WO2019001942A1 - Abgasanlage für einen kraftwagen - Google Patents

Abgasanlage für einen kraftwagen Download PDF

Info

Publication number
WO2019001942A1
WO2019001942A1 PCT/EP2018/065420 EP2018065420W WO2019001942A1 WO 2019001942 A1 WO2019001942 A1 WO 2019001942A1 EP 2018065420 W EP2018065420 W EP 2018065420W WO 2019001942 A1 WO2019001942 A1 WO 2019001942A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
scr
exhaust gas
scr catalyst
ammonia slip
Prior art date
Application number
PCT/EP2018/065420
Other languages
English (en)
French (fr)
Inventor
Johannes Bleckmann
Claudia ESSMANN
Uwe Gaertner
Alexander Massner
Michael Stiller
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Priority to CN201880042966.8A priority Critical patent/CN110869106A/zh
Priority to US16/626,790 priority patent/US11008916B2/en
Publication of WO2019001942A1 publication Critical patent/WO2019001942A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9436Ammonia
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9463Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20761Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to an exhaust system for a motor vehicle, with a
  • the exhaust aftertreatment device comprises a first SCR catalyst comprising a copper-containing zeolite material, an ammonia slip catalyst disposed downstream of the first SCR catalyst, and a particulate filter.
  • US 2014/0237995 A1 describes a system with a
  • the copper-containing zeolite material is supplied.
  • the aftertreatment system also includes an ammonia oxidation catalyst and a diesel particulate filter.
  • the copper-containing zeolite catalyst is supplied with a fluid stream containing urea, ammonia or hydrocarbons to rid the zeolite catalyst of sulfur at temperatures of less than 500 degrees Celsius to 600 degrees Celsius.
  • Exhaust conditions of a diesel-powered internal combustion engine requires high exhaust gas temperatures in the range of 500 degrees Celsius to 600 degrees Celsius. To achieve such temperatures, additional heating measures are required. In currently used exhaust aftertreatment systems which meet the standard Euro-6 and EPA-10, this is achieved by a diesel oxidation catalyst, which is upstream of the copper-containing zeolite catalyst. To the
  • Oxidation catalyst is implemented an additionally injected fuel mass. This raises the temperature of the exhaust gas. However, this leads to an increased fuel consumption and also to an increased thermal stress and aging of the exhaust system, in particular the exhaust aftertreatment device.
  • Object of the present invention is therefore to provide an improved exhaust system of the type mentioned.
  • the exhaust system according to the invention for a motor vehicle which may in particular be a commercial vehicle, comprises a
  • the exhaust aftertreatment device comprises a first SCR catalyst comprising a copper-containing zeolite material. Furthermore, the exhaust aftertreatment device comprises an ammonia slip catalyst, which is arranged downstream of the first SCR catalyst. A particulate filter of the exhaust aftertreatment device is arranged downstream of the ammonia slip catalyst. Upstream of the first SCR catalyst, a second SCR catalyst is arranged. The second SCR catalyst has a
  • vanadium-containing SCR catalyst material This is based on the finding that a vanadium-containing SCR catalyst brings about a chemical reaction, in particular of long-chain hydrocarbons. In such a partial oxidation, there is formation of carbon monoxide and the splitting of the long-chain
  • the first SCR catalyst is more capable of denitrifying the exhaust gas. This denitrification is the selective catalytic reduction (SCR) carried out by the first SCR catalyst, ie a selective catalytic reduction
  • temperatures in the copper-containing zeolite material of the first SCR catalyst need not be adjusted from 500 degrees Celsius to 600 degrees Celsius in order to desulfurize the copper-containing zeolite material. Rather, the copper-containing zeolite catalyst can already be freed of sulfur compounds in a temperature range between 300 degrees Celsius and 500 degrees Celsius by suitable reducing agents are provided by the vanadium-containing SCR catalyst for reducing the sulfur compounds.
  • the copper-containing zeolite catalyst which is more susceptible to sulfur deposits as compared to the vanadium-containing SCR catalyst, has the great advantage that even at low exhaust gas temperatures, a good reduction of the sulfuric acid is already achieved
  • Nitrogen oxide content in the exhaust gas is made possible by the selective catalytic reduction. This is for example at a cold start of the exhaust system having
  • the vanadium-containing SC R catalyst is less active at lower temperature of the exhaust gas with respect to the Entsticken exhaust gas.
  • the vanadium-containing SCR catalyst is characterized by a fast light-off behavior. Accordingly, even with a small amount of ammonia present in the exhaust gas, a significant reduction of the nitrogen oxide content in the exhaust gas can be achieved by means of the vanadium-containing SCR catalyst. In other words, only a small ammonia level is required to run the selective catalytic reduction reaction in the vanadium-containing SCR catalyst.
  • the vanadium-containing SCR catalyst is hardly susceptible to sulfur addition. Rather, in the vanadium-containing SCR catalyst, the release or dissolution of
  • the copper-containing zeolite catalyst is thus characterized on the one hand by its very good low-temperature activity.
  • the slow start-up behavior of the copper-containing zeolite catalyst in comparison to the vanadium-containing SCR catalyst leads to a high storage capacity for ammonia.
  • the storage of comparatively much ammonia by the copper-containing zeolite catalyst in turn causes an ammonia breakthrough or ammonia slip is reduced.
  • Ammonia slip catalyst to a particularly low extent with ammonia
  • first SCR catalytic converter with the second SCR catalytic converter, which is arranged upstream of the first SCR catalytic converter in the flow direction of the exhaust gas through the exhaust system, thus leads to advantageous synergy effects.
  • second SCR catalyst by providing both the first SCR catalyst and the second SCR catalyst, a particularly effective exhaust gas aftertreatment device is provided with a view to reducing the content of nitrogen oxides in the exhaust gas of the internal combustion engine.
  • Vanadium-containing SCR catalyst material and the copper-containing zeolite material are free of noble metals, as used in the ammonia slip catalyst is also no formation of nitrous oxide (N 2 0) in the SCR catalysts due to oxidation of ammonia at the two SCR catalysts, provided they are kept free of ammonium deposits. It is also advantageous that the vanadium-containing SCR catalyst after leaving the exhaust gas from the
  • Exhaust aftertreatment device is first flowed through SCR catalyst, since the vanadium-containing SCR catalyst has a low N 2 0 selectivity, and so N 2 0 formation can be kept low from N0 2 -Rotorrohemissionen, so that the N 2 0 emissions on Exit from the exhaust system can be kept extremely low.
  • a portion of the exhaust system between the second SC R catalyst and the first SCR catalyst is free of at least one further catalyst.
  • a section between the first SCR catalyst and the ammonia slip catalyst is preferably free of at least one further catalyst.
  • any ammonia leaving the first SCR catalyst can be oxidized directly in the ammonia slip catalyst.
  • an output side of the first SCR catalyst may adjoin an input side of the ammonia slip catalyst, and / or an input side of the first SCR catalyst may adjoin an output side of the second SCR catalyst.
  • a particularly compact exhaust aftertreatment device is created. Furthermore, such a hybrid catalyst is created, in which the functionalities of the individual catalysts, viewed in the axial direction, ie in the flow direction of the exhaust gas through the exhaust system, follow one another directly. This reduces the complexity of the exhaust system.
  • a layer of a copper-containing zeolite material is applied to a surface of the ammonia slip catalyst having at least one noble metal.
  • the copper-containing zeolite material serves to reduce the nitrogen oxide concentration in the exhaust gas to a small extent by the selective catalytic reduction reaction (SCR) taking place in the copper-containing zeolite material.
  • SCR selective catalytic reduction reaction
  • nitrogen oxides formed by the oxidation of ammonia in the ammonia slip catalyst are converted to nitrogen and water as they pass through the layer of the copper-containing zeolite material with ammonia stored in the copper-containing zeolite material.
  • the layer of the copper-containing zeolite material thus ensures in particular for particularly low nitrogen oxide emissions and for particularly low nitrous oxide emissions of the ammonia slip catalyst.
  • an oxidation catalyst is disposed downstream of the ammonia slip catalyst and upstream of the particulate filter.
  • Oxidation catalyst can be particularly well oxidized the existing downstream of the two SCR catalysts, formed from the introduced into the exhaust gas fuel reducing agent in order to achieve a high exhaust gas temperature. This high exhaust gas temperature is in turn required for the periodic regeneration of the particulate filter, which is connected downstream of the oxidation catalyst.
  • the complete oxidation of the introduced reducing agents for example in the form of the short-chain
  • Hydrocarbons and the carbon monoxide thus takes place at the downstream, noble metal-containing catalysts in the form of the ammonia slip catalyst and in particular of the oxidation catalyst.
  • the ammonia slip catalyst and the oxidation catalyst are arranged on a common carrier body. This makes it particularly easy to ensure that the ammonia slip catalyst and the oxidation catalyst are directly adjacent to each other.
  • the at least the first SCR catalyst and the ammonia slip catalyst and the oxidation catalyst having hybrid catalyst is particularly compact.
  • a layer of a copper-containing zeolite material is a layer of a copper-containing zeolite material
  • the copper-containing zeolite material layer does not extend over the entire length of the oxidation catalyst, which leads to the fact that
  • Oxidation catalyst can perform its function particularly well, that to the
  • Heating the downstream particulate filter in the exhaust gas contained oxidizing agent Nevertheless, by overlapping the layer of the copper-containing zeolite material, which is applied to the surface of the ammonia slip catalyst, with an upstream portion of the oxidation catalyst can be ensured that a formation of nitrous oxide and
  • a noble metal content of the ammonia slip catalyst is smaller than a noble metal content of the oxidation catalyst.
  • a loading of noble metals from the group of platinum metals in the ammonia slip catalyst can range from 1 gram per cubic foot to 5 grams per cubic foot.
  • the noble metal loading, in particular with at least one noble metal from the group of platinum metals, in the oxidation catalyst in the range of 10 grams per cubic foot to 50 grams per cubic foot.
  • the comparatively low noble metal content of the ammonia slip catalyst ensures a high selectivity with regard to the formation of nitrogen from ammonia and nitrogen oxides in the layer of the copper-containing zeolite material.
  • the comparatively high noble metal content of the oxidation catalyst ensures a good and rapid increase in the temperature of the Exhaust gas when the oxidation catalyst fuel or carbon monoxide is supplied. Because virtually no ammonia is present in the region of the oxidation catalyst, even the high noble metal content of the oxidation catalyst can hardly contribute to increased formation of nitrous oxide.
  • the high noble metal content of the oxidation catalyst also ensures a comparatively low light-off temperature of the
  • Oxidation catalyst with respect to HC, CO and NO oxidation Oxidation catalyst with respect to HC, CO and NO oxidation.
  • the first SCR catalyst and the ammonia slip catalyst may be arranged on a common carrier body.
  • the first SCR catalyst, the ammonia slip catalyst and the oxidation catalyst can be arranged on the common carrier body, which in a housing of the
  • Hybrid catalyst is housed. This is particularly advantageous when the second SCR catalyst, which has the vanadium-containing SCR catalyst material as a comparatively close to the engine, ie in greater proximity to the
  • Internal combustion engine arranged pre-catalyst is formed, while the first SCR catalyst is housed in a motor remote housing of the exhaust system.
  • first SCR catalyst and the second SCR catalyst are arranged on a common carrier body, wherein preferably then the ammonia slip catalyst and the oxidation catalyst are arranged on a further common carrier body. Also with this
  • the two SCR catalysts, on the one hand, and the ammonia slip catalyst and the oxidation catalyst, on the other hand, can be accommodated in a common housing of the exhaust system, so that a compact hybrid catalytic converter can be provided is provided.
  • Exhaust after-treatment device arranged directly adjacent to each other so that they can fulfill their respective function particularly well.
  • Hydrocarbons are provided, which are then converted to short-chain hydrocarbons and carbon monoxide.
  • Oil dilution of the oil used to lubricate the internal combustion engine can occur if fuel is introduced via the late post-injection into the exhaust gas of the internal combustion engine.
  • the metering device for introducing fuel upstream of the second SCR catalyst can thus, as needed, sufficient fuel to desulfurize the copper-containing zeolite catalyst and to regenerate the
  • Particles are provided without the problems associated with the late post-injection problems occur.
  • Temperature are used on the metering device for introducing fuel, which is designed to perform a so-called secondary fuel injection.
  • the secondary fuel injection is not carried out until a threshold value of the temperature is exceeded, for example when a temperature of about 300 degrees Celsius is exceeded.
  • the secondary fuel injection can namely lead to adsorption of long-chain hydrocarbons on at least one of the SCR catalysts. If uncontrolled large amounts of long-chain hydrocarbons attach to the at least one SC R catalyst, this can lead to a sudden, uncontrolled ignition of these hydrocarbons. However, such uncontrolled attachment of hydrocarbons to an SCR catalyst does not occur at higher exhaust gas temperatures. Therefore, the secondary fuel injection is preferably carried out only at higher exhaust gas temperatures.
  • another SCR catalyst Downstream of the particulate filter, another SCR catalyst can be arranged downstream of the particulate filter.
  • a third SCR catalyst can also be dispensed with. This reduces the complexity and cost of the exhaust system.
  • particularly good designs can be realized by means of the third SCR catalytic converter with regard to the reduction of the nitrogen oxide content of the exhaust gas.
  • FIG. 1 schematically shows a section of an exhaust system of a commercial vehicle, wherein a particle filter is preceded by a hybrid catalyst;
  • Fig. 2 shows schematically possible lengths of components of the hybrid catalyst
  • FIG. 4 shows the conditions in a situation according to FIG. 3, wherein additionally a late post-injection is undertaken;
  • Fig. 5 shows the time course of the fuel injection and the temperature and the concentrations of certain components in the exhaust gas when flowing through the hybrid catalyst.
  • FIG. 1 An exhaust system 10 for a motor vehicle, such as in the form of a commercial vehicle or truck, is shown in Fig. 1 schematically and in part.
  • the exhaust system 10 includes an exhaust aftertreatment device in the form of a hybrid catalyst 12 and a particulate filter 14, which in the present case as
  • Diesel particle filter is formed. Upstream of the hybrid catalyst 12, an addition point 16 is provided, via which an aqueous urea solution can be introduced into the exhaust gas, which enters the hybrid catalyst 12.
  • the exhaust gas is released by an internal combustion engine (not shown) of the motor vehicle.
  • a first arrow 18 indicates the entry of the exhaust gas into the hybrid catalyst 12.
  • Another arrow 20 illustrates the exit of the exhaust gas from the
  • a flow direction of the exhaust gas through the exhaust system 10 is illustrated by the arrows 18, 20. Seen in this direction of flow, the hybrid catalytic converter 12 can be subdivided into four axial zones in the present case. In a first axial zone, an SCR catalytic converter 22, which in the present case has a vanadium-containing SCR catalytic converter material 24, is arranged in the hybrid catalytic converter 12. In a second, in the flow direction to the first axial zone
  • This SCR catalyst 26 has a copper-containing
  • an ammonia slip catalyst 30 (ASC) is arranged in the hybrid catalytic converter 12.
  • ASC ammonia slip catalyst
  • Hybrid catalyst 12 an oxidation catalyst 32 is arranged.
  • Oxidation catalyst 32 is presently designed as a diesel oxidation catalyst (DOC).
  • DOC diesel oxidation catalyst
  • a layer 34 of a copper-containing Arranged zeolite material is applied on a surface of the ammonia slip catalyst 30, which comprises at least one noble metal.
  • the layer 34 extends a little way into the fourth axial zone in which the oxidation catalyst 32 is arranged. Accordingly, in an upstream portion of the oxidation catalyst 32 on a surface of the oxidation catalyst 32, which comprises at least one noble metal, the layer 34 is applied. However, a rearward or downstream portion 36 of the oxidation catalyst 32 is free of the layer 34.
  • braces is illustrated in Fig. 1 that the ammonia slip catalyst 30 and the oxidation catalyst 32 may be disposed on a common carrier body 38.
  • the two SCR catalysts 22, 26 may be arranged on a common carrier body 40.
  • the copper-containing SCR catalyst 26, the ammonia slip catalyst 30 and the oxidation catalyst 32 to a
  • the carrier bodies 38, 40, 42, 44 can be arranged in a common housing of the hybrid catalytic converter 12
  • Hybrid catalyst 12 will be explained below.
  • the copper-containing SCR catalyst 26 is particularly suitable for reducing the nitrogen oxide content in the exhaust gas of the internal combustion engine at low
  • the copper-containing SCR catalyst 26 or the SCR catalyst 26 with the copper-containing zeolite material 28 is relatively susceptible to an attachment of
  • the temperature of the exhaust gas may be raised very sharply, for example by introducing fuel into the exhaust gas at an oxidation catalyst upstream of the hybrid catalytic converter 12. However, this is accompanied by a significant fuel consumption and a strong thermal stress of the SC R catalyst 26.
  • the vanadium-containing SCR catalytic converter 22 or the SCR catalytic converter 22 with the vanadium-containing SCR catalytic converter material 24 ensures a significant lowering of the temperature required for desulfurizing the copper-containing SCR catalytic converter 26. Because if the vanadium-containing SCR catalyst 22 long-chain hydrocarbons are supplied, for example, by introducing fuel upstream of the hybrid catalyst 12 in the exhaust gas, so sets the Vanadium-containing SCR catalyst 22 these long-chain hydrocarbons in short-chain hydrocarbons and carbon monoxide. These are then available for dissolving and releasing the sulfur compounds in the copper-containing SCR catalyst 26.
  • the introduction of the long-chain hydrocarbons upstream of the vanadium-containing SC R catalyst 22 can be effected in particular by a secondary fuel injection, ie by the introduction of fuel into the exhaust gas by means of a separate metering device, or by a delayed injection of fuel into the combustion chamber of the internal combustion engine.
  • SCR selective catalytic reduction, selective catalytic reduction
  • the nitrogen oxides contained in the exhaust gas are converted with the ammonia to nitrogen and water.
  • the aqueous urea solution is introduced into the exhaust stream at the addition point 16.
  • the copper-containing SCR catalyst 26, in which also the SCR reaction takes place has a high storage capacity for ammonia. This also causes the downstream ammonia slip catalyst 30 hardly
  • Ammonia is supplied.
  • the oxidation of the ammonia takes place.
  • ammonia is also stored in layer 34.
  • ammonia is converted to nitrogen oxides, they react when passing through the layer 34 in turn with the ammonia to form nitrogen and water.
  • the nitrogen oxide emissions of the ammonia slip catalyst 30 and also of the oxidation catalyst 32 are particularly low. Since virtually no ammonia reaches the oxidation catalyst 32, there is hardly any formation of nitrous oxide on the oxidation catalyst 32. Therefore, preferably, the oxidation catalyst 32 has a much higher content of noble metal than the ammonia slip catalyst 30. This in turn means that by means of the
  • Oxidation catalyst 32 particularly good, the temperature of the exhaust gas can be raised to regenerate the particulate filter 14.
  • a cell density that is, a cross-sectional area of the channels provided in the individual catalysts relative to the surface of the catalyst, can in the
  • vanadium-containing SCR catalyst 22 in the range of 200 to 400 cells per square inch (cpsi), for the copper-containing SCR catalyst 26 in the range of 300 to 600 cpsi and for the ammonia slip catalyst 30 and for the oxidation catalyst also in the range of 300 to 600 cpsi.
  • the volume of said catalysts can be in the range of 0.2 to 0.6 liters based on one liter of a stroke volume of the internal combustion engine. A lot of the on a substrate of the
  • Catalyst-applied washcoats containing the catalytically active substances may be for the SCR catalysts 22, 26 in the range of 100 to 300 grams per liter.
  • the vanadium-containing SCR catalyst 22 may also be formed from a bulk extrudate in which the catalyst material is mixed with the carrier material.
  • the carrier material is usually a ceramic carrier in the form of cordierite is used, in which the rectangular channels are formed.
  • This ceramic support is then coated with the so-called washcoat, which contains the catalytically active components.
  • the amount of washcoat may be in the range of 100 to 500 grams per liter for the ammonia slip catalyst 30 and in the range of 10 to 150 grams per liter for the oxidation catalyst 32.
  • the volume fraction of the respective catalyst based on the total volume of the catalysts forming the hybrid catalyst 12 can be in the range from 10 percent to 50 percent for each individual catalyst, the sum of the individual percentages of the present four catalysts in the form of the vanadium-containing SCR catalyst 22, of the copper-containing SCR catalyst 26, the ammonia slip catalyst 30 and the oxidation catalyst 32 is always 100 percent.
  • a double arrow 46 illustrates a minimum extension of the copper-containing SCR layer 34 in the flow direction of the exhaust gas along the ammonia slip catalyst 30.
  • the layer 34 accordingly extends over the entire axial length of the ammonia slip catalyst 30.
  • Another double arrow 48 illustrates the maximum extent of the layer 34. Accordingly, although the layer 34 may cover the oxidation catalyst 32 over its entire axial length. Preferably, however, at least the downstream portion 36 of the oxidation catalyst 32 remains free of the layer 34, as illustrated in FIG. 2 and also in FIG. Based on Fig. 3, a possible operation of the exhaust system 10 is to be illustrated. Thus, in a first graph in FIG.
  • a curve 50 indicates the amount of long-chain hydrocarbons present in the exhaust gas as seen in the flow direction of the exhaust gas by the hybrid catalytic converter 12 at respective points of the hybrid catalytic converter 12 through which the hybrid catalytic converter 12 flows. Accordingly, in the vanadium-containing SCR catalyst 22, the long-chain degradation occurs
  • Hydrocarbons Namely, there is a partial oxidation of the hydrocarbons. This leads to a temperature increase.
  • the temperature rising in the flow direction of the exhaust gas in the hybrid catalytic converter 12 is shown in FIG. 3 by means of a further curve 52 over the length of the hybrid catalytic converter 12.
  • 26 short-chain hydrocarbons are provided for the copper-containing SCR catalyst. The content of short-chain hydrocarbons based on the length of the
  • Hybrid catalytic converter 12 is illustrated in FIG. 3 by a further curve 54.
  • a content of carbon monoxide in the exhaust gas increases when it flows through the hybrid catalyst 12.
  • the carbon monoxide content is illustrated in FIG. 3 by a fourth curve 56. According to the curves 54, 56 are at the output of the oxidation catalyst 32, the short-chain hydrocarbons and the
  • vanadium-containing SCR catalyst 22 by a lower formation of nitrous oxide. Both in the vanadium-containing SCR catalyst 22 and in the copper-containing SCR catalyst 26, there is a reduction in the nitrogen oxide content in the exhaust gas due to the selective catalytic reduction reaction of ammonia
  • the copper-containing SCR catalyst 26 is characterized by a very good reduction of the
  • Fig. 4 illustrates a variant of the operation of the exhaust system 10, in which for the purpose of regenerating the particulate filter 14, not only the secondary
  • vanadium-containing SCR catalyst 22 takes place by means of the metering device. Rather, a late post-injection is additionally made. It is so injected into the cylinders of the internal combustion engine fuel so late that it no longer participates in the combustion, but passes unburned into the exhaust gas.
  • the curves 50, 54, 56 in turn illustrate the conditions with regard to the presence of the long-chain hydrocarbons (curve 50), the short-chain
  • a first, highly schematic and therefore rectangular curve 60 illustrates the introduction of fuel into the hybrid catalytic converter 12 via the late post-injection.
  • a second such curve 62 illustrates the introduction of fuel via the metering device, which is provided upstream of the vanadium-containing SCR catalyst 22 in the exhaust system 10, that is, the secondary fuel injection.
  • Another graph 74 in FIG. 5 illustrates the conditions on the output side of the vanadium-containing catalyst 22. Accordingly, due to the increasing temperature until the onset of secondary fuel injection (curve 62), the content of short-chain hydrocarbons (see curve 76 in Fig. 5). Furthermore, the long-chain hydrocarbons become short-chain hydrocarbons
  • a curve 80 in the graph 74 illustrates the provision of carbon monoxide by the vanadium-containing SCR catalyst 22.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Die Erfindung betrifft eine Abgasanlage (10) für einen Kraftwagen, mit einer Abgasnachbehandlungseinrichtung zum Nachbehandeln von Abgas einer Verbrennungskraftmaschine des Kraftwagens. Die Abgasnachbehandlungseinrichtung umfasst einen ersten SCR-Katalysator (26), welcher ein kupferhaltiges Zeolithmaterial (28) aufweist, einen Ammoniak-Schlupf-Katalysator (30), welcher stromabwärts des ersten SCR-Katalysators (26) angeordnet ist, und einen Partikelfilter (14). Stromaufwärts des ersten SCR-Katalysators (26) ist ein zweiter SCR-Katalysator (22) angeordnet, welcher ein vanadiumhaltiges SCR-Katalysatormaterial (24) aufweist.

Description

Abgasanlage für einen Kraftwagen
Die Erfindung betrifft eine Abgasanlage für einen Kraftwagen, mit einer
Abgasnachbehandlungseinrichtung zum Nachbehandeln von Abgas einer
Verbrennungskraftmaschine des Kraftwagens. Die Abgasnachbehandlungseinrichtung umfasst einen ersten SCR-Katalysator, welcher ein kupferhaltiges Zeolithmaterial aufweist, einen Ammoniak-Schlupf-Katalysator, welcher stromabwärts des ersten SCR- Katalysators angeordnet ist, und einen Partikelfilter.
Beispielsweise beschreibt die US 2014/0237995 A1 ein System mit einer
Verbrennungskraftmaschine, deren Abgas einem SCR-Katalysator mit einem
kupferhaltigen Zeolithmaterial zugeführt wird. Das Nachbehandlungssystem umfasst auch einen Ammoniak-Oxidationskatalysator und einen Dieselpartikelfilter. Dem kupferhaltigen Zeolithkatalysator wird ein Fluidstrom zugeführt, welcher Harnstoff, Ammoniak oder Kohlenwasserstoffe enthält, um den Zeolithkatalysator bei Temperaturen von weniger als 500 Grad Celsius bis 600 Grad Celsius von Schwefel zu befreien.
Üblicherweise ist es nämlich so, dass eine Entschwefelung von kupferhaltigen
beziehungsweise kupferausgetauschten Zeolithkatalysatoren unter normalen
Abgasbedingungen einer mit Diesel betriebenen Verbrennungskraftmaschine hohe Abgastemperaturen im Bereich von 500 Grad Celsius bis 600 Grad Celsius erfordert. Um derartige Temperaturen zu erreichen, sind zusätzliche Heizmaßnahmen erforderlich. Bei derzeit verwendeten Abgasnachbehandlungssystemen, welche der Norm Euro-6 beziehungsweise EPA-10 genügen, wird dies durch einen Dieseloxidationskatalysator erreicht, welcher dem kupferhaltigen Zeolithkatalysator vorgeschaltet ist. An dem
Oxidationskatalysator wird eine zusätzlich eingespritzte Kraftstoffmasse umgesetzt. So wird die Temperatur des Abgases angehoben. Dies führt jedoch zu einem erhöhten Kraftstoffverbrauch und auch zu einer verstärkten thermischen Beanspruchung und Alterung der Abgasanlage, insbesondere der Abgasnachbehandlungseinrichtung. Aufgabe der vorliegenden Erfindung ist es daher, eine verbesserte Abgasanlage der eingangs genannten Art zu schaffen.
Diese Aufgabe wird durch eine Abgasanlage mit den Merkmalen des Patentanspruchs 1 gelöst. Vorteilhafte Ausgestaltungen mit zweckmäßigen Weiterbildungen der Erfindung sind in den abhängigen Patentansprüchen angegeben.
Die erfindungsgemäße Abgasanlage für einen Kraftwagen, bei welchem es sich insbesondere um ein Nutzfahrzeug handeln kann, umfasst eine
Abgasnachbehandlungseinrichtung zum Nachbehandeln von Abgas einer
Verbrennungskraftmaschine des Kraftwagens. Die Abgasnachbehandlungseinrichtung umfasst einen ersten SCR-Katalysator, welcher ein kupferhaltiges Zeolithmaterial aufweist. Des Weiteren umfasst die Abgasnachbehandlungseinrichtung einen Ammoniak- Schlupf-Katalysator, welcher stromabwärts des ersten SCR-Katalysators angeordnet ist. Ein Partikelfilter der Abgasnachbehandlungseinrichtung ist stromabwärts des Ammoniak- Schlupf-Katalysators angeordnet. Stromaufwärts des ersten SCR-Katalysators ist ein zweiter SCR-Katalysator angeordnet. Der zweite SCR-Katalysator weist ein
vanadiumhaltiges SCR-Katalysatormaterial auf. Dem liegt die Erkenntnis zugrunde, dass ein vanadiumhaltiger SCR-Katalysator eine chemische Reaktion insbesondere von langkettigen Kohlenwasserstoffen herbeiführt. Bei einer solchen Teiloxidation kommt es zu Bildung von Kohlenstoffmonoxid und zur Aufspaltung der langkettigen
Kohlenwasserstoffe in kurzkettige Kohlenwasserstoffe. Folglich werden durch den vanadiumhaltigen SCR-Kkatalysator Reduktionsmittel-Moleküle bereitgestellt.
Diese Reduktionsmittel-Moleküle dringen in die Käfigstruktur des kupferhaltigen
Zeolithkatalysators ein und lösen dort eingelagerte Schwefelverbindungen. Aufgrund der Entfernung von Schwefelverbindungen aus dem kupferhaltigen Zeolithmaterial des ersten SCR-Katalysators ist der erste SCR-Katalysator in verbessertem Maße dazu in der Lage, eine Entstickung des Abgases vorzunehmen. Bei dieser Entstickung handelt es sich um die von dem ersten SCR-Katalysator durchgeführte selektive katalytische Reduktion (SCR = selective catalytic reduction), also eine selektive katalytische
Reduktionsreaktion, bei welcher im Abgas enthaltene Stickstoffoxide mit Ammoniak weitestgehend zu Stickstoff und Wasser umgesetzt werden.
Das Anlagern von Schwefelverbindungen an dem kupferhaltigen Zeolithmaterial schränkt dessen Leistungsfähigkeit im Hinblick auf das Entsticken des Abgases ein. Durch das Vorschalten des vanadiumhaltigen SCR-Katalysators wird demgemäß die Fähigkeit des ersten SCR-Katalysators, Stickstoffoxide aus dem Abgas zu entfernen, dauerhaft aufrecht erhalten. Durch das Freisetzen der Schwefelverbindungen behindern diese nämlich nicht die SCR-Reaktion des kupferhaltigen Zeolithkatalysators. Zudem katalysiert auch der vanadiumhaltige SCR-Kkatalysator die SCR-Reaktion und trägt so zum
Entsticken des Abgases bei.
Für ein, insbesondere regelmäßiges, Befreien des kupferhaltigen Zeolithmaterials des ersten SCR-Katalysators von Schwefel wird stromaufwärts des zweiten SCR-Katalysators Kraftstoff in das Abgas eingebracht. Jedoch kann die für dieses Entschwefeln
erforderliche Temperatur signifikant abgesenkt werden. Es brauchen also in dem kupferhaltigen Zeolithmaterial des ersten SCR-Katalysators keine Temperaturen von 500 Grad Celsius bis 600 Grad Celsius eingestellt zu werden, um das kupferhaltige Zeolithmaterial zu entschwefeln. Vielmehr kann der kupferhaltige Zeolithkatalysator bereits in einem Temperaturbereich zwischen 300 Grad Celsius und 500 Grad Celsius von Schwefelverbindungen befreit werden, indem durch den vanadiumhaltigen SCR- Katalysator zur Reduktion der Schwefelverbindungen geeignete Reduktionsmittel bereitgestellt werden.
Der kupferhaltige Zeolithkatalysator, welcher verglichen mit dem vanadiumhaltigen SCR- Katalysator anfälliger für Schwefelanlagerungen ist, hat den großen Vorteil, dass selbst bei niedrigen Abgastemperaturen bereits eine gute Verringerung des
Stickstoffoxidgehalts im Abgas durch die selektive katalytische Reduktion ermöglicht ist. Dies ist beispielsweise bei einem Kaltstart des die Abgasanlage aufweisenden
Kraftwagens von Vorteil.
Der vanadiumhaltige SC R- Katalysator ist zwar bei niedrigerer Temperatur des Abgases weniger stark aktiv im Hinblick auf das Entsticken von Abgas. Jedoch zeichnet sich der vanadiumhaltige SCR-Katalysator durch ein rasches Anspringverhalten aus. Demgemäß ist bereits bei einer geringen Menge von in dem Abgas vorhandenem Ammoniak eine erhebliche Verringerung des Stickstoffoxidgehalts im Abgas mittels des vanadiumhaltigen SCR-Katalysators erreichbar. Mit anderen Worten ist lediglich ein geringer Ammoniak- Füllstand erforderlich, um in dem vanadiumhaltigen SCR-Katalysator die selektive katalytische Reduktionsreaktion ablaufen zu lassen. Zudem ist der vanadiumhaltige SCR- Katalysator kaum anfällig für eine Schwefelanlagerung. Vielmehr erfolgt in dem vanadiumhaltigen SCR-Katalysator das Freisetzen beziehungsweise Lösen von
Schwefelverbindungen bereits bei niedrigen Abgastemperaturen. Der kupferhaltige Zeolithkatalysator zeichnet sich also einerseits durch seine sehr gute Tieftemperaturaktivität aus. Andererseits führt das im Vergleich zu dem vanadiumhaltigen SCR-Katalysator langsame Anspringverhalten des kupferhaltigen Zeolithkatalysators zu einer hohen Speicherkapazität für Ammoniak. Das Speichern von vergleichsweise viel Ammoniak durch den kupferhaltigen Zeolithkatalysator führt wiederum dazu, dass ein Ammoniakdurchbruch beziehungsweise Ammoniak-Schlupf verringert ist.
Dementsprechend wird auch der in Strömungsrichtung des Abgases durch die
Abgasanlage gesehen stromabwärts des ersten SCR-Katalysators angeordnete
Ammoniak-Schlupf-Katalysator in besonders geringem Maße mit Ammoniak
beaufschlagt.
Die Kombination des ersten SCR-Katalysators mit dem zweiten SCR-Katalysator, welcher in Strömungsrichtung des Abgases durch die Abgasanlage gesehen stromaufwärts des ersten SCR-Katalysators angeordnet ist, führt also zu vorteilhaften Synergieeffekten. Zudem ist durch das Bereitstellen sowohl des ersten SCR-Katalysators als auch des zweiten SCR-Katalysators eine besonders effektive Abgasnachbehandlungseinrichtung im Hinblick auf das Verringern des Gehalts an Stickstoffoxiden in dem Abgas der Verbrennungskraftmaschine bereitgestellt.
Des Weiteren kann vergleichsweise viel Harnstofflösung stromaufwärts der beiden SCR- Katalysatoren in das Abgas eingebracht werden. Aus einer solchen wässrigen
Harnstofflösung, welche beispielsweise unter der Bezeichnung AdBlue® erhältlich ist, wird im heißen Abgas der Ammoniak freigesetzt, welcher dann in den SCR-Katalysatoren mit den Stickstoffoxiden zu Stickstoff und Wasser umgesetzt wird. Da das
vanadiumhaltige SCR-Katalysatormaterial und das kupferhaltige Zeolithmaterial frei von Edelmetallen sind, wie sie in dem Ammoniak-Schlupf-Katalysator zum Einsatz kommen, ist auch keine Bildung von Lachgas (N20) in den SCR-Katalysatoren aufgrund einer Oxidation von Ammoniak an den beiden SCR-Katalysatoren zu befürchten, sofern diese frei von Ammoniumablagerungen gehalten werden. Weiter vorteilhaft ist, dass der vanadiumhaltige SCR-Katalysator der nach Austritt des Abgases aus der
Verbrennungskraftmaschine in Strömungsrichtung des Abgases durch die
Abgasnachbehandlungseinrichtung zuerst durchströmte SCR-Katalysator ist, da der vanadiumhaltige SCR-Katalysator eine geringe N20-Selektivität hat und so eine N20- Bildung aus N02-Motorrohemissionen gering gehalten werden kann, so dass auch die N20-Emissionen am Austritt aus der Abgasanlage äußerst gering gehalten werden können. Vorzugsweise ist ein Abschnitt der Abgasanlage zwischen dem zweiten SC R- Katalysator und dem ersten SCR-Katalysator frei von wenigstens einem weiteren Katalysator.
Dadurch kann sichergestellt werden, dass die von dem zweiten SCR-Katalysator für den ersten SCR-Katalysator zur Verfügung gestellten kurzkettigen Kohlenwasserstoffe und das Kohlenstoffmonoxid zum Entschwefeln des kupferhaltigen Zeolithkatalysators uneingeschränkt zur Verfügung stehen.
Zusätzlich oder alternativ ist bevorzugt ein Abschnitt zwischen dem ersten SCR- Katalysator und dem Ammoniak-Schlupf-Katalysator frei von wenigstens einem weiteren Katalysator. So kann etwaig aus dem ersten SCR-Katalysator austretender Ammoniak unmittelbar in dem Ammoniak-Schlupf-Katalysator oxidiert werden.
Besonders vorteilhaft ist es, wenn die einzelnen Katalysatoren unmittelbar, also ohne eine dazwischenliegende Rohrleitung, aneinander angrenzen. Insbesondere kann eine Ausgangsseite des ersten SCR-Katalysators an eine Eingangsseite des Ammoniak- Schlupf-Katalysators angrenzen, und/oder es kann eine Eingangsseite des ersten SCR- Katalysators an eine Ausgangsseite des zweiten SCR-Katalysators angrenzen. So ist einerseits eine besonders kompakte Abgasnachbehandlungseinrichtung geschaffen. Des Weiteren ist so ein Hybridkatalysator geschaffen, in welchem die Funktionalitäten der einzelnen Katalysatoren in axialer Richtung, also in die Strömungsrichtung des Abgases durch die Abgasanlage gesehen, unmittelbar aufeinanderfolgen. Dies verringert die Komplexität der Abgasanlage.
Vorzugsweise ist auf eine wenigstens ein Edelmetall aufweisende Oberfläche des Ammoniak-Schlupf-Katalysators eine Schicht aus einem kupferhaltigen Zeolithmaterial aufgebracht. Das kupferhaltige Zeolithmaterial dient in geringem Ausmaß dem Verringern der Stickstoffoxidkonzentration im Abgas, indem in dem kupferhaltigen Zeolithmaterial die selektive katalytische Reduktionsreaktion (SCR) stattfindet. Des Weiteren führt das Vorsehen einer solchen Schicht aus kupferhaltigem Zeolithmaterial auf der das wenigstens eine Edelmetall, insbesondere der Platingruppe, aufweisenden Oberfläche des Ammoniak-Schlupf-Katalysators dazu, dass trotz des Oxidierens von Ammoniak durch den Ammoniak-Schlupf-Katalysator besonders wenig Lachgas gebildet wird.
Zudem werden durch die Oxidation von Ammoniak in dem Ammoniak-Schlupf-Katalysator gebildete Stickstoffoxide beim Hindurchtreten durch die Schicht aus dem kupferhaltigen Zeolithmaterial mit in dem kupferhaltigen Zeolithmaterial gespeichertem Ammoniak zu Stickstoff und Wasser umgesetzt. Die Schicht aus dem kupferhaltigen Zeolithmaterial sorgt somit insbesondere für besonders geringe Stickstoffoxidemissionen und für besonders geringe Lachgasemissionen des Ammoniak-Schlupf-Katalysators.
Vorzugsweise ist stromabwärts des Ammoniak-Schlupf-Katalysators und stromaufwärts des Partikelfilters ein Oxidationskatalysator angeordnet. Durch einen solchen
Oxidationskatalysator können besonders gut die stromabwärts der beiden SCR- Katalysatoren vorhandenen, aus dem in das Abgas eingebrachten Kraftstoff gebildeten Reduktionsmittel oxidiert werden, um eine hohe Abgastemperatur zu erreichen. Diese hohe Abgastemperatur ist wiederum für das periodische Regenerieren des Partikelfilters erforderlich, welcher dem Oxidationskatalysator nachgeschaltet ist. Die vollständige Oxidation der eingebrachten Reduktionsmittel etwa in Form der kurzkettigen
Kohlenwasserstoffe und des Kohlenstoffmonoxids erfolgt also an den nachgeschalteten, edelmetallhaltigen Katalysatoren in Form des Ammoniak-Schlupf-Katalysators und insbesondere des Oxidationskatalysators.
Vorzugsweise sind der Ammoniak-Schlupf-Katalysator und der Oxidationskatalysator auf einem gemeinsamen Trägerkörper angeordnet. So kann besonders einfach dafür gesorgt werden, dass auch der Ammoniak-Schlupf-Katalysator und der Oxidationskatalysator unmittelbar aneinander angrenzen. Zudem ist so der zumindest den ersten SCR- Katalysator und den Ammoniak-Schlupf-Katalysator sowie den Oxidationskatalysator aufweisende Hybridkatalysator besonders kompakt.
Vorzugsweise ist auf eine wenigstens ein Edelmetall aufweisende Oberfläche des Oxidationskatalysators eine Schicht aus einem kupferhaltigen Zeolithmaterial
aufgebracht. Hierbei ist ein stromabwärtiger Teilbereich des Oxidationskatalysators frei von der Schicht. Mit anderen Worten erstreckt sich in Strömungsrichtung des Abgases durch den Oxidationskatalysator gesehen die kupferhaltige Zeolithmaterialschicht nicht über die gesamte Länge des Oxidationskatalysators, was dazu führt, dass der
Oxidationskatalysator besonders gut seiner Funktion nachkommen kann, die zum
Aufheizen des nachgeschalteten Partikelfilters im Abgas enthaltenen Reduktionsmittel zu oxidieren. Dennoch kann durch ein Überlappen der Schicht aus dem kupferhaltigen Zeolithmaterial, welche auf die Oberfläche des Ammoniak-Schlupf-Katalysators aufgebracht ist, mit einem stromaufwärtigen Teilbereich des Oxidationskatalysators sichergestellt werden, dass eine Bildung bzw. Freisetzung von Lachgas und
Stickstoffoxiden aus dem Ammoniak-Schlupf-Katalysator und aus dem
Oxidationskatalysator besonders weitgehend unterbunden ist. Vorzugsweise ist ein Edelmetallgehalt des Ammoniak-Schlupf-Katalysators kleiner als ein Edelmetallgehalt des Oxidationskatalysators. Beispielsweise kann eine Beladung an Edelmetallen aus der Gruppe der Platinmetalle in dem Ammoniak-Schlupf-Katalysator im Bereich von 1 Gramm pro Kubikfuß bis 5 Gramm pro Kubikfuß liegen. Demgegenüber kann die Edelmetallbeladung insbesondere mit wenigstens einem Edelmetall aus der Gruppe der Platinmetalle, in dem Oxidationskatalysator im Bereich von 10 Gramm pro Kubikfuß bis 50 Gramm pro Kubikfuß liegen.
Der vergleichsweise geringe Edelmetallgehalt des Ammoniak-Schlupf-Katalysators sorgt für eine hohe Selektivität im Hinblick auf die Bildung von Stickstoff aus Ammoniak und Stickstoffoxiden in der Schicht aus dem kupferhaltigen Zeolithmaterial Demgegenüber sorgt der vergleichsweise hohe Edelmetallgehalt des Oxidationskatalysators für eine gute und rasche Anhebung der Temperatur des Abgases, wenn dem Oxidationskatalysator Kraftstoff beziehungsweise Kohlenstoffmonoxid zugeführt wird. Dadurch, dass im Bereich des Oxidationskatalysators so gut wie kein Ammoniak mehr vorhanden ist, kann selbst der hohe Edelmetallgehalt des Oxidationskatalysators dennoch kaum zu einer verstärkten Lachgasbildung beitragen. Der hohe Edelmetallgehalt des Oxidationskatalysators sorgt im Übrigen auch für eine vergleichsweise niedrige Anspringtemperatur des
Oxidationskatalysators bezüglich HC, CO- sowie NO-Oxidation.
Der erste SCR-Katalysator und der Ammoniak-Schlupf-Katalysator können auf einem gemeinsamen Trägerkörper angeordnet sein. Insbesondere können also der erste SCR- Katalysator, der Ammoniak-Schlupf-Katalysator und der Oxidationskatalysator auf dem gemeinsamen Trägerkörper angeordnet sein, welcher in einem Gehäuse des
Hybridkatalysators untergebracht ist. Dies ist insbesondere dann vorteilhaft, wenn der zweite SCR-Katalysator, welcher das vanadiumhaltige SCR-Katalysatormaterial aufweist, als vergleichsweise motornaher, also in größerer Nähe zu der
Verbrennungskraftmaschine angeordneter Vorkatalysator ausgebildet ist, während der erste SCR-Katalysator in einem motorferneren Gehäuse der Abgasanlage untergebracht ist.
Es kann jedoch auch vorgesehen sein, dass der erste SCR-Katalysator und der zweite SCR-Katalysator auf einem gemeinsamen Trägerkörper angeordnet sind, wobei bevorzugt dann der Ammoniak-Schlupf-Katalysator und der Oxidationskatalysator auf einem weiteren gemeinsamen Trägerkörper angeordnet sind. Auch bei dieser
Ausgestaltung lassen sich die beiden SCR-Katalysatoren einerseits und der Ammoniak- Schlupf-Katalysator sowie der Oxidationskatalysator andererseits in einem gemeinsamen Gehäuse der Abgasanlage unterbringen, sodass ein kompakter Hybridkatalysator bereitgestellt ist. Jedoch sind dann die einzelnen Komponenten der
Abgasnachbehandlungseinrichtung unmittelbar aneinander angrenzend angeordnet, sodass sie ihre jeweilige Funktion besonders gut erfüllen können.
Als weiter vorteilhaft hat es sich gezeigt, wenn stromaufwärts des zweiten SCR- Katalysators eine Dosiereinrichtung zum Einbringen von Kraftstoff in das dem zweiten SCR-Katalysator zuzuführende Abgas vorgesehen ist. Auf diese Weise können nämlich besonders einfach dem vanadiumhaltigen SCR-Katalysator langkettige
Kohlenwasserstoffe zur Verfügung gestellt werden, welche dann zu kurzkettigen Kohlenwasserstoffen und Kohlenstoffmonoxid umgesetzt werden. Diese
Reduktionsmittel-Moleküle stehen dann wiederum für den kupferhaltigen
Zeolithkatalysator zur Entschwefelung zur Verfügung.
Des Weiteren lassen sich so die Probleme verringern, welche mit dem Einbringen von Kraftstoff in das Abgas über eine späte Nacheinspritzung in Zylinder der
Verbrennungskraftmaschine einhergehen. Die späte Nacheinspritzung, bei welcher der eingespritzte Kraftstoff nicht mehr im Brennraum des Zylinders verbrennt, sondern unverbrannt in die Abgasanlage gelangt, führt nämlich zu einer unerwünschten
Ölverdünnung des zum Schmieren der Verbrennungskraftmaschine verwendeten Öls. Zudem kann es zu einer Versottung eines Abgasrückführungskühlers kommen, wenn Kraftstoff über die späte Nacheinspritzung in das Abgas der Verbrennungskraftmaschine eingebracht wird.
Durch das Vorsehen der Dosiereinrichtung zum Einbringen von Kraftstoff stromaufwärts des zweiten SCR-Katalysators kann somit je nach Bedarf ausreichend Kraftstoff zum Entschwefeln des kupferhaltigen Zeolithkatalysators und zum Regenerieren des
Partikelfilters bereitgestellt werden, ohne dass die mit der späten Nacheinspritzung zusammenhängenden Probleme auftreten.
Des Weiteren kann in Abhängigkeit von der in der Abgasanlage herrschenden
Temperatur auf die Dosiereinrichtung zum Einbringen von Kraftstoff zurückgegriffen werden, welche zum Durchführen einer sogenannten sekundären Kraftstoffeinspritzung ausgebildet ist. Insbesondere kann vorgesehen sein, dass erst beim Überschreiten eines Schwellenwerts der Temperatur, beispielsweise beim Überschreiten einer Temperatur von etwa 300 Grad Celsius, die sekundäre Kraftstoffeinspritzung vorgenommen wird. Insbesondere die sekundäre Kraftstoffeinspritzung kann nämlich zu einer Adsorption von langkettigen Kohlenwasserstoffen an wenigstens einem der SCR-Katalysatoren führen. Wenn sich unkontrolliert größere Mengen an langkettigen Kohlenwasserstoffen an dem wenigstens einen SC R- Katalysator anlagern, so kann dies zu einem plötzlichen, unkontrollierten Entzünden dieser Kohlenwasserstoffe führen. Ein solches unkontrolliertes Anlagern von Kohlenwasserstoffen an einen SC R- Katalysator tritt jedoch bei höheren Abgastemperaturen nicht auf. Daher wird bevorzugt die sekundäre Kraftstoffeinspritzung erst bei höheren Abgastemperaturen vorgenommen.
Stromabwärts des Partikelfilters kann ein weiterer SCR-Katalysator angeordnet sein. Jedoch lässt sich aufgrund des Vorsehens der beiden SCR-Katalysatoren in Form des vanadiumhaltigen SCR-Katalysators und des kupferhaltigen Zeolithkatalysators auf einen solchen dritten SCR-Katalysator auch verzichten. Dies verringert die Komplexität und die Kosten der Abgasanlage. Andererseits lassen sich mittels des dritten SCR-Katalysators im Hinblick auf die Verringerung des Stickstoffoxidgehalts des Abgases besonders gute Ausgestaltungen realisieren.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung. Die vorstehend in der Beschreibung genannten Merkmale und
Merkmalskombinationen sowie die nachfolgend in der Figurenbeschreibung genannten und/oder in den Figuren alleine gezeigten Merkmale und Merkmalskombinationen sind nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen
Kombinationen oder in Alleinstellung verwendbar, ohne den Rahmen der Erfindung zu verlassen.
Dabei zeigen:
Fig. 1 schematisch einen Ausschnitt aus einer Abgasanlage eines Nutzfahrzeugs, wobei einem Partikelfilter ein Hybridkatalysator vorgeschaltet ist;
Fig. 2 schematisch mögliche Längen von Komponenten des Hybridkatalysators;
Fig. 3 die Bildung von Reduktionsmittelmolekülen in Form von kurzkettigen
Kohlenwasserstoffen und Kohlenstoffmonoxid bei einer Beaufschlagung des Hybridkatalysators mit Kraftstoff, wenn eine
Sekundärkraftstoffeinspritzung vorgenommen wird; Fig. 4 die Verhältnisse in einer Situation gemäß Fig. 3, wobei zusätzlich eine späte Nacheinspritzung vorgenommen wird; und
Fig. 5 den zeitlichen Verlauf der Kraftstoffeinspritzung sowie der Temperatur und der Konzentrationen bestimmter Komponenten in dem Abgas beim Durchströmen des Hybridkatalysators.
Eine Abgasanlage 10 für einen Kraftwagen, etwa in Form eines Nutzfahrzeugs beziehungsweise Lastkraftwagens, ist in Fig. 1 schematisch und ausschnittsweise gezeigt. Die Abgasanlage 10 umfasst eine Abgasnachbehandlungseinrichtung in Form eines Hybridkatalysators 12 und eines Partikelfilters 14, welcher vorliegend als
Dieselpartikelfilter ausgebildet ist. Stromaufwärts des Hybridkatalysators 12 ist eine Zugabestelle 16 vorgesehen, über welche eine wässrige Harnstofflösung in das Abgas eingebracht werden kann, welches in den Hybridkatalysator 12 eintritt. Das Abgas wird von einer (nicht gezeigten) Verbrennungskraftmaschine des Kraftwagens freigesetzt.
In Fig. 1 gibt ein erster Pfeil 18 das Eintreten des Abgases in den Hybridkatalysator 12 an. Ein weiterer Pfeil 20 veranschaulicht das Austreten des Abgases aus dem
Partikelfilter 14. Durch die Pfeile 18, 20 ist demgemäß eine Strömungsrichtung des Abgases durch die Abgasanlage 10 veranschaulicht. In diese Strömungsrichtung gesehen lässt sich der Hybridkatalysator 12 in vorliegend vier axiale Zonen unterteilen. In einer ersten axialen Zone ist in dem Hybridkatalysator 12 ein SCR-Katalysator 22 angeordnet, welcher vorliegend ein vanadiumhaltiges SCR-Katalysatormaterial 24 aufweist. In einer zweiten, in die Strömungsrichtung an die erste axiale Zone
anschließenden axialen Zone ist in dem Hybridkatalysator 12 ein weiterer SCR- Katalysator 26 angeordnet. Dieser SCR-Katalysator 26 weist ein kupferhaltiges
Zeolithmaterial 28 auf. In einer in die Strömungsrichtung an die zweite axiale Zone anschließenden dritten axialen Zone ist in dem Hybridkatalysator 12 ein Ammoniak- Schlupf-Katalysator 30 (ASC) angeordnet. An die dritte axiale Zone 4 schließt sich in die Strömungsrichtung des Abgases eine vierte axiale Zone an, in welcher in dem
Hybridkatalysator 12 ein Oxidationskatalysator 32 angeordnet ist. Der
Oxidationskatalysator 32 ist vorliegend als Dieseloxidationskatalysator (DOC) ausgebildet.
Des Weiteren ist auf einer Oberfläche des Ammoniak-Schlupf-Katalysators 30, welche wenigstens ein Edelmetall aufweist, eine Schicht 34 aus einem kupferhaltigen Zeolithmaterial angeordnet. Die Schicht 34 erstreckt sich ein Stück weit auch in die vierte axiale Zone, in welcher der Oxidationskatalysator 32 angeordnet ist. Dementsprechend ist auch in einem stromaufwärtigen Teilbereich des Oxidationskatalysators 32 auf eine Oberfläche des Oxidationskatalysators 32, welche wenigstens ein Edelmetall aufweist, die Schicht 34 aufgebracht. Jedoch ist ein rückwärtiger beziehungsweise stromabwärtiger Teilbereich 36 des Oxidationskatalysators 32 frei von der Schicht 34.
Durch geschweifte Klammern ist in Fig. 1 veranschaulicht, dass der Ammoniak-Schlupf- Katalysator 30 und der Oxidationskatalysator 32 auf einem gemeinsamen Trägerkörper 38 angeordnet sein können. In analoger Weise können die beiden SCR-Katalysatoren 22, 26 auf einem gemeinsamen Trägerkörper 40 angeordnet sein. In einer ebenfalls in Fig. 1 schematisch gezeigten Alternative können der kupferhaltige SCR-Katalysator 26, der Ammoniak-Schlupf-Katalysator 30 und der Oxidationskatalysator 32 auf einen
gemeinsamen Trägerkörper 42 aufgebracht sein. Dann ist der vanadiumhaltige SCR- Katalysator 22 auf einen separaten Trägerkörper 44 aufgebracht. Die Trägerkörper 38, 40, 42, 44 können in einem gemeinsamen Gehäuse des Hybridkatalysators 12
untergebracht sein. Die Funktionsweise der einzelnen Komponenten des
Hybridkatalysators 12 soll nachfolgend erläutert werden.
Der kupferhaltige SCR-Katalysator 26 eignet sich besonders gut zum Reduzieren des Stickstoffoxidgehalts im Abgas der Verbrennungskraftmaschine bei niedrigen
Temperaturen, etwa bei einem Kaltstart des Kraftwagens. Jedoch ist der kupferhaltige SCR-Katalysator 26 beziehungsweise der SCR-Katalysator 26 mit dem kupferhaltigen Zeolithmaterial 28 vergleichsweise anfällig für eine Anlagerung von
Schwefelverbindungen. Um die Schwefelverbindungen von dem SCR-Katalysator 26 zu entfernen, kann die Temperatur des Abgases etwa durch Einbringen von Kraftstoff in das Abgas an einem dem Hybridkatalysator 12 vorgeschalteten, vorliegend jedoch nicht vorgesehenen Oxidationskatalysator sehr stark angehoben werden. Dies geht jedoch mit einem erheblichen Kraftstoffverbrauch und mit einer starken thermischen Beanspruchung des SC R- Katalysators 26 einher.
Vorliegend sorgt daher der vanadiumhaltige SCR-Katalysator 22 beziehungsweise der SCR-Katalysator 22 mit dem vanadiumhaltigen SCR-Katalysatormaterial 24 für ein signifikantes Absenken der zum Entschwefeln des kupferhaltigen SCR-Katalysators 26 erforderlichen Temperatur. Denn wenn dem vanadiumhaltigen SCR-Katalysator 22 langkettige Kohlenwasserstoffe zugeführt werden, beispielsweise indem Kraftstoff stromaufwärts des Hybridkatalysators 12 in das Abgas eingebracht wird, so setzt der vanadiumhaltige SCR-Katalysator 22 diese langkettigen Kohlenwasserstoffe in kurzkettige Kohlenwasserstoffe und Kohlenstoffmonoxid um. Diese stehen dann zum Lösen und Freisetzen der Schwefelverbindungen in dem kupferhaltigen SCR-Katalysator 26 zur Verfügung. Das Einbringen der langkettigen Kohlenwasserstoffe stromaufwärts des vanadiumhaltigen SC R- Katalysators 22 kann insbesondere durch eine sekundäre Kraftstoffeinspritzung, also durch das Einbringen von Kraftstoff in das Abgas mittels einer separaten Dosiereinrichtung, oder durch eine verspätete Einspritzung von Kraftstoff in den Brennraum der Verbrennungskraftmaschine erfolgen.
Zudem sorgt der vanadiumhaltige SCR-Katalysator 22 bereits bei einer geringen eingespeicherten Menge von Ammoniak für die Reduktion von im Abgas enthaltenen Stickstoffoxiden in einer selektiven katalytischen Reduktionsreaktion (SCR = selective catalytic reduction, selektive katalytische Reduktion). In dieser Reaktion werden die im Abgas enthaltenen Stickstoffoxide mit dem Ammoniak zu Stickstoff und Wasser umgesetzt. Zum Bereitstellen des Ammoniaks wird die wässrige Harnstofflösung an der Zugabestelle 16 in den Abgasstrom eingebracht.
Demgegenüber hat der kupferhaltige SCR-Katalysator 26, in welchem ebenfalls die SCR- Reaktion stattfindet, eine hohe Speicherkapazität für Ammoniak. Dies führt auch dazu, dass dem stromabwärts angeordneten Ammoniak-Schlupf-Katalysator 30 kaum
Ammoniak zugeführt wird.
Im Ammoniak-Schlupf-Katalysator 30, welcher im Gegensatz zu den beiden SCR- Katalysatoren 22, 26 Edelmetalle, insbesondere Platingruppenmetalle, enthält, findet das Aufoxidieren des Ammoniaks statt. Jedoch wird auch in der Schicht 34 Ammoniak gespeichert. Wenn nun Ammoniak zu Stickstoffoxiden umgesetzt wird, so reagieren diese beim Hindurchtreten durch die Schicht 34 wiederum mit dem Ammoniak unter Bildung von Stickstoff und Wasser. Dadurch sind die Stickstoffoxidemissionen des Ammoniak- Schlupf-Katalysators 30 und auch des Oxidationskatalysators 32 besonders gering. Da so gut wie kein Ammoniak bis in den Oxidationskatalysator 32 gelangt, findet auch kaum eine Lachgasbildung an dem Oxidationskatalysator 32 statt. Daher weist vorzugsweise der Oxidationskatalysator 32 einen deutlich höheren Gehalt an Edelmetall auf als der Ammoniak-Schlupf-Katalysator 30. Dies führt wiederum dazu, dass mittels des
Oxidationskatalysators 32 besonders gut die Temperatur des Abgases angehoben werden kann, um den Partikelfilter 14 zu regenerieren. Eine Zelldichte, also eine Querschnittsfläche der in den einzelnen Katalysatoren vorgesehenen Kanäle bezogen auf die Fläche des Katalysators, kann bei dem
vanadiumhaltigen SCR-Katalysator 22 im Bereich von 200 bis 400 Zellen pro Quadratzoll (cpsi) liegen, für den kupferhaltigen SCR-Katalysator 26 im Bereich von 300 bis 600 cpsi und für den Ammoniak-Schlupf-Katalysator 30 sowie für den Oxidationskatalysator ebenfalls im Bereich von 300 bis 600 cpsi. Das Volumen der genannten Katalysatoren kann im Bereich von 0,2 bis 0,6 Litern bezogen auf einen Liter eines Hubvolumens der Verbrennungskraftmaschine liegen. Eine Menge des auf ein Trägermaterial der
Katalysatoren aufgebrachten Washcoats, welcher die katalytisch wirksamen Substanzen enthält, kann für die SCR-Katalysatoren 22, 26 im Bereich von 100 bis 300 Gramm pro Liter liegen. Der vanadiumhaltige SCR-Katalysator 22 kann jedoch auch aus einem Vollextrudat gebildet sein, bei welchem das Katalysatormaterial mit dem Trägermaterial vermischt vorliegt.
Als Trägermaterial kommt üblicherweise ein keramischer Träger etwa in Form von Cordierit zum Einsatz, in welchem die rechteckigen Kanäle ausgebildet sind. Dieser keramische Träger wird dann mit dem sogenannten Washcoat beschichtet, welcher die katalytisch aktiven Komponenten enthält. Die Washcoat-Menge kann für den Ammoniak- Schlupf-Katalysator 30 im Bereich von 100 bis 500 Gramm pro Liter liegen und für den Oxidationskatalysator 32 im Bereich von 10 bis 150 Gramm pro Liter. Der Volumenanteil des jeweiligen Katalysators bezogen auf das Gesamtvolumen der den Hybridkatalysator 12 bildenden Katalysatoren kann im Bereich von 10 Prozent bis 50 Prozent für jeden einzelnen der Katalysatoren liegen, wobei die Summe der einzelnen Prozentzahlen der vorliegend vier Katalysatoren in Form des vanadiumhaltigen SCR-Katalysators 22, des kupferhaltigen SCR-Katalysators 26, des Ammoniak-Schlupf-Katalysators 30 und des Oxidationskatalysators 32 stets 100 Prozent beträgt.
In Fig. 2 veranschaulicht ein Doppelpfeil 46 eine minimale Erstreckung der kupferhaltigen SCR-Schicht 34 in die Strömungsrichtung des Abgases entlang des Ammoniak-Schlupf- Katalysators 30. Die Schicht 34 erstreckt sich demgemäß über die gesamte axiale Länge des Ammoniak-Schlupf-Katalysators 30. Ein weiterer Doppelpfeil 48 veranschaulicht die maximale Erstreckung der Schicht 34. Entsprechend kann die Schicht 34 zwar den Oxidationskatalysator 32 über dessen gesamte axiale Länge bedecken. Vorzugsweise bleibt jedoch zumindest der stromabwärtige Teilbereich 36 des Oxidationskatalysators 32 frei von der Schicht 34, wie dies in Fig. 2 und auch in Fig. 1 veranschaulicht ist. Anhand von Fig. 3 soll eine mögliche Betriebsweise der Abgasanlage 10 veranschaulicht werden. So gibt in einem ersten Graphen in Fig. 3 eine Kurve 50 die Menge an langkettigen Kohlenwasserstoffen an, welche in Strömungsrichtung des Abgases durch den Hybridkatalysator 12 gesehen an jeweiligen Stellen des Hybridkatalysators 12 im Abgas vorliegen, welches den Hybridkatalysator 12 durchströmt. Demgemäß kommt es in dem vanadiumhaltigen SCR-Katalysator 22 zu einem Abbau der langkettigen
Kohlenwasserstoffe. Es findet nämlich eine partielle Oxidation der Kohlenwasserstoffe statt. Dies führt zu einer Temperaturanhebung. Die in Strömungsrichtung des Abgases ansteigende Temperatur in dem Hybridkatalysator 12 ist in Fig. 3 anhand einer weiteren Kurve 52 über die Länge des Hybridkatalysators 12 dargestellt. Des Weiteren werden für den kupferhaltigen SCR-Katalysator 26 kurzkettige Kohlenwasserstoffe bereitgestellt. Der Gehalt an kurzkettigen Kohlenwasserstoffen bezogen auf die Länge des
Hybridkatalysators 12 ist in Fig. 3 durch eine weitere Kurve 54 veranschaulicht. In analoger Weise steigt ein Gehalt an Kohlenstoffmonoxid im Abgas an, wenn dieses den Hybridkatalysator 12 durchströmt. Der Kohlenstoffmonoxidgehalt ist in Fig. 3 durch eine vierte Kurve 56 veranschaulicht. Gemäß den Kurven 54, 56 sind am Ausgang des Oxidationskatalysators 32 die kurzkettigen Kohlenwasserstoffe und das
Kohlenstoffmonoxid oxidiert. Dadurch wird die Temperatur (Kurve 52) weiter angehoben.
Im Vergleich zu dem kupferhaltigen SCR-Katalysator 26 zeichnet sich der
vanadiumhaltige SCR-Katalysator 22 durch eine geringere Bildung von Lachgas aus. Sowohl im vanadiumhaltigen SCR-Katalysator 22 als auch im kupferhaltigen SCR- Katalysator 26 findet eine Verringerung des Stickstoffoxidgehalts im Abgas statt, aufgrund der selektiven katalytischen Reduktionsreaktion von Ammoniak mit
Stickstoffoxiden zu Stickstoff und Wasser. Es kann auch in dem kupferhaltigen SCR- Katalysator 26 zu einer Temperaturanhebung aufgrund einer partiellen Oxidation der Kohlenwasserstoffe kommen, nämlich der kurzkettigen Kohlenwasserstoffe (vergleiche Kurve 54) und von Kohlenstoffmonoxid (vergleiche Kurve 56). Auch dies führt zu einer entsprechenden Temperaturanhebung (vergleiche Kurve 52). Des Weiteren zeichnet sich der kupferhaltige SCR-Katalysator 26 durch eine sehr gute Verringerung des
Stickstoffoxidgehalts bei niedrigen Temperaturen aus. In dem Ammoniak-Schlupf- Katalysator 30 und dem Oxidationskatalysator 32 erfolgt dann eine weitere
Temperaturanhebung durch die vollständige Oxidation der Kohlenwasserstoffe und des Kohlenstoffmonoxids. Darüber hinaus findet hier eine sehr selektive Oxidation des Ammoniaks statt. Fig. 4 veranschaulicht eine Variante des Betriebs der Abgasanlage 10, bei welcher zum Zwecke des Regenerierens des Partikelfilters 14 nicht nur die sekundäre
Kraftstoffeinspritzung, also das Einbringen von Kraftstoff stromaufwärts des
vanadiumhaltigen SCR-Katalysators 22 mittels der Dosiereinrichtung stattfindet. Vielmehr wird zusätzlich eine späte Nacheinspritzung vorgenommen. Es wird also in die Zylinder der Verbrennungskraftmaschine Kraftstoff so spät eingespritzt, dass dieser nicht mehr an der Verbrennung teilnimmt, sondern unverbrannt in das Abgas gelangt.
Die Kurven 50, 54, 56 veranschaulichen wiederum die Verhältnisse im Hinblick auf das Vorhandensein der langkettigen Kohlenwasserstoffe (Kurve 50), der kurzkettigen
Kohlenwasserstoffe (Kurve 54) sowie von Kohlenstoffmonoxid (Kurve 56) in
Strömungsrichtung des Abgases durch den Hybridkatalysator 12 gesehen. Jedoch zeigt eine Kurve 58 in Fig. 4, dass es über den Hybridkatalysator 12 hinweg zu einer stärkeren Anhebung der Temperatur kommt, als dies in der gemäß der in Fig. 4 zum Vergleich ebenfalls dargestellten Kurve 52 der Fall ist.
In Fig. 5 veranschaulicht eine erste, stark schematisiert und daher rechteckig dargestellte Kurve 60 das Einbringen von Kraftstoff in den Hybridkatalysator 12 über die späte Nacheinspritzung. Eine zweite solche Kurve 62 veranschaulicht das Einbringen von Kraftstoff über die Dosiereinrichtung, welche stromaufwärts des vanadiumhaltigen SCR- Katalysators 22 in der Abgasanlage 10 vorgesehen ist, also die Sekundär- Kraftstoffeinspritzung.
Anhand einer weiteren Kurve 64, welche den Verlauf der Temperatur als Funktion der Zeit darstellt, ist ersichtlich, dass die sekundäre Kraftstoffeinspritzung bevorzugt erst bei einer Temperatur von mehr als 300 Grad Celsius vorgenommen wird. In einem weiteren Graphen 66 in Fig. 5 ist schematisch der zeitliche Verlauf des Gehalts an kurzkettigen Kohlenwasserstoffen durch eine Kurve 68, von langkettigen Kohlenwasserstoffen durch eine Kurve 70 und von Kohlenstoffmonoxid durch eine Kurve 72 veranschaulicht.
Demgemäß sorgt insbesondere die Sekundär-Kraftstoffeinspritzung für das
Vorhandensein von langkettigen Kohlenwasserstoffen in dem Abgas. Demgegenüber werden durch die späte Nacheinspritzung aufgrund von Vorreaktionen im Brennraum der Zylinder bei den dort herrschenden hohen Temperaturen und Drücken vorwiegend kurzkettige Kohlenwasserstoffe bereitgestellt.
Ein weiterer Graph 74 in Fig. 5 veranschaulicht die ausgangsseitig des vanadiumhaltigen Katalysators 22 vorliegenden Verhältnisse. Dementsprechend sinkt aufgrund der ansteigenden Temperatur bis zum Einsetzen der Sekundär-Kraftstoffeinspritzung (Kurve 62) der Gehalt an kurzkettigen Kohlenwasserstoffen ab (vergleiche Kurve 76 in Fig. 5). Des Weiteren werden aus den langkettigen Kohlenwasserstoffen kurzkettige
Kohlenwasserstoffe gebildet. Folglich ist ausgangsseitig des vanadiumhaltigen SCR- Katalysators 22 eine Kurve 78 niedriger, welche den Gehalt an langkettigen
Kohlenwasserstoffen angibt, als dies für die Kurve 70 im Graphen 66 der Fall ist.
Schließlich veranschaulicht eine Kurve 80 in dem Graphen 74 das Bereitstellen von Kohlenstoffmonoxid durch den vanadiumhaltigen SCR-Katalysator 22.

Claims

Patentansprüche
Abgasanlage für einen Kraftwagen, mit einer Abgasnachbehandlungseinrichtung zum Nachbehandeln von Abgas einer Verbrennungskraftmaschine des
Kraftwagens, wobei die Abgasnachbehandlungseinrichtung einen ersten SCR- Katalysator (26), welcher ein kupferhaltiges Zeolithmaterial (28) aufweist, einen Ammoniak-Schlupf-Katalysator (30), welcher stromabwärts des ersten SCR- Katalysators (26) angeordnet ist, und einen Partikelfilter (14) umfasst und stromaufwärts des ersten SCR-Katalysators (26) ein zweiter SCR-Katalysator (22) angeordnet ist, welcher ein vanadiumhaltiges SCR-material (24) aufweist, dadurch gekennzeichnet, dass
stromabwärts des Ammoniak-Schlupf-Katalysators (30) und stromaufwärts des Partikelfilters (14) ein Oxidationskatalysator (32) angeordnet ist und
auf eine wenigstens ein Edelmetall aufweisende Oberfläche des Ammoniak- Schlupf-Katalysators (30) eine Schicht (34) aus einem kupferhaltigen
Zeolithmaterial aufgebracht ist.
Abgasanlage nach Anspruch 1 ,
dadurch gekennzeichnet, dass
ein Abschnitt der Abgasanlage (10) zwischen dem zweiten SCR-Katalysator (22) und dem ersten SCR-Katalysator (26) und/oder zwischen dem ersten SCR- Katalysator (26) und dem Ammoniak-Schlupf-Katalysator (30) frei von wenigstens einem weiteren Katalysator ist.
Abgasanlage nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
eine Ausgangsseite des ersten SCR-Katalysators (26) an eine Eingangsseite des Ammoniak-Schlupf-Katalysators (30) angrenzt und/oder eine Eingangsseite des ersten SCR-Katalysators (26) an eine Ausgangsseite des zweiten SCR-Katalysators (22) angrenzt.
4. Abgasanlage nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
der Ammoniak-Schlupf-Katalysator (30) und der Oxidationskatalysator (32) auf einem gemeinsamen Trägerkörper (38, 42) angeordnet sind.
5. Abgasanlage nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
auf eine wenigstens ein Edelmetall aufweisende Oberfläche des
Oxidationskatalysators (32) eine Schicht (34) aus einem kupferhaltigen
Zeolithmaterial aufgebracht ist, wobei ein stromabwärtiger Teilbereich (36) des Oxidationskatalysators (32) frei von der Schicht (34) ist.
6. Abgasanlage nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
ein Edelmetallgehalt des Ammoniak-Schlupf-Katalysators (30) kleiner ist als ein Edelmetallgehalt des Oxidationskatalysators (32).
7. Abgasanlage nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
der erste SCR-Katalysator (26) und der Ammoniak-Schlupf-Katalysator (30) oder der erste SCR-Katalysator (26) und der zweite SCR-Katalysator (22) auf einem gemeinsamen Trägerkörper (40, 42) angeordnet sind.
8. Abgasanlage nach einem der vorangegangenen Ansprüche,
dadurch gekennzeichnet, dass
stromaufwärts des zweiten SCR-Katalysators (22) eine Dosiereinrichtung zum Einbringen von Kraftstoff in das dem zweiten SCR-Katalysator (22) zuzuführende Abgas vorgesehen ist und/oder stromabwärts des Partikelfilters (14) ein dritter SCR-Katalysator angeordnet ist.
PCT/EP2018/065420 2017-06-27 2018-06-12 Abgasanlage für einen kraftwagen WO2019001942A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880042966.8A CN110869106A (zh) 2017-06-27 2018-06-12 机动车用排气设备
US16/626,790 US11008916B2 (en) 2017-06-27 2018-06-12 Exhaust system for a motor vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017006059.2 2017-06-27
DE102017006059.2A DE102017006059A1 (de) 2017-06-27 2017-06-27 Abgasanlage für einen Kraftwagen

Publications (1)

Publication Number Publication Date
WO2019001942A1 true WO2019001942A1 (de) 2019-01-03

Family

ID=62631082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/065420 WO2019001942A1 (de) 2017-06-27 2018-06-12 Abgasanlage für einen kraftwagen

Country Status (4)

Country Link
US (1) US11008916B2 (de)
CN (1) CN110869106A (de)
DE (1) DE102017006059A1 (de)
WO (1) WO2019001942A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11008917B2 (en) * 2018-08-24 2021-05-18 International Engine Intellectual Property Company, Llc. DEF dosing using multiple dosing locations while maintaining high passive soot oxidation
US11927124B2 (en) * 2021-11-30 2024-03-12 Cummins Power Generation Inc. Aftertreatment system, dual fuel system, and methods therefor
US11519315B1 (en) 2021-11-30 2022-12-06 Cummins Power Generation Inc. Aftertreatment system, dual fuel system, and dual fuel apparatus
US20230203976A1 (en) * 2021-12-27 2023-06-29 GM Global Technology Operations LLC Exhaust system layouts for diesel engine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2230001A1 (de) * 2009-03-18 2010-09-22 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Abgasbehandlung
US20140237995A1 (en) 2013-02-25 2014-08-28 Cummins Inc. System, method, and apparatus for sulfur recovery on an scr catalyst
DE102015113415A1 (de) * 2014-08-15 2016-02-18 Johnson Matthey Public Limited Company Zonen-Katalysator zum Behandeln von Abgas
WO2016203249A1 (en) * 2015-06-18 2016-12-22 Johnson Matthey Public Limited Company Zoned exhaust system
WO2017088958A1 (de) * 2015-11-26 2017-06-01 Daimler Ag Abgasnachbehandlungseinrichtung für eine verbrennungskraftmaschine sowie verfahren zum betreiben einer antriebseinrichtung mit einer solchen abgasnachbehandlungseinrichtung

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10300298A1 (de) * 2003-01-02 2004-07-15 Daimlerchrysler Ag Abgasnachbehandlungseinrichtung und -verfahren
EP2116293B1 (de) 2008-04-11 2010-03-17 Umicore AG & Co. KG Abgasreinigungssystem zur Behandlung von Motorenabgasen mittels SCR-Katalysator
US20100050604A1 (en) * 2008-08-28 2010-03-04 John William Hoard SCR-LNT CATALYST COMBINATION FOR IMPROVED NOx CONTROL OF LEAN GASOLINE AND DIESEL ENGINES
CN102822460B (zh) * 2010-03-26 2015-04-29 株式会社科特拉 废气净化系统
US20130213008A1 (en) * 2012-02-21 2013-08-22 Cummins Inc. Method and system for improving the robustness of aftertreatment systems
CN104271910A (zh) * 2012-05-03 2015-01-07 斯堪尼亚商用车有限公司 废气后处理系统及与该系统相关的方法
KR102280961B1 (ko) * 2013-03-14 2021-07-26 바스프 코포레이션 선택적 촉매 환원 촉매 시스템
DE102013223313A1 (de) * 2013-11-15 2015-05-21 Robert Bosch Gmbh Abgasnachbehandlungssystem
US20150240683A1 (en) * 2014-02-26 2015-08-27 Caterpillar Inc. Reductant supply system
WO2015130219A1 (en) * 2014-02-28 2015-09-03 Scania Cv Ab Method and system for controlling nitrogen oxide emissions from a combustion engine
GB2530129B (en) * 2014-05-16 2016-10-26 Johnson Matthey Plc Catalytic article for treating exhaust gas
DE102015209987A1 (de) * 2014-06-04 2015-12-10 Johnson Matthey Public Limited Company Nicht-PGM-Ammoniakschlupfkatalysator
US9597636B2 (en) * 2014-08-07 2017-03-21 Johnson Matthey Public Limited Company Zoned catalyst for treating exhaust gas
US9784166B2 (en) * 2014-12-30 2017-10-10 Cummins Inc. NOx sensor diagnostic for an exhaust aftertreatment system
RU2017135504A (ru) * 2015-03-19 2019-04-19 Басф Корпорейшн Фильтр, катализируемый с помощью катализатора scr, системы и способы
MX2017012668A (es) * 2015-03-30 2018-05-17 Basf Corp Filtros multifuncionales para control de emisiones diesel.
US10201807B2 (en) * 2015-06-18 2019-02-12 Johnson Matthey Public Limited Company Ammonia slip catalyst designed to be first in an SCR system
DE102017122001A1 (de) * 2016-09-22 2018-03-22 Johnson Matthey Public Limited Company Ruthenium, geträgert auf trägern, die eine rutilphase aufweisen, als stabile katalysatoren für nh3-slip-anwendungen
GB2556453A (en) * 2016-10-26 2018-05-30 Johnson Matthey Plc Hydrocarbon injection through small pore CU-zeolite catalyst
US10233811B2 (en) * 2017-03-27 2019-03-19 GM Global Technology Operations LLC Soot model configurable correction block (CCB) control system
EP3600625A1 (de) * 2017-03-30 2020-02-05 Johnson Matthey Public Limited Company Scr mit turbo- und asc/doc-nahgekoppeltem system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2230001A1 (de) * 2009-03-18 2010-09-22 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Abgasbehandlung
US20140237995A1 (en) 2013-02-25 2014-08-28 Cummins Inc. System, method, and apparatus for sulfur recovery on an scr catalyst
DE102015113415A1 (de) * 2014-08-15 2016-02-18 Johnson Matthey Public Limited Company Zonen-Katalysator zum Behandeln von Abgas
WO2016203249A1 (en) * 2015-06-18 2016-12-22 Johnson Matthey Public Limited Company Zoned exhaust system
WO2017088958A1 (de) * 2015-11-26 2017-06-01 Daimler Ag Abgasnachbehandlungseinrichtung für eine verbrennungskraftmaschine sowie verfahren zum betreiben einer antriebseinrichtung mit einer solchen abgasnachbehandlungseinrichtung

Also Published As

Publication number Publication date
US20200116063A1 (en) 2020-04-16
DE102017006059A1 (de) 2018-12-27
US11008916B2 (en) 2021-05-18
CN110869106A (zh) 2020-03-06

Similar Documents

Publication Publication Date Title
WO2017088958A1 (de) Abgasnachbehandlungseinrichtung für eine verbrennungskraftmaschine sowie verfahren zum betreiben einer antriebseinrichtung mit einer solchen abgasnachbehandlungseinrichtung
EP2138681B1 (de) Verfahren und Vorrichtung zur Reinigung von Dieselabgasen
WO2019001942A1 (de) Abgasanlage für einen kraftwagen
EP3150814B1 (de) Verfahren zum betreiben eines abgasnachbehandlungssystems
DE102013200361B4 (de) Abgasnachbehandlungssystem, Kraftfahrzeug und Verfahren zur Abgasnachbehandlung
WO2017108165A1 (de) Abgasnachbehandlungseinrichtung für eine verbrennungskraftmaschine
DE102008026191A1 (de) Kraftfahrzeug mit Brennkraftmaschine und einer Abgasnachbehandlungseinrichtung sowie Verfahren zur Partikel- und Stickoxidverminderung
DE102015212485B4 (de) Abgastrakt mit gegen eine Strömungsrichtung spritzende Dosiereinrichtung, Verfahren zum Betrieb eines Abgastraktes sowie Fahrzeug mit Abgastrakt
DE102012006448A1 (de) Verfahren zur Anwendung in Verbindung mit einer Abgasnachbehandlungsanlage
EP2131019A1 (de) Verfahren zum Betreiben einer Abgasnachbehandlungsanordnung sowie Abgasnachbehandlungsanordnung
DE102014201077B4 (de) Abgasreinigungssystem zur selektiven katalytischen Reduktion
DE102012209852A1 (de) Abgasreinigungssystem zur Anordnung in einem Abgasstrang eines Kraftfahrzeuges, insbesondere eines Dieselkraftfahrzeugs
DE202015104462U1 (de) Abgasnachbehandlungssystem für einen Dieselmotor
DE102004018393A1 (de) Abgasnachbehandlungseinrichtung
WO2013185862A1 (de) Verfahren zum betreiben einer abgasanlage eines kraftwagens sowie abgasanlage für eine verbrennungskraftmaschine eines kraftwagens
WO2017153048A1 (de) Aktivierungsverfahren für eine edelmetallhaltige beschichtung einer von abgas durchströmbaren oxidationskatalytischen abgasnachbehandlungseinheit
WO2009112295A1 (de) Abgasvorrichtung einer brennkraftmaschine
WO2019243065A2 (de) Verfahren zum entschwefeln eines stickoxid-speicherkatalysators
EP1512850A1 (de) Partikelfilter
DE102013221505B4 (de) Abgasreinigungssystem für Brennkraftmaschinen
AT521749B1 (de) Verfahren und Ottomotoranordnung mit einer verbesserten Abgasnachbehandlung durch eine Oxidationskatalysator-Beschichtung
DE102022004159A1 (de) Abgasanlage für eine Verbrennungskraftmaschine eines Kraftfahrzeugs sowie Kraftwagen mit einer solchen Abgasanlage
AT521743B1 (de) Verfahren und Ottomotoranordnung mit einem verbesserten SCR-System
DE102016112363A1 (de) Abgasnachbehandlungssystem
DE102015214734A1 (de) Abgasnachbehandlungssystem für einen Dieselmotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18731792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18731792

Country of ref document: EP

Kind code of ref document: A1