WO2019001433A1 - 组播数据发送方法、装置、设备及存储介质 - Google Patents

组播数据发送方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2019001433A1
WO2019001433A1 PCT/CN2018/092932 CN2018092932W WO2019001433A1 WO 2019001433 A1 WO2019001433 A1 WO 2019001433A1 CN 2018092932 W CN2018092932 W CN 2018092932W WO 2019001433 A1 WO2019001433 A1 WO 2019001433A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
multicast data
site
devices
forwarding devices
Prior art date
Application number
PCT/CN2018/092932
Other languages
English (en)
French (fr)
Inventor
于健
廖湘柏
刘应状
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019001433A1 publication Critical patent/WO2019001433A1/zh
Priority to US16/723,625 priority Critical patent/US20200137529A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/04Arrangements for detecting or preventing errors in the information received by diversity reception using frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • H04L1/0637Properties of the code
    • H04L1/0643Properties of the code block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • H04L12/189Arrangements for providing special services to substations for broadcast or conference, e.g. multicast in combination with wireless systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • H04L1/0618Space-time coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0093Point-to-multipoint
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L2001/0092Error control systems characterised by the topology of the transmission link
    • H04L2001/0097Relays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of network technologies, and in particular, to a method, an apparatus, a device, and a storage medium for transmitting multicast data.
  • WLAN Wireless Local Area Network
  • the process of transmitting multicast data involves the interaction between the control device, the forwarding device, and the site device.
  • the control device is connected to multiple forwarding devices, and each of the plurality of forwarding devices is connected to at least one site device.
  • the control device sends multicast data to each of the connected forwarding devices, and each forwarding device receives the multicast data and sends the multicast data to the connected at least one site device, and the site device receives the multicast. data.
  • the multiple forwarding devices use the same channel to send multicast data. However, in order to avoid interference between different forwarding devices, only one forwarding device is allowed to occupy the channel at any time. Therefore, multiple forwarding devices need to contend for the channel. For each forwarding device, when the forwarding device wants to send multicast data, it will listen to the state of the channel, wait when the channel is busy, and generate a random counter value when the channel is idle, and with time The shift is reduced by the counter value. During this period, if another forwarding device occupies the channel and the channel switches to a busy state, the forwarding device pauses to reduce the counter value, and then when the channel switches to the idle state again, the counter value starts from the previous pause. The counter value is reduced until the counter value is reduced to 0, and the forwarding device is considered to be competing for the channel, and the multicast data can be transmitted on the channel according to the self-determined data transmission manner.
  • Each forwarding device needs to be broadcasted to the channel before it can send multicast data. This contention process often takes a long time, and the time taken to send the multicast data is too long. For multiple forwarding devices, since multiple forwarding devices can only transmit multicast data on the channel in turn, the efficiency of transmitting multicast data is low.
  • the embodiments of the present disclosure provide a method, an apparatus, a device, and a storage medium for transmitting multicast data, which can solve the problem that the transmission efficiency of the multicast data caused by the contention channel in the related art is too low.
  • the technical solution is as follows:
  • a multicast data sending method includes:
  • the multicast broadcast intra-frequency network MBSFN information is used to indicate the same first data transmission mode, the same first channel, and the same first time point used by the multiple forwarding devices to send the multicast data.
  • the multicast data is received from a control device;
  • the MBSFN information is further used to indicate that the multiple forwarding devices send the wake-up data packet WUP to the site device, and send the same second data transmission when the WUP is sent.
  • the method, the same second channel, and the same second time point, after the acquiring the multicast broadcast intra-frequency network MBSFN information, the method further includes:
  • Sending, by the second data sending manner, the WUP to the at least one site device, and executing the first time point and the first time, on the second time point and the second channel The step of transmitting the multicast data to at least one site device on the channel, so that each of the at least one site device receives the WUP through a configured wake-up radio WUR receiver, and the primary receiver MR is from sleep
  • the state wakes up to an active state and receives the multicast data through the MR.
  • the MBSFN information includes first channel information, first time information, and the first data sending manner, where the first data sending manner includes a physical layer packet format, and sends At least one of an address TA, a receiving address RA, a bandwidth, a guard interval GI, a scrambling seed, a space time block coded STBC flag, and a dual carrier modulated DCM flag;
  • the first channel information is used to indicate the first channel
  • the first time information is used to indicate the first time point
  • the physical layer packet format is used to indicate that the multiple forwarding devices send the The same physical layer packet format used by the multicast data
  • the TA is used to indicate the same TA used by the multiple forwarding devices to send the multicast data
  • the RA is used to instruct the multiple forwarding devices to send
  • the bandwidth is used to indicate the same bandwidth used by the multiple forwarding devices to send the multicast data
  • the GI is used to instruct the multiple forwarding devices to send the
  • the scrambling code seed is used to indicate the same scrambling code seed used by the multiple forwarding devices to send the multicast data
  • the STBC identifier is used to indicate the multiple forwarding devices. Whether the multicast data is sent by using the STBC manner, where the DCM identifier is used to indicate whether the multiple forwarding devices use the DCM to send the multicast data.
  • the method before the acquiring the multicast broadcast intra-frequency network MBSFN information, the method further includes:
  • the device information including at least one of a supported wireless local area network WLAN protocol, an indication of whether to support the STBC, and an indication of whether the DCM is supported, the device information is used to indicate the site The data transmission mode supported by the device;
  • the device statistics information is used to indicate whether there is a site device supporting each WLAN protocol in the site device connected to the forwarding device, whether there is a site device that does not support the STBC, and whether There is at least one of the site devices that do not support the DCM, or the device statistics information is used to indicate the number of site devices supporting each WLAN protocol in the site device to which the forwarding device is connected, and the STBC is not supported. At least one of the number of the site devices and the number of site devices not supporting the DCM, so that the control device determines the MBSFN information according to the device statistics information sent by the multiple forwarding devices, and returns the information to the forwarding device. .
  • the acquiring the multicast broadcast intra-frequency network MBSFN information includes:
  • the device After the device statistics information is sent to the control device, the device receives the MBSFN information returned by the control device, where the MBSFN information is determined by the control device according to the device statistics information sent by the multiple forwarding devices; or
  • connection information sent by the control device, and parsing the connection information to obtain the MBSFN information carried by the connection information, where the connection information is used to indicate that the forwarding device and the control device establish a connection;
  • the MBSFN information includes first time information, where the first time information is used to indicate the first time point, and the acquiring the multicast broadcast intra-frequency network MBSFN information Thereafter, the method further includes:
  • the method further includes:
  • the multicast data is not sent at the first time point.
  • control device is an access point AP
  • the multiple forwarding devices are multiple relay relays connected by the AP
  • the control device is a designated AP of the plurality of APs, and the plurality of forwarding devices are multiple APs of the plurality of APs except the designated AP; or
  • the control device is an access controller AC, and the multiple forwarding devices are multiple APs connected by the AC.
  • the second aspect provides a multicast data sending method, which is applied to a control device, where the method includes:
  • the MBSFN information is used to indicate the same first data transmission manner, the same first channel, and the same first time point used by the plurality of forwarding devices to send the multicast data;
  • the MBSFN information includes a first channel information, a first time information, and a first data sending manner, where the first data sending manner includes a physical layer packet format and a sending address TA Receiving at least one of an address RA, a bandwidth, a guard interval GI, a scrambling seed, a space time block coded STBC identifier, and a dual carrier modulated DCM flag;
  • the MBSFN information is further used to indicate that the multiple forwarding devices send the wake-up data packet WUP to the site device, the same second data transmission mode used when transmitting the WUP, the same second channel, and the same second time point.
  • the first channel information is used to indicate the first channel
  • the first time information is used to indicate the first time point
  • the physical layer packet format is used to instruct the multiple forwarding devices to send the The same physical layer packet format used by the multicast data
  • the TA is used to indicate the same TA used by the multiple forwarding devices to send the multicast data
  • the RA is used to indicate that the multiple forwarding devices send the The same RA used by the multicast data
  • the bandwidth is used to indicate the same bandwidth used by the multiple forwarding devices to send the multicast data
  • the GI is used to instruct the multiple forwarding devices to send the group.
  • the scrambling code seed is used to indicate the same scrambling code seed used by the multiple forwarding devices to send the multicast data
  • the STBC identifier is used to indicate that the multiple forwarding devices are
  • the multicast data is sent in the manner of the STBC
  • the DCM identifier is used to indicate whether the multiple forwarding devices use the DCM to send the multicast data.
  • the method before the determining the multicast broadcast intra-frequency network MBSFN information, the method further includes:
  • Receiving device statistics information sent by each of the plurality of forwarding devices where the device statistics information is used to indicate whether a site device supporting each WLAN protocol exists in the site device connected to the corresponding forwarding device, and whether there is an unsupported device Describe at least one of a site device of the STBC and a site device that does not support the DCM, or the device statistics information is used to indicate the number of site devices supporting each WLAN protocol in the site device to which the corresponding forwarding device is connected, Not supporting at least one of the number of site devices of the STBC and the number of site devices not supporting the DCM;
  • the sending the MBSFN information and the multicast data to the multiple forwarding devices includes:
  • connection information Carrying the MBSFN information in the connection information, and sending the connection information and the multicast data to the multiple forwarding devices, where the connection information is used to indicate each of the multiple forwarding devices
  • the control device establishes a connection.
  • control device is an access point AP
  • the multiple forwarding devices are multiple relay relays connected by the AP
  • the control device is a designated AP of the plurality of APs, and the plurality of forwarding devices are multiple APs of the plurality of APs except the designated AP; or
  • the control device is an access controller AC, and the multiple forwarding devices are multiple APs connected by the AC.
  • a multicast data transmitting apparatus is provided, and the multicast data transmitting apparatus is configured to perform the method provided by the above first aspect.
  • a multicast data transmitting apparatus wherein the multicast data transmitting apparatus is configured to perform the method provided by the second aspect.
  • a forwarding device comprising a processor and a memory, wherein the memory stores at least one instruction, the instruction being loaded and executed by the processor to implement the foregoing first aspect method.
  • a control device comprising a processor and a memory, the memory storing at least one instruction loaded by the processor and executed to implement the second aspect provided above method.
  • a computer readable storage medium having stored therein at least one instruction loaded by a processor and executed to implement the method provided by the first aspect above.
  • a computer readable storage medium having stored therein at least one instruction loaded by a processor and executed to implement the method provided by the second aspect above.
  • a computer program product comprising instructions which, when run on a forwarding device, enable the forwarding device to implement the method provided by the first aspect above.
  • a computer program product comprising instructions which, when run on a control device, enable the control device to implement the method provided by the second aspect above.
  • the multiple forwarding devices acquire the same MBSFN information, and according to the same MBSFN information, the same data transmission mode can be used to send the group at the same time point and on the same channel. Broadcast data, no interference between different forwarding devices, and no competition channel is required for each forwarding device, which shortens the time taken to send multicast data and improves the efficiency of transmitting multicast data. For multiple forwarding devices, since the multiple forwarding devices simultaneously transmit data on the channel without transmitting in turn, the efficiency of transmitting the multicast data is also improved.
  • multiple forwarding devices can listen to the state of the channel, and when the channel is in an idle state, the multicast data is sent at the same time point, and when the channel is in a busy state, the multicast data is not sent at the same time point, thereby avoiding the channel.
  • the other data on the network interferes with the transmission process of the multicast data, preventing signal collision between cells.
  • the data transmission mode supported by the different site devices may be different, the data transmission mode supported by all the site devices is used as the data transmission mode for transmitting the multicast data, or the data transmission mode supported by the specified number of site devices is exceeded.
  • As a data transmission method for transmitting multicast data it is ensured that as many site devices as possible successfully receive multicast data, and the efficiency of transmitting multicast data is improved.
  • the multiple forwarding devices use the same data transmission mode, channel, and time point to transmit the WUP, and no interference occurs between different forwarding devices, and each forwarding device does not need to contend for the channel, which shortens the time taken for sending the WUP. Improve the efficiency of sending WUPs. For multiple forwarding devices, since the multiple forwarding devices simultaneously send WUPs on the channel without transmitting in turn, the efficiency of transmitting the WUP is improved.
  • FIG. 1 is a schematic structural diagram of a data communication system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a data communication system according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of a data communication system according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a data communication system according to an embodiment of the present disclosure.
  • FIG. 5 is a flowchart of a method for sending multicast data according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a multicast data transmission process according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a multicast data transmission process according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a multicast data transmission process according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a multicast data transmission process according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a method for transmitting multicast data according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram of a multicast data transmission process according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram of a multicast data transmission process according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a multicast data sending apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of a multicast data sending apparatus according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a forwarding device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of a control device according to an embodiment of the present disclosure.
  • FIG. 1 there is shown a block diagram of a data communication system including a control device 101, a plurality of forwarding devices 102, and a plurality of site devices 103.
  • the control device 101 is connected to the plurality of forwarding devices 102, and each forwarding device 102 is connected to at least one site device 103.
  • the control device 101 is configured to send the same multicast data to multiple forwarding devices 102.
  • Each of the multiple forwarding devices 102 is configured to receive multicast data at the same time point and on the same channel.
  • the multicast data is transmitted to the at least one site device 103 by using the same data transmission mode, and each of the at least one site device 103 is configured to receive the multicast data.
  • the multicast data may be voice data, video data, or text data.
  • the site device 103 may be a mobile phone, a computer, or a tablet computer, and the control device and the forwarding device may be different types of devices in different scenarios.
  • the control device 101 is an access point (AP), and the forwarding device 102 is a relay (relay) of the AP connection, such as Relay1, Relay2 or Relay3, and the site device 103 is
  • the station to which the Relay is connected (Station, STA), for example, the station device to which Relay 1 is connected is STA11, STA12 or STA13.
  • the AP can be a router, a gateway, a bridge, or a base station, and the relay can be a repeater or a terminal.
  • the control device 101 is a designated AP among a plurality of APs, for example, AP1, the forwarding device 102 is a plurality of APs, for example, AP1, AP2, AP3, and AP4, and the site device 103 is an AP.
  • the connected STA for example, the site device to which the AP1 is connected is STA11, STA12, or STA13.
  • the designated AP may be the primary AP of the multiple APs, and the other APs are the secondary APs of the primary AP.
  • the primary AP may be determined by multiple APs through negotiation or by an access controller (AC). Or the designated AP is any one of the multiple APs.
  • the control device 101 is an AC
  • the AC may be a switch, a gateway, a server, etc.
  • the forwarding device 102 is an AP connected to the AC, for example, AP1, AP2, or AP3
  • the site device 103 is an AP.
  • the connected STA for example, the site device to which the AP1 is connected is STA11, STA12, or STA13.
  • the data communication system provided by the embodiment of the present disclosure is applied to a Wireless Local Area Network (WLAN) and supports protocols of the 802.11 series, including but not limited to the 802.11 protocol, the 802.11a protocol, the 802.11b protocol, the 802.11g protocol, and the 802.11n. Protocol, 802.11ac protocol, 802.11ax, 802.11ad, 802.11ay, 802.11ah protocol, etc.
  • the data communication system can transmit the same data from multiple receivers in one transmission direction, and can support various application scenarios such as webcasting, online conference, and online teaching. For example, in a conference room, classroom, or stadium, the organizer of the presenter or event can apply the data communication system to send video or other data to multiple listeners.
  • the process of transmitting multicast data for multiple forwarding devices allows only one forwarding device to occupy a channel at any time point, and each forwarding device performs carrier sensing multiple access/collision avoidance (Carrier Sense Multiple Access with Collision) Avoidance, CSMA/CA) protocol, competing for channels and transmitting multicast data on the channel in turn.
  • carrier sensing multiple access/collision avoidance Carrier Sense Multiple Access with Collision
  • CSMA/CA Carrier Sense Multiple Access with Collision
  • multiple forwarding devices may send multicast data by using the same time point, the same channel, and the same data transmission manner. Since the time at which the multicast data is sent and the data transmission mode are the same, no interference is caused between the different forwarding devices, and since the plurality of forwarding devices simultaneously transmit data on the channel without transmitting in turn, the sending group is improved. The efficiency of broadcasting data.
  • FIG. 5 is a flowchart of a method for transmitting multicast data according to an exemplary embodiment.
  • the method may be applied to the data communication system.
  • the interaction entity includes a control device, a forwarding device, and a forwarding device, and the method includes the following steps. :
  • the site device sends the device information to the forwarding device.
  • the device information is used to indicate the data transmission mode supported by the site device, including the supported WLAN protocol, whether to support the indication of Space Time Block Coding (STBC), and whether to support Dual Carrier Modulation (DCM). At least one of the indications can be as shown in Table 1 below.
  • the device information includes a field corresponding to the WLAN protocol, and the field is used to carry the identifier of the supported WLAN protocol, such as the name and number of the WLAN protocol.
  • the WLAN protocol may be the 802.11g protocol, the 802.11n protocol, the 802.11ac protocol, or the 802.11ax protocol.
  • the site device has backward compatibility, that is, if the site device supports a certain WLAN protocol, the site device also supports other WLAN protocols whose publishing time is earlier than the WLAN protocol, in order to reduce the data amount of the device information, in the WLAN
  • the field corresponding to the protocol may only carry the identifier of the WLAN protocol with the latest release time of all the WLAN protocols supported by the site device, to indicate that the site device supports the WLAN protocol carried by the field and the WLAN that is published earlier than the field.
  • Other WLAN protocols for the protocol may be used to indicate that the site device supports the WLAN protocol carried by the field and the WLAN that is published earlier than the field.
  • STBC refers to the data to be sent separately in the two dimensions of the spatial domain and the time domain.
  • the indication of whether the STBC is supported is used to indicate whether the site device supports STBC.
  • the device information may include a field corresponding to the indication of whether the STBC is supported, where the first identifier indicates that the site device supports the STBC indication, and the data sent by the STBC may be received, and the second identifier indicates that the site device does not support the STBC.
  • the indication cannot receive data sent in STBC mode.
  • the first identifier and the second identifier are corresponding identifiers, for example, the first identifier is 1, the second identifier is 0, or the first identifier is Y, and the second identifier is N.
  • DCM refers to decomposing data into two and separately modulating two carrier signals, and whether the indication of DCM support is used to indicate whether the site device supports DCM.
  • the device information may include a field corresponding to the indication of whether the DCM is supported, where the first identifier indicates that the site device supports the DCM, and the data sent by the DCM may be received, and the second identifier indicates that the site device does not support the DCM. The indication that the data sent by DCM cannot be received.
  • the forwarding device receives device information of the connected site device, and obtains device statistics.
  • the device statistics may be used to indicate whether there is a site device supporting a certain data transmission mode in the site device connected to the forwarding device, or whether the site device indicating the connection of the forwarding device is not supported.
  • a site device of some kind of data transmission method may be used to indicate whether there is a site device supporting a certain data transmission mode in the site device connected to the forwarding device, or whether the site device indicating the connection of the forwarding device is not supported.
  • the device statistics are used to indicate whether the site device connected to the forwarding device exists to support each WLAN protocol. At least one of a site device, a site device that does not support STBC, and a site device that does not support DCM.
  • the device statistics information includes at least one field corresponding to at least one WLAN protocol.
  • the first identifier indicates that there is a site device supporting the corresponding WLAN protocol in each field
  • the second The identifier indicates that there is no site device supporting the corresponding WLAN protocol. Therefore, for a field corresponding to a certain WLAN protocol, when at least one of the site devices connected to the forwarding device supports the WLAN protocol, the forwarding device adds a first identifier to the field, and the site device connected to the forwarding device does not support the In the WLAN protocol, the forwarding device adds a second identity to the field.
  • the forwarding device is connected to 100 site devices, if only one of the 100 site devices supports the 802.11ax protocol, add 1 to the field corresponding to the 802.11ax protocol, if none of the 100 site devices When the 802.11ax protocol is supported, 0 is added to the field corresponding to the 802.11ax protocol.
  • the device statistics information may be as shown in Table 2 below, and includes four fields corresponding to the WLAN protocols of the 802.11g protocol, the 802.11n protocol, the 802.11ac protocol, and the 802.11ax protocol, respectively.
  • the "11g STA present" field is a field corresponding to the 802.11g protocol.
  • the identifier 0 in the field indicates that there is no site device supporting the 802.11g protocol, and the "11n STA present" field is a field corresponding to the 802.11n protocol.
  • the identifier 1 in the field indicates that there is a site device supporting the 802.11n protocol.
  • the WLAN protocol with the latest supported release time in the site device indicating the forwarding device connection in each field is the site device of the corresponding WLAN protocol, and the forwarding device connection is represented by the second identifier.
  • the site device that supports the latest WLAN protocol is the site device of the corresponding WLAN protocol. Therefore, for a field corresponding to a certain WLAN protocol, when the WLAN protocol with the latest supported release time exists in the site device connected to the forwarding device as the site device of the WLAN protocol, the forwarding device adds the first identifier to the field, when forwarding When the latest WLAN protocol supported by the device connected by the device is not the WLAN protocol, a second identifier is added to the field.
  • the 100 site devices add 1 to the 802.11ax protocol corresponding field if the WLAN protocol with the latest release time supported by the site device is 802.11ax. If the latest WLAN protocol supported by the 100 site devices is not the 802.11ax protocol, add 0 to the field corresponding to the 802.11ax protocol.
  • the field corresponding to the WLAN protocol may only carry the identifier of the WLAN protocol with the latest release time in the WLAN protocol supported by the site device, and does not carry the identifier of other WLAN protocols,
  • a field corresponding to the WLAN protocol if the WLAN protocol with the latest release time is the site device of the corresponding WLAN protocol, the device information of the site device may be determined according to whether the device information of the site device includes the identifier of the corresponding WLAN protocol. That is, when the device information of the site device connected to the forwarding device includes the identifier of the corresponding WLAN protocol, the forwarding device adds the first identifier to the field, and the device information of the site device connected to the forwarding device does not include the corresponding WLAN protocol. When identifying, add a second identifier to the field.
  • the device statistics information may be as shown in Table 3 below, and includes four fields corresponding to the WLAN protocols of the 802.11g protocol, the 802.11n protocol, the 802.11ac protocol, and the 802.11ax protocol, respectively.
  • the "11g STA present" field is a field corresponding to the 802.11g protocol, and the identifier 0 in the field indicates that there is no supported site with the latest WLAN protocol of the 802.11g protocol, or a site device supported release.
  • the latest WLAN protocol is not the 802.11g protocol.
  • the device statistics information includes a field corresponding to the STBC, where the first identifier indicates that there is a site device supporting the STBC, and the second identifier indicates that there is no site device supporting the STBC. Therefore, when at least one of the site devices connected to the forwarding device does not support the STBC, the forwarding device adds a first identifier to the field, and when the site device connected to the forwarding device supports the STBC, adds a second identifier to the field. For example, if the forwarding device is connected to 100 site devices, if only one of the 100 site devices does not support STBC, add 1 to the corresponding field of the STBC. If the 100 site devices support STBC, then Add 0 to the field corresponding to STBC.
  • the device statistics information may be as shown in Table 4 below.
  • the “STBC Incapable STA present” is a field corresponding to the STBC, and the identifier 0 in the field indicates that at least one site device supports the STBC.
  • the device statistics information includes a field corresponding to the DCM, where the first identifier indicates that the site device supporting the DCM exists, and the second identifier indicates that the site device supporting the DCM does not exist. Therefore, when at least one of the site devices connected to the forwarding device does not support the DCM, the forwarding device adds a first identifier to the field, and when the site device connected to the forwarding device supports the DCM, adds a second identifier to the field. For example, if the forwarding device is connected to 100 site devices, if only one of the 100 site devices does not support DCM, add 1 to the corresponding field of the DCM. If the 100 site devices support DCM, then Add 0 to the field corresponding to DCM.
  • the device statistics information may be as shown in Table 5 below.
  • the “DCM Incapable STA present” is a field corresponding to the DCM, and the identifier 0 in the field indicates that at least one site device supports the DCM.
  • the device statistics information may also be used to indicate the number of site devices that the site device connected to the forwarding device supports a certain data transmission mode, or the site device connected to the forwarding device does not support a certain data transmission mode. The number of site devices.
  • the device statistics are used to indicate the site supporting each WLAN protocol in the site device connected to the forwarding device. At least one of the number of devices, the number of site devices that do not support STBC, and the number of site devices that do not support DCM.
  • the device statistics include at least one field corresponding to at least one WLAN protocol.
  • the value carried by each field represents the number of site devices supporting the corresponding WLAN protocol. Therefore, for a field corresponding to a certain WLAN protocol, the forwarding device counts the number of site devices supporting the WLAN protocol in the site device, and adds the number of the site devices to the field.
  • the device statistics information may be as shown in Table 6 below, and includes four fields respectively corresponding to the WLAN protocols of the 802.11g protocol, the 802.11n protocol, the 802.11ac protocol, and the 802.11ax protocol.
  • the "11gSTA number" field is a field corresponding to the 802.11g protocol.
  • the value carried by the field is 300, indicating that there are 300 site devices supporting the 802.11g protocol.
  • the value carried by each field indicates that the latest WLAN protocol supported in the site device connected to the forwarding device is the number of site devices of the corresponding WLAN protocol. Therefore, for a field corresponding to a certain WLAN protocol, the forwarding device counts the latest WLAN protocol supported by the site device as the number of site devices of the WLAN protocol, and adds the number of the site devices to the field.
  • the field corresponding to the WLAN protocol may only carry the identifier of the WLAN protocol with the latest release time in the WLAN protocol supported by the site device, and does not carry the identifier of other WLAN protocols,
  • a field corresponding to a certain WLAN protocol when the latest WLAN protocol of the statistically supported release time is the number of site devices of the corresponding WLAN protocol, the number of site devices including the identifier of the corresponding WLAN protocol in the device information may be used as a statistical site device. Number, add the number of device information to this field.
  • the device statistics information may be as shown in Table 7 below, and includes four fields respectively corresponding to the WLAN protocols of the 802.11g protocol, the 802.11n protocol, the 802.11ac protocol, and the 802.11ax protocol.
  • the "11gSTA number" field is a field corresponding to the 802.11g protocol.
  • the field carries a value of 10, indicating that the WLAN protocol with the latest release time supported by 10 site devices is the 802.11g protocol.
  • the device statistics include a field corresponding to the STBC, and the value carried by the field indicates the number of site devices that do not support STBC. Therefore, the forwarding device counts the number of site devices in the site device that do not support STBC according to the device information of the site device to which the forwarding device is connected, and adds the number of the site devices to the field.
  • the device statistics may include the following Table 8.
  • the "STBC Incapable STA number" is a field corresponding to the STBC.
  • the value 5 of the field indicates that there are 5 site devices that do not support the STBC.
  • the device statistics include a field corresponding to the DCM, and the value carried by the field indicates the number of site devices that do not support DCM. Therefore, the forwarding device counts the number of site devices in the site device that do not support DCM according to the device information of the site device to which the forwarding device is connected, and adds the number of the site devices to the field.
  • the device statistics may include the following Table 9.
  • the "DCM Incapable STA number" is a field corresponding to the DCM.
  • the value 5 of the field indicates that there are 5 site devices that do not support DCM.
  • the forwarding device sends device statistics information to the control device.
  • This step may specifically include 5031 or 5032:
  • the forwarding device carries device statistics information in an information element of a Medium Access Control (MAC) frame, and sends a MAC frame to the control device.
  • MAC Medium Access Control
  • the MAC frame includes a frame header and a frame body.
  • the frame body includes an information element for carrying information.
  • the information element includes an element identifier, a length of the element identifier, and information about the bearer.
  • the element ID is used to indicate the information element.
  • the forwarding device carries device statistics information in a frame header of the MAC frame, and sends a MAC frame to the control device.
  • the frame header of the MAC frame includes a plurality of control fields, such as an Aggregated Control (A-control) field located in a High Throughput Control (HT Control) field.
  • the control field includes a control identifier and a bearer.
  • the control identifier is used to indicate the type of information carried by the control field.
  • the forwarding device and the control device can agree that the first control identifier indicates that the control field carries device statistics, and the second control The identifier indicates that the control field carries the MBSFN information.
  • the control field may be as shown in Table 11 below.
  • the control device receives the device statistics information sent by the multiple forwarding devices, and determines the multicast broadcast single frequency network (MBSFN) information according to the device statistics information of the multiple forwarding devices.
  • MBSFN multicast broadcast single frequency network
  • the control device determines MBSFN information, which is used to indicate that multiple forwarding devices use the same multicast data when sending multicast data according to a unified data transmission mode, channel, and time point in the subsequent process.
  • the first data transmission mode, the same first channel, and the same first time point, the process of determining the MBSFN information includes the following steps 5041-5043:
  • the control device may acquire a plurality of pre-configured channels, select one channel as the first channel, and indicate the first channel by using MBSFN information, where the first channel may refer to a frequency band, a subcarrier, and the like.
  • the control device may select any time point after sending the multicast data to the site device as the first time point, and indicate the first time point by using the MBSFN information.
  • Manner 1 Determine the data transmission mode supported by the site devices connected to multiple forwarding devices, and use the data transmission mode as the first data transmission mode.
  • Manner 2 The data transmission mode supported by more than the specified number of site devices in the site devices connected to the plurality of forwarding devices is determined, and the data transmission mode is used as the first data transmission mode.
  • the data transmission method includes a physical layer packet format, a Transmit Address (TA), a Receiving Address (RA), a bandwidth, a Guard Interval (GI), a Scramble Seed, whether to use STBC and Whether at least one of the DCMs is used, the control device determines the specific content of the at least one data transmission mode, and the first data transmission mode that needs to be adopted when the forwarding device sends the multicast data is obtained.
  • TA Transmit Address
  • RA Receiving Address
  • GI Guard Interval
  • Scramble Seed a Scramble Seed
  • each WLAN protocol includes a supported physical layer packet format
  • the 802.11g protocol supports Non-High Throughput or Non-HT Duplicate (Non-HT) formats.
  • the 802.11n protocol supports the High Throughput (HT) format
  • the 802.11ac protocol supports the Very High Throughput (VHT) format
  • the 802.11ax protocol supports the High Efficient (HE) format
  • the HE format is divided. It is a single-user format, a multi-user format, a trigger-based frame format, and an extended distance format.
  • the correspondence between the site device and the supported physical layer packet format can be as shown in Table 13 below.
  • the old site device may not support the physical layer packet format indicated by the WLAN protocol with a late release time.
  • Physical layer grouping format In order to balance the overall situation, it is ensured that most site devices can support selection. Physical layer grouping format.
  • the stronger the robustness of the selected physical layer packet format the stronger the anti-interference ability of the process of transmitting multicast data.
  • a robust physical layer packet format should be selected.
  • the physical layer packet format in the WLAN protocol with the late release time is generally more robust. Therefore, the physical layer packet format in the WLAN protocol with a late release time can be selected as much as possible, for example, the extended distance in the HE format or the HE format is selected. format.
  • the control device may determine the WLAN protocol supported by the site device according to the device statistics information sent by the multiple forwarding devices, and determine the physical layer packet format supported by the site device. For the foregoing manner 1, the physical layer grouping format supported by the station equipment is selected from multiple physical layer grouping formats, and the most robust physical layer grouping format is further selected from the selection result. Or, in the foregoing manner, the physical layer grouping format supported by the specified number of site devices is selected from multiple physical layer packet formats, and the most robust physical layer packet format is further selected from the selection result.
  • a part of the site device may not support the physical layer packet format, and then the subsequent forwarding device sends the physical layer packet format to the site device.
  • These multicast devices cannot successfully receive multicast data when multicasting data. Therefore, after transmitting the multicast data, the forwarding device separately sends the multicast data to the part of the site devices according to the physical layer packet format supported by the part of the site devices.
  • the TA is used to indicate the address of the sender of the multicast data.
  • the control device is the source of the multicast data, and the address of the control device can be used as the TA.
  • the address of the control device may be a MAC address of the control device, a basic service set identifier (BSS ID), or a source address (Sourcing Address, SA) of the cell covered by the control device.
  • the RA is used to indicate the address of the receiver of the multicast data.
  • the device when multiple forwarding devices send multicast data to the site device in the subsequent process, the device sends the multicast data to the broadcast MAC address.
  • Data RA is the broadcast MAC address.
  • Bandwidth refers to the channel bandwidth occupied when transmitting multicast data on a channel.
  • the control device can determine the bandwidth according to the size of the multicast data and the demand for the transmission rate. For example, if the multicast data is large, a larger bandwidth is used, or if it is required to transmit multicast data at a faster speed, a larger bandwidth is used.
  • Scrambling seeds are used for the scrambling process and the descrambling process. Specifically, in order to ensure the security of data transmission, the sender scrambles the original data through the scrambling code seed and sends the scrambled data. Correspondingly, the receiver will descramble the scrambled data through the scrambling seed to obtain the original data.
  • the control device may store a plurality of scrambling code seeds in advance and select any scrambling code seed.
  • GI refers to the time interval between sending two adjacent data blocks, which may be 3.2 ⁇ s, 0.8 ⁇ s, or 0.4 ⁇ s.
  • the data is divided into multiple data blocks for transmission in space, which is affected by the multipath environment.
  • the front end of the latter data block may arrive faster than the end of the previous data block, resulting in two data blocks. Interference is formed, that is, inter-symbol interference.
  • the sender inserts a blank time interval after the transmitted data block, and then transmits the next data block after the time interval, which is the GI.
  • the control device may select a larger GI, for example, selecting 3.2 ⁇ s.
  • the control device can determine whether the site device supports STBC according to multiple device statistics. For the first mode described above, when the site devices support STBC, the control device determines to adopt the STBC. When at least one of the site devices does not support STBC, the control device determines not to use STBC. Or, in the foregoing manner 2, when more than a specified number of site devices in the site device support the STBC, the control device determines to adopt the STBC. When the site device supporting the STBC in the site device does not exceed the specified number, the control device determines not to adopt the STBC.
  • the control device determines to adopt STBC, there may be cases where some site devices do not support STBC.
  • the subsequent forwarding device uses the STBC to send multicast data to these site devices, the site devices cannot successfully receive the multicast data. Therefore, after transmitting the multicast data, the forwarding device sends the multicast data to the part of the site devices separately according to the data transmission mode without using the STBC.
  • the control device can determine whether the site device supports DCM based on multiple device statistics. For the first mode described above, when the site devices support DCM, the control device determines to adopt the DCM. When at least one of the site devices does not support DCM, the control device determines not to use DCM. Or, in the foregoing manner, when the specified number of site devices in the site device support the DCM, the control device determines to adopt the DCM. When the site device supporting the DCM in the site device does not exceed the specified number, the control device determines not to adopt the DCM.
  • the control device determines to adopt the DCM, it may happen that some of the site devices do not support the DCM.
  • the subsequent forwarding device uses DCM to send multicast data to these site devices, the site devices cannot successfully receive the multicast data. Therefore, after transmitting the multicast data, the forwarding device sends the multicast data to the part of the site devices separately according to the data transmission mode that does not use DCM.
  • the control device may generate MBSFN information, where the MBSFN information includes first channel information, first time information, first data transmission mode, and first data transmission mode. At least one of a physical layer packet format, a TA, an RA, a bandwidth, a GI, a scrambling seed, an STBC identifier, and a DCM identifier.
  • the first channel information is used to indicate the first channel, and may be the name, number, and the like of the first channel, and may be carried in a certain field in the MBSFN information.
  • the first time information may carry a specified time interval, and determine that the first time point is a time point after the specified time interval elapses after the receiving device receives the multicast data; or the first time information may carry the specified time interval to determine the first time.
  • the time point is a time point when the forwarding device enters the synchronization frame and enters the specified time interval; or the first time information may carry the first time point.
  • the first time information may be carried in a certain field in the MBSFN information, for example, in the "Tx time" field.
  • the STBC identifier may be carried in a certain field in the MBSFN information.
  • the first identifier indicates that the forwarding device sends the multicast data by using the STBC
  • the second identifier indicates that the forwarding device does not use the STBC when sending the data. Therefore, when the control device determines to adopt the STBC, the STBC identifier is the first identifier in the generated MBSFN information, and when it is determined that the STBC is not used, the STBC identifier is the second identifier in the generated MBSFN information.
  • the DCM identifier may be carried in a certain field in the MBSFN information.
  • the first identifier indicates that the forwarding device uses the DCM when transmitting the multicast data
  • the second identifier indicates that the forwarding device does not use the DCM when sending the data. Therefore, when the control device determines to adopt the DCM, the DCM identifier is the first identifier in the generated MBSFN information, and when it is determined that the DCM is not adopted, the DCM identifier is the second identifier in the generated MBSFN information.
  • the control device sends MBSFN information and multicast data to multiple forwarding devices.
  • this step can be divided into the following steps 5051-5053:
  • the control device carries the MBSFN information in the multicast data, and sends the multicast data carrying the MBSFN information to the multiple forwarding devices.
  • the multicast data may be a MAC frame
  • the control device may carry the MBSFN information in the information element of the MAC frame, and the information element may be as shown in Table 14 below.
  • the control device may carry MBSFN information in a control field of the MAC frame header, and the control field may be as shown in Table 15 below:
  • the control device carries the MBSFN information in the beacon frame, and sends the beacon frame and the multicast data to the multiple forwarding devices.
  • the control device may first send a beacon frame to the forwarding device, and after the forwarding device receives the beacon frame to obtain the MBSFN information, the control device sends the multicast data to the forwarding device.
  • the beacon frame also called a beacon frame, is a type of MAC frame that the control device periodically sends to the forwarding device.
  • the beacon frame By carrying the MBSFN information in the beacon frame, the effect of periodically notifying the forwarding device MBSFN information can be achieved.
  • the control device carries the MBSFN information in the connection information, and sends the connection information and the multicast data to the multiple forwarding devices.
  • the control device may first send the connection information to the forwarding device. After the forwarding device receives the connection information and obtains the MBSFN information, the control device sends the multicast data to the forwarding device.
  • the control device When the forwarding device establishes a connection with the control device, the control device sends connection information to the forwarding device, where the connection information is used to indicate that the forwarding device establishes a connection with the control device. After the forwarding device receives the connection information, it can establish a connection with the control device and learn the MBSFN information.
  • the multiple forwarding devices receive the multicast data and obtain the MBSFN information.
  • the forwarding device may receive the MBSFN information sent by the control device.
  • the step of receiving the MBSFN information may include any one of the following steps 5061-5063 based on different sending manners of the MBSFN information in the foregoing step 505:
  • the forwarding device parses the multicast data to obtain MBSFN information carried by the multicast data.
  • the forwarding device may acquire the MBSFN information from the received multicast data, that is, obtain the MBSFN information from the information element or the frame header of the MAC frame.
  • the forwarding device receives the beacon frame sent by the control device, and parses the beacon frame to obtain MBSFN information carried by the beacon frame.
  • This step 5062 corresponds to the above step 5052.
  • the forwarding device obtains the MBSFN information carried in the beacon frame
  • the MBSFN information may be stored. After that, when the forwarding device receives the multicast data, the stored MBSFN information can be obtained.
  • the forwarding device receives the connection information sent by the control device, and parses the connection information to obtain the MBSFN information carried by the connection information.
  • This step 5063 corresponds to the above step 5053.
  • the forwarding device obtains the MBSFN information carried in the connection information
  • the MBSFN information may be stored. After that, when the forwarding device receives the multicast data, the stored MBSFN information can be obtained.
  • control device may use any one of the foregoing steps 5051-5053 to return the MBSFN information to the forwarding device, so as to forward the device. Receive MBSFN information.
  • the forwarding device may directly obtain pre-stored default MBSFN information, which may be set by the developer in the forwarding device. Then, the forwarding device and the control device do not need to perform the above steps 501-506, but directly send the multicast data to the multiple forwarding devices by the control device, and the forwarding device receives the multicast data and obtains the default MBSFN information.
  • the plurality of forwarding devices send the multicast data to the at least one site device by using the first data sending manner at the first time point and the first channel.
  • each of the plurality of forwarding devices parses the MBSFN information, obtains the first time information, and determines the first time point by using the first time information.
  • the process of determining the first point in time may include any of the following steps 5071-5073:
  • the first time information carries a specified time interval
  • the forwarding device may obtain the specified time interval carried in the first time information, and the time point after the specified time interval is received after receiving the multicast data is used as the first time. Time point.
  • the forwarding device starts timing when receiving the multicast data. After the specified time interval elapses, it is determined that the first time point is reached, and the multicast data is sent.
  • the specified time interval may be a Short Inter-Frame Space (SIFS) or a Point Coordination Function Inter-Frame Space (PIFS).
  • the specified time interval is PIFS
  • the control device is an AP
  • the multiple forwarding devices are Relay1, Relay2, and Relay3.
  • the schematic diagram of the multicast data transmission process can be as shown in Figure 6.
  • the forwarding device may receive the synchronization frame sent by the control device, and use the time point after the specified time interval after receiving the synchronization frame as the first time point.
  • the control device sends the multicast data to the forwarding device
  • the synchronization device sends a synchronization frame to the forwarding device.
  • the forwarding device receives the synchronization frame, it starts to start timing. After the specified time interval elapses, it determines that the first time point is reached. Send multicast data.
  • the specified time interval is PIFS
  • the control device is an AP
  • the multiple forwarding devices are Relay1, Relay2, and Relay3.
  • the schematic diagram of the multicast data transmission process can be as shown in Figure 7.
  • the first time point carried in the first time information is directly obtained by the forwarding device, and the multicast data is sent when the time reaches the first time point.
  • the control device is an AP, and the multiple forwarding devices are respectively Relay1, Relay2, and Relay3.
  • the schematic diagram of the multicast data transmission process can be as shown in FIG.
  • each of the plurality of forwarding devices parses the MBSFN information, obtains the first channel information, and determines the first channel by using the first channel information, that is, the first channel information.
  • the identity of the channel determines the corresponding first channel.
  • the MBSFN information may also instruct the forwarding device to obtain a default first channel, where the default first channel may be a channel used by the control device to send multicast data to the forwarding device.
  • each of the multiple forwarding devices parses the MBSFN information, and obtains a physical layer packet format, TA, RA, bandwidth, GI, scrambling seed, and STBC included in the MBSFN information. At least one of the identification and the DCM identification to determine the first data transmission method.
  • the forwarding device uses the physical layer packet format included in the MBSFN information as a physical layer packet format used for transmitting the multicast data. For example, if the MBSFN information includes the VHT format, it is determined that the multicast data is to be transmitted in the VHT format.
  • the forwarding device may store a default physical layer packet format, and the MBSFN information may indicate that the forwarding device adopts a default physical layer packet format, where the default physical layer packet format may be a physical layer group used by the control device to send multicast data to the forwarding device. format.
  • the forwarding device when the MBSFN information includes the TA and the RA, the forwarding device carries the TA and the RA in the MBSFN information in the multicast data.
  • the MBSFN information may indicate that the forwarding device adopts the default TA and RA, and the forwarding device obtains the MAC address of the control device as the default TA, obtains the broadcast MAC address as the default RA, and carries the default TA and RA in the multicast data. , thereby transmitting multicast data to at least one site device in a broadcast manner.
  • the forwarding device uses the bandwidth included in the MBSFN information as the bandwidth used for transmitting the multicast data.
  • the MBSFN information may indicate that the forwarding device adopts a default bandwidth, which may be a bandwidth used by the control device to send multicast data to the forwarding device.
  • the forwarding device uses the GI included in the MBSFN information as the GI used to send the multicast data.
  • the control device may select a larger GI in order to avoid inter-symbol interference during multicast data transmission and improve robustness. For example, if the determined physical layer packet format is the HE format, it is determined that 3.2us is the GI, and if the determined physical layer packet format is not the HE format, 0.8us is determined as the GI.
  • the MBSFN information may instruct the forwarding device to obtain a default GI, and the default GI may be a GI used by the control device to send multicast data to the forwarding device.
  • the forwarding device uses the scrambling code seed included in the MBSFN information as the scrambling code seed used for transmitting the multicast data.
  • the forwarding device may acquire the scrambling code seed used by the control device to send the multicast data to the forwarding device, and scramble the multicast data.
  • the forwarding device uses the STBC to send the multicast data.
  • the forwarding device does not use the STBC to send the multicast data.
  • the MBSFN information may instruct the forwarding device to determine whether to adopt the STBC according to a default setting. For example, the forwarding device may determine whether the STBC is used when the control device sends the multicast data to the control device. If the control device uses the STBC when transmitting the multicast data to the forwarding device, the forwarding device also uses the STBC when transmitting the multicast data to the site device.
  • the forwarding device uses the DCM to send the multicast data.
  • the DCM identifier is the second identifier, the forwarding device does not use the DCM to send the multicast data.
  • the MBSFN information may instruct the forwarding device to determine whether to adopt the DCM according to a default setting. For example, the forwarding device may determine whether the DCM is used when the control device sends multicast data to the control device. If the control device uses the DCM when transmitting the multicast data to the forwarding device, the forwarding device also uses the DCM when transmitting the multicast data to the site device.
  • the forwarding device assumes the robustness of the multicast data transmission, and the robust parameters are selected by default. For example, for the number of spatial streams used to transmit multicast data, the less the number of spatial streams, the stronger the robustness, so the forwarding device will select 1 as the determined number of spatial streams by default.
  • the forwarding device directly sends multicast data as an example.
  • the forwarding device can listen to the state of the first channel, and when the first channel is in an idle state, at the first time point. And transmitting the multicast data by using the first data transmission manner on the first channel, and if the first channel is in a busy state, not sending the multicast data at the first time point.
  • the data transmission mode of the multicast data is determined by the forwarding device itself.
  • the forwarding device may use a physical carrier sensing mechanism to detect the energy of the first channel.
  • the first channel is determined to be in an idle state, and the first channel has a higher energy.
  • the first channel is in a busy state.
  • the forwarding device may use a virtual carrier sensing mechanism to detect a configured Network Allocation Vector (NAV).
  • NAV Network Allocation Vector
  • the first channel is determined to be in an idle state, and when the detected NAV is not 0, When it is determined, the first channel is in a busy state.
  • the NAV is equivalent to a timer, and is used to indicate the length of time that the first channel is expected to be occupied.
  • the two mechanisms can be combined, that is, when the first channel energy is low and the NAV is detected to be 0, the first channel is determined to be in an idle state.
  • the NAV of each forwarding device may be pre-configured by using an RTS/CTS mechanism.
  • the control device AP1 sends a request to send (RTS) to each of the plurality of forwarding devices (AP2, AP3, AP4, or Relay1, Relay2, and Relay3) before transmitting the multicast data.
  • RTS request to send
  • MU-RTS multiple user request
  • each forwarding device configures the NAV whose initial value is not 0, and returns the allowable transmission to the control device (Clear to Send) (CTS), after the control device receives the CTS, it transmits the multicast data.
  • each forwarding device Before the multicast data is sent, since each forwarding device is preconfigured with a NAV whose initial value is not 0, it is determined that the first channel is in a busy state and does not occupy the first channel transmission data, then when multicast data is to be simultaneously transmitted. There will be no other data being transmitted on the first channel, and the transmission of the multicast data will not be disturbed.
  • a forwarding device when a forwarding device does not configure NAV or needs to configure NAV, it has begun to transmit data on the first channel, or when other devices other than the multiple forwarding devices transmit data on the first channel, This will cause the first channel to be busy. Then, if the forwarding device detects that the first channel is in a busy state, it will compete for the first channel, and then multicast data will be sent after competing to the first channel. Specifically, the forwarding device waits, generates a random counter value when the channel is in an idle state, and decreases the counter value over time.
  • the forwarding device pauses to reduce the counter value, and then when the channel switches to the idle state again, the counter value starts from the previous pause.
  • the counter value is reduced until the counter value is reduced to 0, and the forwarding device is considered to be competing for the channel, and the multicast data can be transmitted on the channel according to the self-determined data transmission manner.
  • Each of the at least one site device receives the multicast data.
  • multiple forwarding devices acquire the same MBSFN information, and according to the same MBSFN information, the same data transmission mode can be used to transmit multicast data at the same time point and on the same channel, and between different forwarding devices. It does not cause interference, and for each forwarding device, there is no need to contend for the channel, which shortens the time taken to send multicast data and improves the efficiency of transmitting multicast data. For multiple forwarding devices, since the multiple forwarding devices simultaneously transmit data on the channel without transmitting in turn, the efficiency of transmitting the multicast data is also improved.
  • multiple forwarding devices can listen to the state of the channel, and when the channel is in an idle state, the multicast data is sent at the same time point, and when the channel is in a busy state, the multicast data is not sent at the same time point, thereby avoiding the channel.
  • the other data on the network interferes with the transmission process of the multicast data, preventing signal collision between cells.
  • the data transmission mode supported by the different site devices is used as the data transmission mode for transmitting the multicast data, or the data transmission mode supported by the specified number of site devices is used as the data transmission mode.
  • the data transmission mode used to send multicast data ensures that as many site devices as possible can successfully receive multicast data, which improves the efficiency of transmitting multicast data.
  • the embodiment of the present disclosure further provides a multicast data sending method, in which multiple forwarding devices can send a WUP by using a unified channel, a time point, and a data sending manner before sending the multicast data, as shown in FIG. 10 . It shows a flowchart of a multicast data sending method, and the method specifically includes the following steps:
  • the site device sends device information to the forwarding device.
  • the device information further includes an indication of whether the WUP is requested, and the device information may include a field corresponding to the indication of whether the WUP is requested, where the first identifier indicates that the site device requests the WUP.
  • the control device needs to send the WUP first and then send the multicast data.
  • the second identifier in the field indicates that the site device does not request the WUP, and the control device can directly send the multicast data without sending the WUP. This field can be as shown in Table 16 below:
  • the forwarding device receives device information of the connected site device, and obtains device statistics.
  • the device statistics include a field corresponding to the WUP to indicate whether there is a site device requesting the WUP or a number of site devices requesting the WUP.
  • the device statistics information includes a field corresponding to the WUP, where the first identifier indicates that the site device that requests the WUP exists, and the second identifier indicates that the site device that requests the WUP does not exist, thereby ensuring the device.
  • the statistical information indicates whether there is a site device requesting a WUP in the site device to which the forwarding device is connected. Therefore, when at least one of the site devices connected to the forwarding device requests the WUP, the forwarding device adds the first identifier to the field, and when the site device connected to the forwarding device does not request the WUP, the forwarding device adds the second identifier to the field. .
  • the forwarding device is connected to 100 site devices, if one of the 100 site devices requests a WUP, add 1 to the field corresponding to the WUP. If the 100 site devices do not request the WUP, then Add 0 to the field corresponding to the WUP.
  • the device statistics information may include the following Table 17, "WUP Indication Request” is a field corresponding to the WUP, and the identifier 1 in the field indicates that there is a site device requesting the WUP.
  • the device statistics information includes a field corresponding to the WUP, and the value carried by the field indicates the number of site devices requesting the WUP. Therefore, the device statistics information indicates the number of site devices requesting the WUP in the site device connected to the forwarding device. Therefore, the forwarding device counts the number of site devices requesting the WUP in the site device according to the site device information of the site device to which the forwarding device is connected, and adds the number of the site devices to the field.
  • the device statistics information may include the following Table 18.
  • the "WUP Indication Request number" field is a field corresponding to the WUP, and the value 20 carried by the field indicates that there are 20 site devices requesting the WUP.
  • the forwarding device sends device statistics to the control device.
  • This step is similar to step 503 above.
  • the control device receives the device statistics information sent by each of the plurality of forwarding devices, and determines the MBSFN information according to the device statistics information of the multiple forwarding devices.
  • the step is similar to the foregoing step 504.
  • the difference is that when the control device determines that the site devices connected to the plurality of forwarding devices request the WUP, or when the control device determines that the forwarding device connected to the plurality of forwarding devices exceeds the specified number of the site devices,
  • the control device determines that the multiple forwarding devices are to send the WUP according to the same second channel, the second time point, and the second data sending manner, and the determined MBSFN information is further used to indicate that the multiple forwarding devices send the WUP to the site device.
  • the same second data transmission method, the same second channel, and the same second time point used when transmitting the WUP.
  • the step of determining the second channel is similar to the step of determining the first channel in the above step 5041.
  • the step of determining the second time point is similar to the step of determining the first time point in the step 5042, and determining the second data transmission mode.
  • the steps of determining the first data transmission mode in the above step 5043 are similar.
  • the MBSFN information determined in this embodiment further includes a WUP identifier, second channel information, second time information, and a second data transmission manner, as compared with the MBSFN information described in the foregoing embodiment of FIG.
  • the WUP identifier may be carried in a field in the MBSFN information, such as the "WUP Needed" field.
  • the WUP identifier indicates that the forwarding device sends the WUP and then sends the multicast data, and the second identifier indicates that the forwarding device does not send the WUP and directly sends the multicast data.
  • the second channel information may be carried in a certain field in the MBSFN information, and is used to indicate the second channel, which may be the name, number, and the like of the second channel.
  • the second time information may be carried in a certain field in the MBSFN information, and the second time information may carry a specified time interval, and determine that the second time point is a time point after the specified time interval elapses after the forwarding device receives the multicast data, or The second time information carries a specified time interval, and determines that the second time point is a time point after the specified time interval elapses after the forwarding device receives the synchronization frame, or the second time information may also carry the second time point.
  • the second data transmission mode includes the physical layer packet format used by the sending WUP, the TA used by the sending WUP, the RA used by the sending WUP, the bandwidth used by the sending WUP, the GI used to send the WUP, and the scrambling seed used by the sending WUP, for indicating Whether the sending of the WUP uses at least one of the STBC's STBC identifier and the DCM flag used to indicate whether the sending of the WUP is DCM.
  • the control device sends MBSFN information and multicast data to multiple forwarding devices.
  • This step is similar to the above step 505, and will not be described herein.
  • the multiple forwarding devices receive the multicast data and obtain the MBSFN information.
  • This step is similar to the above step 506, that is, the forwarding device can receive the multicast data to obtain the MBSFN information, thereby determining the MBSFN information.
  • the beacon frame or the connection information may also be received to obtain the MBSFN information, or the MBSFN information may be stored in advance, and the stored MBSFN information may be acquired when the multicast data is received.
  • the forwarding device parses the MBSFN information and determines that the MBSFN information indicates the second channel and the second time point used when the WUP is sent and the WUP is sent, the forwarding device performs the following step 1007, when the forwarding device determines the MBSFN information indication.
  • step 1007 is not executed, and the following step 1009 is directly executed.
  • the plurality of forwarding devices send the WUP to the at least one site device by using the second data sending manner on the second time point and the second channel.
  • Each of the plurality of forwarding devices parses the second time information in the MBSFN information to determine a second time point.
  • the second time information carries a specified time interval
  • the forwarding device obtains the specified time interval, and the time point after the specified time interval is received after receiving the multicast data is used as the second time point.
  • the forwarding device starts timing when receiving the multicast data. After the specified time interval elapses, it is determined that the second time point is reached. At this time, the WUP is sent, and the specified time interval may be SIFS or PIFS.
  • the second time information carries a specified time interval
  • the forwarding device acquires the specified time interval
  • the time point after the specified time interval is received after receiving the synchronization frame is used as the second time point.
  • the control device sends the multicast data to the forwarding device
  • the synchronization frame is sent to the forwarding device.
  • the forwarding device receives the synchronization frame
  • the timing starts.
  • the second time point is determined. Send a WUP.
  • the second time information directly carries the second time point, and the forwarding device can obtain the second time point without determining by timing.
  • the first point to be described is that the specified time interval carried by the second time information and the specified time interval carried by the first time information may be the same or different, and the specific value is determined according to actual needs.
  • the second point is that the foregoing process uses the MBSFN information to send the WUP and the second channel and the second time point when the WUP is sent.
  • the forwarding device directly sends the WUP as an example.
  • in the MBSFN the forwarding device can listen to the state of the second channel.
  • the second channel is in the idle state, the second time point and the second channel are The multicast data is sent by using the second data transmission method.
  • the second channel is in a busy state, the multicast data is not sent at the second time. In this case, the forwarding device determines whether to send the WUP, and determines the second data transmission mode when determining to send the WUP.
  • Each of the at least one site device receives a WUP through a configured Wake-up Radio (WUR) receiver, and wakes the main receiver (main radio, MR) from a sleep state to an active state.
  • WUR Wake-up Radio
  • the plurality of forwarding devices send the multicast data to the at least one site device by using the first data sending manner at the first time point and the first channel.
  • the control device is an AP, and the plurality of forwarding devices are respectively Relay1, Relay2, and Relay3.
  • the second time information indicates the time point when the PIFS is received after receiving the multicast data, and the first time information carries the first time point.
  • a schematic diagram of the data transmission process can be as shown in FIG.
  • the second time information indicates that the time when the SIFS is received after receiving the multicast data, and the time when the first time information indicates that the synchronization frame is received after the PIFS is received, the schematic diagram of the transmission process of the multicast data may be as shown in FIG. .
  • Each of the at least one site device receives multicast data.
  • the receiving, by the site device, the multicast data actually refers to the MR configured by the site device to receive the multicast data.
  • the MR After receiving the multicast data, the MR enters a deep sleep state to save power.
  • multiple forwarding devices use the same data transmission mode, channel, and time point to send a WUP, and no interference occurs between different forwarding devices, and each forwarding device does not need to contend for a channel, thereby shortening the transmission of the WUP.
  • the time spent increases the efficiency of sending WUPs.
  • the efficiency of transmitting the WUP is improved.
  • FIG. 13 is a schematic structural diagram of a multicast data sending apparatus according to an exemplary embodiment. As shown in FIG. 13, the apparatus includes: an obtaining module 1301 and a sending module 1302.
  • the obtaining module 1301 is configured to obtain the multicast broadcast intra-frequency network MBSFN information, where the MBSFN information is used to indicate the same first data transmission manner, the same first channel, and the same that are used when multiple forwarding devices send multicast data.
  • the multicast data is received from the control device;
  • the sending module 1302 is configured to forward the multicast data to the at least one site device by using the first data sending manner on the first time point and the first channel.
  • multiple forwarding devices acquire the same MBSFN information, and according to the same MBSFN information, the same data transmission mode can be used to transmit multicast data at the same time point and on the same channel, and between different forwarding devices. It does not cause interference, and for each forwarding device, there is no need to contend for the channel, which shortens the time taken to send multicast data and improves the efficiency of transmitting multicast data. For multiple forwarding devices, since the multiple forwarding devices simultaneously transmit data on the channel without transmitting in turn, the efficiency of transmitting the multicast data is also improved.
  • the MBSFN information is further used to indicate that the multiple forwarding devices send the wake-up data packet WUP to the site device, the same second data transmission mode used when transmitting the WUP, and the same second channel. And the same second time point;
  • the sending module 1302 is further configured to send the WUP to the at least one site device by using the second data sending manner on the second time point and the second channel, and performing the first time point and the first The step of transmitting the multicast data to the at least one site device on the channel, so that each of the at least one site device receives the WUP through the configured wake-up radio WUR receiver, and wakes the main receiver MR from the sleep state to Working state, and receiving the multicast data through the MR.
  • the MBSFN information includes first channel information, first time information, and the first data sending manner, where the first data sending manner includes a physical layer packet format, a sending address TA, and a receiving address RA. At least one of a bandwidth, a guard interval GI, a scrambling seed, a space time block coded STBC identity, and a dual carrier modulated DCM identity;
  • the first channel information is used to indicate the first channel
  • the first time information is used to indicate the first time point
  • the physical layer packet format is used to indicate that the multiple forwarding devices use the multicast data.
  • the same physical layer packet format the TA is used to indicate the same TA used by the multiple forwarding devices to send the multicast data
  • the RA is used to indicate the same RA used by the multiple forwarding devices to send the multicast data.
  • the GI is used to indicate the same GI used by the multiple forwarding devices to send the multicast data, where the GI is used to indicate the multiple GIs used by the multiple forwarding devices to send the multicast data.
  • the same scrambling code is used by the forwarding device to send the multicast data.
  • the STBC identifier is used to indicate whether the multiple forwarding devices send the multicast data by using the STBC.
  • the DCM identifier is used to indicate whether the multiple forwarding devices are used.
  • the multicast data is transmitted by the DCM.
  • the device further includes:
  • a receiving module configured to receive device information of the site device connected to the forwarding device, where the device information includes at least one of a supported wireless local area network WLAN protocol, an indication of whether to support the STBC, and an indication of whether the DCM is supported, where the device information is used. Indicates the data transmission method supported by the site device;
  • the sending module 1302 is further configured to send the device statistics information to the control device, where the device statistics information is used to indicate whether the site device supporting the WLAN protocol exists in the site device connected to the forwarding device, and whether the STBC is not supported. At least one of the site device and the site device that does not support the DCM, or the device statistics is used to indicate the number of site devices supporting the WLAN protocol in the site device to which the forwarding device is connected, and the STBC is not supported. At least one of the number of site devices and the number of site devices that do not support the DCM, so that the control device determines the MBSFN information according to the device statistics sent by the multiple forwarding devices, and returns the information to the forwarding device.
  • the acquiring module 1301 is further configured to parse the multicast data to obtain MBSFN information carried by the multicast data;
  • the acquiring module 1301 is further configured to receive a beacon frame sent by the control device, parse the beacon frame, and obtain MBSFN information carried by the beacon frame; or
  • the obtaining module 1301 is further configured to: after sending the device statistics information to the control device, receive the MBSFN information returned by the control device, where the MBSFN information is determined by the control device according to the device statistics information sent by the multiple forwarding devices; or
  • the obtaining module 1301 is further configured to receive the connection information sent by the control device, and parse the connection information to obtain MBSFN information carried by the connection information, where the connection information is used to indicate that the forwarding device establishes a connection with the control device; or ,
  • the obtaining module 1301 is further configured to obtain pre-stored default MBSFN information.
  • the MBSFN information includes first time information, where the first time information is used to indicate the first time point;
  • the obtaining module 1301 is further configured to obtain the specified time interval carried in the first time information, and use the time point of the specified time interval after receiving the multicast data as the first time point; or
  • the obtaining module 1301 is further configured to obtain a specified time interval carried in the first time information, receive a synchronization frame sent by the control device, and use the time point of the specified time interval after receiving the synchronization frame as the first time. Point; or,
  • the obtaining module 1301 is further configured to acquire the first time point carried in the first time information.
  • the sending module 1302 is further configured to: when the first channel is in an idle state, perform the first data sending manner on the first time point and the first channel. The step of transmitting the multicast data to at least one site device;
  • the sending module 1302 is further configured to: when the first channel is in a busy state, send the multicast data at the first time point.
  • control device is an access point AP
  • multiple forwarding devices are multiple relay relays connected by the AP
  • the control device is a designated AP of the plurality of APs, and the plurality of forwarding devices are multiple APs of the plurality of APs except the designated AP; or
  • the control device is an access controller AC, and the plurality of forwarding devices are multiple APs connected by the AC.
  • FIG. 14 is a schematic structural diagram of a multicast data transmitting apparatus according to an exemplary embodiment. As shown in FIG. 14, the apparatus is applied to a control device, where the apparatus includes: a determining module 1401 and a sending module 1402.
  • the determining module 1401 is configured to determine a multicast broadcast intra-frequency network MBSFN information, where the MBSFN information is used to indicate the same first data transmission manner, the same first channel, and the same number that are used when multiple forwarding devices send multicast data. a point in time;
  • the sending module 1402 is configured to send the MBSFN information and the multicast data to the multiple forwarding devices, so that each of the multiple forwarding devices adopts the first data sending manner, and at the first time point The multicast data is sent to the at least one site device on the first channel.
  • multiple forwarding devices acquire the same MBSFN information, and according to the same MBSFN information, the same data transmission mode can be used to transmit multicast data at the same time point and on the same channel, and between different forwarding devices. It does not cause interference, and for each forwarding device, there is no need to contend for the channel, which shortens the time taken to send multicast data and improves the efficiency of transmitting multicast data. For multiple forwarding devices, since the multiple forwarding devices simultaneously transmit data on the channel without transmitting in turn, the efficiency of transmitting the multicast data is also improved.
  • the MBSFN information includes first channel information, a first time information, and a first data sending manner, where the first data sending manner includes a physical layer packet format, a sending address TA, a receiving address RA, and a bandwidth.
  • the first data sending manner includes a physical layer packet format, a sending address TA, a receiving address RA, and a bandwidth.
  • the MBSFN information is further used to indicate that the multiple forwarding devices send the wake-up data packet WUP to the site device, the same second data transmission mode used when transmitting the WUP, the same second channel, and the same second time point.
  • One channel information is used to indicate the first channel
  • the first time information is used to indicate the first time point
  • the physical layer packet format is used to indicate the same physical layer group used by the multiple forwarding devices to send the multicast data.
  • the TA is used to indicate the same TA used by the multiple forwarding devices to send the multicast data
  • the RA is used to indicate the same RA used by the multiple forwarding devices to send the multicast data
  • the bandwidth is used to indicate the The same GI used by the multiple forwarding devices to send the multicast data, where the GI is used to indicate the same GI that the multiple forwarding devices use to send the multicast data, and the scrambling code seed is used to instruct the multiple forwarding devices to send the same GI.
  • the STBC identifier is used to indicate whether the plurality of forwarding devices send the multicast data by using an STBC, where the DCM identifier is used to indicate the multiple The device is made using DCM send the multicast data.
  • the device further includes:
  • a receiving module configured to receive device statistics information sent by each of the plurality of forwarding devices, where the device statistics information is used to indicate whether a site device supporting each WLAN protocol exists in the site device connected to the corresponding forwarding device, and whether the device exists Not supporting at least one of the STBC site device and whether there is a site device that does not support the DCM, or the device statistics is used to indicate the number of site devices supporting each WLAN protocol in the site device to which the corresponding forwarding device is connected, Not supporting at least one of the number of site devices of the STBC and the number of site devices not supporting the DCM;
  • the determining module 1401 is further configured to determine, according to the device statistics information of the multiple forwarding devices, a data sending manner supported by the site device connected to the multiple forwarding devices;
  • the determining module 1401 is further configured to determine the MBSFN information according to a data sending manner supported by the site devices connected by the multiple forwarding devices; or
  • the determining module 1401 is further configured to determine the MBSFN information according to a data transmission manner supported by the specified number of site devices in the site devices connected by the multiple forwarding devices.
  • the sending module 1402 is further configured to: carry the MBSFN information in the multicast data, and send the multicast data that carries the MBSFN information to the multiple forwarding devices; or
  • the sending module 1402 is further configured to carry the MBSFN information in the beacon frame, and send the beacon frame and the multicast data to the multiple forwarding devices; or
  • the sending module 1402 is further configured to carry the MBSFN information in the connection information, and send the connection information and the multicast data to the multiple forwarding devices, where the connection information is used to indicate each of the multiple forwarding devices. Establish a connection with the control device.
  • control device is an access point AP
  • multiple forwarding devices are multiple relay relays connected by the AP
  • the control device is a designated AP of the plurality of APs, and the plurality of forwarding devices are multiple APs of the plurality of APs except the designated AP; or
  • the control device is an access controller AC, and the plurality of forwarding devices are multiple APs connected by the AC.
  • the multicast data sending apparatus provided by the foregoing embodiment sends multicast data
  • only the division of each functional module described above is used for example.
  • the foregoing functions may be assigned different functions according to needs.
  • the module is completed, that is, the internal structure of the control device and the forwarding device are divided into different functional modules to complete all or part of the functions described above.
  • the apparatus for transmitting multicast data and the method for transmitting multicast data provided by the foregoing embodiments are in the same concept. For the specific implementation process, refer to the method embodiment, and details are not described herein again.
  • FIG. 15 is a schematic structural diagram of a forwarding device according to an embodiment of the present disclosure.
  • the forwarding device includes: a receiver 1501, a transmitter 1502, a memory 1503, and a processor 1504.
  • the receiver 1501 and the transmitter 1502 And the memory 1503 is respectively connected to the processor 1504.
  • the memory 1503 stores at least one instruction
  • the processor 1504 is configured to load and execute the at least one instruction to implement an operation performed by the forwarding device in the foregoing embodiment.
  • FIG. 16 is a schematic structural diagram of a control device according to an embodiment of the present disclosure.
  • the control device includes: a receiver 1601, a transmitter 1602, a memory 1603, and a processor 1064.
  • the receiver 1601 and the transmitter 1602 And the memory 1603 is respectively connected to the processor 1604.
  • the memory 1603 stores at least one instruction
  • the processor 1604 is configured to load and execute the at least one instruction to implement an operation performed by the control device in the above embodiment.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores at least one instruction loaded by a processor and executed to implement the multicast data sending method in the foregoing embodiment.
  • the operations performed by the forwarding device for example, the computer readable storage medium may be a read-only memory (ROM), a random access memory (RAM), a CD-ROM, a magnetic tape, a floppy disk, and optical data. Storage devices, etc.
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores at least one instruction loaded by a processor and executed to implement the multicast data sending method in the foregoing embodiment.
  • the operations performed by the control device for example, the computer readable storage medium may be a ROM, a RAM, a CD-ROM, a magnetic tape, a floppy disk, and an optical data storage device.
  • Embodiments of the present disclosure also provide a computer program product comprising instructions that, when run on a control device, enable the control device to perform the operations performed by the control device in the multicast data transmission method in the above embodiments.
  • the embodiment of the present disclosure further provides a computer program product comprising instructions, which when executed on a forwarding device, enable the forwarding device to implement the operations performed by the forwarding device in the multicast data transmitting method in the above embodiment.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Small-Scale Networks (AREA)

Abstract

本公开提供了一种组播数据发送方法、装置、设备及存储介质,属于网络技术领域。方法包括:获取多播广播同频网MBSFN信息,所述MBSFN信息用于指示多个转发设备发送组播数据时所采用的相同的第一数据发送方式、相同的第一信道及相同的第一时间点,所述组播数据是从控制设备接收到的;在所述第一时间点及所述第一信道上,采用所述第一数据发送方式向至少一个站点设备转发所述组播数据。本公开发送组播数据的过程中,不同转发设备之间不会造成干扰,每个转发设备均无需竞争信道,缩短了发送组播数据所耗费的时间,提高了发送组播数据的效率。多个转发设备无需轮流发送,也提高了发送组播数据的效率。

Description

组播数据发送方法、装置、设备及存储介质
本申请要求于2017年6月26日提交中国国家知识产权局、申请号为201710495188.5、发明名称为“组播数据发送方法、装置、设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及网络技术领域,特别涉及一种组播数据发送方法、装置、设备及存储介质。
背景技术
随着网络技术的发展,无线局域网(Wireless Local Area Network,WLAN)不断成熟,以其灵活、方便、易于部署等优点为人们的生活带来极大便利,可以广泛应用于网络直播、在线会议、在线授课等场景。在这些场景下需要从一个发送方向多个接收方发送相同的数据,此时可以采用组播的方式发送组播数据。
组播数据的发送过程涉及控制设备、转发设备和站点设备之间的交互。其中,控制设备连接多个转发设备,多个转发设备中的每个转发设备连接至少一个站点设备。在组播数据的发送过程中,控制设备会向连接的每个转发设备发送组播数据,每个转发设备接收组播数据并向连接的至少一个站点设备发送组播数据,站点设备接收组播数据。
其中,多个转发设备会采用同一个信道发送组播数据,但是为了避免不同转发设备之间的干扰,在任一时间点只允许一个转发设备占用该信道,因此多个转发设备需要竞争信道。对于每个转发设备来说,转发设备要发送组播数据时,会侦听信道的状态,当信道为繁忙状态则等待,当信道为空闲状态时,生成随机的计数器值,并随着时间的推移减少该计数器值。此期间内如果有其他转发设备占用该信道而导致该信道切换为繁忙状态,则该转发设备暂停减少该计数器值,之后当该信道又切换为空闲状态,则从之前暂停时的计数器值开始继续减少该计数器值,直至当计数器值减为0时,认为该转发设备竞争到该信道,可以按照自行确定的数据发送方式在该信道上发送组播数据。
在实现本公开的过程中,发明人发现相关技术至少存在以下问题:
每个转发设备需要待竞争到信道后才能发送组播数据,该竞争过程往往耗费较长的时间,导致发送组播数据所耗费的时间过长。对于多个转发设备来说,由于多个转发设备只能轮流在信道上发送组播数据,发送组播数据的效率较低。
发明内容
本公开实施例提供了一种组播数据发送方法、装置、设备及存储介质,能够解决相关技术中竞争信道导致组播数据的发送效率过低的问题。所述技术方案如下:
第一方面,提供了一种组播数据发送方法,所述方法包括:
获取多播广播同频网MBSFN信息,所述MBSFN信息用于指示多个转发设备发送组播数据时所采用的相同的第一数据发送方式、相同的第一信道及相同的第一时间点,所述组播 数据是从控制设备接收到的;
在所述第一时间点及所述第一信道上,采用所述第一数据发送方式向至少一个站点设备转发所述组播数据。
在第一方面的第一种可能实现方式中,所述MBSFN信息还用于指示所述多个转发设备向站点设备发送唤醒数据分组WUP、发送所述WUP时所采用的相同的第二数据发送方式、相同的第二信道及相同的第二时间点,所述获取多播广播同频网MBSFN信息之后,所述方法还包括:
在所述第二时间点及所述第二信道上,采用所述第二数据发送方式向所述至少一个站点设备发送所述WUP,执行所述在所述第一时间点及所述第一信道上向至少一个站点设备发送所述组播数据的步骤,以便于所述至少一个站点设备中的每个站点设备通过配置的唤醒无线电WUR接收机接收所述WUP,将主接收机MR从休眠状态唤醒至工作状态,并通过所述MR接收所述组播数据。
在第一方面的第二种可能实现方式中,所述MBSFN信息包括第一信道信息、第一时间信息和所述第一数据发送方式,所述第一数据发送方式包括物理层分组格式、发送地址TA、接收地址RA、带宽、保护间隔GI、扰码种子、空时分组编码STBC标识及双重载波调制DCM标识中的至少一项;
其中,所述第一信道信息用于指示所述第一信道,所述第一时间信息用于指示所述第一时间点,所述物理层分组格式用于指示所述多个转发设备发送所述组播数据所采用的相同物理层分组格式,所述TA用于指示所述多个转发设备发送所述组播数据所采用的相同TA,所述RA用于指示所述多个转发设备发送所述组播数据所采用的相同RA,所述带宽用于指示所述多个转发设备发送所述组播数据所采用的相同带宽,所述GI用于指示所述多个转发设备发送所述组播数据所采用的相同GI,所述扰码种子用于指示所述多个转发设备发送所述组播数据所采用的相同扰码种子,所述STBC标识用于指示所述多个转发设备是否采用STBC的方式发送所述组播数据,所述DCM标识用于指示所述多个转发设备是否采用DCM的方式发送所述组播数据。
在第一方面的第三种可能实现方式中,所述获取多播广播同频网MBSFN信息之前,所述方法还包括:
接收所述转发设备连接的站点设备的设备信息,所述设备信息包括支持的无线局域网WLAN协议、是否支持STBC的指示及是否支持DCM的指示中的至少一项,所述设备信息用于指示站点设备支持的数据发送方式;
向所述控制设备发送设备统计信息,所述设备统计信息用于指示所述转发设备连接的站点设备中是否存在支持每种WLAN协议的站点设备、是否存在不支持所述STBC的站点设备及是否存在不支持所述DCM的站点设备中的至少一项,或者,所述设备统计信息用于指示所述转发设备连接的站点设备中支持每种WLAN协议的站点设备数目、不支持所述STBC的站点设备数目及不支持所述DCM的站点设备数目中的至少一项,以便于所述控制设备根据所述多个转发设备发送的设备统计信息,确定所述MBSFN信息,返回给所述转发设备。
在第一方面的第四种可能实现方式中,所述获取多播广播同频网MBSFN信息,包括:
对所述组播数据进行解析,得到所述组播数据携带的MBSFN信息;或者,
接收所述控制设备发送的信标帧,对所述信标帧进行解析,得到所述信标帧携带的 MBSFN信息;或者,
当向所述控制设备发送设备统计信息后,接收所述控制设备返回的MBSFN信息,所述MBSFN信息由所述控制设备根据所述多个转发设备发送的设备统计信息确定;或者,
接收所述控制设备发送的连接信息,对所述连接信息进行解析,得到所述连接信息携带的MBSFN信息,所述连接信息用于指示所述转发设备和所述控制设备建立连接;或者,
获取预先存储的默认的MBSFN信息。
在第一方面的第五种可能实现方式中,所述MBSFN信息包括第一时间信息,所述第一时间信息用于指示所述第一时间点,所述获取多播广播同频网MBSFN信息之后,所述方法还包括:
获取所述第一时间信息中携带的指定时间间隔,将接收到所述组播数据后经过所述指定时间间隔的时间点作为所述第一时间点;或者,
获取所述第一时间信息中携带的指定时间间隔,接收所述控制设备发送的同步帧,将接收到所述同步帧后经过所述指定时间间隔的时间点作为所述第一时间点;或者,
获取所述第一时间信息中携带的所述第一时间点。
在第一方面的第六种可能实现方式中,所述获取多播广播同频网MBSFN信息之后,所述方法还包括:
当所述第一信道为空闲状态时,执行所述在所述第一时间点及所述第一信道上,采用所述第一数据发送方式向至少一个站点设备发送所述组播数据的步骤;
当所述第一信道为繁忙状态时,则不在所述第一时间点发送所述组播数据。
在第一方面的第七种可能实现方式中,所述控制设备为接入点AP,所述多个转发设备为所述AP连接的多个Relay中继;或者,
所述控制设备为多个AP中的指定AP,所述多个转发设备为所述多个AP中除了所述指定AP以外的多个AP;或者,
所述控制设备为接入控制器AC,所述多个转发设备为所述AC连接的多个AP。
第二方面,提供了一种组播数据发送方法,应用于控制设备中,所述方法包括:
确定多播广播同频网MBSFN信息,所述MBSFN信息用于指示多个转发设备发送组播数据时采用的相同的第一数据发送方式、相同的第一信道及相同的第一时间点;
向所述多个转发设备发送所述MBSFN信息及所述组播数据,以便于所述多个转发设备中的每个转发设备采用所述第一数据发送方式,在所述第一时间点及所述第一信道上向至少一个站点设备发送所述组播数据。
在第二方面的第一种可能实现方式中,所述MBSFN信息包括第一信道信息、第一时间信息和第一数据发送方式,所述第一数据发送方式包括物理层分组格式、发送地址TA、接收地址RA、带宽、保护间隔GI、扰码种子、空时分组编码STBC标识及双重载波调制DCM标识中的至少一项;
所述MBSFN信息还用于指示所述多个转发设备向站点设备发送唤醒数据分组WUP、发送所述WUP时采用的相同的第二数据发送方式、相同的第二信道及相同的第二时间点,所述第一信道信息用于指示所述第一信道,所述第一时间信息用于指示所述第一时间点,所述物理层分组格式用于指示所述多个转发设备发送所述组播数据所采用的相同物理层分组格 式,所述TA用于指示所述多个转发设备发送所述组播数据所采用的相同TA,所述RA用于指示所述多个转发设备发送所述组播数据所采用的相同RA,所述带宽用于指示所述多个转发设备发送所述组播数据所采用的相同带宽,所述GI用于指示所述多个转发设备发送所述组播数据所采用的相同GI,所述扰码种子用于指示所述多个转发设备发送所述组播数据所采用的相同扰码种子,所述STBC标识用于指示所述多个转发设备是否采用STBC的方式发送所述组播数据,所述DCM标识用于指示所述多个转发设备是否采用DCM的方式发送所述组播数据。
在第二方面的第二种可能实现方式中,所述确定多播广播同频网MBSFN信息之前,所述方法还包括:
接收所述多个转发设备中每个转发设备发送的设备统计信息,所述设备统计信息用于指示相应转发设备连接的站点设备中是否存在支持每种WLAN协议的站点设备、是否存在不支持所述STBC的站点设备及是否存在不支持所述DCM的站点设备中的至少一项,或者,所述设备统计信息用于指示相应转发设备连接的站点设备中支持每种WLAN协议的站点设备数目、不支持所述STBC的站点设备数目及不支持所述DCM的站点设备数目中的至少一项;
根据所述多个转发设备的设备统计信息,确定所述多个转发设备连接的站点设备支持的数据发送方式;
根据所述多个转发设备连接的站点设备均支持的数据发送方式,确定所述MBSFN信息;或者,
根据所述多个转发设备连接的站点设备中超过指定数目的站点设备支持的数据发送方式,确定所述MBSFN信息。
在第二方面的第三种可能实现方式中,所述向所述多个转发设备发送所述MBSFN信息及组播数据,包括:
在所述组播数据中携带所述MBSFN信息,向所述多个转发设备发送携带所述MBSFN信息的组播数据;或者,
在信标帧中携带所述MBSFN信息,向所述多个转发设备发送所述信标帧及所述组播数据;或者,
在连接信息中携带所述MBSFN信息,向所述多个转发设备发送所述连接信息及所述组播数据,所述连接信息用于指示所述多个转发设备中的每个转发设备和所述控制设备建立连接。
在第二方面的第四种可能实现方式中,所述控制设备为接入点AP,所述多个转发设备为所述AP连接的多个Relay中继;或者,
所述控制设备为多个AP中的指定AP,所述多个转发设备为所述多个AP中除了所述指定AP以外的多个AP;或者,
所述控制设备为接入控制器AC,所述多个转发设备为所述AC连接的多个AP。
第三方面,提供了一种组播数据发送装置,所述组播数据发送装置用于执行上述第一方面提供的方法。
第四方面,提供了一种组播数据发送装置,所述组播数据发送装置用于执行上述第二 方面提供的方法。
第五方面,提供了一种转发设备,所述转发设备包括处理器和存储器,所述存储器中存储有至少一条指令,所述指令由所述处理器加载并执行以实现上述第一方面提供的方法。
第六方面,提供了一种控制设备,所述控制设备包括处理器和存储器,所述存储器中存储有至少一条指令,所述指令由所述处理器加载并执行以实现上述第二方面提供的方法。
第七方面,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现上述第一方面提供的方法。
第八方面,提供了一种计算机可读存储介质,所述存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现上述第二方面提供的方法。
第九方面,提供了一种包含指令的计算机程序产品,当其在转发设备上运行时,使得所述转发设备能够实现上述第一方面提供的方法。
第十方面,提供了一种包含指令的计算机程序产品,当其在控制设备上运行时,使得所述控制设备能够实现上述第二方面提供的方法。
本公开实施例提供的技术方案带来的有益效果至少包括:
本公开实施例提供的方法、装置、设备及存储介质,多个转发设备获取相同的MBSFN信息,根据该相同的MBSFN信息,能够采用相同的数据发送方式,在相同时间点及相同信道上发送组播数据,不同转发设备之间不会造成干扰,并且,对于每个转发设备来说,均无需竞争信道,缩短了发送组播数据所耗费的时间,提高了发送组播数据的效率。对于多个转发设备来说,由于该多个转发设备同时在信道上发送数据,而无需轮流发送,也提高了发送组播数据的效率。
进一步地,多个转发设备可以侦听信道的状态,当信道为空闲状态时,在相同的时间点发送组播数据,当信道为繁忙状态则不在相同的时间点发送组播数据,从而避免信道上的其他数据对组播数据的传输过程造成干扰,防止小区间发生信号碰撞。
进一步地,考虑到不同站点设备支持的数据发送方式可能不同,将所有站点设备均支持的数据发送方式作为发送组播数据采用的数据发送方式,或者将超过指定数目的站点设备支持的数据发送方式作为发送组播数据采用的数据发送方式,可以保证尽量多地站点设备成功接收到组播数据,提高了发送组播数据的效率。
进一步地,多个转发设备采用相同的数据发送方式、信道和时间点发送WUP,不同转发设备之间不会造成干扰,并且,每个转发设备无需竞争信道,缩短了发送WUP所耗费的时间,提高了发送WUP的效率。对于多个转发设备来说,由于该多个转发设备同时在信道上发送WUP,而无需轮流发送,提高了发送WUP的效率。
附图说明
图1是本公开实施例提供的一种数据通信系统的结构示意图;
图2是本公开实施例提供的一种数据通信系统的结构示意图;
图3是本公开实施例提供的一种数据通信系统的结构示意图;
图4是本公开实施例提供的一种数据通信系统的结构示意图;
图5是本公开实施例提供的一种组播数据发送方法的流程图;
图6是本公开实施例提供的一种组播数据传输过程的示意图;
图7是本公开实施例提供的一种组播数据传输过程的示意图;
图8是本公开实施例提供的一种组播数据传输过程的示意图;
图9是本公开实施例提供的一种组播数据传输过程的示意图;
图10是本公开实施例提供的一种组播数据发送方法的流程图;
图11是本公开实施例提供的一种组播数据传输过程的示意图;
图12是本公开实施例提供的一种组播数据传输过程的示意图;
图13是本公开实施例提供的一种组播数据发送装置的结构示意图;
图14是本公开实施例提供的一种组播数据发送装置的结构示意图;
图15是本公开实施例提供的一种转发设备的结构示意图;
图16是本公开实施例提供的一种控制设备的结构示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开实施方式作进一步地详细描述。
参见图1,其示出了一种数据通信系统的结构示意图,该数据通信系统包括控制设备101、多个转发设备102和多个站点设备103。其中,控制设备101与该多个转发设备102均连接,每个转发设备102与至少一个站点设备103连接。
该控制设备101用于向多个转发设备102发送相同的组播数据,该多个转发设备102中的每个转发设备102用于接收组播数据,并在相同的时间点及相同的信道上,采用相同的数据发送方式向至少一个站点设备103发送组播数据,至少一个站点设备103中的每个站点设备103用于接收组播数据。其中,组播数据可以为语音数据、视频数据或文本数据等。
本公开实施例中,站点设备103可以为手机、电脑或平板电脑等,而控制设备和转发设备在不同场景中可以为不同类型的设备。
在一个示例性场景中,参见图2,控制设备101为接入点(Access Point,AP),转发设备102为该AP连接的Relay(中继),例如Relay1、Relay2或Relay3,站点设备103为Relay连接的站点(Station,STA),例如Relay1连接的站点设备为STA11、STA12或STA13。其中,AP可以为路由器、网关、网桥或基站等,Relay可以为中继器或终端等。
在另一个示例性场景中,参见图3,该控制设备101为多个AP中的指定AP,例如AP1,转发设备102为多个AP,例如AP1、AP2、AP3和AP4,站点设备103为AP连接的STA,例如AP1连接的站点设备为STA11、STA12或STA13。其中,该指定AP可以为该多个AP中的主AP,其他AP为主AP的从AP,主AP可以为多个AP通过协商确定,或者由接入控制器(Access  Controller,AC)指定,或者,该指定AP为该多个AP中的任一个AP。
在另一个示例性场景中,参见图4,控制设备101为AC,AC可以为交换机、网关、服务器等,转发设备102为该AC连接的AP,例如AP1、AP2或AP3,站点设备103为AP连接的STA,例如AP1连接的站点设备为STA11、STA12或STA13。
本公开实施例提供的数据通信系统应用于无线局域网(Wireless Local Area Network,WLAN)中,支持802.11系列的协议,包括而不限于802.11协议、802.11a协议、802.11b协议、802.11g协议、802.11n协议、802.11ac协议、802.11ax、802.11ad、802.11ay、802.11ah协议等。该数据通信系统可以实现从一个发送方向多个接收方发送相同的数据,并能够支持网络直播、在线会议、在线授课等各种应用场景。例如,在会议室、教室或体育场等场所,演讲者或活动的主办方可以应用该数据通信系统,向多个听众发送视频或者其他数据。
相关技术中,针对多个转发设备发送组播数据的过程,任一时间点只允许一个转发设备占用信道,每个转发设备会按照载波侦听多路访问/冲突避免(Carrier Sense Multiple Access with Collision Avoidance,CSMA/CA)协议,竞争信道并轮流在信道上发送组播数据。
而本公开实施例提供的数据通信系统,多个转发设备可以采用相同的时间点、相同的信道和相同的数据发送方式发送组播数据。由于发送组播数据的时间点和数据发送方式均相同,因此不同转发设备之间不会造成干扰,并且,由于该多个转发设备同时在信道上发送数据,而无需轮流发送,提高了发送组播数据的效率。
图5是根据一示例性实施例示出的一种组播数据发送方法的流程图,该方法可以应用于上述数据通信系统中,交互主体包括控制设备、转发设备和转发设备,该方法包括以下步骤:
501、站点设备向转发设备发送设备信息。
该设备信息用于指示站点设备支持的数据发送方式,包括支持的WLAN协议、是否支持空时分组编码(Space Time Block Coding,STBC)的指示及是否支持双重载波调制(Dual Carrier Modulation,DCM)的指示中的至少一项,可以如下表1所示。
表1
支持的WLAN协议 是否支持STBC的指示 是否支持DCM的指示
802.11ax协议 1 1
针对WLAN协议,设备信息包括与WLAN协议对应的字段,该字段用于承载所支持的WLAN协议的标识,如WLAN协议的名称、编号等。WLAN协议可以为802.11g协议、802.11n协议、802.11ac协议或802.11ax协议。其中,由于站点设备具有后向兼容性,即如果站点设备支持某种WLAN协议,则站点设备还支持发布时间早于该WLAN协议的其他WLAN协议,为了减小设备信息的数据量,在与WLAN协议对应的字段中可以仅承载站点设备支持的所有WLAN协议中发布时间最晚的WLAN协议的标识,以指示该站点设备支持该字段所承载的WLAN协议以及发布时间早于该字段所承载的WLAN协议的其他WLAN协议。
针对STBC,STBC指在空间域和时间域两个维度上分别对待发送的数据进行编码,是否支持STBC的指示用于表示站点设备是否支持STBC。设备信息中可以包括与是否支持STBC的指示对应的字段,该字段中以第一标识表示站点设备支持STBC的指示,可以接收以STBC 的方式发送的数据,以第二标识表示站点设备不支持STBC的指示,不能接收以STBC的方式发送的数据。其中,第一标识和第二标识为相对应的不同标识,如第一标识为1,第二标识为0,或者第一标识为Y,第二标识为N。
针对DCM,DCM指将数据分解为两份并分别调制两个载波信号,是否支持DCM的指示用于表示站点设备是否支持DCM。设备信息中可以包括与是否支持DCM的指示对应的字段,该字段中以第一标识表示站点设备支持DCM的指示,可以接收以DCM的方式发送的数据,以第二标识表示站点设备不支持DCM的指示,不能接收以DCM的方式发送的数据。
502、转发设备接收连接的站点设备的设备信息,获取设备统计信息。
在一种可能实现方式中,该设备统计信息可以用于表示转发设备连接的站点设备中是否存在支持某种数据发送方式的站点设备,或者用于表示转发设备连接的站点设备中是否存在不支持某种数据发送方式的站点设备。
站点设备的数据发送方式包括支持的WLAN协议、是否支持STBC和是否支持DCM中的至少一项时,相应地,设备统计信息用于指示转发设备连接的站点设备中是否存在支持每种WLAN协议的站点设备、是否存在不支持STBC的站点设备及是否存在不支持DCM的站点设备中的至少一项。
针对WLAN协议,该设备统计信息包括与至少一种WLAN协议对应的至少一个字段,在第一种情况中,在每个字段中以第一标识表示存在支持相应WLAN协议的站点设备,以第二标识表示不存在支持相应WLAN协议的站点设备。因此,对于某种WLAN协议对应的字段,当转发设备连接的站点设备中至少一个站点设备支持该WLAN协议时,转发设备向该字段添加第一标识,当转发设备连接的站点设备均不支持该WLAN协议时,转发设备向该字段添加第二标识。举例来说,如果转发设备连接了100个站点设备,这100个站点设备中只要有某一个站点设备支持802.11ax协议,则向802.11ax协议对应的字段添加1,如果这100个站点设备均不支持802.11ax协议,则向802.11ax协议对应的字段添加0。
那么,设备统计信息可以如下表2所示,包括与802.11g协议、802.11n协议、802.11ac协议和802.11ax协议这四种WLAN协议分别对应的四个字段。其中,“11g STA present”字段为与802.11g协议对应的字段,该字段中的标识0表示不存在支持802.11g协议的站点设备,“11n STA present”字段为与802.11n协议对应的字段,该字段中的标识1表示存在支持802.11n协议的站点设备。
表2
11g STA present 11n STA present 11ac STA present 11ax STA present
1 1 1 0
在第二种情况中,在每个字段中以第一标识表示转发设备连接的站点设备中存在支持的发布时间最晚的WLAN协议为相应WLAN协议的站点设备,以第二标识表示转发设备连接的站点设备中不存在支持的发布时间最晚的WLAN协议为相应WLAN协议的站点设备。因此,对于某种WLAN协议对应的字段,当转发设备连接的站点设备中存在支持的发布时间最晚的WLAN协议为该WLAN协议的站点设备时,转发设备向该字段添加第一标识,当转发设备连接的站点设备支持的发布时间最晚的WLAN协议均不为该WLAN协议时,向该字段添加第二标识。举例来说,如果转发设备连接了100个站点设备,则这100个站点设备只要有某一个站点设备支持的发布时间最晚的WLAN协议为802.11ax协议,则向802.11ax协议对应的字 段添加1,如果这100个站点设备支持的发布时间最晚的WLAN协议均不为802.11ax协议,则向802.11ax协议对应的字段添加0。
进一步地,由于站点设备的设备信息中,与WLAN协议对应的字段可以仅承载该站点设备支持的WLAN协议中发布时间最晚的WLAN协议的标识,而不承载其他WLAN协议的标识,则对于某种WLAN协议对应的字段,在统计站点设备中是否存在支持的发布时间最晚的WLAN协议为相应WLAN协议的站点设备时,可以根据站点设备的设备信息中是否包括相应WLAN协议的标识确定,也即是,当转发设备连接的站点设备的设备信息中包括相应WLAN协议的标识时,转发设备向该字段添加第一标识,当转发设备连接的站点设备的设备信息中均不包括相应WLAN协议的标识时,向该字段添加第二标识。
那么,设备统计信息可以如下表3所示,包括与802.11g协议、802.11n协议、802.11ac协议和802.11ax协议这四种WLAN协议分别对应的四个字段。其中,“11g STA present”字段为与802.11g协议对应的字段,该字段中的标识0表示不存在支持的发布时间最晚的WLAN协议为802.11g协议的站点设备,或者说站点设备支持的发布时间最晚的WLAN协议均不为802.11g协议。
表3
11g STA present 11n STA present 11ac STA present 11ax STA present
0 0 1 1
针对STBC,设备统计信息包括与STBC对应的字段,该字段中以第一标识表示存在支持STBC的站点设备,以第二标识表示不存在支持STBC的站点设备。因此,当转发设备连接的站点设备中至少一个站点设备不支持STBC时,转发设备向该字段添加第一标识,当转发设备连接的站点设备均支持STBC时,向该字段添加第二标识。举例来说,如果转发设备连接了100个站点设备,这100个站点设备中只要有某一个站点设备不支持STBC,则向STBC对应的字段添加1,如果这100个站点设备均支持STBC,则向STBC对应的字段添加0。
例如,设备统计信息可以如下表4所示,“STBC Incapable STA present”为与STBC对应的字段,该字段中的标识0表示至少一个站点设备均支持STBC。
表4
STBC Incapable STA present
0
针对DCM,设备统计信息包括与DCM对应的字段,该字段中以第一标识表示存在支持DCM的站点设备,以第二标识表示不存在支持DCM的站点设备。因此,当转发设备连接的站点设备中至少一个站点设备不支持DCM时,转发设备向该字段添加第一标识,当转发设备连接的站点设备均支持DCM时,向该字段添加第二标识。举例来说,如果转发设备连接了100个站点设备,这100个站点设备中只要有某一个站点设备不支持DCM,则向DCM对应的字段添加1,如果这100个站点设备均支持DCM,则向DCM对应的字段添加0。
例如,设备统计信息可以如下表5所示,“DCM Incapable STA present”为与DCM对应的字段,该字段中的标识0表示至少一个站点设备均支持DCM。
表5
DCM Incapable STA present
0
在另一种可能实现方式中,设备统计信息也可以用于表示转发设备连接的站点设备支持某种数据发送方式的站点设备数目,或者转发设备连接的站点设备中不支持某种数据发送方式的站点设备数目。
站点设备的数据发送方式包括支持的WLAN协议、是否支持STBC和是否支持DCM中的至少一项时,相应地,该设备统计信息用于指示转发设备连接的站点设备中支持每种WLAN协议的站点设备数目、不支持STBC的站点设备数目及不支持DCM的站点设备数目中的至少一项。
针对WLAN协议,该设备统计信息包括与至少一种WLAN协议对应的至少一个字段,在第一种情况中,每个字段承载的数值表示支持相应WLAN协议的站点设备数目。因此,对于某种WLAN协议对应的字段,转发设备统计站点设备中支持该WLAN协议的站点设备数目,向该字段添加该站点设备数目。
例如,设备统计信息可以如下表6所示,包括与802.11g协议、802.11n协议、802.11ac协议和802.11ax协议这四种WLAN协议分别对应的四个字段。其中,“11gSTA number”字段为与802.11g协议对应的字段,该字段承载的数值为300,表示有300个站点设备支持802.11g协议。
表6
11gSTA number 11nSTA number 11ac STA number 11ax STA number
300 200 100 30
在第二种情况中,每个字段承载的数值表示转发设备连接的站点设备中支持的发布时间最晚的WLAN协议为相应WLAN协议的站点设备数目。因此,对于某种WLAN协议对应的字段,转发设备统计站点设备中支持的发布时间最晚的WLAN协议为该WLAN协议的站点设备数目,向该字段添加该站点设备数目。
进一步地,由于站点设备的设备信息中,与WLAN协议对应的字段可以仅承载了该站点设备支持的WLAN协议中发布时间最晚的WLAN协议的标识,而不承载其他WLAN协议的标识,则对于某种WLAN协议对应的字段,在统计支持的发布时间最晚的WLAN协议为相应WLAN协议的站点设备数目时,可以将设备信息中包括相应WLAN协议的标识的站点设备的数目作为统计的站点设备数目,向该字段添加设备信息数目即可。
例如,设备统计信息可以如下表7所示,包括与802.11g协议、802.11n协议、802.11ac协议和802.11ax协议这四种WLAN协议分别对应的四个字段。其中,“11gSTA number”字段为与802.11g协议对应的字段,该字段承载的数值为10,表示有10个站点设备支持的发布时间最晚的WLAN协议为802.11g协议。
表7
11gSTA number 11nSTA number 11ac STA number 11ax STA number
10 20 100 30
针对STBC,设备统计信息包括与STBC对应的字段,该字段承载的数值表示不支持STBC的站点设备数目。因此,转发设备会根据该转发设备连接的站点设备的设备信息,统计站点设备中不支持STBC的站点设备数目,向该字段添加该站点设备数目。
例如,设备统计信息可以包括下表8,“STBC Incapable STA number”为与STBC对应的字段,该字段承载的数值5表示有5个不支持STBC的站点设备,
表8
STBC Incapable STA number
5
针对DCM,设备统计信息包括与DCM对应的字段,该字段承载的数值表示不支持DCM的站点设备数目。因此,转发设备会根据该转发设备连接的站点设备的设备信息,统计站点设备中不支持DCM的站点设备数目,向该字段添加该站点设备数目。
例如,设备统计信息可以包括下表9,“DCM Incapable STA number”为与DCM对应的字段,该字段承载的数值5表示有5个不支持DCM的站点设备,
表9
DCM Incapable STA number
5
503、转发设备向控制设备发送设备统计信息。
该步骤具体可以包括5031或5032:
5031、转发设备在媒体介入控制层(Medium Access Control,MAC)帧的信息元素中携带设备统计信息,向控制设备发送MAC帧。
MAC帧包括帧头和帧主体(body),帧主体中包括用于承载信息的信息元素,信息元素包括元素标识、元素标识的长度以及承载的信息,元素标识(Element ID)用于指示信息元素承载的信息类型:第一元素标识表示信息元素承载了设备统计信息,第二元素标识表示信息元素承载了MBSFN信息。例如,转发设备在MAC帧的信息元素中携带设备统计信息时,信息元素可以如下表10所示。
表10
Figure PCTCN2018092932-appb-000001
5032、转发设备在MAC帧的帧头携带设备统计信息,向控制设备发送MAC帧。
MAC帧的帧头包括多个控制字段,例如位于高吞吐率控制(High Throughput Control,HT Control)字段中的聚合控制(Aggregated Control,A-control)字段。控制字段包括控制标识以及承载的信息,控制标识(Control ID)用于指示控制字段承载的信息类型,转发设备和控制设备可以约定:第一控制标识表示控制字段承载了设备统计信息,第二控制标识表示控制字段承载了MBSFN信息。例如,转发设备在MAC帧的控制字段携带设备统计信息时,控制字段可以如下表11所示。
表11
Figure PCTCN2018092932-appb-000002
504、控制设备接收多个转发设备发送的设备统计信息,根据多个转发设备的设备统计信息,确定多播广播同频网(Multicast Broadcast Single Frequency Network,MBSFN)信息。
为了后续过程中多个转发设备能够按照统一的数据发送方式、信道和时间点发送组播数据,控制设备会确定MBSFN信息,该MBSFN信息用于指示多个转发设备发送组播数据时采用的相同的第一数据发送方式、相同的第一信道及相同的第一时间点,该确定MBSFN信息的过程包括以下步骤5041-5043:
5041、确定第一信道。
控制设备可以获取多个预先配置的信道,从中选取一个信道作为第一信道,并通过MBSFN信息指示第一信道,第一信道可以指频段、子载波等。
5042、确定第一时间点。
控制设备可以选取向站点设备发送组播数据后的任一个时间点作为第一时间点,并通过MBSFN信息指示第一时间点。
5043、确定第一数据发送方式,可以包括以下两种方式:
方式一:确定多个转发设备连接的站点设备均支持的数据发送方式,将该数据发送方式作为第一数据发送方式。
方式二:确定多个转发设备连接的站点设备中超过指定数目的站点设备支持的数据发送方式,将数据发送方式作为第一数据发送方式。
数据发送方式包括物理层分组格式、发送地址(Transmit Address,TA)、接收地址(Receiving Address,RA)、带宽、保护间隔(Guard Interval,GI)、扰码种子(Scramble Seed)、是否采用STBC及是否采用DCM中的至少一项,控制设备确定该至少一项数据发送方式的具体内容,即可得到转发设备发送组播数据时需采用的第一数据发送方式。
①、物理层分组格式:
参见下表12,每种WLAN协议中会包括支持的物理层分组格式,802.11g协议支持非高吞吐率或非高吞吐率复制(Non-High Throughput or Non-HT Duplicate,Non-HT)格式,802.11n协议支持高吞吐率(High Throughput,HT)格式,802.11ac协议支持非常高吞吐率(Very High Throughput,VHT)格式,802.11ax协议支持高效(High Efficient,HE)格式,并将HE格式划分为单用户格式、多用户格式、基于触发帧格式和扩展距离格式。
表12
Figure PCTCN2018092932-appb-000003
Figure PCTCN2018092932-appb-000004
考虑到站点设备的后向兼容性,站点设备和支持的物理层分组格式之间的对应关系可以如下表13所示。
表13
站点设备 支持的物理层分组格式
802.11g站点 Non-HT格式
802.11n站点 Non-HT格式、HT格式
802.11ac站点 Non-HT格式、HT格式、VHT格式
802.11ax站点 Non-HT格式、HT格式、VHT格式和HE格式
本实施例中,首先,由于站点设备中有新有旧,旧站点设备可能不支持发布时间较晚的WLAN协议指示的物理层分组格式,为了兼顾全局,要保证大部分站点设备都能支持选取的物理层分组格式。其次,选取的物理层分组格式鲁棒性越强,则传输组播数据过程的抗干扰能力越强。为了避免多个转发设备在相同的信道上传输组播数据时产生干扰,应当选取鲁棒性较强的物理层分组格式。而发布时间越晚的WLAN协议中的物理层分组格式通常鲁棒性越强,因此可以尽量选取发布时间较晚的WLAN协议中的物理层分组格式,例如选取HE格式或HE格式中的扩展距离格式。
基于上述考虑,控制设备可以根据多个转发设备发送的设备统计信息,确定站点设备支持的WLAN协议,进而确定站点设备支持的物理层分组格式。针对上述方式一,从多种物理层分组格式中选取站点设备均支持的物理层分组格式,并从选取结果中进一步选取鲁棒性最强的物理层分组格式。或者针对上述方式二,从多种物理层分组格式中选取超过指定数目的站点设备支持的物理层分组格式,并从选取结果中进一步选取鲁棒性最强的物理层分组格式。
需要说明的是,针对方式二,对于控制设备确定的物理层分组格式,可能会出现部分站点设备不支持该物理层分组格式的情况,那么后续转发设备采用该物理层分组格式向这些站点设备发送组播数据时,这些站点设备无法成功接收组播数据。因此,在发送组播数据后,转发设备会按照这部分站点设备支持的物理层分组格式,单独向这部分站点设备发送组播数据。
②、TA和RA:
TA用于指示组播数据的发送方所在的地址,本实施例中,由于控制设备为组播数据的发送源头,则可以将控制设备的地址作为TA。其中,控制设备的地址可以指控制设备的MAC地址、控制设备所覆盖的小区的基本服务集合标识(Basic Service Set ID,BSS ID)或源头地址(Sourcing Address,SA)等。
RA用于指示组播数据的接收方所在的地址,本实施例中,由于后续过程中多个转发设备向站点设备发送组播数据时采用广播的方式发送,实际是向广播MAC地址发送组播数据,RA即为广播MAC地址。
③、带宽:
带宽指在信道上发送组播数据时占用的信道带宽。控制设备可以根据组播数据的大小以及对传输速率的需求确定带宽。例如,如果组播数据较大,则采用较大的带宽,或者如果需要以较快的速度传输组播数据,则采用较大的带宽。
④、扰码种子:
扰码种子用于加扰过程和解扰过程。具体地,为了保证数据传输的安全性,发送方会通过扰码种子对原始数据进行加扰,并发送加扰后的数据。相应的,接收方会通过扰码种子对加扰后的数据进行解扰,得到原始数据。本实施例中,控制设备可以预先存储多个扰码种子,并选取任一个扰码种子。
⑤、GI:
GI是指发送两个相邻数据块之间的时间间隔,可以为3.2μs、0.8μs或0.4μs等。具体地,数据会被划分为多个数据块在空间中传输,受到多径环境的影响,后一个数据块的前端可能会比前一个数据块的末端更快到达,导致两个数据块之间形成干扰,即码间干扰。为了尽量避免码间干扰,发送方会在发送的数据块之后插入一段空白的时间间隔,在这段时间间隔之后再发送下一数据块,该时间间隔即为GI。本实施例中,为了保证数据传输的鲁棒性,进一步避免码间干扰,控制设备可以选取较大的GI,例如选取3.2μs。
⑥、是否采用STBC:
控制设备可以根据多条设备统计信息,确定站点设备是否支持STBC。针对上述方式一,当站点设备均支持STBC时,控制设备确定采用STBC。当站点设备中至少一个站点设备不支持STBC时,控制设备确定不采用STBC。或者针对上述方式二,当站点设备中超过指定数目的站点设备支持STBC时,控制设备确定采用STBC,当站点设备中支持STBC的站点设备不超过指定数目时,控制设备确定不采用STBC。
需要说明的是,针对方式二,如果控制设备确定采用STBC,可能会出现部分站点设备不支持STBC的情况。那么后续转发设备采用STBC向这些站点设备发送组播数据时,这些站点设备无法成功接收组播数据。因此,在发送组播数据后,转发设备会按照不采用STBC的数据发送方式,单独向这部分站点设备发送组播数据。
⑦、是否采用DCM:
控制设备可以根据多条设备统计信息,确定站点设备是否支持DCM。针对上述方式一,当站点设备均支持DCM时,控制设备确定采用DCM。当站点设备中至少一个站点设备不支持DCM时,控制设备确定不采用DCM。或者针对上述方式二,当站点设备中超过指定数目的站点设备支持DCM时,控制设备确定采用DCM,当站点设备中支持DCM的站点设备不超过指定数目时,控制设备确定不采用DCM。
需要说明的是,针对方式二,如果控制设备确定采用DCM,可能会出现部分站点设备不支持DCM的情况。那么后续转发设备采用DCM向这些站点设备发送组播数据时,这些站点设备无法成功接收组播数据。因此,在发送组播数据后,转发设备会按照不采用DCM的数据发送方式,单独向这部分站点设备发送组播数据。
在确定第一信道、第一时间点和第一数据发送方式后,控制设备可以生成MBSFN信息,该MBSFN信息包括第一信道信息、第一时间信息、第一数据发送方式,第一数据发送方式包括物理层分组格式、TA、RA、带宽、GI、扰码种子、STBC标识及DCM标识中的至少一项。
其中,第一信道信息用于指示第一信道,可以为第一信道的名称、编号等,可以在MBSFN 信息中的某个字段承载。
其中,第一时间信息可以携带指定时间间隔,确定第一时间点为转发设备接收到组播数据后经过该指定时间间隔的时间点;或者,第一时间信息可以携带指定时间间隔,确定第一时间点为转发设备接收到同步帧后进过该指定时间间隔的时间点;或者,第一时间信息可以携带第一时间点。第一时间信息可以在MBSFN信息中的某个字段承载,例如在“Tx time”字段承载。
其中,STBC标识可以在MBSFN信息中的某个字段承载,以第一标识指示转发设备发送组播数据时采用STBC,以第二标识指示转发设备发送数据时不采用STBC。因此,当控制设备确定采用STBC时,在生成的MBSFN信息中STBC标识为第一标识,当确定不采用STBC时,在生成的MBSFN信息中STBC标识为第二标识。
其中,DCM标识可以在MBSFN信息中的某个字段承载,以第一标识指示转发设备发送组播数据时采用DCM,以第二标识指示转发设备发送数据时不采用DCM。因此,当控制设备确定采用DCM时,在生成的MBSFN信息中DCM标识为第一标识,当确定不采用DCM时,在生成的MBSFN信息中DCM标识为第二标识。
505、控制设备向多个转发设备发送MBSFN信息及组播数据。
针对发送MBSFN信息及组播数据的不同方式,该步骤可以分为以下步骤5051-5053:
5051、控制设备在组播数据中携带MBSFN信息,向该多个转发设备发送携带该MBSFN信息的组播数据。
其中,组播数据可以为MAC帧,控制设备可以在MAC帧的信息元素中携带MBSFN信息,该信息元素可以如下表14所示。或者,控制设备可以在MAC帧帧头的控制字段中携带MBSFN信息,该控制字段可以如下表15所示:
表14
Figure PCTCN2018092932-appb-000005
表15
Figure PCTCN2018092932-appb-000006
5052、控制设备在信标帧中携带MBSFN信息,向该多个转发设备发送该信标帧及该组播数据。
控制设备可以先向转发设备发送信标帧,在转发设备接收信标帧得到MBSFN信息后,控制设备再向转发设备发送组播数据。
其中,信标帧又称为beacon帧,是控制设备会向转发设备周期性发送的一种MAC帧。通过在信标帧中携带MBSFN信息,可以达到周期性的通知转发设备MBSFN信息的效果。
5053、控制设备在连接信息中携带MBSFN信息,向该多个转发设备发送该连接信息及该组播数据。
控制设备可以先向转发设备发送连接信息,在转发设备接收连接信息得到MBSFN信息后,控制设备再向转发设备发送组播数据。
其中,在该多个转发设备中的每个转发设备要和控制设备建立连接时,控制设备会向该转发设备发送连接信息,该连接信息用于指示该转发设备和该控制设备建立连接。当转发设备接收到连接信息后,即可会和控制设备建立连接并获知MBSFN信息。
506、多个转发设备接收组播数据,获取MBSFN信息。
本实施例中,转发设备可以接收控制设备发送的MBSFN信息。其中,基于上述步骤505中MBSFN信息的不同发送方式,接收MBSFN信息的步骤可以包括以下步骤5061-5063的任一项:
5061、转发设备对该组播数据进行解析,得到该组播数据携带的MBSFN信息。
与上述步骤5051对应,转发设备可以从接收到的组播数据中获取MBSFN信息,也即是从MAC帧的信息元素或者帧头中获取MBSFN信息。
5062、转发设备接收该控制设备发送的信标帧,对该信标帧进行解析,得到该信标帧携带的MBSFN信息。
该步骤5062与上述步骤5052对应。当转发设备得到信标帧携带的MBSFN信息后,可以存储MBSFN信息。之后,当转发设备接收到组播数据时,即可获取已存储的MBSFN信息。
5063、转发设备接收该控制设备发送的连接信息,对该连接信息进行解析,得到该连接信息携带的MBSFN信息。
该步骤5063与上述步骤5053对应。当转发设备得到连接信息携带的MBSFN信息后,可以存储MBSFN信息。之后,当转发设备接收到组播数据时,即可获取已存储的MBSFN信息。
需要说明的是,在上述步骤504中,当多个转发设备向控制设备发送设备统计信息后,控制设备即可采用以上步骤5051-5053的任一项,向转发设备返回MBSFN信息,以便转发设备接收MBSFN信息。
在另一实施例中,转发设备可以直接获取预先存储的默认的MBSFN信息,该默认的MBSFN信息可以由开发人员在转发设备中设置。那么,转发设备和控制设备无需执行上述步骤501-506,而是直接由控制设备向多个转发设备发送组播数据,转发设备接收组播数据,并获取默认的MBSFN信息即可。
507、多个转发设备在第一时间点及第一信道上,采用第一数据发送方式向至少一个站点设备发送该组播数据。
针对确定第一时间点的过程,该多个转发设备中的每个转发设备会对MBSFN信息解析,得到第一时间信息,通过第一时间信息确定第一时间点。确定第一时间点的过程可以包括以下步骤5071-5073中的任一项:
5071、在第一时间信息携带指定时间间隔的情况下,转发设备可以获取第一时间信息中携带的指定时间间隔,将接收到该组播数据后经过该指定时间间隔的时间点作为该第一 时间点。其中,转发设备接收到组播数据时会开始定时,当时间经过指定时间间隔后,确定到达第一时间点,此时发送组播数据。该指定时间间隔可以为短帧间距(Short Inter-Frame Space,SIFS)或点协调功能帧间距(Point Coordination Function Inter-Frame Space,PIFS)等。
以指定时间间隔为PIFS,控制设备为AP,多个转发设备分别为Relay1、Relay2和Relay3为例,组播数据的传输过程的示意图可以如图6所示。
5072、在第一时间信息携带指定时间间隔的情况下,转发设备可以接收该控制设备发送的同步帧,将接收到该同步帧后经过该指定时间间隔的时间点作为该第一时间点。其中,控制设备向转发设备发送组播数据后,会再向转发设备发送同步帧,转发设备接收到同步帧时会开始定时,当时间经过指定时间间隔后,确定到达第一时间点,此时发送组播数据。
以指定时间间隔为PIFS,控制设备为AP,多个转发设备分别为Relay1、Relay2和Relay3为例,组播数据的传输过程的示意图可以如图7所示。
5073、在第一时间信息携带第一时间点的情况下,转发设备可以直接获取该第一时间信息中携带的第一时间点,在时间到达该第一时间点时发送组播数据。以控制设备为AP,多个转发设备分别为Relay1、Relay2和Relay3为例,组播数据的传输过程的示意图可以如图8所示。
针对确定第一信道的过程,该多个转发设备中的每个转发设备会对MBSFN信息解析,得到第一信道信息,通过第一信道信息确定第一信道,即通过第一信道信息中第一信道的标识确定对应的第一信道。另外,MBSFN信息也可以指示转发设备获取默认的第一信道,该默认的第一信道可以为控制设备向该转发设备发送组播数据所采用的信道。
针对确定第一数据发送方式的过程,该多个转发设备中的每个转发设备会对MBSFN信息解析,得到MBSFN信息包括的物理层分组格式、TA、RA、带宽、GI、扰码种子、STBC标识及DCM标识中的至少一项,从而确定第一数据发送方式。
其中,当MBSFN信息包括物理层分组格式时,转发设备会将该MBSFN信息包括的物理层分组格式作为发送组播数据采用的物理层分组格式。例如,如果MBSFN信息包括VHT格式,则确定要以VHT格式发送组播数据。另外,转发设备可以存储默认物理层分组格式,MBSFN信息可以指示转发设备采用默认物理层分组格式,该默认的物理层分组格式可以为控制设备向该转发设备发送组播数据所采用的物理层分组格式。
其中,当MBSFN信息包括TA和RA时,转发设备会在组播数据中携带MBSFN信息中的TA和RA。另外,MBSFN信息可以指示转发设备采用默认的TA和RA,转发设备会获取控制设备的MAC地址作为默认的TA,获取广播MAC地址作为默认的RA,并在组播数据中携带默认的TA和RA,从而采用广播的方式向至少一个站点设备发送组播数据。
其中,当MBSFN信息包括带宽时,转发设备会会将该MBSFN信息包括的带宽作为发送组播数据采用的带宽。另外,MBSFN信息可以指示转发设备采用默认的带宽,该默认的带宽可以为控制设备向该转发设备发送组播数据所采用的带宽。
其中,当MBSFN信息包括GI时,转发设备会将该MBSFN信息包括的GI作为发送组播数据采用的GI。另外,当MBSFN信息不包括GI时,为了避免组播数据传输过程中的码间干扰,提高鲁棒性,控制设备可以选取较大的GI。例如,如果确定的物理层分组格式为HE格式,则确定3.2us作为GI,如果确定的物理层分组格式不为HE格式,则确定0.8us作为GI。 另外,MBSFN信息可以指示转发设备获取默认的GI,该默认的GI可以为控制设备向该转发设备发送组播数据所采用的GI。
其中,当MBSFN信息包括扰码种子时,转发设备会将该MBSFN信息包括的扰码种子作为发送组播数据采用的扰码种子。另外,当MBSFN信息不包括扰码种子时,转发设备可以获取控制设备向该转发设备发送组播数据时采用的扰码种子,对组播数据加扰。
其中,当MBSFN信息包括STBC标识时,当STBC标识为第一标识时,转发设备会采用STBC发送组播数据,当STBC标识为第二标识时,转发设备不采用STBC发送组播数据。另外,MBSFN信息可以指示转发设备按照默认的设置确定是否采用STBC。例如,转发设备可以判断控制设备向其发送组播数据时是否采用了STBC,如果控制设备向转发设备发送组播数据时采用了STBC,则转发设备向站点设备发送组播数据时也采用STBC。
其中,当MBSFN信息包括DCM标识时,当DCM标识为第一标识时,转发设备会采用DCM发送组播数据,当DCM标识为第二标识时,转发设备不采用DCM发送组播数据。另外,MBSFN信息可以指示转发设备按照默认的设置确定是否采用DCM。例如,转发设备可以判断控制设备向其发送组播数据时是否采用了DCM,如果控制设备向转发设备发送组播数据时采用了DCM,则转发设备向站点设备发送组播数据时也采用DCM。
另外,对于MBSFN信息中不包括的参数,转发设备会以保证组播数据传输的鲁棒性为前提,默认选取鲁棒性较强的参数。例如,对于发送组播数据所采用的空间流数目,由于空间流数目越少鲁棒性越强,因此转发设备会默认选取1作为确定的空间流数目。
需要说明的是,上述过程以转发设备直接发送组播数据为例,在另一实施例中,转发设备可以侦听第一信道的状态,当第一信道为空闲状态时,在第一时间点及第一信道上,采用该第一数据发送方式发送组播数据,如果第一信道为繁忙状态,则不在第一时间点发送组播数据。在这种情况下,组播数据的数据发送方式由转发设备自行确定。
针对侦听第一信道的过程,转发设备可以采用物理载波侦听机制,检测第一信道的能量,当第一信道能量较低时,确定第一信道为空闲状态,当第一信道能量较高时,确定第一信道为繁忙状态。
或者,转发设备可以采用虚拟载波侦听机制,检测已配置的网络分配矢量(Network Allocation Vector,NAV),当检测到NAV为0时,确定第一信道为空闲状态,当检测到NAV不为0时,确定第一信道为繁忙状态。其中NAV相当于定时器,用于指示第一信道预计被占用的时长。当然,这两种机制可以结合起来,也即是,当第一信道能量较低且检测到NAV为0时,确定第一信道为空闲状态。
其中,为了避免组播数据在传输过程中受到干扰,可以采用RTS/CTS机制预先配置每个转发设备的NAV。参见图9,控制设备(AP1)在发送组播数据前,先向多个转发设备(AP2、AP3、AP4或者Relay1、Relay2、Relay3)中的每个转发设备发送请求发送(Request to Send,RTS)或者多用户请求发送(Multiple User RTS,MU-RTS),每个转发设备接收到RTS或者MU-RTS后,会配置初始值不为0的NAV,并向控制设备返回允许发送(Clear to Send,CTS),控制设备接收到CTS后,再发送组播数据。
在发送组播数据之前,由于每个转发设备预先配置了初始值不为0的NAV,确定第一信道为繁忙状态,不会占用第一信道传输数据,那么,当要同时发送组播数据时,不会出现第一信道上已经存在其他正在传输的数据的情况,保证组播数据的传输不会被干扰。
需要说明的是,当某一转发设备未配置NAV或者要配置NAV时已经开始在第一信道上传输数据,或者有除该多个转发设备以外的其他设备在第一信道上传输数据时,均会导致第一信道为繁忙状态。那么,如果转发设备检测到第一信道为繁忙状态,会竞争该第一信道,竞争到第一信道后再会发送组播数据。具体地,转发设备会进行等待,当信道为空闲状态时,生成随机的计数器值,并随着时间的推移减少该计数器值。此期间内如果有其他转发设备占用该信道而导致该信道切换为繁忙状态,则该转发设备暂停减少该计数器值,之后当该信道又切换为空闲状态,则从之前暂停时的计数器值开始继续减少该计数器值,直至当计数器值减为0时,认为该转发设备竞争到该信道,可以按照自行确定的数据发送方式在该信道上发送组播数据。
508、至少一个站点设备中的每个站点设备接收组播数据。
本实施例提供的方法,多个转发设备获取相同的MBSFN信息,根据该相同的MBSFN信息,能够采用相同的数据发送方式,在相同时间点及相同信道上发送组播数据,不同转发设备之间不会造成干扰,并且,对于每个转发设备来说,均无需竞争信道,缩短了发送组播数据所耗费的时间,提高了发送组播数据的效率。对于多个转发设备来说,由于该多个转发设备同时在信道上发送数据,而无需轮流发送,也提高了发送组播数据的效率。
进一步地,多个转发设备可以侦听信道的状态,当信道为空闲状态时,在相同的时间点发送组播数据,当信道为繁忙状态则不在相同的时间点发送组播数据,从而避免信道上的其他数据对组播数据的传输过程造成干扰,防止小区间发生信号碰撞。
进一步地,考虑到不同站点设备支持的数据发送方式可能不同,将站点设备均支持的数据发送方式作为发送组播数据采用的数据发送方式,或者将超过指定数目的站点设备支持的数据发送方式作为发送组播数据采用的数据发送方式,可以保证尽量多地站点设备成功接收到组播数据,提高了发送组播数据的效率。
在图5实施例的基础上,考虑到目前很多站点设备会在无数据收发时进入深度休眠(Deep Sleep)状态,而处于深度休眠状态时站点设备无法与转发设备通信。在这种情况下,需要先向站点设备发送唤醒数据分组(Wake Up Packet,WUP),将站点设备唤醒,再向站点设备发送组播数据。为此,本公开实施例还提供了一种组播数据发送方法,该方法中多个转发设备在发送组播数据前,可以采用统一的信道、时间点和数据发送方式发送WUP,参见图10,其示出了一种组播数据发送方法的流程图,该方法具体包括以下步骤:
1001、站点设备向转发设备发送设备信息。
与上述步骤201类似,区别点在于,该设备信息还会包括是否请求WUP的指示,设备信息中可以包括与是否请求WUP的指示对应的字段,该字段中以第一标识表示站点设备请求WUP,控制设备需要先发送WUP再发送组播数据。该字段中以第二标识表示站点设备不请求WUP,控制设备无需发送WUP,可以直接发送组播数据。该字段可以如下表16所示:
表16
是否请求WUP的指示
1
1002、转发设备接收连接的站点设备的设备信息,获取设备统计信息。
与上述步骤502类似,区别点在于:设备统计信息中包括与WUP对应的字段,以表示 是否存在请求WUP的站点设备,或者表示请求WUP的站点设备数目。
在一种可能的实现方式中,设备统计信息包括与WUP对应的字段,该字段中以第一标识表示存在请求WUP的站点设备,以第二标识表示不存在请求WUP的站点设备,从而保证设备统计信息指示转发设备连接的站点设备中是否存在请求WUP的站点设备。因此,当转发设备连接的站点设备中至少一个站点设备请求WUP时,转发设备向该字段添加第一标识,当转发设备连接的站点设备均不请求WUP时,转发设备向该字段添加第二标识。举例来说,如果转发设备连接了100个站点设备,这100个站点设备中只要有某一个站点设备请求WUP,则向WUP对应的字段添加1,如果这100个站点设备均不请求WUP,则向WUP对应的字段添加0。
例如,设备统计信息可以包括下表17,“WUP Indication Request”为与WUP对应的字段,该字段中的标识1表示存在请求WUP的站点设备。
表17
WUP Indication Request
1
在另一种可能的实现方式中,设备统计信息包括与WUP对应的字段,该字段承载的数值表示请求WUP的站点设备数目。从而保证设备统计信息指示转发设备连接的站点设备中请求WUP的站点设备数目。因此,转发设备会根据该转发设备连接的站点设备的站点设备信息,统计站点设备中请求WUP的站点设备数目,向该字段添加该站点设备数目。
例如,设备统计信息可以包括下表18,“WUP Indication Request number”字段为与WUP对应的字段,该字段承载的数值20表示有20个站点设备请求WUP。
表18
WUP Indication Request number
20
1003、转发设备向控制设备发送设备统计信息。
该步骤与上述步骤503类似。
1004、控制设备接收多个转发设备中每个转发设备发送的设备统计信息,根据多个转发设备的设备统计信息,确定MBSFN信息。
该步骤与上述步骤504类似,区别点在于,当控制设备确定多个转发设备连接的站点设备均请求WUP时,或者当控制设备确定该多个转发设备连接的转发设备中超过指定数目的站点设备请求WUP时,确定该多个转发设备要按照相同的第二信道、第二时间点和第二数据发送方式发送WUP,则确定的MBSFN信息还用于指示多个转发设备向站点设备发送WUP、发送WUP时所采用的相同的第二数据发送方式、相同的第二信道及相同的第二时间点。
其中,确定第二信道的步骤与上述步骤5041中确定第一信道的步骤类似,确定第二时间点的步骤与上述步骤5042中确定第一时间点的步骤类似,确定第二数据发送方式的步骤与上述步骤5043中确定第一数据发送方式的步骤类似。
相应地,与上述图5实施例所述的MBSFN信息相比,本实施例中确定的MBSFN信息还包括WUP标识、第二信道信息、第二时间信息以及第二数据发送方式。
WUP标识可以在MBSFN信息中的某个字段承载,例如“WUP Needed”字段。WUP标识以 第一标识指示转发设备先发送WUP再发送组播数据,以第二标识指示转发设备不发送WUP而直接发送组播数据。
第二信道信息可以在MBSFN信息中的某个字段承载,用于指示第二信道,可以为第二信道的名称、编号等。
第二时间信息可以在MBSFN信息中的某个字段承载,第二时间信息可以携带指定时间间隔,确定第二时间点为转发设备接收到组播数据后经过该指定时间间隔的时间点,或者,第二时间信息携带指定时间间隔,确定第二时间点为转发设备接收到同步帧后经过该指定时间间隔的时间点,或者,第二时间信息也可以携带第二时间点。
第二数据发送方式包括发送WUP采用的物理层分组格式、发送WUP采用的TA、发送WUP采用的RA、发送WUP采用的带宽、发送WUP采用的GI、发送WUP采用的扰码种子、用于指示发送WUP是否采用STBC的STBC标识及用于指示发送WUP是否采用DCM的DCM标识中的至少一项。
1005、控制设备向多个转发设备发送MBSFN信息及组播数据。
该步骤与上述步骤505类似,在此不做赘述。
1006、多个转发设备接收组播数据,获取MBSFN信息。
该步骤与上述步骤506类似,也即是,转发设备可以接收组播数据从而获取MBSFN信息,从而确定MBSFN信息。也可以接收信标帧或者连接信息从而获取MBSFN信息,或者预先存储MBSFN信息,当接收到组播数据时即可获取已存储的MBSFN信息。区别点在于,当转发设备解析MBSFN信息,确定MBSFN信息指示发送WUP、发送WUP时所采用的第二信道及第二时间点时,转发设备会执行下述步骤1007,当转发设备确定MBSFN信息指示不发送WUP时,不执行步骤1007,直接执行下述步骤1009。
1007、多个转发设备在第二时间点及第二信道上,采用第二数据发送方式向至少一个站点设备发送WUP。
多个转发设备中的每个转发设备会对MBSFN信息中的第二时间信息进行解析,确定第二时间点。
在第一种可能的实现方式中,第二时间信息携带指定时间间隔,转发设备会获取该指定时间间隔,将接收到该组播数据后经过该指定时间间隔的时间点作为该第二时间点。其中,转发设备接收到组播数据时会开始定时,当时间经过指定时间间隔后,确定到达第二时间点,此时发送WUP,该指定时间间隔可以为SIFS或PIFS等。
在第二种可能的实现方式中,第二时间信息携带指定时间间隔,转发设备会获取该指定时间间隔,将接收到该同步帧后经过该指定时间间隔的时间点作为该第二时间点。其中,控制设备向转发设备发送组播数据后,会再向转发设备发送同步帧,转发设备接收到同步帧时会开始定时,当时间经过指定时间间隔后,确定到达第二时间点,此时发送WUP。
在第三种可能的实现方式中,第二时间信息会直接携带第二时间点,转发设备可以获取第二时间点,而无需通过定时确定。
需要说明的第一点是,第二时间信息携带的指定时间间隔和第一时间信息携带的指定时间间隔可以相同也可以不同,具体数值根据实际需求确定。
需要说明的第二点是,上述过程以MBSFN信息指示发送WUP、发送WUP时所采用的第二信道及第二时间点时,转发设备直接发送WUP为例,在另一实施例中,在MBSFN信息指示 发送WUP、发送WUP时所采用的第二信道及第二时间点时,转发设备可以侦听第二信道的状态,当第二信道为空闲状态时,在第二时间点及第二信道上,采用该第二数据发送方式发送组播数据。当第二信道为繁忙状态时,则不在第二时间点发送组播数据,在这种情况下,转发设备会自行确定是否发送WUP,并在确定发送WUP时,自行确定第二数据发送方式。
1008、该至少一个站点设备中的每个站点设备通过配置的唤醒无线电(Wake-up Radio,WUR)接收机接收WUP,将主接收机(main radio,MR)从休眠状态唤醒至工作状态。
1009、多个转发设备在该第一时间点及第一信道上,采用第一数据发送方式向至少一个站点设备发送该组播数据。
该步骤与上述步骤507类似。以控制设备为AP,多个转发设备分别为Relay1、Relay2和Relay3为例,第二时间信息指示接收到组播数据后经过PIFS的时间点、第一时间信息携带第一时间点时,组播数据的传输过程的示意图可以如图11所示。以第二时间信息指示接收到组播数据后经过SIFS的时间点、第一时间信息指示接收到同步帧后经过PIFS的时间点为例,组播数据的传输过程的示意图可以如图12所示。
1010、至少一个站点设备中的每个站点设备接收组播数据。
其中,站点设备接收组播数据实际上指站点设备配置的MR接收组播数据。MR在接收组播数据后,会进入深度休眠状态以节省电量。
本实施例提供的方法,多个转发设备采用相同的数据发送方式、信道和时间点发送WUP,不同转发设备之间不会造成干扰,并且,每个转发设备无需竞争信道,缩短了发送WUP所耗费的时间,提高了发送WUP的效率。对于多个转发设备来说,由于该多个转发设备同时在信道上发送WUP,而无需轮流发送,提高了发送WUP的效率。
图13是根据一示例性实施例示出的一种组播数据发送装置的结构示意图,如图13所示,该装置包括:获取模块1301和发送模块1302。
获取模块1301,用于获取多播广播同频网MBSFN信息,该MBSFN信息用于指示多个转发设备发送组播数据时所采用的相同的第一数据发送方式、相同的第一信道及相同的第一时间点,该组播数据是从控制设备接收到的;
发送模块1302,用于在该第一时间点及该第一信道上,采用该第一数据发送方式向至少一个站点设备转发该组播数据。
本实施例提供的装置,多个转发设备获取相同的MBSFN信息,根据该相同的MBSFN信息,能够采用相同的数据发送方式,在相同时间点及相同信道上发送组播数据,不同转发设备之间不会造成干扰,并且,对于每个转发设备来说,均无需竞争信道,缩短了发送组播数据所耗费的时间,提高了发送组播数据的效率。对于多个转发设备来说,由于该多个转发设备同时在信道上发送数据,而无需轮流发送,也提高了发送组播数据的效率。
在一种可能的实现方式中,该MBSFN信息还用于指示该多个转发设备向站点设备发送唤醒数据分组WUP、发送该WUP时所采用的相同的第二数据发送方式、相同的第二信道及相同的第二时间点;
该发送模块1302,还用于在该第二时间点及该第二信道上,采用该第二数据发送方式向该至少一个站点设备发送该WUP,执行该在该第一时间点及该第一信道上向至少一个站点设备发送该组播数据的步骤,以便于该至少一个站点设备中的每个站点设备通过配置的唤 醒无线电WUR接收机接收该WUP,将主接收机MR从休眠状态唤醒至工作状态,并通过该MR接收该组播数据。
在另一种可能的实现方式中,该MBSFN信息包括第一信道信息、第一时间信息和该第一数据发送方式,该第一数据发送方式包括物理层分组格式、发送地址TA、接收地址RA、带宽、保护间隔GI、扰码种子、空时分组编码STBC标识及双重载波调制DCM标识中的至少一项;
其中,该第一信道信息用于指示该第一信道,该第一时间信息用于指示该第一时间点,该物理层分组格式用于指示该多个转发设备发送该组播数据所采用的相同物理层分组格式,该TA用于指示该多个转发设备发送该组播数据所采用的相同TA,该RA用于指示该多个转发设备发送该组播数据所采用的相同RA,该带宽用于指示该多个转发设备发送该组播数据所采用的相同带宽,该GI用于指示该多个转发设备发送该组播数据所采用的相同GI,该扰码种子用于指示该多个转发设备发送该组播数据所采用的相同扰码种子,该STBC标识用于指示该多个转发设备是否采用STBC的方式发送该组播数据,该DCM标识用于指示该多个转发设备是否采用DCM的方式发送该组播数据。
在另一种可能的实现方式中,该装置还包括:
接收模块,用于接收该转发设备连接的站点设备的设备信息,该设备信息包括支持的无线局域网WLAN协议、是否支持STBC的指示及是否支持DCM的指示中的至少一项,该设备信息用于指示站点设备支持的数据发送方式;
该发送模块1302,还用于向该控制设备发送设备统计信息,该设备统计信息用于指示该转发设备连接的站点设备中是否存在支持每种WLAN协议的站点设备、是否存在不支持该STBC的站点设备及是否存在不支持该DCM的站点设备中的至少一项,或者,该设备统计信息用于指示该转发设备连接的站点设备中支持每种WLAN协议的站点设备数目、不支持该STBC的站点设备数目及不支持该DCM的站点设备数目中的至少一项,以便于该控制设备根据该多个转发设备发送的设备统计信息,确定该MBSFN信息,返回给该转发设备。
在另一种可能的实现方式中,该获取模块1301,还用于对该组播数据进行解析,得到该组播数据携带的MBSFN信息;或者,
该获取模块1301,还用于接收该控制设备发送的信标帧,对该信标帧进行解析,得到该信标帧携带的MBSFN信息;或者,
该获取模块1301,还用于当向该控制设备发送设备统计信息后,接收该控制设备返回的MBSFN信息,该MBSFN信息由该控制设备根据该多个转发设备发送的设备统计信息确定;或者,
该获取模块1301,还用于接收该控制设备发送的连接信息,对该连接信息进行解析,得到该连接信息携带的MBSFN信息,该连接信息用于指示该转发设备和该控制设备建立连接;或者,
该获取模块1301,还用于获取预先存储的默认的MBSFN信息。
在另一种可能的实现方式中,该MBSFN信息包括第一时间信息,该第一时间信息用于指示该第一时间点;
该获取模块1301,还用于获取该第一时间信息中携带的指定时间间隔,将接收到该组播数据后经过该指定时间间隔的时间点作为该第一时间点;或者,
该获取模块1301,还用于获取该第一时间信息中携带的指定时间间隔,接收该控制设备发送的同步帧,将接收到该同步帧后经过该指定时间间隔的时间点作为该第一时间点;或者,
该获取模块1301,还用于获取该第一时间信息中携带的该第一时间点。
在另一种可能的实现方式中,该发送模块1302,还用于当该第一信道为空闲状态时,执行该在该第一时间点及该第一信道上,采用该第一数据发送方式向至少一个站点设备发送该组播数据的步骤;
该发送模块1302,还用于当该第一信道为繁忙状态时,则不在该第一时间点发送该组播数据。
在另一种可能的实现方式中,该控制设备为接入点AP,该多个转发设备为该AP连接的多个Relay中继;或者,
该控制设备为多个AP中的指定AP,该多个转发设备为该多个AP中除了该指定AP以外的多个AP;或者,
该控制设备为接入控制器AC,该多个转发设备为该AC连接的多个AP。
图14是根据一示例性实施例示出的一种组播数据发送装置的结构示意图,如图14所示,应用于控制设备中,该装置包括:确定模块1401和发送模块1402。
确定模块1401,用于确定多播广播同频网MBSFN信息,该MBSFN信息用于指示多个转发设备发送组播数据时采用的相同的第一数据发送方式、相同的第一信道及相同的第一时间点;
发送模块1402,用于向该多个转发设备发送该MBSFN信息及该组播数据,以便于该多个转发设备中的每个转发设备采用该第一数据发送方式,在该第一时间点及该第一信道上向至少一个站点设备发送该组播数据。
本实施例提供的装置,多个转发设备获取相同的MBSFN信息,根据该相同的MBSFN信息,能够采用相同的数据发送方式,在相同时间点及相同信道上发送组播数据,不同转发设备之间不会造成干扰,并且,对于每个转发设备来说,均无需竞争信道,缩短了发送组播数据所耗费的时间,提高了发送组播数据的效率。对于多个转发设备来说,由于该多个转发设备同时在信道上发送数据,而无需轮流发送,也提高了发送组播数据的效率。
在一种可能的实现方式中,该MBSFN信息包括第一信道信息、第一时间信息和第一数据发送方式,该第一数据发送方式包括物理层分组格式、发送地址TA、接收地址RA、带宽、保护间隔GI、扰码种子、空时分组编码STBC标识及双重载波调制DCM标识中的至少一项;
该MBSFN信息还用于指示该多个转发设备向站点设备发送唤醒数据分组WUP、发送该WUP时采用的相同的第二数据发送方式、相同的第二信道及相同的第二时间点,该第一信道信息用于指示该第一信道,该第一时间信息用于指示该第一时间点,该物理层分组格式用于指示该多个转发设备发送该组播数据所采用的相同物理层分组格式,该TA用于指示该多个转发设备发送该组播数据所采用的相同TA,该RA用于指示该多个转发设备发送该组播数据所采用的相同RA,该带宽用于指示该多个转发设备发送该组播数据所采用的相同带宽,该GI用于指示该多个转发设备发送该组播数据所采用的相同GI,该扰码种子用于指示该多个转发设备发送该组播数据所采用的相同扰码种子,该STBC标识用于指示该多个转发设备 是否采用STBC的方式发送该组播数据,该DCM标识用于指示该多个转发设备是否采用DCM的方式发送该组播数据。
在另一种可能的实现方式中,该装置还包括:
接收模块,用于接收该多个转发设备中每个转发设备发送的设备统计信息,该设备统计信息用于指示相应转发设备连接的站点设备中是否存在支持每种WLAN协议的站点设备、是否存在不支持该STBC的站点设备及是否存在不支持该DCM的站点设备中的至少一项,或者,该设备统计信息用于指示相应转发设备连接的站点设备中支持每种WLAN协议的站点设备数目、不支持该STBC的站点设备数目及不支持该DCM的站点设备数目中的至少一项;
该确定模块1401,还用于根据该多个转发设备的设备统计信息,确定该多个转发设备连接的站点设备支持的数据发送方式;
该确定模块1401,还用于根据该多个转发设备连接的站点设备均支持的数据发送方式,确定该MBSFN信息;或者,
该确定模块1401,还用于根据该多个转发设备连接的站点设备中超过指定数目的站点设备支持的数据发送方式,确定该MBSFN信息。
在另一种可能的实现方式中,该发送模块1402,还用于在该组播数据中携带该MBSFN信息,向该多个转发设备发送携带该MBSFN信息的组播数据;或者,
该发送模块1402,还用于在信标帧中携带该MBSFN信息,向该多个转发设备发送该信标帧及该组播数据;或者,
该发送模块1402,还用于在连接信息中携带该MBSFN信息,向该多个转发设备发送该连接信息及该组播数据,该连接信息用于指示该多个转发设备中的每个转发设备和该控制设备建立连接。
在另一种可能的实现方式中,该控制设备为接入点AP,该多个转发设备为该AP连接的多个Relay中继;或者,
该控制设备为多个AP中的指定AP,该多个转发设备为该多个AP中除了该指定AP以外的多个AP;或者,
该控制设备为接入控制器AC,该多个转发设备为该AC连接的多个AP。
上述所有可选技术方案,可以采用任意结合形成本公开的可选实施例,在此不再一一赘述。
需要说明的是:上述实施例提供的组播数据发送装置在发送组播数据时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将控制设备和转发设备的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的组播数据发送的装置与组播数据发送的方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
图15是本公开实施例提供的一种转发设备的结构示意图,参见图15,该转发设备包括:接收器1501、发射器1502、存储器1503和处理器1504,该接收器1501、该发射器1502和该存储器1503分别与该处理器1504连接,该存储器1503存储有至少一条指令,该处理器1504用于加载并执行该至少一条指令,以实现上述实施例中转发设备所执行的操作。
图16是本公开实施例提供的一种控制设备的结构示意图,参见图16,该控制设备包括:接收器1601、发射器1602、存储器1603和处理器1064,该接收器1601、该发射器1602和该存储器1603分别与该处理器1604连接,该存储器1603存储有至少一条指令,该处理器1604用于加载并执行该至少一条指令,以实现上述实施例中控制设备所执行的操作。
本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令,该指令由处理器加载并执行以实现上述实施例所述的组播数据发送方法中转发设备所执行的操作,例如,该计算机可读存储介质可以是只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
本公开实施例还提供了一种计算机可读存储介质,该计算机可读存储介质中存储有至少一条指令,该指令由处理器加载并执行以实现上述实施例所述的组播数据发送方法中控制设备所执行的操作,例如,该计算机可读存储介质可以是ROM、RAM、CD-ROM、磁带、软盘和光数据存储设备等。
本公开实施例还提供了一种包含指令的计算机程序产品,当其在控制设备上运行时,使得该控制设备能够实现上述实施例中控制设备在组播数据发送方法中执行的操作。
本公开实施例还提供了一种包含指令的计算机程序产品,当其在转发设备上运行时,使得该转发设备能够实现上述实施例中转发设备在组播数据发送方法中执行的操作。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述仅为本公开的可选实施例,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (30)

  1. 一种组播数据发送方法,其特征在于,应用于转发设备中,所述方法包括:
    获取多播广播同频网MBSFN信息,所述MBSFN信息用于指示多个转发设备发送组播数据时所采用的相同的第一数据发送方式、相同的第一信道及相同的第一时间点,所述组播数据是从控制设备接收到的;
    在所述第一时间点及所述第一信道上,采用所述第一数据发送方式向至少一个站点设备转发所述组播数据。
  2. 根据权利要求1所述的方法,其特征在于,所述MBSFN信息还用于指示所述多个转发设备向站点设备发送唤醒数据分组WUP、发送所述WUP时所采用的相同的第二数据发送方式、相同的第二信道及相同的第二时间点,所述获取多播广播同频网MBSFN信息之后,所述方法还包括:
    在所述第二时间点及所述第二信道上,采用所述第二数据发送方式向所述至少一个站点设备发送所述WUP,执行所述在所述第一时间点及所述第一信道上向至少一个站点设备发送所述组播数据的步骤,以便于所述至少一个站点设备中的每个站点设备通过配置的唤醒无线电WUR接收机接收所述WUP,将主接收机MR从休眠状态唤醒至工作状态,并通过所述MR接收所述组播数据。
  3. 根据权利要求1所述的方法,其特征在于,所述MBSFN信息包括第一信道信息、第一时间信息和所述第一数据发送方式,所述第一数据发送方式包括物理层分组格式、发送地址TA、接收地址RA、带宽、保护间隔GI、扰码种子、空时分组编码STBC标识及双重载波调制DCM标识中的至少一项;
    其中,所述第一信道信息用于指示所述第一信道,所述第一时间信息用于指示所述第一时间点,所述物理层分组格式用于指示所述多个转发设备发送所述组播数据所采用的相同物理层分组格式,所述TA用于指示所述多个转发设备发送所述组播数据所采用的相同TA,所述RA用于指示所述多个转发设备发送所述组播数据所采用的相同RA,所述带宽用于指示所述多个转发设备发送所述组播数据所采用的相同带宽,所述GI用于指示所述多个转发设备发送所述组播数据所采用的相同GI,所述扰码种子用于指示所述多个转发设备发送所述组播数据所采用的相同扰码种子,所述STBC标识用于指示所述多个转发设备是否采用STBC的方式发送所述组播数据,所述DCM标识用于指示所述多个转发设备是否采用DCM的方式发送所述组播数据。
  4. 根据权利要求1所述的方法,其特征在于,所述获取多播广播同频网MBSFN信息之前,所述方法还包括:
    接收所述转发设备连接的站点设备的设备信息,所述设备信息包括支持的无线局域网WLAN协议、是否支持STBC的指示及是否支持DCM的指示中的至少一项,所述设备信息用于指示站点设备支持的数据发送方式;
    向所述控制设备发送设备统计信息,所述设备统计信息用于指示所述转发设备连接的站 点设备中是否存在支持每种WLAN协议的站点设备、是否存在不支持所述STBC的站点设备及是否存在不支持所述DCM的站点设备中的至少一项,或者,所述设备统计信息用于指示所述转发设备连接的站点设备中支持每种WLAN协议的站点设备数目、不支持所述STBC的站点设备数目及不支持所述DCM的站点设备数目中的至少一项,以便于所述控制设备根据所述多个转发设备发送的设备统计信息,确定所述MBSFN信息,返回给所述转发设备。
  5. 根据权利要求1所述的方法,其特征在于,所述获取多播广播同频网MBSFN信息,包括:
    对所述组播数据进行解析,得到所述组播数据携带的MBSFN信息;或者,
    接收所述控制设备发送的信标帧,对所述信标帧进行解析,得到所述信标帧携带的MBSFN信息;或者,
    当向所述控制设备发送设备统计信息后,接收所述控制设备返回的MBSFN信息,所述MBSFN信息由所述控制设备根据所述多个转发设备发送的设备统计信息确定;或者,
    接收所述控制设备发送的连接信息,对所述连接信息进行解析,得到所述连接信息携带的MBSFN信息,所述连接信息用于指示所述转发设备和所述控制设备建立连接;或者,
    获取预先存储的默认的MBSFN信息。
  6. 根据权利要求1所述的方法,其特征在于,所述MBSFN信息包括第一时间信息,所述第一时间信息用于指示所述第一时间点,所述获取多播广播同频网MBSFN信息之后,所述方法还包括:
    获取所述第一时间信息中携带的指定时间间隔,将接收到所述组播数据后经过所述指定时间间隔的时间点作为所述第一时间点;或者,
    获取所述第一时间信息中携带的指定时间间隔,接收所述控制设备发送的同步帧,将接收到所述同步帧后经过所述指定时间间隔的时间点作为所述第一时间点;或者,
    获取所述第一时间信息中携带的所述第一时间点。
  7. 根据权利要求1所述的方法,其特征在于,所述获取多播广播同频网MBSFN信息之后,所述方法还包括:
    当所述第一信道为空闲状态时,执行所述在所述第一时间点及所述第一信道上,采用所述第一数据发送方式向至少一个站点设备发送所述组播数据的步骤;
    当所述第一信道为繁忙状态时,则不在所述第一时间点发送所述组播数据。
  8. 根据权利要求1所述的方法,其特征在于,所述控制设备为接入点AP,所述多个转发设备为所述AP连接的多个Relay中继;或者,
    所述控制设备为多个AP中的指定AP,所述多个转发设备为所述多个AP中除了所述指定AP以外的多个AP;或者,
    所述控制设备为接入控制器AC,所述多个转发设备为所述AC连接的多个AP。
  9. 一种组播数据发送方法,其特征在于,应用于控制设备中,所述方法包括:
    确定多播广播同频网MBSFN信息,所述MBSFN信息用于指示多个转发设备发送组播数据时采用的相同的第一数据发送方式、相同的第一信道及相同的第一时间点;
    向所述多个转发设备发送所述MBSFN信息及所述组播数据,以便于所述多个转发设备中的每个转发设备采用所述第一数据发送方式,在所述第一时间点及所述第一信道上向至少一个站点设备发送所述组播数据。
  10. 根据权利要求9所述的方法,其特征在于,所述MBSFN信息包括第一信道信息、第一时间信息和第一数据发送方式,所述第一数据发送方式包括物理层分组格式、发送地址TA、接收地址RA、带宽、保护间隔GI、扰码种子、空时分组编码STBC标识及双重载波调制DCM标识中的至少一项;
    所述MBSFN信息还用于指示所述多个转发设备向站点设备发送唤醒数据分组WUP、发送所述WUP时采用的相同的第二数据发送方式、相同的第二信道及相同的第二时间点,所述第一信道信息用于指示所述第一信道,所述第一时间信息用于指示所述第一时间点,所述物理层分组格式用于指示所述多个转发设备发送所述组播数据所采用的相同物理层分组格式,所述TA用于指示所述多个转发设备发送所述组播数据所采用的相同TA,所述RA用于指示所述多个转发设备发送所述组播数据所采用的相同RA,所述带宽用于指示所述多个转发设备发送所述组播数据所采用的相同带宽,所述GI用于指示所述多个转发设备发送所述组播数据所采用的相同GI,所述扰码种子用于指示所述多个转发设备发送所述组播数据所采用的相同扰码种子,所述STBC标识用于指示所述多个转发设备是否采用STBC的方式发送所述组播数据,所述DCM标识用于指示所述多个转发设备是否采用DCM的方式发送所述组播数据。
  11. 根据权利要求9所述的方法,其特征在于,所述确定多播广播同频网MBSFN信息之前,所述方法还包括:
    接收所述多个转发设备中每个转发设备发送的设备统计信息,所述设备统计信息用于指示相应转发设备连接的站点设备中是否存在支持每种WLAN协议的站点设备、是否存在不支持所述STBC的站点设备及是否存在不支持所述DCM的站点设备中的至少一项,或者,所述设备统计信息用于指示相应转发设备连接的站点设备中支持每种WLAN协议的站点设备数目、不支持所述STBC的站点设备数目及不支持所述DCM的站点设备数目中的至少一项;
    根据所述多个转发设备的设备统计信息,确定所述多个转发设备连接的站点设备支持的数据发送方式;
    根据所述多个转发设备连接的站点设备均支持的数据发送方式,确定所述MBSFN信息;或者,
    根据所述多个转发设备连接的站点设备中超过指定数目的站点设备支持的数据发送方式,确定所述MBSFN信息。
  12. 根据权利要求9所述的方法,其特征在于,所述向所述多个转发设备发送所述MBSFN信息及组播数据,包括:
    在所述组播数据中携带所述MBSFN信息,向所述多个转发设备发送携带所述MBSFN信息的组播数据;或者,
    在信标帧中携带所述MBSFN信息,向所述多个转发设备发送所述信标帧及所述组播数据;或者,
    在连接信息中携带所述MBSFN信息,向所述多个转发设备发送所述连接信息及所述组播数据,所述连接信息用于指示所述多个转发设备中的每个转发设备和所述控制设备建立连接。
  13. 根据权利要求9所述的方法,其特征在于,所述控制设备为接入点AP,所述多个转发设备为所述AP连接的多个Relay中继;或者,
    所述控制设备为多个AP中的指定AP,所述多个转发设备为所述多个AP中除了所述指定AP以外的多个AP;或者,
    所述控制设备为接入控制器AC,所述多个转发设备为所述AC连接的多个AP。
  14. 一种组播数据发送装置,其特征在于,应用于转发设备中,所述装置包括:
    获取模块,用于获取多播广播同频网MBSFN信息,所述MBSFN信息用于指示多个转发设备发送组播数据时所采用的相同的第一数据发送方式、相同的第一信道及相同的第一时间点,所述组播数据是从控制设备接收到的;
    发送模块,用于在所述第一时间点及所述第一信道上,采用所述第一数据发送方式向至少一个站点设备转发所述组播数据。
  15. 根据权利要求14所述的装置,其特征在于,所述MBSFN信息还用于指示所述多个转发设备向站点设备发送唤醒数据分组WUP、发送所述WUP时所采用的相同的第二数据发送方式、相同的第二信道及相同的第二时间点;
    所述发送模块,还用于在所述第二时间点及所述第二信道上,采用所述第二数据发送方式向所述至少一个站点设备发送所述WUP,执行所述在所述第一时间点及所述第一信道上向至少一个站点设备发送所述组播数据的步骤,以便于所述至少一个站点设备中的每个站点设备通过配置的唤醒无线电WUR接收机接收所述WUP,将主接收机MR从休眠状态唤醒至工作状态,并通过所述MR接收所述组播数据。
  16. 根据权利要求14所述的装置,其特征在于,所述MBSFN信息包括第一信道信息、第一时间信息和所述第一数据发送方式,所述第一数据发送方式包括物理层分组格式、发送地址TA、接收地址RA、带宽、保护间隔GI、扰码种子、空时分组编码STBC标识及双重载波调制DCM标识中的至少一项;
    其中,所述第一信道信息用于指示所述第一信道,所述第一时间信息用于指示所述第一时间点,所述物理层分组格式用于指示所述多个转发设备发送所述组播数据所采用的相同物理层分组格式,所述TA用于指示所述多个转发设备发送所述组播数据所采用的相同TA,所述RA用于指示所述多个转发设备发送所述组播数据所采用的相同RA,所述带宽用于指示所述多个转发设备发送所述组播数据所采用的相同带宽,所述GI用于指示所述多个转发设备发送所述组播数据所采用的相同GI,所述扰码种子用于指示所述多个转发设备发送所述组播数据所采用的相同扰码种子,所述STBC标识用于指示所述多个转发设备是否采用STBC的方式发送所述组播数据,所述DCM标识用于指示所述多个转发设备是否采用DCM的方式发送所述 组播数据。
  17. 根据权利要求14所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述转发设备连接的站点设备的设备信息,所述设备信息包括支持的无线局域网WLAN协议、是否支持STBC的指示及是否支持DCM的指示中的至少一项,所述设备信息用于指示站点设备支持的数据发送方式;
    所述发送模块,还用于向所述控制设备发送设备统计信息,所述设备统计信息用于指示所述转发设备连接的站点设备中是否存在支持每种WLAN协议的站点设备、是否存在不支持所述STBC的站点设备及是否存在不支持所述DCM的站点设备中的至少一项,或者,所述设备统计信息用于指示所述转发设备连接的站点设备中支持每种WLAN协议的站点设备数目、不支持所述STBC的站点设备数目及不支持所述DCM的站点设备数目中的至少一项,以便于所述控制设备根据所述多个转发设备发送的设备统计信息,确定所述MBSFN信息,返回给所述转发设备。
  18. 根据权利要求14所述的装置,其特征在于,所述获取模块,还用于对所述组播数据进行解析,得到所述组播数据携带的MBSFN信息;或者,
    所述获取模块,还用于接收所述控制设备发送的信标帧,对所述信标帧进行解析,得到所述信标帧携带的MBSFN信息;或者,
    所述获取模块,还用于当向所述控制设备发送设备统计信息后,接收所述控制设备返回的MBSFN信息,所述MBSFN信息由所述控制设备根据所述多个转发设备发送的设备统计信息确定;或者,
    所述获取模块,还用于接收所述控制设备发送的连接信息,对所述连接信息进行解析,得到所述连接信息携带的MBSFN信息,所述连接信息用于指示所述转发设备和所述控制设备建立连接;或者,
    所述获取模块,还用于获取预先存储的默认的MBSFN信息。
  19. 根据权利要求14所述的装置,其特征在于,所述MBSFN信息包括第一时间信息,所述第一时间信息用于指示所述第一时间点;
    所述获取模块,还用于获取所述第一时间信息中携带的指定时间间隔,将接收到所述组播数据后经过所述指定时间间隔的时间点作为所述第一时间点;或者,
    所述获取模块,还用于获取所述第一时间信息中携带的指定时间间隔,接收所述控制设备发送的同步帧,将接收到所述同步帧后经过所述指定时间间隔的时间点作为所述第一时间点;或者,
    所述获取模块,还用于获取所述第一时间信息中携带的所述第一时间点。
  20. 根据权利要求14所述的装置,其特征在于,所述发送模块,还用于当所述第一信道为空闲状态时,执行所述在所述第一时间点及所述第一信道上,采用所述第一数据发送方式向至少一个站点设备发送所述组播数据的步骤;
    所述发送模块,还用于当所述第一信道为繁忙状态时,则不在所述第一时间点发送所述 组播数据。
  21. 根据权利要求14所述的装置,其特征在于,所述控制设备为接入点AP,所述多个转发设备为所述AP连接的多个Relay中继;或者,
    所述控制设备为多个AP中的指定AP,所述多个转发设备为所述多个AP中除了所述指定AP以外的多个AP;或者,
    所述控制设备为接入控制器AC,所述多个转发设备为所述AC连接的多个AP。
  22. 一种组播数据发送装置,其特征在于,应用于控制设备中,所述装置包括:
    确定模块,用于确定多播广播同频网MBSFN信息,所述MBSFN信息用于指示多个转发设备发送组播数据时采用的相同的第一数据发送方式、相同的第一信道及相同的第一时间点;
    发送模块,用于向所述多个转发设备发送所述MBSFN信息及所述组播数据,以便于所述多个转发设备中的每个转发设备采用所述第一数据发送方式,在所述第一时间点及所述第一信道上向至少一个站点设备发送所述组播数据。
  23. 根据权利要求9所述的装置,其特征在于,所述MBSFN信息包括第一信道信息、第一时间信息和第一数据发送方式,所述第一数据发送方式包括物理层分组格式、发送地址TA、接收地址RA、带宽、保护间隔GI、扰码种子、空时分组编码STBC标识及双重载波调制DCM标识中的至少一项;
    所述MBSFN信息还用于指示所述多个转发设备向站点设备发送唤醒数据分组WUP、发送所述WUP时采用的相同的第二数据发送方式、相同的第二信道及相同的第二时间点,所述第一信道信息用于指示所述第一信道,所述第一时间信息用于指示所述第一时间点,所述物理层分组格式用于指示所述多个转发设备发送所述组播数据所采用的相同物理层分组格式,所述TA用于指示所述多个转发设备发送所述组播数据所采用的相同TA,所述RA用于指示所述多个转发设备发送所述组播数据所采用的相同RA,所述带宽用于指示所述多个转发设备发送所述组播数据所采用的相同带宽,所述GI用于指示所述多个转发设备发送所述组播数据所采用的相同GI,所述扰码种子用于指示所述多个转发设备发送所述组播数据所采用的相同扰码种子,所述STBC标识用于指示所述多个转发设备是否采用STBC的方式发送所述组播数据,所述DCM标识用于指示所述多个转发设备是否采用DCM的方式发送所述组播数据。
  24. 根据权利要求22所述的装置,其特征在于,所述装置还包括:
    接收模块,用于接收所述多个转发设备中每个转发设备发送的设备统计信息,所述设备统计信息用于指示相应转发设备连接的站点设备中是否存在支持每种WLAN协议的站点设备、是否存在不支持所述STBC的站点设备及是否存在不支持所述DCM的站点设备中的至少一项,或者,所述设备统计信息用于指示相应转发设备连接的站点设备中支持每种WLAN协议的站点设备数目、不支持所述STBC的站点设备数目及不支持所述DCM的站点设备数目中的至少一项;
    所述确定模块,还用于根据所述多个转发设备的设备统计信息,确定所述多个转发设备连接的站点设备支持的数据发送方式;
    所述确定模块,还用于根据所述多个转发设备连接的站点设备均支持的数据发送方式, 确定所述MBSFN信息;或者,
    所述确定模块,还用于根据所述多个转发设备连接的站点设备中超过指定数目的站点设备支持的数据发送方式,确定所述MBSFN信息。
  25. 根据权利要求22所述的装置,其特征在于,所述发送模块,还用于在所述组播数据中携带所述MBSFN信息,向所述多个转发设备发送携带所述MBSFN信息的组播数据;或者,
    所述发送模块,还用于在信标帧中携带所述MBSFN信息,向所述多个转发设备发送所述信标帧及所述组播数据;或者,
    所述发送模块,还用于在连接信息中携带所述MBSFN信息,向所述多个转发设备发送所述连接信息及所述组播数据,所述连接信息用于指示所述多个转发设备中的每个转发设备和所述控制设备建立连接。
  26. 根据权利要求22所述的装置,其特征在于,所述控制设备为接入点AP,所述多个转发设备为所述AP连接的多个Relay中继;或者,
    所述控制设备为多个AP中的指定AP,所述多个转发设备为所述多个AP中除了所述指定AP以外的多个AP;或者,
    所述控制设备为接入控制器AC,所述多个转发设备为所述AC连接的多个AP。
  27. 一种转发设备,其特征在于,所述转发设备包括处理器和存储器,所述存储器中存储有至少一条指令,所述指令由所述处理器加载并执行以实现如权利要求1至权利要求8任一项所述的组播数据发送方法中所执行的操作。
  28. 一种控制设备,其特征在于,所述控制设备包括处理器和存储器,所述存储器中存储有至少一条指令,所述指令由所述处理器加载并执行以实现如权利要求9至权利要求13任一项所述的组播数据发送方法中所执行的操作。
  29. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如权利要求1至权利要求8任一项所述的组播数据发送方法中所执行的操作。
  30. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有至少一条指令,所述指令由处理器加载并执行以实现如权利要求9至权利要求13任一项所述的组播数据发送方法中所执行的操作。
PCT/CN2018/092932 2017-06-26 2018-06-26 组播数据发送方法、装置、设备及存储介质 WO2019001433A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/723,625 US20200137529A1 (en) 2017-06-26 2019-12-20 Multicast Data Sending Method and Apparatus, Device, and Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710495188.5A CN109121202A (zh) 2017-06-26 2017-06-26 组播数据发送方法、装置、设备及存储介质
CN201710495188.5 2017-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/723,625 Continuation US20200137529A1 (en) 2017-06-26 2019-12-20 Multicast Data Sending Method and Apparatus, Device, and Storage Medium

Publications (1)

Publication Number Publication Date
WO2019001433A1 true WO2019001433A1 (zh) 2019-01-03

Family

ID=64741978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092932 WO2019001433A1 (zh) 2017-06-26 2018-06-26 组播数据发送方法、装置、设备及存储介质

Country Status (3)

Country Link
US (1) US20200137529A1 (zh)
CN (1) CN109121202A (zh)
WO (1) WO2019001433A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074740A1 (ko) * 2016-10-23 2018-04-26 엘지전자 주식회사 무선랜 시스템에서 웨이크 업 신호를 송수신하는 방법 및 이를 위한 장치
JP7299684B2 (ja) * 2018-10-03 2023-06-28 キヤノン株式会社 アクセスポイント、制御方法、及びプログラム
WO2021045396A1 (ko) * 2019-09-05 2021-03-11 엘지전자 주식회사 멀티 ap 시스템에서 데이터 공유
KR20210046495A (ko) * 2019-10-18 2021-04-28 삼성전자주식회사 무선 통신 시스템에서 제어 메시지 전송 방법 및 장치
CN111541998B (zh) * 2020-04-03 2021-12-17 深圳市科思科技股份有限公司 组播传输方法、系统、设备及存储介质
CN112118222A (zh) * 2020-08-11 2020-12-22 深圳市欣博跃电子有限公司 一种数据转发的方法、装置、电子设备和存储介质
CN114584414B (zh) * 2020-12-01 2024-05-03 深圳绿米联创科技有限公司 设备控制方法、装置、电子设备和计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121194A1 (en) * 2009-04-17 2010-10-21 Research In Motion Limited Multicast/broadcast single frequency network subframe physical downlink control channel design
WO2010121411A1 (zh) * 2009-04-20 2010-10-28 华为技术有限公司 数据传输方法及装置
CN102075868A (zh) * 2011-01-30 2011-05-25 电信科学技术研究院 一种mbms业务数据的转发、发送方法、装置及系统
CN104811948A (zh) * 2014-01-24 2015-07-29 中国移动通信集团公司 一种中继数据处理方法及装置
CN106412801A (zh) * 2016-08-31 2017-02-15 西安电子科技大学 一种基于视频帧结构和d2d通信的视频多播方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104022806B (zh) * 2008-12-26 2018-02-02 富士通株式会社 无线通信系统和无线通信方法
US9872275B2 (en) * 2011-11-15 2018-01-16 Kyocera Corporation Inter-cell messaging using MBSFN Subframe
EP2795977A4 (en) * 2011-12-20 2015-10-07 Intel Corp GROUPED BROADCAST SERVICE USING INDIVIDUAL SHIPPING SUBFRAME
CN106604203B (zh) * 2015-10-20 2020-12-25 华为技术有限公司 无线局域网中站点间直接通信的方法及相关设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010121194A1 (en) * 2009-04-17 2010-10-21 Research In Motion Limited Multicast/broadcast single frequency network subframe physical downlink control channel design
WO2010121411A1 (zh) * 2009-04-20 2010-10-28 华为技术有限公司 数据传输方法及装置
CN102075868A (zh) * 2011-01-30 2011-05-25 电信科学技术研究院 一种mbms业务数据的转发、发送方法、装置及系统
CN104811948A (zh) * 2014-01-24 2015-07-29 中国移动通信集团公司 一种中继数据处理方法及装置
CN106412801A (zh) * 2016-08-31 2017-02-15 西安电子科技大学 一种基于视频帧结构和d2d通信的视频多播方法

Also Published As

Publication number Publication date
US20200137529A1 (en) 2020-04-30
CN109121202A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
US11937299B2 (en) Controlling transmissions from multiple user devices via a request-clear technique
US10652325B2 (en) Method and system for transmitting data among peer stations in a decentralized manner with high channel efficiency
WO2019001433A1 (zh) 组播数据发送方法、装置、设备及存储介质
AU2011304260B2 (en) Method for power saving in wireless local area network and apparatus for the same
EP2840857B1 (en) Wireless access point used in a wireless communication system with coordinated multipoint operation and method for use therewith
CN102067652B (zh) 用于无线网络中多播传送的竞争缓解的装置
WO2015169025A1 (zh) 并行数据传输处理方法、装置及计算机存储介质
EP3397016B1 (en) Channel contention method and apparatus
CN108495372B (zh) 一种无线局域网中小区内多站点数据同时传输的方法
WO2016037480A1 (zh) 一种实现并行多用户数据传输的方法及主节点
KR20150013481A (ko) 무선랜 시스템에서 채널 액세스 제어 방법 및 장치
US10050746B2 (en) System and method for orthogonal frequency division multiple access power-saving poll transmission
CN105900513B (zh) 竞争信道的方法和装置
JP2008532332A (ja) 無線チャネルによって接続される複数の局及び1つのアクセスポイントを含む通信ネットワークにおける無線チャネルにアクセスする方法及び無線通信ネットワーク
US20170325239A1 (en) Method and Device for Resource Sharing Between Stations in Wireless Local Area Network
WO2012159497A1 (zh) 一种信道反馈信息的传输方法及系统
US10439768B2 (en) Parallel multiuser data transmission method and primary node
WO2016188245A1 (zh) 信道协商方法、站点及系统
WO2012092848A1 (zh) 数据发送、接收方法及装置和网络系统
US20170208618A1 (en) Direct link scheduling method, access point and terminal device
WO2015109599A1 (zh) 无线通信方法、接入点和站点
WO2017031628A1 (zh) 一种数据传输控制方法及接入点、站点
WO2017041629A1 (zh) 主动扫描处理方法和相关装置以及通信系统
CN112105075B (zh) 唤醒帧发送方法、节点醒来后发送第一帧的方法及设备
CN112512082A (zh) 无线网络的传输方法、装置、通信节点及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823687

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823687

Country of ref document: EP

Kind code of ref document: A1