WO2019030933A1 - ユーザ装置 - Google Patents

ユーザ装置 Download PDF

Info

Publication number
WO2019030933A1
WO2019030933A1 PCT/JP2017/029228 JP2017029228W WO2019030933A1 WO 2019030933 A1 WO2019030933 A1 WO 2019030933A1 JP 2017029228 W JP2017029228 W JP 2017029228W WO 2019030933 A1 WO2019030933 A1 WO 2019030933A1
Authority
WO
WIPO (PCT)
Prior art keywords
user apparatus
random access
preamble
condition
base station
Prior art date
Application number
PCT/JP2017/029228
Other languages
English (en)
French (fr)
Inventor
真平 安川
聡 永田
尚人 大久保
ウリ アンダルマワンティ ハプサリ
高橋 秀明
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2017/029228 priority Critical patent/WO2019030933A1/ja
Publication of WO2019030933A1 publication Critical patent/WO2019030933A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present invention relates to a user equipment in a wireless communication system.
  • unmanned aerial vehicles such as drones have been used in various corporate and individual uses.
  • a wireless network such as an LTE (Long Term Evolution) network or an NR (New Radio) network.
  • LTE Long Term Evolution
  • NR New Radio
  • a new study item "New SID on Enhanced Support for Aerial Vehicles” will be used as a 3GPP (Third GPP) to examine the feasibility of a specific type (specific type) user equipment (UE) such as a drone. It has been approved by the Generation Partnership Project, and performance evaluation, potential problems, and improvement techniques for unmanned aircraft connection in existing ground terminal networks are being considered.
  • unmanned aerial vehicles such as drones are capable of flying at higher altitudes than the base station, and it is assumed that wireless communication is performed in an environment where multiple cells can be seen. Therefore, wireless communication control different from the existing user equipment disposed on the ground is desired.
  • the present invention has been made in view of the above-described point, and an object thereof is to provide a random access technology suitable for a specific type of user equipment.
  • a user equipment in a wireless communication system A setting information management unit that holds predetermined transmission power parameters; And a signal transmission unit that transmits a random access preamble at a transmission power based on the predetermined transmission power parameter when a certain condition is satisfied.
  • random access technology suitable for a specific type of user device is provided.
  • FIG. 1 is a schematic view showing a wireless communication system in an embodiment of the present invention. It is a figure for demonstrating the example of a random access procedure. It is a figure which shows the example of a cell arrangement
  • FIG. 2 is a diagram showing an example of a functional configuration of a user device 100.
  • FIG. 2 is a diagram showing an example of a functional configuration of a base station 200. It is a figure which shows an example of the hardware constitutions of the user apparatus 100 and the base station 200.
  • the radio communication system according to the present embodiment is assumed to support at least the LTE communication scheme. Therefore, when the wireless communication system operates, the existing technology defined by the existing LTE can be used as appropriate.
  • the existing technology is not limited to LTE.
  • the present invention is also applicable to communication systems other than LTE.
  • the present invention is not limited to this, and the present invention is not limited to a plurality of cells However, the present invention is also applicable to a well-grounded user device.
  • the drone can fly at a higher altitude than the base station, and it is assumed that wireless communication is performed in an environment where multiple cells can be seen. Under such an assumption, for example, uplink transmission from the drone to the connected cell may cause uplink interference to adjacent cells, as shown in FIG. Also, there is a possibility that RACH preambles reach a wide range of cells, resulting in multiple RAR reception, connection to unintended cells, and the like.
  • the present embodiment mainly describes a technique for solving the problem related to the RACH preamble reaching a wide range of cells. Further, in the present embodiment, mainly, a method of a random access procedure when a user apparatus of a specific type is in an idle state (such as RRC (Radio Resource Control) _IDLE state) will be described.
  • RRC Radio Resource Control
  • FIG. 2 is a diagram showing a wireless communication system in the present embodiment.
  • the wireless communication system 10 includes a user apparatus 100 and a base station 200.
  • the wireless communication system 10 may be, for example, any wireless communication system defined by 3GPP such as an LTE system, an LTE-Advanced system, an NR system, or any other wireless communication system. May be
  • the user apparatus 100 is any information processing apparatus that can be communicably connected to the base station 200, and may be, for example, without limitation, a drone, an unmanned aerial vehicle, a non-ground-placed user apparatus, or a part thereof. .
  • the base station 200 performs wireless communication with a large number of user devices including the user device 100 under the control of a higher station (not shown) such as a core network.
  • a higher station such as a core network.
  • the base station 200 may be referred to, for example, as an eNB (evolved Node B), and in the NR system, the base station 200 may be referred to, for example, as a gNB.
  • eNB evolved Node B
  • gNB evolved Node B
  • the coverage of base station 200 is generally referred to as a cell.
  • the cell in which the user apparatus 100 is located is called a serving cell.
  • the same random access procedure as the random access procedure (Non-Patent Document 1) in LTE is performed.
  • operations not included in the conventional random access procedure are also executed.
  • the base station 200 transmits the broadcast information and the synchronization signal at respective predetermined cycles (step S1).
  • the user apparatus 100 acquires the cell ID from the synchronization signal, and acquires system bandwidth information and the like from the basic information in the broadcast information. Further, setting information such as information of rootSequence is acquired from system information in the broadcast information. Note that FIG. 3 shows a case where the serving cell of the user apparatus 100 is a cell of the base station 200.
  • the user apparatus 100 When connecting to the base station 200, the user apparatus 100 first transmits RACH preamble (Message 1) (S2). When detecting the RACH preamble, the base station 200 transmits an RA response (RAR, Message 2) that is the response to the user apparatus 100 (step S3).
  • the RAR includes transmission timing information, an identifier (TC-RNTI) of the user apparatus 100, and the like.
  • the transmission timing information is also referred to as TA (Timing Advance).
  • TA is information for adjusting the timing at which the user apparatus 100 performs UL transmission, and as one example, the larger the value of TA, the earlier the user apparatus 100 (compared to the downlink reference timing) the UL signal at a faster timing.
  • Send That is, generally, the larger the distance between the user apparatus 100 and the base station 200, the larger the TA.
  • the value of TA may be set such that the TA decreases as the distance between the user apparatus 100 and the base station 200 increases.
  • the user apparatus 100 that has received the RACH response transmits Message 3 including predetermined information to the base station 200 (S4).
  • Message 3 is, for example, RRC connection request.
  • the base station 200 that has received Message 3 transmits Message 4 (for example, RRC connection setup) to the user apparatus 100 (S5).
  • Message 4 for example, RRC connection setup
  • the user device 10 confirms that the above-mentioned predetermined information is included in the Message 4
  • the user device 10 recognizes that the Message 4 is the Message 4 addressed to itself corresponding to the above-mentioned Message 3, and completes the random access procedure.
  • the user apparatus 10 can not confirm predetermined information in Message 4, it is considered that the random access procedure has failed, and the procedure is executed again from the transmission of the RACH preamble.
  • RACH preamble is generated by cyclic shift of the base sequence rootSequence.
  • different root Sequences are used in different cells.
  • the base station detects the RACH preamble generated from the root Sequence used in its own cell, and does not detect the RACH preamble generated from the root Sequence other than the root Sequence used in its own cell. Also, the base station broadcasts rootSequence used in its own cell with system information.
  • FIG. 4 shows an example of cell arrangement.
  • the number of cells in the N-tier is 1 + 3N (N-1).
  • the separation distance is about 2 km. The separation distance is considered to be smaller in consideration of irregular cell arrangement including the indoor station.
  • the user apparatus 100 is a drone.
  • the user apparatus 100 can fly at an altitude higher than that of the base station 200, and it is assumed that wireless communication is performed within the line-of-sight environment of a plurality of cells. Therefore, it is conceivable that the user apparatus 100 can overlook a plurality of cells using the same root Sequence.
  • RACH preambles transmitted by the user apparatus 100 may be detected in a plurality of cells (a plurality of base stations) using the same root Sequence.
  • RACH sequences #n and the like indicate root Sequences.
  • the user apparatus 100 intends to connect to the base station 200, and transmits a RACH preamble based on the RACH sequence #n notified by broadcast from the base station 200.
  • the base station 202 since the base station 202 also uses the RACH sequence #n, in addition to the base station 200, the base station 202 may also detect the RACH preamble transmitted from the user apparatus 100.
  • a plurality of RARs may be returned to the user apparatus 100.
  • the RAR from cell # x (base station 202) is first received in the RA response window, which is a time window expected to receive the RAR, and cell # a (base The RAR from station 200) may be received next.
  • Non-Patent Document 1 when the RAR is successfully received, the monitoring of the subsequent RAR may be stopped. Therefore, the user apparatus 100 may connect to (unintended) non-optimal cell # x.
  • the user apparatus 100 When the user apparatus 100 is connected to the distant cell of the base station 202 shown in FIG. 5, the channel quality may be rapidly degraded as the altitude of the user apparatus 100 changes.
  • Example 1, Example 2, and Example 3 will be described as a technology that makes it possible to solve the above points.
  • the combination of the first embodiment and the second embodiment, the combination of the second embodiment and the third embodiment, the combination of the first embodiment and the third embodiment, and the combination of the first embodiment, the second embodiment and the third embodiment can be implemented. It is.
  • Example 1 In Example 1, the following Examples 1-1 to 1-3 will be described.
  • the example 1-2 basically assumes the example 1-1.
  • the example 1-3 may be combined with the example 1-1 or may be combined with the example 1-2.
  • Example 1-1 In the prior art, the transmission power of the RACH preamble is determined based on PowerRampingParameters (non-patent document 2) broadcasted from the base station 200. Therefore, each UE in the cell determines the transmission power of RACH preamble in a common manner.
  • the transmission power parameter of the RACH preamble is set according to the type (type) of the user apparatus.
  • a specific type indicating the user apparatus 100 that is a drone is defined, and information indicating the specific type is preset in the user apparatus 100.
  • This type (hereinafter, referred to as a specific type) may be set, for example, when the user apparatus 100 is authenticated as being a drone (or being a UE installed in a drone). .
  • the user device may correspond to a specific type.
  • PowerRampingParameters illustrated in FIG. 7 is transmitted to the user apparatus 100 as part of the broadcast information illustrated in S1 of FIG.
  • the PowerRampingParameters shown in FIG. 7 includes preambleInitialReceivedTargetPower as a transmission power parameter for initial transmission of the RACH preamble.
  • the base station 200 transmits one of the values listed in FIG. 7 as the value of the preambleInitialReceivedTargetPower.
  • Example 1-1 for example, dBm-130 (this value is an example), which is a value smaller than the conventional minimum value, is transmitted from the base station 200 as a value to be applied to a specific type of user apparatus. .
  • the information indicating that “this value is a value to be applied to a specific type of user apparatus” may or may not be transmitted from the base station 200.
  • the value of preambleInitialReceivedTargetPower a value used by a general user device is notified in addition to the above value.
  • the user apparatus 100 which has received the value for the user apparatus of the specific type above recognizes that it is the specific type, and thus transmits the RACH preamble with the transmission power calculated from the value (dBm-130). Do.
  • Example 1-2 In the user apparatus 100 of the specific type, it may not be preferable to always use such a small value as the transmission power of the RACH preamble. For example, in such a case, the flight height of the user apparatus 100 is low and it can not be seen to a distant cell. In this case, using a small value as the transmission power of the RACH preamble may increase the delay due to wasted Power Ramping.
  • Example 1-2 the user apparatus 100 of the specific type measures the reception power (for example, RSRP as an example here) of a plurality of cells (for example, a plurality of cells of Intra-frequency), and determines the measurement result. Based on the determination, it is determined whether to use a transmission power parameter for a specific type.
  • user apparatuses other than the user apparatus 100 of the specific type may perform the operation described below.
  • configuration information is transmitted from the base station 200, and the user apparatus 100 receives the configuration information.
  • the setting information is transmitted, for example, as the above-described broadcast information (system information), and includes the value of the transmission power parameter applied to the user apparatus of the specific type.
  • the user apparatus 100 is not connected to the base station 200 before RACH preamble transmission, and performs type notification, measurement result notification, and the like to the base station 200. It is assumed that there is no. Therefore, as described later, the user apparatus 100 itself determines the condition match, and determines the applicability of the value of the transmission power parameter applied to the user apparatus of the specific type.
  • the user apparatus 100 measures RSRP (reception power of reference signal) of each detected cell.
  • the user apparatus 100 determines whether the measurement result in S102 matches a predetermined condition.
  • RSRP reception power of reference signal
  • An example of the predetermined condition is as follows. Any one of the following conditions 1 to 3 may be used, and any one of a plurality of conditions may be AND (if all of the plurality of conditions are OK) or OR (either of the plurality of conditions is You may use it by OK if OK.
  • the thresholds A to F are all predetermined thresholds. These thresholds may be broadcast from the base station 200 to the user apparatus 100.
  • Condition 1 The number of same frequency cells (cells having the same frequency as a cell intended to be connected (serving cell)) having a RSRP of at least threshold A and at most threshold B is at least threshold C.
  • Condition 2 The number of same frequency cells detected is equal to or more than a threshold E.
  • Condition 3 The value obtained by subtracting the RSRP of another cell of the same frequency from the RSRP of the serving cell is equal to or more than the threshold F, and the number of other cells is equal to or more than the threshold G.
  • the above conditions are conditions for determining whether there is a distant cell in which an unintended connection may occur. However, these conditions are only an example. If the measurement results meet the conditions, it is assumed that such a distant cell is present.
  • the user apparatus 100 determines that the measurement result does not meet the condition in S103 of FIG. 8 (No in S103), it transmits the RACH preamble with normal transmission power (eg, transmission power based on the existing specification) (S103). S104).
  • normal transmission power eg, transmission power based on the existing specification
  • the user apparatus 100 transmits the RACH preamble with the transmission power calculated from the transmission power parameter for the specific type (S105).
  • Example 1-2 by applying the initial transmission power only when the user apparatus 100 detects the presence of the distant cell, it is possible to minimize the RACH preamble detection probability in the distant cell.
  • Example 1-3 In Example 1-3, in each of the cells using the same rootSequence, a group of usable RACH preambles is determined among all RACH preambles used for collision type RA, and information of usable RACH preamble groups is determined. , And notified from the base station 200 to the user apparatus 100 by broadcast. Then, the user apparatus 100 uses the RACH preamble selected from the group of available RACH preambles when transmitting the RACH preamble to the base station 200 intended for connection. A specific example will be described with reference to FIG.
  • FIG. 9 shows RACH preambles of Cell # a and Cell # x that use the same root Sequence.
  • 64 RACH preambles exist in each cell, and each RACH preamble is distinguished by the amount of cyclic shift from the root Sequence.
  • Ncon Preambles are prepared as non-collision Preambles.
  • the non-collision preamble may be referred to as a non-dedicated random access preamble.
  • Group A and Group B exist, and Group A of each cell is set so as not to overlap with Group A of another cell. Fewer than N Con Preambles may be set in Group A and Group B overall.
  • Group A of cell # a is RACH preamble0 and RACH preamble1
  • Group A of cell # x is RACH preamble2 and RACH preamble3.
  • the information of the above-mentioned usable group is transmitted to the user apparatus 100 from the base station 200 of the serving cell, for example, as system information.
  • Example 1-1 when the user apparatus 100 corresponds to the specific type, the user apparatus 100 selects RACH preamble 1 from Group A and transmits it. Further, when the conditions (S102 and S103 in FIG. 8) described in the example 1-2 are met, the RACH preamble 1 may be selected from Group A and transmitted.
  • a user apparatus that does not correspond to a specific type or a user apparatus that has detected that it does not match the conditions described in the embodiment 1-2 may use Group A or a group other than Group A (for example, FIG. Group B) of 9 may be used.
  • the base station 202 of cell # x does not use the RACH preamble 1 and thus RACH preamble1. Does not detect Therefore, RAR is returned only from cell # a. Therefore, the problem of connection to multiple RAR reception and unintended cells is eliminated.
  • the user apparatus 100 of a specific type (and / or the condition match described in the embodiment 1-2) is detected in the terminal non-unique random access preamble area (eg, preamble 0 to Ncon-1) in the cell.
  • a Preamble Group which can not be selected by any user apparatus other than the user apparatus 100) is defined.
  • Group A example: preamble 0 to N A -1
  • Group B example: preamble N A to N con-1
  • a new PreambleGroup eg, preambles N D to N D + M in Group A
  • each user apparatus performs an operation of selecting a preamble from the preamble group when a certain condition is satisfied.
  • the condition for the user apparatus other than the user apparatus 100 of the specific type (and / or the user apparatus 100 that has detected the condition match described in the embodiment 1-2) is a threshold of infinite / small infinite message / buffer size.
  • the condition which can not actually occur such as exceeding / underperforming, path loss or reception power exceeding / underperforming threshold of infinite / infinity, and substantially the user apparatus 100 of a specific type (and / or the embodiment 1-2).
  • User apparatuses other than the user apparatus 100) which has detected the condition match described above do not select a preamble from the preamble group.
  • condition for the user apparatus 100 of the specific type is, for example, a specific type (and / or in the example 1-2) It is the detection of the described condition match).
  • the preamble group includes a plurality of preamble groups, and the user apparatus 100 of a specific type (and / or the user apparatus 100 that has detected the condition match described in the embodiment 1-2)
  • a preamble is selected from one of the preamble groups in the inside.
  • usable preamble groups in the plurality of preamble groups may be different between cells using the same root Sequence, as in the case described using FIG. 9, for example.
  • Example 2 Next, Example 2 will be described.
  • the user apparatus 100 of the specific type or the user apparatus 100 having the specific capability starts RACH preamble transmission from the narrow-area transmission beam and fails to receive the RAR (receives the RAR in the RA response window) Every time it does not do it, it is decided to expand the size of the area of the transmission beam.
  • the above specific capabilities are, for example, specific antenna configurations and / or specific beam control capabilities.
  • transmitting a signal using a transmit beam is equivalent to transmitting a signal that has been multiplied by a precoding vector (precoded by a precoding vector).
  • transmitting a signal using a transmit beam may be referred to as transmitting a signal at a particular antenna port.
  • the antenna port refers to a logical antenna port defined in the 3GPP standard.
  • the method of forming the transmission beam is not limited to the above method.
  • a method of changing the angle of each antenna may be used, or a method combining the method of using the precoding vector and the method of changing the angle of the antenna may be used The following method may be used.
  • a method of using a precoding vector is used to generate a transmit beam.
  • the precoding vector can be identified by an identifier (precoding index).
  • FIG. 10A shows the transmit beam used for the first RACH preamble transmission.
  • the RACH preamble is transmitted toward the lower side of the user apparatus 100 with a narrow transmission beam.
  • precoding vector # 1 is used.
  • FIG. 11 is a top view of a transmission beam reaching the ground.
  • each beam is circular, but this is an example, and it may be, for example, elliptical or other shapes.
  • the area of the transmission beam B includes the area of the transmission beam A
  • the area of the transmission beam C includes the areas of the transmission beams A and B.
  • the user apparatus 100 When the RACH preamble transmission by the transmission beam of A fails, the user apparatus 100 next transmits the RACH preamble with the transmission beam indicated by B using precoding vector # 2. By transmitting the RACH preamble with the transmission beam indicated by B, there is a high possibility that the RAR from the base station 200 can be detected.
  • the user apparatus 100 next transmits the RACH preamble in the transmission beam indicated by C using precoding vector # 3.
  • the above operation can avoid distant capture. Note that an upper limit is provided for the number of RACH preamble transmission failures, and the user apparatus 100 may perform RACH preamble transmission from the first transmission beam A again when the RACH preamble transmission failure reaches the upper limit. Good.
  • Power Ramping is also applied, which increases the transmission power of the RACH preamble every time it fails to receive the RAR. That is, in the transmission at B described above, transmission power higher than that at A is used. Also, the transmission at C described above uses a larger transmission power than the transmission at B. That is, each time Power Ramping is performed, a transmit beam is applied using a predetermined precoding vector.
  • the change order of transmission beams may be predetermined as a pattern, and the user apparatus 100 may apply transmission beams according to the pattern.
  • the pattern ⁇ transmission beam A, transmission beam B, transmission beam C ⁇ is defined as pattern 1, and the user apparatus 100 applies pattern 1, the change of the transmission beam described in FIGS. 10 and 11 is made. Is done.
  • a pattern of ⁇ transmit beam A, transmit beam C ⁇ is defined as pattern 2 and the user apparatus 100 applies pattern 2
  • the user apparatus 100 transmits a transmit beam every time RACH preamble transmission fails. The operation of switching A and transmission beam C is performed.
  • FIG. 12 shows transmission power for each transmission.
  • the user apparatus 100 transmits the RACH preamble with the transmission power smaller than the threshold for the first time.
  • Power Ramping performs second RACH preamble transmission with a transmission power larger than the first transmission power.
  • no transmit beam is applied to the first and second transmissions.
  • a predetermined transmission beam (or a transmission beam notified from the base station 200) may be used.
  • the user apparatus 100 transmits a RACH preamble using the transmission beam (eg, transmission beam A in FIG. 10) in the third transmission. Also, in the fourth transmission, the user apparatus 100 transmits an RACH preamble using a transmission beam (eg, transmission beam B in FIG. 10) wider than the third transmission beam.
  • the transmit beam is a narrow beam such as transmit beam A in FIG.
  • the transmission beam B is used in the third transmission
  • the transmission beam C is used in the fourth transmission.
  • the precoding index used by the user apparatus 100, the pattern of the precoding index, and the like may be predetermined, or may be notified from the base station 200 to the user apparatus 100 by broadcast or the like.
  • the user apparatus 100 may transmit SRS and / or PUSCH or the like using a precoding index that has succeeded in RACH preamble transmission.
  • the base station 200 may transmit, to the user apparatus 100, a control signal for instructing to apply a specific precoding index to SRS and / or PUSCH.
  • Example 3 Examples 3-1 and 3-2 will be described for Example 3.
  • Example 3-1 In Example 3-1, after transmitting the RACH preamble, the user apparatus 100 continues monitoring the RAR in the RA Response window even when detecting the RAR in the RA Response window. As a result, for example, as shown in FIG. 6, the user apparatus 100 may receive a plurality of RARs in the RA Response window.
  • Example 3-1 the user apparatus 100 regards an RAR that matches a predetermined condition among the one or more RARs received in the RA Response window as valid, and transmits msg3 corresponding to the RAR.
  • the user device 100 ignores RARs that do not match the predetermined condition, and does not transmit the corresponding msg3. Therefore, even if the RAR is received, there is a case where msg3 is not transmitted without a valid RAR.
  • transmitting msg3 corresponding to RAR means, for example, including an identifier (for example, TC-RNTI) included in the received RAR in msg3 (including performing scrambling with the identifier).
  • an identifier for example, TC-RNTI
  • the example of said predetermined conditions is as follows. Any one of the following conditions 1 to 4 may be used, and any of a plurality of conditions may be AND (if all of the plurality of conditions are OK) or OR (any of the plurality of conditions is You may use it by OK if OK. However, condition 3 is used by combining condition 1 and / or condition 2 with AND. Condition 4 is also used by combining condition 1 and / or condition 2 with AND.
  • the thresholds A to B are all predetermined thresholds. These thresholds may be broadcast from the base station 200 to the user apparatus 100. The conditions in the third embodiment assume that TA is set such that TA increases as the distance between the user apparatus 100 and the base station increases.
  • Condition 1 The TA included in the RAR is the smallest (if one RAR, Condition 1 is satisfied for the RAR).
  • Condition 2 The received power of RAR is the highest (if RAR is one, Condition 2 is satisfied for the RAR).
  • Condition 3 TA included in RAR is less than or equal to threshold A.
  • Condition 4 RAR received power is equal to or greater than threshold B.
  • the user apparatus 100 can transmit msg3 to an appropriate cell.
  • Example 3-2 the user apparatus 100 transmits an RACH preamble, and stops monitoring of the RAR when detecting an RAR that satisfies a predetermined condition in the RA Response window.
  • the thresholds A to B are all predetermined thresholds. These thresholds may be broadcast from the base station 200 to the user apparatus 100.
  • Condition 1 TA included in RAR is less than or equal to threshold A.
  • Condition 2 RAR received power is equal to or greater than threshold B.
  • the user apparatus 100 transmits RACH preamble.
  • the user apparatus 100 receives an RAR within an RA response window.
  • the user apparatus 100 determines whether the received RAR satisfies a predetermined condition.
  • step S203 If the determination result in step S203 is No, as long as the time is within the RA response window, monitoring is continued until RAR satisfying the condition is received, RAR reception (S202), and condition determination (S203) are repeated.
  • step S203 If the condition determination in S203 is YES, the process proceeds to step S204, and the user apparatus 100 transmits msg3 corresponding to the RAR for which the condition determination is YES.
  • Example 3-2 may be continued, or in the second and subsequent (or after the predetermined N-th and subsequent (N ⁇ 2))
  • Example 3-1 (Condition 1 or Condition 1 or Condition 2 may be applied.
  • Example 3-2 it is possible to transmit msg3 to an appropriate cell.
  • the operation may be performed by all the user devices, or as in the first embodiment, only the user device 100 of the specific type is performed. It is also good. Further, as in the example described in FIG. 8 of the embodiment 1-2, the RSRP measurement may be performed, and the operation may be performed only when the measurement result matches a predetermined condition.
  • Each of user apparatus 100 and the base station 200 has all the functions described in the present embodiment. However, each of the user apparatus 100 and the base station 200 may be provided with a part of all the functions described in the present embodiment.
  • each of the user apparatus 100 and the base station 200 has a function of performing Example 1-1, a function of performing Example 1-2, a function of performing Example 1-3, and a function of performing Example 2.
  • the function to execute the embodiment 3-1 and the whole function of the functions to execute the embodiment 3-2 may be provided, or any one or a plurality of functions among them may be provided.
  • FIG. 14 is a diagram showing an example of a functional configuration of the user apparatus 100.
  • the user apparatus 100 includes a signal transmission unit 110, a signal reception unit 120, a setting information management unit 130, and an RA (random access) control unit 140.
  • the functional configuration shown in FIG. 14 is merely an example. As long as the operation according to the present embodiment can be performed, the function classification and the name of the functional unit may be arbitrary.
  • the signal transmission unit 110 is configured to generate a signal of the lower layer from the information of the upper layer, and wirelessly transmit the signal.
  • the signal receiving unit 120 is configured to wirelessly receive various signals and acquire information of the upper layer from the received signals.
  • the signal transmission unit 110 may also form a transmission beam using a precoding vector.
  • the setting information management unit 130 has a storage unit that stores setting information set in advance and setting information dynamically and / or semi-statically transmitted from the base station 200 or the like.
  • the setting information management unit 130 stores a transmission power parameter for a specific type user apparatus, a predetermined preamble group, and the like.
  • the RA control unit 140 controls the signal transmission unit 110 and the signal reception unit 120 to execute the operation related to random access described in the present embodiment.
  • the RA control unit 140 may be included in the signal transmission unit 110 and / or the signal reception unit 120.
  • the setting information management unit 130 holds a predetermined transmission power parameter.
  • the signal transmission unit 110 determines whether or not a certain condition is satisfied, and when the condition is satisfied, the signal transmission unit 110 transmits a random access preamble with transmission power based on the predetermined transmission power parameter. Also, the signal receiving unit 120 receives a signal and measures the received power.
  • the setting information management unit 130 holds a predetermined preamble group.
  • the signal transmission unit 110 selects a random access preamble in the predetermined preamble group, and transmits the random access preamble.
  • the signal transmission unit 110 is configured to access the random access preamble from a part of preamble groups among preamble groups not selected for the user equipment that does not satisfy the condition among terminal non-unique random access preambles in the serving cell of the user equipment.
  • the preamble may be selected.
  • the signal transmission unit 120 selects the random access preamble from preamble groups not used in other cells in which the same route sequence as the route sequence in the serving cell of the user apparatus 100 is used.
  • the signal transmission unit 110 may determine whether a random access response to the random access preamble satisfies a predetermined condition, and may transmit a message for the random access response when the condition is satisfied.
  • the user apparatus 100 selects a random access preamble from the preamble group, and a configuration information management unit 130 that holds information on a preamble group that is a set of random access preambles that can be used in the serving cell of the user apparatus 100;
  • the signal transmission unit 110 may transmit the random access preamble, and the preamble group may be configured not to be used in another cell in which the same root sequence as the root sequence in the serving cell of the user apparatus is used. .
  • the user apparatus 100 transmits the next random access preamble in a wider transmission beam than the transmission beam when the transmission of the random access preamble fails.
  • the user apparatus 100 includes a signal transmission unit 110 that transmits a random access preamble, and a signal reception unit 120 that receives a random access response to the random access preamble, and the random access response to the random access preamble is in advance.
  • the signal transmission unit 110 may be configured to transmit a message for the random access response when the defined condition is satisfied.
  • the predetermined condition is, for example, that the value of TA included in one or more received random access responses is the largest or that the received power is the largest.
  • FIG. 15 is a diagram showing an example of a functional configuration of the base station 200.
  • the base station 200 includes a signal transmission unit 210, a signal reception unit 220, a scheduling unit 230, and a setting information management unit 240.
  • the functional configuration shown in FIG. 15 is merely an example. As long as the operation according to the present embodiment can be performed, the function classification and the name of the functional unit may be arbitrary.
  • the signal transmission unit 210 is configured to generate a signal of the lower layer from the information of the upper layer and wirelessly transmit the signal.
  • the signal reception unit 220 is configured to wirelessly receive various signals and acquire information of the upper layer from the received signals.
  • the signal transmission unit 210 has a function of transmitting the transmission power parameter for the specific type acquired from the setting information management unit 240 to the user apparatus 100, a function of transmitting information of usable random access preambles to the user apparatus 100, and so on. And the function of transmitting the setting information described in the present embodiment to the user apparatus 100.
  • the signal transmission unit 210 and the signal reception unit 220 execute the random access procedure described in the present embodiment with the user apparatus 100.
  • the scheduling unit 230 performs resource assignment to the user apparatus 100 and the like.
  • the setting information management unit 240 includes a storage unit, stores the preset setting information, and has a function of determining and holding the setting information to be set to the user apparatus 100 dynamically and / or semi-statically.
  • each functional block may be realized by one device physically and / or logically connected to a plurality of elements, or directly and two or more physically and / or logically separated devices. And / or indirectly (for example, wired and / or wirelessly) connected, and may be realized by the plurality of devices.
  • both the user apparatus 100 and the base station 200 in the embodiment of the present invention may function as a computer that performs the process according to the present embodiment.
  • FIG. 16 is a diagram showing an example of a hardware configuration of user apparatus 100 and base station 200 according to the present embodiment.
  • Each of the above-described user device 100 and base station 200 may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. Good.
  • the term “device” can be read as a circuit, a device, a unit, or the like.
  • the hardware configuration of the user apparatus 100 and the base station 200 may be configured to include one or more of the devices indicated by 1001 to 1006 shown in the figure, or may be configured without including some devices. May be
  • Each function in the user apparatus 100 and the base station 200 causes the processor 1001 to perform an operation by reading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, and the communication by the communication apparatus 1004, the memory 1002 And by controlling the reading and / or writing of data in the storage 1003.
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU: Central Processing Unit) including an interface with a peripheral device, a control device, an arithmetic device, a register, and the like.
  • CPU Central Processing Unit
  • the processor 1001 reads a program (program code), a software module or data from the storage 1003 and / or the communication device 1004 to the memory 1002, and executes various processing according to these.
  • a program a program that causes a computer to execute at least a part of the operations described in the above embodiments is used.
  • the signal transmission unit 110, the signal reception unit 120, the setting information management unit 130, and the RA control unit 140 of the user apparatus 100 illustrated in FIG. 14 are stored in the memory 1002 and realized by a control program operated by the processor 1001. It is also good.
  • control program stored in the memory 1002 and operated by the processor 1001 is the signal transmission unit 210, the signal reception unit 220, the scheduling unit 230, and the setting information management unit 240 of the base station 200 shown in FIG. It may be realized by The various processes described above have been described to be executed by one processor 1001, but may be executed simultaneously or sequentially by two or more processors 1001.
  • the processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer readable recording medium, and includes, for example, at least one of a ROM (Read Only Memory), an EPROM (Erasable Programmable ROM), an EEPROM (Electrically Erasable Programmable ROM), and a RAM (Random Access Memory). It may be done.
  • the memory 1002 may be called a register, a cache, a main memory (main storage device) or the like.
  • the memory 1002 can store a program (program code), a software module, and the like that can be executed to execute the process according to the embodiment of the present invention.
  • the storage 1003 is a computer readable recording medium, and for example, an optical disc such as a CD-ROM (Compact Disc ROM), a hard disc drive, a flexible disc, a magneto-optical disc (eg, a compact disc, a digital versatile disc, a Blu-ray A (registered trademark) disk, a smart card, a flash memory (for example, a card, a stick, a key drive), a floppy (registered trademark) disk, a magnetic strip, and the like may be used.
  • the storage 1003 may be called an auxiliary storage device.
  • the above-mentioned storage medium may be, for example, a database including the memory 1002 and / or the storage 1003, a server or any other suitable medium.
  • the communication device 1004 is hardware (transmission / reception device) for performing communication between computers via a wired and / or wireless network, and is also called, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the signal transmission unit 110 and the signal reception unit 120 of the user apparatus 100 may be realized by the communication apparatus 1004.
  • the signal transmission unit 210 and the signal reception unit 220 of the base station 200 may be realized by the communication device 1004.
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, and the like) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that performs output to the outside.
  • the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured by a single bus or may be configured by different buses among the devices.
  • the user apparatus 100 and the base station 200 each include a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. It may be configured to include hardware, and part or all of each functional block may be realized by the hardware. For example, processor 1001 may be implemented in at least one of these hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the user apparatus in the wireless communication system which is a user equipment in the radio communication system, holds the predetermined transmission power parameter, and the predetermined information is satisfied when a certain condition is satisfied.
  • the above configuration provides a random access technology suitable for a particular type of user equipment.
  • a user apparatus in a wireless communication system and a setting information management unit holding a predetermined preamble group, and a random access preamble in the predetermined preamble group when a certain condition is satisfied. And a signal transmission unit that selects and transmits the random access preamble.
  • the above configuration provides a random access technology suitable for a particular type of user equipment.
  • the signal transmission unit is configured to select the random access preamble from among partial preamble groups among preamble groups not selected for the user apparatus that does not satisfy the condition among terminal non-unique random access preambles in the serving cell of the user apparatus May be selected. This configuration can avoid multiple RAR reception.
  • the condition is that, for example, the user device is a user device of a specific type.
  • a user apparatus that has been authenticated as a user apparatus of a specific type can transmit a random access preamble using a predetermined transmission power parameter.
  • the user apparatus may include a signal receiving unit that receives a signal and measures received power, and the condition may be that the measurement result by the signal receiving unit satisfies a predetermined condition.
  • the signal transmission unit may select the random access preamble from preamble groups not used in other cells in which the same route sequence as the route sequence in the serving cell of the user apparatus is used. This configuration can avoid multiple RAR reception.
  • the signal transmission unit may transmit a message to the random access response.
  • msg3 can be transmitted to an appropriate connection destination.
  • a user apparatus in a wireless communication system, wherein the configuration information management unit holds information of a preamble group which is a set of random access preambles usable in a serving cell of the user apparatus; Selecting a random access preamble from among the above and transmitting the random access preamble, and the preamble group is used in another cell where the same root sequence as the root sequence in the serving cell of the user apparatus is used
  • a user device is provided, characterized in that This configuration provides a random access technology suitable for a particular type of user equipment.
  • the user apparatus in the wireless communication system transmits a random access preamble using a certain transmission beam and then fails to transmit the next random access preamble when the transmission of the random access preamble fails.
  • a user apparatus comprising: a signal transmission unit that performs a transmission beam using a wider transmission beam than the transmission beam. This configuration provides a random access technology suitable for a particular type of user equipment.
  • the user equipment in the wireless communication system includes a signal transmission unit that transmits a random access preamble and a signal reception unit that receives a random access response to the random access preamble, and the random access
  • the signal transmission unit transmits a message for the random access response when the random access response for the preamble satisfies a predetermined condition.
  • the predetermined condition is, for example, that the value of TA included in one or more received random access responses is the largest or that the received power is the largest. By this configuration, one RAR can be properly selected.
  • the operations of multiple functional units may be physically performed by one component, or the operations of one functional unit may be physically performed by multiple components.
  • the order of processing may be changed as long as there is no contradiction.
  • the user apparatus 100 and the base station 200 have been described using functional block diagrams for the convenience of the processing description, such an apparatus may be realized in hardware, software or a combination thereof.
  • the software operated by the processor of the user apparatus 100 according to the embodiment of the present invention and the software operated by the processor of the base station 200 according to the embodiment of the present invention are random access memory (RAM), flash memory, read only It may be stored in memory (ROM), EPROM, EEPROM, register, hard disk (HDD), removable disk, CD-ROM, database, server or any other suitable storage medium.
  • notification of information is not limited to the aspect / embodiment described herein, and may be performed by other methods.
  • notification of information may be physical layer signaling (for example, Downlink Control Information (DCI), Uplink Control Information (UCI)), upper layer signaling (for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, It may be implemented by broadcast information (MIB (Master Information Block), SIB (System Information Block)), other signals, or a combination thereof.
  • RRC signaling may be referred to as an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • Each aspect / embodiment described in the present specification is LTE (Long Term Evolution), LTE-A (LTE-Advanced), SUPER 3G, IMT-Advanced, 4G, 5G, FRA (Future Radio Access), W-CDMA (Registered trademark), GSM (registered trademark), CDMA2000, UMB (Ultra Mobile Broadband), IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, UWB (Ultra-Wide Band),
  • the present invention may be applied to a system utilizing Bluetooth (registered trademark), other appropriate systems, and / or an advanced next-generation system based on these.
  • the specific operation supposed to be performed by the base station 200 in this specification may be performed by the upper node in some cases.
  • various operations performed for communication with the user equipment 100 may be performed by the base station 200 and / or other than the base station 200. It is clear that it may be done by a network node (for example but not limited to MME or S-GW etc).
  • a network node for example but not limited to MME or S-GW etc.
  • MME Mobility Management Entity
  • the user equipment 100 may be a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communication device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, by those skilled in the art. It may also be called a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable term.
  • Base station 200 may also be referred to by those skilled in the art in terms of NB (Node B), eNB (enhanced Node B), Base Station, or some other suitable terminology.
  • NB Node B
  • eNB enhanced Node B
  • Base Station or some other suitable terminology.
  • determining may encompass a wide variety of operations.
  • “Judgment”, “decision” are, for example, judging, calculating, calculating, processing, processing, deriving, investigating, looking up (for example, a table) (Searching in a database or another data structure), ascertaining may be regarded as “decision”, “decision”, etc.
  • “determination” and “determination” are receiving (e.g. receiving information), transmitting (e.g. transmitting information), input (input), output (output), access (Accessing) (for example, accessing data in a memory) may be regarded as “judged” or “decided”.
  • the phrase “based on” does not mean “based only on,” unless expressly stated otherwise. In other words, the phrase “based on” means both “based only on” and “based at least on.”
  • 100 user apparatus 110 signal transmitting unit 120 signal receiving unit 130 setting information managing unit 140 RA control unit 200 base station 210 signal transmitting unit 220 signal receiving unit 230 scheduling unit 240 setting information managing unit 1001 processor 1002 memory 1003 storage 1004 storage 1004 communication device 1005 input Device 1006 Output device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信システムにおけるユーザ装置において、所定の送信電力パラメータを保持する設定情報管理部と、ある条件が満たされる場合に、前記所定の送信電力パラメータに基づく送信電力でランダムアクセスプリアンブルを送信する信号送信部とを備える。

Description

ユーザ装置
 本発明は、無線通信システムにおけるユーザ装置に関連するものである。
 現在、ドローンなどの無人航空機が様々な企業ユース及び個人ユースにおいて利用されてきている。今後、LTE(Long Term Evolution)ネットワーク、NR(New Radio)ネットワークなどの無線ネットワークを利用したドローンサービスの実現が想定される。
 このような想定の下、ドローンなどの特定タイプ(特定種別)のユーザ装置(User Equipment:UE)の実現性を検討すべく新たなスタディアイテム"New SID on Enhanced Support for Aerial Vehicles"が3GPP(Third Generation Partnership Project)において承認され、既存の地上端末向けネットワークにおける無人航空機の接続時の性能評価、潜在的な問題点、改善技術などが検討されている。
3GPP TS 36.321 V14.0.0 (2016-09) 3GPP TS 36.331 V14.0.0 (2016-09)
 しかし、ドローンなどの無人航空機は基地局よりも高い高度での飛行が可能であり、複数のセルを見通せる環境内で無線通信を行うことが想定される。そのため、地上に配置される既存のユーザ装置と異なる無線通信制御が望まれる。
 一方、ユーザ装置が基地局との接続を確立する際などに行われるランダムアクセスについては、ユーザ装置がドローンとして使用される場合でも、LTEで規定されているランダムアクセス手順をベースとするランダムアクセス手順が実行されることが想定される。しかし、複数のセルを見通せる環境内でランダムアクセスを適切に行うための技術は提案されていない。
 本発明は上述した点に鑑みてなされたものであり、特定種別のユーザ装置に適したランダムアクセス技術を提供することを目的とする。
 開示の技術によれば、無線通信システムにおけるユーザ装置であって、
 所定の送信電力パラメータを保持する設定情報管理部と、
 ある条件が満たされる場合に、前記所定の送信電力パラメータに基づく送信電力でランダムアクセスプリアンブルを送信する信号送信部と
 を備えることを特徴とするユーザ装置が提供される。
 開示の技術によれば、特定種別のユーザ装置に適したランダムアクセス技術が提供される。
特定種別のユーザ装置が隣接セルに干渉を与えることを示す図である。 本発明の実施の形態における無線通信システムを示す概略図である。 ランダムアクセス手順の例を説明するための図である。 セル配置の例を示す図である。 複数の基地局でRACH preambleが検出される場合の例を示す図である。 複数のRARを受信する場合の例を示す図である。 送信電力パラメータの設定情報の例を示す図である。 送信電力パラメータの適用方法の例を説明するための図である。 Preamble Groupを切り替える場合の例を説明するための図である。 RACH preamble送信にビームを使用する場合の例を説明するための図である。 ビームの適用例を説明するための図である。 ビームの適用例を説明するための図である。 RAR検出の動作例を説明するための図である。 ユーザ装置100の機能構成の一例を示す図である。 基地局200の機能構成の一例を示す図である。 ユーザ装置100と基地局200のハードウェア構成の一例を示す図である。
 以下、図面を参照して本発明の実施の形態(本実施の形態)を説明する。なお、以下で説明する実施の形態は一例に過ぎず、本発明が適用される実施の形態は、以下の実施の形態に限られるわけではない。
 本実施の形態の無線通信システムは、少なくともLTEの通信方式をサポートしていることを想定している。よって、無線通信システムが動作するにあたっては、適宜、既存のLTEで規定された既存技術を使用できる。ただし、当該既存技術はLTEに限られない。また、本発明は、LTE以外の通信方式にも適用可能である。
 以下の実施の形態では、ドローンなどの地上に配置されない非地上配置型ユーザ装置を想定して説明を行うが、本発明はこれに限定されるものでなく、本発明は、複数セルへの見通しが良い地上配置型のユーザ装置にも適用可能である。
 一般に、ドローンは基地局よりも高い高度での飛行が可能であり、複数のセルを見通せる環境内で無線通信を行うことが想定される。このような想定の下では、例えば、ドローンから接続先セルへのアップリンク送信は、図1に示されるように、隣接セルへのアップリンク干渉を生じさせるおそれがある。また、RACH preambleが広範囲のセルに到達し、複数RAR受信、意図しないセルへの接続などが発生する可能性もある。本実施の形態では、主に、RACH preambleが広範囲のセルに到達することに関わる問題を解決する技術について説明している。また、本実施の形態では、主に、特定種別のユーザ装置がアイドル状態(RRC(Radio Resource Control)_IDLE状態など)にあるときのランダムアクセス手順の手法を説明する。
 (無線通信システムの構成)
 まず、図2を参照して本実施の形態における無線通信システムを説明する。図2は、本実施の形態における無線通信システムを示す図である。
 図2に示されるように、無線通信システム10は、ユーザ装置100及び基地局200を有する。無線通信システム10は、例えば、LTEシステム、LTE-Advancedシステム、NRシステムなどの3GPPによって規定された何れかの無線通信システムであってもよいし、あるいは、他の何れかの無線通信システムであってもよい。
 ユーザ装置100は、基地局200と通信接続可能な何れかの情報処理装置であり、例えば、限定されることなく、ドローン、無人航空機、非地上配置型ユーザ装置又はその一部であってもよい。
 基地局200は、コアネットワークなどの上位局(図示せず)による制御の下、ユーザ装置100を含む多数のユーザ装置と無線通信を実行する。LTEシステム及びLTE-Advancedシステムでは、基地局200は、例えば、eNB(evolved NodeB)として参照され、NRシステムでは、基地局200は、例えば、gNBとして参照されうる。図示された例では、1つの基地局200しか示されていないが、典型的には、多数の基地局が配置される。基地局200のカバレッジは一般にセルと呼ばれる。また、ユーザ装置100が在圏するセルはサービングセルと呼ばれる。
 (ランダムアクセス手順について)
 本実施の形態では、ユーザ装置100によるランダムアクセスに関する新たな動作を説明するので、ここではまず、ランダムアクセス手順の基本的な動作を図3を参照して説明する。なお、本実施の形態では、衝突型ランダムアクセス手順を対象とする。しかし、これに限定されるわけではなく、本発明は、非衝突型ランダムアクセス手順にも適用可能である。
 本実施の形態では、一例として、LTEでのランダムアクセス手順(非特許文献1)と同様のランダムアクセス手順を実行することとしている。ただし、後述するように、従来のランダムアクセス手順にはない動作も実行される。
 図3に示すように、基地局200は、ブロードキャスト情報、及び同期信号を、それぞれの所定の周期で送信する(ステップS1)。ユーザ装置100は、同期信号からセルIDを取得するとともに、ブロードキャスト情報における基本的情報からシステム帯域幅情報等を取得する。また、ブロードキャスト情報におけるシステム情報からrootSequenceの情報などの設定情報を取得する。なお、図3は、ユーザ装置100のサービングセルが、基地局200のセルである場合を示している。
 ユーザ装置100は、基地局200に接続する際に、まず、RACH preamble(Message1)を送信する(S2)。基地局200は、RACH preambleを検出すると、その応答であるRA response(RAR、Message2)をユーザ装置100に送信する(ステップS3)。RARには、送信タイミング情報、ユーザ装置100の識別子(TC-RNTI)等が含まれる。なお、送信タイミング情報は、TA(Timing Advance)とも称される。TAは、ユーザ装置100がUL送信を行うタイミングを調整するための情報であり、一例として、TAの値が大きいほど、ユーザ装置100は、(下り基準タイミングに比べて)早いタイミングでUL信号を送信する。つまり、一般に、ユーザ装置100と基地局200との距離が大きいほど、TAは大きくなる。なお、ユーザ装置100と基地局200との距離が大きいほど、TAが小さくなるようなTAの値の設定がなされてもよい。
 RACH responseを受信したユーザ装置100は、所定の情報を含むMessage3を基地局200に送信する(S4)。Message3は、例えば、RRC connection requestである。
 Message3を受信した基地局200は、Message4(例:RRC connection setup)をユーザ装置100に送信する(S5)。ユーザ装置10は、上記の所定の情報がMessage4に含まれていることを確認すると、当該Message4が、上記のMessage3に対応する自分宛てのMessage4であることを認識し、ランダムアクセス手順を完了する。一方、Message4においてユーザ装置10が所定の情報を確認できなかった場合は、ランダムアクセス手順の失敗と見なし、再度RACH preambleの送信から手順を実行する。
 (ランダムアクセス時に発生し得る事象について)
 RACH preambleは、ベースとなる系列であるrootSequenceをサイクリックシフトすることにより生成される。一般に、異なるセルでは異なるrootSequenceが用いられる。基地局は、自セルで使用されるrootSequenceから生成されたRACH preambleを検出し、自セルで使用されるrootSequence以外のrootSequenceから生成されたRACH preambleを検出しない。また、基地局は、自セルで使用されるrootSequenceをシステム情報でブロードキャストする。
 rootSequenceの総数には限りがある。例えば、LTEでは838個である。ここで、図4にセル配置の例を示す。図4に示すセル配置でN-tier内のセル数は1+3N(N-1)である。3セクタ構成を仮定すると3(1+3N(N-1))セクタになり、rootSequence数838個は、10-tier程度で全て利用される計算となる。10-tierにおいて、ISD=200mの場合、2km程度の離隔距離となる。屋内局を含めた非正則なセル配置を考慮すると、離隔距離はさらに小さくなることが考えられる。
 ここで、本実施の形態のユーザ装置100はドローンであることを想定している。当該ユーザ装置100は基地局200よりも高い高度での飛行が可能であり、複数のセルの見通し環境内で無線通信を行うことが想定される。従って、ユーザ装置100は、同一rootSequenceを使用する複数のセルを見通せることが考えられる。
 そのような場合、図5に示すように、ランダムアクセスにおいて、同一rootSequenceを用いる複数のセル(複数の基地局)で、ユーザ装置100が送信したRACH preambleが検出される可能性がある。図5においてRACH系列#nなどはrootSequenceを示す。図5に示すとおり、ユーザ装置100は、基地局200に接続することを意図して、基地局200からブロードキャストで通知されたRACH系列#nに基づくRACH preambleを送信する。しかし、基地局200の他に、基地局202もRACH系列#nを使用するため、基地局200に加えて基地局202も、ユーザ装置100から送信されたRACH preambleを検出する可能性がある。
 あるRACH preambleが複数セルで検出された場合、複数のRARがユーザ装置100に返される可能性がある。また、この場合、例えば図6に示すように、RARの受信を期待する時間ウィンドウであるRA response windowにおいて、cell#x(基地局202)からのRARを最初に受信し、cell#a(基地局200)からのRARを次に受信することが有り得る。
 既存の仕様(非特許文献1)に従うと、RARの受信に成功した場合に、それ以降のRARの監視をストップしてよい。従って、ユーザ装置100は(意図しない)最適でないcell#xへ接続する可能性がある。ユーザ装置100が図5に示す基地局202の遠方セルに接続した場合、ユーザ装置100の高度の変化に伴いチャネル品質が急速に劣化する可能性がある。
 また、図6に示すように、ユーザ装置100が複数のRARを受信した場合、いずれのRARに対してmsg3を送信するかの動作は仕様上、明確にされていないため、ユーザ装置100は双方にmsg3を送信することもあり得る。この場合、オーバーヘッド増加、最適でないセルへの接続の可能性、意図しないランダムアクセス失敗などが生じる可能性がある。
 以下、上記の点を解決することを可能とする技術として、実施例1、実施例2、実施例3を説明する。なお、実施例1と実施例2の組み合わせ、実施例2と実施例3の組み合わせ、実施例1と実施例3の組み合わせ、実施例1と実施例2と実施例3の組み合わせのいずれも実施可能である。
 (実施例1)
 実施例1では、以下の実施例1-1~1-3を説明する。実施例1-2は、基本的に実施例1-1を前提としている。実施例1-3は、実施例1-1と組み合わせてもよいし、実施例1-2と組み合わせてもよい。
 <実施例1-1>
 従来技術において、RACH preambleの送信電力は、基地局200からブロードキャストされるPowerRampingParameters(非特許文献2)に基づき決められる。従って、セル内の各UEは共通の方法でRACH preambleの送信電力を決定する。
 一方、実施例1-1では、RACH preambleの送信電力パラメータが、ユーザ装置の種別(タイプ)と呼んでもよい)に応じて設定される。
 一例として、ドローンであるユーザ装置100に対し、それを示す特定の種別が定義され、ユーザ装置100には、その特定の種別を示す情報が予め設定される。この種別(以降、特定種別と呼ぶ)は、例えば、当該ユーザ装置100が、ドローンであること(あるいはドローンに搭載されるUEであること)の認証を受けた段階で設定されることとしてもよい。また、ユーザ装置が特定の能力を持っている場合に、ユーザ装置は特定の種別に該当することとしてもよい。
 一例として、例えば、図3のS1で示すブロードキャスト情報の一部として、図7に示すPowerRampingParametersがユーザ装置100に送信される。図7に示すPowerRampingParametersには、RACH preambleの初期送信のための送信電力パラメータとしてpreambleInitialReceivedTargetPowerが含まれる。
 preambleInitialReceivedTargetPowerの値としては図7に列挙される値のうちのいずれか1つが基地局200から送信される。
 実施例1-1では、例えば、従来の最小値よりも小さな値であるdBm-130(この値は一例である)が、特定種別のユーザ装置に適用すべき値として基地局200から送信される。ただし、「この値が特定種別のユーザ装置に適用する値である」ことを示す情報については、基地局200から送信されてもよいし、されなくてもよい。また、本実施の形態では、preambleInitialReceivedTargetPowerの値として、上記の値の他に、一般のユーザ装置が使用する値も通知される。
 上記の特定種別のユーザ装置用の値を受信したユーザ装置100は、自身が特定種別であることを把握しているので、当該値(dBm-130)から算出した送信電力で、RACH preambleを送信する。
 このように、特定種別のユーザ装置(本実施の形態ではドローン)のみに小さな初期送信電力を使用させることで、遠方セルでのRACH preamble検出確率を最小限に留めることができる。
 <実施例1-2>
 特定種別のユーザ装置100において、RACH preambleの送信電力として、常に上記のような小さな値を使用することは好ましくない場合がある。例えば、そのような場合は、ユーザ装置100の飛行高度が低く、遠方セルまで見通せない場合である。この場合にまで、RACH preambleの送信電力として小さな値を使用すると、Power Rampingが無駄に生じることで、遅延増になる可能性がある。
 そこで、実施例1-2では、特定種別のユーザ装置100は、複数セル(例:Intra-frequencyの複数セル)の受信電力(ここでは例としてRSRPとする)の測定を行って、測定結果に基づいて、特定種別用の送信電力パラメータを使用するか否かを決定する。なお、実施例1-2では、特定種別のユーザ装置100以外のユーザ装置も、以下で説明する動作を行うこととしてもよい。
 この場合の動作例を図8のシーケンス図を参照して説明する。S101において、基地局200から設定情報が送信され、ユーザ装置100が当該設定情報を受信する。この設定情報は、例えば前述したブロードキャスト情報(システム情報)として送信されるものであり、特定種別のユーザ装置に適用される送信電力パラメータの値が含まれる。
 なお、実施例1(実施例2、3も同様)では、RACH preamble送信前において、ユーザ装置100は基地局200に接続されておらず、基地局200への種別通知、測定結果通知等を行わないことを想定している。よって、後述するように、ユーザ装置100自身が、条件合致を判断し、特定種別のユーザ装置に適用される送信電力パラメータの値の適用可否を判断している。
 S102において、ユーザ装置100は、検出した各セルのRSRP(参照信号の受信電力)を測定する。ステップS103において、ユーザ装置100は、S102での測定結果が、所定の条件に合致するか否かを判定する。所定の条件の例は以下のとおりである。以下の条件1~3のうちのいずれか1つの条件を用いてもよいし、いずれか複数の条件を、AND(複数条件全部がOKならばOK)もしくはOR(複数条件のうちのいずれかがOKならばOK)で使用してもよい。閾値A~Fはいずれも予め定めた閾値である。これらの閾値が、基地局200からユーザ装置100にブロードキャストされてもよい。
 条件1:RSRPが閾値A以上かつ閾値B以下となる同周波数セル(接続を意図するセル(サービングセル)と同周波数のセル)の数が閾値C以上。
 条件2:検出した同周波数セルの数が閾値E以上。
 条件3:サービングセルのRSRPから同周波数の他セルのRSRPを引いた値が、閾値F以上となる他セルの数が閾値G以上。
 上記の条件は、意図しない接続が生じる可能性のある遠方セルが存在する否かを判断するための条件である。たたし、これらの条件は一例に過ぎない。測定結果が、当該条件に合致する場合、このような遠方セルが存在することが想定される。
 図8のS103において、ユーザ装置100は、測定結果が条件に合致しないと判断した場合(S103のNo)、通常の送信電力(例:既存の仕様に基づく送信電力)でRACH preambleを送信する(S104)。
 図8のS103において、ユーザ装置100は、測定結果が条件に合致すると判断した場合(S103のYes)、特定種別用の送信電力パラメータから算出した送信電力でRACH preambleを送信する(S105)。
 実施例1-2では、ユーザ装置100が遠方セルの存在を検出した場合にのみ、初期送信電力を適用することで、遠方セルでのRACH preamble検出確率を最小限に留めることができる。
 <実施例1-3>
 実施例1-3では、同一rootSequenceを使用するセル毎に、衝突型RAに使用するRACH preamble全体の中で、使用可能なRACH preambleのグループが定められ、使用可能なRACH preambleのグループの情報が、基地局200からユーザ装置100にブロードキャストで通知され、設定される。そして、ユーザ装置100は、接続を意図する基地局200へのRACH preamble送信の際に、使用可能なRACH preambleのグループから選択したRACH preambleを使用する。具体例を図9を参照して説明する。
 図9には、同一rootSequenceを使用するCell#aとCell#xのRACH preambleが示される。図9の例では、各セルで、64個のRACH preambleが存在し、各RACH preambleは、rootSequenceからのサイクリックシフトの量で区別される。また、非衝突型用PreambleとしてNcon個のPreambleが用意される。非衝突型用Preambleを端末非固有なランダムアクセスプリアンブル(non-dedicated random access preamble)と称してもよい。また、図9の例では、GroupAとGroupBが存在し、各セルのGroupAは、他のセルのGroupAとは重ならないように設定される。GroupAとGroupB全体でNcon個よりも少ないPreambleが設定されてもよい。
 例えば、cell#aのGroupAは、RACH preamble0とRACH preamble1であり、cell#xのGroupAは、RACH preamble2とRACH preamble3である。
 上記の使用可能グループの情報は、例えばシステム情報で、サービングセルの基地局200からユーザ装置100に送信される。
 そして、例えば、実施例1-1と同様に、ユーザ装置100が特定種別に該当する場合には、ユーザ装置100は、GroupAからRACH preamble1を選択し、送信する。また、実施例1-2で説明した条件(図8のS102、S103)に合致する場合に、GroupAからRACH preamble1を選択し、送信することとしてもよい。また、特定種別に該当しないユーザ装置(あるいは、実施例1-2で説明した条件に合致しないことを検知したユーザ装置)は、GroupAを使用してもよいし、GroupA以外のグループ(例:図9のGroupB)を使用してもよい。
 例えば、ユーザ装置100が、cell#aに接続することを希望して、GroupAからRACH preamble1を選択して送信する場合、cell#xの基地局202は、当該RACH preamble1を使用しないので、RACH preamble1を検出しない。よって、cell#aのみからRARが返される。従って、複数RAR受信、意図しないセルへの接続の問題が解消される。
 また、上記のように、セル毎に使用するPreamble groupを変更することで、実効的にセル繰り返し数を増やすことができる。
 また、以下で説明する方法を採用してもよい。
 この方法では、セルにおける端末非固有なランダムアクセスプリアンブルの領域(例:プリアンブル0~Ncon-1)で、特定種別のユーザ装置100(及び/又は実施例1-2で説明した条件合致を検知したユーザ装置100)以外のユーザ装置が選択できないPreambleGroupが定義される。
 一例として、例えば、基地局200の配下のユーザ装置に対し、従来のグループと同様のGroupA(例:プリアンブル0~N-1)及びGroupB(例:プリアンブルN~Ncon-1)を設定するとともに、新規のPreambleGroup(例:GroupA内のプリアンブルN~N+M)が設定される。
 そして、各ユーザ装置は、ある条件が満たされたときに、PreambleGroupの中からプリアンブルを選択する動作を行う。ただし、特定種別のユーザ装置100(及び/又は実施例1-2で説明した条件合致を検知したユーザ装置100)以外のユーザ装置に対するその条件は、メッセージ/バッファサイズが無限大/無限小の閾値を超える/下回る、パスロスあるいは受信電力が無限大/無限小の閾値を超える/下回るといった実際には起こり得ない条件であり、実質的に特定種別のユーザ装置100(及び/又は実施例1-2で説明した条件合致を検知したユーザ装置100)以外のユーザ装置はPreambleGroupの中からプリアンブルを選択しない。
 一方、特定種別のユーザ装置100(及び/又は実施例1-2で説明した条件合致を検知したユーザ装置100)に対する条件は、例えば、特定種別であること(及び/又は実施例1-2で説明した条件合致を検知したこと)である。
 また、PreambleGroupには複数のプリアンブルグループが含まれており、特定種別のユーザ装置100(及び/又は実施例1-2で説明した条件合致を検知したユーザ装置100)は、当該複数のプリアンブルグループの中の1つのプリアンブルグループの中からプリアンブルを選択する。あるセルにおいて、当該複数のプリアンブルグループの中の使用可能なプリアンブルグループについては、例えば、図9を用いて説明した場合と同様に、同一rootSequenceを使用するセル間で異なることとしてよい。これにより、あるセルでは、どのようなユーザ装置にも選択されないプリアンブルが存在する。
 (実施例2)
 次に、実施例2を説明する。実施例2では、特定種別のユーザ装置100、あるいは、特定能力を有するユーザ装置100は、狭域の送信ビームからRACH preamble送信を開始し、RARの受信に失敗(RA response window内でRARを受信しないこと)する度に、送信ビームの領域の大きさを広げることとしている。上記の特定能力とは、例えば、特定のアンテナ構成及び/又は特定のビーム制御能力である。
 なお、送信ビームを用いて信号を送信することは、プリコーディングベクトルが乗算された(プリコーディングベクトルでプリコードされた)信号を送信することと同義である。また、送信ビームを用いて信号を送信することは、特定のアンテナポートで信号を送信することと表現されてもよい。アンテナポートとは、3GPPの規格で定義されている論理アンテナポートを指す。なお、送信ビームの形成方法は、上記の方法に限られるわけではない。例えば、複数アンテナを備えるユーザ装置100において、それぞれのアンテナの角度を変える方法を用いてもよいし、プリコーディングベクトルを用いる方法とアンテナの角度を変える方法を組み合わせる方法を用いてもよいし、その他の方法を用いてもよい。本実施例では、送信ビームの生成にプリコーディングベクトルを用いる方法を使用する。なお、本実施例において、プリコーディングベクトルは識別子(プリコーディングインデックス)で識別できる。
 図10、図11を参照してユーザ装置100によるRACH preambleの送信動作例を説明する。
 図10のAは、最初のRACH preamble送信に使用される送信ビームを示す。図示するように、ユーザ装置100の下に向けて狭域の送信ビームでRACH preambleを送信する。ここでは、プリコーディングベクトル#1が使用される。図11は、地上に届く送信ビームを上から見た図である。図11には、各ビームが円形であるが、これは例であり、例えば楕円形になる場合もあるし、その他の形になる場合もある。また、図11において、送信ビームBの領域には送信ビームAの領域が含まれ、送信ビームCの領域には送信ビームA、Bの領域が含まれる。
 Aの送信ビームによるRACH preamble送信に失敗した場合、ユーザ装置100は、次に、プリコーディングベクトル#2を使用してBで示す送信ビームでRACH preambleを送信する。Bで示す送信ビームでRACH preambleを送信することで、基地局200からのRARを検出できる可能性が高い。
 仮に、Bの送信ビームによるRACH preamble送信に失敗した場合、ユーザ装置100は、次に、プリコーディングベクトル#3を使用してCで示す送信ビームでRACH preambleを送信する。
 上記の動作により、遠方捕捉を回避することができる。なお、RACH preamble送信失敗の回数に上限値を設け、ユーザ装置100は、RACH preamble送信失敗が当該上限値に達した場合には、再び、最初の送信ビームAからRACH preamble送信を行うこととしてもよい。
 実施例2では、既存のランダムアクセス手順と同様に、RARの受信失敗の度にRACH preambleの送信電力を増加させるPower Rampingも適用する。すなわち、上述したBでの送信では、Aでの送信よりも大きな送信電力が使用される。また、上述したCでの送信では、Bでの送信よりも大きな送信電力が使用される。つまり、Power Rampingを行う度に、予め定められたプリコーディングベクトルを使用して送信ビームを適用する。
 また、送信ビームの変更順をパターンとして予め定めておき、ユーザ装置100はパターンに従って送信ビームの適用を行ってもよい。例えば、パターン1として、{送信ビームA、送信ビームB、送信ビームC}というパターンが定義されていて、ユーザ装置100がパターン1を適用する場合、図10、図11で説明した送信ビームの変更が行われる。また、例えば、パターン2として、{送信ビームA、送信ビームC}というパターンが定義されていて、ユーザ装置100がパターン2を適用する場合、ユーザ装置100は、RACH preamble送信失敗の度に送信ビームAと送信ビームCを切り替える動作を行う。
 Power Rampingと送信ビームの適用に関し、Power rampingでRACH preamble送信電力が所定の閾値(あるいは最大送信電力)に到達した場合に、図10、図11で説明したような、送信ビームの切り替えを適用してもよい。
 図12を参照して例を説明する。図12は、送信毎の送信電力を示している。ユーザ装置100は、1回目に、閾値より小さい送信電力でRACH preambleを送信する。次に、Power Rampingにより、1回目の送信電力よりも大きな送信電力で、2回目のRACH preamble送信を行う。この例では、1回目と2回目の送信には送信ビームは適用されない。ただし、閾値に達する前の送信において、予め定められた送信ビーム(あるいは基地局200から通知された送信ビーム)を用いてもよい。
 2回目の送信において、送信電力が閾値に達したため、ユーザ装置100は、3回目の送信において、送信ビーム(例:図10の送信ビームA)を用いてRACH preambleを送信する。また、ユーザ装置100は、4回目の送信において、3回目の送信ビームよりも広い送信ビーム(例:図10の送信ビームB)を用いてRACH preambleを送信する。
 1回目と2回目の送信に送信ビームを使用する場合において、その送信ビームは例えば図10の送信ビームAのような狭域ビームである。この場合、3回目の送信で例えば送信ビームBが使用され、4回目の送信で例えば送信ビームCが使用される。
 実施例2において、ユーザ装置100が用いるプリコーディングインデックス、プリコーディングインデックスのパターンなどは、予め定めてもよいし、ブロードキャストなどで基地局200からユーザ装置100に通知してもよい。
 また、ユーザ装置100は、基地局200との接続後、RACH preamble送信に成功したプリコーディングインデックスを用いてSRS及び/又はPUSCHなどを送信することとしてもよい。
 また、基地局200は、SRS及び/又はPUSCHなどに対して特定のプリコーディングインデックスを適用するように指示するための制御信号をユーザ装置100に送信してもよい。
 (実施例3)
 実施例3については、実施例3-1、3-2を説明する。
 <実施例3-1>
 実施例3-1では、ユーザ装置100は、RACH preambleを送信した後、RA Response window内でRARを検出した場合でも、RA Response window内でのRARのモニタを継続する。その結果、例えば、図6に示したように、ユーザ装置100は、RA Response window内で複数のRARを受信する場合がある。
 実施例3-1では、ユーザ装置100は、RA Response window内で受信した1つ又は複数のRARのうち、所定の条件にマッチしたRARを有効とみなし、当該RARに対応するmsg3を送信する。ユーザ装置100は、所定の条件にマッチしないRARを無視し、それに対応するmsg3を送信しない。従って、RARを受信しても、有効なRARがなく、msg3が送信されない場合がある。
 なお、RARに対応するmsg3を送信するとは、例えば、受信したRARに含まれる識別子(例:TC-RNTI)をmsg3に含める(当該識別子でスクランブルを行うことを含む)ことである。
 また、上記の所定の条件の例は以下のとおりである。以下の条件1~4のうちのいずれか1つの条件を用いてもよいし、いずれか複数の条件を、AND(複数条件全部がOKならばOK)もしくはOR(複数条件のうちのいずれかがOKならばOK)で使用してもよい。ただし、条件3は条件1及び/又は条件2とANDで組み合わせて使用される。条件4も条件1及び/又は条件2とANDで組み合わせて使用される。閾値A~Bはいずれも予め定めた閾値である。これらの閾値が、基地局200からユーザ装置100にブロードキャストされてもよい。なお、実施例3の条件は、ユーザ装置100と基地局との距離が大きいほどTAが大きくなるようにTAの設定がされる場合を想定している。
 条件1:RARに含まれるTAが最も小さい(RARが1つの場合、当該RARに対して条件1は満たされる)。
 条件2:RARの受信電力が最も高い(RARが1つの場合、当該RARに対して条件2は満たされる)。
 条件3:RARに含まれるTAが閾値A以下。
 条件4:RARの受信電力が閾値B以上。
 実施例3-1により、ユーザ装置100は、適切なセルにmsg3を送信できる。
 <実施例3-2>
 実施例3-2において、ユーザ装置100は、RACH preambleを送信し、RA Response window内で所定の条件を満たすRARを検出した場合に、RARのモニタを停止する。
 上記の所定の条件の例は以下のとおりである。以下の条件1、2のうちのいずれか1つの条件を用いてもよいし、2つの条件を、AND(複数条件全部がOKならばOK)もしくはOR(複数条件のうちのいずれかがOKならばOK)で使用してもよい。閾値A~Bはいずれも予め定めた閾値である。これらの閾値が、基地局200からユーザ装置100にブロードキャストされてもよい。
 条件1:RARに含まれるTAが閾値A以下。
 条件2:RARの受信電力が閾値B以上。
 実施例3-2の動作例を図13を参照して説明する。S201において、ユーザ装置100はRACH preambleを送信する。S202において、ユーザ装置100は、RA response window内でRARを受信する。ステップS203において、ユーザ装置100は、受信したRARが所定の条件を満たすかどうか判定を行う。
 ステップS203の判定結果がNoの場合、時刻がRA response window内である限り、条件を満たすRARを受信するまでモニタを継続し、RAR受信(S202)、条件判定(S203)を繰り返す。
 S203での条件判定がYesの場合、ステップS204に進み、ユーザ装置100は、条件判定がYesとなったRARに対応するmsg3を送信する。
 なお、RARのモニタ中にRA response windowの時間が経過した場合、ユーザ装置100は、RACH preambleを再送する。2回目以降のRARモニタに関しても実施例3-2を継続してもよいし、2回目以降(あるいは予め定めたN回目以降(N≧2))においては、実施例3-1(条件1又は条件2を使用)を適用してもよい。
 実施例3-2によっても、適切なセルに対してmsg3を送信することが可能となる。
 <実施例3-1、3-2の動作の適用について>
 実施例3-1と実施例3-2のいずれにおいても、その動作は、全てのユーザ装置が行うこととしてもよいし、実施例1と同様に、特定種別のユーザ装置100のみが行うこととしてもよい。また、実施例1-2の図8で説明した例と同じく、RSRPの測定を行って、測定結果が所定の条件に合致する場合にのみ、当該動作を行うこととしてもよい。
 (装置構成)
 以上説明した実施の形態の動作を実行するユーザ装置100及び基地局200の機能構成例を説明する。ユーザ装置100及び基地局200はそれぞれ、本実施の形態で説明した全ての機能を備える。ただし、ユーザ装置100及び基地局200はそれぞれ、本実施の形態で説明した全ての機能の中の一部の機能を備えることとしてもよい。例えば、ユーザ装置100及び基地局200はそれぞれ、実施例1-1を実施する機能、実施例1-2を実施する機能、実施例1-3を実施する機能、実施例2を実施する機能、実施例3-1を実施する機能、及び実施例3-2を実施する機能のうちの全部の機能を備えても良いし、これらのうちのいずれか複数又は1つの機能を備えてもよい。
 <ユーザ装置100>
 図14は、ユーザ装置100の機能構成の一例を示す図である。図14に示すように、ユーザ装置100は、信号送信部110と、信号受信部120と、設定情報管理部130と、RA(ランダムアクセス)制御部140を含む。図14に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 信号送信部110は、上位レイヤの情報から下位レイヤの信号を生成し、当該信号を無線で送信するように構成されている。信号受信部120は、各種の信号を無線受信し、受信した信号から上位レイヤの情報を取得するように構成されている。信号送信部110は、プリコーディングべクトルを使用して送信ビームを形成することもできる。
 設定情報管理部130は、予め設定される設定情報と、ダイナミック及び/又はセミスタティックに基地局200等から送信される設定情報とを格納する記憶部を有する。例えば、設定情報管理部130には、特定種別ユーザ装置用の送信電力パラメータ、所定のプリアンブルグループなどが格納される。RA制御部140は、本実施の形態で説明したランダムアクセスに関する動作を、信号送信部110と信号受信部120に実行させる制御を行う。なお、RA制御部140が、信号送信部110及び/又は信号受信部120に含まれていてもよい。
 例えば、設定情報管理部130は、所定の送信電力パラメータを保持する。信号送信部110は、ある条件を満たすか否かを判定し、当該条件が満たされる場合に、前記所定の送信電力パラメータに基づく送信電力でランダムアクセスプリアンブルを送信する。また、信号受信部120は、信号を受信し、受信電力の測定を行う。
 また、例えば、設定情報管理部130は、所定のプリアンブルグループを保持する。信号送信部110は、ある条件が満たされる場合に、前記所定のプリアンブルグループ内のランダムアクセスプリアンブルを選択し、当該ランダムアクセスプリアンブルを送信する。
 前記信号送信部110は、前記ユーザ装置のサービングセルにおける端末非固有なランダムアクセスプリアンブルのうち、前記条件を満たさないユーザ装置には選択されないプリアンブルグループの中の一部のプリアンブルグループの中から前記ランダムアクセスプリアンブルを選択することとしてもよい。
 また、例えば、信号送信部120は、ユーザ装置100のサービングセルにおけるルートシーケンスと同じルートシーケンスが使用される他のセルにおいて使用されないプリアンブルグループの中から前記ランダムアクセスプリアンブルを選択する。
 また、信号送信部110は、ランダムアクセスプリアンブルに対するランダムアクセス応答が予め定めた条件を満たすか否かを判断し、満たす場合に、当該ランダムアクセス応答に対するメッセージを送信することもできる。
 また、ユーザ装置100は、ユーザ装置100のサービングセルにおいて使用可能なランダムアクセスプリアンブルの集合であるプリアンブルグループの情報を保持する設定情報管理部130と、前記プリアンブルグループの中からランダムアクセスプリアンブルを選択し、当該ランダムアクセスプリアンブルを送信する信号送信部110とを備え、前記プリアンブルグループは、前記ユーザ装置のサービングセルにおけるルートシーケンスと同じルートシーケンスが使用される他のセルにおいて使用されない、ように構成されてもよい。
 また、ユーザ装置100は、ある送信ビームを用いてランダムアクセスプリアンブルを送信した後、当該ランダムアクセスプリアンブルの送信に失敗した場合において、次のランダムアクセスプリアンブル送信を、前記送信ビームよりも広域の送信ビームを使用して行う信号送信部110を備えるユーザ装置として構成されてもよい。
 また、ユーザ装置100は、ランダムアクセスプリアンブルを送信する信号送信部110と、前記ランダムアクセスプリアンブルに対するランダムアクセス応答を受信する信号受信部120と、を備え、前記ランダムアクセスプリアンブルに対する前記ランダムアクセス応答が予め定めた条件を満たす場合に、前記信号送信部110は、当該ランダムアクセス応答に対するメッセージを送信するように構成されてもよい。前記予め定めた条件は、例えば、受信した1つ又は複数のランダムアクセス応答の中で、含まれるTAの値が最大であること、又は、受信電力が最大であることである。
 <基地局200>
 図15は、基地局200の機能構成の一例を示す図である。図15に示すように、基地局200は、信号送信部210と、信号受信部220と、スケジューリング部230と、設定情報管理部240を含む。
 図15に示す機能構成は一例に過ぎない。本実施の形態に係る動作を実行できるのであれば、機能区分及び機能部の名称はどのようなものでもよい。
 信号送信部210は、上位レイヤの情報から下位レイヤの信号を生成し、当該信号を無線で送信するように構成されている。信号受信部220は、各種の信号を無線受信し、受信した信号から上位レイヤの情報を取得するように構成されている。また、信号送信部210は、設定情報管理部240から取得した特定種別用の送信電力パラメータをユーザ装置100に送信する機能、使用可能なランダムアクセスプリアンブルの情報をユーザ装置100に送信する機能、その他の本実施の形態で説明した設定情報をユーザ装置100に送信する機能を含む。また、信号送信部210と信号受信部220は、本実施の形態で説明したランダムアクセス手順をユーザ装置100との間で実行する。
 スケジューリング部230は、ユーザ装置100へのリソース割り当て等を行う。設定情報管理部240は記憶部を含み、予め設定される設定情報を格納するとともに、ダイナミック及び/又はセミスタティックにユーザ装置100に対して設定する設定情報を決定し、保持する機能を含む。
 <ハードウェア構成>
 上記実施の形態の説明に用いたブロック図(図14~図15)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及び/又はソフトウェアの任意の組み合わせによって実現される。また、各機能ブロックの実現手段は特に限定されない。すなわち、各機能ブロックは、物理的及び/又は論理的に複数要素が結合した1つの装置により実現されてもよいし、物理的及び/又は論理的に分離した2つ以上の装置を直接的及び/又は間接的に(例えば、有線及び/又は無線)で接続し、これら複数の装置により実現されてもよい。
 また、例えば、本発明の一実施の形態におけるユーザ装置100と基地局200はいずれも、本実施の形態に係る処理を行うコンピュータとして機能してもよい。図16は、本実施の形態に係るユーザ装置100と基地局200のハードウェア構成の一例を示す図である。上述のユーザ装置100と基地局200はそれぞれ、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。ユーザ装置100と基地局200のハードウェア構成は、図に示した1001~1006で示される各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。
 ユーザ装置100と基地局200における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることで、プロセッサ1001が演算を行い、通信装置1004による通信、メモリ1002及びストレージ1003におけるデータの読み出し及び/又は書き込みを制御することで実現される。
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU:Central Processing Unit)で構成されてもよい。
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール又はデータを、ストレージ1003及び/又は通信装置1004からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態で説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、図14に示したユーザ装置100の信号送信部110、信号受信部120、設定情報管理部130、RA制御部140は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。また、例えば、図15に示した基地局200の信号送信部210と、信号受信部220と、スケジューリング部230と、設定情報管理部240は、メモリ1002に格納され、プロセッサ1001で動作する制御プログラムによって実現されてもよい。上述の各種処理は、1つのプロセッサ1001で実行される旨を説明してきたが、2以上のプロセッサ1001により同時又は逐次に実行されてもよい。プロセッサ1001は、1以上のチップで実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されても良い。
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、ROM(Read Only Memory)、EPROM(Erasable Programmable ROM)、EEPROM(Electrically Erasable Programmable ROM)、RAM(Random Access Memory)などの少なくとも1つで構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本発明の一実施の形態に係る処理を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、CD-ROM(Compact Disc ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つで構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記憶媒体は、例えば、メモリ1002及び/又はストレージ1003を含むデータベース、サーバその他の適切な媒体であってもよい。
 通信装置1004は、有線及び/又は無線ネットワークを介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。例えば、ユーザ装置100の信号送信部110及び信号受信部120は、通信装置1004で実現されてもよい。また、基地局200の信号送信部210及び信号受信部220は、通信装置1004で実現されてもよい。
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスで構成されてもよいし、装置間で異なるバスで構成されてもよい。
 また、ユーザ装置100と基地局200はそれぞれ、マイクロプロセッサ、デジタル信号プロセッサ(DSP:Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field Programmable Gate Array)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つで実装されてもよい。
 (実施の形態のまとめ)
 以上、説明したように、本実施の形態によれば、無線通信システムにおけるユーザ装置であって、所定の送信電力パラメータを保持する設定情報管理部と、ある条件が満たされる場合に、前記所定の送信電力パラメータに基づく送信電力でランダムアクセスプリアンブルを送信する信号送信部とを備えることを特徴とするユーザ装置が提供される。
 上記の構成により、特定種別のユーザ装置に適したランダムアクセス技術が提供される。
 また、本実施の形態により、無線通信システムにおけるユーザ装置であって、所定のプリアンブルグループを保持する設定情報管理部と、ある条件が満たされる場合に、前記所定のプリアンブルグループ内のランダムアクセスプリアンブルを選択し、当該ランダムアクセスプリアンブルを送信する信号送信部とを備えることを特徴とするユーザ装置が提供される。
 上記の構成により、特定種別のユーザ装置に適したランダムアクセス技術が提供される。
 前記信号送信部は、前記ユーザ装置のサービングセルにおける端末非固有なランダムアクセスプリアンブルのうち、前記条件を満たさないユーザ装置には選択されないプリアンブルグループの中の一部のプリアンブルグループの中から前記ランダムアクセスプリアンブルを選択することとしてもよい。この構成により、複数RAR受信を回避できる。
 前記条件は、例えば、前記ユーザ装置が特定の種別のユーザ装置であることである。この構成により、例えば、特定種別のユーザ装置であることの認証を受けたユーザ装置が、所定の送信電力パラメータを使用したランダムアクセスプリアンブルの送信を行うことができる。
 前記ユーザ装置は、信号を受信し、受信電力の測定を行う信号受信部を含み、前記条件は、前記信号受信部による測定結果が所定の条件を満たすことであることとしてもよい。この構成により、例えば、測定結果に基づいて遠方セルの存在が推定される場合にのみ、所定の送信電力パラメータを使用したランダムアクセスプリアンブルを送信を行うことができる。
 前記信号送信部は、前記ユーザ装置のサービングセルにおけるルートシーケンスと同じルートシーケンスが使用される他のセルにおいて使用されないプリアンブルグループの中から前記ランダムアクセスプリアンブルを選択することとしてもよい。この構成により、複数RAR受信を回避できる。
 また、前記ランダムアクセスプリアンブルに対するランダムアクセス応答が予め定めた条件を満たす場合に、前記信号送信部は、当該ランダムアクセス応答に対するメッセージを送信することとしてもよい。この構成により、例えば、複数のRARを受信する場合でも、適切な接続先にmsg3を送信できる。
 また、本実施の形態により、無線通信システムにおけるユーザ装置であって、前記ユーザ装置のサービングセルにおいて使用可能なランダムアクセスプリアンブルの集合であるプリアンブルグループの情報を保持する設定情報管理部と、前記プリアンブルグループの中からランダムアクセスプリアンブルを選択し、当該ランダムアクセスプリアンブルを送信する信号送信部とを備え、前記プリアンブルグループは、前記ユーザ装置のサービングセルにおけるルートシーケンスと同じルートシーケンスが使用される他のセルにおいて使用されないことを特徴とするユーザ装置が提供される。この構成により、特定種別のユーザ装置に適したランダムアクセス技術が提供される。
 また、本実施の形態により、無線通信システムにおけるユーザ装置であって、ある送信ビームを用いてランダムアクセスプリアンブルを送信した後、当該ランダムアクセスプリアンブルの送信に失敗した場合において、次のランダムアクセスプリアンブル送信を、前記送信ビームよりも広域の送信ビームを使用して行う信号送信部を備えることを特徴とするユーザ装置が提供される。この構成により、特定種別のユーザ装置に適したランダムアクセス技術が提供される。
 また、本実施の形態により、無線通信システムにおけるユーザ装置であって、ランダムアクセスプリアンブルを送信する信号送信部と前記ランダムアクセスプリアンブルに対するランダムアクセス応答を受信する信号受信部と、を備え、前記ランダムアクセスプリアンブルに対する前記ランダムアクセス応答が予め定めた条件を満たす場合に、前記信号送信部は、当該ランダムアクセス応答に対するメッセージを送信することを特徴とするユーザ装置が提供される。この構成により、特定種別のユーザ装置に適したランダムアクセス技術が提供される。前記予め定めた条件は、例えば、受信した1つ又は複数のランダムアクセス応答の中で、含まれるTAの値が最大であること、又は、受信電力が最大であることである。この構成により、1つのRARを的確に選択できる。
 (実施形態の補足)
 以上、本発明の実施の形態を説明してきたが、開示される発明はそのような実施形態に限定されず、当業者は様々な変形例、修正例、代替例、置換例等を理解するであろう。発明の理解を促すため具体的な数値例を用いて説明がなされたが、特に断りのない限り、それらの数値は単なる一例に過ぎず適切な如何なる値が使用されてもよい。上記の説明における項目の区分けは本発明に本質的ではなく、2以上の項目に記載された事項が必要に応じて組み合わせて使用されてよいし、ある項目に記載された事項が、別の項目に記載された事項に(矛盾しない限り)適用されてよい。機能ブロック図における機能部又は処理部の境界は必ずしも物理的な部品の境界に対応するとは限らない。複数の機能部の動作が物理的には1つの部品で行われてもよいし、あるいは1つの機能部の動作が物理的には複数の部品により行われてもよい。実施の形態で述べた処理手順については、矛盾の無い限り処理の順序を入れ替えてもよい。処理説明の便宜上、ユーザ装置100と基地局200は機能的なブロック図を用いて説明されたが、そのような装置はハードウェアで、ソフトウェアで又はそれらの組み合わせで実現されてもよい。本発明の実施の形態に従ってユーザ装置100が有するプロセッサにより動作するソフトウェア及び本発明の実施の形態に従って基地局200が有するプロセッサにより動作するソフトウェアはそれぞれ、ランダムアクセスメモリ(RAM)、フラッシュメモリ、読み取り専用メモリ(ROM)、EPROM、EEPROM、レジスタ、ハードディスク(HDD)、リムーバブルディスク、CD-ROM、データベース、サーバその他の適切な如何なる記憶媒体に保存されてもよい。
 また、情報の通知は、本明細書で説明した態様/実施形態に限られず、他の方法で行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、DCI(Downlink Control Information)、UCI(Uplink Control Information))、上位レイヤシグナリング(例えば、RRC(Radio Resource Control)シグナリング、MAC(Medium Access Control)シグナリング、ブロードキャスト情報(MIB(Master Information Block)、SIB(System Information Block)))、その他の信号又はこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。
 本明細書で説明した各態様/実施形態は、LTE(Long Term Evolution)、LTE-A(LTE-Advanced)、SUPER 3G、IMT-Advanced、4G、5G、FRA(Future Radio Access)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、UMB(Ultra Mobile Broadband)、IEEE 802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、UWB(Ultra-WideBand)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及び/又はこれらに基づいて拡張された次世代システムに適用されてもよい。
 本明細書で説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本明細書で説明した方法については、例示的な順序で様々なステップの要素を提示しており、提示した特定の順序に限定されない。
 本明細書において基地局200によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局200を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、ユーザ装置100との通信のために行われる様々な動作は、基地局200および/または基地局200以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)によって行われ得ることは明らかである。上記において基地局200以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MMEおよびS-GW)であってもよい。
 本明細書で説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。
 ユーザ装置100は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。
 基地局200は、当業者によって、NB(NodeB)、eNB(enhanced NodeB)、ベースステーション(Base Station)、またはいくつかの他の適切な用語で呼ばれる場合もある。
 本明細書で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up)(例えば、テーブル、データベースまたは別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。
 本明細書で使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。
 「含む(include)」、「含んでいる(including)」、およびそれらの変形が、本明細書あるいは特許請求の範囲で使用されている限り、これら用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本明細書あるいは特許請求の範囲において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。
 本開示の全体において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含み得る。
 以上、本発明について詳細に説明したが、当業者にとっては、本発明が本明細書中に説明した実施形態に限定されるものではないということは明らかである。本発明は、特許請求の範囲の記載により定まる本発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本明細書の記載は、例示説明を目的とするものであり、本発明に対して何ら制限的な意味を有するものではない。
100 ユーザ装置
110 信号送信部
120 信号受信部
130 設定情報管理部
140 RA制御部
200 基地局
210 信号送信部
220 信号受信部
230 スケジューリング部
240 設定情報管理部
1001 プロセッサ
1002 メモリ
1003 ストレージ
1004 通信装置
1005 入力装置
1006 出力装置

Claims (6)

  1.  無線通信システムにおけるユーザ装置であって、
     所定の送信電力パラメータを保持する設定情報管理部と、
     ある条件が満たされる場合に、前記所定の送信電力パラメータに基づく送信電力でランダムアクセスプリアンブルを送信する信号送信部と
     を備えることを特徴とするユーザ装置。
  2.  無線通信システムにおけるユーザ装置であって、
     所定のプリアンブルグループを保持する設定情報管理部と、
     ある条件が満たされる場合に、前記所定のプリアンブルグループ内のランダムアクセスプリアンブルを選択し、当該ランダムアクセスプリアンブルを送信する信号送信部と
     を備えることを特徴とするユーザ装置。
  3.  前記信号送信部は、前記ユーザ装置のサービングセルにおける端末非固有なランダムアクセスプリアンブルのうち、前記条件を満たさないユーザ装置には選択されないプリアンブルグループの中の一部のプリアンブルグループの中から前記ランダムアクセスプリアンブルを選択する
     ことを特徴とする請求項2に記載のユーザ装置。
  4.  前記条件は、前記ユーザ装置が特定の種別のユーザ装置であることである
     ことを特徴とする請求項1ないし3のうちいずれか1項に記載のユーザ装置。
  5.  前記ユーザ装置は、信号を受信し、受信電力の測定を行う信号受信部を含み、
     前記条件は、前記信号受信部による測定結果が所定の条件を満たすことである
     ことを特徴とする請求項1ないし4のうちいずれか1項に記載のユーザ装置。
  6.  前記ランダムアクセスプリアンブルに対するランダムアクセス応答が予め定めた条件を満たす場合に、前記信号送信部は、当該ランダムアクセス応答に対するメッセージを送信する
     ことを特徴とする請求項1ないし5のうちいずれか1項に記載のユーザ装置。
PCT/JP2017/029228 2017-08-10 2017-08-10 ユーザ装置 WO2019030933A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029228 WO2019030933A1 (ja) 2017-08-10 2017-08-10 ユーザ装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029228 WO2019030933A1 (ja) 2017-08-10 2017-08-10 ユーザ装置

Publications (1)

Publication Number Publication Date
WO2019030933A1 true WO2019030933A1 (ja) 2019-02-14

Family

ID=65272699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/029228 WO2019030933A1 (ja) 2017-08-10 2017-08-10 ユーザ装置

Country Status (1)

Country Link
WO (1) WO2019030933A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048233A (ja) * 2006-08-18 2008-02-28 Nec Corp 移動通信端末及び信号送信方法
JP2009239593A (ja) * 2008-03-27 2009-10-15 Fujitsu Ltd 移動体通信のランダムアクセス手順における再送処理方法、移動局装置及び基地局装置
JP2009296267A (ja) * 2008-06-04 2009-12-17 Ntt Docomo Inc 移動通信端末装置及び送信電力設定方法
JP2013520103A (ja) * 2010-02-12 2013-05-30 インターデイジタル パテント ホールディングス インコーポレイテッド アップリンクランダムアクセスチャネル伝送を最適化する方法および装置
JP2014524690A (ja) * 2011-08-05 2014-09-22 アップル インコーポレイテッド 適応的ランダムアクセスチャネル再送信
JP2017507569A (ja) * 2014-01-28 2017-03-16 華為技術有限公司Huawei Technologies Co.,Ltd. カバレッジ拡張シナリオにおいて送信電力を決定するための方法および装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008048233A (ja) * 2006-08-18 2008-02-28 Nec Corp 移動通信端末及び信号送信方法
JP2009239593A (ja) * 2008-03-27 2009-10-15 Fujitsu Ltd 移動体通信のランダムアクセス手順における再送処理方法、移動局装置及び基地局装置
JP2009296267A (ja) * 2008-06-04 2009-12-17 Ntt Docomo Inc 移動通信端末装置及び送信電力設定方法
JP2013520103A (ja) * 2010-02-12 2013-05-30 インターデイジタル パテント ホールディングス インコーポレイテッド アップリンクランダムアクセスチャネル伝送を最適化する方法および装置
JP2014524690A (ja) * 2011-08-05 2014-09-22 アップル インコーポレイテッド 適応的ランダムアクセスチャネル再送信
JP2017507569A (ja) * 2014-01-28 2017-03-16 華為技術有限公司Huawei Technologies Co.,Ltd. カバレッジ拡張シナリオにおいて送信電力を決定するための方法および装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Potential challenges on emerging drone services", 3GPP DRAFT; R2-1701077, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, R2-1701077, 12 February 2017 (2017-02-12), France, XP051211808 *
VICE-CHAIRMAN (CMCC): "Report from LTE Break-Out session (eVoLTE, Mobility enh, feMBMS, UDC, UAV, QMC, ViLTE)", 3GPP DRAFT; R2-1704031 SESSION REPORT_UAV,QMC, UDC, EVIDEO, ETC, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, R2-1704031 Session report_UAV,QMC, UDC, eVideo, et, 19 May 2017 (2017-05-19), France, XP051285815 *

Similar Documents

Publication Publication Date Title
JP7232948B2 (ja) 端末、ランダムアクセス方法、基地局、及び通信システム
US11012871B2 (en) Apparatus and method
WO2018203402A1 (ja) ユーザ装置及び基地局
WO2019107151A1 (ja) ユーザ装置
EP3920637A1 (en) User device and base station device
US11297653B2 (en) User equipment and preamble transmission method
US11463990B2 (en) User equipment and preamble transmission method
KR102473073B1 (ko) 유저장치
WO2019159294A1 (ja) ユーザ装置及び基地局装置
US20220070805A1 (en) Communication apparatus and communication method
JPWO2020165977A1 (ja) ユーザ装置
JP7084947B2 (ja) 端末、ランダムアクセスプリアンブル送信方法及び基地局
JP7313343B2 (ja) 端末及び通信方法
EP3920636A1 (en) User device and base station device
WO2020188773A1 (ja) 通信装置及び通信方法
JP2023052488A (ja) ユーザ装置
WO2020059132A1 (ja) ユーザ装置及び基地局装置
WO2019030933A1 (ja) ユーザ装置
US20200068597A1 (en) User equipment, base station, and uplink transmission timing control method
US20230027788A1 (en) Communication device and method
JP7390394B2 (ja) 端末、通信システム及び通信方法
JP7100195B2 (ja) ユーザ装置
WO2021029017A1 (ja) 端末及び通信方法
US20220159726A1 (en) User equipment and control method
US20220304048A1 (en) Terminal and random access procedure control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17920635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17920635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP