of fresh water at 35 ° C aqueous solution is added.
  • the heterogeneous mixture obtained after treatment is separated by centrifugation, obtaining:
  • the 15.5 dm 3 obtained (FL (V.1)) are placed in a plastic container with a capacity of 30 dm 3 . Shaking manually with a plastic shovel, add 82 cm 3 of a 4 N solution (160 g / dm 3 ) of sodium hydroxide, verifying that the pH reaches 1 1, 2. Immediately after, and continuing with the agitation, an aqueous solution prepared by dissolving 55 g of sodium carbonate in 190 cm 3 of fresh water is added. Then, and without suspending the stirring, an aqueous solution prepared by dissolving 223 g of barium chloride dihydrate in 700 cm 3 of fresh water is added. The heterogeneous mixture is left to stand and then the precipitated solids are separated by vacuum filtration, obtaining:
  • the liquid phase FL (V.2):
  • Vsm (IV.2) 0.03 dm 3
  • the FL (V.2) is exposed to solar evaporation until reaching a lithium concentration of 37 g / dm 3 (3%) and it is obtained:
  • Vsm (VI) 0.20 dm 3 82 moles NaCl
  • the harvested crystals are washed with 1.1 kg of fresh water. This mass of water is approximately equal to half the mass of crystals harvested. The wash water is concentrated until it reaches the same concentration of lithium as the FL (VI).
  • the FL (VI) is exposed to solar evaporation until reaching a lithium concentration of between 75 g / dm 3 and 85 g / dm 3 . Once this final concentration is reached, the phases are separated, obtaining:
  • the harvested crystals are washed with 40 cm 3 of fresh water. This mass of water is approximately equal to half the mass of crystals harvested.
  • the wash water is concentrated until it reaches the same concentration of lithium as the FL (VII).
  • the calculation of the operative variables was made for an annual production of 10,000 tons of lithium carbonate equivalent using brine from the Salar de Pozuelos, when the cooling process included in stage II is executed with a mechanical equipment of crystallization by cooling and brine. preconcentrated and with more than 35 g / dm 3 is transported to a site with industrial infrastructure
  • Brackish water water that has a density lower than 1 .100 g / dm 3
  • This stage is executed in a mechanical equipment of crystallization by cooling and is detailed for the highest brine flow, that is, the one corresponding to the post harvest period for the operation of the pool system.
  • the cooling is carried out with a pre-cooling stage, in which the liquid phase cooled and with low content of sulphate anions, which leaves the refrigeration equipment at -7 ° C, interacts in a heat exchanger, with the brine to be cooled. It has an initial temperature of 16 ° C. As a result of this pre-cooling the brine to be cooled enters the crystallization equipment by cooling to 0 ° C. Under these conditions it is easy to demonstrate that, for a performance coefficient of the order of 60% of the ideal performance coefficient (Carnot), the mechanical energy required per ton of lithium carbonate produced is less than 0.09 Mwh.
  • Lithium concentration 7.186 g / dm 3
  • Gypsum for agricultural use 1, 2 1
  • the brine with initial preconcentration and with a concentration of lily equal to 35.364 g / dm 3 is transported to a site with industrial infrastructure where stages V, VI and VI I are executed.
  • Amount of sludge generated in sub-step V.1 per ton of lithium carbonate equivalent 3.95 1 Approximate quantity of products to be obtained by processing the generated sludge (expressed per ton of lithium carbonate equivalent):
  • Gypsum for agricultural use 2,3 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Non-Alcoholic Beverages (AREA)

Abstract

Un procedimiento de mínimo impacto ambiental y máxima recuperación de litio para la obtención de salmueras concentradas con mínimo contenido de impurezas a partir de salmueras que embeben los salares y salinas naturales, el procedimiento caracterizado porque comprende las etapas de: a) construir pozas de cristalización fraccionada por evaporación solar; b) llenar las pozas con salmuera natural; c) preconcentrar en forma inicial la salmuera natural hasta la máxima concentración de litio posible en la fase líquida sin que precipiten sales que contengan litio; d) enfriar la salmuera preconcentrada obtenida en c) asegurando la máxima precipitación de sales que contengan el anión sulfato; e) pretratar químicamente la fase líquida de la salmuera separada de las sales precipitadas por enfriamiento para minimizar los aniones sulfato en la fase líquida posenfriamiento; f) preconcentrar finalmente la fase líquida pretratada hasta la máxima concentración de litio posible en la misma sin que precipiten sales que contengan litio; g) tratar químicamente la fase líquida de la salmuera separada de las sales precipitadas en la etapa f) para minimizar la concentración de magnesio, calcio, boro y sulfato en la fase líquida; y h) concentrar la fase líquida obtenida en la etapa g).

Description

PROCEDIMIENTO DE MÍNIMO IMPACTO AMBIENTAL Y MÁXIMA RECUPERACIÓN DE LITIO PARA LA OBTENCIÓN DE SALMUERAS CONCENTRADAS CON MÍNIMO CONTENIDO DE IMPUREZAS A PARTIR DE SALMUERAS QUE EMBEBEN LOS SALARES Y SALINAS NATURALES CAMPO DEL INVENTO
El presente invento está relacionado con la extracción y el procesamiento de las salmueras naturales que saturan los sedimentos evaporíticos de origen químico y clástico, que conforman distintos tipos de acuíferos desarrollados en los cuerpos salinos de, por ejemplo, la Puna Argentina, del Altiplano Boliviano y del Desierto de Atacama. En particular, se refiere a un método de máxima recuperación y mínimo impacto ambiental para obtener salmueras con una concentración de ion litio de aproximadamente 80 g/dm3, con mínimo contenido de impurezas, atributo que las convierte en químicamente apropiadas para la obtención de compuestos de litio de alta pureza. Más particularmente, el presente invento también comprende un método de recuperación y mínimo impacto ambiental para obtener otras sales de interés para su uso en agricultura, en ganadería y en la industria.
ANTECEDENTES DEL INVENTO
En particular, los salares y las salinas de la Puna Argentina, del Altiplano Boliviano y del Desierto de
Atacama son depósitos que yacen en cuencas endorreicas que funcionaron como receptáculo de aportes de material insoluble y líquidos del marco tectono-volcánico. Estos aportes se acumularon como sedimentos evaporíticos químicos y sedimentos clásticos, donde se desarrollan reservónos de agua subterránea, conformadas por salmueras portadoras de una gran variedad de iones. Como resultado de este proceso de acumulación, un mismo cuerpo salino puede contener uno o más acuíferos libres, semiconfinados y/o confinados, que pueden estar o no interconectados y, además, pueden presentar diferente permeabilidad para que la fase líquida, i.e. salmuera intersticial, circule a través de ellos con mayor o menor facilidad.
Debido a la acumulación de los sedimentos de origen químico, estos cuerpos salinos son portadores de importantes reservas de minerales sólidos de interés, tales como ulexita, tincal, colemanita, mirabilita, thenardita, halita y otros. Además, la salmuera que ocupa el espacio intersticial de los acuíferos, es una solución cloruro sódica densa, prácticamente neutra y homogénea, que puede incluir otros aniones tales como sulfato, boratos, carbonato o bicarbonato y otros cationes tales como potasio, litio, magnesio, calcio, bario, estroncio, hierro, rubidio y cesio. La concentración de iones en la salmuera contenida en los acuíferos, es el resultado del balance entre la recarga que recibió y recibe, y lo que pierde por evapotranspiración y/o descargas que se producen con otros tipos de acuíferos superiores o inferiores y/o drenaje a otras subcuencas hidrogeológicas. Esto explica el diferente quimismo que tienen los cuerpos salinos referidos que, claramente, son sistemas hidrogeológicos complejos, dinámicos y frágiles.
Por lo descripto, es muy importante que los procesos de extracción y procesamiento de las salmueras contenidas en estos cuerpos salinos, minimicen el impacto de las perturbaciones que necesariamente ocurrirán como resultado de: i) la extracción de salmuera por bombeo; ii) el uso de reactivos; y iii) el manipuleo y disposición final de efluentes. La experiencia enseña que los procesos que cumplen con estos requerimientos, son los que apuntan a lograr máxima recuperación con mínimo impacto ambiental, privilegiando la separación natural de las especies químicas de interés, minimizando el uso de reactivos y minimizando el uso de fuentes primarias de energía no renovables, al priorizar el uso de los recursos energéticos renovables y las condiciones climáticas disponibles en el lugar de localización de los salares y salinas.
Los recursos mineros contenidos en los cuerpos salinos son recursos naturales no renovables porque su disponibilidad natural, concepto éste medible y cuantificable, disminuye a medida que evoluciona su extracción. Entonces, además de que el proceso de extracción y procesamiento que se aplique cumpla con lo especificado en el párrafo anterior, se deben cumplir otras condiciones necesarias para asegurar la sostenibilidad de la operación en el tiempo. Estas otras condiciones son: privilegiar el empleo de Recursos Humanos de las poblaciones cercanas al lugar de localización del yacimiento y hacer las previsiones necesarias para que las generaciones futuras cuenten con los medios económicos para resolver los problemas que pueda ocasionar la explotación de recursos naturales no renovables.
El interés actual en la obtención de compuestos de litio, ha impulsado el inicio de varios proyectos tendientes a la extracción del litio contenido principalmente en los salares y salinas de la Puna Argentina, del Altiplano Boliviano y del Desierto de Atacama en Chile. Entre las principales razones de este interés por el litio, se destacan las siguientes:
I. Se emplea en una amplia variedad de aplicaciones industriales como, por ejemplo, materia prima para la fabricación lozas, vidrios, porcelanas, esmaltes y otros.
II. Se emplea en la fabricación de acumuladores de alta densidad de energía que se utilizan como:
· una forma de acumular la energía proveniente de fuentes renovables no permanentes tales como energía solar, eólica, mareomotriz, etcétera;
• componentes fundamentales de los dispositivos portátiles;
• una forma de acumular energía en momentos de baja demanda para su utilización posterior;
• una solución donde no hay una fuente primaria de energía.
III. La posibilidad de utilizar acumuladores de alta densidad de energía en vehículos eléctricos permitirá una mayor eficiencia en el uso de las fuentes primarias de energía y una considerable reducción en la emisión de Gases de Efecto Invernadero (GEI) en zonas urbanas.
IV. Es precursor del tritio, isótopo del hidrógeno empleado en la generación de energía por fusión nuclear:
Figure imgf000004_0001
La fusión de deuterio y tritio es la más prometedora de las reacciones de fusión del hidrógeno, pero no se produce tritio en la naturaleza, ya que tiene una semivida de aproximadamente 10 años. La fuente más prometedora de tritio, parece ser la reproducción de tritio a partir del litio-6, por el bombardeo de neutrones en la reacción:
Figure imgf000004_0002
V. Las sales de litio, particularmente el carbonato de litio y el citrato de litio, se emplean en el tratamiento de la manía y la depresión bipolar. Es un estabilizador del estado de ánimo.
VI. El cloruro de litio y el bromuro de litio tienen una elevada higroscopicidad por lo que son excelentes secantes.
VII. El estearato de litio es un lubricante de propósito general en aplicaciones a alta temperatura.
VIII. El litio es un agente altamente empleando en la síntesis de compuestos orgánicos.
IX. El hidróxido de litio se usa en las naves espaciales y submarinos para depurar el aire extrayendo el dióxido de carbono.
X. Es componente común de las aleaciones de aluminio, cadmio, cobre y manganeso empleadas en la construcción aeronáutica, y se ha empleado con éxito en la fabricación de cerámicas y lentes como las de los telescopios.
Pero no es el litio la única especie de interés contenida en las salmueras naturales. Dependiendo de la composición química y del procedimiento de extracción y procesamiento que se aplique, también es posible obtener los siguientes productos:
1) Cloruro de sodio: Se emplea como materia prima para producir sal de consumo humano, como sal para uso industrial, como panes de sal para uso directo en ganadería y como materia prima para la producción de sal mineralizada para uso en ganadería.
2) Sulfato de sodio (99 %): se emplea principalmente en la industria de los detergentes y en la industria papelera.
3) Cloruro de potasio (95 %): Se emplea como fertilizante. 4) Sulfato de potasio: También se emplea como fertilizante.
5) Magnesita (carbonato de magnesio): Si la salmuera natural tiene un alto valor de la relación magnesio/litio, por ejemplo mayor de aproximadamente 30, es necesario hacer un pretratamiento con carbonato de sodio o trona. La fase sólida generada en este pretratamiento es magnesita que se emplea en siderurgia, en la construcción, en la industria fotográfica. Además, de la magnesita se obtiene el magnesio de uso en metalurgia para la obtención de aleaciones livianas, y sales de magnesio que se emplean principalmente en la industria farmacéutica.
6) Sales de calcio y magnesio: Los lodos generados en el proceso de tratamiento, contienen sulfato de calcio e hidróxido de magnesio. A partir de estos lodos es posible obtener: i) sulfato de magnesio que se emplea como fertilizante; y ii) sulfato de calcio que se emplea como yeso de uso agrícola.
7) También, dependiendo de la composición química de la salmuera y del proceso que se aplique, es posible obtener sales de rubidio y cesio.
En forma general, los procesos conocidos para la extracción y el procesamiento de las salmueras contenidas en los salares, inicalmente apuntan a la obtención de carbonato de litio y/o hidróxido de litio y/o cloruro de litio, como sólidos de alta pureza. El litio en la salmuera está como ion litio [Li+], y los procesos referidos se pueden identificar como pertenecientes a una de las siguientes categorías:
• Procesos en los que el carbonato de litio "crudo" y/o el hidróxido de litio "crudo" se obtienen a partir de una salmuera concentrada y tratada convenientemente, y luego son sometidos a un proceso de purificación. Estos procesos pueden denominarse de obtención-purificación (procesos O-P).
· Procesos en los cuales el litio se separa de una salmuera natural acondicionada o de una salmuera preconcentrada y acondicionada, mediante cualquier proceso de separación y, a partir del producto resultante de este proceso, se obtienen los compuestos de litio de interés, tales como carbonato de litio, hidróxido de litio o cloruro de litio. Entre los procesos de separación que se emplean y los que se proyecta emplear, es posible mencionar separación mediante torres de absorción selectiva, separación por procesos electroquímicos, separación química por precipitación de sales de litio de baja solubilidad, tal como el fosfato de litio, extracción por solvente, procesos de extracción supercrítica. En todos estos procesos, que pueden denominarse procesos de separación-obtención (procesos S-O), la salmuera es acondicionada antes de iniciar el proceso de separación del litio.
En las Figuras 1 a 7 se muestran en forma generalizada los procesos que se emplean en el arte previo, y los que se propone emplear para la extracción y el procesamiento de las salmueras contenidas en los salares. Si bien los procesos O-P incluidos en las Figuras 1 , 2 y 3 son sin devolución de salmuera adulterada al salar, hay procesos O-P con devolución; en estos casos el caudal que retorna al salar es generalmente menor que para el caso de los procesos S-O. Pero es importante aclarar que, si se prioriza minimizar el impacto ambiental y maximizar el grado de recuperación del proceso aplicado, de ninguna manera es aceptable la devolución de salmuera adulterada y/o agotada, ni la descarga de otros efluentes líquidos a la cuenca endorreica donde yace el cuerpo salino.
En la Figura 1 se muestra un proceso de concentración en pozas de evaporación con cristalización fraccionada, según se describe en la patente US 7858057 B2 del 28 de diciembre de 2010, aplicable a salmueras con bajo contenido de anión sulfato. Estas salmueras pueden ser de ocurrencia natural, pueden ser el resultado de una mezcla de salmueras naturales, por ejemplo, una con alto contenido de calcio mezclada con otra con alto contenido de sulfato, o pueden ser el resultado de una salmuera natural tratada con sales solubles de calcio o de bario, por ejemplo cloruro de calcio o cloruro de bario, para reducir su contenido de anión sulfato, precipitándolo como sulfato de calcio o como sulfato de bario, respectivamente. El proceso de evaporación y cristalización fraccionada consiste en una secuencia de pozas de evaporación solar. En estas pozas, primero cristaliza y precipita cloruro de sodio; luego una mezcla de cloruro de sodio y cloruro de potasio; la siguiente es la poza en la que además cristaliza y precipita carnalita (KCI.MgCI2.6H2O); en la poza que sigue, entre las sales que cristalizan y precipitan, se suma la bischofita (MgCI2.6H20); y en la última, entre las sales que cristalizan y precipitan también lo hace la carnalita lítica (LiCI.MgCI2.7H2O). Si bien este es un proceso sin devolución de salmuera adulterada al salar y que permite la obtención de una salmuera con alta concentración de litio de aproximadamente 6 % p/p, tiene las siguientes desventajas:
· Si la salmuera natural debe ser tratada para reducir su contenido de anión sulfato, el caudal que ingresa a la planta de tratamiento es muy grande con lo cual la inversión y los costos de bombeo, operación del reactor y operación del equipo de separación sólido-líquido de esta planta de tratamiento aumentan considerablemente.
• En la mayoría de las salmueras naturales de la Puna Argentina y del Altiplano Boliviano, la relación másica de concentraciones sulfato/litio es mayor de aproximadamente 10. Entonces, el tratamiento de estas salmueras naturales para reducir su contenido en anión sulfato, requiere el uso de una gran cantidad de reactivos, genera una gran cantidad de lodos y aumenta las pérdidas de las especies de interés, que quedan retenidas en el agua de mojadura de estos lodos. Esto significa un aumento en el consumo específico de reactivos, un mayor impacto ambiental por un aumento en la generación específica de lodos y una disminución del grado de recuperación del proceso.
• Como se describe en dicha patente US 7858057 B2, la salmuera concentrada que se obtiene con aproximadamente 6 % p/p de litio tiene un alto contenido de boro de aproximadamente 0,8 % p/p y un alto contenido de magnesio de aproximadamente 1 ,65 % p/p. Como se describe en la patente US 5219550 A, el boro se remueve por extracción con un alcohol con el consecuente costo de operación y de regeneración y reposición por pérdidas de este fluido auxiliar. Como se describe en la patente US
7858057 B2, el magnesio se remueve en una primera etapa mezclando la salmuera concentrada con el agua madre proveniente de la etapa de precipitación de carbonato de litio. Con este reciclo, la solución a partir de la cual se obtiene el carbonato de litio, aumentará la concentración de las otras impurezas contenidas en la salmuera concentrada; esto significa que es necesario purgar parte del agua madre referida, condicionando la calidad del producto obtenido y el grado de recuperación al régimen de purga aplicado.
• El litio separado de la fase líquida como carnalita lítica en las pozas de evaporación solar, reduce considerablemente el grado de recuperación de este procedimiento. Si bien esta reducción puede limitarse lixiviando las sales cosechadas de las pozas donde precipitó carnalita lítica con una salmuera de menor concentración de litio proveniente de una etapa anterior del proceso de concentración en pozas de evaporación solar, este proceso de lixiviación tiene los siguientes inconvenientes: i) prácticamente no es posible la recuperación de la totalidad del litio contenido en la carnalita lítica; ii) la lixiviación debe ejecutarse posteriormente al drenaje y lavado de las sales precipitadas en las pozas donde precipitó la carnalita lítica, significando esto un mayor tiempo en alcanzar la máxima producción que puede entregar el sistema de pozas; y iii) hay un incremento importante en el costo operativo.
Procesos similares al esquematizado en la Figura 1 son los que se emplean tradicionalmente desde hace mucho tiempo. Por este motivo, erróneamente a cualquier proceso que emplee pozas de evaporación solar se lo califica como "proceso tradicional". Pero, como se describe en la presente invención, cuando se tiene en cuenta la composición química de las salmueras contenidas en los salares y la importancia que tiene minimizar el impacto ambiental y maximizar el grado de recuperación apuntando a minimizar el caudal de extracción para una misma producción, minimizar el uso específico de reactivos y la generación específica de lodos, no devolver salmuera adulterada ni descargar otros efluentes líquidos al salar, aprovechando las ventajas de las condiciones climáticas reinantes en la región, el proceso resultante es un proceso absolutamente innovador que garantiza una evolución sostenible en el tiempo.
Los procesos que se muestran en las Figuras 2 y 3 resumen lo detallado en los documentos de patente
US 201 1300041 A1 del 8 de diciembre de 201 1 titulado "Process for Recoveríng Lithium from a Bríne" y WO 2014078908 A1 del 30 de mayo de 2014 titulado "Process for Recovering Lithium from a Brine with Reagent Regeneration and Low Cosí Process for Purifying Lithium". Estos procesos no consideran la obtención de salmuera con alta concentración de litio. Si bien son de alta recuperación, el compuesto de litio "crudo", en estos casos carbonato de litio, se separa de una salmuera saturada en cloruro de sodio que tiene una concentración de litio baja de aproximadamente 10 g/dm3. Debido al alto contenido de impurezas en esta salmuera, el proceso de purificación del producto crudo resulta más costoso.
En el caso de la Figura 2, la salmuera se concentra lo máximo posible sin que cristalicen y precipiten sales que contengan litio en su fórmula química; en este caso, las sales que cristalizan y precipitan en las pozas de concentración inicial, previas al tratamiento, contienen como agua de mojadura salmuera natural concentrada, sin contaminación por efecto del tratamiento. En cambio, las sales que cristalizan y precipitan en la poza de concentración final posterior al tratamiento, no contienen como agua de mojadura salmuera natural concentrada, sino salmuera tratada y concentrada.
En el caso del proceso correspondiente a la Figura 3, el tratamiento se hace antes de iniciar el proceso de concentración con cristalización fraccionada en pozas de evaporación solar donde se trata la salmuera natural, o bien se trata una salmuera que tiene algún grado de concentración antes del tratamiento, inferior al correspondiente al proceso descripto en la Figura 2. Esto mejora la tasa de evaporación al reducir el contenido de magnesio en la salmuera que se concentra en las pozas. Pero tiene las siguientes desventajas: i) es necesario emplear una mayor cantidad de reactivos; ii) la cantidad de lodos posteriores al tratamiento también es mayor, lo que significa mayor pérdida de las especies de interés en los lodos; y iii) las sales que cristalizan y precipitan en las distintas pozas no contienen como agua de mojadura salmuera natural concentrada, sino salmuera tratada y concentrada. Esto último determina que la obtención de productos de interés comercial a partir de estas sales, resulte más costoso. También es claro que en el caso del proceso correspondiente a la Figura 3, la cantidad de salmuera que ingresa a la planta de tratamiento es considerablemente mayor que la equivalente al proceso correspondiente a la Figura 2. Por otro lado, en el caso del proceso correspondiente a la Figura 2, el lodo que se obtiene en la planta de tratamiento contiene sulfato de calcio e hidróxido de magnesio; a partir de este lodo, con un proceso de lixiviación sencillo, es posible obtener yeso de uso agrícola y sulfato de magnesio que se emplea como fertilizante. En cambio, para el proceso de la Figura 3, el efluente de la planta de regeneración de reactivos es una solución de cloruro de calcio y cloruro de magnesio, que no puede descargarse al salar.
Los procesos que comprende la Figura 4 son de separación-obtención (S-O) por medio de separación físico química tal como filtros moleculares, torres de absorción selectiva o procesos electroquímicos. En la mayoría de estos procesos la salmuera natural debe ser acondicionada en mayor o menor grado, dependiendo del proceso de separación del litio que se aplique. El acondicionamiento puede consistir en calentar la salmuera y/o reducir la concentración de algunos iones que podrían interferir en el proceso de separación empleado. En todos estos procesos, la cantidad de salmuera natural que ingresa al proceso de acondicionamiento y al proceso de separación del litio de la fase líquida también es muy grande. Si bien estos procesos facilitan la obtención de compuestos de litio de alta pureza, la cantidad de salmuera agotada que sale del equipo de separación es muy grande, prácticamente igual a la que ingresa. En la Figura 4 se muestra cómo esta salmuera es sometida a un proceso de cristalización fraccionada en pozas de evaporación solar para evitar su devolución al salar.
En el caso de los procesos comprendidos en la Figura 5, la salmuera natural es primero tratada para luego ingresar al equipo de separación por procesos químicos. En estos procesos la cantidad de salmuera con baja concentración de litio, i.e. salmuera tratada y agotada, que sale del equipo de separación es prácticamente igual a la que ingresa a la planta de tratamiento; consecuentemente, también es muy grande. Esta salmuera es sometida a un proceso de cristalización fraccionada en pozas de evaporación solar para evitar su devolución al salar y posibilitar la obtención de otros compuestos de interés comercial. En este caso, al tratarse de separación química, las sales que cristalizan y precipitan en las distintas pozas no contienen como agua de mojadura salmuera natural concentrada, sino salmuera adulterada por el tratamiento y por el proceso de separación. Esto determina que la obtención de productos de interés comercial a partir de estas sales, resulte más costoso que para el caso de los procesos comprendidos en la Figura 4.
Los procesos O-P incluidos en las Figuras 1 y 2 son de bajo consumo específico de energía térmica y mecánica, comparado con el muy alto consumo específico de ambas formas de energía que tienen los procesos S-O incluidos en las Figuras 4 y 5. El proceso de la Figura 3 tiene un importante consumo específico de energía térmica y mecánica en el proceso de regeneración de reactivos.
Además, es importante destacar que la inversión correspondiente a los procesos S-O sin devolución de salmuera adulterada y/o agotada siempre es mucho mayor que la correspondiente a los procesos O-P también sin devolución. Es claro que cualquier proceso de separación de litio de una salmuera natural, en la cual este ion tiene una concentración mucho menor que prácticamente la totalidad de los otros iones que lo acompañan, es más oneroso que el proceso de obtención de carbonato de litio a partir de una salmuera concentrada y tratada.
Los procesos con devolución de salmuera adulterada y/o agotada al salar que se incluyen las Figuras 6 y 7 han sido propuestos, pero no deben ser considerados factibles por su alto impacto en el equilibrio dinámico de los salares. La devolución de salmuera adulterada y/o agotada, y/o la descarga de cualquier otro efluente líquido a la misma cuenca endorreica donde yace el depósito salino, es un proceso irreversible. Tanto la salmuera tratada y/o agotada como cualquier otro efluente líquido, como por ejemplo una solución acuosa de cloruro de calcio y/o cloruro de magnesio, tienen diferente composición química y también diferente temperatura, densidad, conductividad y/o viscosidad; su devolución o descarga impacta modificando las propiedades físicas, las relaciones iónicas y/o la composición química que caracterizan a las salmueras naturales contenidas en los acuíferos del depósito salino. La devolución y/o descarga de los líquidos referidos no siempre es posible y también puede producir una alteración de las condiciones hidrogeológicas naturales iniciales. Teniendo en cuenta que esta devolución y/o descarga puede ingresar a cualquiera de los acuíferos que conforman el sistema hidrogeológico, estos impactos pueden tener consecuencias a corto, mediano y largo plazo, muy difíciles de predecir. Esto es más cierto aún considerando que en los últimos años se han reportado ecosistemas microbianos extremófilos, tales como microbiolitos, oncolitos, tapetes microbianos, endoevaporitas, etcétera, asociados a minerales en los salares y lagunas andinas. Sin duda, estos ecosistemas microbianos tienen un importante valor científico, biotecnológico y patrimonial. Por otro lado, la devolución de salmuera adulterada y con bajo contenido de litio, seguramente incrementará el valor de las relaciones magnesio/litio, sulfato/litio y boro/litio. El incremento en estas relaciones, tiene como consecuencias reducir el grado de recuperación incrementando el uso de reactivos y la generación de lodos a medida que transcurre el tiempo.
Finalmente, y a modo de resumen, los procedimientos aplicados en el arte previo no privilegian las condiciones necesarias para asegurar que la actividad sea sostenible en el tiempo. Ninguno emplea la totalidad de las ventajas que ofrecen las condiciones climáticas de la alta montaña. Además, muchos de estos procedimientos no privilegian maximizar el grado de recuperación y algunos solamente apuntan a la obtención de compuestos de litio sin tener en cuenta la importancia que tiene el aprovechamiento integral de las salmueras naturales que se extraen de los acuíferos contenidos en los cuerpos salinos.
BREVE DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra esquemáticamente un proceso O-P del arte previo sin devolución de salmuera agotada al salar para salmueras con baja concentración de anión sulfato, que comprende una concentración en pozas de evaporación solar (PES) con cristalización fraccionada.
La Figura 2 muestra esquemáticamente un proceso O-P del arte previo sin devolución de salmuera agotada al salar, que comprende una concentración de litio máxima en la salmuera natural concentrada en pozas de evaporación solar (PES). La Figura 3 muestra esquemáticamente un proceso O-P del arte previo sin devolución de salmuera agotada al salar, que comprende un tratamiento inicial o anterior a la máxima concentración de litio posible en la salmuera sin tratamiento y con regeneración de reactivos.
La Figura 4 muestra esquemáticamente un proceso S-O del arte previo sin devolución de salmuera agotada al salar, que comprende una separación físico-química.
La Figura 5 muestra esquemáticamente un proceso S-O del arte previo sin devolución de salmuera agotada al salar, que comprende una separación química.
La Figura 6 muestra esquemáticamente un proceso S-O del arte previo con devolución de salmuera agotada al salar, que comprende una separación físico-química.
La Figura 7 muestra esquemáticamente un proceso S-O del arte previo con devolución de salmuera agotada al salar, que comprende una separación química.
La Figura 8 muestra un diagrama de flujo de una forma preferida de realización del procedimiento según la presente invención.
La Figura 9 muestra una vista del centro experimental a la intemperie localizado en el paraje de Tres Morros, provincia de Jujuy, Argentina, donde se efectuaron los ensayos de los Ejemplos 1 , 2, 3 y 4.
La Figura 10 muestra un diagrama ternario para 25 °C en línea llena y 0 °C en línea punteada con las composiciones de las salmueras de algunos salares, en donde las salmueras de los ejemplos están indicadas en forma de rombo.
La Figura 1 1 muestra la evolución en un diagrama ternario de la salmuera del salar de Diablillos según el Ejemplo 1 , a medida que se avanza con el procedimiento según la presente invención durante el ensayo de campo llevado a cabo en el centro experimental a la intemperie localizado en el paraje de Tres Morros, provincia de Jujuy, Argentina.
La Figura 12 muestra un diagrama de fases modificado, en el que se agrega el litio como un elemento adicional. Esto es, a medida que evoluciona la salmuera, el porcentaje de litio en proporción a los demás elementos (Mg++, K+, S04") aumenta. Se observa en este diagrama modificado la evolución de la salmuera del salar de Diablillos según el Ejemplo 1 , a medida que se avanza con el procedimiento según la presente invención durante el ensayo de campo llevado a cabo en el centro experimental a la intemperie localizado en el paraje de Tres Morros, provincia de Jujuy, Argentina.
RESUMEN DEL INVENTO
El procedimiento objeto de la presente invención comprende una etapa de preconcentración inicial con cristalización fraccionada de la salmuera natural en pozas de evaporación solar, a los efectos de alcanzar la máxima concentración de litio en la fase líquida sin que cristalicen y precipiten sales que contengan este elemento en su fórmula química. En esta etapa se separan los primeros compuestos de interés comercial, tales como cloruro de sodio y cloruro de potasio, y se reduce considerablemente el volumen de la fase líquida. Si en la fase líquida con preconcentración inicial la relación másica de concentraciones magnesio/litio es menor a un determinado valor, preferentemente aproximadamente 2, el procedimiento continúa tratando directamente esta fase líquida con cal y sulfato de sodio, como se describe más adelante. En caso contrario, el procedimiento continúa como se describe a continuación. La concentración de aniones sulfato en la salmuera con preconcentración inicial depende de la temperatura ambiente y, consecuentemente, varía a lo largo del año. Cuando esta concentración es aproximadamente un 20 % mayor a la correspondiente a la concentración de equilibrio de aniones sulfato en la fase líquida cuando se enfría a aproximadamente -7 °C, la reducción de volumen referida permite encarar la etapa siguiente que consiste en enfriar esta fase líquida hasta alcanzar una temperatura comprendida preferentemente entre aproximadamente -6 °C y aproximadamente -8 °C. En estas condiciones, cristalizan por enfriamiento sales que contienen en su fórmula química al anión sulfato, reduciendo en forma sustancial la relación másica de concentraciones sulfato/litio en la fase líquida referida. Dependiendo del volumen a procesar y de la cantidad y el calor latente de las sales que cristalizan, este enfriamiento se puede ejecutar en cristalizadores naturales, aprovechando las bajas temperaturas de los meses de invierno, o en equipos mecánicos de cristalización por enfriamiento.
Cuando la concentración de aniones sulfato en la salmuera con pre concentración inicial, que varía en función de la temperatura ambiente, es preferentemente aproximadamente un 20 % menor a la correspondiente a la concentración de equilibrio en la fase líquida cuando se enfría a aproximadamente -7 °C, la etapa de enfriamiento no es necesaria. El procedimiento continúa con un pretratamiento químico estequiométrico al contenido de aniones sulfato de la fase líquida postenfriamiento con una solución acuosa de cloruro de calcio o cloruro de bario. También es posible emplear hidróxido de calcio, pero como se explica en la descripción detallada del invento, esta opción no es conveniente. Gracias a esta reducción en el contenido de sulfato es posible continuar la preconcentración de la fase líquida pretratada hasta alcanzar un nuevo valor máximo de concentración de litio posible, sin que cristalicen y precipiten sales que contengan litio en su fórmula química; esta preconcentración final siempre se ejecuta en pozas de evaporación solar. Si bien el nuevo valor máximo de concentración de litio depende de la evolución de las concentraciones de litio, magnesio y potasio en las pozas de preconcentración final, la relación másica de concentraciones magnesio/litio en la fase líquida que entrega la etapa de preconcentración final, siempre es menor que la correspondiente a la salmuera pretratada. Cuando este nuevo valor máximo de concentración de litio es tal que la relación másica de concentraciones magnesio/litio no es menor de aproximadamente 2, es posible continuar con el proceso de preconcentración final agregando a las últimas pozas de este proceso la cantidad de cloruro de potasio necesaria para evitar la cristalización de carnalita lítica. En cualquier caso, durante esta etapa de preconcentración final se reduce en forma considerable la relación másica de concentraciones magnesio/litio por la cristalización y precipitación de sales de magnesio y potasio, y la fase líquida está en condiciones de ser sometida a un tratamiento químico con un mínimo agregado de reactivos para reducir los contenidos de magnesio, calcio, sulfato y boro. Este tratamiento se ejecuta en dos etapas: i) una primera etapa en la que se agrega hidróxido de calcio, por ejemplo en forma de lechada de cal, calculado en forma estequiométrica respecto del contenido de magnesio, y una solución acuosa que contiene aniones sulfato, la cual es obtenida por disolución en agua o en la solución de reciclo de las sales precipitadas en la etapa de enfriamiento de sulfato de sodio anhidro o decahidratado, o bien de una mezcla de ambos, calculada en forma estequiométrica respecto del contenido de iones calcio posprecipitación del hidróxido de magnesio; los lodos obtenidos en esta primera etapa del tratamiento se filtran y se lavan, reciclando el agua de lavado para la suspensión y disolución de los reactivos empleados en esta misma etapa; y ii) en la segunda etapa, la fase líquida se trata con la cantidad necesaria de una solución acuosa de hidróxido de sodio para ajusfar el pH y asegurar un mínimo contenido de magnesio en la fase líquida, agregando luego una solución acuosa de carbonato de sodio calculada estequiométricamente para separar los iones calcio remanentes, y agregando finalmente una solución acuosa de cloruro de bario para separar los iones sulfato remanentes. Cuando la fase líquida obtenida al finalizar la preconcentración final tiene una concentración de litio superior a aproximadamente 35 g/dm3, se diluye durante el tratamiento para minimizar la pérdida de litio en los lodos generados y, al final del mismo, tiene un contenido de litio comprendido entre aproximadamente 10,5 g/dm3 y aproximadamente 12 g/dm3. Cuando la concentración de litio posterior a la preconcentración final es baja, como se describe en el ejemplo de la salmuera del Salar del Río Grande, y no es económicamente factible disponer de cloruro de potasio, la salmuera preconcentrada se somete al tratamiento químico descripto agregando menor cantidad de agua con los reactivos. En este último caso, la fase líquida obtenida postratamiento se concentra en pozas de evaporación solar hasta alcanzar concentraciones comprendidas entre aproximadamente 65 g/dm3 y aproximadamente 75 g/dm3. Cuando la salmuera preconcentrada puede alcanzar una concentración de litio mayor a 35 g/dm3, la fase líquida obtenida postratamiento también se puede concentrar en pozas de evaporación solar hasta alcanzar concentraciones comprendidas entre aproximadamente 65 g/dm3 y aproximadamente 75 g/dm3. Esta salmuera concentrada puede ser transportada hacia sitios con buena infraestructura industrial y tiene muy bajo contenido de impurezas lo cual facilita la operación y minimiza el costo de la obtención de compuestos de litio muy puros. Pero, como se demuestra en la descripción detallada del invento y en el ejemplo de la salmuera del Salar de Pozuelos, la alternativa de transportar salmuera preconcentrada con más de aproximadamente 35 g/dm3 de litio hasta lugares con infraestructura industrial, tiene importantes ventajas desde el punto de vista técnico económico; en este caso el tratamiento químico se ejecuta en la misma planta donde se ejecuta el proceso de concentración final en equipos mecánicos de evaporación, y la salmuera concentrada también alcanza concentraciones comprendidas entre aproximadamente 65 g/dm3 y aproximadamente 75 g/dm3, tiene bajo contenido de impurezas y se obtiene en menor tiempo. El procedimiento objeto de esta invención permite seleccionar para cada caso la mejor alternativa de aplicación de las siete etapas que comprende. Para todas las alternativas posibles, tiene bajo requerimiento de energía mecánica y térmica. Además, evitando la cristalización y precipitación de sales que contengan al elemento litio en su fórmula química en ninguna de las etapas, y mediante la minimización en el uso de reactivos y un eficiente sistema de separación y lavado de las sales cristalizadas y precipitadas en las pozas y de los lodos generados en el pretratamiento y en el tratamiento, el procedimiento tiene un grado de recuperación comprendido entre aproximadamente el 65 % y aproximadamente el 75 %. Finalmente, el procedimiento objeto de la presente invención es aplicable a escala industrial y es un procedimiento de mínimo impacto ambiental, principalmente porque se ejecuta sin devolución de salmuera agotada y/o adulterada ni de ningún otro efluente líquido al salar.
DESCRIPCIÓN DETALLADA DEL INVENTO
La presente invención comprende un procedimiento para la extracción y el procesamiento de salmueras naturales que tiene como objetivo cumplir con las condiciones necesarias desde el punto de vista del procedimiento, para ser sostenible en el tiempo. Para las salmueras naturales en general y en particular para aquéllas contenidas en cualquier cuerpo salino de la Puna Argentina, del Altiplano Boliviano, del Desierto de Atacama o de cualquier evaporita, esto se logra en base a lo siguiente:
1 . Maximizar el grado de recuperación de litio y optimizar el de cada una y todas las otras especies químicas de interés contenidas en las salmueras naturales. En todos los casos, el grado de recuperación se mide como la cantidad expresada en una determinada unidad de masa de cada especie química contenida en la cantidad comercializable de producto final obtenido, cuando se procesa un volumen de salmuera natural extraído del salar por bombeo o proveniente de un pozo surgente que contiene una unidad de masa de la misma especie química. Al maximizar y optimizar el grado de recuperación, se minimiza el caudal de extracción de salmuera natural necesario para la obtención de una misma producción. Esto implica minimizar el área de captación asociada a cada punto de extracción y minimizar la perturbación que el bombeo ocasiona en el sistema hidrogeoquímico. Es importante aclarar que, dependiendo de las características de cada cuerpo salino, el bombeo puede ejecutarse desde una poza natural construida excavando una cuba de poca profundidad en la superficie del núcleo cristalino de un acuífero libre y/o desde un pozo profundo construido con un equipo de perforación.
2. Determinar el caudal de bombeo máximo posible de cada punto de extracción de forma que el área de captación no comprometa acuíferos de agua dulce y que la perturbación ocasionada por el bombeo sea tal que el sistema hidrogeoquímico retorne a un estado de equilibrio.
3. Minimizar el uso específico de reactivos y la generación específica de lodos, utilizando las ventajas que brindan las condiciones climáticas de la región donde están localizados los depósitos salinos.
4. En ningún caso devolver salmuera adulterada y/o agotada ni descargar ningún otro efluente líquido a la cuenca endorreica donde yace el depósito salino.
5. Incluir alternativas para optimizar los requerimientos específicos de energía térmica y mecánica proveniente de fuentes primarias, aprovechando las condiciones climáticas reinantes en la región donde están localizados los depósitos salinos. Pero, además, la aplicación del procedimiento objeto de la presente invención es sostenible en el tiempo porque hace posible el empleo de recursos humanos que estén disponibles en las poblaciones cercanas a los lugares de yacencia de los depósitos salinos.
Como se describió antes, hay otras condiciones necesarias, que no dependen del procedimiento que se aplique y que deben cumplirse para que la extracción y el procesamiento de las salmueras contenidas en los salares sea sostenible en el tiempo. Como, por ejemplo, hacer las previsiones necesarias para que las generaciones futuras de las poblaciones cercanas al lugar de yacencia del recurso cuenten con los medios económicos para resolver los problemas que pueda ocasionar la explotación de recursos naturales no renovables.
El procedimiento objeto de la presente invención consiste en una sucesión de etapas que alternan procesos de preconcentración con cristalización y precipitación de sales en pozas de evaporación solar, con procesos de enfriamiento, pretratamiento y tratamiento de salmuera preconcentrada, para finalizar con un proceso de concentración final de salmuera tratada.
El procedimiento objeto de la presente invención prioriza la maximización del grado de recuperación evitando la cristalización y precipitación de sales que contengan el ion litio en su fórmula química. Esto se cumple en todas las etapas que comprende el procedimiento.
El procedimiento descripto en la presente invención, también prioriza la maximización del grado de recuperación, minimizando el contenido de litio en la solución de mojadura que retienen los cristales obtenidos postescurrido y poslavado en los procesos de concentración y enfriamiento, y optimizando las operaciones de filtrado y lavado de los lodos obtenidos en los procesos de pretratamiento y de tratamiento de las salmueras preconcentradas.
En la mencionada región geográfica, hay algunos pocos salares que tienen relaciones iónicas p/p con valores muy altos con relación a los valores promedio. Por ejemplo, el salar de Incahuasi, localizado en la Provincia de Catamarca, tiene los siguientes valores: magnesio/litio = 103, sulfato/litio = 173, boro/litio = 9 y potasio/litio = 38. Para salares con características similares a Incahuasi el procedimiento se inicia con:
• una etapa de preconcentración inicial consistente en reducir todo lo posible el volumen de salmuera mediante un proceso de concentración en pozas de evaporación solar, sin comprometer el grado de recuperación; y
• una etapa de pretratamiento inicial con carbonato de sodio o trona para cristalizar, precipitar y separar la fase sólida como magnesita. Continuar el pretratamiento acidificando la fase líquida con ácido clorhídrico para separar parte del boro como ácido bórico.
El procedimiento luego continúa con la etapa de enfriamiento y las otras etapas que se describen a continuación, para las salmueras contenidas en la mayoría de los salares de la Puna Argentina, del Altiplano Boliviano, del Desierto de Atacama, o de cualquier evaporita.
Como se muestra en la Tabla siguiente, las relaciones iónicas p/p, correspondientes a las salmueras contenidas en la mayoría de los salares tienen valores magnesio/litio menores a 20, sulfato/litio menores a 70, boro/litio menores a 1 ,5 y potasio/litio menores a 40.
Tabla de relaciones iónicas p/p
Figure imgf000012_0001
Cauchan 2,9 29,4 2,2 8,3
Salinas Grandes
2,8 3,7 0, 13 1 1
Pastos Grandes
5,3 16,8 1 , 1 9,7
Centenario 7,5 - - 15
Ratones 5,6 18 0,7 1 1 ,5
Jama 5 - 1 ,3 17
Río Grande 12,4 83,8 1 ,01 17,9
Olaroz 3,4 25,8 1 ,6 8,5
Arizaro 19 27 <0,5 29
Laguna Verde 2 0,6 1 ,4 9
Maricunga 7 0,6 0,5 7,3
En salares como Laguna Verde en Catamarca, Argentina, y Maricunga en Chile, la salmuera natural tiene un alto contenido de calcio y bajo contenido de sulfato. En estos casos hay que reducir el contenido de calcio por cristalización natural de algún hidrato o por el agregado de trona o coipa. También es posible reducir el contenido de calcio mezclando, cuando es posible, esta salmuera con otra que tenga alto contenido de sulfato y bajo contenido de calcio, proveniente de otro salar o de otra zona del mismo salar como ocurre, por ejemplo, en el salar de Atacama. El procedimiento luego continúa con la etapa de pretratamiento y las otras etapas que se describen a continuación fundamentalmente para las salmueras contenidas en la mayoría de los salares de la Puna Argentina, del Altiplano Boliviano y del Desierto de Atacama.
Para salares con salmueras que no tienen alto contenido de calcio, y que tienen valores de relaciones másicas de concentraciones magnesio/litio menores de 25, sulfato/litio menores de 100, boro/litio menores de 2 y potasio/litio menores de 50, el procedimiento objeto de la presente invención consiste en la ejecución de las siguientes etapas:
I . Etapa de preconcentración inicial de la salmuera natural.
I I. Etapa de enfriamiento.
I II . Etapa de pretratamiento.
IV. Etapa de preconcentración final.
V. Etapa de tratamiento.
VI . Etapa de concentración postratamiento.
VI I. Etapa de concentración final.
Antes de entrar en la descripción de las etapas que definen el procedimiento, es importante aclarar que los procesos de concentración y cristalización fraccionada se podrían ejecutar en equipos mecánicos que emplean compresión mecánica, evaporación en etapas múltiples, evaporación flash o cristalización por enfriamiento adiabático, dependiendo de la disponibilidad y el costo de la energía térmica y mecánica en el lugar de localización del recurso. Pero, teniendo en cuenta la gran cantidad de agua que hay que evaporar en las etapas I y IV, y las condiciones climáticas de la región donde están localizados los salares donde existe alta radiación solar, bajas precipitaciones, fuertes vientos y baja humedad relativa del ambiente, es conveniente ejecutar esta operación en pozas de evaporación solar. Estas pozas son grandes cubas de aproximadamente 2,5 m de profundidad, con pisos y paredes impermeabilizados en forma natural o artificial, por ejemplo, preferentemente con PVC o con membranas de polietileno HDPE, minimizando las pérdidas de la salmuera contenida. Por ejemplo, para una membrana de HDPE de espesor aproximadamente 2 mm, la pérdida se estima en aproximadamente el 0,4 % del volumen que se bombea a una poza que opera con una altura de fase líquida menor de aproximadamente 0,45 m; cuando el espesor de la membrana se incrementa a aproximadamente 2,5 mm, se reduce la pérdida a menos de aproximadamente el 10 % de la correspondiente a la membrana de aproximadamente 2 mm; por esta razón, para lograr una mayor recuperación, es conveniente que las pozas que operan a mayor concentración de litio, estén impermeabilizadas con membranas de mayor espesor. Antes de la impermeabilización, los pisos deben ser alisados y nivelados con la pendiente mínima necesaria para contrarrestar los efectos del viento; las paredes también deben ser alisadas y construidas con la máxima pendiente que permita el material disponible en la zona para su construcción.
En el procedimiento objeto de la presente invención, las etapas de preconcentración inicial y preconcentración final son procesos de concentración y cristalización fraccionada que emplean pozas de evaporación solar. Estas etapas pueden incluir una o más subetapas definidas por la concentración de litio en la salmuera que ingresa a la subetapa, y concentración de litio de la salmuera que sale de la misma. A su vez, cada subetapa puede ser ejecutada con una o más pozas de acuerdo al volumen de salmuera natural que se procesa, al tamaño recomendado para la construcción y operación de las pozas, y a la necesidad de optimizar el proceso periódico de cosecha de los cristales depositados en el fondo de las mismas. Las etapas de concentración postratamiento y de concentración final también pueden ejecutarse empleando pozas de evaporación solar, con las mismas consideraciones descriptas para las etapas de preconcentración inicial y preconcentración final; pero si se opta por transportar la salmuera preconcentrada o pretratada y preconcentrada hasta un lugar con mejor infraestructura industrial, estas etapas se ejecutarán en cristalizadores evaporativos mecánicos asistidos con energía térmica.
La etapa I se inicia bombeando salmuera natural a la(s) poza(s) de su primera subetapa. La concentración de litio en la(s) poza(s) de la última subetapa de esta etapa, es la que corresponde a una reducción considerable de volumen, preferentemente una concentración de litio cercana a la máxima posible de alcanzar sin que cristalicen y precipiten en esta subetapa sales que contengan al elemento litio en su fórmula química. Dependiendo de las características de la salmuera natural que se procesa, el volumen de salmuera con preconcentración inicial que sale de la etapa I , puede resultar en un valor comprendido entre aproximadamente el 3 % y aproximadamente el 20 % del volumen de salmuera natural bombeado a la(s) poza(s) de su primera subetapa. Esta reducción de volumen hace posible: i) la obtención y acumulación continua de salmuera con preconcentración inicial durante los meses de mayor tasa de evaporación, que en el hemisferio sur y la zona geográfica mencionada corresponde a los meses de agosto a mayo, para luego continuar, cuando es necesario, con la etapa de enfriamiento durante los meses de menor temperatura mínima correspondiente a los meses de junio y julio si se opta por utilizar las condiciones naturales; o ii) sin necesidad de acumular salmuera preconcentrada durante los meses de mayor tasa de evaporación, ejecutar el proceso de enfriamiento en forma continua, empleando equipos mecánicos de cristalización por enfriamiento. La etapa I comprende los siguientes períodos:
Período de carga del sistema de pozas incluido en la etapa.
Cuando es necesario el enfriamiento y para el caso de emplear condiciones naturales, es conveniente que en el hemisferio sur este período finalice entre el 1 ° de junio y el 31 de julio del año en que se inicia el período siguiente, que corresponde al período de obtención de salmuera con preconcentración inicial. Esto es así para minimizar el tamaño de las pozas construidas especialmente para la acumulación de salmuera con preconcentración inicial. Cuando se emplean equipos mecánicos de cristalización por enfriamiento, no hay condicionamientos para la fecha de finalización de este período de carga. En cualquier caso, la duración de este período es función de la concentración de litio al comienzo y al final de la etapa, a la altura de salmuera libre que se especifique para la operación de las pozas de cada subetapa, a la retención de salmuera en el lecho de cristales depositados en el fondo de cada poza y a la tasa de evaporación media durante el período de carga.
Primer período de obtención y acumulación de salmuera con preconcentración inicial, sin cosecha de las sales cristalizadas y precipitadas en las pozas. Durante este período, cada poza genera un caudal de fase líquida concentrada, que depende de la concentración de litio a la que opera la poza, del caudal y de la concentración de litio que tiene la salmuera que ingresa a la misma y de la tasa de evaporación. Pero de este caudal total, las pozas solamente entregan el caudal correspondiente a la fase líquida libre, reteniendo el caudal entrampado en la porosidad eficaz del lecho de cristales y el caudal correspondiente a la solución de mojadura asociado a los cristales. Como la tasa de evaporación varía a lo largo del año, para una misma concentración de litio en la salmuera que ingresa a la poza, el caudal de esta salmuera debe cambiar para mantener constante la concentración de litio a la que opera la poza. En el caso de que sea necesario procesar un caudal mínimo con concentración de litio constante, como puede ser el caso de la existencia de un pozo surgente, se debe diseñar el sistema de pozas para la tasa de evaporación promedio de los meses con valores más bajos, y se debe disponer de otra fuente de salmuera, por ejemplo, bombeo desde una cuba superficial o desde un pozo profundo. En cualquiera de estos casos, si se pretende mantener constante la concentración y el caudal de salmuera que entrega la etapa, se debe modificar adecuadamente el nivel de fase líquida de las pozas que comprende. Sólo para el caso en que sea necesaria la etapa de enfriamiento y se opte por emplear las condiciones naturales, este período debe finalizar entre el 15 y el 31 de mayo de cada año para la misma región.
Período de limpieza de las pozas de preconcentración inicial.
Cuando la cantidad de sales depositadas en el fondo de una poza alcanza una altura determinada preferentemente no mayor a un metro, la fase líquida libre se bombea a una poza auxiliar con capacidad para contener, además, la salmuera escurrida del lecho de cristales y el agua de lavado de las sales precipitadas. Preferentemente, el área de la poza auxiliar debe ser igual al área de la poza que está en proceso de limpieza. Los cristales se escurren por zanjeo y la salmuera escurrida también se bombea a la poza auxiliar. Si la fase líquida a la que opera la poza en proceso de lavado tiene una concentración de ion litio mayor de aproximadamente 1 ,5 mg/dm3, es necesario lavar los cristales por inmersión agregando un volumen de agua, preferentemente agua dulce, equivalente al volumen estimado para la porosidad eficaz del lecho de cristales postescurrido. Los cristales poslavado, se escurren nuevamente por zanjeo y la totalidad del agua de lavado se bombea a la poza auxiliar. Los cristales postescurridos y/o poslavados se cosechan y se emparvan en un área especialmente destinada a su acumulación para su uso posterior. La salmuera contenida en la poza auxiliar se bombea nuevamente a la poza que se limpió, y la poza auxiliar se destina a la limpieza de otra poza. Es claro que, inmediatamente después de la recarga, la altura de salmuera libre en la poza limpia es mayor que la altura que tenía durante el primer período de operación sin cosecha y, aunque tiene menor concentración de litio por la dilución con el agua de lavado, la cantidad total de litio que contiene, es mayor. Por esta razón, durante la nueva operación sin cosecha, la poza entregará un poco menos del total del caudal de salmuera concentrada que realmente produce. Esto es así porque entrega el caudal de salmuera libre que produce en la nueva operación sin cosecha, más una fracción del caudal entrampado en la porosidad del lecho de cristales durante la operación sin cosecha anterior, más el caudal de solución de mojadura asociado a los cristales depositados en el fondo de la poza durante la operación sin cosecha anterior, y menos la cantidad de solución de mojadura equivalente, cantidad de salmuera con la misma concentración de litio a la que opera la poza, que retienen los cristales poslavado y escurrido, obtenidos durante la operación sin cosecha anterior. En este caso si se pretende mantener constante el caudal y la concentración de litio en la salmuera que entrega la etapa, se debe modificar adecuadamente el nivel de fase líquida de las pozas que comprende. Pero en este nuevo período sin cosecha, el caudal que entrega la etapa, será mayor al que entregó durante el primer período sin cosecha. Al final de este nuevo período sin cosecha la altura de salmuera libre tendrá el mismo valor con que operó la poza durante todo el primer período sin cosecha.
Períodos siguientes de obtención y acumulación de salmuera preconcentrada inicial, sin cosecha de las sales cristalizadas y precipitadas en las pozas. Durante estos períodos las pozas operan como se describe para el primer período sin cosecha siendo la única diferencia una mayor altura de salmuera libre, como se expresa en el ítem anterior. Para el caso de enfriamiento utilizando las condiciones naturales, estos períodos deben finalizar entre el 15 y el 31 de mayo de cada año.
Las sales cristalizadas y precipitadas en las primeras pozas de preconcentración inicial contienen generalmente más de aproximadamente el 95 % de cloruro de sodio. Particularmente las que cristalizan y precipitan en las pozas que alcanzan una concentración de ion litio menor de aproximadamente 2,5 g/dm3, son las que se emplean para producir sal de consumo humano, sal para uso industrial, panes de sal para uso directo en ganadería y como materia prima para la producción de sal mineralizada para uso en ganadería.
Si en la fase líquida que entrega la etapa I la relación másica de concentraciones magnesio/litio es menor a un determinado valor, en forma preferente aproximadamente 2, el procedimiento continúa con la etapa V, tratando directamente como se describe más adelante, esta salmuera con preconcentración inicial. En caso contrario, el procedimiento continúa como se describe a continuación.
La concentración de sulfato en la fase líquida que entrega la etapa I depende de la temperatura de la fase líquida y, consecuentemente, varía a lo largo del año. Cuando esta concentración es de entre aproximadamente un 10 % y aproximadamente un 20 % mayor a la concentración de aniones sulfato que tiene esta fase líquida después de ser enfriada a aproximadamente -7 °C, es necesario ejecutar la etapa I I. En caso contrario, la etapa II no se ejecuta y el procedimiento continúa con la ejecución de la etapa II I.
La etapa II consiste en un proceso de enfriamiento de la salmuera con preconcentración inicial. Este proceso de enfriamiento puede ser ejecutado en forma continua, empleando equipos mecánicos de cristalización por enfriamiento, disminuyendo la temperatura de la salmuera preconcentrada hasta temperaturas comprendidas entre aproximadamente -8 °C y aproximadamente -6 °C. En este caso, los sólidos separados de la fase líquida en forma mecánica se lavan con una masa de agua dulce aproximadamente igual al 30 % de la masa de cristales escurridos. El agua de lavado, se mezcla con la fase líquida obtenida y se bombea a la etapa II I. Los cristales lavados y escurridos mecánicamente se emparvan, para luego ser empleados como materia prima para la obtención de sulfato de sodio y/o sulfato de potasio y/o cloruro de potasio. El sulfato de sodio se emplea principalmente en la industria de los detergentes y en la industria de la pasta de celulosa. El sulfato de potasio y el cloruro de potasio se emplean como fertilizantes en agricultura. Cuando es conveniente económicamente, el sulfato de sodio obtenido en esta etapa se emplea como reactivo en el tratamiento correspondiente a la etapa V que se describe más adelante; si resultara conveniente vender este sulfato de sodio, los aniones sulfatos requeridos en la etapa V pueden provenir de mirabilita que contiene sulfato de sodio decahidratado y/o thenardita que contiene sulfato de sodio anhidro, minerales estos disponibles, por ejemplo, en la Región geográfica mencionada.
El proceso de enfriamiento que comprende la etapa II , también se puede ejecutar aprovechando las bajas temperaturas mínimas y mínimas absolutas menores a aproximadamente -10 °C y a aproximadamente -17 °C, respectivamente, características de los meses de junio y julio en la alta Cordillera a más de 3.600 msnm, donde están localizados más del 90 % de los depósitos salinos existentes en la Región. Esta operación se lleva a cabo en cristalizadores naturales consistentes en cubas de área grande y poca profundidad de aproximadamente 0,50 m, con pisos nivelados y pisos y paredes alisados e impermeabilizados en forma natural o artificial, por ejemplo, preferentemente con PVC o con membranas de polietileno HDPE, minimizando las pérdidas de la salmuera contenida. En estas cubas se carga la salmuera con preconcentración inicial y se deja expuesta al frío natural durante un intervalo de tiempo comprendido preferentemente entre aproximadamente 7 y aproximadamente 9 días. En estas condiciones cristalizan y precipitan sales que contienen entre otros iones, al anión sulfato. La fase líquida libre y la obtenida por escurrimiento, se bombea a pozas de acumulación desde donde se alimenta a la planta de pretratamiento. Los cristales escurridos se lavan por inmersión agregando a los cristalizadores una cantidad de agua dulce preferentemente igual al estimado para la porosidad eficaz del lecho de cristales precipitados. El agua de lavado obtenida por escurrimiento también se bombea a las mismas pozas de acumulación. Los cristales lavados y escurridos se cosechan de los cristalizadores y se emparvan, para luego ser empleados como se describe para el caso del empleo de equipos mecánicos de cristalización por enfriamiento.
La fase líquida libre y la obtenida en esta etapa, tiene una relación másica de concentraciones sulfato/litio cuyo valor generalmente está comprendido entre aproximadamente el 10 % y aproximadamente el 40 % del valor correspondiente a la salmuera natural. En la misma proporción, se reduce la cantidad de reactivos necesaria y la cantidad de lodos generados en el pretratamiento, si se pretratara la salmuera natural o la salmuera con preconcentración inicial. Esto, además de reducir el impacto ambiental del proceso, maximiza el grado de recuperación al minimizar las pérdidas asociadas al agua de mojadura de los lodos generados.
La etapa II I consiste en el pretratamiento químico de la salmuera resultante de la etapa II, con el objeto de reducir aún más el valor de la relación másica de concentraciones sulfato/litio. La salmuera se carga en un reactor con agitación, y se mezcla con la cantidad estequiométrica de cationes que se asocien a los iones sulfato formando una sal insoluble; estos cationes se alimentan al reactor en forma de una solución acuosa. Preferentemente, este pretratamiento se ejecuta agregando en forma estequiométrica una solución acuosa de cloruro de calcio o una solución acuosa de cloruro de bario, en concentraciones próximas a las correspondientes a las de saturación, preferentemente del orden de aproximadamente el 90 % del valor correspondiente a las de saturación a temperatura ambiente; las fases sólida y líquida de la mezcla heterogénea obtenida se separan por centrifugación o filtrado, lavando la fase sólida con una cantidad de agua dulce aproximadamente igual a la tercera parte de la masa del lodo escurrido generado. También es posible emplear como fuente de iones calcio, hidróxido de calcio agregado en forma de lechada de cal; en este caso la cantidad de lodo generado es mayor porque se suma la cristalización y precipitación de hidróxido de magnesio, y la separación de las fases sólida y líquida es más difícil operativamente, porque el lodo retiene mayor cantidad de solución de mojadura y el lavado es más dificultoso. Por otro lado, al separar los iones magnesio de la fase líquida, la concentración de potasio continuará incrementándose a lo largo del proceso de concentración, alcanzando en la salmuera concentrada final valores muy altos. El proceso de pretratamiento que comprende la etapa I II , también se puede ejecutar en reactores continuos y sistemas de separación sólido líquido continuos. La fase líquida y el agua de lavado se mezclan y se bombean a la(s) poza(s) de la primera subetapa de la etapa IV. Dependiendo del reactivo empleado, la fase sólida obtenida del pretratamiento puede ser sulfato de calcio que puede comercializarse como yeso de uso agrícola o sulfato de bario que se usa como material de relleno en los productos de caucho, en pinturas como blanco permanente, en linóleo y, entre otras aplicaciones, como por ejemplo en farmacopea.
Mediante la ejecución de la etapa IV es posible continuar el proceso de concentración y cristalización fraccionada en pozas de evaporación solar, gracias a la reducción del contenido de sulfato de la fase líquida pretratada. Dependiendo de la composición química de la salmuera que se procesa, en la primera subetapa de esta etapa, pueden cristalizar y precipitar cloruro de sodio y cloruro de potasio; en la siguiente se puede sumar la cristalización y precipitación de carnalita y en la próxima, si resultara conveniente una subetapa más, bischofita. La concentración de litio que se alcanza en esta etapa es la máxima posible de alcanzar sin que precipiten sales que contengan al elemento litio en su fórmula química. Cuando para este nuevo valor máximo de concentración de litio la relación másica en concentración magnesio/litio no es menor de aproximadamente 2, es posible continuar con la etapa de preconcentración final agregando a las últimas pozas de esta etapa la cantidad de cloruro de potasio necesaria para evitar la cristalización de carnalita lítica. Esto último, cuando la disponibilidad de la cantidad de cloruro de potasio necesaria es factible, como se muestra en el ejemplo del procesamiento de salmuera proveniente del Salar de Pozuelos; en caso contrario, se continúa con el procedimiento, tratando la salmuera con la menor relación másica de concentraciones magnesio/litio posible de obtener sin el agregado de cloruro de potasio, como se muestra en el ejemplo del procesamiento de salmuera proveniente del Salar del Río Grande. En cualquier caso, durante esta etapa de preconcentración final se reduce en forma considerable la relación másica de concentraciones magnesio/litio por la cristalización y precipitación de sales de magnesio y potasio, y la fase líquida está en condiciones de ser sometida a un tratamiento químico con el mínimo agregado posible de reactivos para reducir los contenidos de magnesio, calcio, sulfato y boro. Igual que para el caso de las pozas comprendidas en la etapa I , las pozas comprendidas en esta etapa también tienen un período de carga, un primer período de operación sin cosecha y períodos de limpieza que alternan con los períodos sin cosecha posteriores.
Si la salmuera preconcentrada obtenida al final de la etapa IV tiene una concentración de litio mayor de aproximadamente 35 g/dm3, el procedimiento considera la alternativa de transportar esta salmuera hasta lugares con infraestructura industrial, por ejemplo, localizando las plantas de crudo y purificado en las cercanías de una central de potencia haciendo posible una cogeneracion, donde las etapas V, VI y VII se ejecutarán con mayor eficiencia. Además, esta alternativa tiene importantes ventajas basadas en las consideraciones detalladas a continuación, cuando se transporta una salmuera preconcentrada con, por ejemplo, aproximadamente un 2,78 % p/p de litio:
a) El transporte de líquidos tiene un costo por tonelada equivalente a aproximadamente el 80% del costo de transporte de sólidos. En consecuencia, transportar aproximadamente 6,76 t de salmuera preconcentrada por tonelada de carbonato de litio, económicamente sólo equivale a transportar aproximadamente 5,408 t.
b) Al transportar salmuera preconcentrada hacia un sitio con infraestructura industrial, la etapa de tratamiento que se describe más adelante, no se ejecuta en el salar y no es necesario transportar desde el salar las aproximadamente 4,3 t de lodos generadas por tonelada de carbonato de litio, que es posible comercializar como subproductos o como coproductos. El transporte de aproximadamente estas 4,3 t está incluido en el transporte de la salmuera. Tampoco es necesario transportar aproximadamente 1 ,7 t de cloruro de sodio de alta pureza que se obtiene por tonelada de carbonato de litio, en las etapas VI y VI I de concentración final. El transporte de estas aproximadamente 1 ,7 t también está incluido en el transporte de la salmuera.
c) Al transportar salmuera preconcentrada hacia un sitio con infraestructura industrial, no es necesario transportar al salar aproximadamente 1 ,148 t de reactivos, pero sí es necesario transportar desde el salar hasta el sitio con infraestructura industrial aproximadamente 1 ,57 t de sulfato de sodio anhidro.
d) Como resumen de las consideraciones anteriores, cuando se transporta salmuera preconcentrada hasta un sitio con mejor infraestructura industrial, se transporta aproximadamente 0,270 t menos de material, calculado en base al transporte de sólidos, entre el salar y el sitio elegido.
e) No sólo es menor la cantidad neta que se transporta entre el salar y el sitio con infraestructura industrial elegido, sino que también es menor el valor de lo que se transporta, con lo cual también es menor el costo del seguro de transporte.
f) Al transportar salmuera preconcentrada hasta un sitio con mejor infraestructura industrial, las etapas VI y VII de concentración final se ejecutan en cristalizadores evaporativos asistidos con energía térmica. En estas condiciones se logra una mayor recuperación y se generan aproximadamente 15,5 t de agua destilada por tonelada de carbonato de litio; el agua destilada obtenida se emplea en el lavado de las sales cristalizadas en las etapas VI y VI I. g) La mayor recuperación que resulta por la ejecución más eficiente del tratamiento y de las etapas VI y VII en un sitio con infraestructura industrial, también significa menor consumo específico de reactivos y menor generación específica de lodos. h) Cuando se transporta salmuera preconcentrada hasta un sitio con mejor infraestructura industrial, la salmuera tratada que tiene bajo contenido de calcio, magnesio y sulfato se concentra en cristalizadores evaporativos asistidos con energía térmica. En este caso, la salmuera concentrada con una concentración de litio entre aproximadamente 65 g/dm3 y aproximadamente 75 g/dm3 y con bajo contenido de impurezas, se obtiene aproximadamente 362 días antes. Si, además, la planta de carbonato de litio está localizada en el mismo sitio, este producto se obtiene a aproximadamente los 17 meses de haber iniciado el bombeo a las primeras pozas de la etapa I, cuando las pozas operan con aproximadamente 0,20 m de altura de salmuera libre. Por otro lado, esta alternativa también permite la posibilidad de purgar y concentrar parte del reciclo del reactor de crudo para la obtención de otras especies químicas de interés presentes en la salmuera natural como, por ejemplo, rubidio y cesio.
i) Cuando las etapas VI y VI I se ejecutan en cristalizadores evaporativos, el proceso requiere una cantidad de energía térmica menor de aproximadamente 4.200.000 kcal por tonelada de carbonato de litio producida, proveniente de cualquier fuente primaria. El costo de esta energía térmica, actualmente menor de aproximadamente USD 140/t de carbonato de litio producida, está totalmente compensado con las ventajas detalladas anteriormente.
La etapa V consiste en el tratamiento químico de la salmuera obtenida en la etapa de preconcentración final. Este tratamiento tiene como objetivo reducir a valores muy bajos los contenidos de magnesio, calcio y sulfato, y también reducir el contenido de boro. La etapa V se ejecuta en dos subetapas. Cuando la concentración de litio en la fase líquida que entrega la etapa IV es del orden de aproximadamente 35 g/dm3 o mayor, la subetapa V.1 consiste en cargar la salmuera preconcentrada a un reactor provisto de muy buena agitación y, manteniendo la agitación, agregar primero una cantidad de agua para reducir la concentración de litio en aproximadamente un 50 %, y luego agregar una lechada de cal que contiene una cantidad de hidróxido de calcio preferentemente calculada con aproximadamente un 10 % en exceso del valor estequiométrico para precipitar la totalidad de los iones magnesio. Inmediatamente después y manteniendo la agitación, agregar una solución acuosa que contiene una cantidad de aniones sulfato calculada en forma estequiométrica para precipitar los iones calcio que quedan en la fase líquida, posteriormente al agregado del hidróxido de calcio. El hidróxido de calcio se agrega preferentemente en forma de una lechada de cal preparada en forma preferida suspendiendo una tonelada de sólido en un volumen comprendido entre aproximadamente 2,5 m3 y aproximadamente 3 m3 de agua, preferentemente agua dulce, agua de lavado de los lodos o agua madre de reciclo de las plantas de carbonato de litio "crudo" y purificado. Los aniones sulfato se agregan como una solución acuosa preparada, por ejemplo, disolviendo entre aproximadamente 0,300 toneladas y aproximadamente 0,370 toneladas de sulfato de sodio anhidro en aproximadamente un metro cúbico de agua, preferentemente agua dulce, agua de lavado de los lodos o agua madre de reciclo de las plantas de carbonato de litio "crudo" y purificado.
Es importante destacar que el aporte de aniones sulfato también se puede hacer parcial o totalmente agregando: i) sulfato de sodio separado en la etapa de enfriamiento, ya sea como sulfato de sodio anhidro o como sulfato de sodio decahidratado, reduciendo los costos de reactivos); ii) mirabilita, thenardita o una mezcla de estos minerales, si no contienen compuestos de calcio, magnesio o boro solubles en agua. Las fases sólidas y líquidas de la mezcla heterogénea obtenida postratamiento, se separan por centrifugación o filtrado, preferentemente empleando un filtro prensa, lavando la fase sólida con una cantidad de agua, preferentemente agua dulce, aproximadamente igual a aproximadamente 2 m3/t de sólidos secos obtenidos postratamiento; el agua de lavado se emplea para diluir la salmuera preconcentrada y/o para agregar los reactivos empleados en esta subetapa V.1 . El uso del filtro prensa asegura que la pérdida de litio en el lodo poslavado es inferior a aproximadamente el 0,20 % de la masa de lodo seco. Esto conduce a un grado de recuperación en la etapa de tratamiento mayor a aproximadamente el 95 %. Como consecuencia de la dilución para evitar que cristalicen y precipiten sales que tengan al elemento litio en su fórmula química, la fase líquida obtenida en la subetapa V.1 tiene una concentración de litio preferentemente comprendida entre aproximadamente 11 g/dm3 y aproximadamente 13 g/dm3. Para algunas salmueras, la concentración de litio en la fase líquida que entrega la etapa IV puede ser menor de aproximadamente 35 g/dm3 y, en algunos casos, mucho menor como en el caso de la salmuera del Salar del Río Grande. En estos casos es conveniente: i) no diluir agregando agua dulce; ii) agregar el hidróxido de calcio en forma sólida no como lechada de cal; y iii) emplear la mínima cantidad de agua posible para agregar los aniones sulfato. Conocidas las concentraciones de calcio, magnesio y sulfato resultantes en la fase líquida que entrega la etapa V.1 , el procedimiento continúa con la ejecución de la subetapa V.2. El proceso que comprende esta subetapa del procedimiento, consiste en tratar la salmuera obtenida en V.1 en un reactor agitado al que se le agrega la cantidad mínima necesaria de una solución acuosa de hidróxido de sodio con una concentración baja, preferentemente menor de aproximadamente 150 g/dm3 para asegurar su estabilidad, con el objeto de aumentar el pH a aproximadamente 1 1 ,2 y así minimizar el contenido de iones magnesio en la fase líquida. Inmediatamente después, y manteniendo la agitación, se agrega una solución acuosa de carbonato de sodio, con el propósito de minimizar el contenido de iones calcio en la fase líquida. La cantidad de carbonato de sodio se calcula en forma estequiométrica respecto del contenido de iones calcio; la concentración de la solución acuosa de carbonato de sodio debe ser preferentemente igual a aproximadamente el 90 % del valor correspondiente a la saturación a temperatura ambiente. A continuación, y manteniendo la agitación, se agrega una solución acuosa de cloruro de bario que contiene preferentemente la cantidad estequiométrica de reactivo necesaria para precipitar la totalidad de los aniones sulfato contenidos en esta salmuera; la concentración de la solución acuosa de cloruro de bario debe ser preferentemente igual a aproximadamente el 90 % del valor correspondiente a la saturación a temperatura ambiente. La mezcla heterogénea obtenida, se separa por centrifugación o filtrado, lavando la fase sólida con una masa de agua dulce aproximadamente igual a la tercera parte de la masa del lodo escurrido generado. Los procesos comprendidos en las subetapas V.1 y V.2 del procedimiento objeto de la presente invención, también se pueden ejecutar en reactores continuos y sistemas de separación sólido líquido continuos.
En todos los casos estudiados, la salmuera preconcentrada y tratada puede ser categorizada como una salmuera con bajo contenido de impurezas considerando que las relaciones másicas de concentraciones ion/litio están por debajo de los siguientes valores:
magnesio/litio <0,005
potasio/litio < 0,1
calcio/litio < 0,1
sulfato/litio < 0,1
boro/litio < 0,09
Esta salmuera no está saturada, tiene baja densidad y bajo contenido de sólidos totales disueltos (STD). Cuando no es posible alcanzar en la salmuera preconcentrada una concentración de litio mayor de aproximadamente 35 g/dm3 sin que cristalicen sales que contengan litio en su fórmula química, la planta de tratamiento debe estar localizada en las cercanías del sitio donde operan las pozas. Si, además, la salmuera que ingresa a la etapa V es tal que después del tratamiento en las subetapas V.1 y V.2 tiene una concentración de litio mayor de aproximadamente 9 g/dm3 el procedimiento objeto de la presente invención presenta como alternativa la obtención de carbonato de litio "crudo" a partir de la salmuera preconcentrada y tratada obtenida en la etapa V. En este caso, y debido a la baja concentración de litio en la fase líquida que entrega la etapa V, la planta de carbonato de litio "crudo" estará localizada en el mismo sitio donde operan las pozas y la planta de tratamiento. La purificación de este "crudo" aplicando el proceso de purificación con dióxido de carbono, filtrando la solución de bicarbonato de litio obtenida después del proceso de carbonatación y empleando resinas de intercambio iónico para reducir el contenido de calcio en esta solución, resultará en un producto de alta pureza. Pero, tal como de demostró antes, si la fase líquida que entrega la etapa IV tiene una concentración de litio mayor de aproximadamente 35 g/dm3 siempre es mejor la alternativa de transportar salmuera preconcentrada hasta sitios con mejor infraestructura industrial. En este caso, después de ejecutar la etapa V, es conveniente continuar con las etapas VI y VII para alimentar a la planta de carbonato de litio con salmuera concentrada y con menor contenido de impurezas.
En el caso de no transportar salmuera preconcentrada por la baja concentración de litio en las salmueras que entrega la etapa IV, si se opta por no producir carbonato de litio "crudo" a partir de la fase líquida que entrega la etapa V, aún cuando la concentración de litio en esta salmuera sea mayor de aproximadamente 9 g/dm3, se continúa con la ejecución de las etapas VI y VII de concentración final, hasta alcanzar en la salmuera una concentración de ion litio comprendida entre aproximadamente 65 g/dm3 y 75 g/dm3. Estas etapas pueden ejecutarse en un sistema de pozas solares en las que cristalizarán y precipitarán principalmente cristales de cloruro de sodio. Pero, si en las cercanías del sitio de localización de las pozas de preconcentración y de la planta de tratamiento se dispone de infraestructura industrial, teniendo en cuenta que en la fase líquida que entrega la etapa V los contenidos de calcio, magnesio y sulfato son bajos, se tienen más ventajas de ejecutar estas etapas de concentración final en cristalizadores evaporativos asistidos con energía térmica. En estos casos también se obtendrá como subproductos cloruro de sodio de alta pureza y agua destilada, la cual es de mucha utilidad teniendo en cuenta que el agua dulce es un recurso escaso en la Región de localización de los salares.
Como se muestra en la Tabla siguiente, para los tres Ejemplos que se presentan más adelante en detalle, a medida que el procedimiento evoluciona a través de las etapas que comprende, se reducen las relaciones másicas de concentración ion/litio para las impurezas.
Tabla de evolución de las salmueras de cada salar de los Ejemplos 1 , 2 y 3 según el avance del procedimiento de la invención.
Figure imgf000021_0001
Figure imgf000021_0002
Figure imgf000021_0003
FL 1 0,05 12, 12 1 , 1 39 58 16
FL II 0,04 1 1 ,81 0,93 16 9,3 8
FL III 0,52 12,07 1 , 1 16 1 ,67 0,86
FL IV 0,01 7,30 0,77 0,09 0,437 0,065
FL V 0,03 0,01 0,22 14 0,047 0,07
FL VI 9E-04 1 E-04 0, 18 0,9 0,001 0,04
FL VII 5E-04 4E-05 0,088 0,016 0,001 0,025
FL I: Fase líquida que entrega la etapa I.
FL II: Fase líquida que entrega la etapa II.
FL III: Fase líquida que entrega la etapa I II.
FL IV: Fase líquida que entrega la etapa IV.
FL V: Fase líquida que entrega la etapa V.
FL VI: Fase líquida que entrega la etapa VI.
FL VII: Fase líquida que entrega la etapa VII.
Cuando no es posible transportar hasta un sitio con infraestructura industrial salmuera preconcentrada con más de aproximadamente 35 g/dm3 de litio, la posibilidad de obtener una salmuera tratada con una concentración de litio comprendida entre aproximadamente 65 g/dm3 y aproximadamente 75 g/dm3 y con bajo contenido de impurezas, hace posible su transporte hacia lugares con mejor infraestructura para la localización de las plantas de carbonato de litio crudo y purificado. Si bien esto tiene la desventaja de incrementar el costo del transporte de salmuera concentrada y de solución de reciclo por tonelada de carbonato de litio producida, tiene ventajas que compensan sobradamente este incremento. La más importante es la reducción del costo operativo por la disponibilidad de energía térmica y eléctrica a menores costos, por ejemplo, localizando las plantas de producto crudo y purificado en las cercanías de una central de potencia y operando con mayor eficiencia sin emplear reactores presurizados, por estar localizada a menor altura sobre el nivel del mar. Por otro lado, esta alternativa también brinda la posibilidad de concentrar el reciclo de las plantas de producto crudo y purificado de forma tal que sea posible transportar al sector de pozas la misma cantidad de líquido que se trasporta hasta las plantas de carbonato de litio; de esta forma se optimiza el sistema de transporte entre pozas y plantas. Esta alternativa también permite la posibilidad de purgar y concentrar parte del reciclo del reactor de crudo para la obtención de otras especies químicas presentes en la salmuera natural, por ejemplo, rubidio y cesio.
La Figura 8 contiene el diagrama de flujo del procedimiento objeto de la presente invención, cuyas características principales son las siguientes:
1) La ejecución del procedimiento de obtención de salmuera concentrada con bajo contenido de impurezas en siete etapas: preconcentración inicial, enfriamiento, pretratamiento, preconcentración final, tratamiento, concentración postratamiento y concentración final.
2) El procesamiento de la totalidad de salmuera extraída del salar que asegura la no devolución a la cuenca de salmuera agotada y/o adulterada, ni de ningún otro efluente líquido.
3) La obtención de cloruro de sodio de alta pureza en la primera subetapa de la etapa de preconcentración inicial. Este producto se emplea como materia prima para producir sal para consumo humano, así como también sal para uso industrial, panes de sal para uso directo en ganadería y materia prima para la producción de sal mineralizada para uso en ganadería.
4) La definición de un grado de concentración de litio, como límite de la etapa I de preconcentración inicial sin que cristalicen sales que contengan el elemento litio en su fórmula química, para asegurar una importante reducción de volumen de la fase líquida.
5) La factibilidad operativa de la ejecución de la etapa de enfriamiento usando equipos mecánicos de cristalización por enfriamiento, cuando el volumen de la fase líquida que entrega la etapa I no es muy grande, por ejemplo, preferentemente entre aproximadamente el 5 % y aproximadamente el 12 % del volumen de salmuera natural que ingresa y la cantidad de sales que contienen el anión sulfato y cristalizan por enfriamiento no es alta, por ejemplo, menor de 6 toneladas de sal anhidra equivalente por tonelada de carbonato de litio.
6) La factibilidad operativa de la ejecución de la etapa de enfriamiento durante los meses de junio y julio aprovechando las bajas temperaturas que caracterizan al clima donde se localizan los principales salares del hemisferio sur, cuando la cantidad de calor, i.e. calor sensible más calor latente, que hay que extraer de la fase líquida que entrega la etapa I es alta porque la cantidad de sales que contienen el anión sulfato y cristalizan por enfriamiento es alta, por ejemplo, mayor de aproximadamente 6 toneladas de sal anhidra equivalente por tonelada de carbonato de litio.
7) Dependiendo de la composición química de la salmuera, la obtención de sulfato de sodio y/o cloruro de potasio y/o de sulfato de potasio, a partir de las sales separadas en la etapa de enfriamiento. El sulfato de sodio se emplea en la industria del papel y del vidrio; las sales de potasio se emplean como fertilizantes.
8) La posibilidad de emplear el sulfato de sodio separado en la etapa de enfriamiento como aporte de aniones sulfato en la etapa de tratamiento. Esto reduce el costo de reactivos por tonelada de carbonato de litio.
9) La minimización del uso de reactivos, por ejemplo, cloruro de calcio o cloruro de bario, en la etapa de pretratamiento, por haber logrado reducir significativamente en forma natural la relación sulfato/litio utilizando condiciones climáticas favorables o cristalizadores mecánicos por enfriamiento.
10) El incremento en la recuperación de litio, por el lavado eficiente de los lodos obtenidos en la etapa de pretratamiento, empleando una masa de agua igual a la tercera parte de la masa de lodos escurridos obtenida.
1 1) La obtención de sulfato de bario a partir de los lodos obtenidos en la etapa de pretratamiento, cuando se emplea como reactivo cloruro de bario. Este producto se emplea como material de relleno en los productos de caucho, en pinturas como blanco permanente y en linóleo, entre otras aplicaciones.
12) La obtención de sulfato de calcio a partir de los lodos obtenidos en la etapa de pretratamiento, cuando se emplea como reactivo cloruro de calcio. Este producto se emplea como yeso de uso agrícola.
13) La obtención de una mezcla de cloruro de sodio y cloruro de potasio en las primeras subetapas de la etapa IV, a partir de la cual se puede obtener cloruro de potasio que se emplea como fertilizante.
14) La definición de un grado de concentración de litio, como límite de la etapa IV de preconcentración final, para asegurar una baja relación magnesio/litio y, al mismo tiempo, la ejecución de la subetapa V.1 de tratamiento con recuperación de litio mayor a aproximadamente el 95 % debido a la separación y lavado de los lodos obtenidos, empleando un filtro prensa.
15) La alternativa de transportar salmuera preconcentrada con más de 35 g/dm3 hasta sitios con infraestructura industrial donde se ejecutan las etapas V, VI y VI I mejorando la performance del procedimiento.
16) La posibilidad de agregar, cuando sea necesario, cloruro de potasio a las últimas subetapas de la etapa IV, para alcanzar una concentración de litio superior a aproximadamente 35 g/dm3, sin que cristalicen sales que contengan litio en su fórmula química. Esto, cuando la disponibilidad de cloruro de potasio en el sitio de localización del sistema de pozas, es factible.
17) La alternativa de continuar con las etapas V, VI y VII en el mismo sitio de ejecución de las etapas I , I I, I II y IV, obteniendo salmuera con una concentración de litio comprendida entre aproximadamente 65 g/dm3 y aproximadamente 75 g/dm3, y con bajo contenido de impurezas.
18) El tratamiento en la etapa V de la salmuera con preconcentración final en dos subetapas. En la primera subetapa V.1 , empleando como reactivos hidróxido de calcio y sulfato de sodio, u otros sulfatas solubles en agua de origen químico o minero como mirabilita o thenardita, para reducir los contenidos de magnesio, calcio y boro. En la segunda subetapa V.2, empleando una mínima cantidad de hidróxido de sodio, carbonato de sodio y cloruro de bario para minimizar los contenidos de magnesio, calcio y sulfato.
19) El incremento en la recuperación de litio por el lavado eficiente de los lodos obtenidos en la subetapa
V.1 , empleando una masa de agua igual a aproximadamente 2 m3/t de sólidos secos obtenidos postratamiento.
20) El incremento en la recuperación de litio por el lavado eficiente de los lodos obtenidos en la subetapa V.2, empleando una masa de agua igual a la tercera parte de la masa de lodos escurridos obtenida. 21) El mínimo consumo específico de reactivos empleados en la etapa de tratamiento gracias a la mínima relación másica de concentraciones magnesio/litio obtenida en la fase líquida que entrega la etapa IV.
22) La obtención de cantidades comercializables de yeso de uso agrícola y sulfato de magnesio de aplicación como fertilizante procesando la totalidad del lodo generado en la etapa de tratamiento.
23) La posibilidad de obtener un carbonato de litio "crudo" con bajo contenido de impurezas, a partir de la salmuera obtenida como fase líquida después de la etapa de tratamiento.
24) La posibilidad de obtener carbonato de litio grado batería a partir del carbonato de litio "crudo" referido en el punto anterior 23).
25) Asegurar el aumento en la recuperación de litio por el empleo de pozas de limpieza y lavado de las sales obtenidas en las pozas comprendidas en las etapas I, IV, VI y VII , y en los cristalizadores comprendidos en la etapa I I de enfriamiento. Este aumento en la recuperación reduce el consumo específico de reactivos.
26) Determinar que el volumen de agua para el lavado de las sales referidas en el punto anterior 25), esté relacionado con el volumen de la porosidad eficaz del lecho de cristales depositados en el piso de las pozas y los cristalizadores naturales, y con la concentración de litio en la fase líquida que embebe los cristales.
27) Plantear la posibilidad de minimizar el área de las pozas de limpieza, definiendo adecuadamente el área de las pozas de cada subetapa incluidas en las etapas I, IV, VI y VII .
28) Considerar la alternativa de emplear cristalizadores evaporativos asistidos con energía térmica proveniente de cualquier fuente primaria para la ejecución de las etapas VI y VI I.
29) Posibilitar la obtención de agua dulce, cuando se opta por la alternativa de ejecutar la etapa de concentración final en equipos mecánicos.
30) Posibilitar el aumento en la recuperación de litio por la mejor separación y lavado de sólidos, cuando las etapas VI y VII se ejecutan en cristalizadores evaporativos.
31) Hacer posible el transporte de la salmuera concentrada obtenida, hacia lugares con mejor infraestructura para la localización de las plantas de carbonato de litio crudo y purificado. Esto permite operar con mejores rendimientos en planta y menores costos operativos.
32) Cuando se proyecta operar transportando salmuera de reciclo al sector de pozas, el procedimiento brinda la posibilidad de transportar desde el lugar de localización de las pozas, la misma cantidad de líquido que retorna a las mismas, optimizando el sistema de transporte entre pozas y planta.
33) La obtención de salmuera concentrada con bajo contenido de impurezas, también brinda la posibilidad de operar las plantas de carbonato de litio "crudo" y purificado sin la necesidad de transportar soluciones que se reciclan al lugar de localización de las pozas.
34) Cuando las plantas de carbonato de litio "crudo" y purificado están localizadas en lugares con buena infraestructura industrial, es posible acumular y concentrar la purga del reactor de "crudo" con el objeto de obtener compuestos de valor comercial de otras especies químicas presentes en la salmuera natural, por ejemplo, rubidio y cesio. 35) El procedimiento objeto de la presente invención permite producir carbonato de litio y/o hidróxido de litio con las especificaciones de calidad requeridas por diferentes usuarios, en una única planta localizada en un sitio con buena infraestructura industrial, al que se transporta: i) salmuera preconcentrada con más de 35 g/dm3 de litio para ejecutar las etapas V, VI y VI I y luego producir los compuestos de litio, y ii) salmuera tratada y concentrada con más de 65 g/dm3 de litio para producir los compuestos de litio.
Las variables operativas de cada una y todas las etapas del procedimiento objeto de la presente invención, se determinaron en base a los resultados obtenidos en un ensayo de campo y de laboratorio (ECL).
El volumen necesario para iniciar el ECL se calcula en base al contenido de ion litio que tiene la salmuera natural a procesar, y el volumen que se pretende obtener de salmuera concentrada a aproximadamente 75 g/dm3, al final del proceso. Este volumen final debe ser ial que permita verificar el proceso de obtención de alguno de los compuestos de litio puro, por ejemplo, carbonato de litio. Preferentemente, este volumen debe ser mayor de aproximadamente 3 dm3. Entonces, asumiendo un grado de recuperación de aproximadamente el 70 %, el volumen inicial para el ensayo de campo y laboratorio debe ser mayor a:
Figure imgf000025_0001
Para la mayoría de las salmueras contenidas, por ejemplo, en los salares de la Puna Argentina, el Altiplano Boliviano y el Desierto de Atacama, el contenido de litio está comprendido entre aproximadamente 350 mg/dm3 a aproximadamente 1 .500 mg/dm3. Esto determina que el volumen inicial para el ECL generalmente esté comprendido entre aproximadamente 220 dm3 y aproximadamente 920 dm3.
Las variables operativas que se miden durante la ejecución de ECL, simulando la evolución de las etapas que se ejecutan en pozas de evaporación solar tales como las correspondientes a las etapas I , IV, VI y VI I, son:
• El volumen (V) de la fase líquida (FL) que ingresa y que sale de cada subetapa que integra la etapa [V FL(x)].
• La temperatura, la densidad, el pH, la cantidad de sólidos totales disueltos (STD) y la composición química, de la fase líquida que ingresa y de la que sale de cada subetapa que integra la etapa.
• Para los sólidos cristalizados, precipitados y separados por escurrimiento en cada subetapa que integra la etapa, se determina la masa, la composición química, la masa total de agua evaporada cuando se calienta a aproximadamente 105 °C, se determina cuáles son las sales que contiene y se estima la humedad (H). También se calcula el valor del volumen de solución de mojadura.
Para el caso de la etapa II, se mide:
• El volumen (V) de la fase líquida (FL) que ingresa y que sale de la etapa.
• La temperatura, la densidad, el pH, la cantidad de sólidos totales disueltos (STD) y la composición química de la fase líquida que ingresa y de la que sale de la etapa.
• Para los sólidos cristalizados, precipitados y separados por escurrimiento en la etapa, se determina la masa, la composición química, la masa total de agua evaporada cuando se calienta a aproximadamente 105 °C, se determina cuáles son las sales que contiene y se estima la humedad (H). También se calcula el valor del volumen de solución de mojadura.
En el caso de las etapas II I y V se determina:
a) La cantidad de reactivos necesaria en cada subetapa. b) La temperatura, la densidad, el pH, la cantidad de sólidos totales disueltos (STD) y la composición química de la fase líquida que ingresa y de la que sale de cada subetapa.
c) La masa, la composición química, la masa total de agua evaporada cuando se calienta a aproximadamente 105 °C, se determina cuáles son las sales que contiene y se estima la humedad (H) de los lodos obtenidos en cada una de las subetapas de pretratamiento y de tratamiento. También se calcula el valor del volumen de solución de mojadura de estos lodos. Con la información obtenida del ECL y, con el propósito de mostrar que el procedimiento objeto de la presente invención es aplicable a escala industrial, por ejemplo, para 10.000 t de carbonato de litio por año, se calculan las variables operativas que caracterizan la evolución de las pozas incluidas en las etapas I , IV, VI y VII para el primer período de operación sin cosecha y los siguientes períodos de operación con cosecha que alternan con los períodos de limpieza. A continuación, se indica cuáles son las variables operativas referidas, y cómo se obtiene el valor correspondiente a la producción anual predeterminada.
• Volúmenes anuales de fase líquida que ingresan a la(s) poza(s) de las Etapas 1.1, IV.1 y VI: se extrapolan de los resultados del ECL
· Concentración de litio, densidad y contenido de sólidos totales disueltos de la fase líquida que ingresa a cualquiera de las pozas de evaporación solar comprendidas en el procedimiento: datos que se obtienen del ECL
• Concentración de litio, densidad y contenido de sólidos totales disueltos de la salmuera que sale de cualquiera de las pozas de evaporación solar comprendidas en el procedimiento: datos que se obtienen del ECL y son las variables a las que operan las pozas.
• Volumen anual total de la fase líquida generada en cualquiera de las pozas de evaporación solar comprendidas en el procedimiento: se calcula mediante un balance de masa para litio.
• Masa total de agua evaporada cuando se calientan a aproximadamente 105 °C los sólidos precipitados escurridos; se determina cuáles son las sales que contienen y se estima la humedad (H): datos que se obtienen del ECL.
• Cantidad anual de sales precipitadas en unidades de masa base seca (SP): se calcula mediante un balance de masa que, además de los contenidos de sólidos totales disueltos en la fase líquida que anualmente ingresa a la poza y en el volumen total anual de la fase líquida generada, debe tener en cuenta el agua de cristalización contenida en las sales precipitadas; para el período de operación poscosecha, el resultado se compara con el valor correspondiente extrapolado del ECL.
• Volumen de solución de mojadura de las sales precipitadas (VSM): se calcula en base a la humedad de las sales precipitadas, la densidad y el contenido de sólidos totales disueltos de la fase líquida a la que opera la poza; para el período de operación poscosecha se compara con el valor correspondiente extrapolado del ECL.
· Cantidad de agua evaporada por la poza: se calcula mediante un balance de masa.
• Agua para bombeo: a los efectos de evitar cristalización en tuberías y accesorios se considera igual a aproximadamente el 0,5 % del caudal de salmuera no saturada bombeado, e igual a aproximadamente el 1 % del caudal que se bombea si se trata de fase líquida saturada.
• Volumen de la porosidad eficaz del lecho de cristales: se estima en base al contenido de cloruro de magnesio en la fase líquida, de acuerdo con la patente presentada por UIrich E. G. (1971).
• Agua para lavado de las sales precipitadas y de los lodos obtenidos en las etapas de pretratamiento y tratamiento: para el cálculo se considera: i) las sales precipitadas en pozas se lavan por inmersión una o más veces, dependiendo de la concentración de litio en la fase líquida, con un volumen de agua dulce del orden del volumen correspondiente a la porosidad eficaz del lecho de cristales; ii) los lodos obtenidos en las etapa de pretratamiento y en la subetapa V.2 de tratamiento, se lavan con una masa de agua igual a la tercera parte de la masa de lodos escurridos obtenida; iii) los lodos obtenidos en la subetapa V.1 se lavan con un volumen de agua de aproximadamente 2 m3 por tonelada de lodo seco, de acuerdo con los resultados de experiencias en el empleo de filtro prensa.
• Volumen equivalente recuperado de solución de mojadura por lavado de las sales precipitadas: con el procedimiento de lavado descripto en el punto anterior, se considera una recuperación de aproximadamente el 80 % de la salmuera entrampada en el lecho de cristales precipitados y entre aproximadamente el 45 % y aproximadamente el 85 % del litio contenido en el agua de mojadura de la fase sólida, dependiendo de la concentración de la fase líquida en equilibrio con los cristales precipitados.
• Volumen de fase líquida que entrega cualquiera de las pozas de evaporación solar comprendidas en el procedimiento: se calcula mediante un balance de masa que considera el volumen de salmuera entrampada, volumen de la porosidad eficaz, y el volumen de solución de mojadura para la operación del primer período sin cosecha, y los porcentajes de recuperación indicados en el punto anterior para los períodos siguientes sin cosecha. Para cualquier período de operación poscosecha se compara con el valor correspondiente extrapolado del ECL.
· Volumen total de sales precipitadas: Se calcula con la masa y la densidad, base seca, de las sales precipitadas, el volumen de la porosidad total, volumen de salmuera entrampada más el espacio vacío estimado en aproximadamente el 5 % de la porosidad total, y el volumen calculado de solución de mojadura.
• Volumen total de sales precipitadas por unidad de masa: se calcula dividiendo el volumen total de sales precipitadas por la masa de sales precipitadas.
• Tasa de evaporación promedio en el período: se obtiene mediante ensayos, que se ejecutan a lo largo de un año, en recipientes de área de evaporación y volumen definidos, determinando la cantidad de agua evaporada por diferencias de peso. Estos ensayos se realizan para las diferentes fases líquidas a las que operan las pozas comprendidas en las etapas I , IV, VI y VII del procedimiento, y los resultados se corrigen con un factor preferentemente igual a 0,70 para obtener el valor correspondiente a la operación de las pozas. En el EJEMPLO 4 se detalla un ensayo para obtener valores de tasas de evaporación a diferentes concentraciones y composición química de fases líquidas.
• Masa anual de agua que evapora cada poza de evaporación solar comprendida en el procedimiento: se calcula con un balance de masa que considera la masa anual de salmuera que ingresa, la masa anual de salmuera que genera, la masa de sólidos precipitados, la masa anual de agua para bombeo de la salmuera que ingresa y, salvo para el primer período sin cosecha, el agua necesaria para el lavado de las sales precipitadas al cabo de un año
• Área de cada poza de evaporación solar comprendida en el procedimiento: se calcula con la masa anual de agua que evapora la poza y la tasa de evaporación promedio anual correspondiente a la composición química de la fase líquida a la que opera la poza.
• Crecimiento del lecho de sales en el fondo de las pozas en dos años: se calcula con el volumen total de sales precipitadas y el área de la poza. Al resultado se le suma preferentemente aproximadamente 0,15 m, que es la altura de sal que se estima dejar como sacrificio para protección de la manta de impermeabilización.
· Altura de salmuera libre: se predetermina. De esta variable depende el tiempo de carga del sistema de pozas.
• Fracción de fase líquida retenida en el lecho de sales precipitadas: se calcula con el volumen anual de fase líquida retenida en la porosidad eficaz, con el volumen anual de fase líquida retenida como solución de mojadura y con el volumen total anual de fase líquida que genera la poza. • Volumen final de la fase líquida para el período de carga: para cada poza de evaporación solar comprendida en el procedimiento, se calcula con la altura de salmuera libre, la fracción de fase líquida retenida en el lecho de sales precipitadas y el área total de la poza.
• Tiempo de carga: para cada poza de evaporación solar comprendida en el procedimiento, se calcula con el volumen final de la fase líquida para el período de carga y el volumen total anual de fase líquida generada por la poza.
Las variables operativas de las etapas II , enfriamiento; I II, pretratamiento; y V, tratamiento; también se obtienen por extrapolación de la información obtenida en los ensayos de campo y laboratorio y de los volúmenes anuales que entregan las etapas I y IV.
EJEMPLOS
Se describen tres ejemplos de ensayos de campo y laboratorio y cálculo de las variables operativas que caracterizan la evolución de las siete etapas del procedimiento, para salmueras provenientes de tres salares. A los efectos de mostrar las distintas alternativas que ofrece el procedimiento, se considera lo siguiente:
• en el ejemplo 1 el proceso de enfriamiento comprendido en la etapa II se ejecuta con un equipo mecánico de cristalización por enfriamiento y el de concentración correspondiente a las etapas VI y VI I se ejecuta en pozas de evaporación solar.
• en el ejemplo 2 el proceso de enfriamiento comprendido en la etapa II se ejecuta con un equipo mecánico de cristalización por enfriamiento, se transporta la salmuera preconcentrada y las etapas V, VI y VI I se ejecutan en un sitio con infraestructura industrial.
· en el ejemplo 3 el proceso de enfriamiento comprendido en la etapa I I se ejecuta aprovechando las condiciones naturales y el de concentración correspondiente a las etapas VI y VII se ejecuta en pozas de evaporación solar.
A modo de ejemplo se detallan a continuación los resultados de los ensayos de campo y laboratorio y cálculo de variables operativas realizados para las salmueras contenidas en los salares de Diablillos, Pozuelo y Río Grande.
EJEMPLO 1 : SALMUERA NATURAL DEL SALAR DE DIABLILLOS
Este Salar es un depósito salino localizado en la Región de la Puna Argentina a más de 3.900 msnm.
Ensayo de campo y laboratorio
ETAPA I: preconcentración inicial
El día 1 , a 4.050 msnm, se cargan tres piletas similares con salmuera natural identificada como FL (i) para iniciar el proceso de evaporación solar y cristalización fraccionada.
1FL (i): Fase líquida inicial de la etapa I
Figure imgf000028_0001
1V: Volumen
2 A: Área
3h: altura
4STD: Sólidos Totales Disueltos
5p: densidad
6T: Temperatura
Química de la fase líquida inicial (FL (i)):
Figure imgf000028_0002
TÉCNICA ICP-OES ICP-OES ICP-OES ICP-OES ICP-OES ICP-OES
Comp. FL (i) 678 900 2.713 2.606 57.205 6.756
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0003
Subetapa 1.1
La salmuera (FL (I)) dispuesta en las tres piletas se deja expuesta al proceso de evaporación solar 4.050 msnm durante 10 días. El día 19 se separan los cristales precipitados de la fase líquida obteniéndose:
FL (1.1) que se dispone en dos piletas para continuar el proceso de evaporación solar
Figure imgf000029_0004
Química de la fase líquida (FL (1.1)):
Figure imgf000029_0005
Figure imgf000029_0006
Figure imgf000029_0007
Figure imgf000029_0008
Cargas - 4.61 1 Desviación 0,007
B.1) Sólidos Precipitados (SP 1.1))
Total de agua evaporada a 105 °C = 19,48 %
2M SP (1.1) = 10,855 kg; 3H = 19,48 %
2M SP: Masa de Sólidos Precipitados
3H: Humedad
Química de los sólidos precipitados al pasar de la FL(i) a la FL (1.1) (SP (1.1)):
Figure imgf000030_0001
Figure imgf000030_0002
Cálculo teórico de la masa de sólidos precipitados SP(I .1):
Figure imgf000030_0003
Desviación 0,01
Total precipitado 7.349,9 g
Figure imgf000030_0004
Cálculo del Volumen de solución de mojadura ( Vsm ( 1.1 )):
Figure imgf000030_0005
Sales precipitadas 105 moles de NaCI
Masa precipitada teórica 10.041 g Desviación 0,039 Masa de cristales cosechados 10.855 g La cantidad específica de sal de pileta de buena calidad que se puede obtener en esta Subetapa es del orden de 5,5 t/t de CLE, en donde: CLE: carbonato de litio equivalente
Cálculo de la tasa de evaporación aparente (TEA):
Figure imgf000031_0001
Figure imgf000031_0002
TEA = 3,95 dm3/(m2 día)
Subetapa I.2
La salmuera FL (1.1) dispuesta en dos piletas se deja expuesta para continuar con el proceso de evaporación natural a 4.050 msnm durante 23 días. El día 23 se separan los cristales precipitados de la fase líquida obteniéndose:
FL (I.2) que se transporta al laboratorio, se pesa, se mide la densidad, se calcula el volumen y se analiza.
Figure imgf000031_0003
Química de la FL (I .2):
Figure imgf000031_0004
Figure imgf000031_0005
Figure imgf000031_0006
Figure imgf000031_0007
B.2) Sólidos Precipitados (SP (1.2))
Total W evaporada a 105°C = 19,48 %
Masa total SP (I .2) = 78,834 kg; H = 19,48 %
Química de los sólidos precipitados (SP (I.2)):
Figure imgf000032_0001
Figure imgf000032_0002
Cálculo teórico de la masa de sólidos precipitados SP (I .2) (no incluye los sólidos contenidos en el volumen de solución de mojadura).
Figure imgf000032_0003
Desviación 0,0040 g
Total precipitado: 64.222,6 g
Figure imgf000032_0004
Cálculo del volumen de solución de mojadura (Vsm (1 -2)):
Figure imgf000032_0005
Figure imgf000032_0006
Desviación -0,030
Figure imgf000032_0007
Cálculo de la tasa de evaporación aparente (TEA): Masa salmuera inicial 391 , 1 kg
Masa salmuera final 86,3 kg
Masa SP 78,8 kg
Masa agua de evaporación 225,9 kg
Período 23 días
Area de evaporación 1 ,8432 m2
TEA = 5.33 dm3/(m2 día)
Los sólidos precipitados SP (1.1) y SP (I.2) contienen más del 90 % de NaCI, entonces los procesos de evaporación solar (1.1) y (I .2) podrían estar incluidos en una sola subetapa de la etapa de preconcentracion inicial
Recuperación proceso (1.1) 97, 1 %
Recuperación proceso (I .2) 91 %
Relación (SO^/Li) en FL (i) 12, 12
Relación (SO^/Li) en FL (1.1) 12,07
Relación (SO<f/ü) en FL (I.2) 9,77
ETAPA II: enfriamiento
El día 25, la salmuera preconcentrada FL (I .2) es enfriada a -7 °C en un congelador ubicado a 2.000 msnm, por un período de 3 días, obteniéndose lo siguiente.
FL (II) que se transporta el laboratorio, se pesa, se mide la densidad, se calcula el volumen y se analiza.
Durante el proceso de separación de la Fase Líquida FL (II) de los sólidos precipitados SP (I I) se descartaron 3,1 dm3 de la FL (II) para eliminar la arcilla sedimentada en el fondo del recipiente durante el proceso de enfriamiento.
1FL (II): Fase líquida de etapa II
Fase Líquida FL (II):
Figure imgf000033_0001
Química de la FL (I I):
Figure imgf000033_0002
Figure imgf000033_0003
Comp. FL (I I) 189.852 17.781 6,00 1 ,215
Figure imgf000034_0001
Sólidos Precipitados (SP (II)):
Masa total SP (II) = 6,100 kg; 25,7 %
Figure imgf000034_0002
Figure imgf000034_0003
Cálculo teórico de la masa de sólidos precipitados SP (II) (no incluye los sólidos contenidos en el volumen de solución de mojadura):
Figure imgf000034_0004
Sales precipitadas:
Figure imgf000034_0006
Cálculo del volumen de solución de mojadura (Vsm (II)):
Figure imgf000034_0005
masa del precipitado teórica 5,979 kg
masa cristales cosechados 6, 100 kg
La cantidad específica de sales de potasio de (cloruro y sulfato) que se puede obtener en esta etapa es mayor a de 3,5 t/t de Carbonato de Litio (CL).
Evolución de las relaciones iónicas hasta esta etapa:
Figure imgf000035_0001
ETAPA III: Pretratamiento
Se agrega al total de la solución enfriada 1 .171 g de CaCI2.2H20 (s) calculado como la cantidad estequiométrica (más un 10%) para precipitar 1 1 ,781 g/dm3 de S0 =
Después de agregar y agitar, se verifica que en contenido de sulfato en la salmuera es igual a 7,290 g/dm3. Sin separar la fase sólida (CaS04.2H20) se agregan 1 .284 g de BaCI2.2H20 (s) calculando la cantidad estequiométrica (más un 10%) necesaria para precipitar los 7,290 g/dm3 de sulfato remanente en la fase líquida. Después de agregar el reactivo, 3,5 dm3 de agua, agitar y separar las fases, se verifica que el contenido de sulfato en la salmuera se estabiliza en 2,768 g/dm3. Es claro que parte del sulfato de calcio precipitado pasó a sulfato de bario, antes de la separación de fases, aumentando el contenido de iones calcio en la fase líquida.
Finalmente, a la fase líquida se le agrega 790 g de BaCI2.2H20 disueltos en 1 ,5 dm3 de agua. Después de agregar el reactivo se agita, se deja en reposo por 24 horas y luego se separan las Fases, obteniéndose:
Fase Líquida FL (II I) que se pesa, se mide la densidad, se calcula el volumen y se analiza:
Figure imgf000035_0002
Química de la FL (II I):
Figure imgf000035_0003
Figure imgf000035_0004
Figure imgf000035_0005
Sólidos precipitados en el pretratamiento (SP (I II)): Masa total SP (III) = 4,900 kg; H = 19,8 %
Los sólidos separados post tratamiento contienen:
57% de BaS04.2H20
5% de glaseríta
4,5% de CaS04.2H20
5% de Borato de Calcio
27% de NaCI
1,5% de KCI
Si después del pretratamiento con cloruro de calcio se separa la fase sólida, el sólido obtenido post agregado de cloruro de bario, es sulfato de bario mezclado con menos del 10% de sustancias solubles en agua. De SP (III) se obtiene como subproducto sulfato de bario.
Requerimiento de reactivos en el pretratamiento
Asumiendo que la recuperación de litio referida al contenido en la FL(I II) y hasta obtener Carbonato de litio es del 82%, el requerimiento específico de cada uno de los reactivos empleados es:
Figure imgf000036_0001
Generación de lodo en el pretratamiento
Asumiendo que la recuperación de litio referida al contenido en la FL(III) y hasta obtener carbonato de litio es del 82%, la generación de lodo por unidad de producto final es:
3,604 t de lodo/t CLE
Cantidad específica de subproductos posibles de obtener a partir del lodo generado por t de carbonato de litio equivalente (CLE):
Figure imgf000036_0002
ETAPA IV: preconcentración final
Subetapa IV.1
La FL (II I) se transporta al Salar de Diablillos el día 66 y al mediodía se dejan cargados dos cajones de plástico de área igual a 0,33 cm x 0,52 cm cada uno, para continuar con el proceso de evaporación natural y cristalización fraccionada.
Durante el transporte de la FL (I II) al Salar y luego en el transporte de la FL (IV.1) al laboratorio se pierde el equivalente a 1 dm3 de FL (IV.1).
El día 87 se separan los cristales precipitados de la fase líquida obteniéndose lo siguiente.
FL (IV.1) que se transporta el laboratorio, se pesa, se mide la densidad y se calcula el volumen y se analiza:
Figure imgf000036_0003
Química de la FL (IV.1) DETERMINACIÓN Li+ Ca++ Mg++ B407= Na+ K+
UNIDAD mg/dm3 mg/dm3 mg/dm3 mg/dm3 mg/dm3 mg/dm3
TÉCNICA ICP-OES ICP-OES ICP-OES ICP-OES ICP-OES ICP-OES
Comp. FL (IV.1) 5.845 3.768 23.499 19.745 53.517 35.172
Figure imgf000037_0001
Figure imgf000037_0002
Sólidos Precipitados (SP (IV.1)) prelavado
Masa total SP ( IV.1) = 4,360 kg; H = 20,79 %
Química de los sólidos precipitados (SP (IV.1)):
Figure imgf000037_0003
Figure imgf000037_0004
Cálculo teórico de la masa de sólidos precipitados SP (IV.1) (no incluye los sólidos contenidos en el volumen de solución de mojadura):
Figure imgf000037_0005
STD (II I) 20.533 STD (IV.1) 17.325 g
SP (IV.1) 3.208 g Desviación: -0,007
Total precipitado: 3.256,9 g
Cálculo del volumen de solución de mojadura (Vsm (IV.1)):
Figure imgf000038_0001
Desviación 0,027
Figure imgf000038_0002
Los sólidos obtenidos se lavan con un volumen de agua aproximadamente igual a la mitad del volumen que tienen post filtrado. El agua de lavado se concentra hasta alcanzar la misma concentración de litio de la FL (IV.1). El volumen resultante de la FL (IV.1) es:
Volumen FL(IV.1) 48,8 dm3
Sólidos Precipitados (SP (IV.1)) poslavado:
Masa total SP ( IV.1) = 4,150 kg; H = 19 %
La fase sólida SP (IV.1) contiene 96% de NaCI y un 3% de KCI.
Subetapa IV.2
El día 92 la salmuera FL (IV.1) dispuesta en dos recipientes, se deja expuesta para continuar con el proceso de evaporación natural en el laboratorio. El día 102 se separan los cristales precipitados de la fase líquida obteniéndose:
La fase líquida FL (IV.2) que se pesa, se mide la densidad, se calcula el volumen y se analiza:
Figure imgf000038_0003
Química de la FL (IV.2):
Figure imgf000038_0004
Figure imgf000038_0005
Cargas + 6.464
Balance iónico
Cargas - 6.835 Desviación 0,028
Sólidos Precipitados (SP (IV.2)) prelavado
Masa total SP (IV.2) = 5,327 kg; H=14,76 %
Química de los sólidos precipitados (SP (IV.2):
Figure imgf000039_0001
Figure imgf000039_0002
Cálculo teórico de la masa de sólidos precipitados SP (IV.2) (no incluye los sólidos contenidos en el volumen de solución de mojadura):
Figure imgf000039_0003
Desviación 0,013
Total precipitado: 4.551 ,1 g
Figure imgf000039_0004
Cálculo del volumen de solución de mojadura (Vsm (IV.2)) prelavado:
Figure imgf000039_0005
Figure imgf000039_0006
masa cristales cosechados 5,327 kg
Los sólidos obtenidos se lavan con una masa de agua aproximadamente igual a la mitad de la masa que tienen post filtrado. El agua de lavado se concentra hasta alcanzar la misma concentración de litio de la FL (IV.2).
El volumen resultante de la FL(IV.2) es: 35,32 dm3
Sólidos Precipitados (SP (IV.2)) poslavado:
Masa total SP ( IV.2) = 5.190 kg; H = 18,5 %
Los sólidos precipitados contienen 12% de cloruro de potasio y 76% de cloruro de sodio y 12% de carnalita.
Subetapa IV.3
El día 103 se vierte la salmuera FL (IV.2) en dos bandejas y se deja expuesta para continuar con el proceso de evaporación natural en el laboratorio. El día 108 se separan los cristales precipitados de la fase líquida obteniéndose:
La fase líquida FL (IV.3) que se pesa, se mide la densidad, se calcula el volumen y se analiza:
Figure imgf000040_0001
Química de la FL (IV.3):
Figure imgf000040_0002
Figure imgf000040_0003
Figure imgf000040_0004
Sólidos Precipitados (SP (IV.3)) prelavado
Masa total SP ( IV.3) = 14,507 kg;
Química de los sólidos precipitados (SP IV.3)):
Figure imgf000040_0005
DETERMINACIÓN Cl- SOr Humedad Insolubles
UNIDAD ^o (p/p) % (P/P) % (P/P) % (P/P)
TÉCNICA Argentometría Gravimetría Gravimetría Gravimetría
Comp. SP (IV.3) 43,85 0,04 17,00 0,4
Cálculo teórico de la masa de sólidos precipitados SP (IV.3) (no incluye los sólidos contenidos en el volumen de solución de mojadura) prelavado:
Figure imgf000041_0001
Figure imgf000041_0002
Agua de cristalización carnalita: 3.024 g
Figure imgf000041_0003
Cálculo del volumen de solución de mojadura (Vsm (IV.3)):
Figure imgf000041_0004
Figure imgf000041_0005
Los sólidos obtenidos se lavan con una masa de agua aproximadamente igual a la mitad de la masa que tienen post filtrado. El agua de lavado se concentra hasta alcanzar la misma concentración de litio de la FL (IV.3). El volumen resultante de la FL(IV.3) es: V (FL(IV.3)) = 10,7 dm3
Sólidos Precipitados (SP (IV.3)) poslavado:
Masa total SP ( IV.3 ) = 13,850 kg; H = 18 % Subetapa IV.4
El día 109 se vierte la salmuera FL (IV.3) en una bandeja y se deja expuesta para continuar con el proceso de evaporación natural en el laboratorio. El día 114 se separan los cristales precipitados de la fase líquida obteniéndose:
La fase líquida FL (IV.4) que se pesa, se mide la densidad, se calcula el volumen y se analiza:
Figure imgf000042_0001
Química de la FL (IV.4):
Figure imgf000042_0002
Figure imgf000042_0003
Figure imgf000042_0004
Sólidos Precipitados (SP (IV.4))
Masa total SP ( IV.4 ) = 4.320 kg; H = 26 %
Química de los sólidos precipitados (SP (IV.4)):
Figure imgf000042_0005
Figure imgf000042_0006
Figure imgf000043_0001
Comp. SP (IV.4) 72,30 0,04 23,00 0,8
Cálculo teórico de la masa de sólidos precipitados SP (IV.4) (no incluye los sólidos contenidos en el volumen de solución de mojadura):
Figure imgf000043_0002
Figure imgf000043_0003
Desviación 0,012
Agua de cristalización: 1 .188 g
Figure imgf000043_0004
Cálculo del volumen de solución de mojadura (Vsm (IV.4)):
Figure imgf000043_0005
Desviación 0,004
Figure imgf000043_0006
Los sólidos obtenidos se lavan con un volumen de agua aproximadamente igual al 60% del volumen que tienen post filtrado. El agua de lavado se concentra hasta alcanzar la misma concentración de litio de la FL (IV.4). El volumen resultante de la FL (IV.4) es:
V(FL(IV.4)) = 7,536 dm3
Sólidos Precipitados (SP (IV.4)) poslavado: Masa total de SP ( IV.4 ) poslavado H= 19 %
ETAPA V: Tratamiento
Subetapa V.1
La salmuera FL (IV.4) se somete a un tratamiento para reducir los contenidos de magnesio, calcio y boro.
Los 7,536 dm3 obtenidos (FL (IV.4)) se colocan en un recipiente de plástico con capacidad de 30 dm3. Primero la salmuera se diluye con agua dulce hasta 31 -32 g/dm3 de litio. Luego, agitando manualmente con una pala de plástico, se agrega una suspensión de hidróxido de calcio preparada suspendiendo 1 ,058 kg en 2,650 dm3 de agua dulce. Inmediatamente después, y continuando con la agitación, se agrega una solución acuosa preparada disolviendo 2,028 kg de sulfato de sodio anhidro en 5,5 dm3 de agua dulce a 35°C. Finalmente, a continuación, se agregan 754 cm3 de una solución de hidróxido de sodio 4 N, asegurando un valor de pH mayor a 1 1 ,3.
La mezcla heterogénea obtenida post tratamiento se separa por centrifugación obteniéndose lo siguiente.
La fase líquida FL (V.1) que se pesa, se mide la densidad, se calcula el volumen y se analiza:
Figure imgf000044_0001
Química de la FL (V.1):
Figure imgf000044_0002
Figure imgf000044_0003
Figure imgf000044_0004
Sólidos Precipitados (SP (V.1)) prelavado:
Masa total prelavado SP (V.1) = 6,950 kg;
Química de los sólidos precipitados SP (V.1) prelavado:
Figure imgf000044_0005
Figure imgf000044_0006
UNIDAD % (P/P) % (P/P) % (P/P) % (P/P)
TECNICA Argentometría Gravimetría Gravimetría Gravimetría
Comp. SP (V.1) 7,83 32,61 41 ,00 0,8
Cálculo teórico de la masa de sólidos precipitados SP (V.1) (no incluye los sólidos contenidos en el volumen de solución de mojadura):
Figure imgf000045_0001
Total precipitado 3698,5 g
Desviación 0,013
Figure imgf000045_0002
Figure imgf000045_0003
Cálculo del volumen de solución de mojadura (Vsm (V.1)) prelavado:
Figure imgf000045_0004
Desviación 0,091
Figure imgf000045_0005
Los sólidos obtenidos se centrifugan, se lavan suspendiéndolos en 9,5 dm3 de agua dulce y se vuelven a centrifugar. El agua de lavado se concentra hasta alcanzar la misma concentración de litio de la FL (V.1). El volumen resultante de la FL(V.1) es:
V(FL(V.1))= 22,514 dm3
Sólidos Precipitados (SP (V.1)) poslavado:
Masa total poslavado SP (V. l) H = 39 % Los lodos SP (V.1) contienen 62% de sulfato de calcio dihidratado y 24% de hidróxido de magnesio. Lixiviando estos lodos con ácido sulfúrico y separando las fases es posible obtener por tonelada de carbonato de litio equivalente lo siguiente lo siguiente:
1 ,7 t de yeso de uso agrícola
2,1 t de sulfato de magnesio
Reducción en el costo de reactivos en la etapa V.1
La cantidad de moles de sulfato necesaria para la etapa V.1 puede ser agregada total o parcialmente como sulfato de potasio y sulfato de sodio obtenido en la etapa I I de enfriamiento. Para el caso de la salmuera del salar de Diablillos, en la etapa de enfriamiento se obtienen 17 moles de sulfato, y en la etapa de tratamiento es necesario agregar 14,3 moles de sulfato lo que significa que no es necesario incorporar al sulfato de sodio como reactivo.
Subetapa V.2
Los 22,514 dm3 obtenidos (FL (V.1)) se colocan en un recipiente de plástico con capacidad de 30 dm3. Agitando manualmente con una pala de plástico, se agrega una solución acuosa preparada disolviendo 306 g de cloruro de bario dihidratado en 1 ,4 dm3 de agua dulce. La mezcla heterogénea obtenida se separa por filtración y lavado, obteniéndose lo siguiente.
La fase líquida FL (V.2) (incluye el agua de lavado) que se pesa, se mide la densidad, se calcula el volumen y se analiza:
Figure imgf000046_0001
Química de la FL (V.2):
Figure imgf000046_0002
Figure imgf000046_0003
Figure imgf000046_0004
Sólidos Precipitados (SP (V.2)):
Los sólidos precipitados por el agregado de cloruro de bario se lavan con 100 cm3 de agua. El agua de lavado se concentra hasta alcanzar la concentración de litio en la FL (V.2) y se mezcla con la misma. :
Masa total poslavado SP (V.2) = 0,420 kg; H = 17 %
Los sólidos precipitados SP (V.2) contienen más del 95 % de sulfato de bario dihidrato. ETAPA VI: Concentración post tratamiento
El día 1 16 la salmuera FL (V.2) se vierte en una bandeja de plástico y se deja expuesta para reiniciar el proceso de evaporación en el laboratorio, empleando ventilación forzada. El día 1 19 se separan los cristales precipitados de la fase líquida obteniéndose lo siguiente.
La fase líquida FL (VI) que se pesa, se mide la densidad, se calcula el volumen y se analiza:
Figure imgf000047_0001
Química de la FL (VI):
Figure imgf000047_0002
Figure imgf000047_0003
Figure imgf000047_0004
Sólidos Precipitados (SP (VI)):
Masa total SP ( VI )
Cálculo teórico de la masa de sólidos precipitados SP (VI) (no incluye los sólidos contenidos en el volumen de solución de mojadura):
Figure imgf000047_0005
STD (V.2) 3614 STD (VI) 2088 g Total precipitado 1538, 1 g
SP (VI) 1526 g Desviación -0,0003
Cálculo del volumen de solución de mojadura (Vsm (VI)):
Figure imgf000048_0001
Los sólidos precipitados se lavan con 400 cm3 de agua. El agua de lavado se concentra hasta alcanzar la concentración de litio en la FL (VII) y se mezcla con la misma. El volumen resultante de la FL (VI) es:
V (FL(VI)) = 7,02 dm3
Sólidos Precipitados (SP (VI)) poslavado:
Masa total poslavado SP (VI) = 1 ,656 kg; H = 9 %
Los sólidos SP (VI) contienen más del 98 % del cloruro de sodio.
ETAPA VII: Concentración Final
La FL (VI) se deja expuesta a ventilación con convección forzada en el laboratorio, para continuar con el proceso de evaporación. El día 126 se separan los cristales precipitados de la fase líquida obteniéndose lo siguiente.
La fase líquida FL (VII) que se pesa, se mide la densidad, se calcula el volumen y se analiza:
Figure imgf000048_0002
Química de la FL (Vi l):
Figure imgf000048_0003
Figure imgf000048_0004
Figure imgf000048_0005
Sólidos Precipitados (SP (VII)) prelavado:
Masa total SP (VII) = 1 ,710 kg; H = 29,27 %
Cálculo teórico de la masa de sólidos precipitados SP (VI I) (no incluye los sólidos contenidos en el volumen de solución de mojadura):
Figure imgf000049_0001
Desviación -0,023
Total precipitado 866,5 g
Figure imgf000049_0002
Cálculo del volumen de solución de mojadura (Vsm (VI I)):
Figure imgf000049_0003
Figure imgf000049_0004
Los sólidos precipitados se lavan con 500 cm3 de agua. El agua de lavado se concentra hasta alcanzar la concentración de litio en la FL (VII) y se mezcla con la misma. El volumen resultante de la FL (VII) es:
V FL(VII) = 2,87 dm3
Sólidos Precipitados (SP (10-1 1)) poslavado:
Masa total poslavado SP (VI I) = 1 ,225 kg; H = 28 %
Los sólidos SP (VI I) contienen más del 98% de cloruro de sodio.
Cálculo de las variables operativas
Se efectuó el cálculo de las variables operativas para una producción anual de 10.000 toneladas de carbonato de litio equivalente empleando salmuera del Salar de Diablillos, cuando el proceso de enfriamiento comprendido en la etapa II se ejecuta con un equipo mecánico de cristalización por enfriamiento y las etapas VI y
VII se ejecutan en pozas de evaporación solar.
Etapa I: Pozas de preconcentración inicial
Primer período sin cosecha:
Figure imgf000049_0005
SP (t/año) 44.460 515.000
Agua p/bombeo (m3/año) 22.900 (salobre) 28.240 (salobre)
Altura de SL predeterminada (cm) 12 12 h sal precipitada cada dos años (cm) 27 73
Área de pozas (m2) 1 .170.000 1 .575.000
Tiempo de carga (días) 19 155
Etapa I: Pozas de preconcentración inicial
Períodos siguientes sin cosecha:
Figure imgf000050_0001
Agua salobre: agua que tiene densidad menor a 1 .100 g/dm .
Poza auxiliar para la etapa I: 390.000 m2
Etapa II: Enfriamiento
Esta etapa se ejecuta en un equipo mecánico de cristalización por enfriamiento y se detalla para el caudal de salmuera más alto o sea, el correspondiente al período post cosecha para la operación del sistema de pozas.
Salmuera a nfriar
Caudal: 76 m3/h
Densidad: 1 ,265 kg/dm3
Temperatura promedio: 16 °C
Contenido de sólidos totales disueltos: 0,396 kg/dm3
Composición química de la fase líquida que ingresa al equipo de enfriamiento:
Figure imgf000050_0002
Figure imgf000050_0003
Figure imgf000050_0004
UNIDAD mg/dm3 mg/dm3 mg/dm3 mg/dm3 UpH kg/dm3
TECNICA Gravimetría Volumetría Volumetría Volumetría Potenciometria Picnometria
Comp. FL (2) 46.318 - N.D. - 6,00 1 ,260
Calor específico: 0,85 kcal/kg °C
Sales que cristalizan durante el enfriamiento:
• Glaserita [K^sNausCSO^d: 2,77 t/t CLE
• Cloruro de sodio (NaCI): 0,322 t/t CLE
CLE: Carbonato de litio equivalente
El enfriamiento se ejecuta con una etapa de prenfriamiento, en la cual la fase líquida refrigerada y con bajo contenido de aniones sulfato, que sale del equipo de refrigeración a -7 °C, interactúa en un intercambiador de calor, con la salmuera a refrigerar que tiene una temperatura inicial de 16 °C. Como resultado de este preenfriamiento la salmuera a refrigerar entra al equipo de cristalización por enfriamiento a 0 °C.
En estas condiciones es fácil demostrar que, para un coeficiente de performance del orden del 60% del coeficiente de performance ideal (Carnot), la energía mecánica necesaria por tonelada de carbonato de litio producida es menor que 0,12 Mwh.
Fase líquida obtenida posenfriamiento
Caudal: 68,7 m3/h
Densidad: 1 ,22 kg/dm3
Temperatura promedio: 1 1 °C
Contenido de sólidos totales disueltos: 0,349 kg/dm3
Composición química de la fase líquida que sale del equipo de enfriamiento:
Figure imgf000051_0001
Figure imgf000051_0002
Agua dulce para lavado de cristales: 7.000 m3
Etapa III: Pretratamiento
Cantidad de reactivos y de agua empleados por tonelada de carbonato de litio equivalente
Cloruro de calcio dihidratado: 0,920 1
Cloruro de bario dihidratado: 1 ,6 1
Agua dulce: 5, 12 m3
Fase líquida post pretratamiento:
Volumen (períodos siguientes sin cosecha): 585.000 m3
Concentración de litio: 4,680 g/dm3
Densidad: 1 .220 g/dm3
Sólidos totales disueltos: 324 g/dm3
Cantidad de lodos generados en el pre tratamiento por tonelada de carbonato de litio equivalente: 3,604 1
Cantidad aproximada de productos a obtener procesando el lodo (por tonelada de carbonato de litio equivalente): Yeso de uso agrícola: 0, 146 1
Sulfato de Bario: 1 ,849 1
Etapa IV: Pozas de preconcentracion final
Primer período sin cosecha
Figure imgf000052_0001
Etapa IV: Pozas de preconcentracion final
Figure imgf000052_0002
Etapa V: Tratamiento
Subetapa V.1
Cantidad de reactivos y de agua empleados por tonelada de carbonato de litio equivalente
Cal hidratada: 0,85 1
Sulfato de sodio (base anhidro): 1 ,62 1
0 1 en caso que se usen las sales separa- das en la etapa I I
Hidróxido de sodio (base seca): 0,096 1
Agua dulce: 15 m3
Fase líquida post Subetapa V.1 : Volumen (períodos siguientes sin cosecha): 210.198 m3
Concentración de litio: 1 1 , 150 g/dm3
Densidad: 1 .138 g/dm3
Sólidos totales disueltos: 171 g/dm3
Cantidad de lodos generados en la Subetapa V.1 por tonelada de carbonato de litio eguivalente: 4,68 1
Cantidad aproximada de productos a obtener procesando el lodo generado (expresada por tonelada de carbonato de litio eguivalente):
Yeso de uso agrícola: 1 ,7 1
Sulfato de magnesio: 2, 1 t
Subetapa V.2
Cantidad de reactivos y de agua empleados por tonelada de carbonato de litio eguivalente
Cloruro de bario dihidratado: 0,24 1
Agua dulce: 1 ,36 m3
Fase líguida post Subetapa V.2:
Volumen: 215.510 m3
Concentración de litio: 10,679 g/dm3
Densidad: 1 .131 g/dm3
Sólidos totales disueltos: 159 g/dm3
Cantidad de lodos generados en la Subetapa V.2, expresada por tonelada de carbonato de litio eguivalente: 0,336 1
Cantidad aproximada de productos a obtener procesando el lodo generado (expresada por tonelada de carbonato de litio eguivalente):
Sulfato de bario: 0,25 1
Pozas Etapas VI y VII
Primer período sin cosecha
Figure imgf000053_0001
Pozas Etapas VI y VII
Períodos siguientes sin cosecha
Figure imgf000053_0002
Agua p/bombeo (m3/año) 2.160 660
Agua p/lavar (m3/año) 8.100 5.400
Altura de SL predeterminada (cm) 12 12 h sal precipitada (cm cada 2 años) 38 50
Área de pozas (m2) 135.000 67.500
Área de poza auxiliar para las etapas IV, VI y VI I: 75.000 m2
Consumos específicos de agua y reactivos del procedimiento calculados por tonelada de carbonato de litio equivalente
Agua salobre: 13 m3
Agua dulce: 26 m3
Cloruro de calcio: 0,903 1
Cloruro de bario: 1 ,84 1
Hidróxido de calcio: 0,85 1
Sulfato de sodio (base anhidro): 1 ,62 1
0 1 en caso que se usen las sales separadas en la etapa I I
Hidróxido de sodio (base seca): 0,096 1
Generación de lodos en las etapas de pre tratamiento y tratamiento, calculada por tonelada de carbonato de litio equivalente
Etapa de pre tratamiento: 3,604 1
Etapa de tratamiento: 5,01 t
CONCLUSIONES
En este ejemplo la salmuera natural no está saturada y, en consecuencia, la cantidad de sólidos cristalizados y precipitados en la etapa I es baja. Esto tiene las siguientes ventajas: i) en el primer período sin cosecha la recuperación es mayor que para el caso de salmueras saturadas, por la menor cantidad de salmuera entrampada y ii) El costo de cosecha de cristales por tonelada de carbonato de litio equivalente, es menor. Por otro lado, si bien en este ejemplo la concentración de litio alcanzada en la etapa de preconcentración inicial es del orden de 4,7 g/dm3, posteriormente se verificó que con esta salmuera es posible alcanzar valores del orden de 8 g/dm3. Esto reduce sustancialmente el volumen reduciendo los costos y facilitando la operación de las etapas II y I II . También es importante aclarar que, aunque en este ejemplo se opte por la alternativa de obtener salmuera concentrada en el lugar de localización del sistema de pozas, con la concentración de litio alcanzada en la etapa de preconcentración final, es conveniente transportar la fase líquida que entrega la etapa IV hasta algún sitio con infraestructura industrial donde se ejecuten las etapas V, VI y VII .
EJEMPLO 2: SALMUERA NATURAL DEL SALAR DE POZUELOS
Este Salar es un depósito salino localizado en la Región de la Puna Argentina a más de 3800 msnm.
Ensayo de campo y laboratorio
El contenido de litio en la salmuera natural con la que se realiza el ECL es 0,380 g/dm3 y el volumen definido para iniciar el ensayo es de 842 dm3.
El día 1 se extrae por bombeo 890 dm3 de salmuera natural del Salar de Pozuelos. Esta salmuera identificada como FL(i) se transporta hasta el centro experimental a la intemperie localizado en el paraje de Tres Morros, provincia de Jujuy, Argentina, y al día siguiente se carga en tres piletas similares con área de unos 1 ,5 m2. La altura promedio de la FL(i) en las piletas es aproximadamente igual a 0, 197 m.
Salmuera Natural (FL(i)):
Masa FL (i) 1 .022 kg 1 p (FL (i)) 1 , 19 kg/dm3
2V (FL (i)) 890 dm3
3STD (FL(i)) 319 g/dm3
1p (FL (i)): densidad de la Fase Líquida de la etapa I
2V (FL (i)): Volumen de la Fase Líquida de la etapa I
3STD (FL(i)): Sólidos Totales Disueltos de la Fase Líquida de la etapa Química de la FL (i):
Figure imgf000055_0001
Figure imgf000055_0002
Figure imgf000055_0003
Figure imgf000055_0004
ETAPA I: Preconcentración inicial
Subetapa 1.1
La salmuera FL(i) se deja expuesta al proceso de evaporación solar hasta el día 50. Ese mismo día se separan los cristales de la Fase líquida, obteniéndose:
La fase líquida FL (1.1):
Figure imgf000055_0005
Química de la FL (1.1):
Figure imgf000055_0006
Figure imgf000055_0007
UNIDAD mg/dm3 mg/dm3 mg/dm3 mg/dm3 mg/dm3 mg/dm3
TECNICA ICP-OES ICP-OES ICP-OES Argentometría Gravimetría Volumetría
Comp. FL (1.1) - 42 6 209.000 10.306 N.D.
Figure imgf000056_0001
Figure imgf000056_0002
Sólidos Precipitados en subetapa 1.1 (SP (1.1)):
Masa total 1SP (1.1) 265,63 kg
Figure imgf000056_0003
1SP (1. 1)= Sólidos precipitados de la etapa 1.1
2Total W Evaporada a 105 °C= Total agua Evaporada a 105°C
3H= Humedad Química de los sólidos SP (1.1):
Figure imgf000056_0004
Figure imgf000056_0005
Cálculo teórico de la masa de sólidos precipitados SP (1.1):
Figure imgf000056_0006
W crist. NE 776 g
213.582 g
1Wcrist. NE: agua de cristalización no evaporada
Desviación 0,0000
Total precipitado 216.943 g
Figure imgf000057_0001
1SP (1. 1): Sólidos precipitados
Cálculo del volumen de SM (Vsm (1.1))
Figure imgf000057_0003
Desviación: -0,012
Figure imgf000057_0002
1Vsm (1.1) = Volumen de solución de mojadura
2W cristalización E = agua de cristalización evaporada
Los cristales cosechados se lavan con 144 kg de agua dulce. Esta masa de agua es aproximadamente igual a la mitad de la masa de cristales cosechados. El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (1.1).
Volumen Efectivo que entrega la subetapa 1.1 :
V(FL 1.1) 197,5 dm3
Subetapa I .2
La salmuera FL (1.1) se carga en una pileta y se deja expuesta para continuar con el proceso de evaporación solar hasta el día 78. Ese día se separan los sólidos de la fase líquida, obteniéndose lo siguiente. La fase líquida FL (I .2):
Figure imgf000057_0004
Química de la FL (I .2):
Figure imgf000057_0005
Figure imgf000057_0006
DETERMINACION HCO3- PH Densidad
UNIDAD mg/dm3 UpH kg/dm3
TECNICA Volumetría Potenciometría Picnometría
Comp. FL (1.2) ND 4,88 1 ,283
Figure imgf000058_0001
Sólidos Precipitados en subetapa I .2 (SP (I.2)):
Masa total SP (I .2)
Química de los sólidos SP (I .2):
Figure imgf000058_0002
Figure imgf000058_0003
Cálculo teórico de la masa de sólidos precipitados SP (I.2):
Figure imgf000058_0004
Desviación -0,0085 Total precipitado 52730 g
Figure imgf000058_0005
Cálculo del volumen de solución de mojadura (Vsm (1.2)) Vsm (1.2) = 1 ,3 dm3
Masa solución de mojadura 1 ,6 kg
Masa de insolubles en SP (1.2) 0,6 kg
Desviación 0,012
Figure imgf000059_0001
Volumen Efectivo que entrega la subetapa (I .2) = 44.41 dm3
Los cristales cosechados se lavan con 30 kg de agua dulce. Esta masa de agua es aproximadamente igual a la mitad de la masa de cristales cosechados. El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (I.2 )
ETAPA II: Enfriamiento
El día 85 la FL (I .2) se transporta a un laboratorio donde se enfría a menos siete grados centígrados (- 7°C) en un congelador por un período de 18 días, obteniéndose lo siguiente.
La fase líquida FL(I I)
Figure imgf000059_0002
Química de la FL (I I):
Figure imgf000059_0003
Figure imgf000059_0004
Figure imgf000059_0005
Figure imgf000059_0006
Sólidos Precipitados en etapa I I (SP (II)):
Figure imgf000059_0007
Química de los sólidos SP (I I):
Figure imgf000060_0001
Figure imgf000060_0002
Cálculo teórico de la masa de sólidos precipitados SP (I I):
Figure imgf000060_0003
Desviación 0,0003
Total precipitado 2851 g
Figure imgf000060_0004
Sales precipitadas:
Figure imgf000060_0005
Figure imgf000060_0006
Desviación 0,035
Figure imgf000060_0007
Los cristales cosechados se lavan con 1 ,5 kg de agua dulce. Esta masa de agua es aproximadamente Igual a la mitad de la masa de cristales cosechados. El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (I I)
Volumen Efectivo que entrega la Etapa II = 44.41 dm3
ETAPA III: Pre tratamiento
Al total de la FL (I I) se agrega 1 ,875 kg de CaCI2.2H20 suspendidos en 2 dm3 de agua dulce. Se agita durante una hora y se separan las fases obteniéndose:
La fase líquida FL(II I)
Figure imgf000061_0001
Química de la FL (II I):
Figure imgf000061_0002
Figure imgf000061_0003
Figure imgf000061_0004
Figure imgf000061_0005
Sólidos Precipitados en etapa II I (SP(III)):
Figure imgf000061_0006
Química de los sólidos SP (II I):
Figure imgf000061_0007
DETERMINACION Cl- SOr Humedad Insolubles
UNIDAD ^o (p/p) % (P/P) % (P/P) % (P/P)
TECNICA Argentometría Gravimetría Gravimetría Gravimetría
Comp. SP (II I) 6,86 57, 13 5,00 1 , 1
Cálculo teórico de la masa de sólidos precipitados SP (II I):
Figure imgf000062_0001
No incluye:
• Solución de mojadura
• Insolubles
Total precipitado = 1.906 g No incluye: solución de mojadura
Sales precipitadas:
Figure imgf000062_0002
Cálculo del volumen de solución de mojadura (Vsm (I II)):
Figure imgf000062_0003
Figure imgf000062_0004
Los cristales cosechados se lavan con 1 kg de agua dulce. Esta masa de agua es aproximadamente igual a la mitad de la masa de cristales cosechados. El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (I II).
Volumen efectivo que entrega la etapa III (L) = 42,4 dm3
ETAPA IV: Preconcentración Final
El día 107 la FL (I II) se transporta al Centro Experimental a la intemperie localizado en el paraje de Tres Morros, provincia de Jujuy, Argentina, y se expone a evaporación solar. Subetapa IV.1
El día 124 se toma una muestra de la fase líquida. Se determina la concentración de litio en la FL (IV.1), y se obtiene el valor 16,856 g/dm3. Se decide continuar con el proceso de concentración por evaporación solar. Subetapa IV.2
Se continua con el proceso de concentración por evaporación solar, y el día 129 se separan las fases obteniéndose:
Fase Liquida FL (IV.2):
Figure imgf000063_0001
Química de la FL (IV.2):
Figure imgf000063_0002
Figure imgf000063_0003
Figure imgf000063_0004
Figure imgf000063_0005
Sólidos Precipitados en etapa IV.2 (SP (IV.2):
Figure imgf000063_0006
Química de los sólidos SP (IV.2):
Figure imgf000063_0007
Figure imgf000063_0008
UNIDAD % (P/P) % (P/P) % (P/P) % (P/P)
TECNICA Argentometría Gravimetría Gravimetría Gravimetría
Comp. SP (IV.2) 61 ,25 1 ,05 5,00 1 ,3
Cálculo teórico de la masa de sólidos precipitados SP (IV.2):
Figure imgf000064_0001
Desviación 0,0274
Total precipitado 1 1 .795 g
Figure imgf000064_0002
Figure imgf000064_0003
Cálculo del volumen de solución de mojadura (Vsm (IV.2)):
Figure imgf000064_0004
Desviación 0,014
Figure imgf000064_0005
1 Wcrist E: agua de cristalización evaporada Los cristales cosechados se lavan con 8 kg de agua dulce. Esta masa de agua es aproximadamente igual a la mitad de la masa de cristales cosechados. El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (IV.2).
Volumen efectivo que entrega la etapa IV.2 (L) = 13.2 dm3
Subetapa IV.2"
Si bien durante la evolución de la etapa IV.2 no cristalizaron sales que contengan litio en su fórmula química, como lo demuestra el bajo contenido de litio en las sales SP (IV.2), en el laboratorio se verificó que al evaporarse unos 200 cm3 de agua, la concentración de litio en la fase líquida disminuía indicando la cristalización de carnalita lítica, y la relación Mg/Li también disminuía, indicando la cristalización simultánea de bischofita. Esto ocurre por la baja concentración de potasio y la alta concentración de magnesio. Se decide entonces agregar a la FL (IV.2) una solución acuosa preparada disolviendo 1 ,169 kg de KCI en 4,136 dm3 de agua dulce, obteniéndose:
Fase Líquida FL (IV.2')
Química de la FL (IV.2'):
Figure imgf000065_0001
Figure imgf000065_0002
Figure imgf000065_0003
Figure imgf000065_0004
Figure imgf000065_0005
Cálculo teórico de la masa de sólidos precipitados SP (IV.2):
Figure imgf000065_0006
Figure imgf000066_0001
Figure imgf000066_0002
Sales cristalizadas:
Figure imgf000066_0003
La mezcla heterogénea de FL (IV.2') con los sólidos precipitados se exponen a evaporación solar el día
136.
El día 143 se separan las fases sólida y líquida, obteniéndose lo siguiente.
Fase Líquida FL (IV.3):
Figure imgf000066_0004
Química de la FL (IV.3):
Figure imgf000066_0005
Figure imgf000066_0006
Figure imgf000066_0007
UNIDAD mg/dm3 UpH kg/dm3
TECNICA Volumetría Potenciometría Picnometría
Comp. FL (IV.3) N/D 3,00 1 ,314
Figure imgf000067_0001
Sólidos Precipitados en etapa IV.3 (SP (IV.3):
Figure imgf000067_0002
Química de los sólidos SP (IV.3):
Figure imgf000067_0003
Figure imgf000067_0004
Cálculo teórico de la masa de sólidos precipitados SP (IV.3):
Figure imgf000067_0005
Figure imgf000067_0006
g
4.046 g
Total precipitado 4,084 kg
Sales precipitadas:
Figure imgf000068_0001
Cálculo del volumen de solución de mojadura (Vsm (IV.2)):
Figure imgf000068_0002
Figure imgf000068_0003
Los cristales cosechados se lavan con 4,6 kg de agua dulce. Esta masa de agua es aproximadamente igual a la mitad de la masa de cristales cosechados. El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (IV.2).
Volumen efectivo que entrega la etapa IV.2 (L) = 13.2 dm3
ETAPA V
Tratamiento Subetapa V.1
Los 7,95 dm3 obtenidos (FL (IV.3)) se colocan en un recipiente de plástico con capacidad de 30 dm3. Agitando manualmente con una pala de plástico, se agrega una suspensión de hidróxido de calcio preparada suspendiendo 1 ,665 kg en 3,100 dm3 de agua dulce. Inmediatamente después, y continuando con la agitación, se agrega una solución acuosa preparada disolviendo 3,169 kg de sulfato de sodio anhidro en 6,3 dm3 de agua dulce a 35 °C. La mezcla heterogénea obtenida post tratamiento se separa por centrifugación, obteniéndose: La Fase Líquida FL (V.l):
Figure imgf000068_0004
Química de la FL (V.1):
Figure imgf000068_0005
Figure imgf000068_0006
TECNICA ICP-OES ICP-OES ICP-OES Argentometria Gravimetría Volumetría
Comp. FL (V.1) - 2 5 177.241 5.650 N.D.
Figure imgf000069_0001
Figure imgf000069_0002
Sólidos Precipitados en etapa V.1 (SP V.1):
Figure imgf000069_0003
Química de los sólidos SP (V.1):
Figure imgf000069_0004
Figure imgf000069_0005
Cálculo teórico de la masa de los sólidos precipitados SP (V.1):
Figure imgf000069_0006
W crist. NE 260 g
4.879 g
Total precipitado = 5.035 g
Desviación 0,0136
Figure imgf000070_0001
Cálculo del volumen de solución de mojadura (Vsm (V.1)):
Figure imgf000070_0002
Figure imgf000070_0003
Desviación 0,018
Figure imgf000070_0004
10
Subetapa V.2
Los 15,5 dm3 obtenidos (FL (V.1)) se colocan en un recipiente de plástico con capacidad de 30 dm3. Agitando manualmente con una pala de plástico, se agregan 82 cm3 de una solución 4 N (160 g/dm3) de hidróxido de sodio, verificando que el pH llegue a 1 1 ,2. Inmediatamente después, y continuando con la agitación, se agrega una solución acuosa preparada disolviendo 55 g de carbonato de sodio en 190 cm3 de agua dulce. A continuación, y sin suspender la agitación se agrega una solución acuosa preparada disolviendo 223 g de cloruro de bario dihidratado en 700 cm3 de agua dulce. Se deja la mezcla heterogénea en reposo y luego se separan los sólidos precipitados por filtración al vacío, obteniéndose:
La fase líquida FL (V.2):
Figure imgf000070_0005
Química de la FL (V.2):
Figure imgf000070_0006
Figure imgf000070_0007
DETERMINACION HCO3- PH Densidad
UNIDAD mg/dm3 UpH kg/dm3
TECNICA Volumetría Potenciometría Picnometría
Comp. FL (V.2) 6 1 1 ,20 1 , 130
Figure imgf000071_0001
Sólidos Precipitados en etapa V.2 (SP V.2):
Figure imgf000071_0002
Química de los sólidos SP (V.2):
Figure imgf000071_0003
Figure imgf000071_0004
Cálculo teórico de la masa de sólidos precipitados SP (V. l):
Figure imgf000071_0005
STD (V.1) 4.485 g
STD (V.2) 4.232 g Desviación -0,0045
SP (V.2) 253 g
W crist. NE 0 g
253 g
Total precipitado 258 g
Cálculo del volumen de solución de mojadura (Vsm (IV.2)):
Vsm (IV.2) = 0,03 dm3
Masa SM 0,0 kg 0,5 moles CaC03
Masa insolubles en SP (IV.2) 0,00 kg 0,9 moles BaS04
Masa precipitada t. Seco +SM 0,289 kg Desviación -0,010
W cristales Evaporada 0
Masa total húmedo 0,289 kg
Masa cristales cosechados 0,295 kg
ETAPA VI: Concentración postratamiento
La FL (V.2) se expone a evaporación solar hasta alcanzar una concentración de litio de 37 g/dm3 (3 %) y se obtiene:
La fase líquida FL (VI):
Figure imgf000072_0001
Química de la FL (VI):
Figure imgf000072_0002
Figure imgf000072_0003
Figure imgf000072_0004
Cargas + 6.898
Balance iónico
Cargas - 7.050 Desviación 0,01 1
Sólidos Precipitados en etapa V.2 (SP VI):
Figure imgf000073_0001
Química de los sólidos SP (VI):
Figure imgf000073_0002
Figure imgf000073_0003
Cálculo teórico de masa de sales precipitadas:
Figure imgf000073_0004
Desviación 0,0010
Figure imgf000073_0005
Total precipitado
Cálculo del volumen de solución de mojadura (Vsm (VI)) Vsm (VI) = 0,20 dm3 82 moles NaCI
Masa SM 0,3 kg
Masa insolubles en SP (VI) 0,02 kg
Desviación -0,027
Figure imgf000074_0001
Los cristales cosechados se lavan con 1 ,1 kg de agua dulce. Esta masa de agua es aproximadamente Igual a la mitad de la masa de cristales cosechados. El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (VI).
Volumen efectivo que entrega la Etapa VI: 7,05 dm3
ETAPA VII: Concentración Final
La FL (VI) se expone a evaporación solar hasta alcanzar una concentración de litio de entre 75 g/dm3 y 85 g/dm3. Alcanzada esta concentración final, se separan las fases, obteniendo:
La fase líquida FL (VII):
Figure imgf000074_0002
Química de la FL (VI I):
Figure imgf000074_0003
Figure imgf000074_0004
Figure imgf000074_0005
Figure imgf000074_0006
Sólidos Precipitados en etapa VI I (SP VII):
Masa total SP (VI I) 0,96 kg Total w evaporada a 105 °C 18 %
H = 18 %
Química de los sólidos SP (VII):
Figure imgf000075_0001
Figure imgf000075_0002
Cálculo teórico de la masa de sales cristalizadas en la etapa de concentración final VI I:
Figure imgf000075_0003
Desviación 0,0007
Figure imgf000075_0004
Total precipitado = 636 g
Cálculo del volumen de solución de mojadura (Vsm (VI I)):
Figure imgf000075_0005
I Masa insolubles en SP (VI I) 0,01 kg
Desviación -0,022
Figure imgf000076_0001
Los cristales cosechados se lavan con 40 cm3 de agua dulce. Esta masa de agua es aproximadamente igual a la mitad de la masa de cristales cosechados. El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (VII).
Volumen efectivo que entrega la Etapa VI I: 3,05 dm3
Cálculo de las variables operativas
Se efectuó el cálculo de las variables operativas para una producción anual de 10.000 toneladas de carbonato de litio equivalente empleando salmuera del Salar de Pozuelos, cuando el proceso de enfriamiento comprendido en la etapa I I se ejecuta con un equipo mecánico de cristalización por enfriamiento y la salmuera preconcentrada y con más de 35 g/dm3 se transporta hasta un sitio con infraestructura industrial
Etapa I: Pozas de preconcentración inicial
Primer período sin cosecha:
Figure imgf000076_0002
Etapa I: Pozas de pre concentración inicial
Períodos siguientes sin cosecha:
Figure imgf000076_0003
Agua p/bombeo (m3/año) 41 .000 (salobre) 33.383 (salobre) 17.521 (salobre) 9.620 (salobre)
Agua p/lavado (m3/año) 144.505 50.703 25.395 61 .723
Altura de SL predeterminada (cm) 12 12 12 12 h sal precipitada cada dos años (cm) 108 100 89 91
Área de pozas (m2) 2.870.000 1 .1 10.000 643.000 510.000
Tiempo de carga (días) 40 28 29 65
Agua salobre: agua que tiene densidad menor a 1 .100 g/dm3
Poza auxiliar para la etapa I: 620.000 m2
Etapa II: Enfriamiento
Esta etapa se ejecuta en un equipo mecánico de cristalización por enfriamiento y se detalla para el caudal de salmuera más alto o sea, el correspondiente al período post cosecha para la operación del sistema de pozas.
Salmuera a enfriar
Caudal: 47 m3/h
Densidad: 1 ,258 kg/dm3
Temperatura promedio: 16°C
Contenido de sólidos totales disueltos: 0,368 kg/dm3
Composición química de la fase líquida que ingresa al equipo de enfriamiento:
Figure imgf000077_0001
Figure imgf000077_0002
Figure imgf000077_0003
Calor específico: 0,85 kcal/kg °C
Sales que cristalizan durante el enfriamiento:
• Carnalita (MgCI2.KCI.6H20): 1 ,5 t/t CLE
· Glaserita [ 2,25Nai ,75(S04)2]: 0,9 t/t CLE
• Cainita (MgS04.KCI2.2,75H20): 0,27 t/t CLE
CLE: Carbonato de litio equivalente
El enfriamiento se ejecuta con una etapa de prenfriamiento, en la cual la fase líquida refrigerada y con bajo contenido de aniones sulfato, que sale del equipo de refrigeración a -7 °C, interactúa en un intercambiador de calor, con la salmuera a refrigerar que tiene una temperatura inicial de 16 °C. Como resultado de este pre enfriamiento la salmuera a refrigerar entra al equipo de cristalización por enfriamiento a 0 °C. En estas condiciones es fácil demostrar que, para un coeficiente de performance del orden del 60% del coeficiente de performance ideal (Carnot), la energía mecánica necesaria por tonelada de carbonato de litio producida es menor que 0,09 Mwh.
Fase líquida obtenida post enfriamiento
Caudal: 45 m3/h
Densidad: 1 ,258 kg/dm3
Temperatura promedio: 1 1 °C
Contenido de sólidos totales disueltos: 0,368 kg/dm3
Composición química de la fase líquida que sale del equipo de enfriamiento:
Figure imgf000078_0001
Figure imgf000078_0002
Figure imgf000078_0003
Agua dulce para lavado de cristales: 4.000 m3
Etapa III: Pretratamiento
Cantidad de reactivos y de agua empleados por tonelada de carbonato de litio equivalente
Cloruro de calcio dihidratado: 1 ,47 1
Agua dulce: 1 ,57 m3
Fase líquida post pretratamiento:
Volumen (períodos siguientes sin cosecha): 365.901 m3
Concentración de litio: 7,186 g/dm3
Densidad: 1 .258 g/dm3
Sólidos totales disueltos: 380 g/dm3
Cantidad de lodos generados en el pre tratamiento por tonelada de carbonato de litio equivalente: 1 ,49 1
Cantidad aproximada de productos a obtener procesando el lodo (por tonelada de carbonato de litio equivalente:
Yeso de uso agrícola: 1 ,2 1
Etapa IV: Pozas de pre concentración final
Primer período sin cosecha:
Figure imgf000078_0004
Concentración de litio en la
salmuera que sale (kg/m3) 16,856 21 ,453 35,964
SP (t/año) 43.421 2.31 1 12.100
Agua p/bombeo (m3/año) 2.161 744 574
Altura de SL predeterminada (cm) 12 12 12
h sal precipitada (cm cada 2 años) 77 40 57
Área de pozas (m2) 135.000 22.000 63.000
Tiempo de carga (días) 72 15 88
Etapa IV: Pozas de pre concentración final
Períodos siguientes sin cosecha:
Figure imgf000079_0001
En el inicio de la subetapa IV.3 se agregan 0,92 t de cloruro de calcio (KCI) por tonelada de carbonato de litio equivalente.
La salmuera con preconcentración inicial y con una concentración de lirio igual a 35,364 g/dm3 se transporta hasta un sitio con infraestructura industrial donde se ejecutan las etapas V, VI y VI I.
Haciendo el mismo cálculo que el indicado en el ítem descripción detallada del invento cuando se transporta esta salmuera preconcentrada hasta un sitio con infraestructura industrial, se transporta (base transporte de sólidos) en este caso 0,430 1 menos de material entre el salar y el sitio elegido.
Etapa V: Tratamiento
Subetapa V.1
Cantidad de reactivos y de agua empleados por tonelada de carbonato de litio equivalente
Cal hidratada: 1 ,31 t
Sulfato de sodio (base anhidro): 2,49 1
Agua dulce: 7,4 m3
Fase líquida post subetapa V.1 :
Volumen (períodos siguientes sin cosecha): 132.757 m3
Concentración de litio: 17,699 g/dm3
Densidad: 1 .14 g/dm3
Sólidos totales disueltos: 271 g/dm3
Cantidad de lodos generados en la subetapa V.1 por tonelada de carbonato de litio equivalente: 3,95 1 Cantidad aproximada de productos a obtener procesando el lodo generado (expresada por tonelada de carbonato de litio equivalente):
Yeso de uso agrícola: 2,3 1
Sulfato de magnesio: 0,9 1
Subetapa V.2
Cantidad de reactivos y de agua empleados por tonelada de carbonato de litio equivalente
Hidróxido de sodio (base seca): 0,01 t
Carbonato de sodio (base seca): 0,043 1
Cloruro de bario dihidratado: 0,17 1
Agua dulce: 0,76 m3
Fase líquida post subetapa V.2:
Volumen: 142.541 m3
Concentración de litio: 16,881 g/dm3
Densidad: 1 .13 g/dm3
Sólidos totales disueltos: 266 g/dm3
Cantidad de lodos generados en la subetapa V.2, expresada por tonelada de carbonato de litio equivalente: 0,2 1
Cantidad aproximada de productos a obtener procesando el lodo generado (expresada por tonelada de carbonato de litio equivalente):
Sulfato de bario: 0, 16 1
Etapas VI y VII
Al transportar la salmuera preconcentrada hasta un sitio con infraestructura comercial, es conveniente ejecutar las etapas VI y VI I en cristalizadores evaporativos asistidos con energía térmica.
Como la cantidad específica de agua que hay que evaporar en las etapas VI y VII es 8.622 kg por tonelada de carbonato de litio equivalente, empleando un equipo de cristalización con evaporación en etapas múltiples, el requerimiento específico de energía térmica expresado en normal m3 de gas por tonelada de carbonato de litio equivalente es menor a 280. El costo de esta energía, proveniente de cualquier fuente primaria que se emplee, está totalmente compensado con las ventajas operativas, la mayor recuperación de litio en las etapas VI y VII , y la obtención de subproductos tales como 400 kg de cloruro de sodio de alta pureza por tonelada de carbonato de litio equivalente y 8.620 dm3 de agua destilada por tonelada de carbonato de litio equivalente.
Consumos específicos de agua y reactivos del procedimiento calculados por tonelada de carbonato de litio equivalente
Agua salobre: 10 m3
Agua dulce: 42,62 m3
Cloruro de calcio: 1 ,47 1
Cloruro de bario: 0,17 1
Cloruro de potasio: 0,92 1
Hidróxido de calcio: 1 ,31 t
Sulfato de sodio (base anhidro): 2,49 1 (se puede emplear el obtenido en la etapa I I.
Hidróxido de sodio (base seca): 0,01 t
Carbonato de sodio (base seca): 0,043 1
Generación de lodos en las etapas de pre tratamiento y tratamiento, calculada por tonelada de carbonato de litio equivalente
Etapa de pretratamiento: 1 ,49 1
Etapa de tratamiento: 4, 15 1
CONCLUSIONES En este ejemplo se muestra como el agregado de cloruro de potasio en la última subetapa de la etapa IV, permite alcanzar una mayor concentración de litio en la fase líquida que entrega esta etapa. Esto no solamente reduce el consumo de reactivos en la etapa de tratamiento, sino que además permite el transporte de salmuera preconcentrada hasta un sitio con infraestructura industrial para ejecutar las etapas V, VI y VII . En este ejemplo, el transporte de hasta un sitio con infraestructura industrial, y se muestra que por la cantidad de agua que es necesario evaporar en las etapas VI y VI I es factible el uso de un equipo de cristalización con evaporación en etapas múltiples, con asistencia de energía térmica.
EJEMPLO 3: SALMUERA NATURAL DEL SALAR DEL RÍO GRANDE
Este Salar es un depósito salino localizado en la Región de la Puna Argentina a más de 3.800 msnm.
Ensayo de campo y laboratorio
El contenido de litio en la salmuera natural con la que se realiza el ECL es 0,340 g/dm3 y el volumen definido para iniciar el ensayo es de 835 dm3.
El día 1 se extrae por bombeo desde un pozo existente en el Salar de Río Grande uno 840 dm3 de salmuera natural. El pozo tiene una profundidad aproximada de 30 m y las coordenadas que definen su ubicación son:
Latitud: 25° 5' 27,2" - Longitud: 68° 8' 23,6"
La Salmuera natural, identificada como FL(i), se transporta hasta el centro experimental a la intemperie localizado en el paraje de Tres Morros, provincia de Jujuy, Argentina, y al día siguiente se carga en tres piletas similares de unos 1 ,5 m2 cada una. La altura promedio en las piletas es de aproximadamente 0, 186 m.
Salmuera Natural (FL(i))
Figure imgf000081_0001
1p (FL (i)) : densidad de la fase líquida de la etapa I
2V (FL (i)): volumen de la fase líquida de la etapa I
3STD (FL(i)): Sólidos totales disueltos de la fase líquida de la etapa I
Química de la FL (i):
Figure imgf000081_0002
Figure imgf000081_0003
Figure imgf000081_0004
Balance iónico Cargas + 5652 I Cargas - Desviación I 0,008 I
ETAPA I: Preconcentración inicial
Subetapa 1.1
La salmuera FL(i) se deja expuesta al proceso de evaporación solar durante 43 días. El día 44 se separan los cristales de la Fase Líquida, obteniéndose lo siguiente.
La fase líquida FL (1.1):
Figure imgf000082_0001
Química de la FL (1.1):
Figure imgf000082_0002
Figure imgf000082_0003
Figure imgf000082_0004
Figure imgf000082_0005
Sólidos Precipitados en subetapa 1.1 (SP (1.1))
Masa total SP (1.1) = 235,15 kg
Tot. W Evaporada a 105 °C = 21 %
Humedad (H) = 18 %
1W: agua
Química de los sólidos SP (1.1):
Figure imgf000082_0006
Figure imgf000082_0007
UNIDAD % (P/P) % (P/P) % (P/P) % (P/P)
TECNICA Argentometría Gravimetría Gravimetría Gravimetría
Comp. SP (1.1) 53,09 1 ,087 18,00 1 ,2
Cálculo teórico de la masa de sólidos precipitados SP (1.1):
Figure imgf000083_0001
Desviación 0,0010
Figure imgf000083_0002
Total precipitado 159502 g Cálculo del volumen de Solución de Mojadura (Vsm (1.1)):
Desviación 0,01 1
Figure imgf000083_0003
Figure imgf000083_0004
Los cristales cosechados se lavan con 120 kg de agua dulce. Esta masa de agua es aproximadamente igual a la mitad de la masa de cristales cosechados. El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (1.1).
Volumen Efectivo que entrega la subetapa 1.1 : V (FL I.1) = 328 dm3
Subetapa I.2
La salmuera FL (1.1) se carga en una pileta y se deja expuesta para continuar con el proceso de evaporación solar hasta el día 58. Ese día se separan los sólidos de la fase líquida, obteniéndose lo siguiente. La fase líquida FL (I .2):
Figure imgf000084_0001
Química de la FL (I .2):
Figure imgf000084_0002
Figure imgf000084_0003
Figure imgf000084_0004
Figure imgf000084_0005
Sólidos Precipitados en subetapa 1.2 (SP (1.2))
Masa total SP (1.2) = 68,2 kg; H = 3,27 % Química de los sólidos SP (1.2):
Figure imgf000084_0006
Figure imgf000084_0007
Comp. SP (1.2) 53,74 8, 14 3,27 1 ,2
Cálculo teórico de la masa de sólidos precipitados SP (I.2):
Figure imgf000085_0001
1W Crist. = agua de cristalización
Desviación -0,0165
Figure imgf000085_0002
Total precipitado 65.577 g
Cálculo del volumen de solución de mojadura (Vsm (I.2)):
Figure imgf000085_0003
Figure imgf000085_0005
Desviación 0,01 1
Figure imgf000085_0004
Los cristales cosechados se lavan con 35 kg de agua dulce. Esta masa de agua es aproximadamente igual a la mitad de la masa de cristales cosechados.
El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (I .2) Volumen Efectivo que entrega la subetapa 1.2 = 139,9 dm3
ETAPA II: Enfriamiento
El día 68 la FL (I.2) se transporta a un laboratorio donde se enfría a menos siete grados centígrados (- 7°C) en un congelador por un período de 5 días, obteniéndose lo siguiente.
La fase líquida FL(II):
Figure imgf000086_0001
Química de la FL (II):
Figure imgf000086_0002
Figure imgf000086_0003
Figure imgf000086_0004
Figure imgf000086_0005
Sólidos Precipitados en etapa II (SP (I I)):
Figure imgf000086_0006
Química de los sólidos SP (II):
Figure imgf000086_0007
Figure imgf000086_0008
TÉCNICA Argentometría Gravimetría Gravimetría Gravimetría
Comp. SP (I I) 10,61 51 ,37 6,00 1 , 1
Cálculo teórico de la masa de sólidos precipitados SP (II):
Figure imgf000087_0001
Desviación 0,0000
Total precipitado 37.384 g
Figure imgf000087_0002
crist. NE: agua de cristalización no evaporada Cálculo del volumen de solución de mojadura (Vsm
Figure imgf000087_0003
Figure imgf000087_0004
Desviación 0.012
Figure imgf000087_0005
Los cristales cosechados se lavan con 25 kg de agua dulce. Esta masa de agua es aproximadamente Igual a la mitad de la masa de cristales cosechados. El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (I I)
Volumen Efectivo que entrega la Etapa I I = 96,82 dm3
ETAPA III: Pre tratamiento
Al total de la FL (II) se agrega 4,144 kg de CaCI2.2H20 suspendidos en 4,425 dm3 de agua dulce. Se agita durante una hora y se separan las fases obteniéndose:
La fase líquida FL(II I):
Figure imgf000088_0001
Química de la FL (I II):
Figure imgf000088_0002
Figure imgf000088_0003
Figure imgf000088_0004
Desviación = -0.003
Figure imgf000088_0005
Sólidos Precipitados en etapa II I (SP (II I)):
Figure imgf000088_0006
Química de los sólidos SP (I II):
Figure imgf000088_0007
Figure imgf000088_0008
Comp. SP (II I) 10,52 65,76 11 ,00 1 ,1
Cálculo teórico de la masa de sólidos precipitados SP (I II):
Figure imgf000089_0001
No incluye:
Solución de mojadura
Insolubles
Figure imgf000089_0002
Total precipitado: 7.655 g
No incluye: Solución de mojadura.
Cálculo del volumen de solución de mojadura (Vsm (II I)):
Figure imgf000089_0003
Figure imgf000089_0004
Desviación = 0,035
Los cristales cosechados se lavan con 4,5 kg de agua dulce. Esta masa de agua es aproximadamente Igual a la mitad de la masa de cristales cosechados. El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (III):
Volumen efectivo que entrega la etapa I II (L) = 100 dm3
ETAPA IV: Preconcentración Final
El día 79 la FL (I II) se transporta al centro experimental a la intemperie localizado en el paraje de Tres Morros, provincia de Jujuy, Argentina, y se expone a evaporación solar. Se continua con el proceso de concentración por evaporación solar, y el día 98 se separan las fases obteniéndose:
Fase Liquida FL (IV.1):
Figure imgf000090_0002
Química de la FL (IV.1):
Figure imgf000090_0003
Figure imgf000090_0004
Figure imgf000090_0005
Desviación = 0,004
Figure imgf000090_0001
sólidos Precipitados en etapa IV.1 (SP (IV.1):
Figure imgf000090_0006
Química de los sólidos SP (IV.1):
Figure imgf000090_0007
DETERMINACION Cl- SOr Humedad Insolubles
UNIDAD ^o (p/p) % (P/P) % (P/P) % (P/P)
TECNICA Argentometría Gravimetría Gravimetría Gravimetría
Comp. SP (IV.1) 14,45 12,0 0,5
Cálculo teórico de la masa de sólidos precipitados SP (IV.1) :
Figure imgf000091_0001
Desviación 0,0000
Figure imgf000091_0002
Total precipitado 17250 g
Cálculo del volumen de solución de mojadura (Vsm (IV.2)):
Figure imgf000091_0003
Figure imgf000091_0004
Desviación -0,016
Figure imgf000091_0005
1 Wcrist E: agua de cristalización evaporada Los cristales cosechados se lavan con 14 kg de agua dulce. Esta masa de agua es aproximadamente Igual a la mitad de la masa de cristales cosechados.
El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (IV.1):
Volumen efectivo que entrega la etapa IV.1 = 28,1 dm3
Subetapa IV.2
El día 99 la FL (IV.1) se transporta al centro experimental a la intemperie localizado en el paraje de Tres Morros, provincia de Jujuy, Argentina, y se expone a evaporación solar. Se continua con el proceso de concentración por evaporación solar, y el día 127 se separan las fases obteniéndose lo siguiente.
Fase Liquida FL (IV.2):
Figure imgf000092_0001
Química de la FL (IV.2):
Figure imgf000092_0002
Figure imgf000092_0003
Figure imgf000092_0004
Figure imgf000092_0005
Sólidos Precipitados en etapa (IV.2'):
Figure imgf000092_0006
TÉCNICA ICP-OES ICP-OES ICP-OES ICP-OES ICP-OES ICP-OES
Comp. SP (IV.2) 0,304 0, 160 12,430 3,430 4,23 6,23
Figure imgf000093_0001
Cálculo teórico de la masa de sólidos precipitados SP (IV.2):
Figure imgf000093_0002
Total precipitado 2.352 g
Cálculo del volumen de solución de mojadura (Vsm (IV.2)):
Figure imgf000093_0003
Figure imgf000093_0004
Masa precipitado seco más solución de 2,965 kg mojadura
W cristales Evaporados 0,845 kg
Masa tot. Húmedo 3,810 kg
Masa cristales cosechados 4,050 kg
Desviación -0,031
Los cristales cosechados se lavan con 2 kg de agua dulce. Esta masa de agua es aproximadamente Igual a la mitad de la masa de cristales cosechados. El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (IV.2)
Volumen efectivo que entrega la etapa (IV.2) = 20,1 dm3
ETAPA V: Tratamiento
Subetapa V.1
Los 20,1 dm3 obtenidos (FL (IV.2)) se colocan en un recipiente de plástico con capacidad de 60 dm3 . Agitando manualmente con una pala de plástico, se agregan como sólido 5,833 kg de hidróxido de Calcio en 7,95 dm3. Inmediatamente después, y continuando con la agitación, se agrega una solución acuosa preparada disolviendo 1 1 ,183 kg de sulfato de sodio anhidro en 28, 14 dm3 de agua dulce a 35°C. La mezcla heterogénea obtenida post tratamiento se separa por centrifugación, obteniéndose:
La fase líquida FL (V.1):
Figure imgf000094_0001
Química de la FL (V.1):
Figure imgf000094_0002
Figure imgf000094_0003
Figure imgf000094_0004
Figure imgf000094_0005
Sólidos Precipitados en etapa V.1 (SP V.1):
Masa total SP (V.1) 42,75 kg Total W evaporada a 105 °C 55, 12 %
Se asume H = 42 %
Química de los sólidos SP (V.1):
Figure imgf000095_0001
Figure imgf000095_0002
Cálculo teórico de la masa de sólidos precipitados SP (V.1):
Figure imgf000095_0003
Desviación 0,1302
Total precipitado: 18.663 g
Figure imgf000095_0004
Cálculo del volumen de solución de mojadura (Vsm (V.1)):
Figure imgf000095_0005
W de crist. (g) CaS04.2H20 73 moles 2628
Mg(OH)2 77,4 moles
CaB407 3,2 moles
NaCI 7 moles
Figure imgf000096_0001
Los sólidos escurridos se lavan suspendiéndolos en 68 dm3 de agua dulce y se vuelven a centrifugar. El agua de lavado se concentra hasta alcanzar la misma concentración de litio de la FL (V.1). El volumen resultante de la FL (V.1) es:
V(FLV.1) = 45,6 dm3
Subetapa V.2
Los 45,6 dm3 obtenidos (FL (V.1)) se colocan en un recipiente de plástico con capacidad de 60 dm3. Agitando manualmente con una pala de plástico, se agregan 300 cm3 de una solución 4 N (160 g/dm3) de hidróxido de sodio, verificando que el pH llegue a 1 1 ,2. Inmediatamente después, y continuando con la agitación, se agrega una solución acuosa preparada disolviendo 141 ,4 g de carbonato de sodio en 480 cm3 de agua dulce. A continuación, y sin suspender la agitación, se agrega una solución acuosa preparada disolviendo 1 ,497 kg de cloruro de bario dihidratado en 4,290 dm3 de agua dulce. Se deja la mezcla heterogénea en reposo y luego se separan los sólidos precipitados por filtración al vacío, obteniéndose:
La fase líquida FL (V.2):
Figure imgf000096_0002
Química de la FL (V.2):
Figure imgf000096_0003
Figure imgf000096_0004
Figure imgf000096_0005
Cargas + 3.952
Balance iónico
Cargas - 3.979 Desviación 0,003
Sólidos Precipitados en etapa V.2 (SP V.2):
Figure imgf000097_0001
Química de los sólidos SP (V.2):
Figure imgf000097_0002
Figure imgf000097_0003
Cálculo teórico de la masa de sólidos precipitados SP (V.2):
Figure imgf000097_0004
Figure imgf000097_0005
Figure imgf000098_0001
Total precipitado = 1 .555 g
Cálculo del volumen de solución de mojadura (Vsm (IV.2)):
Figure imgf000098_0002
Figure imgf000098_0003
Desviación -0,034
Figure imgf000098_0004
Los sólidos escurridos se lavan con 0,9 dm3 de agua dulce y se vuelven a centrifugar. El agua de lavado se concentra hasta alcanzar la misma concentración de litio de la FL (V.2). El volumen resultante de la FL (V.3) es:
V(FL V.2) = 46,1 dm3
ETAPA VI: Concentración postratamiento
La FL (V.2) se expone a evaporación solar hasta alcanzar una concentración de litio de 37 g/dm3 (3%) y se obtiene:
La fase líquida FL (VI):
Figure imgf000098_0005
Química de la FL (VI):
Figure imgf000098_0006
Figure imgf000098_0007
Comp. FL (VI) 34 5 8 237.830 50 N.D.
Figure imgf000099_0001
Figure imgf000099_0002
Sólidos Precipitados en etapa VI (SP VI):
Figure imgf000099_0003
Química de los sólidos SP (VI):
Figure imgf000099_0004
Figure imgf000099_0005
Cálculo teórico de la masa de sólidos precipitados SP (VI):
Figure imgf000099_0006
8.099 g I
Desviación 0,0286
Total precipitado 8429 g
Figure imgf000100_0001
Cálculo del volumen de solución de mojadura (Vsm (VI)):
135 moles NaCI
Figure imgf000100_0002
Desviación 0,026
Figure imgf000100_0003
Los cristales cosechados se lavan con 5 kg de agua dulce. Esta masa de agua es aproximadamente Igual a la mitad de la masa de cristales cosechados.
El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (VI):
Volumen efectivo que entrega la Etapa VI: 6,1 dm3
ETAPA VII: Concentración Final
La FL (VI) se expone a evaporación solar hasta alcanzar una concentración de litio de entre 75 g/dm3 y 85 g/dm3. Alcanzada esta concentración final, se separan las fases, obteniéndose:
La fase líquida FL (VII):
Figure imgf000100_0004
Química de la FL (VII):
Figure imgf000100_0005
Figure imgf000100_0006
Figure imgf000100_0007
UNIDAD mg/dm3 UpH kg/dm3
TECNICA Volumetría Potenciometría Picnometría
Comp. FL (VI I) ND 8,20 1 ,260
Figure imgf000101_0001
Sólidos Precipitados en etapa VII (SP VI I):
Figure imgf000101_0002
Química de los sólidos SP (VII):
Figure imgf000101_0003
Figure imgf000101_0004
Cálculo teórico de la masa de sólidos precipitados SP VI I:
Figure imgf000101_0005
Desviación 0,0007
Figure imgf000101_0006
580
Total precipitado = 587 g Cálculo del volumen de solución de mojadura (Vsm (VII)):
9 moles NaCI
Figure imgf000102_0001
Desviación -0,023
Figure imgf000102_0002
Los cristales cosechados se lavan con 40 cm3 de agua dulce. Esta masa de agua es aproximadamente Igual a la mitad de la masa de cristales cosechados.
El agua de lavado se concentra hasta alcanzar la misma concentración de litio que tiene la FL (VII):
Volumen efectivo que entrega la Etapa VI I: 2,8 dm3
Cálculo de las variables operativas
Se efectuó el cálculo de las variables operativas para una producción anual de 10.000 toneladas de carbonato de litio equivalente empleando salmuera del Salar del Río Grande, cuando el proceso de enfriamiento comprendido en la etapa I I se ejecuta en cristalizadores naturales, y las etapas VI y VII se ejecutan en pozas de evaporación con energía solar
Etapa I: Pozas de preconcentración inicial
Primer período sin cosecha
Figure imgf000102_0003
Etapa I: Pozas de preconcentración inicial
Períodos siguientes sin cosecha
Figure imgf000102_0004
Volumen que sale (m3/año) 3.042.657 1 .268.516
Concentración de litio en la salmuera
que sale (kg/m3) 0,956 2,228
SP (t/año) 1 .492.884 579.574
Agua p/bombeo (m3/año) 40.010 (salobre) 30.427 (salobre)
Altura de SL predeterminada (cm) 12 12
h sal precipitada (cm cada 2 años) 1 14 103
Área de pozas (m2) 2.550.000 1 .100.000
Tiempo de carga (días) 37 39
Agua salobre: agua que tiene densidad menor a 1 .100 g/dm3
Poza auxiliar para la etapa I: 500.000 m2
Etapa II: Enfriamiento
Pozas de acumulación
Volumen total de salmuera a acumular para enfriamiento (primer período sin cosecha en las pozas de la Etapa I): 936.624 m3
Volumen total de salmuera a acumular para enfriamiento (períodos posteriores sin cosecha en las pozas de la
Etapa I): 1 .268.516 m3
Concentración de litio en la salmuera acumulada para enfriamiento: 2,228 g/dm3
Área total y profundidad de las pozas de acumulación: 650.000 m2 y 2,5 m
Cantidad de pozas de acumulación: 6
Poza auxiliar de acumulación: 1 de 100.000 m2
Área total de cristalizadores (profundidad 0,5 m): 320.000 m2
Ciclo de cada cristalizador (incluye carga, descarga, drenaje, lavado de cristales y drenaje agua de lavado): 8 días
Volumen total de salmuera acumulada post enfriamiento (primer período sin cosecha en las pozas de la Etapa I): 928.330 m3
Volumen total de salmuera acumulada post enfriamiento (períodos posteriores sin cosecha en las pozas de la Etapa I): 1 .257.282 m3
Concentración de litio en la salmuera acumulada post enfriamiento: 3,023 g/dm3
Cantidad de cristales post enfriamiento (base sulfato de sodio anhidro): 180.000 1
Agua dulce para lavado de cristales: 250.000 m3
Etapa III: Pretratamiento
Cantidad de reactivos y de agua empleados por tonelada de carbonato de litio equivalente
Cloruro de calcio dihidratado: 3,54 1
Agua dulce: 3,78 m3
Fase líquida post pre tratamiento:
Volumen (períodos siguientes sin cosecha): 919.027 m3
Concentración de litio: 2,860 g/dm3
Densidad: 1 .215 g/dm3
Sólidos totales disueltos: 286 g/dm3
Cantidad de lodos generados en el pretratamiento por tonelada de carbonato de litio equivalente: 5,4 1
Cantidad aproximada de productos a obtener procesando el lodo (por tonelada de carbonato de litio equivalente: Yeso de uso agrícola: 2,52 1
Etapa IV: Pozas de pre concentración final Primer período sin cosecha:
Figure imgf000104_0001
Etapa IV: Pozas de pre concentración final
Períodos siguientes sin cosecha:
Figure imgf000104_0002
Etapa V: Tratamiento
Subetapa V.1
Cantidad de reactivos y de agua empleados por tonelada de carbonato de litio equivalente Cal hidratada: 4,98 1
Sulfato de sodio (base anhidro): 9,55 1
0 1 en caso que se usen las sales separadas en la etapa I I
Agua dulce: 31 m3
Fase líquida post subetapa V.1 :
Volumen (períodos siguientes sin cosecha): 428.547 m3
Concentración de litio: 5,379 g/dm3
Densidad: 1 .14 g/dm3 Sólidos totales disueltos: 228 g/dm3
Cantidad de lodos generados en la subetapa V.1 por tonelada de carbonato de litio eguivalente: 12,7 1
Cantidad aproximada de productos a obtener procesando el lodo generado (expresada por tonelada de carbonato de litio eguivalente):
Yeso de uso agrícola: 5,9 1
Sulfato de magnesio: 4,4 1
Subetapa V.2
Cantidad de reactivos y de agua empleados por tonelada de carbonato de litio eguivalente
Hidróxido de sodio (base seca): 0,041 t
Carbonato de sodio (base seca): 0,12 1
Cloruro de bario dihidratado: 1 ,28 1
Agua dulce: 4,33 m3
Fase líguida post subetapa V.2:
Volumen: 427.640 m3
Concentración de litio: 5,200 g/dm3
Densidad: 1 .13 g/dm3
Sólidos totales disueltos: 220 g/dm3
Cantidad de lodos generados en la subetapa V.2, expresada por tonelada de carbonato de litio eguivalente: 0,94 1
Cantidad aproximada de productos a obtener procesando el lodo generado (expresada por tonelada de carbonato de litio eguivalente):
Sulfato de bario: 0,83 1
Pozas Etapas VI y VII
Primer período sin cosecha:
Figure imgf000105_0001
Pozas Etapas VI y VII
Períodos siguientes sin cosecha:
Figure imgf000105_0002
Concentración de litio en la
salmuera que sale (kg/m3) 15,000 37,500 78, 160
SP (t/año) 49.606 24.944 4.475
Agua p/bombeo (m3/año) 4.300 1 .450 560
Agua p/l avado (m3/año) 14.760 7.320 1 .350
Altura de SL predeterminada (cm) 12 12 12
h sal precipitada (cm cada 2 años) 76 91 51
Área de pozas (m2) 155.000 62.000 26.000
Tiempo de carga (días) 60 63 52
Área de poza auxiliar para las etapas IV, VI y VI I: 100.000 m2
Consumos específicos de agua y reactivos del procedimiento calculados por tonelada de carbonato de litio equivalente
Agua salobre: 70 m3
Agua dulce: 127,12 m3
Cloruro de calcio: 3,54 1
Cloruro de bario: 1 ,28 1
Hidróxido de calcio: 4,98 1
Sulfato de sodio (base anhidro): 9,55 1
0 1 en caso que se usen las sales separadas en la etapa I I
Hidróxido de sodio (base seca): 0,041 t
Carbonato de sodio (base seca): 0,12 1
Generación de lodos en las etapas de pre tratamiento y tratamiento, calculada por tonelada de carbonato de litio equivalente
Etapa de pre tratamiento: 5,4 1
Etapa de tratamiento: 13,64 1
Co-producción de sulfato de sodio base anhidro calculada por tonelada de carbonato de litio equivalente Sulfato de sodio anhidro grado detergente: 8 1
CONCLUSIONES
En este ejemplo se muestra la importancia de la ejecución de la etapa II del procedimiento en la obtención de más de 18 toneladas de sulfato de sodio anhidro por tonelada de carbonato de litio equivalente. En este caso, la única opción es el enfriamiento natural ya que por el calor latente de cristalización del sulfato de sodio decahidratado, el consumo de energía mecánica de un equipo de cristalización por enfriamiento, es muy alto. Como se deduce de los resultados del ensayo de campo y laboratorio para este ejemplo, sin el agregado de cloruro de potasio sólo es posible lograr que la relación másica magnesio/litio en la fase líquida solamente baje de 12,6 en la salmuera natural a 7,3 en la salmuera con preconcentracion final. El mayor consumo de cal y sulfato de sodio anhidro que requiere el tratamiento de una fase líquida con la relación magnesio/litio referida queda sobradamente compensada con la producción de sulfato de sodio anhidro que se obtiene. Es importante aclarar que, aún cuando el consumo de reactivos en la etapa V es alto, la recuperación de litio es del orden del 68 % y el impacto ambiental que deriva de la aplicación del procedimiento es mínimo.
EJEMPLO 4: Determinación de la Tasa de Evaporación para las Fases Líquidas que se Concentran en las Pozas de Evaporación Solar Comprendidas en las Etapas I, IV, VI y VII del Procedimiento
Una salmuera natural proveniente de cualquier evaporita es la fase líquida inicial que ingresa a la etapa
I . A medida que evoluciona el procedimiento, esta fase líquida cambia su composición química y sus propiedades físicas. Pero además, cuando se evapora agua desde una fase líquida que está saturada, cristalizan y precipitan diferentes sales. Entonces una forma segura de medir la cantidad de agua que se evapora por unidad de tiempo desde un área determinada de una fase líquida expuesta a evaporación solar, es por diferencia de masa. Como una de las características del procedimiento objeto de la presente invención es que en ninguna de las etapas que comprende cristalicen y precipiten sales que contengan al elemento litio en su fórmula química, la variación de la tasa de evaporación se puede expresar en función de la concentración de litio, variable relacionada con las propiedades físicas y químicas de la fase líquida en evolución.
En el Centro Experimental a la intemperie localizado en el paraje de Tres Morros, provincia de Jujuy, Argentina, ver Figura 9, se realizaron los ensayos de campo para los tres ejemplos presentados, y también se realizaron ensayos para determinar la tasa de evaporación de una salmuera natural saturada que tenía inicialmente una concentración de litio comprendida en el rango 630-680 mg/dm3. Con el objeto de describir la metodología empleada, se detalla a continuación los resultados obtenidos para la evolución de la fase líquida en la etapa I, desde una concentración de litio de 670 mg/dm3 hasta una concentración de litio de 9.500 mg/dm3.
Las mediciones se realizaron empleando recipientes de plástico con capacidad para contener alrededor de 20 dm3 de fase líquida cada uno. de forma tal que resulta fácil medir el área expuesta a evaporación solar y la masa de cada recipiente. Cada ensayo se inició con 300 dm3 de fase líquida, contenida en 15 recipientes de plástico. Los recipientes conteniendo la salmuera inicialmente se pesaron y se expusieron al proceso de evaporación solar. Después de un intervalo de tiempo de 4 a 6 días en verano y de15 a 20 días en invierno, los recipientes se pesaron nuevamente, se separaron y escurrieron los sólidos precipitados y se extrajo una alícuota de la fase líquida obtenida para determinar la concentración de litio. Para cada recipiente se determinó la tasa de evaporación asociada al rango de concentración de litio correspondiente. Promediando los valores obtenidos se determinó una tasa de evaporación promedio correspondiente a la media aritmética del rango promedio de concentración de litio. La fase líquida obtenida se cargó en la cantidad de recipientes de plástico necesarios, conteniendo 20 dm3 cada uno. Los recipiente se pesaron y la nueva masa de fase líquida quedó expuesta nuevamente al proceso de evaporación solar. De esta forma se obtiene la tasa de evaporación correspondiente a distintas concentraciones de litio en la fase líquida. Los ensayos se repiten a lo largo de todo un año y con los resultados obtenidos se grafican los valores de la tasa de evaporación como una función de las concentraciones de litio para los meses de abril, mayo, junio, julio, agosto y septiembre (para el hemisferio sur), considerados meses de baja tasa de evaporación; así se obtiene la dependencia funcional de la tasa de evaporación con la concentración de litio. Lo mismo se repite con los valores correspondientes a los meses de octubre, noviembre, diciembre, enero, febrero y marzo (también para el hemisferio sur), considerados meses de alta tasa de evaporación.
Se realizaron 5 ensayos en los períodos siguientes:
Ensayo 1 : del 04/12 al 08/01
Ensayo 2: del 03/02 al 13/03
Ensayo 3: del 06/04 al 28/05
Ensayo 4: del 02/06 al 02/08
Ensayo 5: del 18/08 al 04/10
En la Tabla 10 se detallan los resultados obtenidos expresando la concentración de litio en mg/dm3 y la tasa de evaporación en dm3/m2.día equivalente expresada en milímetros por día (mm/d).
Tabla de mediciones de las TE en función de las concentraciones de Li:
Figure imgf000107_0001
1 .140 7, 1 1 .105 5,7 1 .210 4,4 1 .1 10 3,6 1 .160 4,8
2.870 7, 1 2.420 5,7 2.520 4,4 2.630 3,6 2.720 4,8
2.870 5,7 2.420 5,5 2.520 3,9 2.630 3,3 2.720 4,4
6.120 5,7 6.080 5,5 6.120 3,9 6.210 3,3 6.530 4,4
6.120 4,3 6.080 3,8 6.120 3, 1 6.210 2,5 6.530 4, 1
9.050 4,3 9.050 3,8 9.100 3, 1 9.100 2,5 9.320 4, 1
I [Li+]P TE [Li+]p TE [Li+]p TE [Li+]p TE [Li+]p
906 7,4 889 7,6 940 5,6 892 4,2 915 T 5,E6 I
2.005 7, 1 1 .763 5,7 1 .865 4,4 1 .870 3,6 1 .940 4,8
4.495 5,7 4.250 5,5 4.320 3,9 4.420 3,3 4.625 4,4
7.585 4,3 7.565 3,8 7.610 3, 1 7.655 2,5 7.925 4, 1
[L¡+] : concentración de litio en la fase líquida
[Li+]p : concentración de litio promedio en la fase líquida
TE: Tasa de evaporación
Con estos valores se obtiene la dependencia funcional de la tasa de evaporación con la concentración de litio para los meses de baja tasa de evaporación y para los meses de alta tasa de evaporación. De esta forma es posible obtener la tasa de evaporación para cualquier valor de concentración de litio comprendida en el intervalo para el cual se realizaron los ensayos, la tasa de evaporación promedio anual se obtiene promediando los valores de las tasas correspondientes para los períodos de alta y baja tasa de evaporación. La tasa de evaporación para la operación de una poza con una determinada concentración de litio se estima multiplicando el valor obtenido para los recipientes, por el factor 0,7.
A modo de ejemplo, en la Tablas A y B siguientes se indican los valores de tasas de evaporación para diferentes concentraciones de litio, para los períodos de alta tasa de evaporación, de baja tasa de evaporación y los valores promedios anuales.
Tabla A
Figure imgf000108_0001
Tabla B
Figure imgf000108_0002
CONCLUSIONES FINALES EL procedimiento objeto de la presente invención tiene ventajas innovadoras con relación a los procedimientos conocidos que se aplican y los que se pretenden aplicar. A continuación, se detallan las principales:
• Tiene una recuperación de litio cuyo valor cae en el intervalo 60% - 70%. Ninguno de los procedimientos del arte previo (sin devolución de salmuera agotada y/o adulterada al salar) alcanzan estos valores cuando la recuperación de litio se mide como la cantidad de litio contenida en el producto final (carbonato de litio, hidróxido de litio, cloruro de litio, etc.) efectivamente obtenido, dividida la cantidad de litio contenida en el volumen de salmuera natural extraída del salar para su obtención. Es importante aclarar que salmuera natural es la salmuera que no está adulterada por descarga de ningún efluente líquido al salar.
• Para el procesamiento de una misma salmuera, comparado con los procedimientos que se aplican o se proponen en el arte previo, el procedimiento objeto de la presente invención tiene el más bajo consumo específico de reactivos y, consecuentemente, la más baja generación de lodo.
• Produce una salmuera concentrada con bajo contenido de impurezas que es una de las etapas más difíciles de los procesos O-P, que son los procesos que aseguran la no descarga de salmuera agotada y/o adulterada, ni de cualquier otro efluente líquido al salar.
• Simplifica y facilita el proceso de obtención de carbonato de litio "crudo" y purificado, asegurando la obtención de un producto de alta pureza.
• La obtención de salmuera concentrada con bajo contenido de impurezas hace posible la obtención de hidróxido de litio sin necesidad de producir primero carbonato de litio.
• Tiene la suficiente flexibilidad para que el proceso de obtención de carbonato de litio se ejecute en las proximidades del lugar de localización de las pozas, o en cualquier otro lugar distante. Para este último caso, también tiene la suficiente flexibilidad para que la planta de carbonato de litio opere con total independencia del sector de pozas, o transportando hacia y desde la planta el mismo volumen de líquido optimizando de esta manera el costo de transporte.
• Al tener máxima recuperación asegura un mínimo caudal de bombeo de salmuera natural para una misma producción de CLE. Esto disminuye el riesgo de que el área de captación del punto de bombeo comprometa acuíferos de agua dulce cercanos.
• Como se muestra en la descripción anterior, el procedimiento objeto de esta patente de invención es totalmente aplicable a escala industrial. Esta es una condición fundamental para cualquier procedimiento que se proponga para el procesamiento de la salmuera contenida en los salares de la Puna Argentina, el Altiplano Boliviano y el Desierto de Atacama.

Claims

REIVINDICACIONES
1 . Un procedimiento de mínimo impacto ambiental y máxima recuperación de litio para la obtención de salmueras concentradas con mínimo contenido de impurezas a partir de salmueras que embeben los salares y salinas naturales, el procedimiento caracterizado porque comprende las etapas de:
a) construir pozas de cristalización fraccionada por evaporación solar;
b) llenar las pozas con salmuera natural;
c) preconcentrar en forma inicial la salmuera natural hasta la máxima concentración de litio posible en la fase líquida sin que precipiten sales que contengan litio;
d) enfriar la salmuera preconcentrada obtenida en c) asegurando la máxima precipitación de sales que contengan el anión sulfato;
e) pretratar químicamente la fase líquida de la salmuera separada de las sales precipitadas por enfriamiento para minimizar los aniones sulfato en la fase líquida posenfriamiento;
f) preconcentrar finalmente la fase líquida pretratada hasta la máxima concentración de litio posible en la misma sin que precipiten sales que contengan litio;
g) tratar químicamente la fase líquida de la salmuera separada de las sales precipitadas en la etapa f) para minimizar la concentración de magnesio, calcio, boro y sulfato en la fase líquida; y
h) concentrar la fase líquida obtenida en la etapa g).
2. El procedimiento de la reivindicación 1 , caracterizado porque se obtiene salmuera con una concentración de litio comprendida entre aproximadamente 65 g/dm3 y aproximadamente 75 g/dm3, y con bajo contenido de impurezas.
3. El procedimiento de la reivindicación 1 , caracterizado porque se obtiene cloruro de sodio de alta pureza en la etapa c) de preconcentración inicial.
4. El procedimiento de la reivindicación 1 , caracterizado porque la etapa d) de enfriamiento se lleva a cabo aprovechando las bajas temperaturas que caracterizan al clima donde se localiza el salar, cuando la cantidad de calor que hay que extraer de la fase líquida que entrega la etapa c) de preconcentración es alta, haciendo que la alternativa de usar equipos de refrigeración que emplean energía mecánica es económicamente inviable.
5. El procedimiento de la reivindicación 1 , caracterizado porque la etapa d) de enfriamiento se lleva a cabo usando equipos mecánicos de cristalización por enfriamiento cuando el volumen de la fase líquida que entrega la etapa c) de preconcentración no es elevado, y la cantidad de sales que contienen el anión sulfato y cristalizan por enfriamiento no es alta, haciendo esta alternativa económicamente inviable.
6. El procedimiento de la reivindicación 1 , caracterizado porque en la etapa de d) de enfriamiento se separan sales seleccionadas del grupo consistente en sulfato de sodio, cloruro de potasio, sulfato de potasio y sus mezclas, según la composición química de la salmuera.
7. El procedimiento de la reivindicación 1 , caracterizado porque en la etapa e) de pretratamiento se minimiza el uso de reactivos, tales como cloruro de calcio o cloruro de bario, al reducirse significativamente en forma natural la relación sulfato/litio utilizando condiciones climáticas favorables o cristalizadores mecánicos por enfriamiento en la etapa d) de enfriamiento previa.
8. El procedimiento de la reivindicación 1 , caracterizado porque se incrementa la recuperación de litio por el lavado eficiente de los lodos obtenidos en la etapa e) de pretratamiento, empleando una masa de agua igual a la tercera parte de la masa de lodos escurridos obtenida.
9. El procedimiento de la reivindicación 1 , caracterizado porque en la etapa e) de pretratamiento se obtiene sulfato de bario a partir de los lodos obtenidos cuando se emplea como reactivo cloruro de bario.
10. El procedimiento de la reivindicación 1 , caracterizado porque en la etapa e) de pretratamiento se obtiene sulfato de calcio a partir de los lodos obtenidos cuando se emplea como reactivo cloruro de calcio.
1 1 . El procedimiento de la reivindicación 1 , caracterizado porque la definición de un grado de concentración de litio como límite de la etapa f) de preconcentración final permite minimizar la relación magnesio/litio.
12. El procedimiento de la reivindicación 1 , caracterizado porque la mínima relación magnesio/litio reduce el uso de reactivos y la generación de lodos concomitante, maximizando la recuperación de litio.
13. El procedimiento de la reivindicación 1 , caracterizado porque en la etapa f) de preconcentración final se obtiene una mezcla de cloruro de sodio y cloruro de potasio a partir de la cual se puede obtener cloruro de potasio.
14. El procedimiento de la reivindicación 1 , caracterizado porque, cuando sea necesario, se agrega cloruro de potasio a la salmuera de la etapa f) para alcanzar una concentración de litio superior a aproximadamente 35 g/dm3, sin que cristalicen sales que contengan litio en su fórmula química.
15. El procedimiento de la reivindicación 1 , caracterizado porque la salmuera preconcentrada en la etapa f) con más de 35 g/dm3 de litio se transporta hasta sitios con infraestructura industrial donde se ejecutan las etapas g) y h), mejorando la performance del procedimiento.
16. El procedimiento de la reivindicación 1 , caracterizado porque en la etapa g) de tratamiento se emplea sulfato de sodio separado en la etapa d) de enfriamiento como aporte de aniones sulfato.
17. El procedimiento de la reivindicación 1 , caracterizado porque la etapa g) de tratamiento se lleva a cabo en dos subetapas, en donde en la primera subetapa g.1) se emplea como reactivos hidróxido de calcio y sulfato de sodio, u otros sulfatos solubles en agua de origen químico o minero como mirabilita o thenardita, para reducir los contenidos de magnesio, calcio y boro; y en la primera subetapa g.2) se emplea una mínima cantidad de hidróxido de sodio, carbonato de sodio y cloruro de bario para minimizar los contenidos de magnesio, calcio y sulfato.
18. El procedimiento de la reivindicación 17, caracterizado porque al ejecutar la subetapa g.1) de tratamiento se obtiene una recuperación de litio mayor a aproximadamente el 95 % debido a la separación y lavado de los lodos obtenidos.
19. El procedimiento de la reivindicación 1 , caracterizado porque la etapa h) se lleva a cabo empleando cristalizadores evaporativos asistidos con energía térmica proveniente de cualquier fuente primaria.
20. El procedimiento de la reivindicación 19, caracterizado porque permite la obtención de agua dulce, cuando se opta por la alternativa de ejecutar la etapa h) de concentración final en equipos mecánicos.
21 . El procedimiento de la reivindicación 1 , caracterizado porque permite definir y calcular las variables necesarias para determinar el sistema de pozas de evaporación solar, pozas auxiliares, pozas de acumulación y cristalizadores naturales empleados en las distintas etapas del procedimiento.
22. El procedimiento de la reivindicación 1 , caracterizado porque permite determinar que el volumen de agua para el lavado de las sales separadas de la salmuera durante el procedimiento es del orden del volumen de la porosidad eficaz del lecho de cristales depositados en el piso de las pozas y los cristalizadores naturales, y con la concentración de litio en la fase líquida que embebe los cristales.
23. El procedimiento de la reivindicación 1 , caracterizado porque cuando se transporta salmuera de reciclo al sector de pozas desde la planta, se transporta desde el sector de pozas la misma cantidad de líquido.
24. El procedimiento de la reivindicación 1 , caracterizado porque la obtención de salmuera concentrada con bajo contenido de impurezas, permite operar las plantas de carbonato de litio "crudo" y carbonato de litio purificado sin la necesidad de transportar soluciones que se reciclan al lugar de localización de las pozas.
25. El procedimiento de la reivindicación 1 , caracterizado porque permite producir carbonato de litio y/o hidróxido de litio en una única planta localizada en un sitio con buena infraestructura industrial, al que se transporta desde cualquier evaporita: i) salmuera preconcentrada con más de 35 g/dm3 de litio para ejecutar las etapas g) y h) para producir los compuestos de litio, y ii) salmuera tratada y concentrada con más de 65 g/dm3 de litio para producir los compuestos de litio.
26. El procedimiento de la reivindicación 1 , caracterizado porque luego de procesar la totalidad de la salmuera extraída del salar no se vuelca a la cuenca salmuera agotada y/o adulterada o ningún otro efluente líquido.
PCT/ES2018/070460 2017-06-26 2018-06-27 Procedimiento de mínimo impacto ambiental y máxima recuperación de litio para la obtención de salmueras concentradas con mínimo contenido de impurezas a partir de salmueras que embeben los salares y salinas naturales WO2019002653A1 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18823156.7A EP3647267A4 (en) 2017-06-26 2018-06-27 PROCESS WITH MINIMUM ENVIRONMENTAL IMPACT AND MAXIMUM LITHIUM RECOVERY TO OBTAIN CONCENTRATED BRINE WITH A MINIMUM IMPURITY CONTENT FROM BRINE THAT IMPREGNATES SALINES AND NATURAL SALT MINES
US16/626,819 US11920211B2 (en) 2017-06-26 2018-06-27 Method for obtaining concentrated brine of minimum impurity content from brine found in natural salt flats and salt marshes, said method having minimum environmental impact and maximum lithium recovery
CN201880055506.9A CN111448164A (zh) 2017-06-26 2018-06-27 从天然盐滩和盐沼中的盐水获得最低杂质含量的浓缩盐水的方法,所述方法具有最小环境影响和最大锂回收

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762525024P 2017-06-26 2017-06-26
US62/525,024 2017-06-26

Publications (1)

Publication Number Publication Date
WO2019002653A1 true WO2019002653A1 (es) 2019-01-03

Family

ID=64740429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2018/070460 WO2019002653A1 (es) 2017-06-26 2018-06-27 Procedimiento de mínimo impacto ambiental y máxima recuperación de litio para la obtención de salmueras concentradas con mínimo contenido de impurezas a partir de salmueras que embeben los salares y salinas naturales

Country Status (6)

Country Link
US (1) US11920211B2 (es)
EP (1) EP3647267A4 (es)
CN (1) CN111448164A (es)
AR (1) AR112370A1 (es)
CL (1) CL2019002916A1 (es)
WO (1) WO2019002653A1 (es)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111362281A (zh) * 2020-04-23 2020-07-03 青海盐湖工业股份有限公司 一种控制氯化钾结晶器加水量的方法和系统
WO2021053514A1 (en) 2019-09-16 2021-03-25 InCoR Lithium Selective lithium extraction from brines
CN113493216A (zh) * 2021-07-12 2021-10-12 青海锂业有限公司 一种盐湖卤水制备电池正极材料行业级碱式碳酸镁的方法
AU2021254665B2 (en) * 2020-05-12 2022-04-21 Energy Exploration Technologies, Inc. Systems and methods for recovering lithium from brines field

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022203531A1 (en) * 2021-03-26 2022-09-29 Qatar Foundation For Education, Science And Community Development Methods of seawater softening for desalination and mineral extraction
CN113023751B (zh) * 2021-05-06 2022-11-08 神华准能资源综合开发有限公司 一种从氯化盐水中回收锂、钠、钾、镁、钙的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271131A (en) * 1979-04-11 1981-06-02 Foote Mineral Company Production of highly pure lithium chloride from impure brines
US5219550A (en) 1989-03-31 1993-06-15 Cyprus Foote Mineral Company Production of low boron lithium carbonate from lithium-containing brine
US7858057B2 (en) 1998-07-16 2010-12-28 Chemetall Foote Corporation Production of lithium compounds directly from lithium containing brines
US20110300041A1 (en) 2008-07-18 2011-12-08 Daniel Ernesto Galli process for recovering lithium from a brine
WO2013049952A1 (es) * 2011-10-06 2013-04-11 Iholdi Minerales De Atacama Limitada Procedimiento de extracción de litio para la obtención de carbonato de litio, desde una salmuera o mineral y/o arcilla previamente tratado para estar libre de boro.
WO2014078908A1 (en) 2012-11-23 2014-05-30 Ady Resources Limited Process for recovering lithium from a brine with reagent regeneration and low cost process for purifying lithium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4723962A (en) * 1985-02-04 1988-02-09 Lithium Corporation Of America Process for recovering lithium from salt brines
US5093089A (en) * 1990-07-16 1992-03-03 Chemetics International Company Ltd. Process for the separation of sulphate
US6921522B2 (en) * 1998-07-16 2005-07-26 Chemetall Foote Corporation Production of lithium compounds directly from lithium containing brines
CN1218873C (zh) 2001-07-26 2005-09-14 陆增 从高镁锂比盐湖水中提取碳酸锂的方法
CN100528753C (zh) * 2007-01-30 2009-08-19 西部矿业集团有限公司 一种从盐湖卤水中联合提取硼、镁、锂的方法
CN102358622B (zh) * 2011-08-05 2014-10-29 王传福 盐析法盐湖卤水除镁生产碳酸锂、硼酸和高纯氧化镁的方法
CN103898341B (zh) * 2014-03-06 2015-10-21 中国科学院青海盐湖研究所 从硫酸锂粗矿分离提取锂的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4271131A (en) * 1979-04-11 1981-06-02 Foote Mineral Company Production of highly pure lithium chloride from impure brines
US5219550A (en) 1989-03-31 1993-06-15 Cyprus Foote Mineral Company Production of low boron lithium carbonate from lithium-containing brine
US7858057B2 (en) 1998-07-16 2010-12-28 Chemetall Foote Corporation Production of lithium compounds directly from lithium containing brines
US20110300041A1 (en) 2008-07-18 2011-12-08 Daniel Ernesto Galli process for recovering lithium from a brine
WO2013049952A1 (es) * 2011-10-06 2013-04-11 Iholdi Minerales De Atacama Limitada Procedimiento de extracción de litio para la obtención de carbonato de litio, desde una salmuera o mineral y/o arcilla previamente tratado para estar libre de boro.
WO2014078908A1 (en) 2012-11-23 2014-05-30 Ady Resources Limited Process for recovering lithium from a brine with reagent regeneration and low cost process for purifying lithium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3647267A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021053514A1 (en) 2019-09-16 2021-03-25 InCoR Lithium Selective lithium extraction from brines
US11634789B2 (en) 2019-09-16 2023-04-25 InCoR Lithium Selective lithium extraction from brines
CN111362281A (zh) * 2020-04-23 2020-07-03 青海盐湖工业股份有限公司 一种控制氯化钾结晶器加水量的方法和系统
CN111362281B (zh) * 2020-04-23 2022-05-24 青海盐湖工业股份有限公司 一种控制氯化钾结晶器加水量的方法和系统
AU2021254665B2 (en) * 2020-05-12 2022-04-21 Energy Exploration Technologies, Inc. Systems and methods for recovering lithium from brines field
CN113493216A (zh) * 2021-07-12 2021-10-12 青海锂业有限公司 一种盐湖卤水制备电池正极材料行业级碱式碳酸镁的方法

Also Published As

Publication number Publication date
EP3647267A4 (en) 2021-03-24
US20230313338A1 (en) 2023-10-05
EP3647267A1 (en) 2020-05-06
AR112370A1 (es) 2019-10-23
US11920211B2 (en) 2024-03-05
CL2019002916A1 (es) 2020-03-13
CN111448164A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
WO2019002653A1 (es) Procedimiento de mínimo impacto ambiental y máxima recuperación de litio para la obtención de salmueras concentradas con mínimo contenido de impurezas a partir de salmueras que embeben los salares y salinas naturales
CN101252982B (zh) 阳离子卤化物的制备和用途以及二氧化碳的吸纳
Park et al. Lithium recovery from artificial brine using energy-efficient membrane distillation and nanofiltration
US8309043B2 (en) Recovery of Li values from sodium saturate brine
CN103415471B (zh) 对混合盐水中的盐的选择性回收
CN105177619B (zh) 一种制备硫酸钾的装置及方法
WO2013053165A1 (zh) 以碳酸盐型卤水和硫酸盐型卤水为原料用重叠兑卤法制取碳酸锂的生产方法
CN107162023A (zh) 一种硝酸钾的制备系统及制备方法
Wahed et al. Crystallization sequence during evaporation of a high concentrated brine involving the system Na–K–Mg–Cl–SO4-H2O
US3268289A (en) Recovery of lithium from brines
CN103553090B (zh) 利用自然能从混合卤水中提取Mg、K 、B、Li的方法
CN103482660A (zh) 高纯度碳酸锂的制备方法及系统
Song et al. Phase diagrams for the ternary system (NH4NO3+ CsNO3+ H2O) at 298.15 and 348.15 K and its application to cesium nitrate recovery from the eluent aqueous solution of ammonium nitrate
da Silva et al. Thermodynamic modeling of phases equilibrium in aqueous systems to recover potassium chloride from natural brines
CN103553088B (zh) 利用自然能从混合卤水中制备锂硼盐矿的方法
CN108069443A (zh) 一种从硫酸盐型盐湖卤水制备硫酸钾镁肥和氯化钾的方法
CN101748433B (zh) 铟电解工艺中电解液的净化方法
CN106241839A (zh) 一种从盐湖老卤中分离镁、降低镁锂比的方法
Horita Stable isotope fractionation factors of water in hydrated saline mineral-brine systems
CN103553065B (zh) 利用自然能从混合卤水中制备硼矿的方法
AU2016260680C1 (en) Methods for the production of potassium sulphate from potassium-containing ores at high ambient temperatures
CN103553087B (zh) 利用自然能从混合卤水中制备硫酸锂盐矿的方法
US20200131038A1 (en) Method for extracting iodine from an aqueous solution
CN103553091B (zh) 利用自然能从混合卤水中提取Mg、K、B、Li的方法
CN205603281U (zh) 一种ro浓水处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018823156

Country of ref document: EP

Effective date: 20200127