WO2019001573A1 - 选择参数配置的方法、设备以及系统 - Google Patents

选择参数配置的方法、设备以及系统 Download PDF

Info

Publication number
WO2019001573A1
WO2019001573A1 PCT/CN2018/093731 CN2018093731W WO2019001573A1 WO 2019001573 A1 WO2019001573 A1 WO 2019001573A1 CN 2018093731 W CN2018093731 W CN 2018093731W WO 2019001573 A1 WO2019001573 A1 WO 2019001573A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
cell
threshold
event
flight terminal
Prior art date
Application number
PCT/CN2018/093731
Other languages
English (en)
French (fr)
Inventor
石小丽
黄亚达
周国华
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019572649A priority Critical patent/JP6935520B2/ja
Priority to KR1020207002267A priority patent/KR102288110B1/ko
Priority to BR112019027856-7A priority patent/BR112019027856A2/pt
Priority to EP18823799.4A priority patent/EP3637732A1/en
Publication of WO2019001573A1 publication Critical patent/WO2019001573A1/zh
Priority to US16/728,806 priority patent/US20200137646A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/2866Architectures; Arrangements
    • H04L67/30Profiles
    • H04L67/303Terminal profiles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/42Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for mass transport vehicles, e.g. buses, trains or aircraft
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/02Access restriction performed under specific conditions
    • H04W48/04Access restriction performed under specific conditions based on user or terminal location or mobility data, e.g. moving direction, speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, device, and system for selecting a parameter configuration.
  • flight terminals which can be applied to various aircraft, spacecraft, rockets, and drones.
  • Flight terminals are widely used in infrastructure monitoring, wildlife protection, aerial search and rescue, spraying pesticides, courier delivery and other application scenarios, providing people with various conveniences. In the future, flight terminals will play an increasingly important role in people's lives.
  • the flight terminal can be active on the ground or in the air.
  • the flight terminal can access the mobile communication network (Cellular network) through network devices such as base stations on the ground, whether it is on the ground or in the air, and uses the mobile communication network to transmit wireless signals.
  • Cellular network Cellular network
  • the flight terminal is active on the ground (when the altitude of the base station is low)
  • the characteristics of the flight terminal are not different from those of the ordinary terminal equipment, but the flight terminal is flying in the air (when the altitude of the base station is high).
  • the characteristics of the terminal are very different from those of ordinary terminal devices.
  • the embodiment of the present application provides a method, a device, and a system for selecting a parameter configuration, which can select an appropriate parameter configuration according to a flight state of a flight terminal, thereby improving performance of the flight terminal.
  • a method for selecting a parameter configuration including the following steps:
  • the network device receives a status indication sent by the flight terminal, wherein the status indication is used to indicate a flight status of the flight terminal;
  • the indication information is used to indicate a target parameter configuration to be switched by the flight terminal, where the target parameter is configured as a first parameter configuration or a second parameter configuration;
  • a method for selecting a parameter configuration including the following steps:
  • the flight terminal receives the indication information sent by the network device, where the indication information is used to indicate an identifier of the target parameter configuration that the flight terminal wants to switch;
  • the flight terminal selects, according to the indication information, a parameter configuration corresponding to the identifier from a plurality of parameter configurations as a target parameter configuration, where the multiple parameter configurations include at least a first parameter configuration and a second parameter configuration;
  • the flight terminal configures the flight terminal using the target parameter configuration.
  • the first aspect and the second aspect describe a method for selecting a parameter configuration provided by the embodiment of the present application from the network device side and the flight terminal respectively.
  • an appropriate parameter configuration can be selected according to the flight state of the flight terminal. Thereby improving the performance of the flight terminal.
  • the first parameter configuration and the second parameter configuration may be respectively as follows:
  • the first parameter configuration includes at least one of a first cell selection and reselection parameter, a first tracking area list, a first measurement related parameter, a first radio link failure parameter, and a first power control parameter. among them,
  • the first cell selection and reselection parameters include: a first cell quality value threshold, a first cell received signal value threshold, a first cell quality value threshold offset value, a first cell received signal value threshold offset value, and a first The cell prohibits at least one of the access indications.
  • the first measurement related parameter includes: a hysteresis parameter of the first A1 event, a threshold parameter of the first A1 event, a hysteresis parameter of the first A2 event, a threshold parameter of the first A2 event, a frequency offset of the first A3 event, and a first Cell offset of A3 event, hysteresis parameter of first A3 event, offset of first A3 event, frequency offset of first A4 event, cell offset of first A4 event, hysteresis parameter of first A4 event, At least one of a threshold parameter of the A4 event, a first maximum number of cells, a first log measurement area, and a first time trigger parameter.
  • the first radio link failure parameter includes: a first out-of-step threshold.
  • the first power control parameter includes at least one of a power of the first PDCCH, a power of the first PUSH on the subcarrier c, a desired received power of the first base station, and a first PRACH power control parameter.
  • the second parameter configuration includes at least one of a second cell selection and reselection parameter, a second tracking area list, a second measurement related parameter, a second radio link failure parameter, and a second power control parameter. among them,
  • the second cell selection and reselection parameters include: a second cell quality value threshold, a second cell received signal value threshold, a second cell quality value threshold offset value, a second cell received signal value threshold offset value, and access At least one of a signal to noise ratio threshold, an offset value of an access signal to noise ratio threshold, a cell frequency priority level, a second cell forbidden access indication, a highly forbidden access indication, and a no-fly zone forbidden access indication;
  • the access signal to noise ratio threshold is a minimum signal to noise ratio that allows the flight terminal to access the cell
  • the offset value of the access signal to noise ratio threshold is a value that allows the flight terminal to access the lowest signal to noise ratio of the cell.
  • the cell frequency priority level is used to indicate a cell access priority level corresponding to different cell frequencies when the flight terminal selects or reselects a cell
  • the height prohibition access indication is used to indicate that a height threshold is exceeded.
  • the flight terminal prohibits access to the cell
  • the no-fly zone prohibition access indication is used to indicate that the flight terminal located in the no-fly zone prohibits access to the cell.
  • the second measurement related parameter includes: a hysteresis parameter of the second A1 event, a threshold parameter of the second A1 event, a hysteresis parameter of the second A2 event, a threshold parameter of the second A2 event, a frequency offset of the second A3 event, and a second Cell offset of A3 event, hysteresis parameter of second A3 event, offset of second A3 event, frequency offset of second A4 event, cell offset of second A4 event, hysteresis parameter of second A4 event, At least one of a threshold parameter of the second A4 event, a second maximum number of cells, a second log measurement area, and a second time triggering parameter.
  • the second radio link failure parameter includes: a second out-of-step threshold.
  • the second power control parameter includes at least one of power of the second PDCCH, power of the second PUSH on the subcarrier c, expected received power of the second base station, and a second PRACH power control parameter.
  • the network device before the network device sends the indication information to the flight terminal, the network device sends the multiple parameter configurations to the flight terminal by using a first air interface message. .
  • the flight terminal receives the plurality of parameter configurations sent by the network device by using a first air interface message.
  • the first air interface message is a first broadcast message.
  • the first air interface message is a first radio resource control RRC message, where the first RRC message is a first RRC connection. Establish a message or a first RRC connection reconfiguration message.
  • the indication information is carried in the second air interface message.
  • the second air interface message is a second broadcast message.
  • the second air interface message is a second RRC message, where the second RRC message is a second RRC connection setup message or The second RRC connection reconfiguration message.
  • the first parameter is configured as a ground parameter configuration
  • the second parameter is configured as an air parameter configuration
  • the ground parameter configuration is based on a flight terminal A parameter configuration of the characteristic setting of the ground
  • the air parameter configuration being a parameter configuration set according to the characteristics of the flight terminal in the air.
  • a method for selecting a parameter configuration including the following steps:
  • the network device receives a status indication sent by the flight terminal, wherein the status indication is used to indicate a flight status of the flight terminal;
  • the network device Determining, by the network device, a target parameter configuration corresponding to the flight state, where the target parameter configuration includes a first parameter configuration and a second parameter configuration;
  • the network device transmits the target parameter configuration to the flight terminal.
  • a method for selecting a parameter configuration including the following steps:
  • the target terminal configuration of the flight terminal receiving the network device according to the flight state of the flight terminal wherein the target parameter configuration comprises a first parameter configuration or a second parameter configuration
  • the flight terminal updates the current parameter configuration to the target parameter configuration
  • the flight terminal configures the flight terminal using the target parameter configuration.
  • the foregoing third aspect and the fourth aspect describe a method for selecting a parameter configuration provided by the embodiment of the present application from the network device side and the flight terminal, respectively.
  • an appropriate parameter configuration can be selected according to the flight state of the flight terminal. Thereby improving the performance of the flight terminal.
  • the first parameter configuration and the second parameter configuration may be respectively as follows:
  • the first parameter configuration includes at least one of a first cell selection and reselection parameter, a first tracking area list, a first measurement related parameter, a first radio link failure parameter, and a first power control parameter. among them,
  • the first cell selection and reselection parameters include: a first cell quality value threshold, a first cell received signal value threshold, a first cell quality value threshold offset value, a first cell received signal value threshold offset value, and a first The cell prohibits at least one of the access indications.
  • the first measurement related parameter includes: a hysteresis parameter of the first A1 event, a threshold parameter of the first A1 event, a hysteresis parameter of the first A2 event, a threshold parameter of the first A2 event, a frequency offset of the first A3 event, and a first Cell offset of A3 event, hysteresis parameter of first A3 event, offset of first A3 event, frequency offset of first A4 event, cell offset of first A4 event, hysteresis parameter of first A4 event, At least one of a threshold parameter of the A4 event, a first maximum number of cells, a first log measurement area, and a first time trigger parameter.
  • the first radio link failure parameter includes: a first out-of-step threshold.
  • the first power control parameter includes at least one of a power of the first PDCCH, a power of the first PUSH on the subcarrier c, a desired received power of the first base station, and a first PRACH power control parameter.
  • the second parameter configuration includes at least one of a second cell selection and reselection parameter, a second tracking area list, a second measurement related parameter, a second radio link failure parameter, and a second power control parameter. among them,
  • the second cell selection and reselection parameters include: a second cell quality value threshold, a second cell received signal value threshold, a second cell quality value threshold offset value, a second cell received signal value threshold offset value, and access At least one of a signal to noise ratio threshold, an offset value of an access signal to noise ratio threshold, a cell frequency priority level, a second cell forbidden access indication, a highly forbidden access indication, and a no-fly zone forbidden access indication;
  • the access signal to noise ratio threshold is a minimum signal to noise ratio that allows the flight terminal to access the cell
  • the offset value of the access signal to noise ratio threshold is a value that allows the flight terminal to access the lowest signal to noise ratio of the cell.
  • the cell frequency priority level is used to indicate a cell access priority level corresponding to different cell frequencies when the flight terminal selects or reselects a cell
  • the height prohibition access indication is used to indicate that a height threshold is exceeded.
  • the flight terminal prohibits access to the cell
  • the no-fly zone prohibition access indication is used to indicate that the flight terminal located in the no-fly zone prohibits access to the cell.
  • the second measurement related parameter includes: a hysteresis parameter of the second A1 event, a threshold parameter of the second A1 event, a hysteresis parameter of the second A2 event, a threshold parameter of the second A2 event, a frequency offset of the second A3 event, and a second Cell offset of A3 event, hysteresis parameter of second A3 event, offset of second A3 event, frequency offset of second A4 event, cell offset of second A4 event, hysteresis parameter of second A4 event, At least one of a threshold parameter of the second A4 event, a second maximum number of cells, a second log measurement area, and a second time triggering parameter.
  • the second radio link failure parameter includes: a second out-of-step threshold.
  • the second power control parameter includes at least one of power of the second PDCCH, power of the second PUSH on the subcarrier c, expected received power of the second base station, and a second PRACH power control parameter.
  • the target parameter configuration is carried in an air interface message.
  • the air interface message is a broadcast message.
  • the air interface message is an RRC message, where the RRC message is an RRC connection setup message or an RRC connection reconfiguration message.
  • the first parameter is configured as a ground parameter configuration
  • the second parameter is configured as an air parameter configuration
  • the ground parameter configuration is based on a flight terminal A parameter configuration of the characteristic setting of the ground
  • the air parameter configuration being a parameter configuration set according to the characteristics of the flight terminal in the air.
  • a method for selecting a parameter configuration including the following steps:
  • the flight terminal measures the flight environment to obtain a state parameter, wherein the state parameter includes at least one of a height, a number of neighbors, and a neighboring cell measurement value;
  • the flight terminal determines the flight state of the flight terminal according to the state parameter
  • a target parameter configuration corresponding to a flight state of the flight terminal from a plurality of parameter configurations, wherein the plurality of parameter configurations include at least a first parameter configuration and a second parameter configuration;
  • the flight terminal configures the flight terminal using the target parameter configuration.
  • the first parameter configuration and the second parameter configuration may be respectively as follows:
  • the first parameter configuration includes at least one of a first cell selection and reselection parameter, a first tracking area list, a first measurement related parameter, a first radio link failure parameter, and a first power control parameter. among them,
  • the first cell selection and reselection parameters include: a first cell quality value threshold, a first cell received signal value threshold, a first cell quality value threshold offset value, a first cell received signal value threshold offset value, and a first The cell prohibits at least one of the access indications.
  • the first measurement related parameter includes: a hysteresis parameter of the first A1 event, a threshold parameter of the first A1 event, a hysteresis parameter of the first A2 event, a threshold parameter of the first A2 event, a frequency offset of the first A3 event, and a first Cell offset of A3 event, hysteresis parameter of first A3 event, offset of first A3 event, frequency offset of first A4 event, cell offset of first A4 event, hysteresis parameter of first A4 event, At least one of a threshold parameter of the A4 event, a first maximum number of cells, a first log measurement area, and a first time trigger parameter.
  • the first radio link failure parameter includes: a first out-of-step threshold.
  • the first power control parameter includes at least one of a power of the first PDCCH, a power of the first PUSH on the subcarrier c, a desired received power of the first base station, and a first PRACH power control parameter.
  • the second parameter configuration includes at least one of a second cell selection and reselection parameter, a second tracking area list, a second measurement related parameter, a second radio link failure parameter, and a second power control parameter. among them,
  • the second cell selection and reselection parameters include: a second cell quality value threshold, a second cell received signal value threshold, a second cell quality value threshold offset value, a second cell received signal value threshold offset value, and access At least one of a signal to noise ratio threshold, an offset value of an access signal to noise ratio threshold, a cell frequency priority level, a second cell forbidden access indication, a highly forbidden access indication, and a no-fly zone forbidden access indication;
  • the access signal to noise ratio threshold is a minimum signal to noise ratio that allows the flight terminal to access the cell
  • the offset value of the access signal to noise ratio threshold is a value that allows the flight terminal to access the lowest signal to noise ratio of the cell.
  • the cell frequency priority level is used to indicate a cell access priority level corresponding to different cell frequencies when the flight terminal selects or reselects a cell
  • the height prohibition access indication is used to indicate that a height threshold is exceeded.
  • the flight terminal prohibits access to the cell
  • the no-fly zone prohibition access indication is used to indicate that the flight terminal located in the no-fly zone prohibits access to the cell.
  • the second measurement related parameter includes: a hysteresis parameter of the second A1 event, a threshold parameter of the second A1 event, a hysteresis parameter of the second A2 event, a threshold parameter of the second A2 event, a frequency offset of the second A3 event, and a second Cell offset of A3 event, hysteresis parameter of second A3 event, offset of second A3 event, frequency offset of second A4 event, cell offset of second A4 event, hysteresis parameter of second A4 event, At least one of a threshold parameter of the second A4 event, a second maximum number of cells, a second log measurement area, and a second time triggering parameter.
  • the second radio link failure parameter includes: a second out-of-step threshold.
  • the second power control parameter includes at least one of power of the second PDCCH, power of the second PUSH on the subcarrier c, expected received power of the second base station, and a second PRACH power control parameter.
  • the flight terminal before the flight terminal selects the target parameter configuration from the plurality of parameter configurations according to the flight altitude, the flight terminal receives the plurality of parameters sent by the network device by using an air interface message. Configuration.
  • the air interface message is a broadcast message.
  • the air interface message is an RRC message, where the RRC message is an RRC connection setup message or an RRC connection reconfiguration message.
  • the first parameter is configured as a ground parameter configuration
  • the second parameter is configured as an air parameter configuration
  • the ground parameter configuration is based on characteristics of a flight terminal on the ground.
  • a parameter configuration is provided, the air parameter configuration being a parameter configuration set according to characteristics of the flight terminal in the air.
  • a network device comprising means for performing the method of the first aspect.
  • a flight terminal comprising means for performing the method of the second aspect.
  • a network device comprising means for performing the method of the third aspect.
  • a flight terminal comprising means for performing the method of the fourth aspect.
  • a network device comprising means for performing the method of the fifth aspect.
  • a flight terminal comprising a coupled processor and a receiver
  • the receiver is configured to receive indication information that is sent by the network device, where the indication information is used to indicate an identifier of a target parameter configuration that the flight terminal wants to switch;
  • the processor is configured to select, as the target parameter configuration, a parameter configuration corresponding to the identifier from a plurality of parameter configurations according to the indication information, where the multiple parameter configurations include at least a first parameter configuration and a second parameter configuration;
  • the processor is configured to configure the flight terminal using the target parameter configuration.
  • the first parameter configuration and the second parameter configuration may be respectively as follows:
  • the first parameter configuration includes: at least one of a first cell selection and reselection parameter, a first tracking area list, a first measurement related parameter, a first radio link failure parameter, and a first power control parameter;
  • the first cell selection and reselection parameters include: a first cell quality value threshold, a first cell received signal value threshold, a first cell quality value threshold offset value, a first cell received signal value threshold offset value, and a first cell Disabling at least one of the access indications;
  • the first measurement related parameter includes: a hysteresis parameter of the first A1 event, a threshold parameter of the first A1 event, a hysteresis parameter of the first A2 event, a threshold parameter of the first A2 event, a frequency offset of the first A3 event, and a first Cell offset of A3 event, hysteresis parameter of first A3 event, offset of first A3 event, frequency offset of first A4 event, cell offset of first A4 event, hysteresis parameter of first A4 event, At least one of a threshold parameter of the A4 event, a first maximum number of cells, a first log measurement area, and a first time trigger parameter;
  • the first radio link failure parameter includes: a first out-of-step threshold
  • the first power control parameter includes at least one of a power of the first PDCCH, a power of the first PUSH on the subcarrier c, a desired received power of the first base station, and a first PRACH power control parameter.
  • the second parameter configuration includes: at least one of a second cell selection and reselection parameter, a second tracking area list, a second measurement related parameter, a second radio link failure parameter, and a second power control parameter;
  • the second cell selection and reselection parameters include: a second cell quality value threshold, a second cell received signal value threshold, a second cell quality value threshold offset value, a second cell received signal value threshold offset value, and access At least one of a signal to noise ratio threshold, an offset value of an access signal to noise ratio threshold, a cell frequency priority level, a second cell forbidden access indication, a highly forbidden access indication, and a no-fly zone forbidden access indication;
  • the access signal to noise ratio threshold is a minimum signal to noise ratio that allows the flight terminal to access the cell
  • the offset value of the access signal to noise ratio threshold is a value that allows the flight terminal to access the lowest signal to noise ratio of the cell.
  • the cell frequency priority level is used to indicate a cell access priority level corresponding to different cell frequencies when the flight terminal selects or reselects a cell
  • the height prohibition access indication is used to indicate that a height threshold is exceeded.
  • the flight terminal prohibits access to the cell
  • the no-fly zone prohibition access indication is used to indicate that the flight terminal located in the no-fly zone prohibits access to the cell
  • the second measurement related parameter includes: a hysteresis parameter of the second A1 event, a threshold parameter of the second A1 event, a hysteresis parameter of the second A2 event, a threshold parameter of the second A2 event, a frequency offset of the second A3 event, and a second Cell offset of A3 event, hysteresis parameter of second A3 event, offset of second A3 event, frequency offset of second A4 event, cell offset of second A4 event, hysteresis parameter of second A4 event, At least one of a threshold parameter of the second A4 event, a second maximum number of cells, a second log measurement area, and a second time triggering parameter;
  • the second radio link failure parameter includes: a second out-of-step threshold
  • the second power control parameter includes at least one of power of the second PDCCH, power of the second PUSH on the subcarrier c, expected received power of the second base station, and a second PRACH power control parameter.
  • the flight terminal before the flight terminal receives the indication information sent by the network device, the flight terminal receives the multiple parameters sent by the network device by using a first air interface message. Configuration.
  • the first air interface message is a first broadcast message.
  • the first air interface message is a first radio resource control RRC message, where the first RRC message is a first RRC connection. Establish a message or a first RRC connection reconfiguration message.
  • the indication information is carried in the second air interface message.
  • the second air interface message is a second broadcast message.
  • the second air interface message is a second RRC message, where the second RRC message is a second RRC connection setup message or The second RRC connection reconfiguration message.
  • the first parameter is configured as a ground parameter configuration
  • the second parameter is configured as an air parameter configuration
  • the ground parameter configuration is based on a flight terminal on the ground.
  • a parameter configuration of the characteristic settings, the air parameter configuration being a parameter configuration set according to characteristics of the flight terminal in the air.
  • a network device including a coupled processor and a receiver, and a transmitter,
  • the receiver is configured to receive a status indication sent by a flight terminal, where the status indication is used to indicate a flight status of the flight terminal;
  • the processor is configured to determine indication information according to the status indication, where the indication information is used to indicate a target parameter configuration to be switched by the flight terminal, where the target parameter is configured as a first parameter configuration or a second parameter configuration;
  • the transmitter is used to send indication information to the flight terminal.
  • the first parameter configuration and the second parameter configuration may be respectively as follows:
  • the first parameter configuration includes at least one of a first cell selection and reselection parameter, a first tracking area list, a first measurement related parameter, a first radio link failure parameter, and a first power control parameter. among them,
  • the first cell selection and reselection parameters include: a first cell quality value threshold, a first cell received signal value threshold, a first cell quality value threshold offset value, a first cell received signal value threshold offset value, and a first The cell prohibits at least one of the access indications.
  • the first measurement related parameter includes: a hysteresis parameter of the first A1 event, a threshold parameter of the first A1 event, a hysteresis parameter of the first A2 event, a threshold parameter of the first A2 event, a frequency offset of the first A3 event, and a first Cell offset of A3 event, hysteresis parameter of first A3 event, offset of first A3 event, frequency offset of first A4 event, cell offset of first A4 event, hysteresis parameter of first A4 event, At least one of a threshold parameter of the A4 event, a first maximum number of cells, a first log measurement area, and a first time trigger parameter.
  • the first radio link failure parameter includes: a first out-of-step threshold.
  • the first power control parameter includes at least one of a power of the first PDCCH, a power of the first PUSH on the subcarrier c, a desired received power of the first base station, and a first PRACH power control parameter.
  • the second parameter configuration includes at least one of a second cell selection and reselection parameter, a second tracking area list, a second measurement related parameter, a second radio link failure parameter, and a second power control parameter. among them,
  • the second cell selection and reselection parameters include: a second cell quality value threshold, a second cell received signal value threshold, a second cell quality value threshold offset value, a second cell received signal value threshold offset value, and access At least one of a signal to noise ratio threshold, an offset value of an access signal to noise ratio threshold, a cell frequency priority level, a second cell forbidden access indication, a highly forbidden access indication, and a no-fly zone forbidden access indication;
  • the access signal to noise ratio threshold is a minimum signal to noise ratio that allows the flight terminal to access the cell
  • the offset value of the access signal to noise ratio threshold is a value that allows the flight terminal to access the lowest signal to noise ratio of the cell.
  • the cell frequency priority level is used to indicate a cell access priority level corresponding to different cell frequencies when the flight terminal selects or reselects a cell
  • the height prohibition access indication is used to indicate that a height threshold is exceeded.
  • the flight terminal prohibits access to the cell
  • the no-fly zone prohibition access indication is used to indicate that the flight terminal located in the no-fly zone prohibits access to the cell.
  • the second measurement related parameter includes: a hysteresis parameter of the second A1 event, a threshold parameter of the second A1 event, a hysteresis parameter of the second A2 event, a threshold parameter of the second A2 event, a frequency offset of the second A3 event, and a second Cell offset of A3 event, hysteresis parameter of second A3 event, offset of second A3 event, frequency offset of second A4 event, cell offset of second A4 event, hysteresis parameter of second A4 event, At least one of a threshold parameter of the second A4 event, a second maximum number of cells, a second log measurement area, and a second time triggering parameter.
  • the second radio link failure parameter includes: a second out-of-step threshold.
  • the second power control parameter includes at least one of power of the second PDCCH, power of the second PUSH on the subcarrier c, expected received power of the second base station, and a second PRACH power control parameter.
  • the network device before the network device sends the indication information to the flight terminal, the network device sends the multiple parameter configurations to the flight terminal by using a first air interface message.
  • the first air interface message is a first broadcast message.
  • the first air interface message is a first radio resource control RRC message, where the first RRC message is a first RRC connection. Establish a message or a first RRC connection reconfiguration message.
  • the indication information is carried in the second air interface message.
  • the second air interface message is a second broadcast message.
  • the second air interface message is a second RRC message, where the second RRC message is a second RRC connection setup message or The second RRC connection reconfiguration message.
  • the first parameter is configured as a ground parameter configuration
  • the second parameter is configured as an air parameter configuration
  • the ground parameter configuration is based on a flight terminal on a ground A parameter configuration of the characteristic settings
  • the air parameter configuration being a parameter configuration set according to characteristics of the flight terminal in the air.
  • a flight terminal comprising a coupled processor and a receiver
  • the receiver is configured to receive a target parameter configuration that is sent by the network device according to a flight state of the flight terminal, where the target parameter configuration includes a first parameter configuration or a second parameter configuration;
  • the processor is configured to update a current parameter configuration to a target parameter configuration
  • the processor is configured to configure the flight terminal using the target parameter configuration.
  • the first parameter configuration and the second parameter configuration may be respectively as follows:
  • the first parameter configuration includes at least one of a first cell selection and reselection parameter, a first tracking area list, a first measurement related parameter, a first radio link failure parameter, and a first power control parameter. among them,
  • the first cell selection and reselection parameters include: a first cell quality value threshold, a first cell received signal value threshold, a first cell quality value threshold offset value, a first cell received signal value threshold offset value, and a first The cell prohibits at least one of the access indications.
  • the first measurement related parameter includes: a hysteresis parameter of the first A1 event, a threshold parameter of the first A1 event, a hysteresis parameter of the first A2 event, a threshold parameter of the first A2 event, a frequency offset of the first A3 event, and a first Cell offset of A3 event, hysteresis parameter of first A3 event, offset of first A3 event, frequency offset of first A4 event, cell offset of first A4 event, hysteresis parameter of first A4 event, At least one of a threshold parameter of the A4 event, a first maximum number of cells, a first log measurement area, and a first time trigger parameter.
  • the first radio link failure parameter includes: a first out-of-step threshold.
  • the first power control parameter includes at least one of a power of the first PDCCH, a power of the first PUSH on the subcarrier c, a desired received power of the first base station, and a first PRACH power control parameter.
  • the second parameter configuration includes at least one of a second cell selection and reselection parameter, a second tracking area list, a second measurement related parameter, a second radio link failure parameter, and a second power control parameter. among them,
  • the second cell selection and reselection parameters include: a second cell quality value threshold, a second cell received signal value threshold, a second cell quality value threshold offset value, a second cell received signal value threshold offset value, and access At least one of a signal to noise ratio threshold, an offset value of an access signal to noise ratio threshold, a cell frequency priority level, a second cell forbidden access indication, a highly forbidden access indication, and a no-fly zone forbidden access indication;
  • the access signal to noise ratio threshold is a minimum signal to noise ratio that allows the flight terminal to access the cell
  • the offset value of the access signal to noise ratio threshold is a value that allows the flight terminal to access the lowest signal to noise ratio of the cell.
  • the cell frequency priority level is used to indicate a cell access priority level corresponding to different cell frequencies when the flight terminal selects or reselects a cell
  • the height prohibition access indication is used to indicate that a height threshold is exceeded.
  • the flight terminal prohibits access to the cell
  • the no-fly zone prohibition access indication is used to indicate that the flight terminal located in the no-fly zone prohibits access to the cell.
  • the second measurement related parameter includes: a hysteresis parameter of the second A1 event, a threshold parameter of the second A1 event, a hysteresis parameter of the second A2 event, a threshold parameter of the second A2 event, a frequency offset of the second A3 event, and a second Cell offset of A3 event, hysteresis parameter of second A3 event, offset of second A3 event, frequency offset of second A4 event, cell offset of second A4 event, hysteresis parameter of second A4 event, At least one of a threshold parameter of the second A4 event, a second maximum number of cells, a second log measurement area, and a second time triggering parameter.
  • the second radio link failure parameter includes: a second out-of-step threshold.
  • the second power control parameter includes at least one of power of the second PDCCH, power of the second PUSH on the subcarrier c, expected received power of the second base station, and a second PRACH power control parameter.
  • the target parameter configuration is carried in an air interface message.
  • the air interface message is a broadcast message
  • the air interface message is an RRC message, where the RRC message is an RRC connection setup message or an RRC connection reconfiguration message.
  • the first parameter is configured as a ground parameter configuration
  • the second parameter is configured as an air parameter configuration
  • the ground parameter configuration is based on a flight terminal on a ground A parameter configuration of the characteristic settings
  • the air parameter configuration being a parameter configuration set according to characteristics of the flight terminal in the air.
  • a network device including a coupled processor and a receiver, and a transmitter,
  • the receiver is configured to receive a status indication sent by a flight terminal, where the status indication is used to indicate a flight status of the flight terminal;
  • the processor is configured to determine, according to the status indication, a target parameter configuration corresponding to the flight state, where the target parameter configuration includes a first parameter configuration or a second parameter configuration;
  • the transmitter is configured to transmit the target parameter configuration to the flight terminal.
  • the first parameter configuration and the second parameter configuration may be respectively as follows:
  • the first parameter configuration includes at least one of a first cell selection and reselection parameter, a first tracking area list, a first measurement related parameter, a first radio link failure parameter, and a first power control parameter. among them,
  • the first cell selection and reselection parameters include: a first cell quality value threshold, a first cell received signal value threshold, a first cell quality value threshold offset value, a first cell received signal value threshold offset value, and a first The cell prohibits at least one of the access indications.
  • the first measurement related parameter includes: a hysteresis parameter of the first A1 event, a threshold parameter of the first A1 event, a hysteresis parameter of the first A2 event, a threshold parameter of the first A2 event, a frequency offset of the first A3 event, and a first Cell offset of A3 event, hysteresis parameter of first A3 event, offset of first A3 event, frequency offset of first A4 event, cell offset of first A4 event, hysteresis parameter of first A4 event, At least one of a threshold parameter of the A4 event, a first maximum number of cells, a first log measurement area, and a first time trigger parameter.
  • the first radio link failure parameter includes: a first out-of-step threshold.
  • the first power control parameter includes at least one of a power of the first PDCCH, a power of the first PUSH on the subcarrier c, a desired received power of the first base station, and a first PRACH power control parameter.
  • the second parameter configuration includes at least one of a second cell selection and reselection parameter, a second tracking area list, a second measurement related parameter, a second radio link failure parameter, and a second power control parameter. among them,
  • the second cell selection and reselection parameters include: a second cell quality value threshold, a second cell received signal value threshold, a second cell quality value threshold offset value, a second cell received signal value threshold offset value, and access At least one of a signal to noise ratio threshold, an offset value of an access signal to noise ratio threshold, a cell frequency priority level, a second cell forbidden access indication, a highly forbidden access indication, and a no-fly zone forbidden access indication;
  • the access signal to noise ratio threshold is a minimum signal to noise ratio that allows the flight terminal to access the cell
  • the offset value of the access signal to noise ratio threshold is a value that allows the flight terminal to access the lowest signal to noise ratio of the cell.
  • the cell frequency priority level is used to indicate a cell access priority level corresponding to different cell frequencies when the flight terminal selects or reselects a cell
  • the height prohibition access indication is used to indicate that a height threshold is exceeded.
  • the flight terminal prohibits access to the cell
  • the no-fly zone prohibition access indication is used to indicate that the flight terminal located in the no-fly zone prohibits access to the cell.
  • the second measurement related parameter includes: a hysteresis parameter of the second A1 event, a threshold parameter of the second A1 event, a hysteresis parameter of the second A2 event, a threshold parameter of the second A2 event, a frequency offset of the second A3 event, and a second Cell offset of A3 event, hysteresis parameter of second A3 event, offset of second A3 event, frequency offset of second A4 event, cell offset of second A4 event, hysteresis parameter of second A4 event, At least one of a threshold parameter of the second A4 event, a second maximum number of cells, a second log measurement area, and a second time triggering parameter.
  • the second radio link failure parameter includes: a second out-of-step threshold.
  • the second power control parameter includes at least one of power of the second PDCCH, power of the second PUSH on the subcarrier c, expected received power of the second base station, and a second PRACH power control parameter.
  • the target parameter configuration is carried in an air interface message.
  • the air interface message is a broadcast message
  • the air interface message is an RRC message, where the RRC message is an RRC connection setup message or an RRC connection reconfiguration message.
  • the first parameter is configured as a ground parameter configuration
  • the second parameter is configured as an air parameter configuration
  • the ground parameter configuration is based on a flight terminal on a ground A parameter configuration of the characteristic settings
  • the air parameter configuration being a parameter configuration set according to characteristics of the flight terminal in the air.
  • a flight terminal comprising a coupled processor and an environmental monitoring component
  • the state monitoring component is configured to measure a flight environment to obtain a state parameter, wherein the state parameter includes at least one of a height, a neighboring cell number, and a neighboring cell measurement value;
  • the processor is configured to determine a flight state of the flight terminal according to a state parameter
  • the processor is configured to select, according to the flight state, a target parameter configuration corresponding to a flight state of the flight terminal from a plurality of parameter configurations, wherein the multiple parameter configurations include at least a first parameter configuration and a second parameter configuration ;
  • the processor is configured to configure the flight terminal using the target parameter configuration.
  • the first parameter configuration and the second parameter configuration may be respectively as follows:
  • the first parameter configuration includes at least one of a first cell selection and reselection parameter, a first tracking area list, a first measurement related parameter, a first radio link failure parameter, and a first power control parameter. among them,
  • the first cell selection and reselection parameters include: a first cell quality value threshold, a first cell received signal value threshold, a first cell quality value threshold offset value, a first cell received signal value threshold offset value, and a first The cell prohibits at least one of the access indications.
  • the first measurement related parameter includes: a hysteresis parameter of the first A1 event, a threshold parameter of the first A1 event, a hysteresis parameter of the first A2 event, a threshold parameter of the first A2 event, a frequency offset of the first A3 event, and a first Cell offset of A3 event, hysteresis parameter of first A3 event, offset of first A3 event, frequency offset of first A4 event, cell offset of first A4 event, hysteresis parameter of first A4 event, At least one of a threshold parameter of the A4 event, a first maximum number of cells, a first log measurement area, and a first time trigger parameter.
  • the first radio link failure parameter includes: a first out-of-step threshold.
  • the first power control parameter includes at least one of a power of the first PDCCH, a power of the first PUSH on the subcarrier c, a desired received power of the first base station, and a first PRACH power control parameter.
  • the second parameter configuration includes at least one of a second cell selection and reselection parameter, a second tracking area list, a second measurement related parameter, a second radio link failure parameter, and a second power control parameter. among them,
  • the second cell selection and reselection parameters include: a second cell quality value threshold, a second cell received signal value threshold, a second cell quality value threshold offset value, a second cell received signal value threshold offset value, and access At least one of a signal to noise ratio threshold, an offset value of an access signal to noise ratio threshold, a cell frequency priority level, a second cell forbidden access indication, a highly forbidden access indication, and a no-fly zone forbidden access indication;
  • the access signal to noise ratio threshold is a minimum signal to noise ratio that allows the flight terminal to access the cell
  • the offset value of the access signal to noise ratio threshold is a value that allows the flight terminal to access the lowest signal to noise ratio of the cell.
  • the cell frequency priority level is used to indicate a cell access priority level corresponding to different cell frequencies when the flight terminal selects or reselects a cell
  • the height prohibition access indication is used to indicate that a height threshold is exceeded.
  • the flight terminal prohibits access to the cell
  • the no-fly zone prohibition access indication is used to indicate that the flight terminal located in the no-fly zone prohibits access to the cell.
  • the second measurement related parameter includes: a hysteresis parameter of the second A1 event, a threshold parameter of the second A1 event, a hysteresis parameter of the second A2 event, a threshold parameter of the second A2 event, a frequency offset of the second A3 event, and a second Cell offset of A3 event, hysteresis parameter of second A3 event, offset of second A3 event, frequency offset of second A4 event, cell offset of second A4 event, hysteresis parameter of second A4 event, At least one of a threshold parameter of the second A4 event, a second maximum number of cells, a second log measurement area, and a second time triggering parameter.
  • the second radio link failure parameter includes: a second out-of-step threshold.
  • the second power control parameter includes at least one of power of the second PDCCH, power of the second PUSH on the subcarrier c, expected received power of the second base station, and a second PRACH power control parameter.
  • the receiver before the flight terminal selects the target parameter configuration from the plurality of parameter configurations according to the flight altitude, receives the plurality of the network device to send through the air interface message Parameter configuration.
  • the air interface message is a broadcast message.
  • the air interface message is an RRC message, where the RRC message is an RRC connection setup message or an RRC connection reconfiguration message.
  • the first parameter is configured as a ground parameter configuration
  • the second parameter is configured as an air parameter configuration
  • the ground parameter configuration is based on a flight terminal on a ground A parameter configuration of the characteristic settings
  • the air parameter configuration being a parameter configuration set according to characteristics of the flight terminal in the air.
  • a sixteenth aspect a computer readable storage medium storing a computer program, the computer program being executed by a processor to implement any of the first to fifth aspects Said method.
  • a computer program product comprising instructions for causing a computer to perform the method of any of the first to fifth aspects described above when run on a computer.
  • a communication system includes a network device and a flight terminal, wherein the network device is capable of communicating with the flight terminal, wherein the network device is the network device of the first aspect
  • the flight terminal is the flight terminal of the second aspect; or, when the network device is the network device of the third aspect, the flight terminal is the flight terminal of the fourth aspect; or
  • the network device is the network device described in the fifth aspect.
  • 1 is a comparison diagram of a cell coverage area on the ground and a cell coverage area in the air according to an embodiment of the present application;
  • FIG. 2 is a comparison diagram of a neighbor cell distribution on the ground and a neighbor cell distribution in the air according to an embodiment of the present application;
  • FIG. 3 is an interaction diagram of a first method for selecting a parameter configuration according to an embodiment of the present application
  • FIG. 4 is an interaction diagram of a second method for selecting parameter configuration according to an embodiment of the present application.
  • FIG. 5 is an interaction diagram of a third method for selecting a parameter configuration according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a flight terminal according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of cooperative interaction between the device described in the embodiment of FIG. 6 and various components in the device described in the embodiment of FIG. 7; FIG.
  • FIG. 9 is a schematic diagram of functional modules of each device in a communication system according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of functional modules of each device in another communication system according to an embodiment of the present disclosure.
  • the flight terminal may be a drone UE, including a drone such as a UAV (Unmanned Aerial Vehicle), or a drone carrying a conventional ground terminal (such as a legacy UE) Placed on the drone). It is not limited to the drone in the above example, and may be other flying equipment, such as an airplane, etc. in practical applications, which is not specifically limited in the present application.
  • a drone such as a UAV (Unmanned Aerial Vehicle)
  • a drone carrying a conventional ground terminal such as a legacy UE
  • the traditional ground terminal can also be called User Equipment (UE), Mobile Station (MS), mobile terminal, Subscriber Unit (abbreviation: SU), Subscriber Station (abbreviation: SS), mobile station (Mobile Station, abbreviation: MB), remote station (Remote Station, abbreviation: RS), access point (Access Point, abbreviation: AP), remote terminal (Remote Terminal, abbreviation: RT), Access Terminal (AT), User Terminal (UT), User Agent (UA), User Device (abbreviation: User Device, abbreviation: UD), etc., this application is not limited.
  • the terminal can be a wireless terminal or a wired terminal.
  • the wireless terminal can be a device that provides voice and/or data connectivity to the user, which can communicate with one or more core networks via a radio access network (e.g., RAN, radio access network).
  • a radio access network e.g., RAN, radio access network
  • the flight terminal searches the cell to search for the target cell.
  • the flight terminal determines whether the searched target cell is a suitable cell according to a cell selection criterion (S criterion). If the target cell is a suitable cell, the flight terminal determines to select or reselect the target cell for camping. If the target cell is not a suitable cell, the flight terminal determines not to select or reselect the target cell for camping. However, if the base station sends a cell barring indication to the flight terminal, the flight terminal does not select or reselect the target cell to camp, although the target cell satisfies the S criterion, but reselects the appropriate cell. Resident.
  • S criterion cell selection criterion
  • Srxlev is the cell selection received signal level value
  • Squal is the cell selection quality value
  • Q rxlevmeas is the cell measurement received signal level value
  • Q qualmeas is the cell measurement quality value
  • Q rxlevmin is the cell reception signal value threshold
  • Q qualmin is the cell quality.
  • the value threshold, Q rxlevminoffest is the offset value of the cell received signal value threshold
  • Q qualminoffest is the offset value of the cell quality value threshold
  • Pcompensation is the power compensation.
  • the cell received signal value threshold may be the lowest received signal of the cell
  • the cell quality value threshold is the lowest quality value of the cell
  • the offset value of the cell received signal value threshold is the offset value of the lowest received signal of the cell
  • the cell The offset value of the quality value threshold is the offset value of the lowest quality value of the cell.
  • the flight terminal sends an attach request to the base station. After receiving the attach request, the base station forwards the attach request to the core network. After the core network completes the process of authentication, security activation, session establishment, etc. with the flight terminal after receiving the attach request, the core network sends an attach accept message to the base station. After receiving the attach accept message, the base station forwards the attach accept message to the flight terminal.
  • the tracking accept message carries a tracking area list, where the tracking area list includes multiple tracking areas, and the tracking area includes a plurality of geographically similar cells.
  • the flight terminal When the flight terminal enters the cell within the tracking area list, the flight terminal does not need to update the tracking area list, nor does it need to notify the core network to update its own tracking area information; when the flying terminal enters a cell outside the tracking area list, the flying terminal The tracking area list needs to be updated, and the core network needs to be notified to update its own tracking area information.
  • the core network When the flight terminal is paged, the core network will only page the flight terminal in the cell in the tracking area list, and will not page the flight terminal to the cell outside the tracking area list, thereby ensuring the flight terminal. By being successfully paged, it is possible to avoid problems such as a large number of flight terminals updating the cell list and a signaling load caused by a large number of cells updating their own tracking area information.
  • the base station sends a measurement configuration to the flight terminal through an RRC Connection Reconfiguration message. After receiving the measurement configuration delivered by the base station, the flight terminal performs measurement according to the measurement configuration to obtain a measurement result. In the case that the measurement result satisfies the measurement report condition, the flight terminal fills in the measurement result into the measurement report (Measurement Report) and returns the measurement report to the base station.
  • the measurement report condition includes any one of an A1 event, an A2 event, an A3 event, and an A4 event.
  • the trigger condition of the A1 event is:
  • Ms1 is the measurement result of the service cell of the A1 event
  • Hys1 is the hysteresis parameter of the A1 event
  • Thersh1 is the threshold parameter of the A1 event.
  • the trigger condition of the A2 event is:
  • Ms2 is the measurement result of the service cell of the A2 event
  • Hys2 is the hysteresis parameter of the A2 event
  • Thersh2 is the threshold parameter of the A2 event.
  • the trigger condition of the A3 event is:
  • Mn3 is the measurement result of the neighboring cell of the A3 event
  • Ofn3 is the specific frequency offset of the neighboring cell frequency of the A3 event
  • Ocn3 is the specific cell offset of the neighboring cell of the A3 event
  • Hys3 is the hysteresis parameter of the A3 event
  • Ms3 is The measurement result of the serving cell of the A3 event
  • Ofs3 is the specific frequency offset of the serving cell frequency of the A3 event
  • Ocs3 is the specific cell offset of the serving cell of the A3 event
  • Off3 is the A3 event cell offset.
  • the trigger condition of the A4 event is:
  • Mn4 is the measurement result of the neighboring cell of the A4 event
  • Ofn4 is the specific frequency offset of the neighboring cell frequency of the A4 event
  • Ocn4 is the specific cell offset of the neighboring cell of the A4 event
  • Hys4 is the hysteresis parameter of the A4 event
  • Thresh4 is Threshold parameter for the A4 event.
  • the flight terminal needs to perform log measurement on the cell recorded in the log measurement area, so that the mobile terminal's moving track/state can be monitored in real time. .
  • the flight terminal performs log measurement only on the cells described in the log measurement area, and does not perform log measurement on cells other than the cell described in the log measurement area.
  • a cell-specific reference signal transmitted by the base station to the flight terminal.
  • the flight terminal After receiving the cell-specific reference signal sent by the base station, the flight terminal detects the cell-specific reference signal to obtain the downlink radio link quality, and if the downlink radio link quality is lower than the out-of-synchronization threshold, an out-of-synchronization occurs, if the downlink wireless If the link quality is higher than the synchronization threshold, a synchronization is generated.
  • the flight terminal counts the number of consecutive out-of-steps. If the number of consecutive out-of-steps reaches the number of out-of-steps threshold, the timer is started. If the flight terminal does not detect the occurrence of at least two consecutive synchronizations within the timer time, the flight terminal determines the Radio Link Failure (RLF) at the end of the timer.
  • RLF Radio Link Failure
  • the flight terminal calculates the transmit power of the uplink physical channel, where the uplink physical channel includes a physical uplink control channel (Physical Uplink Control CHANNE, PUCCH), a physical uplink shared channel (PUSCH), and a sounding reference signal (Sounding) Reference Signal (SRS) and a Physical Random Access Channel (PRACH).
  • the flight terminal transmits a radio signal on the uplink physical channel according to the calculated transmit power, where the transmit powers of PUCCH, PUSCH, SRS, and PRACH are respectively As follows:
  • the PUCCH transmission power is:
  • the transmit power of the PUCCH is:
  • P PUCCH (i) min ⁇ P CMAX,c (i),P 0_PUCCH +PL c +g(i) ⁇
  • P CMAX,c (i) is the maximum transmit power of each subcarrier
  • ⁇ F_PUCCH (F) is configured by the upper layer and is related to the PUCCH format
  • ⁇ TxD (F') is configured by the upper layer, and on which ports the PUCCH is located Transmission related
  • h(n CQI , n HARQ , n SR ) is a value related to PUCCH format
  • P O_PUCCH is summed by two parameters configured by higher layers
  • ⁇ PUCCH is a UE specific value, which is the network side Feedback to the flight terminal through the PDCCH;
  • the transmit power of the PUSCH is:
  • the transmit power of the PUSCH of the UE is:
  • the transmit power of the PUSCH is:
  • P PUSCH,c (i) min ⁇ P CMAX,c (i),P O_PUSCH,c (1)+ ⁇ c (1) ⁇ PL c +f c (i) ⁇
  • RSRP reference signal receiving power
  • K S is configured by a higher layer
  • ⁇ PUSCH,c is a value related to the TPC command indicated by the PDCCH/EPDCCH
  • f c (i) is a value related to the high layer configuration and ⁇ PUSCH,c .
  • P SRS_OFFSET,c (m) is a semi-static parameter of the upper layer configuration
  • M SRS,c is the number of RBs occupied by the SRS in one subframe
  • f c (i) is the power control adjustment of the PUSCH
  • P O_PUSCH,c ( j) is obtained by summing two parameters of the high-level configuration
  • ⁇ c (j) is configured at a high level.
  • P PRACH min ⁇ P CMAX,c(i) ,PREAMBLE_RECEIVED_TARGET_POWER ⁇
  • PREAMBLE_RECEIVED_TARGET_POWER is configured by the upper layer
  • PL c is the downlink path loss calculated by the flight terminal side
  • the downlink path loss is equal to the reference signal transmission power minus the reference signal received power
  • the reference signal transmission power is notified by the upper layer to the flight terminal.
  • the parameter configuration in the embodiment of the present application includes a cell selection and reselection parameter, a tracking area list (TA list), a measurement related parameter, and a radio link.
  • TA list tracking area list
  • a measurement related parameter corresponds to the cell
  • the cell selection and reselection parameters correspond to a process flow of cell selection and reselection
  • the tracking area list corresponds to a processing flow of the tracking area list configuration
  • the measurement related parameter corresponds to the cell
  • the radio link failure parameter corresponds to the processing flow of the downlink radio link monitoring
  • the power control parameter corresponds to the processing flow of the uplink power regulation.
  • the cell selection and reselection parameters include (1) a cell received signal value threshold, a cell quality value threshold, and a cell received signal value, which are described in the process of cell selection and reselection. At least one of an offset value of the threshold and an offset value of the cell quality value threshold.
  • the tracking area list is (2) the tracking area list recorded in the processing flow of the tracking area list configuration.
  • the measurement related parameters include (3) the hysteresis parameter of the A1 event, the threshold parameter of the A1 event, the hysteresis parameter of the A2 event, the threshold parameter of the A2 event, and the threshold parameter of the A2 event, which are recorded in the processing flow of the cell measurement, Frequency offset of A3 event, cell offset of A3 event, hysteresis parameter of A3 event, offset of A3 event, frequency offset of A4 event, cell offset of A4 event, hysteresis parameter of A4 event, threshold of A4 event At least one of a parameter, a maximum number of cells, a log measurement area, and a time triggering parameter.
  • the radio link failure parameter includes at least (4) the out-of-step threshold recorded in the processing flow of the downlink radio link monitoring.
  • the power control parameters include at least (5) the power of the PDCCH recorded in the processing flow of the uplink power regulation, the power of the PUSH on the subcarrier c, the expected reception power of the base station, and the PRACH power control. At least one of the parameters.
  • the parameter configuration of the embodiment of the present application is not limited to the above-mentioned exemplary parameters, and may have other parameters.
  • the parameter configuration of the embodiment of the present application may further include a public land mobile network (Public Land Mobile Network, PLMN) selects a parameter, and the PLMN selection parameter is applied to the processing flow of the PLMN selection.
  • PLMN Public Land Mobile Network
  • the cell selection and reselection parameters, the measurement related parameters, the radio link failure parameters, and the power control parameters included in the parameter configuration of the embodiment of the present application may not be limited to the above.
  • the measurement related parameters may further include a hysteresis parameter of the A5 event, a first threshold parameter of the A5 event, and a second threshold parameter of the A5 event, and the like.
  • the embodiments of the present application summarize the differences between the characteristics of the flight terminal in the air and the characteristics on the ground.
  • the characteristics include radio propagation characteristics and behavioral characteristics, which will be described in detail below.
  • the difference in the radio propagation characteristics includes at least the following four aspects: (1), since the flight terminal has no obstacles in radio propagation when flying in the air, the signal strength of the wireless signal of the serving cell received by the flight terminal becomes strong, The signal strength of the interference signal of the neighboring cell also becomes strong. (2) Since the flight terminal has no obstacles in radio propagation when flying in the air, the interference of the flight terminal to the terminal devices on the ground, for example, smart phones, Internet of Things devices, etc., becomes large. (3) Since the coverage area of the cell of the base station on the ground is as shown in the thick line on the left side of FIG. 1 , the coverage area of the cell in the air is as shown in the thick line on the right side of FIG.
  • the cell in the air The coverage area is divided into a plurality of discontinuous blocks, that is, the coverage area of the cell is more fragmented. Therefore, the flight terminal is more likely to fly away from the continuous coverage area.
  • the distribution of neighboring cells that can be detected by the flight terminal on the ground is as shown in the left circle of Figure 2, the distribution of neighboring cells that can be detected in the air is shown in the circle on the right side of Figure 2, as can be seen In the air, the number of neighboring cells in the serving cell is significantly increased, so that the flight terminal can measure more cells in the air.
  • the difference in behavior characteristics includes at least the following three aspects: (1) For the sake of management and the like, when the flight terminal is flying in the air, the flight terminal is prohibited from accessing some cells. (2) In order to prevent the flight terminal from taking photos of places such as military forbidden places and leaking through the network, when the flight terminal is flying in the air, it is necessary to prohibit access to network equipment such as base stations in the no-fly zone. (3) In order to avoid the collision of the flight terminal on the ground during flight, the obstacle on the ground constitutes damage. When the flight terminal is flying in the air, it is forbidden to access the network equipment such as the base station when the flight altitude is lower than the legal height.
  • the parameter configuration scheme of the existing flight terminal adopts the parameter configuration scheme of the common terminal equipment, and does not take into account the difference in characteristics of the flight terminal at different heights, resulting in the performance of the flight terminal being greatly affected, in order to solve this
  • the embodiment of the present application proposes a method, device, and system for selecting a parameter configuration, which can select an appropriate parameter configuration according to the flight state of the flight terminal, thereby improving the performance of the flight terminal. A detailed description will be given below.
  • the embodiment of the present application provides a first method for selecting a parameter configuration.
  • the parameter selection configuration of the embodiment of the present application includes the following steps:
  • the flight terminal measures the environment to obtain a state parameter.
  • the state parameter may be at least one of altitude, air pressure, gravitational acceleration, number of neighboring cells, neighboring cell measurement value, and special reference signal.
  • the height may be the absolute height of the flight terminal relative to the horizontal plane, may be the relative height of the flight terminal relative to the reference plane, or may be a height level, for example, low, medium, high, etc., or may be calculated with respect to the height function.
  • the value, wherein the height function may be a product implementation or a standard definition, is not limited in the present invention.
  • the height may be the height of the flight terminal from the ground, or the height of the flight terminal relative to the base station, or the height of the flight terminal relative to other reference objects; or the height may also be a height level to which the height value is mapped, such as low It is Xm to Ym, the middle is Ym to Zm, and the high is Zm to Km.
  • the number of neighboring cells may be the number of all neighboring cells that the flight terminal can measure, or the number of neighboring cells in which all the neighboring cells can be measured by the flight terminal, the signal strength difference from the serving cell is less than the threshold, and the like.
  • the neighboring cell measurement value may be the signal strength of the neighboring cell of the flight terminal, or may be the difference between the signal strength of the neighboring cell of the flight terminal and the signal strength of the serving cell, and the like.
  • the special reference signal is a special reference signal defined by the standard protocol for the flight terminal, and the special reference signal is sent when the flight terminal is in the air, and is considered to be flying when the base station receives the special reference signal. The terminal is in the air.
  • state parameter of the embodiment of the present application may be temperature or the like, which is not limited thereto.
  • the state parameter may be measured by a state monitoring component disposed in the flight terminal.
  • the condition monitoring component may be a laser altimetry module capable of measuring the height of the flight terminal by the time of laser transmission; the state monitoring component may also be a Global Positioning System (GPS) module, which can directly Measuring the height of the flight terminal; the state monitoring component may also be a barometric pressure measurement module or a gravity acceleration measurement module, etc., capable of detecting the air pressure or gravity acceleration of the flight terminal; the state monitoring component may also be a signal receiver, through the flight terminal The signals of the neighboring cells are measured to obtain the number of neighboring cells and/or neighboring cell measurements of the flight terminal.
  • GPS Global Positioning System
  • S102 The flight terminal generates a status indication according to the status parameter.
  • the status indication is used to indicate the flight status of the flight terminal.
  • the flight status of a flight terminal refers to whether the flight terminal is in the air or on the ground.
  • the air may refer to a height greater than a network device (e.g., a base station), and the ground may refer to a height that is less than a network device (e.g., a base station).
  • a network device e.g., a base station
  • the ground may refer to a height that is less than a network device (e.g., a base station).
  • the status indication includes at least the following two implementations:
  • the status indication is used to carry a status parameter, wherein the status parameter is at least one of a height, a neighbor strength, a number of neighbors, and a special reference signal. That is, the flight terminal sends a status indication according to the status parameter to the network device. After receiving the status indication sent by the flight terminal, the network device determines whether the flight terminal is in the air or on the ground according to the status parameter carried by the status indication.
  • the status indication is used to indicate the flight status of the flight terminal. For example, the flight terminal determines whether the flight terminal is in the air or on the ground according to the state parameter, and generates a status indication according to the determination result and sends the status indication to the network device. After receiving the status indication sent by the flight terminal, the network device knows whether the flight terminal is in the air or on the ground according to the judgment result carried by the status indication.
  • the flight terminal can compare the status parameter with the status threshold to determine whether the flight terminal is in the air or on the ground.
  • the state threshold may be sent by the base station to the flight terminal, or may be defined by a standard protocol, and the invention is not limited. Specifically, the flight terminal compares the state parameter with the state threshold, so as to determine whether the flight terminal is in the air or on the ground, at least includes the following four types:
  • the flight terminal receives a height threshold sent by the base station, and the flight terminal compares the measured height value with the height threshold. If the measured height is greater than the height threshold, it is determined that the flight terminal is in the air, and if the measured height is less than or equal to the altitude threshold, it is determined that the flight terminal is on the ground.
  • the flight terminal receives the air pressure threshold and/or the gravity acceleration threshold sent by the base station, and the flight terminal compares the measured air pressure and/or gravity acceleration with a corresponding threshold. If the measured air pressure and/or gravity acceleration is less than the corresponding threshold, it is determined that the flight terminal is in the air, and if the measured air pressure and/or gravity acceleration is greater than or equal to the corresponding threshold, it is determined that the flight terminal is on the ground.
  • the flight terminal receives the neighboring zone intensity threshold sent by the base station, and the flight terminal compares the measured neighboring zone signal strength with the signal strength of the serving cell. If the difference between the signal strength of the neighboring cell and the signal strength of the serving cell is less than the neighboring cell strength threshold, it is determined that the flight terminal is in the air, and if the difference between the signal strength of the neighboring cell and the signal strength of the serving cell is greater than or equal to the neighboring cell intensity threshold, then the judgment is made.
  • the flight terminal is on the ground.
  • the flight terminal receives the threshold number of the neighboring cells sent by the base station, and the flight terminal compares the measured number of neighboring cells with the threshold number of the neighboring cells. If the number of neighboring cells is greater than the threshold of the neighboring cell number, it is determined that the flight terminal is in the air, and if the number of neighboring cells is less than or equal to the threshold number of neighboring cells, it is determined that the flying terminal is on the ground.
  • the flight terminal can also determine the flight height of the flight terminal using the trained estimation model, wherein the state parameter is used as an input of the estimation model, and the judgment result is the output of the estimation model.
  • the state parameter is used as an input of the estimation model
  • the judgment result is the output of the estimation model.
  • a large number of known state parameters can be used as input, and the estimation result corresponding to the known state parameter is used as an output to train the estimation model.
  • the flight terminal sends a status indication to the network device. Accordingly, the network device receives a status indication sent by the flight terminal.
  • S104 The network device determines the indication information according to the status indication.
  • indication information that the network device sends to the flight terminal.
  • the flight terminal receives the indication information sent by the network device.
  • the indication information is used to indicate a target parameter configuration to be switched by the flight terminal, and the target parameter is configured as a first parameter configuration or a second parameter configuration.
  • the indication information is used to indicate that the target parameter of the flight terminal to be switched is configured as a first parameter configuration; when the status indication is used to indicate a flight terminal
  • the indication information is used to indicate that the target parameter to be switched by the flight terminal is configured as a second parameter configuration.
  • the flight terminal selects a target parameter configuration from a plurality of parameter configurations according to the indication information.
  • the network device before the network device sends the indication information to the flight terminal, the network device sends the multiple parameter configurations to the flight terminal by using a first air interface message. After the network device sends the plurality of configuration parameters to the flight terminal, the network device sends the indication information to the flight terminal through the second air interface signaling.
  • the first air interface message is a first broadcast message; if the flight terminal is relative to the network device
  • the connection state is a connected state, and the first air interface message is a first RRC message.
  • the first RRC message is a first RRC connection setup message or a first RRC connection reconfiguration message. It can be understood that the first air interface message is not limited to the foregoing example. In other embodiments, the first air interface message may also be other messages, which is not specifically limited herein.
  • the second air interface message is a second broadcast message; if the flight terminal is relative to the network device
  • the second air interface message is a second RRC message, where the second RRC message is a second RRC connection setup message or a second RRC connection reconfiguration message. It can be understood that the second air interface message is not limited to the foregoing example. In other embodiments, the second air interface message may also be other messages, which is not specifically limited herein.
  • the connection state of the flight terminal relative to the network device is an idle state (RRC_IDLE).
  • the connection state of the flight terminal relative to the network device is transferred from the idle state (RRC_IDLE) to the connected state (RRC_CONNECTED).
  • the flight terminal configures the flight terminal by using the target parameter configuration.
  • the first parameter is configured as a ground parameter configuration
  • the second parameter is configured as an air parameter configuration
  • the ground parameter configuration is a parameter configuration according to a characteristic of a flight terminal on the ground
  • the air parameter configuration is a parameter configuration that is set according to characteristics of the flight terminal in the air.
  • the ground parameter configuration includes at least one of a first cell selection and reselection parameter, a first tracking area list, a first measurement related parameter, a first radio link failure parameter, and a first power control parameter.
  • the first cell selection and reselection parameters include a first cell quality value threshold, a first cell received signal value threshold, a first cell quality value threshold offset value, a first cell received signal value threshold offset value, and The first cell prohibits at least one of the access indications.
  • the first measurement related parameter includes a hysteresis parameter of the first A1 event, a threshold parameter of the first A1 event, a hysteresis parameter of the first A2 event, a threshold parameter of the first A2 event, a frequency offset of the first A3 event, Cell offset of the first A3 event, hysteresis parameter of the first A3 event, offset of the first A3 event, frequency offset of the first A4 event, cell offset of the first A4 event, hysteresis parameter of the first A4 event And at least one of a threshold parameter of the first A4 event, a first maximum cell number, a first log measurement area, and a first time trigger parameter.
  • the first radio link failure parameter includes a first out-of-step threshold.
  • the first power control parameter includes at least one of a power of the first PDCCH, a power of the first PUSH on the subcarrier c, a desired received power of the first base station, and a first PRACH power control parameter.
  • the air parameter configuration includes at least one of a second cell selection and reselection parameter, a second tracking area list, a second measurement related parameter, a second radio link failure parameter, and a second power control parameter.
  • the second cell selection and reselection parameter includes a second cell quality value threshold, a second cell received signal value threshold, a second cell quality value threshold offset value, a second cell received signal value threshold offset value, At least one of an access signal to noise ratio threshold, an offset value of an access signal to noise ratio threshold, a cell frequency priority level, a second cell forbidden access indication, a highly forbidden access indication, and a no-fly zone forbidden access indication.
  • the second measurement related parameter includes a hysteresis parameter of the second A1 event, a threshold parameter of the second A1 event, a hysteresis parameter of the second A2 event, a threshold parameter of the second A2 event, a frequency offset of the second A3 event, Cell offset of the second A3 event, hysteresis parameter of the second A3 event, offset of the second A3 event, frequency offset of the second A4 event, cell offset of the second A4 event, hysteresis parameter of the second A4 event And at least one of a threshold parameter of the second A4 event, a second maximum number of cells, a second log measurement area, and a second time trigger parameter.
  • the second radio link failure parameter includes a second out-of-step threshold.
  • the second power control parameter includes at least one of a power of the second PDCCH, a power of the second PUSH on the subcarrier c, a desired received power of the second base station, and a second PRACH power control parameter.
  • the air parameter configuration modifies the cell quality value threshold, the cell received signal value threshold, the offset value threshold of the cell quality value, and the offset value of the cell received signal value threshold, and increases the access signal to noise ratio threshold and the access signal.
  • the offset value of the noise ratio threshold is a signal to noise ratio threshold that allows the flying terminal to access the cell
  • the offset value of the access signal to noise ratio threshold is a signal to noise ratio that allows the flying terminal to access the cell.
  • the offset value of the threshold is a signal to noise ratio threshold.
  • the air parameter configuration increases the access signal to noise ratio in addition to the value of the cell quality value threshold, the cell received signal value threshold, the offset value of the cell quality value threshold, and the offset value of the cell received signal value threshold.
  • the threshold and the offset value of the access signal to noise ratio threshold are used to ensure that the flight terminal can select the best cell to camp when performing a new S criterion to select a suitable cell for camping.
  • Srxlev is the cell selection received signal level value
  • Squal is the cell selection quality value
  • S SINR is the cell selection signal to noise ratio
  • Q rxlevmeas is the cell measurement received signal level value
  • Q qualmeas is the cell measurement quality value
  • Q SINRmeas is the cell measurement.
  • SNR, Q rxlevmin received signal value to a cell threshold value, Q qualmin cell quality values to a threshold value, Q SINRmin SNR threshold value for the access, Q rxlevminoffest receive a bias signal value to a cell threshold value, Q qualminoffest quality value for the cell
  • the offset value of the threshold, Q SINRminoffest is the offset value of the access signal to noise ratio threshold
  • Pcompensation is the power compensation.
  • the air parameter configuration modifies the cell forbidden access indication, and increases the no-fly zone forbidden access indication and the highly forbidden access indication.
  • the forbidden zone forbidden access indication is used to indicate that the flight terminal located in the no-fly zone prohibits access to the cell
  • the altitude prohibition access indication is used to indicate that the flight terminal exceeding the altitude threshold prohibits access to the cell.
  • the air parameter configuration modifies the value of the cell barring access indication, so that the cell barring access indication can also be used to indicate that the flight terminal is prohibited from accessing.
  • the air parameter configuration also increases the forbidden zone forbidden access indication and the highly forbidden access indication to prohibit access to the network equipment in the no-fly zone, and prohibits access to the network device when the flight altitude is below the legal altitude.
  • the air parameter configuration increases the cell frequency priority level.
  • the cell frequency priority level is used to indicate a cell access priority level corresponding to each cell frequency when the flight terminal selects or reselects a cell.
  • the air parameter configuration can also increase the cell frequency priority level, so that the flight terminal can preferentially select a cell with a suitable frequency for access.
  • the air parameter configuration modifies the tracking area list.
  • the coverage area of the cell is divided into a plurality of discontinuous blocks, that is, the coverage area of the cell is more fragmented, and the flight terminal can measure more cells in the air, so the flight The terminal can measure more tracking areas, so the tracking area list needs to be modified to accommodate more tracking areas.
  • the air parameter configuration modifies the hysteresis parameter of the modified A1 event, the threshold parameter of the A1 event, the hysteresis parameter of the A2 event, the threshold parameter of the A2 event, the frequency offset of the A3 event, the cell offset of the A3 event, and the hysteresis of the A3 event.
  • the coverage area of the cell is divided into a plurality of discontinuous blocks, that is, the coverage area of the cell is more fragmented, the flight terminal is more likely to fly away from the continuous coverage area, and the A1 event is more easily triggered.
  • A2 events, A3 events, and A4 events it is necessary to modify the hysteresis parameter of the A1 event, the threshold parameter of the A1 event, the hysteresis parameter of the A2 event, the threshold parameter of the A2 event, the frequency offset of the A3 event, the cell offset of the A3 event, the hysteresis parameter of the A3 event, and the A3 event.
  • Offset frequency offset of A4 event, cell offset of A4 event, hysteresis parameter of A4 event, threshold parameter of A4 event, time-triggered parameter, etc., to avoid frequent triggering of A1 event, A2 event, A3 event, and A4 event.
  • the air parameter configuration modifies the maximum number of reported cells.
  • the flight terminal can measure more cells in the air. Therefore, the air parameter configuration needs to modify the maximum number of reported cells, and report the measurement results of more cells to ensure the integrity of the measured cells and avoid switching. failure.
  • the air parameter configuration modifies the log measurement area.
  • the flight terminal can measure more cells in the air. Accordingly, the number of areas in which the flight terminal needs to perform log measurement is correspondingly increased. Therefore, the air parameter configuration needs to modify the log measurement area to ensure the flight terminal. The monitoring is more precise.
  • the air parameter configuration modifies the out-of-step threshold.
  • the wireless terminal receives relatively large interference from the wireless signal, which is prone to the problem of wireless link failure.
  • the wireless link fails, data transmission is interrupted and data throughput is reduced. Therefore, in order to reduce the probability of occurrence of a radio link failure, it is necessary to modify the out-of-step threshold in the radio link failure parameter.
  • the air parameter configuration modifies the power of the PDCCH, the power of the PUSH on the subcarrier c, the expected received power of the base station, and the PRACH power control parameters.
  • the embodiment of the present application provides a second method for selecting a parameter configuration.
  • the parameter selection configuration of the embodiment of the present application includes the following steps:
  • the flight terminal measures the environment to obtain a state parameter.
  • S202 The flight terminal generates a status indication according to the status parameter.
  • the flight terminal sends a status indication to the network device. Accordingly, the network device receives a status indication sent by the flight terminal. Wherein the status indication is used to indicate a flight status of the flight terminal;
  • the network device selects a target parameter configuration from a plurality of parameter configurations according to the status indication.
  • the multiple parameter configurations include at least a first parameter configuration and a second parameter configuration.
  • S205 A target parameter configuration sent by the network device to the flight terminal. Accordingly, the flight terminal receives the target parameter configuration transmitted by the network device.
  • the target parameter configuration is carried in the air interface message. If the connection status of the flight terminal relative to the network device is an idle state, the air interface message is a broadcast message. If the connection status of the flight terminal with respect to the network device is a connected state, the air interface message is an RRC message, where the RRC message is an RRC connection setup message or an RRC connection reconfiguration message.
  • the flight terminal configures the flight terminal by using the target parameter configuration.
  • the embodiment shown in FIG. 4 is different from the embodiment shown in FIG. 3 in that, in the embodiment shown in FIG. 4, the network device sends the target parameter configuration to the flight terminal, and the flight terminal receives the After the target parameters are configured, the current configuration is updated to the target parameter configuration.
  • the network device sends the indication information to the flight terminal, and after receiving the indication information, the flight terminal selects the target parameter configuration according to the indication information, and then updates the current configuration to the target parameter configuration.
  • the network device sends the indication information to the flight terminal, and after receiving the indication information, the flight terminal selects the target parameter configuration according to the indication information, and then updates the current configuration to the target parameter configuration.
  • the embodiment of the present application provides a third method for selecting a parameter configuration.
  • the parameter selection configuration of the embodiment of the present application includes the following steps:
  • the network device sends the multiple parameter configurations to the flight terminal by using an air interface message.
  • the flight terminal receives the plurality of parameter configurations sent by the network device through the air interface information.
  • the air interface message is a broadcast message. If the connection status of the flight terminal with respect to the network device is a connected state, the air interface message is an RRC message, where the RRC message is an RRC connection setup message or an RRC connection reconfiguration message.
  • the flight terminal measures the flight environment to obtain a state parameter, wherein the state parameter includes at least one of a height, a number of neighboring cells, and a neighboring cell measurement value.
  • the flight terminal determines the flight status of the flight terminal according to the state parameter.
  • the flight terminal selects a target parameter configuration from a plurality of parameter configurations according to the flight state, wherein the multiple parameter configurations include at least a first parameter configuration and a second parameter configuration.
  • the flight terminal configures the flight terminal by using the target parameter configuration.
  • the embodiment shown in FIG. 5 differs from the embodiment shown in FIG. 3 and FIG. 4 in that the flight terminal determines the flight state of the flight terminal by itself through the state parameter, and configures from various parameters according to the flight state. Select the target parameter configuration. That is, the embodiment shown in FIG. 5 does not require a network device to participate in the process of selecting a target parameter configuration.
  • the embodiment shown in FIG. 3 and related description please refer to the embodiment shown in FIG. 3 and related description, and details are not described herein again.
  • the flight state of the flight terminal is divided into the ground and in the air.
  • the selected target parameter is configured as a first parameter configuration
  • the flight state of the flight terminal is in the air
  • the selected target parameter is configured as a second parameter configuration.
  • the flight state of the flight terminal can also be divided into ground, in the air, and in the sky.
  • the selected target parameter When the flight state of the flight terminal is on the ground, the selected target parameter is configured as a first parameter configuration, and when the flight state of the flight terminal is in the air, the selected target parameter is configured as a second parameter configuration, when the flight terminal When the flight state is at a high altitude, the selected target parameter is configured as a third parameter configuration. It can be understood that the flight state of the flight terminal can also be divided into more layers, which are not specifically limited in the present invention.
  • the flight terminal and the network device provided by the embodiments of the present application are described below, and the flight terminal 100 and the network device 200 shown in FIG. 6 and FIG. 7 respectively.
  • the embodiment of the present application further provides a flight terminal 100.
  • the flight terminal 100 of the embodiment of the present application includes at least a processor 101, a memory 102 (one or more computer readable storage media), a transmitter 103, a receiver 104, and an input and output system 105. These components can communicate over one or more communication buses 106.
  • the input output system 105 is primarily used to implement interactive functions between the flight terminal 100 and the external environment.
  • the input and output system 105 can include a sensor controller 1053.
  • the sensor controller 1053 can be coupled to the condition monitoring component 1056.
  • the condition monitoring component 1056 is configured to detect a flight state of the flight terminal to obtain a state parameter. For example, altitude, air pressure, acceleration of gravity, number of neighbors, neighboring measurements, and so on.
  • the condition monitoring component 1056 can be a laser altimetry module capable of measuring the height of the flight terminal by the time of laser transmission; the state monitoring component 1056 can also be a global positioning system module capable of directly measuring the flight terminal through the satellite.
  • the height of the state monitoring component 1056 can also be a barometric pressure measurement module or a gravitational acceleration measurement module or the like, capable of detecting the air pressure or gravitational acceleration of the flight terminal; the state monitoring component 1056 can also be a signal receiver through the vicinity of the flight terminal The signal is measured to obtain the number of neighbors and/or neighbor measurements of the flight terminal.
  • the state monitoring component 1051 may also be other modules, such as a temperature detecting module, etc., which is not limited in this application.
  • the input and output system 105 may further include a touch screen controller 1051 and an audio controller 1052, each of which may be coupled to a respective corresponding peripheral device (the touch screen 1054 and the audio circuit 1055).
  • the processor 101 can be integrated to include: one or more CPUs, a clock module, and a power management module.
  • the clock module is primarily used to generate the clocks required for data transfer and timing control for the processor 101.
  • the power management module is primarily used to provide a stable, high accuracy voltage for the processor 101, the transmitter 103, the receiver 104, and the condition monitoring component 105, and the like.
  • Memory 102 is coupled to processor 101 for storing various software programs and/or sets of instructions.
  • memory 102 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 102 can store an operating system (hereinafter referred to as a system) such as an embedded operating system such as ANDROID, IOS, WINDOWS, or LINUX.
  • the memory 102 can also store status parameters detected by the status monitoring component. For example, altitude, air pressure, acceleration of gravity, number of neighbors, neighboring measurements, and so on.
  • the memory 102 can also be used to store state parameters detected by the condition monitoring component 105, and to store various parameter configurations or target parameter configurations transmitted by the network device to configure the flight terminal so that the flight terminal operates at a suitable level. status.
  • Transmitter 103 and receiver 104 are used to transmit and receive radio frequency signals, respectively. That is, the transmitter 103 communicates with the communication network and other communication devices via radio frequency signals, and the receiver 104 communicates with the communication network and other communication devices via radio frequency signals.
  • the transmitter 103 and the receiver 104 may be separately provided or integrated. When the transmitter 103 and the receiver 104 are integrally provided, they may be referred to as a communication module, a transceiver or a radio frequency module or the like.
  • the transmitter 103 and the receiver 104 may each adopt a single antenna, a dual antenna or an antenna array, etc., thereby forming a simple input simple output (SISO), a single input multiple output (simple input multiple output). , SIMO), multiple input simple output (MISO), and multiple input multiple output (MIMO) and other implementations.
  • SISO simple input simple output
  • MISO multiple input multiple output
  • MIMO multiple input multiple output
  • the embodiment of the present application further provides a network device 200.
  • the network device 200 of the embodiment of the present application includes at least a processor 201, a memory 202 (one or more computer readable storage media), a transmitter 203, and a receiver 204. These components can communicate over one or more communication buses 205.
  • the processor 201 has powerful computing capabilities and is capable of performing operations quickly.
  • the processor 201 performs overall monitoring of the network device 200 by executing or executing software programs and/or modules stored in the memory 202, as well as invoking data stored in the memory 202, performing various functions and processing data of the network device 200. .
  • Memory 202 is coupled to processor 201 for storing various software programs and/or sets of instructions.
  • memory 202 can include high speed random access memory, and can also include non-volatile memory, such as one or more magnetic disk storage devices, flash memory devices, or other non-volatile solid state storage devices.
  • the memory 202 can also store state parameters transmitted by the flight terminal, such as altitude, air pressure, gravitational acceleration, number of neighbors, neighborhood measurements, and the like.
  • the memory 102 can also be used to store a variety of parameter configurations, wherein the parameter configuration can be used to configure the flight terminal to operate the flight terminal in a suitable state.
  • Transmitter 103 and receiver 104 are used to transmit and receive radio frequency signals, respectively. That is, the transmitter 103 communicates with the communication network and other communication devices via radio frequency signals, and the receiver 104 communicates with the communication network and other communication devices via radio frequency signals.
  • the transmitter 103 and the receiver 104 may be separately provided or integrated. When the transmitter 103 and the receiver 104 are integrally provided, they may be referred to as a communication module, a transceiver or a radio frequency module or the like.
  • the transmitter 103 and the receiver 104 may each adopt a single antenna, a dual antenna or an antenna array, etc., thereby forming a simple input simple output (SISO), a single input multiple output (simple input multiple output). , SIMO), multiple input simple output (MISO), and multiple input multiple output (MIMO) and other implementations.
  • SISO simple input simple output
  • MISO multiple input multiple output
  • MIMO multiple input multiple output
  • the flight terminal 100 shown in FIG. 6 may be the flight terminal in all the foregoing method embodiments
  • the network device 200 shown in FIG. 7 may be the network device in all the foregoing method embodiments.
  • the cooperation relationship between the components in the flight terminal 100 and the components in the network device 200 in the embodiment of the present application is described in detail below with reference to the embodiment of FIG. 3.
  • the condition monitoring component 1056 measures the environment to obtain state parameters.
  • the state parameter may be at least one of altitude, air pressure, gravitational acceleration, number of neighbors, neighboring cell measurements, and special reference signals.
  • For the content of the status parameter obtained by the status monitoring component 1056 please refer to the description of the related content in the embodiment shown in FIG. 3, and the description will not be repeated here.
  • the status monitoring component 1056 sends the status parameters to the processor 101. Accordingly, processor 101 receives the status parameters sent by state monitoring component 1056 to processor 101.
  • the processor 101 generates a status indication based on the status parameters.
  • the status indication can be used to carry the status parameter, or to indicate the flight status of the flight terminal, for example, the flight terminal is on the ground or in the air.
  • the status indication refer to the description of related content in the embodiment shown in FIG. 3, and the description is not extended here.
  • the processor 101 sends a status indication to the transmitter 103. Accordingly, the transmitter 103 receives a status indication transmitted by the processor 101.
  • the transmitter 103 sends a status indication to the receiver 204. Accordingly, receiver 204 receives a status indication transmitted by transmitter 103.
  • the receiver 204 sends a status indication to the processor 201. Accordingly, processor 201 receives a status indication sent by receiver 204.
  • the processor 201 determines the indication information according to the status indication.
  • the indication information is used to indicate a target parameter configuration to be switched by the flight terminal, and the target parameter is configured as a first parameter configuration or a second parameter configuration.
  • the indication information refer to the description of related content in the embodiment shown in FIG. 3, and the description is not further described herein.
  • the processor 201 sends the indication information to the transmitter 203. Accordingly, the transmitter 203 receives the indication information transmitted by the processor 201.
  • the transmitter 203 sends the indication information to the receiver 104. Accordingly, the receiver 104 receives the indication information transmitted by the transmitter 203.
  • the receiver 104 sends the indication information to the processor 101. Accordingly, the processor 101 receives the indication information transmitted by the receiver 104.
  • the processor 101 selects a target parameter configuration from a plurality of parameter configurations according to the indication information. For example, when the status indication is used to indicate that the flight terminal is on the ground, the indication information is used to indicate that the target parameter of the flight terminal to be switched is configured as a first parameter configuration; when the status indication is used to indicate a flight terminal When the information is in the air, the indication information is used to indicate that the target parameter to be switched by the flight terminal is configured as a second parameter configuration.
  • the first parameter is configured as a ground parameter configuration
  • the second parameter is configured as an air parameter configuration
  • the ground parameter configuration is a parameter configuration according to a characteristic of a flight terminal on the ground.
  • the air parameter configuration is a parameter configuration that is set according to characteristics of the flight terminal in the air.
  • the processor 101 configures the flight terminal using the target parameter configuration.
  • FIG. 9 is a schematic structural diagram of a communication terminal and a network device according to an embodiment of the present invention. As shown in FIG. 9, there may be a communication connection between the flight terminal 300 and the network device 400, such as a radio frequency connection, to enable data communication between the two. The description is expanded below.
  • the flight terminal 300 of the embodiment of the present application includes: a receiving unit 301, a selecting unit 302, a configuration unit 303, a transmitting unit 304, and a storage unit 305.
  • the receiving unit 301 is configured to receive indication information that is sent by the network device, where the indication information is used to indicate an identifier of a target parameter configuration that the flight terminal wants to switch;
  • the selecting unit 302 is configured to select, according to the indication information, a parameter configuration corresponding to the identifier from a plurality of parameter configurations stored in the storage unit 304, where the multiple parameter configurations include at least a first parameter configuration. And a second parameter configuration;
  • the configuration unit 303 is configured to configure the flight terminal using the target parameter configuration.
  • the network device 400 of the embodiment of the present application includes: a receiving unit 401, a determining unit 402, and a sending unit 403.
  • the receiving unit 401 is configured to receive a status indication sent by the flight terminal, where the status indication is used to indicate a flight status of the flight terminal;
  • the determining unit 402 is configured to determine the indication information according to the status indication, where the indication information is used to indicate a target parameter configuration to be switched by the flight terminal, where the target parameter is configured as a first parameter configuration or a second parameter configuration;
  • the transmitting unit 403 is used for the indication information sent to the flight terminal.
  • FIG. 9 is a schematic structural diagram of a communication terminal and a network device according to an embodiment of the present invention. As shown in FIG. 9, there may be a communication connection between the flight terminal 300 and the network device 400, such as a radio frequency connection, to enable data communication between the two. The description is expanded below.
  • FIG. 9 is a schematic structural diagram of a communication terminal and a network device according to an embodiment of the present invention. As shown in FIG. 9, there may be a communication connection between the flight terminal 300 and the network device 400, such as a radio frequency connection, to enable data communication between the two. The description is expanded below.
  • the flight terminal 500 of the embodiment of the present application includes: a receiving unit 501, an updating unit 502, a configuration unit 503, a transmitting unit 504, and a storage unit 505.
  • the receiving unit 501 is configured to receive a target parameter configuration that is sent by the network device according to the flight state of the flight terminal, where the target parameter configuration includes a first parameter configuration or a second parameter configuration;
  • the updating unit 502 is configured to update the current parameter configuration to the target parameter configuration
  • the configuration unit 503 is configured to configure the flight terminal using the target parameter configuration.
  • the network device 600 of the embodiment of the present application includes: a receiving unit 601, a determining unit 602, and a sending unit 603.
  • the receiving unit 601 is configured to receive a status indication sent by the flight terminal, where the status indication is used to indicate a flight status of the flight terminal;
  • the determining unit 602 is configured to determine, according to the status indication, a target parameter configuration corresponding to the flight state, where the target parameter configuration includes a first parameter configuration or a second parameter configuration;
  • the sending unit 603 is configured to send a target parameter configuration to the flight terminal.
  • an embodiment of the present invention further provides a communication system, where the communication system includes a flight terminal and a network device.
  • the communication system may be the communication system shown in FIG. 9, the flight terminal may be a flight terminal 300, and the network device may be the network device 400.
  • the flight terminal may be the flight terminal 100 described in the embodiment of FIG. 6, and the network device may be the network device 200 described in the embodiment of FIG.
  • the communication system may be the communication system shown in FIG. 10, the flight terminal may be a flight terminal 500, and the network device may be the network device 600.
  • the flight terminal may be the flight terminal 100 described in the embodiment of FIG. 6, and the network device may be the network device 200 described in the embodiment of FIG.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种选择参数配置的方法、设备以及系统,包括如下步骤:飞行终端接收网络设备发送的指示信息,其中,所述指示信息用于指示所述飞行终端要切换的目标参数配置的标识;飞行终端根据所述指示信息从多种参数配置中选择与所述标识对应的参数配置作为目标参数配置,其中,所述多种参数配置至少包括第一参数配置以及第二参数配置;飞行终端使用所述目标参数配置对所述飞行终端进行配置。上述方法能够根据飞行终端的飞行状态选择合适的参数配置,从而提高飞行终端的性能。

Description

选择参数配置的方法、设备以及系统 技术领域
本发明涉及通信领域,尤其涉及一种选择参数配置的方法、设备以及系统。
背景技术
随着飞机,飞船、火箭、无人机等飞行设备的发展,终端设备家族中出现了新的成员:飞行终端,所述飞行终端可以应用于各种飞机,飞船、火箭、无人机中。飞行终端被广泛地应用在基础设施监控,野生动物保护,空中搜救,喷撒农药,快递交付等等应用场景,为人们的生活提供了各种便利。在未来,飞行终端将会在人们的生活中扮演越来越重要的角色。
与终端设备家族中的普通的终端设备通常只会在地面上活动不同,飞行终端可以在地面上活动,也可能在空中飞行。飞行终端在无论是在地面上活动还是在空中飞行,都可以通过地面上的基站等网络设备接入到移动通信网络(Cellular network),并利用移动通信网络进行无线信号的传输。飞行终端在地面(比基站的高度低时)上活动时,飞行终端的特性与普通的终端设备的特性并没有什么差别,但是,飞行终端在空中(比基站的高度高时)飞行时,飞行终端的特性与普通的终端设备的特性差别非常大。
本领域的技术人员在长期研究中发现,现有的飞行终端的参数配置方案采用的是普通的终端设备的参数配置方案,没有考虑到飞行终端在不同状态时的特性的差异,导致飞行终端的性能受到了极大的影响。
发明内容
本申请实施例提供了一种选择参数配置的方法、设备以及系统,能够根据飞行终端的飞行状态选择合适的参数配置,从而提高飞行终端的性能。
第一方面,提供一种选择参数配置的方法,包括如下步骤:
网络设备接收飞行终端发送的状态指示,其中,所述状态指示用于指示所述飞行终端的飞行状态;
网络设备根据所述状态指示确定指示信息,其中,所述指示信息用于指示所述飞行终端要切换的目标参数配置,所述目标参数配置为第一参数配置或者第二参数配置;
网络设备向所述飞行终端发送的指示信息。
第二方面,提供一种选择参数配置的方法,包括如下步骤:
飞行终端接收网络设备发送的指示信息,其中,所述指示信息用于指示所述飞行终端要切换的目标参数配置的标识;
飞行终端根据所述指示信息从多种参数配置中选择与所述标识对应的参数配置作为目标参数配置,其中,所述多种参数配置至少包括第一参数配置以及第二参数配置;
飞行终端使用所述目标参数配置对所述飞行终端进行配置。
上述第一方面以及第二方面分别从网络设备侧以及飞行终端描述了本申请实施例提供的一种选择参数配置的方法,通过实施该方法,能够根据飞行终端的飞行状态选择合适的 参数配置,从而提高飞行终端的性能。
结合第一方面或者第二方面,在一些可能的实施方式中,所述第一参数配置以及所述第二参数配置可以分别如下所述:
所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个。其中,
第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值、第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个。
第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个。
第一无线链路失败参数包括:第一失步门限。
第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个。其中,
第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值、第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区。
第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个。
第二无线链路失败参数包括:第二失步门限。
第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
可以理解,在现有技术中,尚无对第二参数配置的任何研究,通过本实施例,可以明确地指出了与第一参数配置相比,第二参数配置需要修改哪些参数的数值,以及,第二参数配置需要增加哪些参数。
结合第一方面或者第二方面,在一些可能的实施方式中,网络设备向所述飞行终端发送的指示信息之前,网络设备通过第一空口消息将所述多种参数配置发送给所述飞行终端。相应地,所述飞行终端通过第一空口消息接收所述网络设备发送的所述多种参数配置。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述第一空口消息为第一广播消息。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述第一空口消息为第一无线资源控制RRC消息,其中,所述第一RRC消息为第一RRC连接建立消息或者第一RRC连接重配置消息。
结合第一方面或者第二方面,在一些可能的实施方式中,所述指示信息被携带于第二空口消息中。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述第二空口消息为第二广播消息。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述第二空口消息为第二RRC消息,其中,所述第二RRC消息为第二RRC连接建立消息或者第二RRC连接重配置消息。
结合第一方面或者第二方面,在一些可能的实施方式中,所述第一参数配置为地面参数配置,所述第二参数配置为空中参数配置,其中,所述地面参数配置是根据飞行终端在地面的特性设置的参数配置,所述空中参数配置是根据飞行终端在空中的特性设置的参数配置。
第三方面,提供一种选择参数配置的方法,包括如下步骤:
网络设备接收飞行终端发送的状态指示,其中,所述状态指示用于指示所述飞行终端的飞行状态;
网络设备根据所述状态指示确定与所述飞行状态对应的目标参数配置,其中,所述目标参数配置包括第一参数配置以及第二参数配置;
网络设备向所述飞行终端发送所述目标参数配置。
第四方面,提供一种选择参数配置的方法,包括如下步骤:
飞行终端接收网络设备根据所述飞行终端的飞行状态发送的目标参数配置,其中,所述目标参数配置包括第一参数配置或者第二参数配置;
飞行终端将当前参数配置更新为目标参数配置;
飞行终端使用所述目标参数配置对所述飞行终端进行配置。
上述第三方面以及第四方面分别从网络设备侧以及飞行终端描述了本申请实施例提供的一种选择参数配置的方法,通过实施该方法,能够根据飞行终端的飞行状态选择合适的参数配置,从而提高飞行终端的性能。
结合第三方面或者第四方面,在一些可能的实施方式中,所述第一参数配置以及所述第二参数配置可以分别如下所述:
所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个。其中,
第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第 一小区质量值阈值的偏置值、第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个。
第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个。
第一无线链路失败参数包括:第一失步门限。
第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个。其中,
第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值、第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区。
第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个。
第二无线链路失败参数包括:第二失步门限。
第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
可以理解,在现有技术中,尚无对第二参数配置的任何研究,通过本实施例,可以明确地指出了与第一参数配置相比,第二参数配置需要修改哪些参数的数值,以及,第二参数配置需要增加哪些参数。
结合第三方面或者第四方面,在一些可能的实施方式中,所述目标参数配置被携带于空口消息中。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述空口消息为广播消息。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述空口消息为RRC消息,其中,所述RRC消息为RRC连接建立消息或者RRC连接重配置消息。
结合第三方面或者第四方面,在一些可能的实施方式中,所述第一参数配置为地面参数配置,所述第二参数配置为空中参数配置,其中,所述地面参数配置是根据飞行终端在地面的特性设置的参数配置,所述空中参数配置是根据飞行终端在空中的特性设置的参数配置。
第五方面,提供了一种选择参数配置的方法,包括如下步骤:
飞行终端对飞行环境进行测量,从而获得状态参数,其中,所述状态参数包括高度、邻区数量以及邻区测量值中的至少一个;
飞行终端根据状态参数确定所述飞行终端的飞行状态;
飞行终端根据所述飞行状态从多种参数配置中选择与所述飞行终端的飞行状态对应的目标参数配置,其中,所述多种参数配置至少包括第一参数配置以及第二参数配置;
飞行终端使用所述目标参数配置对所述飞行终端进行配置。
结合第五方面,在一些可能的实施方式中,所述第一参数配置以及所述第二参数配置可以分别如下所述:
所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个。其中,
第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值、第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个。
第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个。
第一无线链路失败参数包括:第一失步门限。
第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个。其中,
第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值、第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区。
第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二 A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个。
第二无线链路失败参数包括:第二失步门限。
第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
结合第五方面,在一些可能的实施方式中,在飞行终端根据飞行高度从多种参数配置中选择目标参数配置之前,所述飞行终端通过空口消息接收所述网络设备发送的所述多种参数配置。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述空口消息为广播消息。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述空口消息为RRC消息,其中,所述RRC消息为RRC连接建立消息或者RRC连接重配置消息。
结合第五方面,在一些可能的实施方式中,所述第一参数配置为地面参数配置,所述第二参数配置为空中参数配置,其中,所述地面参数配置是根据飞行终端在地面的特性设置的参数配置,所述空中参数配置是根据飞行终端在空中的特性设置的参数配置。
第六方面,提供了一种网络设备,包括用于执行第一方面所述的方法的单元。
第七方面,提供了一种飞行终端,包括用于执行第二方面所述的方法的单元。
第八方面,提供了一种网络设备,包括用于执行第三方面所述的方法的单元。
第九方面,提供了一种飞行终端,包括用于执行第四方面所述的方法的单元。
第十方面,提供了一种网络设备,包括用于执行第五方面所述的方法的单元。
第十一方面,提供了一种飞行终端,包括耦合的处理器和接收器,
所述接收器用于接收网络设备发送的指示信息,其中,所述指示信息用于指示所述飞行终端要切换的目标参数配置的标识;
所述处理器用于根据所述指示信息从多种参数配置中选择与所述标识对应的参数配置作为目标参数配置,其中,所述多种参数配置至少包括第一参数配置以及第二参数配置;
所述处理器用于使用所述目标参数配置对所述飞行终端进行配置。
结合第十一方面,在一些可能的实施方式中,所述第一参数配置以及所述第二参数配置可以分别如下所述:
所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个;其中,
第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个;
第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第 一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个;
第一无线链路失败参数包括:第一失步门限;
第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个;其中,
第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值、第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区;
第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个;
第二无线链路失败参数包括:第二失步门限;
第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
结合第十一方面,在一些可能的实施方式中,所述飞行终端接收所述网络设备发送的指示信息之前,所述飞行终端通过第一空口消息接收所述网络设备发送的所述多种参数配置。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述第一空口消息为第一广播消息。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述第一空口消息为第一无线资源控制RRC消息,其中,所述第一RRC消息为第一RRC连接建立消息或者第一RRC连接重配置消息。
结合第十一方面,在一些可能的实施方式中,所述指示信息被携带于第二空口消息中。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述第二空口消息为第二广播消息。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述第二空口消息为第二RRC消息,其中,所述第二RRC消息为第二RRC连接建立消息或者第二RRC连接重配置消息。
结合第十一方面,在一些可能的实施方式中,所述第一参数配置为地面参数配置,所述第二参数配置为空中参数配置,其中,所述地面参数配置是根据飞行终端在地面的特性设置的参数配置,所述空中参数配置是根据飞行终端在空中的特性设置的参数配置。
第十二方面,提供了一种网络设备,包括耦合的处理器和接收器、发射器,
所述接收器用于接收飞行终端发送的状态指示,其中,所述状态指示用于指示所述飞行终端的飞行状态;
所述处理器用于根据所述状态指示确定指示信息,其中,所述指示信息用于指示所述飞行终端要切换的目标参数配置,所述目标参数配置为第一参数配置或者第二参数配置;
所述发射器用于向所述飞行终端发送的指示信息。
结合第十二方面,在一些可能的实施方式中,所述第一参数配置以及所述第二参数配置可以分别如下所述:
所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个。其中,
第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值、第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个。
第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个。
第一无线链路失败参数包括:第一失步门限。
第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个。其中,
第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值、第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区。
第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第 二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个。
第二无线链路失败参数包括:第二失步门限。
第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
结合第十二方面,在一些可能的实施方式中,网络设备向所述飞行终端发送的指示信息之前,网络设备通过第一空口消息将所述多种参数配置发送给所述飞行终端。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述第一空口消息为第一广播消息。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述第一空口消息为第一无线资源控制RRC消息,其中,所述第一RRC消息为第一RRC连接建立消息或者第一RRC连接重配置消息。
结合第十二方面,在一些可能的实施方式中,所述指示信息被携带于第二空口消息中。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述第二空口消息为第二广播消息。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述第二空口消息为第二RRC消息,其中,所述第二RRC消息为第二RRC连接建立消息或者第二RRC连接重配置消息。
结合第十二方面,在一些可能的实施方式中,所述第一参数配置为地面参数配置,所述第二参数配置为空中参数配置,其中,所述地面参数配置是根据飞行终端在地面的特性设置的参数配置,所述空中参数配置是根据飞行终端在空中的特性设置的参数配置。
第十三方面,提供了一种飞行终端,包括耦合的处理器和接收器,
所述接收器用于接收网络设备根据所述飞行终端的飞行状态发送的目标参数配置,其中,所述目标参数配置包括第一参数配置或者第二参数配置;
所述处理器用于将当前参数配置更新为目标参数配置;
所述处理器用于使用所述目标参数配置对所述飞行终端进行配置。
结合第十三方面,在一些可能的实施方式中,所述第一参数配置以及所述第二参数配置可以分别如下所述:
所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个。其中,
第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值、第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个。
第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个。
第一无线链路失败参数包括:第一失步门限。
第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个。其中,
第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值、第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区。
第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个。
第二无线链路失败参数包括:第二失步门限。
第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
结合第十三方面,在一些可能的实施方式中,所述目标参数配置被携带于空口消息中。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述空口消息为广播消息;
具体地,如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述空口消息为RRC消息,其中,所述RRC消息为RRC连接建立消息或者RRC连接重配置消息。
结合第十三方面,在一些可能的实施方式中,所述第一参数配置为地面参数配置,所述第二参数配置为空中参数配置,其中,所述地面参数配置是根据飞行终端在地面的特性设置的参数配置,所述空中参数配置是根据飞行终端在空中的特性设置的参数配置。
第十四方面,提供了一种网络设备,包括耦合的处理器和接收器、发射器,
所述接收器用于接收飞行终端发送的状态指示,其中,所述状态指示用于指示飞行终端的飞行状态;
所述处理器用于根据所述状态指示确定与所述飞行状态对应的目标参数配置,其中,所述目标参数配置包括第一参数配置或第二参数配置;
所述发射器用于向所述飞行终端发送所述目标参数配置。
结合第十四方面,在一些可能的实施方式中,所述第一参数配置以及所述第二参数配置可以分别如下所述:
所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个。其中,
第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值、第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个。
第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个。
第一无线链路失败参数包括:第一失步门限。
第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个。其中,
第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值、第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区。
第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个。
第二无线链路失败参数包括:第二失步门限。
第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
结合第十四方面,在一些可能的实施方式中,所述目标参数配置被携带于空口消息中。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述空口消息为广播消息;
具体地,如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述空口消息为RRC消息,其中,所述RRC消息为RRC连接建立消息或者RRC连接重配置消息。
结合第十四方面,在一些可能的实施方式中,所述第一参数配置为地面参数配置,所 述第二参数配置为空中参数配置,其中,所述地面参数配置是根据飞行终端在地面的特性设置的参数配置,所述空中参数配置是根据飞行终端在空中的特性设置的参数配置。
第十五方面,提供了一种飞行终端,包括耦合的处理器和环境监测元件,
所述状态监控元件用于对飞行环境进行测量,从而获得状态参数,其中,所述状态参数包括高度、邻区数量以及邻区测量值中的至少一个;
所述处理器用于根据状态参数确定所述飞行终端的飞行状态;
所述处理器用于根据所述飞行状态从多种参数配置中选择与所述飞行终端的飞行状态对应的目标参数配置,其中,所述多种参数配置至少包括第一参数配置以及第二参数配置;
所述处理器用于使用所述目标参数配置对所述飞行终端进行配置。
结合第十五方面,在一些可能的实施方式中,所述第一参数配置以及所述第二参数配置可以分别如下所述:
所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个。其中,
第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值、第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个。
第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个。
第一无线链路失败参数包括:第一失步门限。
第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个。其中,
第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值、第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区。
第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第 二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个。
第二无线链路失败参数包括:第二失步门限。
第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
结合第十五方面,在一些可能的实施方式中,在飞行终端根据飞行高度从多种参数配置中选择目标参数配置之前,所述接收器通过空口消息接收所述网络设备发送的所述多种参数配置。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述空口消息为广播消息。
具体地,如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述空口消息为RRC消息,其中,所述RRC消息为RRC连接建立消息或者RRC连接重配置消息。
结合第十五方面,在一些可能的实施方式中,所述第一参数配置为地面参数配置,所述第二参数配置为空中参数配置,其中,所述地面参数配置是根据飞行终端在地面的特性设置的参数配置,所述空中参数配置是根据飞行终端在空中的特性设置的参数配置。
第十六方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如第一方面至第五方面中的任意一方面所述的方法。
第十七方面,提供了一种提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第五方面中的任意一方面所述的方法。
第十八方面,一种通讯系统,包括网络设备以及飞行终端,其中,所述网络设备与所述飞行终端之间能够进行通讯,其中,当所述网络设备为第一方面所述的网络设备时,所述飞行终端为第二方面所述的飞行终端;或者,当所述网络设备为第三方面所述的网络设备时,所述飞行终端为第四方面所述的飞行终端;或者,所述网络设备为第五方面所述的网络设备。
附图说明
为了更清楚地说明本发明实施例或背景技术中的技术方案,下面将对本发明实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的地面上的小区覆盖区域与空中的小区覆盖区域的对比图;
图2是本申请实施例提供的地面上的邻小区分布与空中的邻小区分布的对比图;
图3是本申请实施例提供的第一种选择参数配置的方法的交互图;
图4是本申请实施例提供的第二种选择参数配置的方法的交互图;
图5是本申请实施例提供的第三种选择参数配置的方法的交互图;
图6是本申请实施例提供的一种飞行终端的结构示意图;
图7是本申请实施例提供的一种网络设备的结构示意图;
图8是图6实施例描述的设备和图7实施例描述的设备内各个部件的协作交互示意图;
图9是本申请实施例提供的一种通信系统中的各个设备的功能模块示意图;
图10是本申请实施例提供的另一种通信系统中的各个设备的功能模块示意图。
具体实施方式
本申请实施例中,飞行终端可以是无人机终端(Drone UE),包括无人机如UAV(Unmanned Aerial Vehicle),或携带传统的地面的终端(terminal)的无人机(比如将传统UE放置于无人机上)。不限于上述例子中的无人机,在实际应用中还可以是其他的飞行设备,例如飞机等等,本申请不作具体限定。
可以理解,传统的地面的终端还可称之为用户设备(User Equipment,缩写:UE)、移动台(Mobile Station,缩写:MS)、移动终端(mobile terminal)、订户单元(Subscriber Unit,缩写:SU)、订户站(Subscriber Station,缩写:SS),移动站(Mobile Station,缩写:MB)、远程站(Remote Station,缩写:RS)、接入点(Access Point,缩写:AP)、远程终端(Remote Terminal,缩写:RT)、接入终端(Access Terminal,缩写:AT)、用户终端(User Terminal,缩写:UT)、用户代理(UserAgent,缩写:UA)、终端设备(User Device,缩写:UD)等,本申请不做限定。该终端可以是指无线终端、有线终端。该无线终端可以是指向用户提供语音和/或数据连通性的设备,其可以经无线接入网(如RAN,radio access network)与一个或多个核心网进行通信。
为了便于理解,在介绍本申请实施例之前,先分别对本实施例的参数配置应用的各个处理流程进行详细的介绍。
(一)小区选择与重选的处理流程。
飞行终端对小区进行搜索以搜索到目标小区。飞行终端根据小区选择准则(S准则)判断搜索到的目标小区是否为合适的小区。如果目标小区是合适的小区,飞行终端确定选择或者重选目标小区进行驻留。如果目标小区不是合适的小区,飞行终端确定不选择或者不重选目标小区进行驻留。但是,如果基站向飞行终端发送了小区禁止接入(barring)指示,则尽管目标小区满足S准则,飞行终端也不会选择或者重选目标小区进行驻留,而是,重新选择合适的小区进行驻留。
其中,S准则的条件如下:
Srxlev>0且Squal>0
Srxlev=Q rxlevmeas-(Q rxlevmin+Q rxlevminoffest)-Pcompensation;
Squal=Q qualmeas-(Q qualmin+Q qualminoffest);
其中,Srxlev为小区选择接收信号等级值,Squal为小区选择质量值,Q rxlevmeas为小区测量接收信号等级值,Q qualmeas为小区测量质量值,Q rxlevmin为小区接收信号值阈值,Q qualmin为小区质量值阈值,Q rxlevminoffest为小区接收信号值阈值的偏置值,Q qualminoffest为小区质量值阈值的偏置值,Pcompensation为功率补偿。在一具体的实施例中,小区接收信号值阈值可以是小区最低接收信号,小区质量值阈值为小区最低质量值,小区接收信号值阈值的偏置值为小区最低接收信号的偏置值,小区质量值阈值的偏置值为小区最低质量值的偏置值。
(二)跟踪区(tracking area list,TAlist)列表配置的处理流程。
飞行终端向基站发送附着请求(attach request)。基站在接收到附着请求之后,向核心网转发附着请求。核心网在接收到附着请求之后,与飞行终端之间完成鉴权、安全激活、会话建立等等流程之后,核心网向基站发送附着接受(attach accept)消息。基站在接收到附着接受消息之后,向飞行终端转发附着接受消息。其中,附着接受消息中携带了跟踪区列表,所述跟踪区列表包括多个跟踪区,所述跟踪区包括多个地理相近的小区。
当飞行终端进入跟踪区列表之内的小区时,飞行终端不需要更新跟踪区列表,也不需要通知核心网更新自己的跟踪区信息;当飞行终端进入跟踪区列表之外的小区时,飞行终端需要更新跟踪区列表,也需要通知核心网更新自己的跟踪区信息。当飞行终端被寻呼时,核心网只会在跟踪区列表中的小区内对飞行终端进行寻呼,而不会对跟踪区列表外的小区对飞行终端进行寻呼,从而既能够保证飞行终端被顺利进行寻呼,又能避免大量飞行终端更新小区列表以及大量小区更新自己的跟踪区信息以带来的信令负荷等问题。
(三)小区测量的处理流程。
基站通过RRC连接重配置(RRC Connection Reconfiguration)消息向飞行终端下发测量配置(measure configuration)。飞行终端在接收到基站下发的测量配置之后,根据测量配置执行测量以获得测量结果。在测量结果满足测量报告条件的情况下,飞行终端将测量结果填入测量报告(Measurement Report),并将测量报告返回给基站。其中,测量报告条件包括满足A1事件、A2事件、A3事件、A4事件中的任意一个事件。
Figure PCTCN2018093731-appb-000001
A1事件(Serving becomes better than threshold):表示服务小区信号质量高于A1事件的门限参数时,停止异频/异系统测量。其中,A1事件的触发条件为:
Ms1-Hys1>Thersh1
其中,Ms1为A1事件的服务小区测量结果,Hys1为A1事件的迟滞参数、Thersh1为A1事件的门限参数。
Figure PCTCN2018093731-appb-000002
A2事件(Serving becomes worse than threshold):表示服务小区信号质量低于A2事件的门限参数时,启动异频/异系统测量。其中,A2事件的触发条件为:
Ms2+Hys2>Thersh2
其中,Ms2为A2事件的服务小区测量结果,Hys2为A2事件的迟滞参数、Thersh2为A2事件的门限参数。
Figure PCTCN2018093731-appb-000003
A3事件(Neighbour becomes offset better than serving):表示邻小区的质量高于服务小区的质量时,启动同频切换请求。其中,A3事件的触发条件为:
Mn3+Ofn3+Ocn3-Hys3>Ms3+Ofs3+Ocs3+Off3
其中,Mn3为A3事件的邻小区的测量结果,Ofn3为A3事件的邻小区频率的特定频率偏置,Ocn3为A3事件的邻小区的特定小区偏置,Hys3为A3事件的迟滞参数,Ms3为A3事件的服务小区的测量结果,Ofs3为A3事件的服务小区频率的特定频率偏置,Ocs3为A3事件的服务小区的特定小区偏置,Off3为A3事件小区偏置。
Figure PCTCN2018093731-appb-000004
A4事件(Neighbour becomes better than threshold):表示邻小区的质量高于A4事件的门限参数时,启动异频切换请求。其中,A4事件的触发条件为:
Mn4+Ofn4+Ocn4-Hys4>Thresh4
其中,Mn4为A4事件的邻小区的测量结果,Ofn4为A4事件的邻小区频率的特定频率偏置,Ocn4为A4事件的邻小区的特定小区偏置,Hys4为A4事件的迟滞参数,Thresh4为A4事件的门限参数。
可以理解,上述测量均是在RRC连接态下的测量,而在RRC空闲态下,飞行终端需要对日志测量区域中记载的小区执行日志测量,从而能够对飞行终端的移动轨迹/状态进行实时监控。为了节省飞行终端的电量,飞行终端只会对日志测量区域中记载的小区执行日志测量,而不会对日志测量区域中记载的小区之外的小区执行日志测量。
(四)、下行无线链路监控的处理流程。
基站向飞行终端发送的小区专用参考信号(cell specific reference signal,CRS)。飞行终端在接收到基站发送的小区专用参考信号之后,对小区专用参考信号进行检测从而得到下行无线链路质量,如果下行无线链路质量低于失步门限,则产生一次失步,如果下行无线链路质量高于同步门限,则产生一次同步。飞行终端统计连续失步的次数,如果连续失步的次数达到失步次数阈值,则启动计时器。如果在计时器计时时间内,飞行终端没有检测到至少两次连续的同步的发生,则在计时器计时结束时,飞行终端判断无线链路失败(Radio Link Failure,RLF)。
(五)、上行功率调控的处理流程。
飞行终端计算上行物理信道的发射功率,其中,上行物理信道包括物理上行链路控制信道(Physical Uplink Control CHanne,PUCCH)、物理上行共享信道((Physical Uplink Shared Channel,PUSCH)、探测参考信号(Sounding Reference Signal,SRS)以及物理随机接入信道(Physical Random Access Channel,PRACH)。飞行终端按照计算得到的发射功率在上行物理信道上发送无线信号。其中,PUCCH、PUSCH、SRS以及PRACH的发射功率分别如下所示:
1)、PUCCH的发射功率为:
如果服务小区c是主小区,则PUCCH发射功率为:
Figure PCTCN2018093731-appb-000005
如果UE没有在主小区上发送PUCCH,则PUCCH的发射功率为:
P PUCCH(i)=min{P CMAX,c(i),P 0_PUCCH+PL c+g(i)}
其中,P CMAX,c(i)是每个子载波的最大发射功率;Δ F_PUCCH(F)由高层配置,与PUCCH format有关;Δ TxD(F')由高层配置,与PUCCH在哪几个port上传输有关;h(n CQI,n HARQ,n SR)是一个与PUCCH format相关的值;P O_PUCCH由两个由高层配置的参数求和而成;δ PUCCH是 一个UE specific的值,是网络侧通过PDCCH反馈给飞行终端的;
Figure PCTCN2018093731-appb-000006
2)、PUSCH的发射功率为:
如果UE没有同时传PUSCH和PUCCH,则PUSCH的发射功率为:
Figure PCTCN2018093731-appb-000007
如果UE同时传PUSCH和PUCCH,则UE的PUSCH的发射功率为:
Figure PCTCN2018093731-appb-000008
如果UE不发PUSCH,但收到了DCI format 3/3A的TPC command,PUSCH的发射功率为:
P PUSCH,c(i)=min{P CMAX,c(i),P O_PUSCH,c(1)+α c(1)·PL c+f c(i)}
其中,
Figure PCTCN2018093731-appb-000009
是PUCCH的发射功率;M PUSCH,c(i)是PUSCH一个子帧内占用的资源块(Resource Block,RB)数;P O_PUSCH,c(j)是由高层配置的两个参数求和得到的;α c(j)是高层配置的;PL c是飞行终端侧计算的下行路损,下行路损等于参考信号发射功率减去参考信号接收功率(Reference Signal Receiving Power,RSRP),参考信号发射功率是由高层通知飞行终端的。
Figure PCTCN2018093731-appb-000010
其中,K S由高层配置;δ PUSCH,c是与PDCCH/EPDCCH指示的TPC command有关的值,f c(i)是一个与高层配置和δ PUSCH,c有关的值。
3)、SRS的发射功率为:
{P CMAX,c(i),P SRS_OFFSET,c(m)+10log 10(M SRS,c)+P O_PUSCH,c(j)+α c(j)·PL c+f c(i)}
其中,P SRS_OFFSET,c(m)是高层配置的半静态参数;M SRS,c是SRS在一个子帧内所占RB数;f c(i)是PUSCH的power control adjustment;P O_PUSCH,c(j)是由高层配置的两个参数求和 得到的;α c(j)是高层配置的。
4)、PRACH的发射功率:
P PRACH=min{P CMAX,c(i),PREAMBLE_RECEIVED_TARGET_POWER}
其中,PREAMBLE_RECEIVED_TARGET_POWER由高层配置,PL c是飞行终端侧计算的下行路损,下行路损等于参考信号发射功率减去参考信号接收功率,参考信号发射功率是由高层通知飞行终端的。
对应于参数配置应用的处理流程(一)至(五),本申请实施例的参数配置包括小区选择与重选参数、跟踪区列表(tracking area list,TA list)、测量相关参数、无线链路失败参数以及功控参数中的至少一种,其中,小区选择与重选参数对应于小区选择与重选的处理流程,跟踪区列表对应于跟踪区列表配置的处理流程,测量相关参数对应于小区测量的处理流程,无线链路失败参数对应于下行无线链路监控的处理流程,功控参数对应于上行功率调控的处理流程。具体地,
对应于(一)小区选择与重选的处理流程,小区选择与重选参数包括(一)小区选择与重选的处理流程中记载的小区接收信号值阈值,小区质量值阈值,小区接收信号值阈值的偏置值,小区质量值阈值的偏置值中的至少一种。
对应于(二)跟踪区列表配置的处理流程,跟踪区列表即为(二)跟踪区列表配置的处理流程中记载的跟踪区列表。
对应于(三)小区测量的处理流程,测量相关参数包括(三)小区测量的处理流程中记载的A1事件的迟滞参数、A1事件的门限参数、A2事件的迟滞参数、A2事件的门限参数、A3事件的频率偏移、A3事件的小区偏置、A3事件的迟滞参数、A3事件的偏置、A4事件的频率偏移、A4事件的小区偏置、A4事件的迟滞参数、A4事件的门限参数、最大小区个数、日志测量区域以及时间触发参数中的至少一个。
对应于(四)下行无线链路监控的处理流程,无线链路失败参数至少包括(四)下行无线链路监控的处理流程中记载的失步门限。
对应于(五)上行功率调控的处理流程,功控参数至少包括(五)上行功率调控的处理流程中记载的PDCCH的功率、PUSH在子载波c上的功率、基站期望接收功率以及PRACH功控参数中的至少一个。
需要说明的是,本申请实施例的参数配置不仅仅限于上述的举例的参数,还可以有其他的参数,例如,本申请实施例的参数配置还可以包括公共陆地移动网络(Public Land Mobile Network,PLMN)选择参数,所述PLMN选择参数应用于PLMN选择的处理流程。并且,本申请实施例的参数配置中包括的小区选择与重选参数、测量相关参数、无线链路失败参数以及功控参数也可以不限于上述的情况。例如,测量相关参数还可以包括A5事件的迟滞参数、A5事件的第一门限参数以及A5事件的第二门限参数等等。
在对飞行终端在地面上的特性以及在空中上的特性进行长期研究之后,本申请实施例总结了飞行终端在空中上的特性与在地面上的特性的不同之处。其中,特性包括无线电传播特性以及行为特性,下面将分别进行详细的介绍。
所述无线电传播特性的不同之处至少包括以下四方面:(1)、由于飞行终端在空中飞行时,无线电传播没有障碍,所以,飞行终端接收到的服务小区的无线信号的信号强度变强,邻小区的干扰信号的信号强度也变强。(2)、由于飞行终端在空中飞行时,无线电传播没有障碍,所以,飞行终端对地面上的终端设备,例如,智能手机、物联网设备等等的干扰变大。(3)、由于基站在地面的小区的覆盖区域如图1的左边粗线部分所示,在空中的小区的覆盖区域如图1的右边粗线部分所示,可以看出,在空中,小区的覆盖区域被分割为多个不连续的块,即,小区的覆盖区域更为碎片化。所以,飞行终端更容易飞离连续的覆盖区域。(4)、由于飞行终端在地面能够探测到的邻小区分布情况如图2的左边圆圈部分所示,在空中能够探测到的邻小区分布情况如图2的右边圆圈部分所示,可以看出,在空中,服务小区的邻小区的数量明显增多,所以,飞行终端在空中能够测量到更多的小区。
所述行为特性的不同之处至少包括以下三方面:(1)、为了便于管理等原因,飞行终端在空中飞行时,禁止飞行终端接入有些小区。(2)、为了避免飞行终端拍摄到军事禁地等地方的照片,并通过网络泄露出去,飞行终端在空中飞行时,在禁飞区必须禁止接入基站等网络设备。(3)、为了避免飞行终端在飞行时碰撞到地面上的障碍物,对地面的障碍物构成损伤,飞行终端在空中飞行时,在飞行高度低于法定高度时禁止接入基站等网络设备。
现有的飞行终端的参数配置方案采用的是普通的终端设备的参数配置方案,没有考虑到飞行终端在不同高度时的特性的差异,导致飞行终端的性能受到了极大的影响,为了解决这一问题,本申请实施例提出来一种选择参数配置的方法、设备以及系统,能够根据飞行终端的飞行状态选择合适的参数配置,从而提高飞行终端的性能。下面将分别进行详细的介绍。
如图3所示,本申请实施例提供了第一种选择参数配置的方法。如图3所示,本申请实施例的选择参数配置包括如下步骤:
S101:飞行终端对环境进行测量,从而获得状态参数。
在本申请实施例中,状态参数可以是高度、气压、重力加速度、邻区数量、邻区测量值和特殊参考信号中的至少一种。其中,高度可以是飞行终端相对于水平面的绝对高度、可以是飞行终端相对于参照平面的相对高度,还可以是高度等级,例如,低、中、高等等,还可以是关于高度函数计算出的值,其中高度函数可以是产品实现也可以是标准定义,本发明不限定。比如,高度可以是飞行终端距离地面的高度,或者是飞行终端相对基站的高度,或者是飞行终端相对其他参考对象的高度;或者,所述高度还可以是高度值映射成的高度等级,如低为Xm~Ym,中为Ym~Zm,高为Zm~Km等形式。邻区数量可以是飞行终端能够测量到的所有邻小区的数量,也可以是飞行终端能够测量到的所有邻小区中,与服 务小区的信号强度差小于阈值的邻小区的数量等等。邻区测量值可以是飞行终端的邻小区的信号强度,也可以是飞行终端的邻小区的信号强度与服务小区的信号强度的差值等等。所述特殊的参考信号是标准协议为飞行终端定义的特殊的参考信号,当飞行终端在空中时就会发送所述特殊的参考信号,当基站收到所述特殊的参考信号时,则认为飞行终端在空中。
可以理解,不限于上述举例的状态参数,本申请实施例的状态参数还可以是温度等等,此处不作具体限定。
在本申请实施例中,状态参数可以是通过设置在飞行终端内的状态监测元件测量得到的。在具体实现中,状态监测元件可以是激光测高模块,能够通过激光传输的时间测量出飞行终端的高度;状态监测元件还可以是全球定位系统(Global Positioning System,GPS)模块,能够通过卫星直接测量出飞行终端的高度;状态监测元件还可以是气压测量模块或者重力加速度测量模块等等,能够检测得到飞行终端的气压或者重力加速度;状态监测元件还可以是信号接收器,通过对飞行终端的邻区的信号进行测量,从而得到飞行终端的邻区数量和/或邻区测量值。
S102:飞行终端根据状态参数生成状态指示。
在本申请实施例中,状态指示用于指示飞行终端的飞行状态。例如,飞行终端的飞行状态是指飞行终端是在空中还是在地面。空中可以是指大于网络设备(例如,基站)的高度,地面可以是指小于网络设备(例如,基站)的高度。为了简便起见,下文中均以地面和空中为例进行说明。状态指示至少包括以下两种实现方式:
在第一种方式中,状态指示用于承载状态参数,其中,状态参数为高度、邻区强度、邻区数量以及特殊的参考信号中的至少一种。即,飞行终端根据状态参数生成状态指示发送给网络设备,网络设备在接收到飞行终端发送的状态指示之后,根据状态指示携带的状态参数确定飞行终端是在空中还是在地面。
在第二种方式中,状态指示用于指示飞行终端的飞行状态。例如,飞行终端根据状态参数判断飞行终端是在空中还是在地面,并根据判断结果生成状态指示发送给网络设备。网络设备接收到飞行终端发送的状态指示之后,根据状态指示携带的判断结果获知飞行终端是在空中还是在地面。
当状态指示采用第二种方式时,飞行终端可以将状态参数与状态阈值进行比较,从而判断飞行终端是在空中还是在地面。其中,所述状态阈值可以是基站发送给飞行终端的,也可以是标准协议定义的,本发明不限定。具体地,飞行终端将状态参数与状态阈值进行比较,从而判断飞行终端是在空中还是在地面的方式至少包括以下四种:
(1)、当状态参数是高度时,飞行终端接收基站发送的高度阈值,飞行终端将测量到的高度值与所述高度阈值进行对比。如果测量到的高度大于高度阈值,则判断飞行终端是在空中,如果测量到的高度小于或者等于高度阈值,则判断飞行终端是在地面。
(2)、当状态参数是气压和/或重力加速度时,飞行终端接收基站发送的气压阈值和/或重力加速度阈值,飞行终端将测量到的气压和/或重力加速度与对应的阈值对比。如果测量到的气压和/或重力加速度小于对应的阈值,则判断飞行终端是在空中,如果测量到的气压和/或重力加速度大于或者等于对应的阈值,则判断飞行终端是在地面。
(3)、当状态参数是邻区强度时,飞行终端接收基站发送的邻区强度阈值,飞行终端将测量到的邻区信号强度与服务小区的信号强度对比。如果邻区信号强度与服务小区的信号强度之差小于邻区强度阈值,则判断飞行终端是在空中,如果邻区信号强度与服务小区的信号强度之差大于或者等于邻区强度阈值,则判断飞行终端是在地面。
(4)、当状态参数是邻区个数时,飞行终端接收基站发送的邻区个数阈值,飞行终端将测量到的邻区个数与邻区个数阈值进行对比。如果邻区个数大于邻区个数阈值,则判断飞行终端是在空中,如果邻区个数小于或者等于邻区个数阈值,则判断飞行终端是在地面。
可以理解,为了提高判断的准确性,飞行终端还可以使用训练好的估计模型来确定飞行终端的飞行高度,其中,状态参数作为估计模型的输入,判断结果为估计模型的输出。具体实施时,可以使用大量的已知状态参数作为输入,使用已知状态参数对应的判断结果作为输出对估计模型进行训练
S103:飞行终端向网络设备发送状态指示。相应地,网络设备接收飞行终端发送的状态指示。
S104:网络设备根据所述状态指示确定指示信息。
S105:网络设备向所述飞行终端发送的指示信息。相应地,飞行终端接收网络设备发送的指示信息。其中,所述指示信息用于指示所述飞行终端要切换的目标参数配置,所述目标参数配置为第一参数配置或者第二参数配置。例如,当所述状态指示用于指示飞行终端是在地面时,所述指示信息用于指示所述飞行终端要切换的目标参数配置为第一参数配置;当所述状态指示用于指示飞行终端是在空中时,所述指示信息用于指示所述飞行终端要切换的目标参数配置为第二参数配置。
S106:飞行终端根据所述指示信息从多种参数配置中选择目标参数配置。
在本申请实施例中,在网络设备向所述飞行终端发送的指示信息之前,网络设备通过第一空口消息将所述多种参数配置发送给所述飞行终端。在网络设备向飞行终端发送多种配置参数之后,网络设备通过第二空口信令将指示信息发送给飞行终端。
在本申请实施例中,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述第一空口消息为第一广播消息;如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述第一空口消息为第一RRC消息。其中,所述第一RRC消息为第一RRC连接建立消息或者第一RRC连接重配置消息。可以理解,所述第一空口消息不限于上述的举例,在其他的实施例中,第一空口消息还可以是其他的消息,此处不作具体限定。
在本申请实施例中,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述第二空口消息为第二广播消息;如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述第二空口消息为第二RRC消息,其中,所述第二RRC消息为第二RRC连接建立消息或者第二RRC连接重配置消息。可以理解,所述第二空口消息不限于上述的举例,在其他的实施例中,第二空口消息还可以是其他的消息,此处不作具体限定。
在本申请实施例中,在随机接入网络设备之前,所述飞行终端相对于所述网络设备的连接状态为空闲态(RRC_IDLE)。经过随机接入过程,所述飞行终端相对于所述网络设备的连接状态从空闲态(RRC_IDLE)转移到连接态(RRC_CONNECTED)。
S107:飞行终端使用所述目标参数配置对所述飞行终端进行配置。
在一具体的实施例中,所述第一参数配置为地面参数配置,所述第二参数配置为空中参数配置,其中,所述地面参数配置是根据飞行终端在地面的特性设置的参数配置,所述空中参数配置是根据飞行终端在空中的特性设置的参数配置。下面分别对地面参数配置以及空中参数配置进行详细的介绍。
(1)、所述地面参数配置包括第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个。
具体地,第一小区选择与重选参数包括第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值、第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个。
具体地,第一测量相关参数包括第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个。
具体地,第一无线链路失败参数包括第一失步门限。
具体地,第一功控参数包括第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
(2)、所述空中参数配置包括第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个。
具体地,第二小区选择与重选参数包括第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值、第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个。
具体地,第二测量相关参数包括第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个。
具体地,第二无线链路失败参数包括第二失步门限。
具体地,第二功控参数包括第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
为了便于将地面参数配置与空中参数配置进行对比,下面示出了如表1所示的地面参数配置与空中参数配置对比表。
表1 地面参数配置与空中参数配置对比表
Figure PCTCN2018093731-appb-000011
Figure PCTCN2018093731-appb-000012
通过对比空中参数配置与地面参数配置,可以发现,空中参数配置相对于地面参数配置的不同之处包括:
(1)针对小区选择与重选参数。
A、空中参数配置修改了小区质量值阈值、小区接收信号值阈值、小区质量值的偏置值阈值以及小区接收信号值阈值的偏置值,并增加了接入信噪比阈值以及接入信噪比阈值的偏置值。其中,所述接入信噪比阈值为允许所述飞行终端接入小区的信噪比阈值,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的信噪比阈值的偏置值。
如前所述,飞行终端接收到的服务小区的无线信号的信号强度变强,邻小区的干扰信号的信号强度也变强,即存在信号强度很高,干扰信号也很大的小区。所以,空中参数配置除了修改了小区质量值阈值、小区接收信号值阈值、小区质量值阈值的偏置值以及小区接收信号值阈值的偏置值的值之外,还增加了接入信噪比阈值以及接入信噪比阈值的偏置值,以确保飞行终端在执行新的S准则选择合适的小区进行驻留时,能够选择到最优的小区进行驻留。
其中,新的S准则的条件如下:
Srxlev>0且Squal>0且
Srxlev=Q rxlevmeas-(Q rxlevmin+Q rxlevminoffest)-Pcompensation;
Squal=Q qualmeas-(Q qualmin+Q qualminoffest);
S SINR=Q SINRmeas-(Q SINRmin+Q SINRminoffest)
其中,Srxlev为小区选择接收信号等级值,Squal为小区选择质量值,S SINR为小区选择信噪比,Q rxlevmeas为小区测量接收信号等级值,Q qualmeas为小区测量质量值,Q SINRmeas为小区测量信噪比,Q rxlevmin为小区接收信号值阈值,Q qualmin为小区质量值阈值,Q SINRmin为接入信噪比阈值,Q rxlevminoffest为小区接收信号值阈值的偏置值,Q qualminoffest为小区质量值阈值的偏置值,Q SINRminoffest为接入信噪比阈值的偏置值,Pcompensation为功率补偿。
B、空中参数配置修改了小区禁止接入指示,并增加了禁飞区禁止接入指示以及高度禁止接入指示。其中,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区。
如前所述,飞行终端在空中飞行时,有些小区是禁止飞行类的飞行终端接入的,另外,在禁飞区必须禁止接入网络设备,而且,在飞行高度低于法定高度时也禁止接入网络设备。所以,空中参数配置修改了小区禁止接入指示的值,令小区禁止接入指示还可以用于指示禁止飞行终端接入。此外,空中参数配置还增加了禁飞区禁止接入指示以及高度禁止接入指示,以禁止在禁飞区必须接入网络设备,而且,禁止在飞行高度低于法定高度时接入网络设备。
C、空中参数配置增加了小区频率优先级别。其中,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别。
可以理解,一些小区的工作频率比较适合飞行终端接入,所以,空中参数配置还可以增加小区频率优先级别,以令飞行终端可以优先选择频率合适的小区进行接入。
(2)针对跟踪区列表。
空中参数配置修改了跟踪区列表。
如前所述,在空中,小区的覆盖区域被分割为多个不连续的块,即,小区的覆盖区域更为碎片化,而且,飞行终端在空中能够测量到更多的小区,所以,飞行终端能够测量到更多的跟踪区,所以,需要对跟踪区列表进行修改,以容纳更多的跟踪区。
(3)针对测量相关参数。
A、空中参数配置修改了修改A1事件的迟滞参数、A1事件的门限参数、A2事件的迟滞参数、A2事件的门限参数、A3事件的频率偏移、A3事件的小区偏置、A3事件的迟滞参数、A3事件的偏置、A4事件的频率偏移、A4事件的小区偏置、A4事件的迟滞参数、A4事件的门限参数以及时间触发参数。
如前所述,在空中,小区的覆盖区域被分割为多个不连续的块,即,小区的覆盖区域更为碎片化,飞行终端更容易飞离连续的覆盖区域,也更容易触发A1事件、A2事件、A3事件以及A4事件。所以,需要修改A1事件的迟滞参数、A1事件的门限参数、A2事件的迟滞参数、A2事件的门限参数、A3事件的频率偏移、A3事件的小区偏置、A3事件的迟滞参数、A3事件的偏置、A4事件的频率偏移、A4事件的小区偏置、A4事件的迟滞参数、A4事件的门限参数以及时间触发参数等等,以避免频繁地触发A1事件、A2事件、A3事件以及A4事件。
B、空中参数配置修改了最大上报小区个数。
如前所述,飞行终端在空中能够测量到更多的小区,所以,空中参数配置需要修改最大上报小区个数,以上报更多小区的测量结果,保证所测量小区的完整性,避免切换的失败。
C、空中参数配置修改了日志测量区域。
如前所述,飞行终端在空中能够测量到更多的小区,相应地,飞行终端需要执行日志测量的区域的数量也相应增多了,所以,空中参数配置需要修改日志测量区域,以保证飞行终端的监控更为精确。
(4)针对无线链路失败参数。
空中参数配置修改了失步门限。
如前所述,飞行终端受到的无线信号干扰比较大,容易出现无线链路失败的问题,而一旦出现了无线链路失败,会导致数据传输中断,数据吞吐量下降。所以,为了减少无线链路失败发生的概率,需要对无线链路失败参数中的失步门限进行修改。
(5)针对功控参数。
空中参数配置修改了PDCCH的功率、PUSH在子载波c上的功率、基站期望接收功率以及PRACH功控参数。
如前所述,飞行终端在空中飞行时,无线电传播没有障碍,对地面上的终端设备的干扰变大。所以,需要对空中参数配置中的PDCCH的功率、PUSH在子载波c上的功率、基站期望接收功率以及PRACH功控参数的值进行修改,以减少对地面上的终端设备的干扰。
如图4所示,本申请实施例提供了第二种选择参数配置的方法。如图4所示,本申请实施例的选择参数配置包括如下步骤:
S201:飞行终端对环境进行测量,从而获得状态参数。
S202:飞行终端根据状态参数生成状态指示。
S203:飞行终端向网络设备发送状态指示。相应地,网络设备接收飞行终端发送的状态指示。其中,所述状态指示用于指示飞行终端的飞行状态;
S204:网络设备根据所述状态指示从多种参数配置中选择目标参数配置。其中,所述多种参数配置至少包括第一参数配置以及第二参数配置。
S205:网络设备向所述飞行终端发送的目标参数配置。相应地,飞行终端接收网络设备发送的目标参数配置。
在本申请实施例中,目标参数配置被携带于空口消息中。如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述空口消息为广播消息。如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述空口消息为RRC消息,其中,所述RRC消息为RRC连接建立消息或者RRC连接重配置消息。
S206:飞行终端将当前参数配置更新为目标参数配置;
S207:飞行终端使用所述目标参数配置对所述飞行终端进行配置。
可以看出,图4所示的实施例与图3所示的实施例的不同之处在于:图4所示的实施例中,网络设备是将目标参数配置发送给飞行终端,飞行终端接收到目标参数配置之后,将当前配置更新为目标参数配置。图3所示的实施例中,网络设备是将指示信息发送给飞行终端,飞行终端接收到指示信息之后,根据指示信息选择目标参数配置,再将当前配置更新为目标参数配置。其他的内容请参见图3所示的实施例以及相关描述,此处不再重复赘述。
如图5所示,本申请实施例提供了第三种选择参数配置的方法。如图5所示,本申请实施例的选择参数配置包括如下步骤:
S301:网络设备通过空口消息向飞行终端发送所述多种参数配置。相应地,飞行终端通过空口信息接收网络设备发送的所述多种参数配置。
在本申请实施例中,如果所述飞行终端相对于所述网络设备的连接状态为空闲态,则所述空口消息为广播消息。如果所述飞行终端相对于所述网络设备的连接状态为连接态,则所述空口消息为RRC消息,其中,所述RRC消息为RRC连接建立消息或者RRC连接重配置消息。
S302:飞行终端对飞行环境进行测量,从而获得状态参数,其中,所述状态参数包括高度、邻区数量以及邻区测量值中的至少一个。
S303:飞行终端根据状态参数确定所述飞行终端的飞行状态。
S304:飞行终端根据所述飞行状态从多种参数配置中选择目标参数配置,其中,所述多种参数配置至少包括第一参数配置以及第二参数配置。
S305:飞行终端使用所述目标参数配置对所述飞行终端进行配置。
可以看出,图5所示的实施例对比图3以及图4所示的实施例的不同之处在于:飞行终端自行通过状态参数确定飞行终端的飞行状态,并根据飞行状态从多种参数配置中选择 目标参数配置。即,图5所示的实施例无需网络设备参与选择目标参数配置的过程。其他的内容请参见图3所示的实施例以及相关描述,此处不再重复赘述。
需要说明的是,在上述图3至图5的例子中,飞行终端的飞行状态被划分为在地面上以及在空中。当飞行终端的飞行状态是在地面上时,选择的目标参数配置为第一参数配置,当飞行终端的飞行状态是在空中上时,选择的目标参数配置为第二参数配置。但是,在实际应用中,飞行终端的飞行状态还可以被划分为在地面上、在空中以及在高空中。当飞行终端的飞行状态是在地面上时,选择的目标参数配置为第一参数配置,当飞行终端的飞行状态是在空中上时,选择的目标参数配置为第二参数配置,当飞行终端的飞行状态是在高空上时,选择的目标参数配置为第三参数配置。可以理解,飞行终端的飞行状态还可以划分为更多的层次,本发明不作具体限定。
下面介绍本申请实施例提供的所述飞行终端和所述网络设备,可分别如图6、图7所示的飞行终端100和网络设备200。
如图6所示,本申请实施例还提供一种飞行终端100。本申请实施例的飞行终端100至少包括:处理器101、存储器102(一个或多个计算机可读存储介质)、发射器103、接收器104以及输入输出系统105。这些部件可在一个或多个通信总线106上通信。
输入输出系统105主要用于实现飞行终端100和外部环境之间的交互功能。具体实现中,输入输出系统105可包括传感器控制器1053。其中,传感器控制器1053可与状态监测元件1056耦合。状态监测元件1056用于对飞行终端的飞行状态进行检测,从而获得状态参数。例如,高度、气压、重力加速度、邻区数量、邻区测量值等等。在具体的实现中,状态监测元件1056可以是激光测高模块,能够通过激光传输的时间测量出飞行终端的高度;状态监测元件1056还可以是全球定位系统模块,能够通过卫星直接测量出飞行终端的高度;状态监测元件1056还可以是气压测量模块或者重力加速度测量模块等等,能够检测得到飞行终端的气压或者重力加速度;状态监测元件1056还可以是信号接收器,通过对飞行终端的邻区的信号进行测量,从而得到飞行终端的邻区数量和/或邻区测量值。不限于上述举例,状态监测元件1051还可以是其他的模块,例如温度检测模块等等,本申请不作具体限定。可选地,输入输出系统105还可以包括触摸屏控制器1051以及音频控制器1052,各个控制器可与各自对应的外围设备(触摸屏1054以及音频电路1055)耦合。
处理器101可集成包括:一个或多个CPU、时钟模块以及电源管理模块。所述时钟模块主要用于为处理器101产生数据传输和时序控制所需要的时钟。所述电源管理模块主要用于为处理器101、发射器103、接收器104以及状态监测元件105等提供稳定的、高精确度的电压。
存储器102与处理器101耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器102可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器102可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器102还可以存储状态监控元件检测到的状态参数。例如,高度、气压、重力加速度、 邻区数量、邻区测量值等等。存储器102还可以用于存储状态监测元件105检测到的状态参数,以及,用于存储网络设备发送的多种参数配置或者目标参数配置,以对飞行终端进行配置,从而使得飞行终端工作在合适的状态。
发射器103以及接收器104分别用于发送以及接收射频信号。即,发射器103通过射频信号与通信网络和其他通信设备通信,接收器104通过射频信号与通信网络和其他通信设备通信。发射器103以及接收器104可以是分别单独设置,也可以是一体化设置。当发射器103以及接收器104一体化设置时,可以被称为通信模块,收发器或者射频模块等等。具体实现中,发射器103以及接收器104可以均可以采用单天线、双天线或者天线阵列等等,从而构成单输入单输出(simple input simple output,SISO)、单输入多输出(simple input multiple output,SIMO)、多输入单输出(multiple input simple output,MISO)以及多输入多输出(multiple input multiple output,MIMO)等等多种实现形式。
如图7所示,本申请实施例还提供一种网络设备200。本申请实施例的网络设备200至少包括:处理器201、存储器202(一个或多个计算机可读存储介质)、发射器203以及接收器204。这些部件可在一个或多个通信总线205上通信。
处理器201具有强大的运算能力,能够快速地进行运算。处理器201通过运行或执行存储在存储器202内的软件程序和/或模块,以及调用存储在存储器202内的数据,执行网络设备200的各种功能和处理数据,从而对网络设备200进行整体监控。
存储器202与处理器201耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器202可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器202还可以存储飞行终端发送的状态参数,例如,高度、气压、重力加速度、邻区数量、邻区测量值等等。存储器102还可以用于存储多种参数配置,其中,参数配置可以用于对飞行终端进行配置,从而使得飞行终端工作在合适的状态。
发射器103以及接收器104分别用于发送以及接收射频信号。即,发射器103通过射频信号与通信网络和其他通信设备通信,接收器104通过射频信号与通信网络和其他通信设备通信。发射器103以及接收器104可以是分别单独设置,也可以是一体化设置。当发射器103以及接收器104一体化设置时,可以被称为通信模块,收发器或者射频模块等等。具体实现中,发射器103以及接收器104可以均可以采用单天线、双天线或者天线阵列等等,从而构成单输入单输出(simple input simple output,SISO)、单输入多输出(simple input multiple output,SIMO)、多输入单输出(multiple input simple output,MISO)以及多输入多输出(multiple input multiple output,MIMO)等等多种实现形式。
可以理解的,图6所示的飞行终端100可以是前述全部方法实施例中的所述飞行终端,图7所示的网络设备200可以是前述全部方法实施例中的所述网络设备。下面以图3实施例为例,详细说明飞行终端100中的各个部件和网络设备200中的各个部件在本申请实施例中的协作关系。
1、状态监测元件1056对环境进行测量,从而获得状态参数。其中,状态参数可以是 高度、气压、重力加速度、邻区数量、邻区测量值和特殊参考信号中的至少一种。状态监测元件1056获得状态参数的内容请参阅图3所示的实施例中相关内容的描述,此处不再展开描述。
2、状态监测元件1056将状态参数发送给处理器101。相应地,处理器101接收状态监测元件1056发送给处理器101的状态参数。
3、处理器101根据状态参数生成状态指示。其中,状态指示可以用于承载状态参数,或者,用于指示飞行终端的飞行状态,例如,飞行终端是在地面或者空中。状态指示的相关内容可以参见图3所示的实施例中相关内容的描述,此处不再展开描述。
4、处理器101将状态指示发送给发射器103。相应地,发射器103接收处理器101发送的状态指示。
5、发射器103将状态指示发送给接收器204。相应地,接收器204接收发射器103发送的状态指示。
6、接收器204将状态指示发送给处理器201。相应地,处理器201接收接收器204发送的状态指示。
7、处理器201根据所述状态指示确定指示信息。其中,指示信息用于指示所述飞行终端要切换的目标参数配置,所述目标参数配置为第一参数配置或者第二参数配置。指示信息的相关内容可以参见图3所示的实施例中相关内容的描述,此处不再展开描述。
8、处理器201将指示信息发送给发射器203。相应地,发射器203接收处理器201发送的指示信息。
9、发射器203向接收器104发送指示信息。相应地,接收器104接收发射器203发送的指示信息。
10、接收器104将指示信息发送给处理器101。相应地,处理器101接收接收器104发送的指示信息。
11、处理器101根据所述指示信息从多种参数配置中选择目标参数配置。例如,当所述状态指示用于指示飞行终端是在地面时,所述指示信息用于指示所述飞行终端要切换的目标参数配置为第一参数配置;当所述状态指示用于指示飞行终端是在空中时,所述指示信息用于指示所述飞行终端要切换的目标参数配置为第二参数配置。在一具体的实施例中,所述第一参数配置为地面参数配置,所述第二参数配置为空中参数配置,其中,所述地面参数配置是根据飞行终端在地面的特性设置的参数配置,所述空中参数配置是根据飞行终端在空中的特性设置的参数配置。
12、处理器101使用所述目标参数配置对所述飞行终端进行配置。
可以理解,图8实施例中未提及的内容以及各个步骤的具体实现,请参考图3实施例,此处不再赘述。图4以及图5所示的实施例与图3所示的实施例大体相似,此处不再展开描述。
图9示出了本发明实施例提供的飞行终端和网络设备的一种实施例,以及二者构成的通信系统的结构示意图。如图9所示,飞行终端300和网络设备400之间可存在通信连接,例如射频连接,可实现二者之间的数据通信。下面展开描述。
如图9所示,本申请实施例的飞行终端300包括:接收单元301、选择单元302、配置单元303、发送单元304以及存储单元305。
接收单元301用于接收网络设备发送的指示信息,其中,所述指示信息用于指示所述飞行终端要切换的目标参数配置的标识;
选择单元302用于根据所述指示信息从存储单元304中存储的多种参数配置中选择与所述标识对应的参数配置作为目标参数配置,其中,所述多种参数配置至少包括第一参数配置以及第二参数配置;
配置单元303用于使用所述目标参数配置对所述飞行终端进行配置。
如图9所示,本申请实施例的网络设备400包括:接收单元401、确定单元402以及发送单元403。
接收单元401用于接收飞行终端发送的状态指示,其中,所述状态指示用于指示所述飞行终端的飞行状态;
确定单元402用于根据所述状态指示确定指示信息,其中,所述指示信息用于指示所述飞行终端要切换的目标参数配置,所述目标参数配置为第一参数配置或者第二参数配置;
发送单元403用于向所述飞行终端发送的指示信息。
可以理解,图9实施例中未提及的内容以及各个功能单元的具体实现,请参考图3实施例,这里不再赘述。
图9示出了本发明实施例提供的飞行终端和网络设备的一种实施例,以及二者构成的通信系统的结构示意图。如图9所示,飞行终端300和网络设备400之间可存在通信连接,例如射频连接,可实现二者之间的数据通信。下面展开描述。
图9示出了本发明实施例提供的飞行终端和网络设备的一种实施例,以及二者构成的通信系统的结构示意图。如图9所示,飞行终端300和网络设备400之间可存在通信连接,例如射频连接,可实现二者之间的数据通信。下面展开描述。
如图10所示,本申请实施例的飞行终端500包括:接收单元501、更新单元502、配置单元503、发送单元504以及存储单元505。
接收单元501用于接收网络设备根据所述飞行终端的飞行状态发送的目标参数配置,其中,所述目标参数配置包括第一参数配置或者第二参数配置;
更新单元502用于将当前参数配置更新为目标参数配置;
配置单元503用于使用所述目标参数配置对所述飞行终端进行配置。
如图10所示,本申请实施例的网络设备600包括:接收单元601、确定单元602以及发送单元603。
接收单元601用于接收飞行终端发送的状态指示,其中,所述状态指示用于指示所述飞行终端的飞行状态;
确定单元602用于根据所述状态指示确定与所述飞行状态对应的目标参数配置,其中,所述目标参数配置包括第一参数配置或第二参数配置;
发送单元603用于向所述飞行终端发送目标参数配置。
可以理解,图10实施例中未提及的内容以及各个功能单元的具体实现,请参考图4实施例,这里不再赘述。
另外,本发明实施例还提供了一种通信系统,所述通信系统包括飞行终端和网络设备。
在一种实施例中,所述通信系统可以是图9所示的通信系统,所述飞行终端可以是飞行终端300,所述网络设备可以是网络设备400。或者,所述飞行终端可以是图6实施例描述的飞行终端100,所述网络设备可以是图7实施例描述的网络设备200。
在另一种实施例中,所述通信系统可以是图10所示的通信系统,所述飞行终端可以是飞行终端500,所述网络设备可以是网络设备600。或者,所述飞行终端可以是图6实施例描述的飞行终端100,所述网络设备可以是图7实施例描述的网络设备200。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (49)

  1. 一种测量报告上报的方法,其特征在于,包括如下步骤:
    飞行终端接收网络设备发送的高度阈值和邻区个数阈值中的一个或者多个;
    飞行终端根据所述高度阈值和邻区个数阈值中的一个或者多个确定是否上报测量结果。
  2. 根据权利要求1所述的方法,其特征在于,飞行终端根据所述高度阈值和邻区个数阈值中的一个或者多个确定是否上报测量结果包括:
    在飞行终端的情况满足以下:高度处于特殊状态和邻小区个数处于特殊状态中的一个或者多个的情况下,所述飞行终端确定上报测量结果,其中,所述高度处于特殊状态是所述高度大于第一高度阈值或者所述高度小于第二高度阈值,所述邻小区个数处于特殊状态是所述邻小区个数大于第一邻区个数阈值或者所述邻小区个数小于第二邻区个数阈值,当所述飞行终端接收到网络发送的高度阈值时,所述测量结果包括高度。
  3. 根据权利要求1或2所述的方法,其特征在于,
    所述高度阈值还用于确定所述飞行终端在空中还是在地面;
    所述邻区个数阈值还用于确定所述飞行终端在空中还是在地面。
  4. 根据权利要求1至3任一权利要求所述的方法,其特征在于,
    所述高度阈值和邻区个数阈值中的一个或者多个被承载于无线资源控制RRC连接重配置消息中。
  5. 一种测量报告上报的方法,其特征在于,包括如下步骤:
    网络设备向飞行终端发送高度阈值和邻区个数阈值中的一个或者多个;
    在飞行终端的情况满足以下:高度处于特殊状态和邻小区个数处于特殊状态中的一个或者多个的情况下,所述网络设备接收所述飞行终端发送的测量报告,其中,所述高度处于特殊状态是所述高度大于第一高度阈值或者所述高度小于第二高度阈值,所述邻小区个数处于特殊状态是所述邻小区个数大于第一邻区个数阈值或者所述邻小区个数小于第二邻区个数阈值;
    其中,当网络设备向飞行终端发送高度阈值时,所述测量报告还包括高度。
  6. 根据权利要求5所述的方法,其特征在于,
    所述高度阈值还用于确定所述飞行终端在空中还是在地面;
    所述邻区个数阈值还用于确定所述飞行终端在空中还是在地面。
  7. 根据权利要求5或6所述的方法,其特征在于,
    所述高度阈值和邻区个数阈值中的一个或者多个被承载于无线资源控制RRC连接重配置消息中。
  8. 一种飞行终端,其特征在于,包括接收模块以及确定模块,
    所述接收模块用于接收网络设备发送的高度阈值和邻区个数阈值中的一个或者多个;
    所述确定模块用于根据所述高度阈值和邻区个数阈值中的一个或者多个确定是否上报测量结果。
  9. 根据权利要求8所述的飞行终端,其特征在于,
    所述确定模块用于在飞行终端的情况满足以下:高度处于特殊状态和邻小区个数处于 特殊状态中的一个或者多个的情况下,所述飞行终端确定上报测量结果,其中,所述高度处于特殊状态是所述高度大于第一高度阈值或者所述高度小于第二高度阈值,所述邻小区个数处于特殊状态是所述邻小区个数大于第一邻区个数阈值或者所述邻小区个数小于第二邻区个数阈值,当所述飞行终端接收到网络发送的高度阈值时,所述测量结果包括高度。
  10. 根据权利要求8或9所述的飞行终端,其特征在于,
    所述高度阈值还用于确定所述飞行终端在空中还是在地面;
    所述邻区个数阈值还用于确定所述飞行终端在空中还是在地面。
  11. 根据权利要求8至10任一权利要求所述的飞行终端,其特征在于,
    所述高度阈值和邻区个数阈值中的一个或者多个被承载于无线资源控制RRC连接重配置消息中。
  12. 一种网络设备,其特征在于,包括接收模块以及发送模块:
    所述发送模块用于向飞行终端发送高度阈值和邻区个数阈值中的一个或者多个;
    所述接收模块用于在飞行终端的情况满足以下:高度处于特殊状态和邻小区个数处于特殊状态中的一个或者多个的情况下,所述网络设备接收所述飞行终端发送的测量报告,其中,所述高度处于特殊状态是所述高度大于第一高度阈值或者所述高度小于第二高度阈值,所述邻小区个数处于特殊状态是所述邻小区个数大于第一邻区个数阈值或者所述邻小区个数小于第二邻区个数阈值;
    其中,当网络设备向飞行终端发送高度阈值时,所述测量报告还包括高度。
  13. 根据权利要求12所述的网络设备,其特征在于,
    所述高度阈值还用于确定所述飞行终端在空中还是在地面;
    所述邻区个数阈值还用于确定所述飞行终端在空中还是在地面。
  14. 根据权利要求12或13所述的网络设备,其特征在于,
    所述高度阈值和邻区个数阈值中的一个或者多个被承载于无线资源控制RRC连接重配置消息中。
  15. 一种飞行终端,其特征在于,包括耦合的处理器和接收器,
    所述接收器用于接收网络设备发送的高度阈值和邻区个数阈值中的一个或者多个;
    所述处理器用于根据所述高度阈值和邻区个数阈值中的一个或者多个确定是否上报测量结果。
  16. 根据权利要求15所述的飞行终端,其特征在于,
    所述处理器用于在飞行终端的情况满足以下:高度处于特殊状态和邻小区个数处于特殊状态中的一个或者多个的情况下,所述飞行终端确定上报测量结果,其中,所述高度处于特殊状态是所述高度大于第一高度阈值或者所述高度小于第二高度阈值,所述邻小区个数处于特殊状态是所述邻小区个数大于第一邻区个数阈值或者所述邻小区个数小于第二邻区个数阈值,当所述飞行终端接收到网络发送的高度阈值时,所述测量结果包括高度。
  17. 根据权利要求15或16所述的飞行终端,其特征在于,
    所述高度阈值还用于确定所述飞行终端在空中还是在地面;
    所述邻区个数阈值还用于确定所述飞行终端在空中还是在地面。
  18. 根据权利要求15至17任一权利要求所述的飞行终端,其特征在于,
    所述高度阈值和邻区个数阈值中的一个或者多个被承载于无线资源控制RRC连接重配置消息中。
  19. 一种网络设备,其特征在于,包括接收器和发送器:
    所述发送器用于向飞行终端发送高度阈值和邻区个数阈值中的一个或者多个;
    所述接收器用于在飞行终端的情况满足以下:高度处于特殊状态和邻小区个数处于特殊状态中的一个或者多个的情况下,所述网络设备接收所述飞行终端发送的测量报告,其中,所述高度处于特殊状态是所述高度大于第一高度阈值或者所述高度小于第二高度阈值,所述邻小区个数处于特殊状态是所述邻小区个数大于第一邻区个数阈值或者所述邻小区个数小于第二邻区个数阈值;
    其中,当网络设备向飞行终端发送高度阈值时,所述测量报告还包括高度。
  20. 根据权利要求19所述的网络设备,其特征在于,
    所述高度阈值还用于确定所述飞行终端在空中还是在地面;
    所述邻区个数阈值还用于确定所述飞行终端在空中还是在地面。
  21. 根据权利要求19或20所述的网络设备,其特征在于,
    所述高度阈值和邻区个数阈值中的一个或者多个被承载于无线资源控制RRC连接重配置消息中。
  22. 一种计算机存储介质,其特征在于,所述非瞬态存储介质存储有程序,所述程序被处理器执行时实现如权利要求1至21任一权利要求所述的方法。
  23. 一种通讯系统,其特征在于,包括网络设备以及飞行终端,其中,所述网络设备与所述飞行终端之间能够进行通讯,其中,当所述飞行终端为如权利要求8-11任一权利要求所述的飞行终端时,所述网络设备为如权利要求12-14任一权利要求所述的网络设备;或者,当所述飞行终端为如权利要求15-18任一权利要求所述的飞行终端时,所述网络设备为如权利要求19-21任一权利要求所述的网络设备。
  24. 一种选择参数配置的方法,其特征在于,包括如下步骤:
    飞行终端接收网络设备发送的指示信息,其中,所述指示信息用于指示所述飞行终端要切换的目标参数配置的标识;
    飞行终端根据所述指示信息从多种参数配置中选择与所述标识对应的参数配置作为目标参数配置,其中,所述多种参数配置至少包括第一参数配置以及第二参数配置;
    飞行终端使用所述目标参数配置对所述飞行终端进行配置。
  25. 根据权利要求24所述的方法,其特征在于,所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个;其中,
    第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个;
    第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第 一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个;
    第一无线链路失败参数包括:第一失步门限;
    第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
  26. 根据权利要求24所述的方法,其特征在于,所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个;其中,
    第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值、第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区;
    第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个;
    第二无线链路失败参数包括:第二失步门限;
    第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
  27. 一种选择参数配置的方法,其特征在于,包括如下步骤:
    网络设备接收飞行终端发送的状态指示,其中,所述状态指示用于指示所述飞行终端的飞行状态;
    网络设备根据所述状态指示确定指示信息,其中,所述指示信息用于指示所述飞行终端要切换的目标参数配置,所述目标参数配置为第一参数配置或者第二参数配置;
    网络设备向所述飞行终端发送的指示信息。
  28. 根据权利要求27所述的方法,其特征在于,所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个;其中,
    第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值、第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个;
    第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一 A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个;
    第一无线链路失败参数包括:第一失步门限;
    第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
  29. 根据权利要求27所述的方法,其特征在于,所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个;其中,
    第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值以及第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区;
    第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个;
    第二无线链路失败参数包括:第二失步门限;
    第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
  30. 一种选择参数配置的方法,其特征在于,包括如下步骤:
    飞行终端接收网络设备根据所述飞行终端的飞行状态发送的目标参数配置,其中,所述目标参数配置包括第一参数配置或者第二参数配置;
    飞行终端将当前参数配置更新为目标参数配置;
    飞行终端使用所述目标参数配置对所述飞行终端进行配置。
  31. 根据权利要求30所述的方法,其特征在于,所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个;其中,
    第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值、第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个;
    第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个;
    第一无线链路失败参数包括:第一失步门限;
    第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
  32. 根据权利要求30述的方法,其特征在于,所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个;其中,
    第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值、第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区;
    第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个;
    第二无线链路失败参数包括:第二失步门限;
    第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
  33. 一种选择参数配置的方法,其特征在于,包括如下步骤:
    网络设备接收飞行终端发送的状态指示,其中,所述状态指示用于指示飞行终端的飞行状态;
    网络设备根据所述状态指示确定与所述飞行状态对应的目标参数配置,其中,所述目标参数配置包括第一参数配置或第二参数配置;
    网络设备向所述飞行终端发送所述目标参数配置。
  34. 根据权利要求33所述的方法,其特征在于,所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个;其中,
    第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第 一小区质量值阈值的偏置值、第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个;
    第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个;
    第一无线链路失败参数包括:第一失步门限;
    第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
  35. 根据权利要求33所述的方法,其特征在于,所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个;其中,
    第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值以及第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区;
    第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个;
    第二无线链路失败参数包括:第二失步门限;
    第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
  36. 一种飞行终端,其特征在于,包括耦合的处理器和接收器,
    所述接收器用于接收网络设备发送的指示信息,其中,所述指示信息用于指示所述飞行终端要切换的目标参数配置的标识;
    所述处理器用于根据所述指示信息从多种参数配置中选择与所述标识对应的参数配置作为目标参数配置,其中,所述多种参数配置至少包括第一参数配置以及第二参数配置;
    所述处理器用于使用所述目标参数配置对所述飞行终端进行配置。
  37. 根据权利要求36所述的飞行终端,其特征在于,所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第 一功控参数中的至少一个;其中,
    第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个;
    第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个;
    第一无线链路失败参数包括:第一失步门限;
    第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
  38. 根据权利要求36所述的飞行终端,其特征在于,所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个;其中,
    第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值、第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区;
    第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个;
    第二无线链路失败参数包括:第二失步门限;
    第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
  39. 一种网络设备,其特征在于,包括耦合的处理器和接收器、发射器,
    所述接收器用于接收飞行终端发送的状态指示,其中,所述状态指示用于指示所述飞行终端的飞行状态;
    所述处理器用于根据所述状态指示确定指示信息,其中,所述指示信息用于指示所述飞行终端要切换的目标参数配置,所述目标参数配置为第一参数配置或者第二参数配置;
    所述发射器用于向所述飞行终端发送的指示信息。
  40. 根据权利要求39所述的网络设备,其特征在于,所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个;其中,
    第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值、第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个;
    第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个;
    第一无线链路失败参数包括:第一失步门限;
    第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
  41. 根据权利要求39所述的网络设备,其特征在于,所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个;其中,
    第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值以及第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区;
    第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个;
    第二无线链路失败参数包括:第二失步门限;
    第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
  42. 一种飞行终端,其特征在于,包括耦合的处理器和接收器,
    所述接收器用于接收网络设备根据所述飞行终端的飞行状态发送的目标参数配置,其中,所述目标参数配置包括第一参数配置或者第二参数配置;
    所述处理器用于将当前参数配置更新为目标参数配置;
    所述处理器用于使用所述目标参数配置对所述飞行终端进行配置。
  43. 根据权利要求42所述的飞行终端,其特征在于,所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个;其中,
    第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个;
    第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个;
    第一无线链路失败参数包括:第一失步门限;
    第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
  44. 根据权利要求42所述的飞行终端,其特征在于,所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个;其中,
    第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值、第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区;
    第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个;
    第二无线链路失败参数包括:第二失步门限;
    第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
  45. 一种网络设备,其特征在于,包括耦合的处理器和接收器、发射器,
    所述接收器用于接收飞行终端发送的状态指示,其中,所述状态指示用于指示飞行终端的飞行状态;
    所述处理器用于根据所述状态指示确定与所述飞行状态对应的目标参数配置,其中,所述目标参数配置包括第一参数配置或第二参数配置;
    所述发射器用于向所述飞行终端发送所述目标参数配置。
  46. 根据权利要求45所述的网络设备,其特征在于,所述第一参数配置包括:第一小区选择与重选参数、第一跟踪区列表、第一测量相关参数、第一无线链路失败参数以及第一功控参数中的至少一个;其中,
    第一小区选择与重选参数包括:第一小区质量值阈值、第一小区接收信号值阈值、第一小区质量值阈值的偏置值、第一小区接收信号值阈值的偏置值以及第一小区禁止接入指示中的至少一个;
    第一测量相关参数包括:第一A1事件的迟滞参数、第一A1事件的门限参数、第一A2事件的迟滞参数、第一A2事件的门限参数、第一A3事件的频率偏移、第一A3事件的小区偏置、第一A3事件的迟滞参数、第一A3事件的偏置、第一A4事件的频率偏移、第一A4事件的小区偏置、第一A4事件的迟滞参数、第一A4事件的门限参数、第一最大小区个数、第一日志测量区域以及第一时间触发参数中的至少一个;
    第一无线链路失败参数包括:第一失步门限;
    第一功控参数包括:第一PDCCH的功率、第一PUSH在子载波c上的功率、第一基站期望接收功率以及第一PRACH功控参数中的至少一个。
  47. 根据权利要求45所述的网络设备,其特征在于,所述第二参数配置包括:第二小区选择与重选参数、第二跟踪区列表、第二测量相关参数、第二无线链路失败参数以及第二功控参数中的至少一个;其中,
    第二小区选择与重选参数包括:第二小区质量值阈值、第二小区接收信号值阈值、第二小区质量值阈值的偏置值以及第二小区接收信号值阈值的偏置值、接入信噪比阈值、接入信噪比阈值的偏置值、小区频率优先级别、第二小区禁止接入指示、高度禁止接入指示以及禁飞区禁止接入指示中的至少一个;其中,所述接入信噪比阈值为允许所述飞行终端接入小区的最低信噪比,所述接入信噪比阈值的偏置值为允许所述飞行终端接入小区的最低信噪比的偏置值,所述小区频率优先级别用于指示在所述飞行终端选择或者重选小区时,不同的小区频率各自对应的小区接入优先级别,所述高度禁止接入指示用于指示超过高度阈值的飞行终端禁止接入小区,所述禁飞区禁止接入指示用于指示位于禁飞区的飞行终端禁止接入小区;
    第二测量相关参数包括:第二A1事件的迟滞参数、第二A1事件的门限参数、第二A2事件的迟滞参数、第二A2事件的门限参数、第二A3事件的频率偏移、第二A3事件的小区偏置、第二A3事件的迟滞参数、第二A3事件的偏置、第二A4事件的频率偏移、第二A4事件的小区偏置、第二A4事件的迟滞参数、第二A4事件的门限参数、第二最大小区个数、第二日志测量区域以及第二时间触发参数中的至少一个;
    第二无线链路失败参数包括:第二失步门限;
    第二功控参数包括:第二PDCCH的功率、第二PUSH在子载波c上的功率、第二基站期望接收功率以及第二PRACH功控参数中的至少一个。
  48. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机 程序,所述计算机程序被处理器执行时实现如权利要求25至47任一权利要求所述的方法。
  49. 一种通讯系统,其特征在于,包括网络设备以及飞行终端,其中,所述网络设备与所述飞行终端之间能够进行通讯,其中,当所述飞行终端为如权利要求36-38任一权利要求所述的飞行终端时,所述网络设备为如权利要求39-41任一权利要求所述的网络设备;或者,当所述飞行终端为如权利要求41-43任一权利要求所述的飞行终端时,所述网络设备为如权利要求44-47任一权利要求所述的网络设备。
PCT/CN2018/093731 2017-06-29 2018-06-29 选择参数配置的方法、设备以及系统 WO2019001573A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019572649A JP6935520B2 (ja) 2017-06-29 2018-06-29 パラメータ構成選択方法、装置及びシステム
KR1020207002267A KR102288110B1 (ko) 2017-06-29 2018-06-29 파라미터 구성 선택 방법, 장치 및 시스템
BR112019027856-7A BR112019027856A2 (pt) 2017-06-29 2018-06-29 método de seleção de configuração de parâmetro, dispositivo, meio de armazenamento de computador e sistema
EP18823799.4A EP3637732A1 (en) 2017-06-29 2018-06-29 Method, device and system for selecting parameter configuration
US16/728,806 US20200137646A1 (en) 2017-06-29 2019-12-27 Parameter configuration selection method, device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710515534.1 2017-06-29
CN201710515534.1A CN109218344B (zh) 2017-06-29 2017-06-29 选择参数配置的方法、设备以及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/728,806 Continuation US20200137646A1 (en) 2017-06-29 2019-12-27 Parameter configuration selection method, device, and system

Publications (1)

Publication Number Publication Date
WO2019001573A1 true WO2019001573A1 (zh) 2019-01-03

Family

ID=64741157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/093731 WO2019001573A1 (zh) 2017-06-29 2018-06-29 选择参数配置的方法、设备以及系统

Country Status (7)

Country Link
US (1) US20200137646A1 (zh)
EP (1) EP3637732A1 (zh)
JP (1) JP6935520B2 (zh)
KR (1) KR102288110B1 (zh)
CN (1) CN109218344B (zh)
BR (1) BR112019027856A2 (zh)
WO (1) WO2019001573A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109842927B (zh) * 2017-11-24 2021-01-29 华为技术有限公司 上行控制的方法、装置和系统
JP2021119643A (ja) * 2018-04-05 2021-08-12 ソニーグループ株式会社 無線通信装置、通信装置および通信制御方法
CN112437470B (zh) * 2019-08-26 2022-07-19 中国移动通信有限公司研究院 一种小区重选方法及设备
CN114846850A (zh) * 2019-12-31 2022-08-02 华为技术有限公司 通信方法及装置
CN115244982A (zh) * 2020-03-10 2022-10-25 Oppo广东移动通信有限公司 测量方法、装置及设备
EP4201103A1 (en) 2020-10-22 2023-06-28 Apple Inc. Geographic boundary solutions for earth moving beams
CN113938964B (zh) * 2021-09-15 2023-06-06 中国联合网络通信集团有限公司 一种终端切换方法、装置、存储介质及电子设备
US11792712B2 (en) 2021-12-23 2023-10-17 T-Mobile Usa, Inc. Cell reselection priority assignment based on performance triggers
WO2023214750A1 (en) * 2022-05-02 2023-11-09 Lg Electronics Inc. Method and apparatus for height-based cell selection or reselection in a wireless communication system
CN117354890A (zh) * 2022-06-29 2024-01-05 华为技术有限公司 通信方法及装置
CN117560687A (zh) * 2022-08-03 2024-02-13 华为技术有限公司 通信方法、装置及存储介质
WO2024060283A1 (en) * 2022-09-29 2024-03-28 Lenovo (Beijing) Limited Methods and apparatuses for measurement configuration and failure recovery for uav ue
WO2024075663A1 (ja) * 2022-10-05 2024-04-11 京セラ株式会社 通信制御方法
WO2024077484A1 (en) * 2022-10-11 2024-04-18 Apple Inc. Radio link monitoring for air-to-ground networks

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013079512A1 (en) * 2011-11-29 2013-06-06 Airbus Operations Gmbh Service signal used as part of terrestrial communications masking signal on board aircraft
US8688101B1 (en) * 2013-04-09 2014-04-01 Smartsky Networks LLC Position information assisted network control
CN105594233A (zh) * 2013-09-10 2016-05-18 智慧天空网络有限公司 空对地无线通信网络中的干扰抑制

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100818766B1 (ko) * 2006-10-02 2008-04-01 포스데이타 주식회사 무선통신 시스템에서의 핸드오버 수행 방법 및 장치
US8244209B2 (en) * 2006-10-05 2012-08-14 Cellco Partnership Airborne pico cell security system
CN101541009A (zh) * 2008-03-19 2009-09-23 中国移动通信集团公司 一种优化邻区列表的方法、装置及系统
US9301182B2 (en) * 2010-11-02 2016-03-29 Lg Electronics Inc. Method and apparatus for reporting measurement result in wireless communication system
CN102448109A (zh) * 2011-05-09 2012-05-09 华为技术有限公司 上报邻小区测量报告的方法和设备
CN102938670B (zh) * 2011-08-15 2015-02-11 航通互联网信息服务有限责任公司 用于飞机的地空宽带无线通信系统及方法
CN103313301A (zh) * 2012-03-16 2013-09-18 华为技术有限公司 用于实现报告测量以及报告测量结果的方法和装置
US9066367B2 (en) * 2012-03-29 2015-06-23 Intel Mobile Communications GmbH Macro-femto inter-cell interference mitigation
CN104053197A (zh) * 2013-03-15 2014-09-17 中国移动通信集团公司 地空长期演进系统中飞机器的切换方法、基站及飞行器
US9357456B2 (en) * 2013-06-03 2016-05-31 Telefonaktiebolaget Lm Ericsson (Publ) Handover control method and apparatus for high speed mobility user equipment
CN104301967A (zh) * 2013-07-15 2015-01-21 中兴通讯股份有限公司 小区发现方法和装置
WO2015042958A1 (zh) * 2013-09-30 2015-04-02 华为技术有限公司 下行链路控制方法及装置
US20170034709A1 (en) * 2014-04-09 2017-02-02 Ntt Docomo, Inc. Measurement control method and base station
US9826448B2 (en) * 2014-07-11 2017-11-21 Qualcomm Incorporated Handover management in air-to-ground wireless communication
US10231165B2 (en) * 2015-05-13 2019-03-12 Qualcomm Incorporated RRM measurement and reporting for license assisted access
KR101809439B1 (ko) * 2015-07-22 2017-12-15 삼성에스디에스 주식회사 드론 관제 장치 및 방법
CN106686693B (zh) * 2015-11-06 2020-05-01 中国移动通信集团公司 一种系统信息的传输方法和设备
US10111152B2 (en) * 2015-12-09 2018-10-23 Telefonaktiebolaget Lm Ericsson (Publ) Cell selection for airborne mobile cellular communications equipment
BR112018069338A2 (pt) * 2016-09-02 2019-01-22 Sony Corp circuito, dispositivo de terminal, dispositivo de estação base, e, método
ES2886501T3 (es) * 2016-09-27 2021-12-20 Sony Group Corp Informe de medida de un dron controlado por una combinación de altitud y de velocidad
CN106604338B (zh) * 2016-12-19 2019-05-21 电信科学技术研究院有限公司 一种确定无人机机载基站位置的方法及装置
CN110235462B (zh) * 2017-02-02 2023-03-21 株式会社Ntt都科摩 用户装置及测量报告发送方法
US10127822B2 (en) * 2017-02-13 2018-11-13 Qualcomm Incorporated Drone user equipment indication
JP6776450B2 (ja) * 2017-04-21 2020-10-28 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいて空中ueに対する測定を行う方法及びそのための装置
CN110603841A (zh) * 2017-05-05 2019-12-20 英特尔Ip公司 用于对于飞行器发信号的方法和布置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013079512A1 (en) * 2011-11-29 2013-06-06 Airbus Operations Gmbh Service signal used as part of terrestrial communications masking signal on board aircraft
US8688101B1 (en) * 2013-04-09 2014-04-01 Smartsky Networks LLC Position information assisted network control
CN105594233A (zh) * 2013-09-10 2016-05-18 智慧天空网络有限公司 空对地无线通信网络中的干扰抑制

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3637732A4 *

Also Published As

Publication number Publication date
EP3637732A4 (en) 2020-04-15
US20200137646A1 (en) 2020-04-30
JP2020526135A (ja) 2020-08-27
KR20200019737A (ko) 2020-02-24
EP3637732A1 (en) 2020-04-15
BR112019027856A2 (pt) 2020-07-07
KR102288110B1 (ko) 2021-08-09
JP6935520B2 (ja) 2021-09-15
CN109218344A (zh) 2019-01-15
CN109218344B (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
WO2019001573A1 (zh) 选择参数配置的方法、设备以及系统
US11653276B2 (en) Apparatus and method in wireless communication system and computer readable storage medium
US11265749B2 (en) Device, method, and computer readable storage medium in wireless communication system
KR101927568B1 (ko) 이종 셀룰러 네트워크에서 소형 셀 발견을 위한 방법 및 시스템
US20220104082A1 (en) Ue procedures for reducing rsrp/rsrq measurement in rrc idle mode and inactive state
US11533663B2 (en) Paging area update technique for reducing power consumption of a wire device moving in air
JP2020535746A (ja) 飛行用ueを処理する無線ネットワーク
US10790897B1 (en) Systems and methods for selecting radio beams
US20200023999A1 (en) Method for charging battery of unmanned aerial robot and device for supporting same in unmanned aerial system
US10257713B2 (en) Methods and apparatus for interference management and resource sharing
WO2018203402A1 (ja) ユーザ装置及び基地局
EP3576472B1 (en) Resource allocation method and apparatus, network device, and storage medium
JP2020519147A (ja) 2つの異なるセルまたはビームから発信した信号の測定のための測定報告禁止タイマー
US20240063894A1 (en) New radio device support for non-terrestrial networks in idle mode and in rrc inactive state
JP2023551979A (ja) 無人航空ビークル(uav)の少なくとも1つの態様の識別をハンドリングするためのuav、デバイス、第2のデバイス、およびそれらによって実施される方法
CN115868243A (zh) 用于释放经配置授权资源的方法及设备
US20240080748A1 (en) Limited capability zones for wireless devices
WO2022073173A1 (en) Techniques for ping-pong detection and avoidance for cell reselection
CN117676732A (zh) 服务小区选择方法和装置
WO2024033841A1 (en) Methods for aerial ue measurement reporting
WO2019030933A1 (ja) ユーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823799

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019572649

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019027856

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20207002267

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018823799

Country of ref document: EP

Effective date: 20200107

ENP Entry into the national phase

Ref document number: 112019027856

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191226