JP7088016B2 - 回路、端末装置、基地局装置及び方法 - Google Patents

回路、端末装置、基地局装置及び方法 Download PDF

Info

Publication number
JP7088016B2
JP7088016B2 JP2018537014A JP2018537014A JP7088016B2 JP 7088016 B2 JP7088016 B2 JP 7088016B2 JP 2018537014 A JP2018537014 A JP 2018537014A JP 2018537014 A JP2018537014 A JP 2018537014A JP 7088016 B2 JP7088016 B2 JP 7088016B2
Authority
JP
Japan
Prior art keywords
information
flight
base station
measurement
drone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018537014A
Other languages
English (en)
Other versions
JPWO2018042927A1 (ja
Inventor
寿之 示沢
博允 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Sony Group Corp
Original Assignee
Sony Corp
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sony Group Corp filed Critical Sony Corp
Publication of JPWO2018042927A1 publication Critical patent/JPWO2018042927A1/ja
Application granted granted Critical
Publication of JP7088016B2 publication Critical patent/JP7088016B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • H04B7/18508Communications with or from aircraft, i.e. aeronautical mobile service with satellite system used as relay, i.e. aeronautical mobile satellite service
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • G05D1/0022Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement characterised by the communication link
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/391Modelling the propagation channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/18502Airborne stations
    • H04B7/18506Communications with or from aircraft, i.e. aeronautical mobile service
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18519Operations control, administration or maintenance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/20UAVs specially adapted for particular uses or applications for use as communications relays, e.g. high-altitude platforms

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Astronomy & Astrophysics (AREA)
  • Remote Sensing (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Mechanical Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Selective Calling Equipment (AREA)

Description

本開示は、回路、端末装置、基地局装置及び方法に関する。
近年、ドローン関連の研究開発が盛んに行われ注目を集めている。ドローンとは、UAV(Unmanned Ariel Vehicle)とも称される、小型無人航空機である。米国の無人機協会が発表したエコノミックレポートによれば、ドローンの市場規模は2025年までに米国内だけでも約820億ドルとなり、10万人の新規雇用を生み出すと試算されている。ドローンは、これまでの陸海空のどの手段でも利用されてこなかった空域を利用して、物及び情報を提供することが可能となる。そのため、ドローンは空の産業革命とも呼ばれており、今後の重要なビジネス領域になると考えられる。
典型的には、ドローンは、無線通信を行いながら飛行すると想定される。そのため、ドローンが安定的な無線通信を行うことを可能にする技術が開発されることが望ましい。位置が変化し得る装置による無線通信に関しては、これまで多くの技術が開発されている。例えば、下記特許文献1では、端末装置の位置に応じて無線通信の速度の測定結果を収集することで、通信ネットワークの負荷を軽減する技術が開示されている。また、下記特許文献2では、センサネットワークを構成する各センサの配置位置に応じてネットワークを構築する技術が開示されている。
特開2016-92450号公報 特開2006-74536号公報
しかし、上記の特許文献等で提案されている無線通信システムは、ドローンのような3次元空間を自由に飛び回ることが可能な装置を想定して設計されていない。
そこで、本開示では、3次元空間を自由に飛び回る装置のための無線通信の仕組みを提供する。
本開示によれば、飛行に関する情報を取得する取得部と、前記取得部により取得された前記飛行に関する情報に基づいて、基地局装置から送信された参照信号に対する測定報告処理を制御する測定報告制御部と、を備える回路が提供される。
また、本開示によれば、飛行に関する情報を取得する取得部と、前記取得部により取得された前記飛行に関する情報に基づいて、基地局装置から送信された参照信号に対する測定報告処理を制御する測定報告制御部と、を備える端末装置が提供される。
また、本開示によれば、参照信号を送信する参照信号送信部と、飛行に関する情報を取得して取得した飛行に関する情報に基づいて前記参照信号に対する測定報告処理を行う端末装置から報告された測定情報に基づく処理を制御する制御部と、を備える基地局装置が提供される。
また、本開示によれば、飛行に関する情報を取得することと、取得された前記飛行に関する情報に基づいて、基地局装置から送信された参照信号に対する測定報告処理をプロセッサにより制御することと、を含む方法が提供される。
また、本開示によれば、参照信号を送信することと、飛行に関する情報を取得して取得した飛行に関する情報に基づいて前記参照信号に対する測定報告処理を行う端末装置から報告された測定情報に基づく処理をプロセッサにより制御することと、を含む方法が提供される。
以上説明したように本開示によれば、3次元空間を自由に飛び回る装置のための無線通信の仕組みが提供される。なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。
本実施形態におけるコンポーネントキャリアの設定の一例を示す図である。 本実施形態におけるコンポーネントキャリアの設定の一例を示す図である。 本実施形態におけるLTEの下りリンクサブフレームの一例を示す図である。 本実施形態におけるLTEの上りリンクサブフレームの一例を示す図である。 NRセルにおける送信信号に関するパラメータセットの一例を示す図である。 本実施形態におけるNRの下りリンクサブフレームの一例を示す図である。 本実施形態におけるNRの上りリンクサブフレームの一例を示す図である。 本実施形態の基地局装置の構成を示す概略ブロック図である。 本実施形態の端末装置の構成を示す概略ブロック図である。 本実施形態におけるNRの下りリンクリソースエレメントマッピングの一例を示す図である。 本実施形態におけるNRの下りリンクリソースエレメントマッピングの一例を示す図である。 本実施形態におけるNRの下りリンクリソースエレメントマッピングの一例を示す図である。 本実施形態におけるNRのリソースエレメントマッピング方法の一例を示す図である。 本実施形態におけるNRのリソースエレメントマッピング方法の一例を示す図である。 本実施形態における自己完結型送信のフレーム構成の一例を示す図である。 本実施形態の技術的課題を説明するための図である。 本実施形態に係るシステムの構成の一例を説明するための図である。 本実施形態に係る基地局装置の上位層処理部の論理的な構成の一例を示すブロック図である。 本実施形態に係るドローンの論理的な構成の一例を示すブロック図である。 本実施形態に係る技術的特徴の概要を説明するための図である。 本実施形態に係るドローンに対する高信頼性を有する無線通信の一例を示す図である。 本実施形態に係るシステムにおいて実行される測定報告処理の第1の例の流れの一例を示すシーケンス図である。 本実施形態に係るシステムにおいて実行される測定報告処理の第2の例の流れの一例を示すシーケンス図である。 本実施形態に係るシステムにおいて実行される測定報告処理の第3の例の流れの一例を示すシーケンス図である。 本実施形態に係るシステムにおいて実行される測定報告処理の流れの一例を示すシーケンス図である。 本実施形態に係るシステムにおいて実行される測定報告処理の流れの一例を示すシーケンス図である。 eNBの概略的な構成の第1の例を示すブロック図である。 eNBの概略的な構成の第2の例を示すブロック図である。
以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
また、本明細書及び図面において、実質的に同一の機能構成を有する要素を、同一の符号の後に異なるアルファベットを付して区別する場合もある。例えば、実質的に同一の機能構成を有する複数の要素を、必要に応じて基地局装置1A、1B及び1Cのように区別する。ただし、実質的に同一の機能構成を有する複数の要素の各々を特に区別する必要がない場合、同一符号のみを付する。例えば、基地局装置1A、1B及び1Cを特に区別する必要が無い場合には、単に基地局装置1と称する。
なお、説明は以下の順序で行うものとする。
1.はじめに
2.ドローン
2.1.ユースケース
2.2.無線通信
2.3.技術的課題
3.構成例
3.1.システムの構成例
3.2.各装置の詳細な構成例
4.技術的特徴
4.1.概要
4.2.飛行関連情報
4.3.第1の実施形態
4.4.第2の実施形態
4.5.補足
5.応用例
6.まとめ
<<1.はじめに>>
<NR>
セルラー移動通信の無線アクセス方式および無線ネットワーク(以下、「Long Term Evolution(LTE)」、「LTE-Advanced(LTE-A)」、「LTE-Advanced Pro(LTE-A Pro)」、「New Radio(NR)」、「New Radio Access Technology(NRAT)」、「Evolved Universal Terrestrial Radio Access(EUTRA)」、または「Further EUTRA(FEUTRA)」とも称する。)が、第三世代パートナーシッププロジェクト(3rd Generation Partnership Project: 3GPP)において検討されている。なお、以下の説明において、LTEは、LTE-A、LTE-A Pro、およびEUTRAを含み、NRは、NRAT、およびFEUTRAを含む。LTEおよびNRでは、基地局装置(基地局)はeNodeB(evolved NodeB)、端末装置(移動局、移動局装置、端末)はUE(User Equipment)とも称する。なお、NRにおける基地局装置はeNodeBとは異なる名称を用いてもよく、例えばgNodeBとも称することができる。LTEおよびNRは、基地局装置がカバーするエリアをセル状に複数配置するセルラー通信システムである。単一の基地局装置は複数のセルを管理してもよい。
NRは、LTEに対する次世代の無線アクセス方式として、LTEとは異なるRAT(Radio Access Technology)である。NRは、eMBB(Enhanced mobile broadband)、mMTC(Massive machine type communications)およびURLLC(Ultra reliable and low latency communications)を含む様々なユースケースに対応できるアクセス技術である。NRは、それらのユースケースにおける利用シナリオ、要求条件、および配置シナリオなどに対応する技術フレームワークを目指して検討される。NRのシナリオや要求条件の詳細は、「3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on Scenarios and Requirements for Next Generation Access Technologies; (Release 14), 3GPP TR 38.913 V0.3.0. http://www.3gpp.org/ftp//Specs/archive/38_series/38.913/38913-030.zip」に開示されている。
LTEおよびNRでは、所定の時間間隔がデータ伝送を行う時間の単位として規定されうる。そのような時間間隔は送信時間間隔(TTI: Transmission Time Interval)と呼称される。基地局装置および端末装置は、TTIに基づいて、物理チャネルおよび/または物理信号の送信および受信を行う。例えば、LTEにおけるTTIの詳細は、「3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 13), 3GPP TS 36.300 V13.3.0. http://www.3gpp.org/ftp/Specs/archive/36_series/36.300/36300-d30.zip」に開示されている。
また、TTIは、データ伝送の手順を規定する単位として用いられている。例えば、データ伝送の手順において、受信されたデータが正しく受信されたかどうかを示すHARQ-ACK(Hybrid Automatic Repeat request - acknowledgement)報告は、データを受信してからTTIの整数倍で規定される時間後に送信される。その場合、データ伝送にかかる時間(遅延、レイテンシー)はTTIに依存して決まることになる。特に、レイテンシーはユースケースに応じて要求条件が異なるため、TTIはユースケースによって変えられることが望ましい。このようなデータ伝送の手順は、「3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 13) , 3GPP TS 36.213 V13.1.1. http://www.3gpp.org/ftp/Specs/archive/36_series/36.213/36213-d11.zip」に開示されている。
特に明記されない限り、以下で説明される技術、機能、方法、構成、手順、およびその他全ての記載は、LTEおよびNRに適用できる。
<本実施形態における無線通信システム>
本実施形態において、無線通信システムは、基地局装置1および端末装置2を少なくとも具備する。基地局装置1は複数の端末装置を収容できる。基地局装置1は、他の基地局装置とX2インターフェースの手段によって互いに接続できる。また、基地局装置1は、S1インターフェースの手段によってEPC(Evolved Packet Core)に接続できる。さらに、基地局装置1は、S1-MMEインターフェースの手段によってMME(Mobility Management Entity)に接続でき、S1-Uインターフェースの手段によってS-GW(Serving Gateway)に接続できる。S1インターフェースは、MMEおよび/またはS-GWと基地局装置1との間で、多対多の接続をサポートしている。また、本実施形態において、基地局装置1および端末装置2は、それぞれLTEおよび/またはNRをサポートする。
<本実施形態における無線アクセス技術>
本実施形態において、基地局装置1および端末装置2は、それぞれ1つ以上の無線アクセス技術(RAT)をサポートする。例えば、RATは、LTEおよびNRを含む。1つのRATは、1つのセル(コンポーネントキャリア)に対応する。すなわち、複数のRATがサポートされる場合、それらのRATは、それぞれ異なるセルに対応する。本実施形態において、セルは、下りリンクリソース、上りリンクリソース、および/または、サイドリンクの組み合わせである。また、以下の説明において、LTEに対応するセルはLTEセルと呼称され、NRに対応するセルはNRセルと呼称される。また、LTEは第1のRATと呼称され、NRは第2のRATと呼称される。
下りリンクの通信は、基地局装置1から端末装置2に対する通信である。上りリンクの通信は、端末装置2から基地局装置1に対する通信である。サイドリンクの通信は、端末装置2から別の端末装置2に対する通信である。
サイドリンクの通信は、端末装置間の近接直接検出および近接直接通信のために定義される。サイドリンクの通信は、上りリンクおよび下りリンクと同様なフレーム構成を用いることができる。また、サイドリンクの通信は、上りリンクリソースおよび/または下りリンクリソースの一部(サブセット)に制限されうる。
基地局装置1および端末装置2は、下りリンク、上りリンクおよび/またはサイドリンクにおいて、1つ以上のセルの集合を用いる通信をサポートできる。複数のセルの集合は、キャリアアグリゲーションまたはデュアルコネクティビティとも呼称される。キャリアアグリゲーションとデュアルコネクティビティの詳細は後述される。また、それぞれのセルは、所定の周波数帯域幅を用いる。所定の周波数帯域幅における最大値、最小値および設定可能な値は、予め規定できる。
図1は、本実施形態におけるコンポーネントキャリアの設定の一例を示す図である。図1の例では、1つのLTEセルと2つのNRセルが設定される。1つのLTEセルは、プライマリーセルとして設定される。2つのNRセルは、それぞれプライマリーセカンダリーセルおよびセカンダリーセルとして設定される。2つのNRセルは、キャリアアグリゲーションにより統合される。また、LTEセルとNRセルは、デュアルコネクティビティにより統合される。なお、LTEセルとNRセルは、キャリアアグリゲーションにより統合されてもよい。図1の例では、NRは、プライマリーセルであるLTEセルにより接続をアシストされることが可能であるため、スタンドアロンで通信するための機能のような一部の機能をサポートしなくてもよい。スタンドアロンで通信するための機能は、初期接続に必要な機能を含む。
図2は、本実施形態におけるコンポーネントキャリアの設定の一例を示す図である。図2の例では、2つのNRセルが設定される。2つのNRセルは、それぞれプライマリーセルおよびセカンダリーセルとして設定され、キャリアアグリゲーションにより統合される。この場合、NRセルがスタンドアロンで通信するための機能をサポートすることにより、LTEセルのアシストが不要になる。なお、2つのNRセルは、デュアルコネクティビティにより統合されてもよい。
<本実施形態における無線フレーム構成>
本実施形態において、10ms(ミリ秒)で構成される無線フレーム(radio frame)が規定される。無線フレームのそれぞれは2つのハーフフレームから構成される。ハーフフレームの時間間隔は、5msである。ハーフフレームのそれぞれは、5つのサブフレームから構成される。サブフレームの時間間隔は、1msであり、2つの連続するスロットによって定義される。スロットの時間間隔は、0.5msである。無線フレーム内のi番目のサブフレームは、(2×i)番目のスロットと(2×i+1)番目のスロットとから構成される。つまり、無線フレームのそれぞれにおいて、10個のサブフレームが規定される。
サブフレームは、下りリンクサブフレーム、上りリンクサブフレーム、スペシャルサブフレームおよびサイドリンクサブフレームなどを含む。
下りリンクサブフレームは下りリンク送信のために予約されるサブフレームである。上りリンクサブフレームは上りリンク送信のために予約されるサブフレームである。スペシャルサブフレームは3つのフィールドから構成される。3つのフィールドは、DwPTS(Downlink Pilot Time Slot)、GP(Guard Period)、およびUpPTS(Uplink Pilot Time Slot)を含む。DwPTS、GP、およびUpPTSの合計の長さは1msである。DwPTSは下りリンク送信のために予約されるフィールドである。UpPTSは上りリンク送信のために予約されるフィールドである。GPは下りリンク送信および上りリンク送信が行われないフィールドである。なお、スペシャルサブフレームは、DwPTSおよびGPのみによって構成されてもよいし、GPおよびUpPTSのみによって構成されてもよい。スペシャルサブフレームは、TDDにおいて下りリンクサブフレームと上りリンクサブフレームとの間に配置され、下りリンクサブフレームから上りリンクサブフレームに切り替えるために用いられる。サイドリンクサブフレームは、サイドリンク通信のために予約または設定されるサブフレームである。サイドリンクは、端末装置間の近接直接通信および近接直接検出のために用いられる。
単一の無線フレームは、下りリンクサブフレーム、上りリンクサブフレーム、スペシャルサブフレームおよび/またはサイドリンクサブフレームから構成される。また、単一の無線フレームは、下りリンクサブフレーム、上りリンクサブフレーム、スペシャルサブフレームまたはサイドリンクサブフレームのみで構成されてもよい。
複数の無線フレーム構成がサポートされる。無線フレーム構成は、フレーム構成タイプで規定される。フレーム構成タイプ1は、FDDのみに適用できる。フレーム構成タイプ2は、TDDのみに適用できる。フレーム構成タイプ3は、LAA(Licensed Assisted Access)セカンダリーセルの運用のみに適用できる。
フレーム構成タイプ2において、複数の上りリンク-下りリンク構成が規定される。上りリンク-下りリンク構成において、1つの無線フレームにおける10のサブフレームのそれぞれは、下りリンクサブフレーム、上りリンクサブフレーム、およびスペシャルサブフレームのいずれかに対応する。サブフレーム0、サブフレーム5およびDwPTSは常に下りリンク送信のために予約される。UpPTSおよびそのスペシャルサブフレームの直後のサブフレームは常に上りリンク送信のために予約される。
フレーム構成タイプ3において、1つの無線フレーム内の10のサブフレームが下りリンク送信のために予約される。端末装置2は、それぞれのサブフレームを空のサブフレームとして扱う。端末装置2は、所定の信号、チャネルおよび/または下りリンク送信があるサブフレームで検出されない限り、そのサブフレームにいかなる信号および/またはチャネルも存在しないと想定する。下りリンク送信は、1つまたは複数の連続したサブフレームで専有される。その下りリンク送信の最初のサブフレームは、そのサブフレーム内のどこからでも開始されてもよい。その下りリンク送信の最後のサブフレームは、完全に専有されるか、DwPTSで規定される時間間隔で専有されるか、のいずれかであってもよい。
なお、フレーム構成タイプ3において、1つの無線フレーム内の10のサブフレームが上りリンク送信のために予約されてもよい。また、1つの無線フレーム内の10のサブフレームのそれぞれが、下りリンクサブフレーム、上りリンクサブフレーム、スペシャルサブフレームおよびサイドリンクサブフレームのいずれかに対応するようにしてもよい。
基地局装置1は、スペシャルサブフレームのDwPTSにおいて、物理下りリンクチャネルおよび物理下りリンク信号を送信してもよい。基地局装置1は、スペシャルサブフレームのDwPTSにおいて、PBCHの送信を制限できる。端末装置2は、スペシャルサブフレームのUpPTSにおいて、物理上りリンクチャネルおよび物理上りリンク信号を送信してもよい。端末装置2は、スペシャルサブフレームのUpPTSにおいて、一部の物理上りリンクチャネルおよび物理上りリンク信号の送信を制限できる。
<本実施形態におけるLTEのフレーム構成>
図3は、本実施形態におけるLTEの下りリンクサブフレームの一例を示す図である。図3に示される図は、LTEの下りリンクリソースグリッドとも呼称される。基地局装置1は、端末装置2への下りリンクサブフレームにおいて、LTEの物理下りリンクチャネルおよび/またはLTEの物理下りリンク信号を送信できる。端末装置2は、基地局装置1からの下りリンクサブフレームにおいて、LTEの物理下りリンクチャネルおよび/またはLTEの物理下りリンク信号を受信できる。
図4は、本実施形態におけるLTEの上りリンクサブフレームの一例を示す図である。図4に示される図は、LTEの上りリンクリソースグリッドとも呼称される。端末装置2は、基地局装置1への上りリンクサブフレームにおいて、LTEの物理上りリンクチャネルおよび/またはLTEの物理上りリンク信号を送信できる。基地局装置1は、端末装置2からの上りリンクサブフレームにおいて、LTEの物理上りリンクチャネルおよび/またはLTEの物理上りリンク信号を受信できる。
本実施形態において、LTEの物理リソースは以下のように定義されうる。1つのスロットは複数のシンボルによって定義される。スロットのそれぞれにおいて送信される物理信号または物理チャネルは、リソースグリッドによって表現される。下りリンクにおいて、リソースグリッドは、周波数方向に対する複数のサブキャリアと、時間方向に対する複数のOFDMシンボルによって定義される。上りリンクにおいて、リソースグリッドは、周波数方向に対する複数のサブキャリアと、時間方向に対する複数のSC-FDMAシンボルによって定義される。サブキャリアまたはリソースブロックの数は、セルの帯域幅に依存して決まるようにしてもよい。1つのスロットにおけるシンボルの数は、CP(Cyclic Prefix)のタイプによって決まる。CPのタイプは、ノーマルCPまたは拡張CPである。ノーマルCPにおいて、1つのスロットを構成するOFDMシンボルまたはSC-FDMAシンボルの数は7である。拡張CPにおいて、1つのスロットを構成するOFDMシンボルまたはSC-FDMAシンボルの数は6である。リソースグリッド内のエレメントのそれぞれはリソースエレメントと称される。リソースエレメントは、サブキャリアのインデックス(番号)とシンボルのインデックス(番号)とを用いて識別される。なお、本実施形態の説明において、OFDMシンボルまたはSC-FDMAシンボルは単にシンボルとも呼称される。
リソースブロックは、ある物理チャネル(PDSCHまたはPUSCHなど)をリソースエレメントにマッピングするために用いられる。リソースブロックは、仮想リソースブロックと物理リソースブロックを含む。ある物理チャネルは、仮想リソースブロックにマッピングされる。仮想リソースブロックは、物理リソースブロックにマッピングされる。1つの物理リソースブロックは、時間領域において所定数の連続するシンボルで定義される。1つの物理リソースブロックは、周波数領域において所定数の連続するサブキャリアとから定義される。1つの物理リソースブロックにおけるシンボル数およびサブキャリア数は、そのセルにおけるCPのタイプ、サブキャリア間隔および/または上位層によって設定されるパラメータなどに基づいて決まる。例えば、CPのタイプがノーマルCPであり、サブキャリア間隔が15kHzである場合、1つの物理リソースブロックにおけるシンボル数は7であり、サブキャリア数は12である。その場合、1つの物理リソースブロックは(7×12)個のリソースエレメントから構成される。物理リソースブロックは周波数領域において0から番号が付けられる。また、同一の物理リソースブロック番号が対応する、1つのサブフレーム内の2つのリソースブロックは、物理リソースブロックペア(PRBペア、RBペア)として定義される。
LTEセルのそれぞれにおいて、あるサブフレームでは、1つの所定のパラメータが用いられる。例えば、その所定のパラメータは、送信信号に関するパラメータである。送信信号に関するパラメータは、CP長、サブキャリア間隔、1つのサブフレーム(所定の時間長)におけるシンボル数、1つのリソースブロック(所定の周波数帯域)のおけるサブキャリア数、TTIのサイズ、多元接続方式、および、信号波形などを含む。
すなわち、LTEセルでは、下りリンク信号および上りリンク信号は、それぞれ所定の時間長(例えば、サブフレーム)において、1つの所定のパラメータを用いて生成される。換言すると、端末装置2は、基地局装置1から送信される下りリンク信号、および、基地局装置1に送信する上りリンク信号が、それぞれ所定の時間長において、1つの所定のパラメータで生成される、と想定する。また、基地局装置1は、端末装置2に送信する下りリンク信号、および、端末装置2から送信される上りリンク信号が、それぞれ所定の時間長において、1つの所定のパラメータで生成されるように設定する。
<本実施形態におけるNRのフレーム構成>
NRセルのそれぞれにおいて、ある所定の時間長(例えば、サブフレーム)では、1つ以上の所定のパラメータが用いられる。すなわち、NRセルでは、下りリンク信号および上りリンク信号は、それぞれ所定の時間長において、1つ以上の所定のパラメータを用いて生成される。換言すると、端末装置2は、基地局装置1から送信される下りリンク信号、および、基地局装置1に送信する上りリンク信号が、それぞれ所定の時間長において、1つ以上の所定のパラメータで生成される、と想定する。また、基地局装置1は、端末装置2に送信する下りリンク信号、および、端末装置2から送信される上りリンク信号が、それぞれ所定の時間長において、1つ以上の所定のパラメータで生成されるように設定できる。複数の所定のパラメータが用いられる場合、それらの所定のパラメータが用いられて生成される信号は、所定の方法により多重される。例えば、所定の方法は、FDM(Frequency Division Multiplexing)、TDM(Time Division Multiplexing)、CDM(Code Division Multiplexing)および/またはSDM(Spatial Division Multiplexing)などを含む。
NRセルに設定される所定のパラメータの組み合わせは、パラメータセットとして、複数種類を予め規定できる。
図5は、NRセルにおける送信信号に関するパラメータセットの一例を示す図である。図5の例では、パラメータセットに含まれる送信信号に関するパラメータは、サブキャリア間隔、NRセルにおけるリソースブロックあたりのサブキャリア数、サブフレームあたりのシンボル数、および、CP長タイプである。CP長タイプは、NRセルで用いられるCP長のタイプである。例えば、CP長タイプ1はLTEにおけるノーマルCPに相当し、CP長タイプ2はLTEにおける拡張CPに相当する。
NRセルにおける送信信号に関するパラメータセットは、下りリンクおよび上りリンクでそれぞれ個別に規定することができる。また、NRセルにおける送信信号に関するパラメータセットは、下りリンクおよび上りリンクでそれぞれ独立に設定できる。
図6は、本実施形態におけるNRの下りリンクサブフレームの一例を示す図である。図6の例では、パラメータセット1、パラメータセット0およびパラメータセット2を用いて生成される信号が、セル(システム帯域幅)において、FDMされる。図6に示される図は、NRの下りリンクリソースグリッドとも呼称される。基地局装置1は、端末装置2への下りリンクサブフレームにおいて、NRの物理下りリンクチャネルおよび/またはNRの物理下りリンク信号を送信できる。端末装置2は、基地局装置1からの下りリンクサブフレームにおいて、NRの物理下りリンクチャネルおよび/またはNRの物理下りリンク信号を受信できる。
図7は、本実施形態におけるNRの上りリンクサブフレームの一例を示す図である。図7の例では、パラメータセット1、パラメータセット0およびパラメータセット2を用いて生成される信号が、セル(システム帯域幅)において、FDMされる。図6に示される図は、NRの上りリンクリソースグリッドとも呼称される。基地局装置1は、端末装置2への上りリンクサブフレームにおいて、NRの物理上りリンクチャネルおよび/またはNRの物理上りリンク信号を送信できる。端末装置2は、基地局装置1からの上りリンクサブフレームにおいて、NRの物理上りリンクチャネルおよび/またはNRの物理上りリンク信号を受信できる。
<本実施形態におけるアンテナポート>
アンテナポートは、あるシンボルを運ぶ伝搬チャネルが、同一のアンテナポートにおける別のシンボルを運ぶ伝搬チャネルから推測できるようにするために定義される。例えば、同一のアンテナポートにおける異なる物理リソースは、同一の伝搬チャネルで送信されていると想定できる。すなわち、あるアンテナポートにおけるシンボルは、そのアンテナポートにおける参照信号により伝搬チャネルを推定し、復調することができる。また、アンテナポート毎に1つのリソースグリッドがある。アンテナポートは、参照信号によって定義される。また、それぞれの参照信号は、複数のアンテナポートを定義できる。
アンテナポートはアンテナポート番号によって特定または識別される。例えば、アンテナポート0~3は、CRSが送信されるアンテナポートである。すなわち、アンテナポート0~3で送信されるPDSCHは、アンテナポート0~3に対応するCRSで復調できる。
2つのアンテナポートは所定の条件を満たす場合、準同一位置(QCL:Quasi co-location)であると表すことができる。その所定の条件は、あるアンテナポートにおけるシンボルを運ぶ伝搬チャネルの広域的特性が、別のアンテナポートにおけるシンボルを運ぶ伝搬チャネルから推測できることである。広域的特性は、遅延分散、ドップラースプレッド、ドップラーシフト、平均利得および/または平均遅延を含む。
本実施形態において、アンテナポート番号は、RAT毎に異なって定義されてもよいし、RAT間で共通に定義されてもよい。例えば、LTEにおけるアンテナポート0~3は、CRSが送信されるアンテナポートである。NRにおいて、アンテナポート0~3は、LTEと同様のCRSが送信されるアンテナポートとすることができる。また、NRにおいて、LTEと同様のCRSが送信されるアンテナポートは、アンテナポート0~3とは異なるアンテナポート番号とすることができる。本実施形態の説明において、所定のアンテナポート番号は、LTEおよび/またはNRに対して適用できる。
<本実施形態における物理チャネルおよび物理信号>
本実施形態において、物理チャネルおよび物理信号が用いられる。
物理チャネルは、物理下りリンクチャネル、物理上りリンクチャネルおよび物理サイドリンクチャネルを含む。物理信号は、物理下りリンク信号、物理上りリンク信号およびサイドリンク物理信号を含む。
LTEにおける物理チャネルおよび物理信号は、それぞれLTE物理チャネルおよびLTE物理信号とも呼称される。NRにおける物理チャネルおよび物理信号は、それぞれNR物理チャネルおよびNR物理信号とも呼称される。LTE物理チャネルおよびNR物理チャネルは、それぞれ異なる物理チャネルとして定義できる。LTE物理信号およびNR物理信号は、それぞれ異なる物理信号として定義できる。本実施形態の説明において、LTE物理チャネルおよびNR物理チャネルは単に物理チャネルとも呼称され、LTE物理信号およびNR物理信号は単に物理信号とも呼称される。すなわち、物理チャネルに対する説明は、LTE物理チャネルおよびNR物理チャネルのいずれに対しても適用できる。物理信号に対する説明は、LTE物理信号およびNR物理信号のいずれに対しても適用できる。
物理下りリンクチャネルは、物理報知チャネル(PBCH:Physical Broadcast Channel)、PCFICH(Physical Control Format Indicator Channel)、PHICH(Physical Hybrid automatic repeat request Indicator Channel)、物理下りリンク制御チャネル(PDCCH:Physical Downlink Control Channel)、拡張物理下りリンク制御チャネル(EPDCCH:Enhanced PDCCH)、MTC(Machine Type Communication)物理下りリンク制御チャネル(MPDCCH:MTC PDCCH)、リレー物理下りリンク制御チャネル(R-PDCCH:Relay PDCCH)、物理下りリンク共有チャネル(PDSCH:Physical Downlink Shared Channel)、および、PMCH(Physical Multicast Channel)などを含む。
物理下りリンク信号は、同期信号(SS:Synchronization signal)、下りリンク参照信号(DL-RS:Downlink Reference Signal)および検出信号(DS:Discovery signal)などを含む。
同期信号は、プライマリー同期信号(PSS:Primary synchronization signal)およびセカンダリー同期信号(SSS:Secondary synchronization signal)などを含む。
下りリンクにおける参照信号は、セル固有参照信号(CRS:Cell-specific reference signal)、PDSCHに関連付けられる端末装置固有参照信号(PDSCH-DMRS:UE-specific reference signal associated with PDSCH)、EPDCCHに関連付けられる復調参照信号(EPDCCH-DMRS:Demodulation reference signal associated with EPDCCH)、PRS(Positioning Reference Signal)、CSI参照信号(CSI-RS:Channel State Information - reference signal)、およびトラッキング参照信号(TRS:Tracking reference signal)などを含む。PDSCH-DMRSは、PDSCHに関連するURSまたは単にURSとも呼称される。EPDCCH-DMRSは、EPDCCHに関連するDMRSまたは単にDMRSとも呼称される。PDSCH-DMRSおよびEPDCCH-DMRSは、単にDL-DMRSまたは下りリンク復調参照信号とも呼称される。CSI-RSは、NZP CSI-RS(Non-Zero Power CSI-RS)を含む。また、下りリンクのリソースは、ZP CSI-RS(Zero Power CSI-RS)、CSI-IM(Channel State Information - Interference Measurement)などを含む。
物理上りリンクチャネルは、物理上りリンク共有チャネル(PUSCH:Physical Uplink Shared Channel)、物理上りリンク制御チャネル(PUCCH:Physical Uplink Control Channel)、および物理ランダムアクセスチャネル(PRACH:Physical Random Access Channel)などを含む。
物理上りリンク信号は、上りリンク参照信号(UL-RS:Uplink Reference Signal)を含む。
上りリンク参照信号は、上りリンク復調信号(UL-DMRS:Uplink demodulation signal)およびサウンディング参照信号(SRS:Sounding reference signal)などを含む。UL-DMRSは、PUSCHまたはPUCCHの送信に関連付けられる。SRSは、PUSCHまたはPUCCHの送信に関連付けられない。
物理サイドリンクチャネルは、物理サイドリンク報知チャネル(PSBCH:Physical Sidelink Broadcast Channel)、物理サイドリンク制御チャネル(PSCCH:Physical Sidelink Control Channel)、物理サイドリンク検出チャネル(PSDCH:Physical Sidelink Discovery Channel)、および物理サイドリンク共有チャネル(PSSCH:Physical Sidelink Shared Channel)などを含む。
物理チャネルおよび物理信号は、単にチャネルおよび信号とも呼称される。すなわち、物理下りリンクチャネル、物理上りリンクチャネル、および物理サイドリンクチャネルは、それぞれ下りリンクチャネル、上りリンクチャネル、およびサイドリンクチャネルとも呼称される。物理下りリンク信号、物理上りリンク信号、および物理サイドリンク信号は、それぞれ下りリンク信号、上りリンク信号、およびサイドリンク信号とも呼称される。
BCH、MCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。媒体アクセス制御(Medium Access Control: MAC)層で用いられるチャネルをトランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(transport block: TB)またはMAC PDU(Protocol Data Unit)とも称する。MAC層においてトランスポートブロック毎にHARQ(Hybrid Automatic Repeat reQuest)の制御が行なわれる。トランスポートブロックは、MAC層が物理層に渡す(deliver)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理が行なわれる。
なお、下りリンク参照信号および上りリンク参照信号は、単に参照信号(RS)とも呼称される。
<本実施形態におけるLTE物理チャネルおよびLTE物理信号>
既に説明したように、物理チャネルおよび物理信号に対する説明は、それぞれLTE物理チャネルおよびLTE物理信号に対しても適用できる。LTE物理チャネルおよびLTE物理信号は、以下のように呼称される。
LTE物理下りリンクチャネルは、LTE-PBCH、LTE-PCFICH、LTE-PHICH、LTE-PDCCH、LTE-EPDCCH、LTE-MPDCCH、LTE-R-PDCCH、LTE-PDSCH、および、LTE-PMCHなどを含む。
LTE物理下りリンク信号は、LTE-SS、LTE-DL-RSおよびLTE-DSなどを含む。LTE-SSは、LTE-PSSおよびLTE-SSSなどを含む。LTE-RSは、LTE-CRS、LTE-PDSCH-DMRS、LTE-EPDCCH-DMRS、LTE-PRS、LTE-CSI-RS、およびLTE-TRSなどを含む。
LTE物理上りリンクチャネルは、LTE-PUSCH、LTE-PUCCH、およびLTE-PRACHなどを含む。
LTE物理上りリンク信号は、LTE-UL-RSを含む。LTE-UL-RSは、LTE-UL-DMRSおよびLTE-SRSなどを含む。
LTE物理サイドリンクチャネルは、LTE-PSBCH、LTE-PSCCH、LTE-PSDCH、およびLTE-PSSCHなどを含む。
<本実施形態におけるNR物理チャネルおよびNR物理信号>
既に説明したように、物理チャネルおよび物理信号に対する説明は、それぞれNR物理チャネルおよびNR物理信号に対しても適用できる。NR物理チャネルおよびNR物理信号は、以下のように呼称される。
NR物理下りリンクチャネルは、NR-PBCH、NR-PCFICH、NR-PHICH、NR-PDCCH、NR-EPDCCH、NR-MPDCCH、NR-R-PDCCH、NR-PDSCH、および、NR-PMCHなどを含む。
NR物理下りリンク信号は、NR-SS、NR-DL-RSおよびNR-DSなどを含む。NR-SSは、NR-PSSおよびNR-SSSなどを含む。NR-RSは、NR-CRS、NR-PDSCH-DMRS、NR-EPDCCH-DMRS、NR-PRS、NR-CSI-RS、およびNR-TRSなどを含む。
NR物理上りリンクチャネルは、NR-PUSCH、NR-PUCCH、およびNR-PRACHなどを含む。
NR物理上りリンク信号は、NR-UL-RSを含む。NR-UL-RSは、NR-UL-DMRSおよびNR-SRSなどを含む。
NR物理サイドリンクチャネルは、NR-PSBCH、NR-PSCCH、NR-PSDCH、およびNR-PSSCHなどを含む。
<本実施形態における物理下りリンクチャネル>
PBCHは、基地局装置1のサービングセルに固有の報知情報であるMIB(Master Information Block)を報知するために用いられる。PBCHは無線フレーム内のサブフレーム0のみで送信される。MIBは、40ms間隔で更新できる。PBCHは10ms周期で繰り返し送信される。具体的には、SFN(System Frame Number)を4で割った余りが0である条件を満たす無線フレームにおけるサブフレーム0においてMIBの初期送信が行なわれ、他の全ての無線フレームにおけるサブフレーム0においてMIBの再送信(repetition)が行われる。SFNは無線フレームの番号(システムフレーム番号)である。MIBはシステム情報である。例えば、MIBは、SFNを示す情報を含む。
PCFICHは、PDCCHの送信に用いられるOFDMシンボルの数に関する情報を送信するために用いられる。PCFICHで示される領域は、PDCCH領域とも呼称される。PCFICHで送信される情報は、CFI(Control Format Indicator)とも呼称される。
PHICHは、基地局装置1が受信した上りリンクデータ(Uplink Shared Channel: UL-SCH)に対するACK(ACKnowledgement)またはNACK(Negative ACKnowledgement)を示すHARQ-ACK(HARQインディケータ、HARQフィードバック、応答情報)を送信するために用いられる。例えば、がACKを示すHARQ-ACKを受信した場合は、対応する上りリンクデータを再送しない。例えば、端末装置2がNACKを示すHARQ-ACKを受信した場合は、端末装置2は対応する上りリンクデータを所定の上りリンクサブフレームで再送する。あるPHICHは、ある上りリンクデータに対するHARQ-ACKを送信する。基地局装置1は、同一のPUSCHに含まれる複数の上りリンクデータに対するHARQ-ACKのそれぞれを複数のPHICHを用いて送信する。
PDCCHおよびEPDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。下りリンク制御情報の情報ビットのマッピングが、DCIフォーマットとして定義される。下りリンク制御情報は、下りリンクグラント(downlink grant)および上りリンクグラント(uplink grant)を含む。下りリンクグラントは、下りリンクアサインメント(downlink assignment)または下りリンク割り当て(downlink allocation)とも称する。
PDCCHは、連続する1つまたは複数のCCE(Control Channel Element)の集合によって送信される。CCEは、9つのREG(Resource Element Group)で構成される。REGは、4つのリソースエレメントで構成される。PDCCHがn個の連続するCCEで構成される場合、そのPDCCHは、CCEのインデックス(番号)であるiをnで割った余りが0である条件を満たすCCEから始まる。
EPDCCHは、連続する1つまたは複数のECCE(Enhanced Control Channel Element)の集合によって送信される。ECCEは、複数のEREG(Enhanced Resource Element Group)で構成される。
下りリンクグラントは、あるセル内のPDSCHのスケジューリングに用いられる。下りリンクグラントは、その下りリンクグラントが送信されたサブフレームと同じサブフレーム内のPDSCHのスケジューリングに用いられる。上りリンクグラントは、あるセル内のPUSCHのスケジューリングに用いられる。上りリンクグラントは、その上りリンクグラントが送信されたサブフレームより4つ以上後のサブフレーム内の単一のPUSCHのスケジューリングに用いられる。
DCIには、CRC(Cyclic Redundancy Check)パリティビットが付加される。CRCパリティビットは、RNTI(Radio Network Temporary Identifier)でスクランブルされる。RNTIは、DCIの目的などに応じて、規定または設定できる識別子である。RNTIは、仕様で予め規定される識別子、セルに固有の情報として設定される識別子、端末装置2に固有の情報として設定される識別子、または、端末装置2に属するグループに固有の情報として設定される識別子である。例えば、端末装置2は、PDCCHまたはEPDCCHのモニタリングにおいて、DCIに付加されたCRCパリティビットに所定のRNTIでデスクランブルし、CRCが正しいかどうかを識別する。CRCが正しい場合、そのDCIは端末装置2のためのDCIであることが分かる。
PDSCHは、下りリンクデータ(Downlink Shared Channel: DL-SCH)を送信するために用いられる。また、PDSCHは、上位層の制御情報を送信するためにも用いられる。
PMCHは、マルチキャストデータ(Multicast Channel: MCH)を送信するために用いられる。
PDCCH領域において、複数のPDCCHが周波数、時間、および/または、空間多重されてもよい。EPDCCH領域において、複数のEPDCCHが周波数、時間、および/または、空間多重されてもよい。PDSCH領域において、複数のPDSCHが周波数、時間、および/または、空間多重されてもよい。PDCCH、PDSCHおよび/またはEPDCCHは周波数、時間、および/または、空間多重されてもよい。
<本実施形態における物理下りリンク信号>
同期信号は、端末装置2が下りリンクの周波数領域および/または時間領域の同期をとるために用いられる。同期信号は、PSS(Primary Synchronization Signal)およびSSS(Secondary Synchronization Signal)を含む。同期信号は無線フレーム内の所定のサブフレームに配置される。例えば、TDD方式において、同期信号は無線フレーム内のサブフレーム0、1、5、および6に配置される。FDD方式において、同期信号は無線フレーム内のサブフレーム0および5に配置される。
PSSは、粗いフレーム/シンボルタイミング同期(時間領域の同期)やセルグループの同定に用いられてもよい。SSSは、より正確なフレームタイミング同期やセルの同定に用いられてもよい。つまり、PSSとSSSを用いることによって、フレームタイミング同期とセル識別を行うことができる。
下りリンク参照信号は、端末装置2が物理下りリンクチャネルの伝搬路推定、伝搬路補正、下りリンクのCSI(Channel State Information、チャネル状態情報)の算出、および/または、端末装置2のポジショニングの測定を行うために用いられる。
CRSは、サブフレームの全帯域で送信される。CRSは、PBCH、PDCCH、PHICH、PCFICH、およびPDSCHの受信(復調)を行うために用いられる。CRSは、端末装置2が下りリンクのチャネル状態情報を算出するために用いられてもよい。PBCH、PDCCH、PHICH、およびPCFICHは、CRSの送信に用いられるアンテナポートで送信される。CRSは、1、2または4のアンテナポートの構成をサポートする。CRSは、アンテナポート0~3の1つまたは複数で送信される。
PDSCHに関連するURSは、URSが関連するPDSCHの送信に用いられるサブフレームおよび帯域で送信される。URSは、URSが関連するPDSCHの復調を行なうために用いられる。PDSCHに関連するURSは、アンテナポート5、7~14の1つまたは複数で送信される。
PDSCHは、送信モードおよびDCIフォーマットに基づいて、CRSまたはURSの送信に用いられるアンテナポートで送信される。DCIフォーマット1Aは、CRSの送信に用いられるアンテナポートで送信されるPDSCHのスケジューリングに用いられる。DCIフォーマット2Dは、URSの送信に用いられるアンテナポートで送信されるPDSCHのスケジューリングに用いられる。
EPDCCHに関連するDMRSは、DMRSが関連するEPDCCHの送信に用いられるサブフレームおよび帯域で送信される。DMRSは、DMRSが関連するEPDCCHの復調を行なうために用いられる。EPDCCHは、DMRSの送信に用いられるアンテナポートで送信される。EPDCCHに関連するDMRSは、アンテナポート107~114の1つまたは複数で送信される。
CSI-RSは、設定されたサブフレームで送信される。CSI-RSが送信されるリソースは、基地局装置1によって設定される。CSI-RSは、端末装置2が下りリンクのチャネル状態情報を算出するために用いられる。端末装置2は、CSI-RSを用いて信号測定(チャネル測定)を行う。CSI-RSは、1、2、4、8、12、16、24および32の一部または全部のアンテナポートの設定をサポートする。CSI-RSは、アンテナポート15~46の1つまたは複数で送信される。なお、サポートされるアンテナポートは、端末装置2の端末装置ケイパビリティ、RRCパラメータの設定、および/または設定される送信モードなどに基づいて決定されてもよい。
ZP CSI-RSのリソースは、上位層によって設定される。ZP CSI-RSのリソースはゼロ出力の電力で送信される。すなわち、ZP CSI-RSのリソースは何も送信しない。ZP CSI-RSの設定したリソースにおいて、PDSCHおよびEPDCCHは送信されない。例えば、ZP CSI-RSのリソースは隣接セルがNZP CSI-RSの送信を行うために用いられる。また、例えば、ZP CSI-RSのリソースはCSI-IMを測定するために用いられる。また、例えば、ZP CSI-RSのリソースはPDSCHなどの所定のチャネルが送信されないリソースである。換言すると、所定のチャネルは、ZP CSI-RSのリソースを除いて(レートマッチングして、パンクチャして)マッピングされる。
CSI-IMのリソースは、基地局装置1によって設定される。CSI-IMのリソースは、CSI測定において、干渉を測定するために用いられるリソースである。CSI-IMのリソースは、ZP CSI-RSのリソースの一部と重複(オーバーラップ)して設定できる。例えば、CSI-IMのリソースがZP CSI-RSのリソースの一部と重複して設定される場合、そのリソースではCSI測定を行うセルからの信号は送信されない。換言すると、基地局装置1は、CSI-IMの設定したリソースにおいて、PDSCHまたはEPDCCHなどを送信しない。そのため、端末装置2は、効率的にCSI測定を行うことができる。
MBSFN RSは、PMCHの送信に用いられるサブフレームの全帯域で送信される。MBSFN RSは、PMCHの復調を行なうために用いられる。PMCHは、MBSFN RSの送信用いられるアンテナポートで送信される。MBSFN RSは、アンテナポート4で送信される。
PRSは、端末装置2が、端末装置2のポジショニングを測定するために用いられる。PRSは、アンテナポート6で送信される。
TRSは、所定のサブフレームのみにマッピングできる。例えば、TRSは、サブフレーム0および5にマッピングされる。また、TRSは、CRSの一部または全部と同様の構成を用いることができる。例えば、リソースブロックのそれぞれにおいて、TRSがマッピングされるリソースエレメントの位置は、アンテナポート0のCRSがマッピングされるリソースエレメントの位置と同じにすることができる。また、TRSに用いられる系列(値)は、PBCH、PDCCH、EPDCCHまたはPDSCH(RRCシグナリング)を通じて設定された情報に基づいて決定できる。TRSに用いられる系列(値)は、セルID(例えば、物理レイヤセル識別子)、スロット番号などのパラメータに基づいて決定できる。TRSに用いられる系列(値)は、アンテナポート0のCRSに用いられる系列(値)とは異なる方法(式)によって決定できる。
<本実施形態における物理上りリンクチャネル>
PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる物理チャネルである。上りリンク制御情報は、下りリンクのチャネル状態情報(Channel State Information: CSI)、PUSCHリソースの要求を示すスケジューリング要求(Scheduling Request: SR)、下りリンクデータ(Transport block: TB, Downlink-Shared Channel: DL-SCH)に対するHARQ-ACKを含む。HARQ-ACKは、ACK/NACK、HARQフィードバック、または、応答情報とも称される。また、下りリンクデータに対するHARQ-ACKは、ACK、NACK、またはDTXを示す。
PUSCHは、上りリンクデータ(Uplink-Shared Channel: UL-SCH)を送信するために用いられる物理チャネルである。また、PUSCHは、上りリンクデータと共にHARQ-ACKおよび/またはチャネル状態情報を送信するために用いられてもよい。また、PUSCHは、チャネル状態情報のみ、または、HARQ-ACKおよびチャネル状態情報のみを送信するために用いられてもよい。
PRACHは、ランダムアクセスプリアンブルを送信するために用いられる物理チャネルである。PRACHは、端末装置2が基地局装置1と時間領域の同期をとるために用いられることができる。また、PRACHは、初期コネクション構築(initial connection establishment)手続き(処理)、ハンドオーバ手続き、コネクション再構築(connection re-establishment)手続き、上りリンク送信に対する同期(タイミング調整)、および/または、PUSCHリソースの要求を示すためにも用いられる。
PUCCH領域において、複数のPUCCHが周波数、時間、空間および/またはコード多重される。PUSCH領域において、複数のPUSCHが周波数、時間、空間および/またはコード多重されてもよい。PUCCHおよびPUSCHは周波数、時間、空間および/またはコード多重されてもよい。PRACHは単一のサブフレームまたは2つのサブフレームにわたって配置されてもよい。複数のPRACHが符号多重されてもよい。
<本実施形態における物理上りリンク信号>
上りリンクDMRSは、PUSCHまたはPUCCHの送信に関連する。DMRSは、PUSCHまたはPUCCHと時間多重される。基地局装置1は、PUSCHまたはPUCCHの伝搬路補正を行うためにDMRSを用いてもよい。本実施形態の説明において、PUSCHの送信は、PUSCHとDMRSを多重して送信することも含む。本実施形態の説明において、PUCCHの送信は、PUCCHとDMRSを多重して送信することも含む。なお、上りリンクDMRSは、UL-DMRSとも呼称される。SRSは、PUSCHまたはPUCCHの送信に関連しない。基地局装置1は、上りリンクのチャネル状態を測定するためにSRSを用いてもよい。
SRSは上りリンクサブフレーム内の最後のSC-FDMAシンボルを用いて送信される。つまり、SRSは上りリンクサブフレーム内の最後のSC-FDMAシンボルに配置される。端末装置2は、あるセルのあるSC-FDMAシンボルにおいて、SRSと、PUCCH、PUSCHおよび/またはPRACHとの同時送信を制限できる。端末装置2は、あるセルのある上りリンクサブフレームにおいて、その上りリンクサブフレーム内の最後のSC-FDMAシンボルを除くSC-FDMAシンボルを用いてPUSCHおよび/またはPUCCHを送信し、その上りリンクサブフレーム内の最後のSC-FDMAシンボルを用いてSRSを送信することができる。つまり、あるセルのある上りリンクサブフレームにおいて、端末装置2は、SRSと、PUSCHおよびPUCCHと、を送信することができる。
SRSにおいて、トリガータイプの異なるSRSとして、トリガータイプ0SRSおよびトリガータイプ1SRSが定義される。トリガータイプ0SRSは、上位層シグナリングによって、トリガータイプ0SRSに関するパラメータが設定される場合に送信される。トリガータイプ1SRSは、上位層シグナリングによって、トリガータイプ1SRSに関するパラメータが設定され、DCIフォーマット0、1A、2B、2C、2D、または4に含まれるSRSリクエストによって送信が要求された場合に送信される。なお、SRSリクエストは、DCIフォーマット0、1A、または4についてはFDDとTDDの両方に含まれ、DCIフォーマット2B、2C、または2DについてはTDDにのみ含まれる。同じサービングセルの同じサブフレームでトリガータイプ0SRSの送信とトリガータイプ1SRSの送信が生じる場合、トリガータイプ1SRSの送信が優先される。
<本実施形態における基地局装置1の構成例>
図8は、本実施形態の基地局装置1の構成を示す概略ブロック図である。図示するように、基地局装置1は、上位層処理部101、制御部103、受信部105、送信部107、および、送受信アンテナ109、を含んで構成される。また、受信部105は、復号化部1051、復調部1053、多重分離部1055、無線受信部1057、およびチャネル測定部1059を含んで構成される。また、送信部107は、符号化部1071、変調部1073、多重部1075、無線送信部1077、および下りリンク参照信号生成部1079を含んで構成される。
既に説明したように、基地局装置1は、1つ以上のRATをサポートできる。図8に示す基地局装置1に含まれる各部の一部または全部は、RATに応じて個別に構成されうる。例えば、受信部105および送信部107は、LTEとNRとで個別に構成される。また、NRセルにおいて、図8に示す基地局装置1に含まれる各部の一部または全部は、送信信号に関するパラメータセットに応じて個別に構成されうる。例えば、あるNRセルにおいて、無線受信部1057および無線送信部1077は、送信信号に関するパラメータセットに応じて個別に構成されうる。
上位層処理部101は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行う。また、上位層処理部101は、受信部105、および送信部107の制御を行うために制御情報を生成し、制御部103に出力する。
制御部103は、上位層処理部101からの制御情報に基づいて、受信部105および送信部107の制御を行う。制御部103は、上位層処理部101への制御情報を生成し、上位層処理部101に出力する。制御部103は、復号化部1051からの復号化された信号およびチャネル測定部1059からのチャネル推定結果を入力する。制御部103は、符号化する信号を符号化部1071へ出力する。また、制御部103は、基地局装置1の全体または一部を制御するために用いられる。
上位層処理部101は、RAT制御、無線リソース制御、サブフレーム設定、スケジューリング制御、および/または、CSI報告制御に関する処理および管理を行う。上位層処理部101における処理および管理は、端末装置毎、または基地局装置に接続している端末装置共通に行われる。上位層処理部101における処理および管理は、上位層処理部101のみで行われてもよいし、上位ノードまたは他の基地局装置から取得してもよい。また、上位層処理部101における処理および管理は、RATに応じて個別に行われてもよい。例えば、上位層処理部101は、LTEにおける処理および管理と、NRにおける処理および管理とを個別に行う。
上位層処理部101におけるRAT制御では、RATに関する管理が行われる。例えば、RAT制御では、LTEに関する管理および/またはNRに関する管理が行われる。NRに関する管理は、NRセルにおける送信信号に関するパラメータセットの設定および処理を含む。
上位層処理部101における無線リソース制御では、下りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ(RRCパラメータ)、および/または、MAC制御エレメント(CE:Control Element)の生成および/または管理が行われる。
上位層処理部101におけるサブフレーム設定では、サブフレーム設定、サブフレームパターン設定、上りリンク-下りリンク設定、上りリンク参照UL-DL設定、および/または、下りリンク参照UL-DL設定の管理が行われる。なお、上位層処理部101におけるサブフレーム設定は、基地局サブフレーム設定とも呼称される。また、上位層処理部101におけるサブフレーム設定は、上りリンクのトラフィック量および下りリンクのトラフィック量に基づいて決定できる。また、上位層処理部101におけるサブフレーム設定は、上位層処理部101におけるスケジューリング制御のスケジューリング結果に基づいて決定できる。
上位層処理部101におけるスケジューリング制御では、受信したチャネル状態情報およびチャネル測定部1059から入力された伝搬路の推定値やチャネルの品質などに基づいて、物理チャネルを割り当てる周波数およびサブフレーム、物理チャネルの符号化率および変調方式および送信電力などが決定される。例えば、制御部103は、上位層処理部101におけるスケジューリング制御のスケジューリング結果に基づいて、制御情報(DCIフォーマット)を生成する。
上位層処理部101におけるCSI報告制御では、端末装置2のCSI報告が制御される。例えば、端末装置2においてCSIを算出するために想定するためのCSI参照リソースに関する設定が制御される。
受信部105は、制御部103からの制御に従って、送受信アンテナ109を介して端末装置2から送信された信号を受信し、さらに分離、復調、復号などの受信処理を行い、受信処理された情報を制御部103に出力する。なお、受信部105における受信処理は、あらかじめ規定された設定、または基地局装置1が端末装置2に通知した設定に基づいて行われる。
無線受信部1057は、送受信アンテナ109を介して受信された上りリンクの信号に対して、中間周波数への変換(ダウンコンバート)、不要な周波数成分の除去、信号レベルが適切に維持されるように増幅レベルの制御、受信された信号の同相成分および直交成分に基づく直交復調、アナログ信号からディジタル信号への変換、ガードインターバル(Guard Interval: GI)の除去、および/または、高速フーリエ変換(Fast Fourier Transform: FFT)による周波数領域信号の抽出を行う。
多重分離部1055は、無線受信部1057から入力された信号から、PUCCHまたはPUSCHなどの上りリンクチャネルおよび/または上りリンク参照信号を分離する。多重分離部1055は、上りリンク参照信号をチャネル測定部1059に出力する。多重分離部1055は、チャネル測定部1059から入力された伝搬路の推定値から、上りリンクチャネルに対する伝搬路の補償を行う。
復調部1053は、上りリンクチャネルの変調シンボルに対して、BPSK(Binary Phase Shift Keying)、QPSK(Quadrature Phase shift Keying)、16QAM(Quadrature Amplitude Modulation)、64QAM、256QAM等の変調方式を用いて受信信号の復調を行う。復調部1053は、MIMO多重された上りリンクチャネルの分離および復調を行う。
復号化部1051は、復調された上りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された上りリンクデータおよび/または上りリンク制御情報は制御部103へ出力される。復号化部1051は、PUSCHに対しては、トランスポートブロック毎に復号処理を行う。
チャネル測定部1059は、多重分離部1055から入力された上りリンク参照信号から伝搬路の推定値および/またはチャネルの品質などを測定し、多重分離部1055および/または制御部103に出力する。例えば、UL-DMRSはPUCCHまたはPUSCHに対する伝搬路補償を行うための伝搬路の推定値を測定し、SRSは上りリンクにおけるチャネルの品質を測定する。
送信部107は、制御部103からの制御に従って、上位層処理部101から入力された下りリンク制御情報および下りリンクデータに対して、符号化、変調および多重などの送信処理を行う。例えば、送信部107は、PHICH、PDCCH、EPDCCH、PDSCH、および下りリンク参照信号を生成および多重し、送信信号を生成する。なお、送信部107における送信処理は、あらかじめ規定された設定、基地局装置1が端末装置2に通知した設定、または、同一のサブフレームで送信されるPDCCHまたはEPDCCHを通じて通知される設定に基づいて行われる。
符号化部1071は、制御部103から入力されたHARQインディケータ(HARQ-ACK)、下りリンク制御情報、および下りリンクデータを、ブロック符号化、畳込み符号化、ターボ符号化等の所定の符号化方式を用いて符号化を行う。変調部1073は、符号化部1071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。下りリンク参照信号生成部1079は、物理セル識別子(PCI:Physical cell identification)、端末装置2に設定されたRRCパラメータなどに基づいて、下りリンク参照信号を生成する。多重部1075は、各チャネルの変調シンボルと下りリンク参照信号を多重し、所定のリソースエレメントに配置する。
無線送信部1077は、多重部1075からの信号に対して、逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)による時間領域の信号への変換、ガードインターバルの付加、ベースバンドのディジタル信号の生成、アナログ信号への変換、直交変調、中間周波数の信号から高周波数の信号への変換(アップコンバート: up convert)、余分な周波数成分の除去、電力の増幅などの処理を行い、送信信号を生成する。無線送信部1077が出力した送信信号は、送受信アンテナ109から送信される。
<本実施形態における端末装置2の構成例>
図9は、本実施形態の端末装置2の構成を示す概略ブロック図である。図示するように、端末装置2は、上位層処理部201、制御部203、受信部205、送信部207、および送受信アンテナ209を含んで構成される。また、受信部205は、復号化部2051、復調部2053、多重分離部2055、無線受信部2057、およびチャネル測定部2059を含んで構成される。また、送信部207は、符号化部2071、変調部2073、多重部2075、無線送信部2077、および上りリンク参照信号生成部2079を含んで構成される。
既に説明したように、端末装置2は、1つ以上のRATをサポートできる。図9に示す端末装置2に含まれる各部の一部または全部は、RATに応じて個別に構成されうる。例えば、受信部205および送信部207は、LTEとNRとで個別に構成される。また、NRセルにおいて、図9に示す端末装置2に含まれる各部の一部または全部は、送信信号に関するパラメータセットに応じて個別に構成されうる。例えば、あるNRセルにおいて、無線受信部2057および無線送信部2077は、送信信号に関するパラメータセットに応じて個別に構成されうる。
上位層処理部201は、上りリンクデータ(トランスポートブロック)を、制御部203に出力する。上位層処理部201は、媒体アクセス制御(MAC: Medium Access Control)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層の処理を行なう。また、上位層処理部201は、受信部205、および送信部207の制御を行うために制御情報を生成し、制御部203に出力する。
制御部203は、上位層処理部201からの制御情報に基づいて、受信部205および送信部207の制御を行う。制御部203は、上位層処理部201への制御情報を生成し、上位層処理部201に出力する。制御部203は、復号化部2051からの復号化された信号およびチャネル測定部2059からのチャネル推定結果を入力する。制御部203は、符号化する信号を符号化部2071へ出力する。また、制御部203は、端末装置2の全体または一部を制御するために用いられてもよい。
上位層処理部201は、RAT制御、無線リソース制御、サブフレーム設定、スケジューリング制御、および/または、CSI報告制御に関する処理および管理を行う。上位層処理部201における処理および管理は、あらかじめ規定される設定、および/または、基地局装置1から設定または通知される制御情報に基づく設定に基づいて行われる。例えば、基地局装置1からの制御情報は、RRCパラメータ、MAC制御エレメントまたはDCIを含む。また、上位層処理部201における処理および管理は、RATに応じて個別に行われてもよい。例えば、上位層処理部201は、LTEにおける処理および管理と、NRにおける処理および管理とを個別に行う。
上位層処理部201におけるRAT制御では、RATに関する管理が行われる。例えば、RAT制御では、LTEに関する管理および/またはNRに関する管理が行われる。NRに関する管理は、NRセルにおける送信信号に関するパラメータセットの設定および処理を含む。
上位層処理部201における無線リソース制御では、自装置における設定情報の管理が行われる。上位層処理部201における無線リソース制御では、上りリンクデータ(トランスポートブロック)、システムインフォメーション、RRCメッセージ(RRCパラメータ)、および/または、MAC制御エレメント(CE:Control Element)の生成および/または管理が行われる。
上位層処理部201におけるサブフレーム設定では、基地局装置1および/または基地局装置1とは異なる基地局装置におけるサブフレーム設定が管理される。サブフレーム設定は、サブフレームに対する上りリンクまたは下りリンクの設定、サブフレームパターン設定、上りリンク-下りリンク設定、上りリンク参照UL-DL設定、および/または、下りリンク参照UL-DL設定を含む。なお、上位層処理部201におけるサブフレーム設定は、端末サブフレーム設定とも呼称される。
上位層処理部201におけるスケジューリング制御では、基地局装置1からのDCI(スケジューリング情報)に基づいて、受信部205および送信部207に対するスケジューリングに関する制御を行うための制御情報が生成される。
上位層処理部201におけるCSI報告制御では、基地局装置1に対するCSIの報告に関する制御が行われる。例えば、CSI報告制御では、チャネル測定部2059でCSIを算出するために想定するためのCSI参照リソースに関する設定が制御される。CSI報告制御では、DCIおよび/またはRRCパラメータに基づいて、CSIを報告するために用いられるリソース(タイミング)を制御する。
受信部205は、制御部203からの制御に従って、送受信アンテナ209を介して基地局装置1から送信された信号を受信し、さらに分離、復調、復号などの受信処理を行い、受信処理された情報を制御部203に出力する。なお、受信部205における受信処理は、あらかじめ規定された設定、または基地局装置1からの通知または設定に基づいて行われる。
無線受信部2057は、送受信アンテナ209を介して受信された上りリンクの信号に対して、中間周波数への変換(ダウンコンバート)、不要な周波数成分の除去、信号レベルが適切に維持されるように増幅レベルの制御、受信された信号の同相成分および直交成分に基づく直交復調、アナログ信号からディジタル信号への変換、ガードインターバル(Guard Interval: GI)の除去、および/または、高速フーリエ変換(Fast Fourier Transform: FFT)による周波数領域の信号の抽出を行う。
多重分離部2055は、無線受信部2057から入力された信号から、PHICH、PDCCH、EPDCCHまたはPDSCHなどの下りリンクチャネル、下りリンク同期信号および/または下りリンク参照信号を分離する。多重分離部2055は、下りリンク参照信号をチャネル測定部2059に出力する。多重分離部2055は、チャネル測定部2059から入力された伝搬路の推定値から、下りリンクチャネルに対する伝搬路の補償を行う。
復調部2053は、下りリンクチャネルの変調シンボルに対して、BPSK、QPSK、16QAM、64QAM、256QAM等の変調方式を用いて受信信号の復調を行う。復調部2053は、MIMO多重された下りリンクチャネルの分離および復調を行う。
復号化部2051は、復調された下りリンクチャネルの符号化ビットに対して、復号処理を行う。復号された下りリンクデータおよび/または下りリンク制御情報は制御部203へ出力される。復号化部2051は、PDSCHに対しては、トランスポートブロック毎に復号処理を行う。
チャネル測定部2059は、多重分離部2055から入力された下りリンク参照信号から伝搬路の推定値および/またはチャネルの品質などを測定し、多重分離部2055および/または制御部203に出力する。チャネル測定部2059が測定に用いる下りリンク参照信号は、少なくともRRCパラメータによって設定される送信モードおよび/または他のRRCパラメータに基づいて決定されてもよい。例えば、DL-DMRSはPDSCHまたはEPDCCHに対する伝搬路補償を行うための伝搬路の推定値を測定する。CRSはPDCCHまたはPDSCHに対する伝搬路補償を行うための伝搬路の推定値、および/または、CSIを報告するための下りリンクにおけるチャネルを測定する。CSI-RSは、CSIを報告するための下りリンクにおけるチャネルを測定する。チャネル測定部2059は、CRS、CSI-RSまたは検出信号に基づいて、RSRP(Reference Signal Received Power)および/またはRSRQ(Reference Signal Received Quality)を算出し、上位層処理部201へ出力する。
送信部207は、制御部203からの制御に従って、上位層処理部201から入力された上りリンク制御情報および上りリンクデータに対して、符号化、変調および多重などの送信処理を行う。例えば、送信部207は、PUSCHまたはPUCCHなどの上りリンクチャネルおよび/または上りリンク参照信号を生成および多重し、送信信号を生成する。なお、送信部207における送信処理は、あらかじめ規定された設定、または、基地局装置1から設定または通知に基づいて行われる。
符号化部2071は、制御部203から入力されたHARQインディケータ(HARQ-ACK)、上りリンク制御情報、および上りリンクデータを、ブロック符号化、畳込み符号化、ターボ符号化等の所定の符号化方式を用いて符号化を行う。変調部2073は、符号化部2071から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の所定の変調方式で変調する。上りリンク参照信号生成部2079は、端末装置2に設定されたRRCパラメータなどに基づいて、上りリンク参照信号を生成する。多重部2075は、各チャネルの変調シンボルと上りリンク参照信号を多重し、所定のリソースエレメントに配置する。
無線送信部2077は、多重部2075からの信号に対して、逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)による時間領域の信号への変換、ガードインターバルの付加、ベースバンドのディジタル信号の生成、アナログ信号への変換、直交変調、中間周波数の信号から高周波数の信号への変換(アップコンバート: up convert)、余分な周波数成分の除去、電力の増幅などの処理を行い、送信信号を生成する。無線送信部2077が出力した送信信号は、送受信アンテナ209から送信される。
<本実施形態における制御情報のシグナリング>
基地局装置1および端末装置2は、それぞれ制御情報のシグナリング(通知、報知、設定)のために、様々な方法を用いることができる。制御情報のシグナリングは、様々な層(レイヤー)で行うことができる。制御情報のシグナリングは、物理層(レイヤー)を通じたシグナリングである物理層シグナリング、RRC層を通じたシグナリングであるRRCシグナリング、および、MAC層を通じたシグナリングであるMACシグナリングなどを含む。RRCシグナリングは、端末装置2に固有の制御情報を通知する専用のRRCシグナリング(Dedicated RRC signaling)、または、基地局装置1に固有の制御情報を通知する共通のRRCシグナリング(Common RRC signaling)である。RRCシグナリングやMACシグナリングなど、物理層から見て上位の層が用いるシグナリングは上位層シグナリングとも呼称される。
RRCシグナリングは、RRCパラメータをシグナリングすることにより実現される。MACシグナリングは、MAC制御エレメントをシグナリングすることにより実現される。物理層シグナリングは、下りリンク制御情報(DCI:Downlink Control Information)または上りリンクリンク制御情報(UCI:Uplink Control Information)をシグナリングすることにより実現される。RRCパラメータおよびMAC制御エレメントは、PDSCHまたはPUSCHを用いて送信される。DCIは、PDCCHまたはEPDCCHを用いて送信される。UCIは、PUCCHまたはPUSCHを用いて送信される。RRCシグナリングおよびMACシグナリングは、準静的(semi-static)な制御情報をシグナリングするために用いられ、準静的シグナリングとも呼称される。物理層シグナリングは、動的(dynamic)な制御情報をシグナリングするために用いられ、動的シグナリングとも呼称される。DCIは、PDSCHのスケジューリングまたはPUSCHのスケジューリングなどのために用いられる。UCIは、CSI報告、HARQ-ACK報告、および/またはスケジューリング要求(SR:Scheduling Request)などのために用いられる。
<本実施形態における下りリンク制御情報の詳細>
DCIはあらかじめ規定されるフィールドを有するDCIフォーマットを用いて通知される。DCIフォーマットに規定されるフィールドは、所定の情報ビットがマッピングされる。DCIは、下りリンクスケジューリング情報、上りリンクスケジューリング情報、サイドリンクスケジューリング情報、非周期的CSI報告の要求、または、上りリンク送信電力コマンドを通知する。
端末装置2がモニタするDCIフォーマットは、サービングセル毎に設定された送信モードによって決まる。すなわち、端末装置2がモニタするDCIフォーマットの一部は、送信モードによって異なることができる。例えば、下りリンク送信モード1が設定された端末装置2は、DCIフォーマット1AとDCIフォーマット1をモニタする。例えば、下りリンク送信モード4が設定された端末装置2は、DCIフォーマット1AとDCIフォーマット2をモニタする。例えば、上りリンク送信モード1が設定された端末装置2は、DCIフォーマット0をモニタする。例えば、上りリンク送信モード2が設定された端末装置2は、DCIフォーマット0とDCIフォーマット4をモニタする。
端末装置2に対するDCIを通知するPDCCHが配置される制御領域は通知されず、端末装置2は端末装置2に対するDCIをブラインドデコーディング(ブラインド検出)により検出する。具体的には、端末装置2は、サービングセルにおいて、PDCCH候補のセットをモニタする。モニタリングは、そのセットの中のPDCCHのそれぞれに対して、全てのモニタされるDCIフォーマットによって復号を試みることを意味する。例えば、端末装置2は、端末装置2宛に送信される可能性がある全てのアグリゲーションレベル、PDCCH候補、および、DCIフォーマットについてデコードを試みる。端末装置2は、デコード(検出)が成功したDCI(PDCCH)を端末装置2に対するDCI(PDCCH)として認識する。
DCIに対して、巡回冗長検査(CRC: Cyclic Redundancy Check)が付加される。CRCは、DCIのエラー検出およびDCIのブラインド検出のために用いられる。CRC(CRCパリティビット)は、RNTI(Radio Network Temporary Identifier)によってスクランブルされる。端末装置2は、RNTIに基づいて、端末装置2に対するDCIかどうかを検出する。具体的には、端末装置2は、CRCに対応するビットに対して、所定のRNTIでデスクランブルを行い、CRCを抽出し、対応するDCIが正しいかどうかを検出する。
RNTIは、DCIの目的や用途に応じて規定または設定される。RNTIは、C-RNTI(Cell-RNTI)、SPS C-RNTI(Semi Persistent Scheduling C-RNTI)、SI-RNTI(System Information-RNTI)、P-RNTI(Paging-RNTI)、RA-RNTI(Random Access-RNTI)、TPC-PUCCH-RNTI(Transmit Power Control-PUCCH-RNTI)、TPC-PUSCH-RNTI(Transmit Power Control-PUSCH-RNTI)、一時的C-RNTI、M-RNTI(MBMS (Multimedia Broadcast Muticast Services) -RNTI)、および、eIMTA-RNTIを含む。
C-RNTIおよびSPS C-RNTIは、基地局装置1(セル)内において端末装置2に固有のRNTIであり、端末装置2を識別するための識別子である。C-RNTIは、あるサブフレームにおけるPDSCHまたはPUSCHをスケジューリングするために用いられる。SPS C-RNTIは、PDSCHまたはPUSCHのためのリソースの周期的なスケジューリングをアクティベーションまたはリリースするために用いられる。SI-RNTIでスクランブルされたCRCを有する制御チャネルは、SIB(System Information Block)をスケジューリングするために用いられる。P-RNTIでスクランブルされたCRCを有する制御チャネルは、ページングを制御するために用いられる。RA-RNTIでスクランブルされたCRCを有する制御チャネルは、RACHに対するレスポンスをスケジューリングするために用いられる。TPC-PUCCH-RNTIでスクランブルされたCRCを有する制御チャネルは、PUCCHの電力制御を行うために用いられる。TPC-PUSCH-RNTIでスクランブルされたCRCを有する制御チャネルは、PUSCHの電力制御を行うために用いられる。Temporary C-RNTIでスクランブルされたCRCを有する制御チャネルは、C-RNTIが設定または認識されていない移動局装置によって用いられる。M-RNTIでスクランブルされたCRCを有する制御チャネルは、MBMSをスケジューリングするために用いられる。eIMTA-RNTIでスクランブルされたCRCを有する制御チャネルは、動的TDD(eIMTA)において、TDDサービングセルのTDD UL/DL設定に関する情報を通知するために用いられる。なお、上記のRNTIに限らず、新たなRNTIによってDCIフォーマットがスクランブルされてもよい。
スケジューリング情報(下りリンクスケジューリング情報、上りリンクスケジューリング情報、サイドリンクスケジューリング情報)は、周波数領域のスケジューリングとして、リソースブロックまたはリソースブロックグループを単位にスケジューリングを行うための情報を含む。リソースブロックグループは、連続するリソースブロックのセットであり、スケジューリングされる端末装置に対する割り当てられるリソースを示す。リソースブロックグループのサイズは、システム帯域幅に応じて決まる。
<本実施形態におけるチャネル状態情報の詳細>
端末装置2は基地局装置1にCSIを報告(レポート)する。CSIを報告するために用いられる時間および周波数のリソースは、基地局装置1によって制御される。端末装置2は、基地局装置1からRRCシグナリングによってCSIに関する設定が行われる。端末装置2は、所定の送信モードにおいて、1つ以上のCSIプロセスが設定される。端末装置2によって報告されるCSIは、CSIプロセスに対応する。例えば、CSIプロセスは、CSIに関する制御または設定の単位である。CSIプロセスのそれぞれは、CSI-RSリソース、CSI-IMリソース、周期的CSI報告に関する設定(例えば、報告の周期とオフセット)、および/または、非周期的CSI報告に関する設定を独立に設定できる。
CSIは、CQI(Channel quality indicator)、PMI(Precoding matrix indicator)、PTI(Precoding type indicator)、RI(Rank indicator)、および/またはCRI(CSI-RS resource indicator)で構成される。RIは、送信レイヤーの数(ランク数)を示す。PMIは、予め規定されたプレコーディング行列を示す情報である。PMIは、1つの情報または2つの情報により、1つのプレコーディング行列を示す。2つの情報を用いる場合のPMIは、第1のPMIと第2のPMIとも呼称される。CQIは、予め規定された変調方式と符号化率との組み合わせを示す情報である。CRIは、1つのCSIプロセスにおいてCSI-RSリソースが2つ以上設定された場合に、それらのCSI-RSリソースから選択される1つのCSI-RSリソースを示す情報(シングルインスタンス)である。端末装置2は、基地局装置1に推奨するCSIを報告する。端末装置2は、トランスポートブロック(コードワード)毎に、所定の受信品質を満たすCQIを報告する。
CRIの報告において、設定されるCSI-RSリソースから1つのCSI-RSリソースが選択される。CRIが報告された場合、報告されるPMI、CQIおよびRIは、その報告されたCRIに基づいて算出(選択)される。例えば、設定されるCSI-RSリソースがそれぞれプレコーディングされる場合、端末装置2がCRIを報告することにより、端末装置2に好適なプレコーディング(ビーム)が報告される。
周期的CSI報告が可能なサブフレーム(reporting instances)は、上位層のパラメータ(CQIPMIインデックス、RIインデックス、CRIインデックス)により設定される、報告の周期およびサブフレームオフセットによって決定される。なお、上位層のパラメータは、CSIを測定するために設定されるサブフレームセットに独立に設定できる。複数のサブフレームセットに対して1つの情報しか設定されない場合、その情報は、サブフレームセット間で共通とすることができる。それぞれのサービングセルにおいて、1つ以上の周期的CSI報告は、上位層のシグナリングによって設定される。
CSI報告タイプは、PUCCH CSI報告モードをサポートしている。CSI報告タイプは、PUCCH報告タイプとも呼称される。タイプ1報告は、端末選択サブバンドに対するCQIのフィードバックをサポートしている。タイプ1a報告は、サブバンドCQIと第2のPMIのフィードバンクをサポートしている。タイプ2、タイプ2b、タイプ2c報告は、ワイドバンドCQIとPMIのフィードバックをサポートしている。タイプ2a報告は、ワイドバンドPMIのフィードバンクをサポートしている。タイプ3報告は、RIのフィードバックをサポートしている。タイプ4報告は、ワイドバンドCQIのフィードバックをサポートしている。タイプ5報告は、RIとワイドバンドPMIのフィードバックをサポートしている。タイプ6報告は、RIとPTIのフィードバックをサポートしている。タイプ7報告は、CRIとRIのフィードバックをサポートしている。タイプ8報告は、CRIとRIとワイドバンドPMIのフィードバックをサポートしている。タイプ9報告は、CRIとRIとPTIのフィードバックをサポートしている。タイプ10報告は、CRIのフィードバックをサポートしている。
端末装置2は、基地局装置1からCSI測定およびCSI報告に関する情報が設定される。CSI測定は、参照信号および/または参照リソース(例えば、CRS、CSI-RS、CSI-IMリソース、および/またはDRS)に基づいて行われる。CSI測定に用いられる参照信号は、送信モードの設定などに基づいて決まる。CSI測定は、チャネル測定と干渉測定とに基づいて行われる。例えば、チャネル測定は、所望のセルの電力を測定する。干渉測定は、所望のセル以外の電力と雑音電力とを測定する。
例えば、CSI測定において、端末装置2は、CRSに基づいてチャネル測定と干渉測定とを行う。例えば、CSI測定において、端末装置2は、CSI-RSに基づいてチャネル測定を行い、CRSに基づいて干渉測定を行う。例えば、CSI測定において、端末装置2は、CSI-RSに基づいてチャネル測定を行い、CSI-IMリソースに基づいて干渉測定を行う。
CSIプロセスは、上位層のシグナリングによって端末装置2に固有の情報として設定される。端末装置2は、1つ以上のCSIプロセスが設定され、そのCSIプロセスの設定に基づいてCSI測定およびCSI報告を行う。例えば、端末装置2は、複数のCSIプロセスが設定された場合、それらのCSIプロセスに基づく複数のCSIを独立に報告する。それぞれのCSIプロセスは、セル状態情報のための設定、CSIプロセスの識別子、CSI-RSに関する設定情報、CSI-IMに関する設定情報、CSI報告のために設定されるサブフレームパターン、周期的なCSI報告に関する設定情報、および/または、非周期的なCSI報告に関する設定情報を含む。なお、セル状態情報のための設定は、複数のCSIプロセスに対して共通であってもよい。
端末装置2は、CSI測定を行うためにCSI参照リソースを用いる。例えば、端末装置2は、CSI参照リソースで示される下りリンク物理リソースブロックのグループを用いて、PDSCHが送信される場合のCSIを測定する。CSIサブフレームセットが上位層のシグナリングによって設定された場合、それぞれのCSI参照リソースは、CSIサブフレームセットのいずれかに属し、CSIサブフレームセットの両方に属しない。
周波数方向において、CSI参照リソースは、測定されるCQIの値に関連するバンドに対応する下りリンク物理リソースブロックのグループによって定義される。
レイヤー方向(空間方向)において、CSI参照リソースは、測定されるCQIが条件をつけるRIおよびPMIによって定義される。すなわち、レイヤー方向(空間方向)において、CSI参照リソースは、CQIを測定する時に想定または生成されたRIおよびPMIによって定義される。
時間方向において、CSI参照リソースは、所定の1つ以上の下りリンクサブフレームによって定義される。具体的には、CSI参照リソースは、CSI報告するサブフレームより所定数前の有効なサブフレームによって定義される。CSI参照リソースを定義する所定のサブフレーム数は、送信モード、フレーム構成タイプ、設定されるCSIプロセスの数、および/または、CSI報告モードなどに基づいて決まる。例えば、端末装置2に対して、1つのCSIプロセスと周期的なCSI報告のモードが設定される場合、CSI参照リソースを定義する所定のサブフレーム数は、有効な下りリンクサブフレームのうち、4以上の最小値である。
有効なサブフレームは、所定の条件を満たすサブフレームである。あるサービングセルにおける下りリンクサブフレームは、以下の条件の一部または全部が当てはまる場合、有効であると考えられる。
(1)有効な下りリンクサブフレームは、ON状態およびOFF状態に関するRRCパラメータが設定される端末装置2において、ON状態のサブフレームである。
(2)有効な下りリンクサブフレームは、端末装置2において下りリンクサブフレームとして設定される。
(3)有効な下りリンクサブフレームは、所定の送信モードにおいて、MBSFN(Multimedia Broadcast multicast service Single Frequency Network)サブフレームではない。
(4)有効な下りリンクサブフレームは、端末装置2に設定された測定間隔(measurement gap)の範囲に含まれない。
(5)有効な下りリンクサブフレームは、周期的なCSI報告において、端末装置2にCSIサブフレームセットが設定される時、周期的なCSI報告にリンクされるCSIサブフレームセットの要素または一部である。
(6)有効な下りリンクサブフレームは、CSIプロセスに対する非周期的CSI報告において、上りリンクのDCIフォーマット内の対応するCSIリクエストを伴う下りリンクサブフレームにリンクされるCSIサブフレームセットの要素または一部である。その条件において、端末装置2に所定の送信モードと、複数のCSIプロセスと、CSIプロセスに対するCSIサブフレームセットとが設定される。
<本実施形態におけるマルチキャリア送信の詳細>
端末装置2は複数のセルが設定され、マルチキャリア送信を行うことができる。端末装置2が複数のセルを用いる通信は、CA(キャリアアグリゲーション)またはDC(デュアルコネクティビティ)と称される。本実施形態に記載の内容は、端末装置2に対して設定される複数のセルのそれぞれまたは一部に適用できる。端末装置2に設定されるセルを、サービングセルとも称する。
CAおいて、設定される複数のサービングセルは、1つのプライマリーセル(PCell: Primary Cell)と1つ以上のセカンダリーセル(SCell: Secondary Cell)とを含む。CAをサポートしている端末装置2に対して、1つのプライマリーセルと1つ以上のセカンダリーセルが設定されうる。
プライマリーセルは、初期コネクション構築(initial connection establishment)手続きが行なわれたサービングセル、コネクション再構築(connection re-establishment)手続きを開始したサービングセル、または、ハンドオーバ手続きにおいてプライマリーセルと指示されたセルである。プライマリーセルは、プライマリー周波数でオペレーションする。セカンダリーセルは、コネクションの構築または再構築以降に設定されうる。セカンダリーセルは、セカンダリー周波数でオペレーションする。なお、コネクションは、RRCコネクションとも称される。
DCは、少なくとも2つの異なるネットワークポイントから提供される無線リソースを所定の端末装置2が消費するオペレーションである。ネットワークポイントは、マスター基地局装置(MeNB: Master eNB)とセカンダリー基地局装置(SeNB: Secondary eNB)である。デュアルコネクティビティは、端末装置2が、少なくとも2つのネットワークポイントでRRC接続を行なうことである。デュアルコネクティビティにおいて、2つのネットワークポイントは、非理想的バックホール(non-ideal backhaul)によって接続されてもよい。
DCにおいて、少なくともS1-MME(Mobility Management Entity)に接続され、コアネットワークのモビリティアンカーの役割を果たす基地局装置1をマスター基地局装置と称される。また、端末装置2に対して追加の無線リソースを提供するマスター基地局装置ではない基地局装置1をセカンダリー基地局装置と称される。マスター基地局装置に関連されるサービングセルのグループは、マスターセルグループ(MCG: Master Cell Group)とも呼称される。セカンダリー基地局装置に関連されるサービングセルのグループは、セカンダリーセルグループ(SCG: Secondary Cell Group)とも呼称される。
DCにおいて、プライマリーセルは、MCGに属する。また、SCGにおいて、プライマリーセルに相当するセカンダリーセルをプライマリーセカンダリーセル(PSCell: Primary Secondary Cell)と称する。PSCell(pSCellを構成する基地局装置)には、PCell(PCellを構成する基地局装置)と同等の機能(能力、性能)がサポートされてもよい。また、PSCellには、PCellの一部の機能だけがサポートされてもよい。例えば、PSCellには、CSSまたはUSSとは異なるサーチスペースを用いて、PDCCH送信を行なう機能がサポートされてもよい。また、PSCellは、常にアクティベーションの状態であってもよい。また、PSCellは、PUCCHを受信できるセルである。
DCにおいて、無線ベアラ(データ無線ベアラ(DRB: Date Radio Bearer)および/またはシグナリング無線ベアラ(SRB: Signaling Radio Bearer))は、MeNBとSeNBで個別に割り当てられてもよい。MCG(PCell)とSCG(PSCell)に対して、それぞれ個別にデュプレックスモードが設定されてもよい。MCG(PCell)とSCG(PSCell)は、互いに同期されなくてもよい。MCG(PCell)とSCG(PSCell)に対して、複数のタイミング調整のためのパラメータ(TAG: Timing Advance Group)が独立に設定されてもよい。デュアルコネクティビティにおいて、端末装置2は、MCG内のセルに対応するUCIをMeNB(PCell)のみで送信し、SCG内のセルに対応するUCIをSeNB(pSCell)のみで送信する。それぞれのUCIの送信において、PUCCHおよび/またはPUSCHを用いた送信方法はそれぞれのセルグループで適用される。
PUCCHおよびPBCH(MIB)は、PCellまたはPSCellのみで送信される。また、PRACHは、CG内のセル間で複数のTAG(Timing Advance Group)が設定されない限り、PCellまたはPSCellのみで送信される。
PCellまたはPSCellでは、SPS(Semi-Persistent Scheduling)やDRX(Discontinuous Transmission)を行ってもよい。セカンダリーセルでは、同じセルグループのPCellまたはPSCellと同じDRXを行ってもよい。
セカンダリーセルにおいて、MACの設定に関する情報/パラメータは、基本的に、同じセルグループのPCellまたはPSCellと共有している。一部のパラメータは、セカンダリーセル毎に設定されてもよい。一部のタイマーやカウンタが、PCellまたはPSCellのみに対して適用されてもよい。
CAにおいて、TDD方式が適用されるセルとFDD方式が適用されるセルが集約されてもよい。TDDが適用されるセルとFDDが適用されるセルとが集約される場合に、TDDが適用されるセルおよびFDDが適用されるセルのいずれか一方に対して本開示を適用することができる。
端末装置2は、端末装置2によってCAがサポートされているバンドの組合せを示す情報を、基地局装置1に送信する。端末装置2は、バンドの組合せのそれぞれに対して、異なる複数のバンドにおける前記複数のサービングセルにおける同時送信および受信をサポートしているかどうかを指示する情報を、基地局装置1に送信する。
<本実施形態におけるリソース割り当ての詳細>
基地局装置1は、端末装置2にPDSCHおよび/またはPUSCHのリソース割り当ての方法として、複数の方法を用いることができる。リソース割り当ての方法は、動的スケジューリング、セミパーシステントスケジューリング、マルチサブフレームスケジューリング、およびクロスサブフレームスケジューリングを含む。
動的スケジューリングにおいて、1つのDCIは1つのサブフレームにおけるリソース割り当てを行う。具体的には、あるサブフレームにおけるPDCCHまたはEPDCCHは、そのサブフレームにおけるPDSCHに対するスケジューリングを行う。あるサブフレームにおけるPDCCHまたはEPDCCHは、そのサブフレームより後の所定のサブフレームにおけるPUSCHに対するスケジューリングを行う。
マルチサブフレームスケジューリングにおいて、1つのDCIは1つ以上のサブフレームにおけるリソース割り当てを行う。具体的には、あるサブフレームにおけるPDCCHまたはEPDCCHは、そのサブフレームより所定数後の1つ以上のサブフレームにおけるPDSCHに対するスケジューリングを行う。あるサブフレームにおけるPDCCHまたはEPDCCHは、そのサブフレームより所定数後の1つ以上のサブフレームにおけるPUSCHに対するスケジューリングを行う。その所定数はゼロ以上の整数にすることができる。その所定数は、あらかじめ規定されてもよいし、物理層シグナリングおよび/またはRRCシグナリングに基づいて決められてもよい。マルチサブフレームスケジューリングにおいて、連続したサブフレームがスケジューリングされてもよいし、所定の周期を有するサブフレームがスケジューリングされてもよい。スケジューリングされるサブフレームの数は、あらかじめ規定されてもよいし、物理層シグナリングおよび/またはRRCシグナリングに基づいて決められてもよい。
クロスサブフレームスケジューリングにおいて、1つのDCIは1つのサブフレームにおけるリソース割り当てを行う。具体的には、あるサブフレームにおけるPDCCHまたはEPDCCHは、そのサブフレームより所定数後の1つのサブフレームにおけるPDSCHに対するスケジューリングを行う。あるサブフレームにおけるPDCCHまたはEPDCCHは、そのサブフレームより所定数後の1つのサブフレームにおけるPUSCHに対するスケジューリングを行う。その所定数はゼロ以上の整数にすることができる。その所定数は、あらかじめ規定されてもよいし、物理層シグナリングおよび/またはRRCシグナリングに基づいて決められてもよい。クロスサブフレームスケジューリングにおいて、連続したサブフレームがスケジューリングされてもよいし、所定の周期を有するサブフレームがスケジューリングされてもよい。
セミパーシステントスケジューリング(SPS)において、1つのDCIは1つ以上のサブフレームにおけるリソース割り当てを行う。端末装置2は、RRCシグナリングによってSPSに関する情報が設定され、SPSを有効にするためのPDCCHまたはEPDCCHを検出した場合、SPSに関する処理を有効にし、SPSに関する設定に基づいて所定のPDSCHおよび/またはPUSCHを受信する。端末装置2は、SPSが有効である時にSPSをリリースするためのPDCCHまたはEPDCCHを検出した場合、SPSをリリース(無効に)し、所定のPDSCHおよび/またはPUSCHの受信を止める。SPSのリリースは、所定の条件を満たした場合に基づいて行ってもよい。例えば、所定数の空送信のデータを受信した場合に、SPSはリリースされる。SPSをリリースするためのデータの空送信は、ゼロMAC SDU(Service Data Unit)を含むMAC PDU(Protocol Data Unit)に対応する。
RRCシグナリングによるSPSに関する情報は、SPSのRNTIであるSPS C-RNTI、PDSCHのスケジューリングされる周期(インターバル)に関する情報、PUSCHのスケジューリングされる周期(インターバル)に関する情報、SPSをリリースするための設定に関する情報、および/または、SPSにおけるHARQプロセスの番号を含む。SPSは、プライマリーセルおよび/またはプライマリーセカンダリーセルのみにサポートされる。
<本実施形態におけるHARQ>
本実施形態において、HARQは様々な特徴を有する。HARQはトランスポートブロックを送信および再送する。HARQにおいて、所定数のプロセス(HARQプロセス)が用いられ(設定され)、プロセスのそれぞれはストップアンドウェイト方式で独立に動作する。
下りリンクにおいて、HARQは非同期であり、適応的に動作する。すなわち、下りリンクにおいて、再送は常にPDCCHを通じてスケジューリングされる。下りリンク送信に対応する上りリンクHARQ-ACK(応答情報)はPUCCHまたはPUSCHで送信される。下りリンクにおいて、PDCCHは、そのHARQプロセスを示すHARQプロセス番号、および、その送信が初送か再送かを示す情報を通知する。
上りリンクにおいて、HARQは同期または非同期に動作する。上りリンク送信に対応する下りリンクHARQ-ACK(応答情報)はPHICHで送信される。上りリンクHARQにおいて、端末装置の動作は、その端末装置によって受信されるHARQフィードバックおよび/またはその端末装置によって受信されるPDCCHに基づいて決まる。例えば、PDCCHは受信されず、HARQフィードバックがACKである場合、端末装置は送信(再送)を行わず、HARQバッファ内のデータを保持する。その場合、PDCCHが再送を再開するために送信されるかもしれない。また、例えば、PDCCHは受信されず、HARQフィードバックがNACKである場合、端末装置は所定の上りリンクサブフレームで非適応的に再送を行う。また、例えば、PDCCHが受信された場合、HARQフィードバックの内容に関わらず、端末装置はそのPDCCHで通知される内容に基づいて、送信または再送を行う。
なお、上りリンクにおいて、所定の条件(設定)を満たした場合、HARQは非同期のみで動作するようにしてもよい。すなわち、下りリンクHARQ-ACKは送信されず、上りリンクにおける再送は常にPDCCHを通じてスケジューリングされてもよい。
HARQ-ACK報告において、HARQ-ACKは、ACK、NACK、またはDTXを示す。HARQ-ACKがACKである場合、そのHARQ-ACKに対応するトランスポートブロック(コードワード、チャネル)は正しく受信(デコード)できたことを示す。HARQ-ACKがNACKである場合、そのHARQ-ACKに対応するトランスポートブロック(コードワード、チャネル)は正しく受信(デコード)できなかったことを示す。HARQ-ACKがDTXである場合、そのHARQ-ACKに対応するトランスポートブロック(コードワード、チャネル)は存在しない(送信されていない)ことを示す。
下りリンクおよび上りリンクのそれぞれにおいて、所定数のHARQプロセスが設定(規定)される。例えば、FDDにおいて、サービングセル毎に最大8つのHARQプロセスが用いられる。また、例えば、TDDにおいて、HARQプロセスの最大数は、上りリンク/下りリンク設定によって決定される。HARQプロセスの最大数は、RTT(Round Trip Time)に基づいて決定されてもよい。例えば、RTTが8TTIである場合、HARQプロセスの最大数は8にすることができる。
本実施形態において、HARQ情報は、少なくともNDI(New Data Indicator)およびTBS(トランスポートブロックサイズ)で構成される。NDIは、そのHARQ情報に対応するトランスポートブロックが初送か再送かを示す情報である。TBSはトランスポートブロックのサイズである。トランスポートブロックは、トランスポートチャネル(トランスポートレイヤー)におけるデータのブロックであり、HARQを行う単位とすることができる。DL-SCH送信において、HARQ情報は、さらにHARQプロセスID(HARQプロセス番号)を含む。UL-SCH送信において、HARQ情報は、さらにトランスポートブロックに対する符号化後の情報ビットとパリティビットを指定するための情報であるRV(Redundancy Version)を含む。DL-SCHにおいて空間多重の場合、そのHARQ情報は、それぞれのトランスポートブロックに対してNDIおよびTBSのセットを含む。
<本実施形態におけるNRの下りリンクリソースエレメントマッピングの詳細>
以下では、NRにおいて、所定のリソースにおける下りリンクリソースエレメントマッピングの例について説明する。
ここで、所定のリソースは、NRにおけるリソースブロックとして、NR-RB(NRリソースブロック)とも呼称されてもよい。所定のリソースは、NR-PDSCHまたはNR-PDCCHのような所定のチャネルまたは所定の信号に関する割り当ての単位、所定のチャネルまたは所定の信号のリソースエレメントに対するマッピングの定義を行う単位、および/または、パラメータセットが設定される単位などに基づいて定義されうる。
図10は、本実施形態におけるNRの下りリンクリソースエレメントマッピングの一例を示す図である。図10は、パラメータセット0が用いられる場合に、所定のリソースにおけるリソースエレメントの集合を示す。図10に示される所定のリソースは、LTEにおける1つのリソースブロックペアと同じ時間長および周波数帯域幅から成るリソースである。
図10の例では、所定のリソースは、時間方向においてOFDMシンボル番号0~13で示される14個のOFDMシンボル、および、周波数方向においてサブキャリア番号0~11で示される12個のサブキャリアで構成される。システム帯域幅が複数の所定のリソースで構成される場合、サブキャリア番号はそのシステム帯域幅に渡って割り当てる。
C1~C4で示されるリソースエレメントは、アンテナポート15~22の伝送路状況測定用参照信号(CSI-RS)を示す。D1~D2で示されるリソースエレメントは、それぞれCDMグループ1~CDMグループ2のDL-DMRSを示す。
図11は、本実施形態におけるNRの下りリンクリソースエレメントマッピングの一例を示す図である。図11は、パラメータセット1が用いられる場合に、所定のリソースにおけるリソースエレメントの集合を示す。図11に示される所定のリソースは、LTEにおける1つのリソースブロックペアと同じ時間長および周波数帯域幅から成るリソースである。
図11の例では、所定のリソースは、時間方向においてOFDMシンボル番号0~6で示される7個のOFDMシンボル、および、周波数方向においてサブキャリア番号0~23で示される24個のサブキャリアで構成される。システム帯域幅が複数の所定のリソースで構成される場合、サブキャリア番号はそのシステム帯域幅に渡って割り当てる。
C1~C4で示されるリソースエレメントは、アンテナポート15~22の伝送路状況測定用参照信号(CSI-RS)を示す。D1~D2で示されるリソースエレメントは、それぞれCDMグループ1~CDMグループ2のDL-DMRSを示す。
図12は、本実施形態におけるNRの下りリンクリソースエレメントマッピングの一例を示す図である。図12は、パラメータセット1が用いられる場合に、所定のリソースにおけるリソースエレメントの集合を示す。図12に示される所定のリソースは、LTEにおける1つのリソースブロックペアと同じ時間長および周波数帯域幅から成るリソースである。
図12の例では、所定のリソースは、時間方向においてOFDMシンボル番号0~27で示される28個のOFDMシンボル、および、周波数方向においてサブキャリア番号0~6で示される6個のサブキャリアで構成される。システム帯域幅が複数の所定のリソースで構成される場合、サブキャリア番号はそのシステム帯域幅に渡って割り当てる。
C1~C4で示されるリソースエレメントは、アンテナポート15~22の伝送路状況測定用参照信号(CSI-RS)を示す。D1~D2で示されるリソースエレメントは、それぞれCDMグループ1~CDMグループ2のDL-DMRSを示す。
例えば、NRでは、LTEにおけるCRSに相当する参照信号は送信されないとしてもよい。
<本実施形態におけるNRのリソースエレメントマッピング方法の詳細>
既に説明したように、本実施形態において、NRでは、図10~13で示されるような送信信号に関するパラメータが異なる物理信号がFDMなどによって多重されうる。例えば、その多重は、所定のリソースを単位として行われる。また、その多重は、スケジューリングなどを行う基地局装置1が認識する場合でも、端末装置2は認識しなくてもよい。端末装置2は、端末装置2が受信または送信する物理信号のみを認識すればよく、端末装置2が受信または送信しない物理信号を認識しなくてもよい。
また、送信信号に関するパラメータは、リソースエレメントに対するマッピングにおいて定義、設定または規定されうる。NRにおいて、リソースエレメントマッピングは様々な方法を用いて行うことができる。なお、本実施形態において、NRのリソースエレメントマッピングの方法は下りリンクについて説明するが、上りリンクおよびサイドリンクにも同様に適用できる。
NRにおけるリソースエレメントマッピングに関する第1のマッピング方法は、所定のリソースに対して送信信号に関するパラメータ(物理パラメータ)を設定または規定する方法である。
第1のマッピング方法において、所定のリソースは、送信信号に関するパラメータが設定される。所定のリソースに対して設定される送信信号に関するパラメータは、所定のリソースにおけるサブキャリアのサブフレーム間隔、所定のリソースに含まれるサブキャリア数、所定のリソースに含まれるシンボル数、所定のリソースにおけるCP長タイプ、所定のリソースで用いられる多元接続方式、および/または、所定のリソースにおけるパラメータセットを含む。
例えば、第1のマッピング方法において、NRにおけるリソースグリッドは、所定のリソースで定義されうる。
図13は、本実施形態におけるNRのリソースエレメントマッピング方法の一例を示す図である。図13の例では、所定のシステム帯域幅および所定の時間領域(サブフレーム)において、1つ以上の所定のリソースがFDMされうる。
所定のリソースにおける帯域幅および/または所定のリソースにおける時間長は、予め規定されうる。例えば、所定のリソースにおける帯域幅は180kHzに対応し、所定のリソースにおける時間長は1ミリ秒に対応する。すなわち、所定のリソースは、LTEにおけるリソースブロックペアと同一の帯域幅および時間長に対応する。
また、所定のリソースにおける帯域幅および/または所定のリソースにおける時間長は、RRCシグナリングにより設定されうる。例えば、所定のリソースにおける帯域幅および/または所定のリソースにおける時間長は、報知チャネルなどを通じて送信されるMIBまたはSIBに含まれる情報に基づいて基地局装置1(セル)固有に設定される。また、例えば、所定のリソースにおける帯域幅および/または所定のリソースにおける時間長は、端末装置2に固有の制御情報に基づいて端末装置2固有に設定される。
第1のマッピング方法において、所定のリソースに対して設定される送信信号に関するパラメータは、RRCシグナリングにより設定されうる。例えば、そのパラメータは、報知チャネルなどを通じて送信されるMIBまたはSIBに含まれる情報に基づいて基地局装置1(セル)固有に設定される。また、例えば、そのパラメータは、端末装置2に固有の制御情報に基づいて端末装置2固有に設定される。
第1のマッピング方法において、所定のリソースに対して設定される送信信号に関するパラメータの設定は、以下の少なくとも1つの方法または定義に基づいて行われる。
(1)送信信号に関するパラメータは、所定のリソースのそれぞれに対して個別に設定される。
(2)送信信号に関するパラメータは、所定のリソースのグループそれぞれに対して個別に設定される。所定のリソースのグループは、周波数方向に連続する所定のリソースの集合である。グループに含まれる所定のリソースの数は、予め規定されてもよいし、RRCシグナリングを通じて設定されてもよい。
(3)あるパラメータが設定される所定のリソースは、スタートとなる所定のリソース、および/または、エンドとなる所定のリソースを示す情報に基づいて決まる、連続する所定のリソースである。その情報は、RRCシグナリングなどを通じて設定されうる。
(4)あるパラメータが設定される所定のリソースは、ビットマップの情報によって示される。例えば、ビットマップの情報に含まれるビットのそれぞれは、所定のリソースまたは所定のリソースのグループに対応する。ビットマップの情報に含まれるあるビットが1である場合、そのビットに対応する所定のリソースまたは所定のリソースのグループは、そのパラメータが設定される。そのビットマップの情報は、RRCシグナリングなどを通じて設定されうる。
(5)所定の信号または所定のチャネルがマッピング(送信)される所定のリソースは、予め規定されるパラメータが用いられる。例えば、同期信号または報知チャネルが送信される所定のリソースは、予め規定されるパラメータが用いられる。例えば、予め規定されるパラメータは、LTEにおけるリソースブロックペアと同一の帯域幅および時間長に対応する。
(6)所定の信号または所定のチャネルがマッピング(送信)される所定のリソースを含む所定の時間領域(すなわち、その所定の時間領域に含まれる全ての所定のリソース)は、予め規定されるパラメータが用いられる。例えば、同期信号または報知チャネルが送信される所定のリソースを含むサブフレームは、予め規定されるパラメータが用いられる。例えば、予め規定されるパラメータは、LTEにおけるリソースブロックペアと同一の帯域幅および時間長に対応する。
(7)パラメータが設定されない所定のリソースは、予め規定されるパラメータが用いられる。例えば、パラメータが設定されない所定のリソースでは、同期信号または報知チャネルが送信される所定のリソースと同じパラメータが用いられる。
(8)1つのセル(コンポーネントキャリア)において、設定されうるパラメータは、制限される。例えば、1つのセルにおいて、設定されうるサブキャリア間隔は、所定のリソースにおける帯域幅がそのサブキャリア間隔の整数倍になる値である。具体的には、所定のリソースにおける帯域幅が180kHzである場合、設定されうるサブキャリア間隔は、3.75kHz、7.5kHz、15kHz、30kHz、および60kHzを含む。
NRにおけるリソースエレメントマッピングに関する第2のマッピング方法は、リソースエレメントを定義するために用いられるサブリソースエレメントに基づく方法である。
第2のマッピング方法において、サブリソースエレメントは、送信信号に関するパラメータに対応するリソースエレメントを規定、設定または定義するために用いられる。第2のマッピング方法において、リソースエレメントおよびサブリソースエレメントは、それぞれ第1の要素および第2の要素とも呼称される。
換言すると、第2のマッピング方法において、送信信号に関するパラメータ(物理パラメータ)は、サブリソースエレメントに関する設定に基づいて、設定される。
例えば、所定のリソースにおいて、1つのリソースエレメントを構成するサブリソースエレメントの数またはパターンが設定される。また、所定のリソースは、本実施形態で説明される所定のリソースと同じとすることができる。
例えば、第2のマッピング方法において、NRにおけるリソースグリッドは、所定数のサブリソースエレメントで定義されうる。
図14は、本実施形態におけるNRのリソースエレメントマッピング方法の一例を示す図である。図14の例では、所定のリソースのそれぞれは、時間方向に28個のサブリソースエレメントと、周波数方向に24個のサブリソースエレメントとで構成される。すなわち、所定のリソースにおける周波数帯域幅が180kHzである場合、サブリソースエレメントにおける周波数帯域幅は7.5kHzとなる。
サブリソースエレメントにおける帯域幅および/またはサブリソースエレメントにおける時間長は、予め規定されうる。また、例えば、サブリソースエレメントは、LTEにおけるサブリソースエレメントと同一の帯域幅(15kHz)および時間長に対応する。
また、サブリソースエレメントにおける帯域幅および/またはサブリソースエレメントにおける時間長は、RRCシグナリングにより設定されうる。例えば、サブリソースエレメントにおける帯域幅および/またはサブリソースエレメントにおける時間長は、報知チャネルなどを通じて送信されるMIBまたはSIBに含まれる情報に基づいて基地局装置1(セル)固有に設定される。また、例えば、サブリソースエレメントにおける帯域幅および/またはサブリソースエレメントにおける時間長は、端末装置2に固有の制御情報に基づいて端末装置2固有に設定される。また、サブリソースエレメントにおける帯域幅および/またはサブリソースエレメントにおける時間長が設定されない場合、そのサブリソースエレメントは、LTEにおけるサブリソースエレメントと同一の帯域幅(15kHz)および時間長に対応することができる。
第2のマッピング方法において、1つのリソースエレメントを構成するサブリソースエレメントに関する設定は、以下の少なくとも1つの方法または定義に基づいて行われる。
(1)その設定は、所定のリソースのそれぞれに対して個別に行われる。
(2)その設定は、所定のリソースのグループそれぞれに対して個別に行われる。所定のリソースのグループは、周波数方向に連続する所定のリソースの集合である。グループに含まれる所定のリソースの数は、予め規定されてもよいし、RRCシグナリングを通じて設定されてもよい。
(3)その設定が行われる所定のリソースは、スタートとなる所定のリソース、および/または、エンドとなる所定のリソースを示す情報に基づいて決まる、連続する所定のリソースである。その情報は、RRCシグナリングなどを通じて設定されうる。
(4)その設定が行われる所定のリソースは、ビットマップの情報によって示される。例えば、ビットマップの情報に含まれるビットのそれぞれは、所定のリソースまたは所定のリソースのグループに対応する。ビットマップの情報に含まれるあるビットが1である場合、そのビットに対応する所定のリソースまたは所定のリソースのグループは、その設定が行われる。そのビットマップの情報は、RRCシグナリングなどを通じて設定されうる。
(5)所定の信号または所定のチャネルがマッピング(送信)される所定のリソースでは、1つのリソースエレメントを構成するサブリソースエレメントは、予め規定される。例えば、同期信号または報知チャネルが送信される所定のリソースでは、1つのリソースエレメントを構成するサブリソースエレメントは、予め規定される。例えば、予め規定されるサブリソースエレメントは、LTEにおけるリソースエレメントと同一の帯域幅および時間長に対応する。
(6)所定の信号または所定のチャネルがマッピング(送信)される所定のリソースを含む所定の時間領域(すなわち、その所定の時間領域に含まれる全ての所定のリソース)では、1つのリソースエレメントを構成するサブリソースエレメントは、予め規定される。例えば、同期信号または報知チャネルが送信される所定のリソースを含む所定の時間領域では、1つのリソースエレメントを構成するサブリソースエレメントは、予め規定される。例えば、予め規定されるサブリソースエレメントは、LTEにおけるリソースエレメントと同一の帯域幅および時間長に対応する。
(7)その設定が行われない所定のリソースでは、1つのリソースエレメントを構成するサブリソースエレメントは、予め規定される。例えば、その設定が行われない所定のリソースでは、1つのリソースエレメントを構成するサブリソースエレメントは、同期信号または報知チャネルが送信される所定のリソースで用いられるサブリソースエレメントと同一である。
(8)その設定は、1つのリソースエレメントを構成するサブリソースエレメントの数である。1つのリソースエレメントを構成するサブリソースエレメントにおける周波数方向および/または時間方向の数である。例えば、サブリソースエレメントは、図14に示すような設定を考える。所定のリソースにおいて、1つのリソースエレメントが周波数方向において2個のサブリソースエレメントおよび時間方向において2個のサブリソースエレメントで構成される場合、その所定のリソースは12個のサブキャリアおよび14個のシンボルで構成される。この構成(設定)は、LTEにおけるリソースブロックペアに構成されるサブキャリアおよびシンボルの数と同じであり、eMBBのユースケースに好適である。また、所定のリソースにおいて、1つのリソースエレメントが周波数方向において4個のサブリソースエレメントおよび時間方向において1個のサブリソースエレメントで構成される場合、その所定のリソースは6個のサブキャリアおよび28個のシンボルで構成される。この構成(設定)は、URLLCのユースケースに好適である。また、所定のリソースにおいて、1つのリソースエレメントが周波数方向において1個のサブリソースエレメントおよび時間方向において4個のサブリソースエレメントで構成される場合、その所定のリソースは24個のサブキャリアおよび7個のシンボルで構成される。この構成(設定)は、mMTCのユースケースに好適である。
(9)前記(8)で説明された1つのリソースエレメントを構成するサブリソースエレメントの数が予めパターン化され、そのパターンを示す情報(インデックス)がその設定に用いられる。そのパターンは、CP長タイプ、サブリソースエレメントの定義、多元接続方式、および/または、パラメータセットを含むことができる。
(10)1つのセル(コンポーネントキャリア)または1つの時間領域(サブフレーム)において、1つのリソースエレメントを構成するサブリソースエレメントの数は、一定である。例えば、1つのセルまたは1つの時間領域において、前記(8)で説明された例のように、1つのリソースエレメントを構成するサブリソースエレメントの数は、全て4である。すなわち、その例では、1つのリソースエレメントを構成するサブリソースエレメントの数が4となりうる帯域幅と時間長のリソースエレメントが構成できる。
なお、本実施形態の説明では、NRにおいて、所定のリソースが、下りリンク、上りリンクまたはサイドリンクにおけるリソースエレメントマッピングのために用いられることを説明した。しかしながら、それに限定されるものではない。所定のリソースは、下りリンク、上りリンクおよびサイドリンクのうち、2つ以上のリンクにおけるリソースエレメントマッピングのために用いられてもよい。
例えば、所定のリソースは、下りリンクおよび上りリンクにおけるリソースエレメントマッピングのために用いられる。ある所定のリソースにおいて、前方の所定数のシンボルは、下りリンクにおけるリソースエレメントマッピングのために用いられる。その所定のリソースにおいて、後方の所定数のシンボルは、上りリンクにおけるリソースエレメントマッピングのために用いられる。その所定のリソースにおいて、前方の所定数のシンボルと後方の所定数のシンボルとの間の所定数のシンボルは、ガードピリオドのために用いられてもよい。その所定のリソースにおいて、前方の所定数のシンボルと後方の所定数のシンボルは、それぞれ同一の物理パラメータが用いられてもよいし、それぞれ独立に設定される物理パラメータが用いられてもよい。
なお、本実施形態の説明では、NRにおいて、下りリンク、上りリンクおよびサイドリンクが独立に定義されるリンクとして説明されたが、それに限定されるものではない。下りリンク、上りリンクおよびサイドリンクは、共通のリンクとして定義されてもよい。例えば、本実施形態で説明されたチャネル、信号、処理および/またはリソースなどは、下りリンク、上りリンクおよびサイドリンクに関わらず、定義される。基地局装置1または端末装置2は、予め規定される設定、RRCシグナリングによる設定および/または物理レイヤーにおける制御情報に基づいて、チャネル、信号、処理および/またはリソースなどが決まる。例えば、端末装置2は、基地局装置1からの設定に基づいて、送信および受信されうるチャネルおよび信号が決まる。
<本実施形態におけるNRのフレーム構成>
NRでは、物理チャネルおよび/または物理信号を自己完結型送信(self-contained transmission)によって送信することができる。図15に、本実施形態における自己完結型送信のフレーム構成の一例を示す。自己完結型送信では、1つの送受信は、先頭から連続する下りリンク送信、GP(Guard Period)、および連続する下りリンク送信の順番で構成される。連続する下りリンク送信には、少なくとも1つの下りリンク制御情報およびDMRSが含まれる。その下りリンク制御情報は、その連続する下りリンク送信に含まれる下りリンク物理チャネルの受信、またはその連続する上りリンク送信に含まれる上りリンク物理チャネルの送信を指示する。その下りリンク制御情報が下りリンク物理チャネルの受信を指示した場合、端末装置2は、その下りリンク制御情報に基づいてその下りリンク物理チャネルの受信を試みる。そして、端末装置2は、その下りリンク物理チャネルの受信成否(デコード成否)を、GP後に割り当てられる上りリンク送信に含まれる上りリンク制御チャネルによって送信する。一方で、その下りリンク制御情報が上りリンク物理チャネルの送信を指示した場合、その下りリンク制御情報に基づいて送信される上りリンク物理チャネルを上りリンク送信に含めて送信を行う。このように、下りリンク制御情報によって、上りリンクデータの送信と下りリンクデータの送信を柔軟に切り替えることで、上りリンクと下りリンクのトラヒック比率の増減に即座に対応することができる。また、下りリンクの受信成否を直後の上りリンク送信で通知することで、下りリンクの低遅延通信を実現することができる。
単位スロット時間は、下りリンク送信、GP、上りリンク送信、またはサイドリンク送信を定義する最小の時間単位である。単位スロット時間は、下りリンク送信、GP、上りリンク送信、またはサイドリンク送信のいずれかのために予約される。単位スロット時間の中に、所定の下りリンク送信と所定の上りリンク送信の両方が含まれうる。例えば、ある単位スロット時間は、ある下りリンク送信と、その下りリンク送信に対するHARQ-ACKのための上りリンク送信とを同時に含む。単位スロット時間は、その単位スロット時間に含まれるDMRSと関連付けられるチャネルの最小送信時間としてもよい。1つの単位スロット時間は、例えば、NRのサンプリング間隔(Ts)またはシンボル長の整数倍で定義される。
単位フレーム時間は、スケジューリングで指定される最小時間であってもよい。単位フレーム時間は、トランスポートブロックが送信される最小単位であってもよい。単位スロット時間は、その単位スロット時間に含まれるDMRSと関連付けられるチャネルの最大送信時間としてもよい。単位フレーム時間は、端末装置2において上りリンク送信電力を決定する単位時間であってもよい。単位フレーム時間は、サブフレームと称されてもよい。単位フレーム時間には、下りリンク送信のみ、上りリンク送信のみ、上りリンク送信と下りリンク送信の組み合わせの3種類のタイプが存在する。1つの単位フレーム時間は、例えば、NRのサンプリング間隔(Ts)、シンボル長、または単位スロット時間の整数倍で定義される。
送受信時間は、1つの送受信の時間である。1つの送受信と他の送受信との間は、どの物理チャネルおよび物理信号も送信されない時間(ギャップ)で占められる。端末装置2は、異なる送受信間でCSI測定を平均してはいけない。送受信時間は、TTIと称されてもよい。1つの送受信時間は、例えば、NRのサンプリング間隔(Ts)、シンボル長、単位スロット時間、または単位フレーム時間の整数倍で定義される。
また、図15の第2の例および第3の例のように、連続する下りリンク送信および連続する上りリンク送信は、1つの制御チャネルにより、まとめてスケジューリングされてもよいし、それぞれの単位フレーム時間内で送信される制御チャネルにより、個別にスケジューリングされてもよい。また、いずれの場合においても、制御チャネルは、下りリンク送信の時間長、上りリンク送信の時間長、および/またはGPの時間長を含めることができる。また、制御チャネルは、ある下りリンク送信に対するHARQ-ACKのための上りリンク送信のタイミングに関する情報を含めることができる。
<<2.ドローン>>
<2.1.ユースケース>
ドローンのユースケースは多様に考えられる。以下、代表的なユースケースの一例を説明する。
・エンタテイメント(Entertainment)
例えば、ドローンにカメラを装着して、バードビューの写真又は動画などを撮影するユースケースが考えられる。近年では、スポーツの様子などをダイナミックに撮影するなど、これまで地上からは撮影が困難であった視点からの撮影を容易に行うことが可能となる。
・運輸(Transportation)
例えば、ドローンに荷物を運ばせるユースケースが考えられる。すでに、サービス導入を始めようとする動きもある。
・治安(Public safety)
例えば、監視又は犯人追跡などのユースケースが考えられる。すでに、サービス導入を始めようとする動きもある。
・情報(Informative)
例えば、ドローンを用いて情報提供するユースケースが考えられる。すでに、基地局として動作するドローンであるドローン基地局に関する研究開発が行われている。ドローン基地局によれば、上空から無線サービスを提供することで、インターネット回線を敷設することが困難なエリアに無線サービスを提供することが可能となる。
・センシング(Sensing)
例えば、ドローンを用いた測量のユースケースが考えられる。これまで人が行ってきた測量を、ドローンにより一括して行うことも可能となるので、効率的な測量が可能になる。
・労働(Worker)
例えば、ドローンを労働力として用いるユースケースが考えられる。例えば、農業に関して、農薬散布又は授粉用のドローンなど、さまざまな領域で活用が見込まれている。
・メンテナンス(Maintenance)
例えば、ドローンを用いてメンテナンスを行うユースケースが考えられる。ドローンを用いることで、橋の裏などの、人では確認が難しい場所のメンテナンスが可能になる。
<2.2.無線通信>
上述したように、ドローンは、様々なユースケースでの活用が検討されている。これらのユースケースを実現するためには、ドローンには様々な技術的要求が課される。その中でも特に重要な要求として、通信が挙げられる。ドローンは3次元空間を自由に飛び回るため、有線通信の利用は現実的ではなく、無線通信の利用が想定される。なお、無線通信の用途としては、ドローンの制御(即ち、遠隔操作)、及びドローンからの情報提供等が考えられる。
ドローンによる通信は、D2X(Drone to X)とも称される場合がある。D2X通信におけるドローンの通信相手は、例えば他のドローン、セルラー基地局、Wi-Fi(登録商標)アクセスポイント、TV(television)塔、衛星、RSU(Road side Unit)、及び人(又は人が持つデバイス)等が考えられる。ドローンは、人が持つデバイスとのD2D(Device to device)通信を介して遠隔操作され得る。また、ドローンは、セルラーシステム又はWi-Fiに接続して通信することも可能である。ドローンは、よりカバレッジを広くするために、TVなどのブロードキャストシステムを用いるネットワーク又は衛星通信を用いるネットワークに接続して通信してもよい。このように、ドローンには、様々な通信リンクが形成されることが考えられる。
<2.3.技術的課題>
一般的に、セルラー通信において、基地局装置と端末装置とが効率的に無線通信を行うためには、基地局装置が効率的に無線リソースを制御することが望ましい。そのために、既存のLTE等においては、端末装置は、基地局装置との伝送路の測定情報、及び/又は端末装置の状態情報を、基地局装置に報告(即ち、フィードバック)する。そして、基地局装置は、端末装置から報告される情報に基づいて無線リソースを制御する。
しかしながら、これまでのセルラー通信において行われてきた上記のフィードバック制御の仕組みは、端末装置が地上又は建物内で利用されること、即ち端末装置が2次元空間で移動することを前提として設計されていた。換言すると、これまでのセルラー通信において行われてきた上記のフィードバック制御の仕組みは、3次元空間を自由に飛び回るドローンに適するものであるとは言えなかった。以下、図16を参照してこの点を詳しく説明する。
図16は、本実施形態の技術的課題を説明するための図である。図16に示すように、セルラー通信における基地局装置は、一般的に、アンテナから送出される電波を下方に向けるように設計される。そのため、低高度を飛行するドローンは無線通信可能であるが、高高度を飛行するドローンが無線通信することは困難になり得る。そのため、ドローンが既存の無線通信システムでセルラー通信を行う場合、効率的なデータ伝送が困難になるだけでなく、ドローンのユースケースが制限されることになる。
このように、これまでのセルラー通信における仕組みが、ドローンには適さない場合が有り得る。そのため、セルラー通信の仕組みが、ドローンのために拡張されることが望ましい。そこで、本実施形態では、端末装置としてのドローンがセルラー通信を行うための、拡張された測定及び報告の仕組みを提供する。
<<3.構成例>>
<3.1.システムの構成例>
以下、図17を参照して、本実施形態に係るシステムの構成の一例を説明する。
図17は、本実施形態に係るシステムの構成の一例を説明するための図である。図17に示すように、本実施形態に係るシステムは、基地局装置1及び端末装置2を含む。図17に示したように、本実施形態に係る端末装置2は、ドローンである。以下では、端末装置2をドローン2とも称する。基地局装置1及びドローン2は、上述したように、LTE及びNRを含むセルラー通信をサポートする。基地局装置1A、1B及び1Cは、それぞれセル10A、10B及び10Cを運用し、セル内のドローン2に無線通信サービスを提供する。ドローン2は、基地局装置1と接続して無線通信を行う。ドローン2は、セルラー通信を行うことにより、例えばセルラー通信が享受する広いカバレッジにおけるリアルタイムなデータの送受信を行うこと、及び自律的な飛行のための制御を受けることが可能となる。
<3.2.各装置の詳細な構成例>
続いて、図18及び図19を参照して、本実施形態に係る基地局装置1及び端末装置2のより詳細な構成例を説明する。
図18は、本実施形態に係る基地局装置1の上位層処理部101の論理的な構成の一例を示すブロック図である。図18に示すように、本実施形態に係る基地局装置1の上位層処理部101は、参照信号送信部1011及び通信制御部1013を含む。参照信号送信部1011は、下りリンク参照信号生成部1079を制御してドローン2への参照信号を送信する機能を有する。通信制御部1013は、ドローン2との通信を制御する機能を有する。参照信号送信部1011及び通信制御部1013の機能については、後に詳しく説明する。
図19は、本実施形態に係るドローン2の論理的な構成の一例を示すブロック図である。図19に示すように、本実施形態に係るドローン2は、図9に示した構成に加えて、飛行装置210を含む。飛行装置210は、飛行能力を有する、即ち飛行可能な装置である。飛行装置210は、駆動部211、バッテリ部212、センサ部213、及び飛行制御部214を含む。
駆動部211は、ドローン2を飛行させるための駆動を行う。駆動部211は、例えばモーター、プロペラ、モーターの動力をプロペラに伝えるための伝達機構等を含む。バッテリ部212は、飛行装置210の各構成要素に電力を供給する。センサ部213は、様々な情報をセンシングする。例えば、センサ部213は、ジャイロセンサ、加速度センサ、位置情報取得部(例えば、GNSS(Global Navigation Satellite System)信号測位部)、高度センサ、バッテリ残量センサ、モーターの回転センサ等を含む。飛行制御部214は、ドローン2を飛行させるための制御を行う。飛行制御部214は、例えば、センサ部213から得たセンサ情報に基づいて駆動部211を制御して、ドローン2を飛行させる。
上位層処理部201は、飛行装置210に接続される。そして、上位層処理部201は、取得部2011及び測定報告制御部2013を含む。取得部2011は、飛行装置210から飛行に関する情報を取得する機能を有する。測定報告制御部2013は、取得部2011により取得された飛行に関する情報に基づいて、測定報告処理を制御する機能を有する。取得部2011及び測定報告制御部2013の機能については、後に詳しく説明する。
なお、上位層処理部101及び上位層処理部201の各々は、プロセッサ、回路又は集積回路等として実現されてもよい。
<<4.技術的特徴>>
<4.1.概要>
図20は、本実施形態に係る技術的特徴の概要を説明するための図である。図20に示すように、基地局装置1は、高高度を飛行するドローン2Aに対して、個別に形成したビーム(即ち、ビームフォーミングした電波)を用いて無線通信を行ってもよい。このようにして、図16に示した技術的課題が解決され得る。他方、基地局装置1は、低高度を飛行するドローン2Bに対しては、既存の下向きの電波を用いて無線通信を行ってもよい。このように、ドローン2に適する無線通信方法は、ドローン2が飛行する高度に応じて異なり得る。
ドローン2に適する無線通信方法は、ドローン2が飛行する高度以外の事情に応じても異なり得る。例えば、ドローン2に適する無線通信方法は、高度の他、バッテリー状態、位置、飛行状態等の、ドローン2の飛行に関する情報(以下、飛行関連情報とも称する)に応じて異なり得る。
つまり、ドローン2の飛行関連情報に応じた無線通信が行われることが望ましい。そこで、本実施形態では、飛行関連情報に応じた無線通信を行うための、飛行関連情報に応じた測定及び報告の仕組みを提供する。
次に、ドローン2の高信頼性通信の必要性について説明する。
例えば、ドローン2が遠隔制御により飛行する場合、又は自律的に飛行する場合であっても緊急事態に即座に対応(即ち、遠隔制御)するために、ドローン2は常に無線通信が可能であることが好ましい。しかし、ドローン2が例えば妨害電波(Jamming)による攻撃を受けた場合、遠隔制御が困難になり得る。そのため、飛行するドローン2に対する無線通信には高信頼性が求められる。
図21は、本実施形態に係るドローン2に対する高信頼性を有する無線通信の一例を示す図である。図21に示すように、ドローン2は、複数の基地局装置1(即ち、基地局装置1A~1C)と接続してもよい。ドローン2は、基地局装置1A~1Cと無線通信することが可能である。ドローン2は、例えば基地局装置1Aからの電波に障害が生じた場合でも、基地局装置1B又は1Cとの無線通信を継続することができる。
基地局装置1A~1Cは、同一の周波数帯(例えば、コンポーネントキャリア)を用いてもよいし、それぞれ異なる周波数帯を用いてもよい。基地局装置1A~1Cが同一の周波数帯を用いる場合、ドローン2は基地局装置1A~1Cから同一の信号を受信するCoMP(Coordinated Multi-Point)通信が可能である。なお、CoMP通信の際、ドローン2は、基地局装置1A~1Cから同一の信号が送信されているか否かを認識しなくてもよい。また、基地局装置1A~1Cがそれぞれ異なる周波数帯を用いる場合、ドローン2は、複数の周波数帯を設定してデータ伝送を行うキャリアアグリゲーション又はデュアルコネクティビティによる通信が可能である。なお、キャリアアグリゲーション又はデュアルコネクティビティによる通信の際、ドローン2は、設定される複数の周波数帯がそれぞれ異なる基地局装置1に対応することを認識しなくてもよい。
また、基地局装置1が所定の周波数帯において妨害電波又は障害を検出した場合、ドローン2に対して所定の制御情報を個別に通知又は全体的に報知してもよい。所定の制御情報は、妨害電波若しくは障害が検出された周波数帯に関する情報、妨害電波若しくは障害を検出していない周波数帯に関する情報、妨害電波の送出元の位置に関する情報、及び/又は、妨害電波若しくは障害が検出された周波数帯の接続若しくはハンドオーバに関する情報を含み得る。なお、基地局装置1は、ドローン2から報告される測定情報に基づいて、所定の周波数帯における妨害電波又は障害を検出してもよい。
このような高信頼性通信においても、ドローン2はそれぞれの基地局装置1と接続していることが重要である。従って、高信頼性通信に関しても、ドローン2の飛行関連情報に応じた無線通信が行われることが望ましく、飛行関連情報に応じた測定及び報告が行われることが望ましい。
<4.2.飛行関連情報>
以下、ドローン2の飛行に関する情報である飛行関連情報について具体手的に説明する。
飛行関連情報は、ドローン2が飛行するに際して測定、検知、検出、推定又は認識される情報を含む。例えば、飛行関連情報は、ドローン2の飛行に関する高度情報、飛行に関するバッテリ情報、飛行に関する位置情報、及び/又は飛行に関する状態情報等を含み得る。飛行関連情報は、複数の飛行関連情報を組み合わせた情報を含んでいてもよい。
飛行に関する高度情報は、ドローン2が現在飛行している高度の情報、ドローン2が飛行可能な高度(即ち、最高高度、及び最低高度)の情報、及びドローン2がこれから飛行しようとしている設定高度の情報などを含み得る。例えば、基地局装置1は、ドローン2の高度情報に応じてビームを形成すべきか否かを判定し得る。
飛行に関するバッテリ情報は、ドローン2の現在のバッテリ残量(即ち、バッテリ部212が有する電力の残量)の情報、ドローン2の飛行可能時間の情報、バッテリ部212の容量の情報、及びドローン2の消費電力の情報などを含み得る。また、ドローンのバッテリ情報は、容量及び電力量などの絶対的な値、バッテリ容量に対する残量などの相対的な値、及びパーセンテージ又は所定の演算により求められたレベルなどに基づく情報を含み得る。例えば、ドローン2は、バッテリ残量が少ない場合にバッテリの節約のため測定情報の報告頻度を下げたり、逆にバッテリ残量が少ない場合に危険防止のため測定情報の報告頻度を上げたりし得る。
飛行に関する位置情報は、緯度及び経度の情報、所定の基地局装置1又は所定の基準点などの地点からの相対的な位置を示す情報、及び所定のエリア内か否かを示す情報などを含み得る。例えば、ドローン2は、飛行禁止区域の近くを飛行する場合に測定情報の報告頻度を上げ得る。
飛行に関する状態情報(以下、飛行状態情報とも称する)は、ドローン2が飛行中であるか停止中であるかを示す情報、ドローン2が手動操縦による飛行か自動操縦による飛行(自律的な飛行)かを示す情報、ドローン2のプロペラが回転しているか否かを示す情報、ドローン2が地面などに接地しているか否かを示す情報などを含み得る。例えば、ドローン2は、例えば飛行中に測定情報の報告頻度を上げ、停止中は測定情報の報告頻度を下げ得る。
また、飛行関連情報は、高度情報等の各々の情報に対する、ドローン2又は環境に依存する精度又は確からしさの情報を含み得る。例えば、ドローン2に依存する精度又は確からしさの情報は、ドローン2が具備するセンサ部213の精度に基づく情報を含む。環境に依存する精度又は確からしさの情報は、天候、気温、風速又は気圧に基づく情報を含む。
<4.3.第1の実施形態>
本実施形態は、飛行関連情報に基づいて測定情報の報告を行うか否かが制御される形態である。即ち、ドローン2は、飛行関連情報に基づいて測定処理及び/又は報告処理を開始(即ち、トリガ)する。具体的には、ドローン2は、飛行関連情報に基づくトリガによって、所定の測定を行って測定情報を生成して、及び/又は生成した測定情報を基地局装置1へ報告(又は、通知、送信)する。
(1)測定報告処理
ドローン2(例えば、取得部2011)は、飛行装置210から飛行関連情報を取得する。また、ドローン2(例えば、測定報告制御部2013)は、取得された飛行関連情報に基づいて、基地局装置1から送信された参照信号に対する測定報告処理を制御する。具体的には、ドローン2は、飛行関連情報に基づいて、参照信号に対する測定情報を取得する測定処理、及び取得した測定情報を基地局装置1に報告する報告処理を制御する。なお、ドローン2から基地局装置1へ送信される、測定情報を含むメッセージは、メジャメントレポートメッセージとも称される。
他方、基地局装置1(例えば、参照信号送信部1011)は、参照信号を送信する。参照信号は、図20を参照して上記説明したように、下向きの電波を用いて送信されてもよいし、無線通信相手のドローン2を対象として個別に形成されたビームを用いて送信されてもよい。なお、ビームを用いた参照信号は、ドローン2の移動に応じて追従して送信されてもよいし、全方向に網羅的に送信されてもよい。また、基地局装置1(例えば、通信制御部1013)は、測定報告処理に関する設定情報を生成してドローン2に通知する。そして、基地局装置1(例えば、通信制御部1013)は、飛行関連情報を取得して取得した飛行関連情報に基づいて参照信号に対する測定報告処理を行うドローン2から報告された測定情報に基づく処理を制御する。なお、制御対象の測定情報に基づく処理とは、例えばドローン2との通信に用いる無線リソースの制御、チャネルの選択、符号化率の設定等を含む。
(2)測定情報
以下、ドローン2による測定報告処理において報告される、参照信号に対する測定情報に含まれ得る情報の具体例を説明する。
測定情報は、無線リソース管理のための情報を含み得る。無線リソース管理のための情報は、例えばLTEにおけるRRM(Radio Resource Management)情報を含み得る。例えば、RRM情報は、RSRP(Reference Signal Received Power)、RSSI(Received Signal Strength Indicator)、RSRQ(Reference Signal Received Quality)、SNR(Signal to Noise power Ratio)、及び/又はSINR(Signal to Interference and Noise power Ratio)などを含み得る。
RSRPは、測定対象の所定の周波数帯域幅における所定のリソースを用いて送信される参照信号の、当該リソースにおける受信電力の平均値として定義される。例えば、RSRPは、参照信号の送信元の基地局装置1から送信される信号の受信電力を測定するために用いられる。
RSSIは、所定の領域の全てのリソースにおける全ての受信電力として定義される。RSSIは、測定対象のリソースに含まれる全ての信号に対する受信電力であり、サービングセル(即ち、接続している基地局装置1)からの信号、非サービングセル(即ち、接続していない基地局装置1)からの信号、隣接チャネル干渉、及び熱雑音などを含む。
RSRQは、上述したRSRPに基づく値と上述したRSSIに基づく値との比として定義される。RSRQは、参照信号の送信元の基地局装置1から送信される信号の品質を測定するために用いられる。
SNRは、基地局装置1から送信される信号の受信電力と、雑音電力との比で定義される。
SINRは、基地局装置1から送信される信号の受信電力と、干渉電力及び雑音電力との比で定義される。
また、測定情報は、チャネル状態情報を含み得る。チャネル状態情報は、例えばLTEにおけるCSI(Channel State Information)情報を含み得る。例えば、CSI情報は、CQI(Channel quality indicator)、PMI(Precoding matrix indicator)、PTI(Precoding type indicator)、RI(Rank indicator)、及び/又はCRI(CSI-RS resource indicator)などを含み得る。
CSIは、所定の参照信号に基づいて生成される。例えば、ドローン2は、基地局装置1から設定又は通知される参照信号を用いて伝送路状態を測定し、測定した伝送路状態に基づいてCSIを生成する。CSIを生成するための参照信号は、セル固有に送信される参照信号であるCRS(Common Reference Signal)、CSIを測定するために端末装置固有に設定されるCSI-RS(Channel State Information - Reference Signal)などを含む。さらに、CSIの生成において、干渉電力及び雑音電力を測定するためのリソースであるCSI-IM(Channel State Information - Interference Measurement)がさらに設定され、用いられてもよい。
また、CSIは複数のプロセスが同時に設定され得る。CSIに関するプロセスは、CSIプロセスとも称される。例えば、CSIプロセスのそれぞれは、異なる基地局装置1に対するCSI、異なるビームに対するCSIに対応することができる。
RIは、送信レイヤーの数(例えば、ランク数、又は空間多重数)を示す。
PMIは、予め規定されたプレコーディング行列を示す情報である。PMIは、1つの情報または2つの情報により、1つのプレコーディング行列を示す。2つの情報を用いる場合のPMIは、第1のPMIと第2のPMIとも称される。
CQIは、予め規定された変調方式と符号化率との組み合わせを示す情報である。ドローン2は、トランスポートブロック(例えば、コードワード)毎に、所定の受信品質を満たすCQIを報告する。
CRIは、1つのCSIプロセスにおいてCSI-RSリソースが2つ以上設定された場合に、それらのCSI-RSリソースから選択される1つのCSI-RSリソースを示す情報(例えば、シングルインスタンス)である。ドローン2は、基地局装置1に推奨するCSI-RSリソースを示す情報を報告する。
なお、測定情報は、上記以外にも多様な情報を含み得る。例えば、測定情報は、参照信号に対応付けられたセルIDを含み得る。
(3)トリガ
ドローン2(例えば、測定報告制御部2013)は、多様なトリガに基づいて測定情報を報告し得る。例えば、ドローン2は、所定の条件が満たされるか否かに基づいて、基地局装置1に測定情報を報告する。このことは、ドローン2が所定の条件が満たされるか否かに基づいて測定処理及び/又は報告処理を行うか否かを切り替える、とも捉えることができる。具体的には、ドローン2は、所定の情報に基づく値と閾値との比較結果に基づいて、基地局装置1に測定情報を報告するか否かを制御する。この閾値を、以下ではトリガ閾値とも称する。以下、トリガに関する具体例を説明する。
・第1の例
例えば、トリガに係る上記所定の情報は、飛行関連情報であってもよい。即ち、ドローン2は、飛行関連情報が所定の条件を満たすか否か(即ち、飛行関連情報に基づく値とトリガ閾値との比較結果)に基づいて、基地局装置1に測定情報を報告してもよい。例えば、ドローン2は、飛行関連情報に基づく値がトリガ閾値を上回る又は下回る等の所定の条件を満たした場合に、測定処理及び報告処理を開始する。具体的には、ドローン2は、現在の高度が、高度に関する閾値を超えた場合に、測定処理及び報告処理を開始してもよい。なお、飛行関連情報に基づく値は、飛行関連情報そのものであってもよいし、飛行関連情報に基づいて処理(例えば、統計処理等)された値であってもよい。
また、トリガ閾値は、少なくとも基地局装置1からの指示に基づいて設定されてもよい。例えば、基地局装置1は、設定すべきトリガ閾値を示す設定情報をドローン2へ送信してもよい。また、基地局装置1は、設定すべきトリガ閾値を決定するためのパラメータをドローン2へ送信し、ドローン2が当該パラメータに基づいてトリガ閾値を設定してもよい。
以下、図22を参照して、第1の例に関する処理の流れの一例を説明する。
図22は、本実施形態に係るシステムにおいて実行される測定報告処理の第1の例の流れの一例を示すシーケンス図である。本シーケンスには、基地局装置1及びドローン2が関与する。なお、図22では、ドローン2内部の情報のやり取りを明確にするために、上位層処理部201及び飛行制御部214が分けて示されている。なお、上位層処理部201で行われる処理は上位層に関する処理だけでなく、物理層に関する処理を含むことができる。
図22に示すように、まず、基地局装置1は、測定報告処理に関する設定情報をドローン2へ送信する(ステップS102)。測定報告処理に関する設定情報は、例えば測定すべき参照信号に関する情報、及び報告方法に関する情報等を含み得る。次いで、基地局装置1は、飛行関連情報に関する閾値(即ち、トリガ閾値)の設定情報をドローン2へ送信する(ステップS104)。なお、飛行関連情報に関する閾値の設定情報は、測定報告処理に関する設定情報に含まれて送信されてもよい。次に、ドローン2の上位層処理部201は、ドローン2の飛行制御部214から飛行関連情報を取得する(ステップS106)。他方、基地局装置1は、参照信号をドローン2へ送信する(ステップS108)。そして、ドローン2は、所定の条件が満たされたか否かに基づいて、即ち取得した飛行関連情報に基づく値と基地局装置1により設定された閾値との比較結果に基づいて、測定報告処理を制御する。例えば、ドローン2は、所定の条件が満たされる場合に測定処理及び報告処理を開始して測定情報を基地局装置1に送信する(ステップS110)。一方で、ドローン2は、所定の条件が満たされない場合に測定処理及び報告処理を行わない。
・第2の例
例えば、トリガに係る上記所定の情報は、参照信号に対する測定情報であってもよい。即ち、ドローン2は、測定処理を行って得た測定情報が所定の条件を満たすか否か(即ち、測定情報に基づく値とトリガ閾値との比較結果)に基づいて、基地局装置1に測定情報を報告してもよい。例えば、ドローン2は、所定の参照信号に対する測定情報に基づく値がトリガ閾値を上回る又は下回る等の所定の条件を満たした場合に、報告処理を開始する。具体的には、ドローン2は、所定の参照信号に対するRSRPが、RSRPに関する閾値を超えた場合に、報告処理を開始してもよい。この場合、報告される測定情報は、所定の条件を満たした参照信号に関する情報(例えば、セルIDなど)を含み得る。
また、トリガ閾値は、少なくとも飛行関連情報に基づいて設定されてもよい。例えば、ドローン2は、飛行関連情報に基づくパラメータを用いて自律的にトリガ閾値を設定してもよい。また、ドローン2は、飛行関連情報と基地局装置1から受信したトリガ閾値に関する設定情報との、2つのパラメータを用いてトリガ閾値を設定してもよい。
以下、図23を参照して、第2の例に関する処理の流れの一例を説明する。
図23は、本実施形態に係るシステムにおいて実行される測定報告処理の第2の例の流れの一例を示すシーケンス図である。本シーケンスには、基地局装置1及びドローン2が関与する。なお、図23では、ドローン2内部の情報のやり取りを明確にするために、上位層処理部201及び飛行制御部214が分けて示されている。なお、上位層処理部201で行われる処理は上位層に関する処理だけでなく、物理層に関する処理を含むことができる。
図23に示すように、まず、基地局装置1は、測定報告処理に関する設定情報をドローン2へ送信する(ステップS202)。次いで、基地局装置1は、測定情報に関する閾値(即ち、トリガ閾値)の設定情報をドローン2へ送信する(ステップS204)。なお、測定情報に関する閾値の設定情報は、測定報告処理に関する設定情報に含まれて送信されてもよい。次に、ドローン2の上位層処理部201は、ドローン2の飛行制御部214から飛行関連情報を取得する(ステップS206)。他方、基地局装置1は、参照信号をドローン2へ送信する(ステップS208)。そして、ドローン2は、測定処理を行って得た測定情報が所定の条件を満たすか否か、即ち測定情報に基づく値と少なくとも飛行関連情報に基づいて設定されたトリガ閾値との比較結果に基づいて、測定報告処理を制御する。例えば、ドローン2は、所定の条件が満たされる場合に報告処理を開始して測定情報を基地局装置1に送信する(ステップS210)。一方で、ドローン2は、所定の条件が満たされない場合に報告処理を行わない。
・第3の例
第3の例は、第2の例におけるトリガ閾値の設定を、ドローン2ではなく基地局装置1が行う。本例においては、基地局装置1(例えば、通信制御部1013)は、ドローン2から受信した飛行関連情報に基づいて、測定報告処理に関する設定情報を生成してドローン2に通知する。とりわけ、この設定情報は、測定情報を報告するためのトリガに関する。
詳しくは、基地局装置1は、ドローン2から取得した飛行関連情報に少なくとも基づいてトリガ閾値を決定し、決定したトリガ閾値を示す情報を含む設定情報をドローン2へ送信する。そして、ドローン2は、基地局装置1により決定されたトリガ閾値を設定して、測定処理を行って得た測定情報に基づいて報告処理を行うか否かを制御する。即ち、ドローン2は、測定処理を行って得た測定情報が所定の条件を満たすか否か(即ち、測定情報に基づく値とトリガ閾値との比較結果)に基づいて、基地局装置1に測定情報を報告する。例えば、ドローン2は、所定の参照信号に対する測定情報に基づく値がトリガ閾値を上回る又は下回る等の所定の条件を満たした場合に、報告処理を開始する。具体的には、ドローン2は、所定の参照信号に対するRSRPが、基地局装置1により決定されたRSRPに関する閾値を超えた場合に、報告処理を開始してもよい。この場合、報告される測定情報は、所定の条件を満たした参照信号に関する情報(例えば、セルIDなど)を含み得る。
以下、図24を参照して、第3の例に関する処理の流れの一例を説明する。
図24は、本実施形態に係るシステムにおいて実行される測定報告処理の第3の例の流れの一例を示すシーケンス図である。本シーケンスには、基地局装置1及びドローン2が関与する。なお、図24では、ドローン2内部の情報のやり取りを明確にするために、上位層処理部201及び飛行制御部214が分けて示されている。なお、上位層処理部201で行われる処理は上位層に関する処理だけでなく、物理層に関する処理を含むことができる。
図24に示すように、ドローン2の上位層処理部201は、ドローン2の飛行制御部214から飛行関連情報を取得する(ステップS302)。次いで、ドローン2は、飛行関連情報を基地局装置1へ送信する(ステップS304)。次に、基地局装置1は、測定報告処理に関する設定情報をドローン2へ送信する(ステップS306)。また、基地局装置1は、ドローン2から受信した飛行関連情報に基づいて決定した、測定情報に関する閾値(即ち、トリガ閾値)の設定情報を、ドローン2へ送信する(ステップS308)。なお、測定情報に関する閾値の設定情報は、測定報告処理に関する設定情報に含まれて送信されてもよい。また、基地局装置1は、参照信号をドローン2へ送信する(ステップS310)。そして、ドローン2は、測定処理を行って得た測定情報が所定の条件を満たすか否か、即ち測定情報に基づく値と基地局装置1により決定されたトリガ閾値との比較結果に基づいて、測定報告処理を制御する。例えば、ドローン2は、所定の条件が満たされる場合に報告処理を開始して測定情報を基地局装置1に送信する(ステップS312)。一方で、ドローン2は、所定の条件が満たされない場合に報告処理を行わない。
(4)報告方法
ドローン2が、上記トリガに基づいて測定情報を報告する場合の報告方法は多様に考えられる。
例えば、測定情報は、所定の上りリンクチャネルを用いて報告されてもよい。
測定情報の報告に用いられる所定の上りリンクチャネルは、基地局装置1により割り当てられるひとつの上りリンクチャネルであってもよい。具体的には、まず、ドローン2は、上記トリガに基づいて測定情報を報告する場合、所定のPUCCHを用いてSR(Scheduling Request)を送信し、基地局装置1にPUSCHの割り当てをリクエストする。次いで、基地局装置1は、受信したSRに基づいて、ドローン2にPUSCHを割り当てる。そして、ドローン2は、割り当てられたPUSCHを用いて、測定情報を報告する。この方法によれば、基地局装置1が必要に応じてリソースを割り当てるため、無駄なリソースが発生せず、周波数利用効率を高めることが可能となる。
測定情報の報告に用いられる所定の上りリンクチャネルは、セミパーシステント(準永続的)に割り当てられた上りリンクチャネルであってもよい。換言すると、測定情報の報告に用いられる所定の上りリンクチャネルは、基地局装置1により周期的に割り当てられる複数の上りリンクチャネルであってもよい。具体的には、基地局装置1は、測定情報の報告のためのPUSCHを、所定の間隔で周期的に複数割り当てる。ドローン2は、割り当てられたPUSCHを用いて、測定情報を報告する。この方法によれば、基地局装置1は、PUSCHを割り当てるためのPDCCHを送信しなくてもよいため、下りリンクの制御情報に対するオーバーヘッドを低減させると共に、測定情報が報告されるまでの遅延を低減させることが可能となる。
測定情報の報告に用いられる所定の上りリンクチャネルは、基地局装置1により割り当てられるリソースプールからドローン2(例えば、測定報告制御部2013)により選択される上りリンクチャネルであってもよい。具体的には、まず、基地局装置1は、測定情報の報告のためのPUSCHとして選択可能なリソースから成るリソースプールを、ドローン2に設定する。そして、ドローン2は、設定されたリソースプールから所定の方法に基づいて選択したリソースをPUSCHとして用いて、測定情報を報告する。基地局装置1は、複数のドローン2(又はドローン2及び飛行装置210を有さない端末装置2)に同一のリソースプールを設定することができる。ただし、それらの複数のドローン2の間で選択されるPUSCHが衝突する場合、基地局装置1は、干渉キャンセルを行うことで各々のドローン2からの測定情報を受信することができる。また、複数のドローン2間におけるPUSCHの衝突による干渉を軽減させる方法として、ドローン2毎に固有な符号又はインターリーバの適用が考えられる。このようなリソースプールを用いる方法によれば、基地局装置1は、PUSCHを割り当てるためのPDCCHを送信しなくてもよいため、下りリンクの制御情報に対するオーバーヘッドを低減させると共に、測定情報が報告されるまでの遅延を低減させることが可能となる。また、複数のドローン2間でリソースを共有できるため、周波数利用効率の向上も実現可能となる。なお、リソースプールを用いることは、Grant-freeとも称され得る。
<4.4.第2の実施形態>
本実施形態は、飛行関連情報に基づいて測定報告処理の内容が制御される形態である。即ち、ドローン2は、飛行関連情報に基づいて測定報告処理の内容を選択する(即ち、切り替える)。
(1)選択基準
ドローン2(例えば、測定報告制御部2013)は、飛行関連情報に基づいて選択された測定報告処理を実行する。具体的には、ドローン2は、選択候補の複数の測定報告処理の中から、飛行関連情報に基づいて選択された測定報告処理を実行する。例えば、飛行関連情報が所定の条件を満たすか否かに基づいて、第1の測定報告処理と第2の測定報告処理とのいずれを実行するかが切り替えられてもよい。飛行関連情報が所定の条件を満たすか否かは、例えば飛行関連情報に基づく値と閾値との比較結果を意味していてもよい。この閾値を、以下では切り替え閾値とも称する。なお、選択候補の測定報告処理は3以上であってもよく、その場合は切り替え閾値が2以上設定されてもよい。
ここで、測定報告処理の選択主体は、後述するように基地局装置1であってもよいしドローン2であってもよい。以下では、ドローン2が選択主体であるものとして説明するが、基地局装置1が選択主体となる場合も同様の説明が成り立つ。
例えば、ドローン2は、高度情報に基づいて実行する測定報告処理を選択してもよい。具体的には、ドローン2は、ドローン2の高度が切り替え閾値未満である場合に第1の測定報告処理を選択し、切り替え閾値以上である場合に第2の測定報告処理を選択してもよい。これにより、ドローン2は、例えば測定処理及び/又は報告処理を高度に応じて制限する法令などを遵守することが可能となる。また、ドローン2は、衝突の危険性が比較的高いと考えられる低高度ではより詳細な測定報告処理を選択し、衝突の危険性が比較的低いと考えられる高高度では消費電力の低い測定報告処理を選択することも可能となる。
例えば、ドローン2は、バッテリ情報に基づいて実行する測定報告処理を選択してもよい。具体的には、ドローン2は、バッテリ残量が切り替え閾値未満である場合に第1の測定報告処理を選択し、切り替え閾値以上である場合に第2の測定報告処理を選択してもよい。これにより、ドローン2は、例えばバッテリ残量が少ない場合により詳細な測定報告処理を選択することで緊急事態に備えることが可能となる。
例えば、ドローン2は、位置情報に基づいて実行する測定報告処理を選択してもよい。具体的には、ドローン2は、ドローン2の位置が所定のエリア内である場合に第1の測定報告処理を選択し、所定のエリア外である場合に第2の測定報告処理を選択してもよい。これにより、ドローン2は、例えば飛行禁止エリアに近接している場合に、飛行禁止エリアに侵入しないように、より詳細な測定報告処理を選択することが可能となる。
例えば、ドローン2は、飛行状態情報に基づいて実行する測定報告処理を選択してもよい。具体的には、ドローン2は、ドローン2が飛行中である場合に第1の測定報告処理を選択し、停止中である場合に第2の測定報告処理を選択してもよい。これにより、ドローン2は、例えば飛行中である場合、停止中である場合と比較して危険性が高いので、より詳細な測定報告処理を選択することが可能となる。また、ドローン2は、ドローン2が手動操縦による飛行を行う場合に第1の測定報告処理を選択し、自動操縦による飛行を行う場合に第2の測定報告処理を選択してもよい。これにより、ドローン2は、例えば自動操縦による飛行を行う場合、手動操縦による飛行を行う場合と比較して危険性が高いので、より詳細な測定報告処理を選択することが可能となる。
なお、切り替え閾値は、少なくとも基地局装置1からの指示に基づいて設定されてもよい。例えば、基地局装置1は、設定すべき切り替え閾値を示す設定情報をドローン2へ送信してもよい。また、基地局装置1は、設定すべき切り替え閾値を決定するためのパラメータをドローン2へ送信し、ドローン2が当該パラメータに基づいて切り替え閾値を設定してもよい。
(2)選択主体
・ドローン2主体
測定報告処理の選択は、ドローン2が主体となって行ってもよい。即ち、ドローン2(例えば、測定報告制御部2013)は、実行する測定報告処理を選択してもよい。詳しくは、ドローン2は、上記選択基準に基づいて自発的に(即ち、自律的に)、選択候補の複数の測定報告処理の中から、飛行関連情報に基づいて実行する測定報告処理を選択する。その場合、ドローン2は、測定報告処理の選択(即ち、切り替え)を基地局装置1に認識させる。認識させる方法は多様に考えられる。
例えば、ドローン2は、測定報告処理の選択に関する情報を基地局装置1に通知してもよい。測定報告処理の選択に関する情報は、例えば選択された測定報告処理を示す情報、及び切り替えのタイミングを示す情報等を含み得る。測定報告処理の選択に関する情報は、測定報告処理の切り替え制御に関する情報とも捉えることができる。測定報告処理の選択に関する情報の通知は、物理チャネル又は物理信号を用いて動的に行われてもよいし、RRCシグナリング又はMACシグナリングを用いて準静的に行われてもよい。また、この通知は、周期的に行われてもよいし、非周期的に行われてもよい。例えば、ドローン2は、測定報告処理の切り替えが発生したタイミングに基づいて、測定報告処理の選択に関する情報を基地局装置1に通知し得る。また、ドローン2は、測定報告処理の選択に関する情報を、測定情報に含めて通知し得る。
例えば、ドローン2は、測定報告処理の選択結果に関する情報の通知を、上述のように明示的に行ってもよいし、暗示的に行ってもよい。暗示的に通知される場合、基地局装置1は、例えばドローン2から報告される測定情報が、選択候補の複数の測定報告処理のうちどの測定報告処理により生成されたかを識別することで、選択された測定報告処理を認識してもよい。
以下、ドローン2が主体となって測定報告処理の選択が行われる場合の処理の流れの一例を説明する。
図25は、本実施形態に係るシステムにおいて実行される測定報告処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局装置1及びドローン2が関与する。なお、図25では、ドローン2内部の情報のやり取りを明確にするために、上位層処理部201及び飛行制御部214が分けて示されている。なお、上位層処理部201で行われる処理は上位層に関する処理だけでなく、物理層に関する処理を含むことができる。
図25に示すように、まず、基地局装置1は、測定報告処理に関する設定情報をドローン2へ送信する(ステップS402)。なお、測定報告処理に関する設定情報は、測定報告処理の選択に関する閾値(即ち、切り替え閾値)の設定情報を含み得る。次に、ドローン2の上位層処理部201は、ドローン2の飛行制御部214から飛行関連情報を取得する(ステップS404)。そして、ドローン2の上位層処理部201は、飛行関連情報に基づいて実行する測定報告処理を選択する(ステップS406)。他方、基地局装置1は、参照信号をドローン2へ送信する(ステップS408)。次いで、ドローン2は、選択した測定報告処理を実行し、測定情報を基地局装置1に送信する(ステップS410)。なお、ドローン2は、測定情報を送信する前、後又は同時に、測定報告処理の選択に関する情報を基地局装置1に送信してもよい。
・基地局装置1主体
測定報告処理の選択は、基地局装置1が主体となって行ってもよい。その場合、基地局装置1(例えば、通信制御部1013)は、ドローン2から受信した飛行関連情報に基づいて、測定報告処理に関する設定情報を生成してドローン2に通知する。とりわけ、この設定情報は、実行すべき前記測定報告処理の選択に関する。詳しくは、基地局装置1は、上記選択基準に基づいて、選択候補の複数の測定報告処理の中から、ドローン2から受信した飛行関連情報に基づいてドローン2に実行させる測定報告処理を選択する。そして、基地局装置1は、測定報告処理の選択に関する情報をドローン2に通知する。
ドローン2(例えば、測定報告制御部2013)は、基地局装置1により選択された測定報告処理を実行する。詳しくは、ドローン2は、基地局装置1から通知された測定報告処理の選択に関する情報に基づいて、基地局装置1により選択された測定報告処理を実行する。
以下、基地局装置1が主体となって測定報告処理の選択が行われる場合の処理の流れの一例を説明する。
図26は、本実施形態に係るシステムにおいて実行される測定報告処理の流れの一例を示すシーケンス図である。本シーケンスには、基地局装置1及びドローン2が関与する。なお、図26では、ドローン2内部の情報のやり取りを明確にするために、上位層処理部201及び飛行制御部214が分けて示されている。なお、上位層処理部201で行われる処理は上位層に関する処理だけでなく、物理層に関する処理を含むことができる。
図26に示すように、まず、基地局装置1は、測定報告処理に関する設定情報をドローン2へ送信する(ステップS502)。次に、ドローン2の上位層処理部201は、ドローン2の飛行制御部214から飛行関連情報を取得する(ステップS504)。次いで、ドローン2は、飛行関連情報を基地局装置1へ送信する(ステップS506)。そして、基地局装置1は、受信した飛行関連情報に基づいて、ドローン2に実行させる測定報告処理を選択する(ステップS508)。次いで、基地局装置1は、測定報告処理の選択に関する情報をドローン2へ送信する(ステップS510)。次に、基地局装置1は、参照信号をドローン2へ送信する(ステップS512)。次いで、ドローン2は、測定報告処理の選択に関する情報に基づいて、基地局装置1により選択された測定報告処理を実行し、測定情報を基地局装置1に送信する(ステップS514)。
(3)選択候補の測定報告処理の内容
続いて、選択候補の測定報告処理の内容を具体的に説明する。
例えば、選択候補の複数の測定報告処理は、互いに測定対象の参照信号が異なっていてもよい。即ち、ドローン2は、飛行関連情報に基づいて、選択候補の参照信号から測定対象の参照信号を選択してもよい。例えば、選択候補の参照信号は、セル固有の参照信号及び端末装置(即ち、ドローン2)固有の参照信号を含んでいてもよい。また、選択候補の参照信号は、送信周期又は送信密度が異なる参照信号を含んでいてもよい。また、選択候補の参照信号は、周期的に送信される参照信号及び非周期的に送信される参照信号を含んでいてもよい。ドローン2は、測定対象の参照信号を選択することで、測定精度と参照信号によるオーバーヘッドとを制御することが可能となる。
例えば、選択候補の複数の測定報告処理は、互いに報告する測定情報の種類が異なっていてもよい。即ち、ドローン2は、飛行関連情報に基づいて、選択候補の測定情報の種類から報告する測定情報の種類を選択してもよい。例えば、選択候補の測定情報の種類は、RRM情報の少なくともいずれかを含んでいてもよい。また、選択候補の測定情報の種類は、CSI情報の少なくともいずれかを含んでいてもよい。基地局装置1は、ドローン2による報告する測定情報の種類の選択により、ドローン2の状態又は状況に応じた最適な種類の測定情報の報告を受けることが可能となる。
例えば、選択候補の複数の測定報告処理は、互いに報告する測定情報に対する所要品質が異なっていてもよい。即ち、ドローン2は、飛行関連情報に基づいて、選択候補の所要品質から、報告する測定情報に対する所要品質を選択してもよい。例えば、選択候補の所要品質は、符号化方法の決定の基準となる品質の候補、符号化率の決定の基準となる品質の候補、所要誤り率の候補、及び受信品質の候補を含んでいてもよい。また、選択候補の所要品質は、CSIを測定する対象である下りリンクチャネルに対する所要誤り率の候補を含んでいてもよい。なお、異なる所要品質が選択されることにより、結果的に報告されるCQI、PMI、RI及び/又はCRIの値が変わることとなる。基地局装置1は、ドローン2による報告する測定情報に対する所要品質の選択により、ドローン2の状態又は状況に応じた最適な所要品質に対応する測定情報の報告を受けることが可能となる。
例えば、選択候補の複数の測定報告処理は、互いに報告方法が異なっていてもよい。即ち、ドローン2は、飛行関連情報に基づいて、選択候補の報告方法から、測定情報の報告に用いる報告方法を選択してもよい。以下、選択候補の報告方法について説明する。
選択候補の報告方法の各々は、測定情報の報告モードが異なっていてもよい。即ち、ドローン2は、飛行関連情報に基づいて、複数の報告モードの候補から、測定情報の報告に用いる報告モードを選択してもよい。報告モードの候補は、ワイドバンドに対する報告を行うモード、端末選択型のサブバンドに対する報告を行うモード、基地局装置1により上位層のシグナリングで設定されるサブバンドに対する報告を行うモード、所定の情報を報告しないモード、所定の情報を1つ報告するモード、所定の情報を複数報告するモード、及びこれらのモードの組み合わせを含んでいてもよい。基地局装置1は、ドローン2による報告モードの選択により、ドローン2の状態又は状況に応じた最適な報告モードによる測定情報の報告を受けることが可能となる。
選択候補の報告方法の各々は、測定情報の報告の周期が異なっていてもよい。即ち、ドローン2は、飛行関連情報に基づいて、複数の周期の候補から、測定情報を報告する周期を選択してもよい。基地局装置1は、ドローン2による報告の周期の選択により、ドローン2の状態又は状況に応じた最適な周期で測定情報の報告を受けることが可能となる。
選択候補の報告方法の各々は、測定情報の報告が周期的か非周期的かが異なっていてもよい。即ち、ドローン2は、飛行関連情報に基づいて、周期的な報告を行うか非周期的な報告を行うかを選択してもよい。周期的な報告方法では、ドローン2は、基地局装置1により設定される周期で所定の情報(例えば、測定情報)の一部を逐次的に送信する。周期的な報告方法では、報告にPUCCHが用いられ得る。一方、非周期的な報告方法では、ドローン2は、基地局装置1により通知されるタイミングで所定の情報(例えば、測定情報)の全てを一括で送信する。非周期的な報告方法では、報告にPUSCHが用いられ得る。例えば、ドローン2は、低高度を飛行中であって基地局装置1からの下向きの電波を用いた無線通信を行う場合に周期的な報告を行い、高高度を飛行中であって基地局装置1から個別に形成されたビームを用いた無線通信を行う場合に非周期的な報告を行う。また、例えば、ドローン2は、地上を停止中であって基地局装置1からの下向きの電波を用いた無線通信を行う場合に非周期的な報告を行い、高高度を飛行中であって基地局装置1から個別に形成されたビームを用いた無線通信を行う場合に周期的な報告を行う。基地局装置1は、ドローン2による周期的な報告又は非周期的な報告の選択により、ドローン2の状態又は状況に応じた最適な方法で測定情報の報告を受けることが可能となる。
選択候補の報告方法の各々は、測定情報の報告に用いられる上りリンクチャネルが異なっていてもよい。即ち、ドローン2は、飛行関連情報に基づいて、選択候補の上りリンクチャネルから、測定情報の報告に用いる上りリンクチャネルを選択してもよい。例えば、選択候補の上りリンクチャネルは、PUCCH及びPUSCHを含んでいてもよい。
選択候補の報告方法の各々は、測定情報の報告に用いられる上りリンクチャネルに対する所要品質が異なっていてもよい。即ち、ドローン2は、飛行関連情報に基づいて、選択候補の所要品質から、測定情報の報告に用いる上りリンクチャネルに対する所要品質を選択してもよい。例えば、選択候補の所要品質は、測定情報の報告に用いられる上りリンクチャネルに対する符号化方法の決定の基準となる品質の候補、符号化率の決定の基準となる品質の候補、所要誤り率の候補、及び受信品質の候補を含んでいてもよい。基地局装置1は、ドローン2による測定情報の報告に用いる上りリンクチャネルに対する所要品質の選択により、ドローン2の状態又は状況に応じた最適な所要品質に対応する測定情報の報告を受けることが可能となる。
<4.5.補足>
(1)飛行関連情報
上記説明したように、飛行関連情報がドローン2から基地局装置1へ送信(又は、報告、通知)される場合がある。基地局装置1は、ドローン2から受信した飛行関連情報に基づいて、送信元のドローン2を制御することが可能となる。
以下、飛行関連情報の送信方法について詳しく説明する。
飛行関連情報は、RRC層、MAC層及び/又はPHY層の情報として送信されてもよい。
飛行関連情報は、多様な契機で送信され得る。例えば、ドローン2は、基地局装置1の要求に応じて、飛行関連情報を送信してもよい。例えば、ドローン2は、基地局装置1により設定される周期で、飛行関連情報を逐次的に送信してもよい。例えば、ドローン2は、所定の条件を満たした場合に飛行関連情報を送信してもよい。ここで、所定の条件は、基地局装置1により設定されるタイマーにより与えられてもよく、その場合、ドローン2は、当該タイマーが満了した場合に飛行関連情報を送信する。
飛行関連情報は、CSIとして送信されてもよい。例えば、飛行関連情報は、CRI、RI、PMI、及び/又はCQIを生成するために用いられる。換言すると、CRI、RI、PMI、及び/又はCQIは、少なくとも飛行関連情報に基づいて生成される。他にも、飛行関連情報は、新たに定義されるCSIとして送信されてもよい。
飛行関連情報は、PUCCHで送信されるUCI(Uplink control information)として送信されてもよい。例えば、飛行関連情報は、CSI、SR(Scheduling request)、及び/又はHARQ-ACKを生成するために用いられる。換言すると、CSI、SR、及び/又はHARQ-ACKは、少なくとも飛行関連情報に基づいて生成される。他にも、飛行関連情報は、新たに定義されるUCIとして送信されてもよい。
(2)ケイパビリティ情報
ドローン2は、ドローン2の能力を示す情報を、基地局装置1へ送信(又は、報告、通知)してもよい。その場合、基地局装置1は、ドローン2の能力を示す情報に基づいて、送信元のドローン2を制御することが可能となる。ドローン2の能力を示す情報を、以下では端末能力情報、又はケイパビリティ情報とも称する。ケイパビリティ情報は、ドローン2がサポートする能力(即ち、機能、特徴、及び/又は技術)を示す情報を含む。
UEケイパビリティ情報は、ドローンを含む端末装置2が飛行のための能力を有するか否かを示す情報を含み得る。ケイパビリティ情報が、飛行のための能力を有することを示す場合、端末装置2はドローンであると認識される。また、ケイパビリティ情報は、端末装置2がどのようなドローンであるかを示すドローンカテゴリを示す情報を含み得る。
ケイパビリティ情報は、測定報告処理に関する機能、及び/又は飛行関連情報に基づく処理の機能に関する情報を含み得る。例えば、ケイパビリティ情報は、容量等のバッテリに関する情報、最高高度等の高度に関する情報、高度に応じた測定方法のサポートに関する情報、最高速度等の速度に関する情報、位置情報の精度等のセンサ精度に関する情報を含み得る。
ケイパビリティ情報は、URLLC(Ultra Reliable Low Latency Communication)のサポートに関する機能を示す情報を含み得る。例えば、ケイパビリティ情報は、レイテンシの低いデータ伝送(例えば、ショートTTI)のサポートに関する機能、所定のサブキャリア間隔(例えば、15kHzより大きいサブキャリア間隔)のサポートに関する機能、及び/又は複数のリンク(例えば、ビーム又はコンポーネントキャリア)を同時に接続する機能を示す情報を含み得る。
<<5.応用例>>
本開示に係る技術は、様々な製品へ応用可能である。例えば、基地局装置1は、マクロeNB又はスモールeNBなどのいずれかの種類のeNB(evolved Node B)として実現されてもよい。スモールeNBは、ピコeNB、マイクロeNB又はホーム(フェムト)eNBなどの、マクロセルよりも小さいセルをカバーするeNBであってよい。その代わりに、基地局装置1は、NodeB又はBTS(Base Transceiver Station)などの他の種類の基地局として実現されてもよい。基地局装置1は、無線通信を制御する本体(基地局装置ともいう)と、本体とは別の場所に配置される1つ以上のRRH(Remote Radio Head)とを含んでもよい。また、後述する様々な種類の端末が一時的に又は半永続的に基地局機能を実行することにより、基地局装置1として動作してもよい。
<5.1.基地局に関する応用例>
(第1の応用例)
図27は、本開示に係る技術が適用され得るeNBの概略的な構成の第1の例を示すブロック図である。eNB800は、1つ以上のアンテナ810、及び基地局装置820を有する。各アンテナ810及び基地局装置820は、RFケーブルを介して互いに接続され得る。
アンテナ810の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、基地局装置820による無線信号の送受信のために使用される。eNB800は、図27に示したように複数のアンテナ810を有し、複数のアンテナ810は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図27にはeNB800が複数のアンテナ810を有する例を示したが、eNB800は単一のアンテナ810を有してもよい。
基地局装置820は、コントローラ821、メモリ822、ネットワークインタフェース823及び無線通信インタフェース825を備える。
コントローラ821は、例えばCPU又はDSPであってよく、基地局装置820の上位レイヤの様々な機能を動作させる。例えば、コントローラ821は、無線通信インタフェース825により処理された信号内のデータからデータパケットを生成し、生成したパケットをネットワークインタフェース823を介して転送する。コントローラ821は、複数のベースバンドプロセッサからのデータをバンドリングすることによりバンドルドパケットを生成し、生成したバンドルドパケットを転送してもよい。また、コントローラ821は、無線リソース管理(Radio Resource Control)、無線ベアラ制御(Radio Bearer Control)、移動性管理(Mobility Management)、流入制御(Admission Control)又はスケジューリング(Scheduling)などの制御を実行する論理的な機能を有してもよい。また、当該制御は、周辺のeNB又はコアネットワークノードと連携して実行されてもよい。メモリ822は、RAM及びROMを含み、コントローラ821により実行されるプログラム、及び様々な制御データ(例えば、端末リスト、送信電力データ及びスケジューリングデータなど)を記憶する。
ネットワークインタフェース823は、基地局装置820をコアネットワーク824に接続するための通信インタフェースである。コントローラ821は、ネットワークインタフェース823を介して、コアネットワークノード又は他のeNBと通信してもよい。その場合に、eNB800と、コアネットワークノード又は他のeNBとは、論理的なインタフェース(例えば、S1インタフェース又はX2インタフェース)により互いに接続されてもよい。ネットワークインタフェース823は、有線通信インタフェースであってもよく、又は無線バックホールのための無線通信インタフェースであってもよい。ネットワークインタフェース823が無線通信インタフェースである場合、ネットワークインタフェース823は、無線通信インタフェース825により使用される周波数帯域よりもより高い周波数帯域を無線通信に使用してもよい。
無線通信インタフェース825は、LTE(Long Term Evolution)又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、アンテナ810を介して、eNB800のセル内に位置する端末に無線接続を提供する。無線通信インタフェース825は、典型的には、ベースバンド(BB)プロセッサ826及びRF回路827などを含み得る。BBプロセッサ826は、例えば、符号化/復号、変調/復調及び多重化/逆多重化などを行なってよく、各レイヤ(例えば、L1、MAC(Medium Access Control)、RLC(Radio Link Control)及びPDCP(Packet Data Convergence Protocol))の様々な信号処理を実行する。BBプロセッサ826は、コントローラ821の代わりに、上述した論理的な機能の一部又は全部を有してもよい。BBプロセッサ826は、通信制御プログラムを記憶するメモリ、当該プログラムを実行するプロセッサ及び関連する回路を含むモジュールであってもよく、BBプロセッサ826の機能は、上記プログラムのアップデートにより変更可能であってもよい。また、上記モジュールは、基地局装置820のスロットに挿入されるカード若しくはブレードであってもよく、又は上記カード若しくは上記ブレードに搭載されるチップであってもよい。一方、RF回路827は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ810を介して無線信号を送受信する。
無線通信インタフェース825は、図27に示したように複数のBBプロセッサ826を含み、複数のBBプロセッサ826は、例えばeNB800が使用する複数の周波数帯域にそれぞれ対応してもよい。また、無線通信インタフェース825は、図27に示したように複数のRF回路827を含み、複数のRF回路827は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図27には無線通信インタフェース825が複数のBBプロセッサ826及び複数のRF回路827を含む例を示したが、無線通信インタフェース825は単一のBBプロセッサ826又は単一のRF回路827を含んでもよい。
図27に示したeNB800において、図8を参照して説明した上位層処理部101又は制御部103に含まれる1つ以上の構成要素(例えば、図18に示した参照信号送信部1011及び/又は通信制御部1013)は、無線通信インタフェース825において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ821において実装されてもよい。一例として、eNB800は、無線通信インタフェース825の一部(例えば、BBプロセッサ826)若しくは全部、及び/又はコントローラ821を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB800にインストールされ、無線通信インタフェース825(例えば、BBプロセッサ826)及び/又はコントローラ821が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB800、基地局装置820又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
また、図27に示したeNB800において、図8を参照して説明した受信部105及び送信部107は、無線通信インタフェース825(例えば、RF回路827)において実装されてもよい。また、送受信アンテナ109は、アンテナ810において実装されてもよい。
(第2の応用例)
図28は、本開示に係る技術が適用され得るeNBの概略的な構成の第2の例を示すブロック図である。eNB830は、1つ以上のアンテナ840、基地局装置850、及びRRH860を有する。各アンテナ840及びRRH860は、RFケーブルを介して互いに接続され得る。また、基地局装置850及びRRH860は、光ファイバケーブルなどの高速回線で互いに接続され得る。
アンテナ840の各々は、単一の又は複数のアンテナ素子(例えば、MIMOアンテナを構成する複数のアンテナ素子)を有し、RRH860による無線信号の送受信のために使用される。eNB830は、図28に示したように複数のアンテナ840を有し、複数のアンテナ840は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図28にはeNB830が複数のアンテナ840を有する例を示したが、eNB830は単一のアンテナ840を有してもよい。
基地局装置850は、コントローラ851、メモリ852、ネットワークインタフェース853、無線通信インタフェース855及び接続インタフェース857を備える。コントローラ851、メモリ852及びネットワークインタフェース853は、図27を参照して説明したコントローラ821、メモリ822及びネットワークインタフェース823と同様のものである。
無線通信インタフェース855は、LTE又はLTE-Advancedなどのいずれかのセルラー通信方式をサポートし、RRH860及びアンテナ840を介して、RRH860に対応するセクタ内に位置する端末に無線接続を提供する。無線通信インタフェース855は、典型的には、BBプロセッサ856などを含み得る。BBプロセッサ856は、接続インタフェース857を介してRRH860のRF回路864と接続されることを除き、図27を参照して説明したBBプロセッサ826と同様のものである。無線通信インタフェース855は、図28に示したように複数のBBプロセッサ856を含み、複数のBBプロセッサ856は、例えばeNB830が使用する複数の周波数帯域にそれぞれ対応してもよい。なお、図28には無線通信インタフェース855が複数のBBプロセッサ856を含む例を示したが、無線通信インタフェース855は単一のBBプロセッサ856を含んでもよい。
接続インタフェース857は、基地局装置850(無線通信インタフェース855)をRRH860と接続するためのインタフェースである。接続インタフェース857は、基地局装置850(無線通信インタフェース855)とRRH860とを接続する上記高速回線での通信のための通信モジュールであってもよい。
また、RRH860は、接続インタフェース861及び無線通信インタフェース863を備える。
接続インタフェース861は、RRH860(無線通信インタフェース863)を基地局装置850と接続するためのインタフェースである。接続インタフェース861は、上記高速回線での通信のための通信モジュールであってもよい。
無線通信インタフェース863は、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、典型的には、RF回路864などを含み得る。RF回路864は、ミキサ、フィルタ及びアンプなどを含んでもよく、アンテナ840を介して無線信号を送受信する。無線通信インタフェース863は、図28に示したように複数のRF回路864を含み、複数のRF回路864は、例えば複数のアンテナ素子にそれぞれ対応してもよい。なお、図28には無線通信インタフェース863が複数のRF回路864を含む例を示したが、無線通信インタフェース863は単一のRF回路864を含んでもよい。
図28に示したeNB830において、図8を参照して説明した上位層処理部101又は制御部103に含まれる1つ以上の構成要素(例えば、図18に示した参照信号送信部1011及び/又は通信制御部1013)は、無線通信インタフェース855及び/又は無線通信インタフェース863において実装されてもよい。あるいは、これらの構成要素の少なくとも一部は、コントローラ851において実装されてもよい。一例として、eNB830は、無線通信インタフェース855の一部(例えば、BBプロセッサ856)若しくは全部、及び/又はコントローラ851を含むモジュールを搭載し、当該モジュールにおいて上記1つ以上の構成要素が実装されてもよい。この場合に、上記モジュールは、プロセッサを上記1つ以上の構成要素として機能させるためのプログラム(換言すると、プロセッサに上記1つ以上の構成要素の動作を実行させるためのプログラム)を記憶し、当該プログラムを実行してもよい。別の例として、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムがeNB830にインストールされ、無線通信インタフェース855(例えば、BBプロセッサ856)及び/又はコントローラ851が当該プログラムを実行してもよい。以上のように、上記1つ以上の構成要素を備える装置としてeNB830、基地局装置850又は上記モジュールが提供されてもよく、プロセッサを上記1つ以上の構成要素として機能させるためのプログラムが提供されてもよい。また、上記プログラムを記録した読み取り可能な記録媒体が提供されてもよい。
また、図28に示したeNB830において、例えば、図8を参照して説明した受信部105及び送信部107は、無線通信インタフェース863(例えば、RF回路864)において実装されてもよい。また、送受信アンテナ109は、アンテナ840において実装されてもよい。
<<6.まとめ>>
以上、図1~図28を参照して、本開示の一実施形態について詳細に説明した。上記説明したように、本実施形態に係るドローン2は、飛行関連情報を取得し、取得した飛行関連情報に基づいて基地局装置1から送信された参照信号に対する測定報告処理を制御する。ドローン2が、飛行関連情報に基づいて測定報告処理を制御するので、基地局装置1は、飛行関連情報に応じて報告された測定情報に基づいて、ドローン2との通信のための無線リソースを制御することが可能となる。これにより、基地局装置1は、3次元空間を自由に飛び回るドローン2に対して適切な無線通信サービスを提供することが可能となる。このことにより、システム全体の伝送効率を大幅に向上させることが可能になると共に、ドローン2の能力を最大限発揮させることが可能となる。
以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本開示の技術的範囲はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。
例えば、第1の実施形態と第2の実施形態は組み合わされてもよい。
また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)
飛行に関する情報を取得する取得部と、
前記取得部により取得された前記飛行に関する情報に基づいて、基地局装置から送信された参照信号に対する測定報告処理を制御する測定報告制御部と、
を備える回路。
(2)
前記飛行に関する情報は、飛行に関する高度情報を含む、前記(1)に記載の回路。
(3)
前記飛行に関する情報は、飛行に関するバッテリ情報を含む、前記(1)又は(2)に記載の回路。
(4)
前記飛行に関する情報は、飛行に関する位置情報を含む、前記(1)~(3)のいずれか一項に記載の回路。
(5)
前記飛行に関する情報は、飛行に関する状態情報を含む、前記(1)~(4)のいずれか一項に記載の回路。
(6)
前記測定報告処理において報告される前記参照信号に対する測定情報は、無線リソース管理のための情報を含む、前記(1)~(5)のいずれか一項に記載の回路。
(7)
前記測定報告処理において報告される前記参照信号に対する測定情報は、チャネル状態情報を含む、前記(1)~(6)のいずれか一項に記載の回路。
(8)
前記測定報告処理において報告される前記参照信号に対する測定情報は、所定の上りリンクチャネルを用いて報告される、前記(1)~(7)のいずれか一項に記載の回路。
(9)
前記所定の上りリンクチャネルは、前記基地局装置により割り当てられるひとつの上りリンクチャネルである、前記(8)に記載の回路。
(10)
前記所定の上りリンクチャネルは、前記基地局装置により周期的に割り当てられる複数の上りリンクチャネルである、前記(8)に記載の回路。
(11)
前記所定の上りリンクチャネルは、前記基地局装置により割り当てられるリソースプールから前記測定報告制御部により選択される上りリンクチャネルである、前記(8)に記載の回路。
(12)
前記測定報告制御部は、所定の情報に基づく値と閾値との比較結果に基づいて、前記基地局装置に測定情報を報告するか否かを制御する、前記(1)~(11)のいずれか一項に記載の回路。
(13)
前記所定の情報は、前記飛行に関する情報である、前記(12)に記載の回路。
(14)
前記閾値は、前記基地局装置からの指示に基づいて設定される、前記(13)に記載の回路。
(15)
前記所定の情報は、前記参照信号に対する測定情報である、前記(12)に記載の回路。
(16)
前記閾値は、前記飛行に関する情報に基づいて設定される、前記(15)に記載の回路。
(17)
前記測定報告制御部は、選択候補の複数の測定報告処理の中から、前記飛行に関する情報に基づいて選択された測定報告処理を実行する、前記(1)~(16)のいずれか一項に記載の回路。
(18)
前記選択候補の複数の測定報告処理は、互いに測定対象の前記参照信号が異なる、前記(17)に記載の回路。
(19)
前記選択候補の複数の測定報告処理は、互いに報告する測定情報の種類が異なる、前記(17)又は(18)に記載の回路。
(20)
前記選択候補の複数の測定報告処理は、互いに報告する測定情報に対する所要品質が異なる、前記(17)~(19)のいずれか一項に記載の回路。
(21)
前記選択候補の複数の測定報告処理は、互いに報告方法が異なる、前記(17)~(20)のいずれか一項に記載の回路。
(22)
前記測定報告制御部は、実行する前記測定報告処理を選択する、前記(17)~(21)のいずれか一項に記載の回路。
(23)
前記測定報告制御部は、前記基地局装置により選択された前記測定報告処理を実行する、前記(17)~(21)のいずれか一項に記載の回路。
(24)
前記取得部は、飛行可能な飛行装置から前記飛行に関する情報を取得する、前記(1)~(23)のいずれか一項に記載の回路。
(25)
前記回路は、前記飛行装置に接続される、前記(24)に記載の回路。
(26)
飛行に関する情報を取得する取得部と、
前記取得部により取得された前記飛行に関する情報に基づいて、基地局装置から送信された参照信号に対する測定報告処理を制御する測定報告制御部と、
を備える端末装置。
(27)
参照信号を送信する参照信号送信部と、
飛行に関する情報を取得して取得した飛行に関する情報に基づいて前記参照信号に対する測定報告処理を行う端末装置から報告された測定情報に基づく処理を制御する制御部と、
を備える基地局装置。
(28)
前記制御部は、前記端末装置から受信した前記飛行に関する情報に基づいて前記測定報告処理に関する設定情報を生成して前記端末装置に通知する、前記(27)に記載の基地局装置。
(29)
前記設定情報は、前記測定情報を報告するためのトリガに関する、前記(28)に記載の基地局装置。
(30)
前記制御部は、実行すべき前記測定報告処理の選択に関する、前記(28)又は(29)に記載の基地局装置。
(31)
飛行に関する情報を取得することと、
取得された前記飛行に関する情報に基づいて、基地局装置から送信された参照信号に対する測定報告処理をプロセッサにより制御することと、
を含む方法。
(32)
参照信号を送信することと、
飛行に関する情報を取得して取得した飛行に関する情報に基づいて前記参照信号に対する測定報告処理を行う端末装置から報告された測定情報に基づく処理をプロセッサにより制御することと、
を含む方法。
(33)
コンピュータを、
飛行に関する情報を取得する取得部と、
前記取得部により取得された前記飛行に関する情報に基づいて、基地局装置から送信された参照信号に対する測定報告処理を制御する測定報告制御部と、
として機能させるためのプログラムが記録された記録媒体。
(34)
コンピュータを、
参照信号を送信する参照信号送信部と、
飛行に関する情報を取得して取得した飛行に関する情報に基づいて前記参照信号に対する測定報告処理を行う端末装置から報告された測定情報に基づく処理を制御する制御部と、
として機能させるためのプログラムが記録された記録媒体。
1 基地局装置
101 上位層処理部
1011 参照信号送信部
1013 通信制御部
103 制御部
105 受信部
1051 復号化部
1053 復調部
1055 多重分離部
1057 無線受信部
1059 チャネル測定部
107 送信部
1071 符号化部
1073 変調部
1075 多重部
1077 無線送信部
1079 下りリンク参照信号生成部
109 送受信アンテナ
2 端末装置
201 上位層処理部
2011 取得部
2013 測定報告制御部
203 制御部
205 受信部
2051 復号化部
2053 復調部
2055 多重分離部
2057 無線受信部
2059 チャネル測定部
207 送信部
2071 符号化部
2073 変調部
2075 多重部
2077 無線送信部
2079 上りリンク参照信号生成部
209 送受信アンテナ
210 飛行装置
211 駆動部
212 バッテリ部
213 センサ部
214 飛行制御部

Claims (17)

  1. 飛行可能な飛行装置が飛行するに際して測定、検知、検出、推定又は認識される情報である飛行に関する情報を取得する取得部と、
    前記取得部により取得された前記飛行に関する情報が所定の条件を満たすか否かを判定した結果に基づいて、基地局装置から送信された参照信号に対する測定情報を生成し、生成した測定情報を前記基地局装置に報告する測定報告処理を制御する測定報告制御部と、
    を備える回路。
  2. 前記飛行に関する情報は、飛行に関する高度情報を含む、請求項1に記載の回路。
  3. 前記飛行に関する情報は、飛行に関するバッテリ情報を含む、請求項1に記載の回路。
  4. 前記飛行に関する情報は、飛行に関する位置情報を含む、請求項1に記載の回路。
  5. 前記飛行に関する情報は、飛行に関する状態情報を含む、請求項1に記載の回路。
  6. 前記測定報告処理において報告される前記参照信号に対する測定情報は、無線リソース管理のための情報を含む、請求項1に記載の回路。
  7. 前記測定報告処理において報告される前記参照信号に対する測定情報は、チャネル状態情報を含む、請求項1に記載の回路。
  8. 前記測定報告処理において報告される前記参照信号に対する測定情報は、所定の上りリンクチャネルを用いて報告される、請求項1に記載の回路。
  9. 前記測定報告制御部は、前記飛行に関する情報に基づく値と閾値との比較結果、もしくは、前記参照信号に対する測定情報に基づく値と閾値との比較結果に基づいて、前記基地局装置に測定情報を報告するか否かを制御する、請求項1に記載の回路。
  10. 前記閾値は、前記基地局装置からの指示に基づいて設定される、請求項9に記載の回路。
  11. 前記測定報告制御部は、選択候補の複数の測定報告処理の中から、前記飛行に関する情報に基づいて選択された測定報告処理を実行する、請求項1に記載の回路。
  12. 前記取得部は、前記飛行可能な飛行装置から前記飛行に関する情報を取得する、請求項1に記載の回路。
  13. 飛行可能な飛行装置が飛行するに際して測定、検知、検出、推定又は認識される情報である飛行に関する情報を取得する取得部と、
    前記取得部により取得された前記飛行に関する情報が所定の条件を満たすか否かを判定した結果に基づいて、基地局装置から送信された参照信号に対する測定情報を生成し、生成した測定情報を前記基地局装置に報告する測定報告処理を制御する測定報告制御部と、
    を備える端末装置。
  14. 参照信号を送信する参照信号送信部と、
    飛行可能な飛行装置が飛行するに際して測定、検知、検出、推定又は認識される情報である飛行に関する情報を取得し、取得した飛行に関する情報が所定の条件を満たすか否かを判定した結果に基づいて前記参照信号に対する測定報告処理を行う端末装置から報告された測定情報に基づく処理として、前記測定報告処理に関する設定情報を生成して前記端末装置に通知する処理、もしくは、実行すべき前記測定報告処理の選択に関する処理を制御する制御部と、
    を備える基地局装置。
  15. 前記設定情報は、前記測定情報を報告するためのトリガに関する、請求項14に記載の基地局装置。
  16. 飛行可能な飛行装置が飛行するに際して測定、検知、検出、推定又は認識される情報である飛行に関する情報を取得することと、
    取得された前記飛行に関する情報が所定の条件を満たすか否かを判定した結果に基づいて、基地局装置から送信された参照信号に対する測定情報を生成し、生成した測定情報を前記基地局装置に報告する測定報告処理をプロセッサにより制御することと、
    を含む方法。
  17. 参照信号を送信することと、
    飛行可能な飛行装置が飛行するに際して測定、検知、検出、推定又は認識される情報である飛行に関する情報を取得し、取得した飛行に関する情報が所定の条件を満たすか否かを判定した結果に基づいて前記参照信号に対する測定報告処理を行う端末装置から報告された測定情報に基づく処理として、前記測定報告処理に関する設定情報を生成して前記端末装置に通知する処理、もしくは、実行すべき前記測定報告処理の選択に関する処理をプロセッサにより制御することと、
    を含む方法。
JP2018537014A 2016-09-02 2017-07-20 回路、端末装置、基地局装置及び方法 Active JP7088016B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016172196 2016-09-02
JP2016172196 2016-09-02
PCT/JP2017/026198 WO2018042927A1 (ja) 2016-09-02 2017-07-20 回路、端末装置、基地局装置及び方法

Publications (2)

Publication Number Publication Date
JPWO2018042927A1 JPWO2018042927A1 (ja) 2019-06-24
JP7088016B2 true JP7088016B2 (ja) 2022-06-21

Family

ID=61300494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018537014A Active JP7088016B2 (ja) 2016-09-02 2017-07-20 回路、端末装置、基地局装置及び方法

Country Status (7)

Country Link
US (2) US11667381B2 (ja)
EP (1) EP3419197A4 (ja)
JP (1) JP7088016B2 (ja)
CN (1) CN108781121B (ja)
AU (1) AU2017318799A1 (ja)
BR (1) BR112018069338A2 (ja)
WO (1) WO2018042927A1 (ja)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10810893B2 (en) 2016-09-27 2020-10-20 Sony Corporation Circuit, base station, method, and recording medium
EP3469827B1 (en) 2017-04-21 2021-06-09 LG Electronics Inc. Method for performing measurement for aerial ue in wireless communication system and a device therefor
US11438760B2 (en) 2017-05-03 2022-09-06 Qualcomm Incorporated Exchanging a message including an in-flight status indicator between a drone-coupled user equipment and a component of a terrestrial wireless communication subscriber network
CN109218344B (zh) * 2017-06-29 2021-11-09 华为技术有限公司 选择参数配置的方法、设备以及系统
US11405925B2 (en) * 2017-08-08 2022-08-02 Ipcom Gmbh & Co. Kg Reducing interference from devices at extraordinary altitudes
CN108521888B (zh) * 2017-08-10 2022-02-01 北京小米移动软件有限公司 无人机接入方法及装置
KR102542403B1 (ko) * 2017-09-29 2023-06-12 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 자원 설정과 데이터 송수신 방법 및 장치
EP3897009B1 (en) * 2018-02-22 2023-05-31 SZ DJI Technology Co., Ltd. Monitoring method and device
JP2021114635A (ja) * 2018-04-05 2021-08-05 ソニーグループ株式会社 通信装置、方法およびプログラム
JP7250772B2 (ja) * 2018-04-05 2023-04-03 株式会社Nttドコモ 飛行体管理装置
SG11202011114UA (en) * 2018-05-10 2020-12-30 Beijing Xiaomi Mobile Software Co Ltd Method and apparatus for reporting flight path information, and method and apparatus for determining information
US11810462B2 (en) 2018-08-24 2023-11-07 Ntt Docomo, Inc. Aerial vehicle operation management device and aerial vehicle operation management method
TWI694660B (zh) * 2018-12-28 2020-05-21 南臺學校財團法人南臺科技大學 無人機電池置換方法
WO2020141917A2 (ko) * 2019-01-03 2020-07-09 네이버랩스 주식회사 엔드 디바이스, 엔드 디바이스를 제어하기 위한 에지 서버 및 클라우드 서버를 포함하는 3자간 통신 시스템, 및 그의 동작 방법
CN111439380B (zh) * 2019-01-17 2023-04-18 南台学校财团法人南台科技大学 无人机电池置换方法
WO2020153170A1 (ja) * 2019-01-22 2020-07-30 株式会社Nttドコモ 情報処理装置
CN111294854B (zh) * 2019-03-28 2022-06-24 北京紫光展锐通信技术有限公司 侧链csi的上报、配置方法及装置、存储介质、终端、基站
US11595912B2 (en) 2019-08-13 2023-02-28 Qualcomm Incorporated Sidelink power control
CN114258723A (zh) * 2019-08-23 2022-03-29 联想(北京)有限公司 用于为uav添加辅助节点的方法和设备
US20210067265A1 (en) * 2019-09-03 2021-03-04 Qualcomm Incorporated Jammer Detection and Mitigation
CN110958200A (zh) * 2019-12-06 2020-04-03 成都华日通讯技术有限公司 一种基于无线电特征提取的无人机识别方法
CN114846844A (zh) * 2019-12-31 2022-08-02 华为技术有限公司 用于切换的方法和装置
US11172019B1 (en) * 2020-08-28 2021-11-09 Tencent America LLC Systems and methods for unmanned aerial system communication
JP7346474B2 (ja) * 2021-03-02 2023-09-19 ソフトバンク株式会社 無線通信システム
KR20220140944A (ko) * 2021-04-12 2022-10-19 현대자동차주식회사 도심 항공 모빌리티를 위한 비행체의 제어 방법
US20240007203A1 (en) * 2022-06-30 2024-01-04 Qualcomm Incorporated User equipment measurement and reporting

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238990A (ja) 2010-04-30 2011-11-24 Ntt Docomo Inc 携帯端末装置、基地局装置、及び交換局装置並びに移動通信方法
WO2013129563A1 (ja) 2012-03-01 2013-09-06 日本電気株式会社 移動端末装置、無線通信システム、移動端末装置における通信方法、およびプログラム
US20150236779A1 (en) 2014-02-17 2015-08-20 Ahmad Jalali Broadband access system via drone/uav platforms
US20160088498A1 (en) 2014-09-18 2016-03-24 King Fahd University Of Petroleum And Minerals Unmanned aerial vehicle for antenna radiation characterization
JP2016058929A (ja) 2014-09-10 2016-04-21 ソフトバンク株式会社 緊急通報方法、航空基地局及び緊急通報プログラム

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100665425B1 (ko) * 2003-03-08 2007-01-04 삼성전자주식회사 이동 통신 시스템에서 핸드오버를 수행하는 시스템 및 방법
JP2006074536A (ja) 2004-09-03 2006-03-16 Mitsubishi Precision Co Ltd センサネットワークシステム
US7307585B2 (en) * 2005-11-01 2007-12-11 The Boeing Company Integrated aeroelasticity measurement system
EP2122929B1 (en) * 2007-01-18 2010-06-02 Nokia Corporation Network oriented control system for self-configuration and self-optimization measurements
KR20140021057A (ko) * 2010-01-07 2014-02-19 닛본 덴끼 가부시끼가이샤 무선 통신 시스템, 무선 단말, 무선 기지국, 무선 통신 방법 및 프로그램
CN103002497A (zh) * 2011-09-08 2013-03-27 华为技术有限公司 基于aas的信息交互方法、系统、ue及基站
US9236916B2 (en) * 2012-03-15 2016-01-12 Telefonaktiebolaget Lm Ericsson Node and method for generating beamformed for downlink communications
JP6065463B2 (ja) * 2012-08-28 2017-01-25 富士通株式会社 移動端末
WO2014065752A1 (en) * 2012-10-24 2014-05-01 Telefonaktiebolaget L M Ericsson (Publ) Selection of rrc configuration in a wireless communication network based on network state
US9567074B2 (en) * 2012-12-19 2017-02-14 Elwha Llc Base station control for an unoccupied flying vehicle (UFV)
US9540102B2 (en) * 2012-12-19 2017-01-10 Elwha Llc Base station multi-vehicle coordination
JP5893177B2 (ja) * 2013-01-18 2016-03-23 京セラ株式会社 通信制御方法、セルラ基地局、ユーザ端末、及びプロセッサ
US9998202B2 (en) * 2013-03-15 2018-06-12 Smartsky Networks LLC Position information assisted beamforming
JP6033953B2 (ja) * 2013-04-05 2016-11-30 京セラ株式会社 ユーザ端末、セルラ基地局、及びプロセッサ
WO2015114572A1 (en) * 2014-01-31 2015-08-06 Tata Consultancy Services Limited A computer implemented system and method for providing robust communication links to unmanned aerial vehicles
US9881022B2 (en) * 2014-05-20 2018-01-30 Verizon Patent And Licensing Inc. Selection of networks for communicating with unmanned aerial vehicles
WO2016008125A1 (zh) * 2014-07-16 2016-01-21 深圳市大疆创新科技有限公司 电动无人机及其智能电量保护方法
US9903937B2 (en) * 2014-08-18 2018-02-27 Qualcomm Incorporated Using known geographical information in directional wireless communication systems
US9571180B2 (en) * 2014-10-16 2017-02-14 Ubiqomm Llc Unmanned aerial vehicle (UAV) beam forming and pointing toward ground coverage area cells for broadband access
JP6034843B2 (ja) 2014-10-29 2016-11-30 ソフトバンク株式会社 プログラム、無線端末、情報収集装置及び情報収集システム
US9712228B2 (en) * 2014-11-06 2017-07-18 Ubiqomm Llc Beam forming and pointing in a network of unmanned aerial vehicles (UAVs) for broadband access
DK3029996T3 (en) * 2014-12-01 2018-01-02 Tata Consultancy Services Ltd TARGET SELECTION IN HANDOVER
CN104581783A (zh) * 2014-12-30 2015-04-29 融智通科技(北京)股份有限公司 用于无人机的通信方法
US10098099B2 (en) * 2015-01-26 2018-10-09 Qualcomm Incorporated Low latency group acknowledgements
CN107615822B (zh) * 2015-04-10 2021-05-28 深圳市大疆创新科技有限公司 向无人飞行器提供通信覆盖范围的方法、设备和系统
US10039114B2 (en) * 2015-04-14 2018-07-31 Verizon Patent And Licensing Inc. Radio access network for unmanned aerial vehicles
US10251066B2 (en) * 2015-04-24 2019-04-02 Qualcomm Incorporated Evolved machine type communication design for shared radio frequency spectrum operation
US9590720B2 (en) * 2015-05-13 2017-03-07 Ubiqomm Llc Ground terminal and gateway beam pointing toward an unmanned aerial vehicle (UAV) for network access
MX2017014901A (es) * 2015-05-22 2018-04-26 Fujitsu Ltd Metodo y aparato de configuracion de recurso de señal de referencia y sistema de comunicaciones.
US9467922B1 (en) * 2015-06-15 2016-10-11 Amazon Technologies, Inc. Cellular connections between user equipment and wireless stations based on user equipment location and wireless station locations
US10932256B2 (en) * 2015-06-16 2021-02-23 Qualcomm Incorporated Long-term evolution compatible very narrow band design
JP6709690B2 (ja) * 2015-07-17 2020-06-17 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 無人飛行体、飛行制御方法及び飛行制御プログラム
US10098030B2 (en) * 2015-08-20 2018-10-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for measurement and report
US10425884B2 (en) * 2015-09-14 2019-09-24 Lg Electronics Inc. Method for setting up bearer in wireless communication system and apparatus supporting same
US20170094566A1 (en) * 2015-09-25 2017-03-30 Qualcomm Incorporated Measurement reporting threshold configuration
WO2017063695A1 (en) * 2015-10-14 2017-04-20 Telefonaktiebolaget Lm Ericsson (Publ) Antenna alignment using unmanned aerial vehicle
US10312993B2 (en) * 2015-10-30 2019-06-04 The Florida International University Board Of Trustees Cooperative clustering for enhancing MU-massive-MISO-based UAV communication
US9813969B2 (en) * 2015-11-03 2017-11-07 Telefonaktiebolaget Lm Ericsson (Publ) In-flight cellular communications system coverage of mobile communications equipment located in aircraft
US9918235B2 (en) * 2015-11-24 2018-03-13 Verizon Patent And Licensing Inc. Adaptive antenna operation for UAVs using terrestrial cellular networks
EP3387860B1 (en) * 2015-12-07 2021-02-03 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for triggering mobility reference signaling
EP3137959B1 (en) * 2015-12-14 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Adjustment of planned movement based on radio network conditions
US10667189B2 (en) * 2015-12-22 2020-05-26 Lg Electronics Inc. Method and device for transmitting and receiving data in wireless communication system
US9537561B1 (en) * 2016-01-21 2017-01-03 Verizon Patent And Licensing Inc. Optimization of communications with UAVS using terrestrial cellular networks
US10028180B2 (en) * 2016-04-01 2018-07-17 Telefonaktiebolaget Lm Ericsson (Publ) Network device, terminal device and methods for facilitating handover of terminal device
US11032148B2 (en) * 2016-04-07 2021-06-08 Qualcomm Incorporated Managing network communication of an unmanned autonomous vehicle
US20170352941A1 (en) * 2016-06-07 2017-12-07 At&T Mobility Ii Llc Position-based antenna switching
US20200183380A1 (en) * 2016-06-10 2020-06-11 Gopro, Inc. Systems and methods for communicating with an unmanned aerial vehicle
US10049587B2 (en) * 2016-07-01 2018-08-14 Intel IP Corporation Unmanned aerial vehicle navigation
WO2018009011A1 (en) * 2016-07-06 2018-01-11 Lg Electronics Inc. Method and apparatus for supporting handover of drone in wireless communication system
US10511091B2 (en) * 2016-07-15 2019-12-17 Qualcomm Incorporated Dynamic beam steering for unmanned aerial vehicles
US10234862B2 (en) * 2016-07-15 2019-03-19 Qualcomm Incorporated WWAN radio link quality navigation for a drone
KR20180018331A (ko) * 2016-08-11 2018-02-21 한국전자통신연구원 통신 시스템에서 이동성 지원 방법 및 장치
US20200413267A1 (en) * 2019-06-28 2020-12-31 Apple Inc. Ue modem for drones with flight path and 3d wireless environment signal quality information

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011238990A (ja) 2010-04-30 2011-11-24 Ntt Docomo Inc 携帯端末装置、基地局装置、及び交換局装置並びに移動通信方法
WO2013129563A1 (ja) 2012-03-01 2013-09-06 日本電気株式会社 移動端末装置、無線通信システム、移動端末装置における通信方法、およびプログラム
US20150236779A1 (en) 2014-02-17 2015-08-20 Ahmad Jalali Broadband access system via drone/uav platforms
JP2016058929A (ja) 2014-09-10 2016-04-21 ソフトバンク株式会社 緊急通報方法、航空基地局及び緊急通報プログラム
US20160088498A1 (en) 2014-09-18 2016-03-24 King Fahd University Of Petroleum And Minerals Unmanned aerial vehicle for antenna radiation characterization

Also Published As

Publication number Publication date
EP3419197A1 (en) 2018-12-26
AU2017318799A1 (en) 2018-09-20
EP3419197A4 (en) 2019-05-29
US20230312092A1 (en) 2023-10-05
CN108781121B (zh) 2022-02-11
CN108781121A (zh) 2018-11-09
JPWO2018042927A1 (ja) 2019-06-24
US11667381B2 (en) 2023-06-06
US20190077508A1 (en) 2019-03-14
WO2018042927A1 (ja) 2018-03-08
BR112018069338A2 (pt) 2019-01-22

Similar Documents

Publication Publication Date Title
JP7088016B2 (ja) 回路、端末装置、基地局装置及び方法
JP6838615B2 (ja) 通信装置、通信方法、基地局およびプログラム
KR102663451B1 (ko) 통신 장치, 통신 제어 방법 및 컴퓨터 프로그램
JP7277140B2 (ja) 端末装置、基地局装置、通信方法
JP7027892B2 (ja) 端末装置および通信方法
JP7209456B2 (ja) 基地局装置、端末装置、通信方法、及びプログラム
JP6380705B2 (ja) 端末装置、基地局装置および通信方法
JP6828728B2 (ja) 通信装置、基地局装置および通信方法
JP6763229B2 (ja) 通信装置、通信方法、及びプログラム
WO2017169003A1 (ja) 端末装置、基地局装置および通信方法
JPWO2017169008A1 (ja) 端末装置、基地局装置および通信方法
KR20190101973A (ko) 무선 통신 장치, 무선 통신 방법 및 컴퓨터 프로그램
JP6773052B2 (ja) 端末装置、基地局装置および通信方法
JP6930107B2 (ja) 基地局装置、端末装置、方法及び記録媒体
JP2021114635A (ja) 通信装置、方法およびプログラム
KR20220113733A (ko) 사이드링크를 지원하는 무선통신시스템에서 단말이 주행 그룹 간의 송신 자원을 고려한 송신 자원의 재할당 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190214

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190522

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220523

R151 Written notification of patent or utility model registration

Ref document number: 7088016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151