WO2015169025A1 - 并行数据传输处理方法、装置及计算机存储介质 - Google Patents

并行数据传输处理方法、装置及计算机存储介质 Download PDF

Info

Publication number
WO2015169025A1
WO2015169025A1 PCT/CN2014/086964 CN2014086964W WO2015169025A1 WO 2015169025 A1 WO2015169025 A1 WO 2015169025A1 CN 2014086964 W CN2014086964 W CN 2014086964W WO 2015169025 A1 WO2015169025 A1 WO 2015169025A1
Authority
WO
WIPO (PCT)
Prior art keywords
type
node
resource
secondary node
data transmission
Prior art date
Application number
PCT/CN2014/086964
Other languages
English (en)
French (fr)
Inventor
邢卫民
李楠
田开波
姚珂
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP14891532.5A priority Critical patent/EP3142455B1/en
Publication of WO2015169025A1 publication Critical patent/WO2015169025A1/zh
Priority to US15/281,438 priority patent/US20170019818A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • H04W74/0816Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA] with collision avoidance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the present invention relates to the field of communications, and in particular to a parallel data transmission processing method and apparatus, and a computer storage medium.
  • the WLAN network load is also increasing, and the efficiency of the WLAN network will be significantly reduced. Simply increasing the rate cannot solve the problem.
  • parallel multi-user data transmission is proposed in the related art, wherein the parallel multi-user data transmission technology includes multi-user multiple input multiple output (Multi-User Multiple Input Multiple Output, referred to as MU-MIMO technology (space multiple access), Orthogonal Frequency Division Multiple Access (OFDMA) technology (frequency domain multiple access) and IDMA (Interleave-Division Multiple-Access) technology (code division) Multiple access).
  • MU-MIMO technology space multiple access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • IDMA Interleave-Division Multiple-Access
  • an access point site (Access Point, abbreviated as AP) and multiple non-access points associated with the AP
  • a non-AP station (non-AP STA) forms a basic service set (BSS).
  • the parallel multi-user data transmission mentioned in the WLAN generally has multiple secondary nodes transmitting data to the primary node at the same time, or the primary node simultaneously sends data to multiple secondary nodes.
  • the primary node is an AP or a special capability non-AP STA.
  • the secondary node is a general non-AP STA.
  • the multi-user transmission mechanism can effectively improve the efficiency of the WLAN network, in the related art, due to the characteristics of the WLAN itself, an effective parallel transmission link cannot be established, so that the WLAN network cannot directly perform parallel data transmission.
  • the embodiment of the invention provides a parallel data transmission processing method and device, so as to at least solve the problem that the WLAN network existing in the related art cannot directly perform parallel data transmission.
  • a parallel data transmission processing method including: determining a node type of a plurality of secondary nodes for performing parallel data transmission, wherein the node type includes two supporting message parallel processing Class-like node; determining each secondary node for negotiating parallel data transmission according to the node type And a resource negotiation manner of the resource; determining, according to the determined resource negotiation manner, corresponding resources respectively corresponding to the multiple secondary nodes; and performing parallel data transmission processing on the multiple secondary nodes according to the corresponding resources.
  • determining, according to the node type, the resource negotiation manner for negotiating each secondary node resource of the parallel data transmission includes at least one of the following: the node type of the multiple secondary nodes further includes a message parallel processing that does not support the message.
  • the node type of the multiple secondary nodes determines a resource negotiation mode for separately negotiating resources for the one type of secondary node and the second type of secondary node; the node type of the multiple secondary nodes only includes supporting message parallel processing
  • the resource negotiation mode for separately negotiating resources is adopted for the second-type secondary node; in the case that the node types of the multiple secondary nodes only include the second-type secondary nodes that support message parallel processing
  • the resource negotiation mode of simultaneous parallel negotiation is adopted for the second type of secondary nodes.
  • Corresponding resources include: after determining corresponding resources of the type of secondary node on the primary channel, sending a request message for requesting data transmission to the second type of secondary node, where the request is sent to the second type of secondary node
  • the message carries the first resource range information except the resources occupied by the type of secondary node; and the corresponding resource of the second type of secondary node is determined according to the response message fed back by the second type of secondary node, where The response message fed back by the second type of secondary node carries the corresponding resource of the second type of secondary node selected by the second type of secondary node according to the first resource range information.
  • the request message sent to the second type of secondary node includes at least one of the following: a unicast request to send an RTS frame, a unicast predetermined frame, and a multicast predetermined frame, wherein the reserved indicator bit in the RTS frame is unicasted.
  • the information field of the unicast predetermined frame or the multicast predetermined frame indicates the first resource range information that is carried; and the response message that is sent by the second type of secondary node is a single Allowing to send a CTS frame or a unicast predetermined response frame, wherein the reserved indicator bit in the CTS frame fed back by the second type of secondary node indicates the corresponding resource selected by the second type of secondary node that is carried, the unicast reservation
  • the information field of the response frame indicates the corresponding resource selected by the second type of secondary node that is carried.
  • determining, according to the determined resource negotiation manner, the corresponding resources corresponding to the multiple secondary nodes further includes: determining that resources corresponding to the one type of secondary nodes include primary channel resources, where the primary The data transmission time on the channel determines the transmission time of the parallel data transmission on the secondary channel.
  • the node type of the multiple secondary nodes includes only two types of secondary nodes supporting message parallel processing, determining the corresponding correspondence corresponding to the multiple secondary nodes respectively according to the determined resource negotiation manner
  • the resource includes: sending a request message for requesting data transmission to the second type of secondary node, where the request message carries a second resource range for resources selected by the second type of secondary node for parallel data transmission Information And determining, according to the received response message sent by the type 2 secondary node, the corresponding resource of the second type of secondary node, where the response message carries the second type of secondary node according to the second resource range information.
  • the corresponding resource selected.
  • the request message sends an RTS frame or a multicast predetermined frame for a unicast request, where the reserved indication bit in the RTS frame indicates the third resource range information that is carried, the multicast predetermined frame
  • the information field indicates the third resource range information used for parallel data transmission by the second type of secondary node; the response message is a unicast permission to send a CTS frame, and the reserved indication bit in the CTS frame indicates the carried The corresponding resource selected by the second type of secondary node.
  • the request message sent to the second type of secondary node is at least one of: a unicast request sending an RTS frame, a unicast predetermined frame, and a multicast predetermined frame, wherein the reserved indication bit in the RTS frame Instructing to carry the second resource range information, where the information field of the unicast predetermined frame/multicast predetermined frame indicates the second resource range information used for parallel data transmission by the second type of secondary node;
  • the response message fed back by the class-like node is a unicast permission to send a CTS frame or a unicast predetermined response frame, wherein the reserved indication bit in the CTS frame indicates the corresponding correspondence of the second type of secondary node carried
  • the information field of the unicast predetermined response frame indicates the corresponding resource selected by the second type of secondary node that is carried.
  • the method further includes: acquiring response parameters corresponding to the multiple secondary nodes, where the multiple secondary nodes are The method further includes a type of secondary node that does not support message parallel processing, and the response parameter adjustment indication information is based on a response parameter of the one type of secondary node.
  • the response parameter adjustment indication information includes at least one of the following: power adjustment information, immediate response transmission time point adjustment information, and carrier frequency offset pre-adjustment information.
  • the corresponding resource includes at least one of the following: a frequency domain resource, a code division resource, and an airspace resource.
  • the first resource range information and the second resource range information include at least one of: a starting position of the frequency band and bandwidth information; a temporary primary channel position of the frequency band. And bandwidth information; temporary primary channel location of the frequency band; subchannel list information.
  • a parallel data transmission processing apparatus comprising: a first determining module configured to determine a node type of a plurality of secondary nodes for performing parallel data transmission, wherein the node The type includes a second type of secondary node that supports message parallel processing; the second determining module is configured to determine, according to the node type, a resource negotiation manner for negotiating secondary node resources of the parallel data transmission; and a third determining module, And the processing module is configured to perform parallel data transmission processing on the plurality of secondary nodes according to the corresponding resource, according to the determined resource negotiation manner.
  • the second determining module comprises at least one of the following: a first determining unit, configured to determine, in a case where the node type of the plurality of secondary nodes further includes a type of secondary node that does not support message parallel processing
  • the first type of secondary node and the second type of secondary node adopt a resource negotiation manner for separately negotiating resources; and the second determining unit is configured to include only two types of nodes that support message parallel processing in the node types of the multiple secondary nodes.
  • determining a resource negotiation mode for separately negotiating resources for the second type of secondary nodes; and determining, by the third determining unit, that the node types of the multiple secondary nodes only include the second type of support message parallel processing In the case of a node, a resource negotiation manner of simultaneous parallel negotiation is adopted for the second type of secondary node.
  • the third determining module includes: a first sending unit, configured to send a request for requesting data transmission to the second type of secondary node after determining corresponding resources of the one type of secondary node on the primary channel a message, wherein the request message sent to the second type of secondary node carries the first resource range information except the resources occupied by the one type of secondary node; and the fourth determining unit is configured to be based on the second type of The response message fed back by the node determines the corresponding resource of the second type of secondary node, where the response message fed back by the second type of secondary node carries the second type of secondary node according to the first resource range information. Corresponding resources of the second type of secondary nodes.
  • the third determining module further includes: a fifth determining unit, configured to determine that a resource corresponding to the one type of secondary node is a primary channel resource, where a data transmission time on the primary channel determines the parallel The transmission time of data transmission on the secondary channel.
  • a fifth determining unit configured to determine that a resource corresponding to the one type of secondary node is a primary channel resource, where a data transmission time on the primary channel determines the parallel The transmission time of data transmission on the secondary channel.
  • the third determining module includes: a second sending unit, configured to: when the node type of the multiple secondary nodes includes only two types of secondary nodes supporting message parallel processing, to the second type of secondary nodes Sending a request message for requesting data transmission, where the request message carries second resource range information for resources selected by the second type of secondary node for parallel data transmission; and a sixth determining unit, configured as a basis
  • the received response message sent by the second type of secondary node determines the corresponding resource of the second type of secondary node, where the response message carries the second type of secondary node according to the second resource range information.
  • the corresponding resource is not limited to: a third sending unit, configured to: when the node type of the multiple secondary nodes includes only two types of secondary nodes supporting message parallel processing, to the second type of secondary nodes Sending a request message for requesting data transmission, where the request message carries second resource range information for resources selected by the second type of secondary node for parallel data transmission; and a sixth determining unit, configured as a basis
  • the processing module includes: a third sending unit, configured to send corresponding data to the multiple secondary nodes at different times by using different corresponding resources, where each data sent to the second type of secondary node is The response parameter adjustment indication information for adjusting the response information of the corresponding secondary node in response to the data is carried.
  • a third sending unit configured to send corresponding data to the multiple secondary nodes at different times by using different corresponding resources, where each data sent to the second type of secondary node is The response parameter adjustment indication information for adjusting the response information of the corresponding secondary node in response to the data is carried.
  • the processing module further includes: an obtaining unit, configured to acquire a response parameter corresponding to the multiple secondary nodes, where the multiple secondary nodes further include a type of secondary node that does not support message parallel processing
  • the response parameter adjustment indication information is based on a response parameter of the one type of secondary node.
  • a parallel data transmission processing apparatus comprising the apparatus of any of the above.
  • a computer storage medium storing an execution instruction for performing the parallel data transmission processing method according to any one of the above.
  • a node type for determining a plurality of secondary nodes for performing parallel data transmission is adopted, wherein the node type includes two types of secondary nodes supporting message parallel processing; determining, according to the node type, for negotiating parallel a resource negotiation manner of each of the secondary node resources of the data transmission; determining, according to the determined resource negotiation manner, corresponding resources respectively corresponding to the multiple secondary nodes; performing parallel data transmission on the multiple secondary nodes according to the corresponding resources.
  • FIG. 1 is a schematic structural diagram of a WLAN basic service set in the related art
  • FIG. 2 is a flowchart of a parallel data transmission processing method according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the structure of a parallel data transmission processing apparatus according to an embodiment of the present invention.
  • FIG. 4 is a block diagram showing a preferred structure of a second determining module 34 in a parallel data transmission processing apparatus according to an embodiment of the present invention
  • FIG. 5 is a block diagram 1 of a preferred structure of a third determining module 36 in a parallel data transmission processing apparatus according to an embodiment of the present invention
  • FIG. 6 is a block diagram 2 of a preferred structure of a third determining module 36 in a parallel data transmission processing apparatus according to an embodiment of the present invention
  • FIG. 7 is a block diagram 3 of a preferred structure of a third determining module 36 in a parallel data transmission processing apparatus according to an embodiment of the present invention.
  • FIG. 8 is a block diagram 1 of a preferred structure of a processing module 36 in a parallel data transmission processing apparatus according to an embodiment of the present invention
  • FIG. 9 is a block diagram 2 of a preferred structure of a processing module 36 in a parallel data transmission processing apparatus according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of channel division according to a preferred embodiment of the present invention.
  • FIG. 11 is a schematic diagram of parallel transmission establishment according to a preferred embodiment of the present invention.
  • FIG. 12 is a schematic diagram of parallel transmission establishment according to a preferred embodiment 2 of the present invention.
  • FIG. 13 is a schematic diagram of parallel transmission establishment according to a preferred embodiment 4 of the present invention.
  • Figure 14 is a diagram showing the parallel transmission establishment in accordance with a preferred embodiment 5 of the present invention.
  • a WLAN network encounters some problems in data transmission using a parallel technology such as OFDMA/FDMA, which is caused by the characteristics of several WLANs described below.
  • the WLAN works in the unlicensed frequency band.
  • the data that the stations compete with each other is likely to conflict.
  • the traditional WLAN can use the control frame to reserve the channel resources to protect the data transmission.
  • RTS request to send
  • CTS clear to Send
  • the frame interactive reservation channel time that is, a transmission opportunity TXOP (transmission opportunity)
  • TXOP transmission opportunity
  • the RTS/CTS frame carries a duration indication of the data transmission to be performed, and the indication can be sent to the listening site around the RTS/CTS site. Do not contend for the channel for the duration.
  • the length of the TXOP of the above reservation is not arbitrarily set, but is related to the QoS parameter of the data to be transmitted, and is specifically related to the access category of the data (Access Category, AC for short), different ACs.
  • Parallel data transmission involves the transmission of data from multiple sites, and may also involve the transmission of multiple access category data, with a higher probability of sending collisions.
  • the WLAN there are both early devices (legacy STAs, which can be called a class of devices), and devices that support new features (for example, devices that support the new features defined by the HEW group, which can be called the second class).
  • the new device is backward compatible with the earlier device, and the two devices coexist in the network.
  • the third is the WLAN special channel usage rules.
  • the standard defines the minimum basic bandwidth, such as 20MHz, the transmission bandwidth of all data must be 2 times the power of the basic bandwidth; and a BSS must select a primary channel, for example, a BSS has an operating bandwidth of 80MHz, including four 20MHz.
  • Subchannels, one of which is the primary channel of the network, and the other subchannels within 80 MHz are the secondary channels.
  • the data transmission must not only meet the bandwidth requirements of the protocol channelization scheme, but must also include the primary channel and all devices for each transmission.
  • the primary channel detection signal is also used to determine the channel state based on the primary channel detection result and to perform data reception. It can be seen that the station triggers data reception through the carrier sensing mechanism of the primary channel. If the primary node directly uses OFDMA for parallel transmission, then all secondary nodes can only detect and receive data including the primary channel, and the secondary node cannot know the individual. The data on the secondary channel is sent, causing the data to fail to be sent.
  • a method for establishing a parallel transmission link and parallel data transmission based on the established parallel transmission link are provided.
  • FIG. 2 is a flowchart of a parallel data transmission processing method according to an embodiment of the present invention. As shown in FIG. 2, the flow includes the following steps:
  • Step S202 determining a node type of a plurality of secondary nodes for performing parallel data transmission, where the node type includes a second type of secondary node supporting the message parallel processing (same as the above two types of devices);
  • Step S204 determining, according to the node type, a resource negotiation manner for negotiating each secondary node resource of the parallel data transmission;
  • Step S206 determining corresponding resources corresponding to the plurality of secondary nodes according to the determined resource negotiation manner
  • Step S208 performing parallel data transmission processing on the plurality of secondary nodes according to the corresponding resource.
  • the resource negotiation mode is determined first according to the node type, and then, the parallel data transmission is performed multiple times according to the determined resource negotiation mode.
  • the node determines the corresponding corresponding resources, performs parallel data transmission processing according to the determined corresponding resources, respectively determines corresponding corresponding resources for the nodes used for parallel data transmission, effectively avoids interference between the secondary nodes, and determines corresponding resources according to the node type.
  • the compatibility between different sub-nodes is effectively realized, that is, through the establishment of the above-mentioned parallel data transmission link, not only the WLAN network cannot be established due to the characteristics of the WLAN itself, and the effective parallel transmission link cannot be established.
  • the problem of direct parallel data transmission can achieve the effect of not only effectively avoiding interference in parallel transmission, but also effectively compatible with old and new devices on the network and effectively improving network efficiency.
  • the foregoing processing includes the establishment of a parallel transmission link and parallel data transmission based on the established parallel transmission link, and the following execution steps may be adopted: the primary node acquires a transmission opportunity to a type of secondary node that does not support message parallel processing (same as above) A class of devices) transmitting a type of setup request frame and receiving a type of setup response frame transmitted by a type of secondary node; and/or, the primary node transmitting a type of setup request frame or a second type of setup request frame to the second type of secondary node, and receiving A type of setup response frame or a second type of setup response frame sent by the second type of secondary node; the primary node sends a parallel radio frame to the secondary node, and receives the response frame of the parallel radio frame sent by the secondary node.
  • message parallel processing as above
  • a class of devices transmitting a type of setup request frame and receiving a type of setup response frame transmitted by a type of secondary node
  • the primary node transmitting a type of setup request frame or
  • the above-mentioned one type of establishment request frame, one type of establishment response frame, the second type of establishment request frame, and the second type of establishment response frame are used for the transmission establishment process before the parallel radio frame transmission, and one type of establishment request frame and one type of establishment response frame.
  • the second type of establishment request frame and the second type of establishment response frame are frames that can be parsed by the primary node and the secondary type secondary node.
  • the transmission frequency band of the foregoing one type of establishment request frame, one type of establishment response frame, the second type establishment request frame, and the second type of establishment response frame includes a network main channel.
  • the foregoing sending, by the primary node, a parallel radio frame to the secondary node means that the primary node uses different resources (for example, including at least one of the following: a frequency domain resource, a code domain resource, and an airspace resource) to transmit data frames to multiple nodes at the same time. .
  • different resources for example, including at least one of the following: a frequency domain resource, a code domain resource, and an airspace resource
  • the corresponding resource negotiation manner may also be different for different scenarios corresponding to the parallel data transmission.
  • the pair is determined to be one type.
  • the secondary node and the second-type secondary node adopt the resource negotiation mode of separately negotiating resources; in the case that the node types of the multiple secondary nodes only include the second-class secondary nodes supporting the message parallel processing, it is determined that the secondary nodes of the second-type secondary nodes are separately negotiated separately.
  • Resource negotiation mode of resources in the case that the node types of multiple secondary nodes only include the second type of secondary nodes supporting message parallel processing, the resource negotiation mode of simultaneous parallel negotiation is adopted for the second type of secondary nodes.
  • determining corresponding resources corresponding to the multiple secondary nodes for performing parallel data transmission according to the determined resource negotiation manner may also adopt different processing manners, specifically, the multiple processing times.
  • the node type of the node may be a case including one type of secondary node and a second type of secondary node, or may be a case including only two types of secondary nodes. The following are explained separately.
  • the primary node may determine the secondary secondary node after determining corresponding resources of the primary node on the primary channel.
  • Corresponding resources wherein the data transmission time on the primary channel determines the transmission time of the parallel data transmission on the secondary channel; in implementation, the following processing manner may be adopted: after the primary node determines the corresponding resources of the primary node on the primary channel Sending a request message for requesting data transmission to the second type of secondary node, where the request message sent to the second type of secondary node carries the first resource range information except the resources occupied by the primary type node; Secondary node feedback The response message determines the corresponding resource of the second type of secondary node, wherein the response message fed back by the second type of secondary node carries the corresponding resource of the second type of secondary node selected by the second type of secondary node according to the first resource range information.
  • the request message sent by the primary node to the second type of secondary node may include at least one of the following: a unicast request to send an RTS frame, a unicast predetermined frame, and a multicast predetermined frame, where the reserved indication bit indication in the unicast RTS frame
  • the first resource range information carried, the information field of the unicast predetermined frame or the multicast predetermined frame indicates the first resource range information carried;
  • the response message fed back by the second type of secondary node is a unicast permission to send a CTS frame or a unicast predetermined response frame.
  • the reserved indicator bit in the unicast CTS frame fed back by the second type of secondary node indicates the corresponding resource selected by the second type of secondary node that is carried, and the information field of the unicast predetermined response frame indicates the corresponding correspondence of the second type of secondary node that is carried. Resources.
  • the type of setup request frame is a request to send frame.
  • a type of setup response frame sent by the type of secondary node to the primary node is an allowable transmission frame.
  • a type of setup request frame sent to the second type of secondary node is a request transmission frame that includes the frequency band range indication information.
  • the type of setup response frame sent by the second type of secondary node is an allowable transmission frame including the frequency band range indication information.
  • the frequency band range indication information included in the request sending frame indicates the frequency band range indicated by the primary node to the second type of secondary node
  • the frequency band range indication information included in the allowed transmission frame indicates the second type of time.
  • the frequency band range indicated by the frequency band range indication information included in the allowed transmission frame is a subset of the frequency band range indicated by the frequency band range indication information included in the request transmission frame.
  • the band range indication information may be set in a physical layer or MAC layer signaling domain in the request to send frame and the allowed transmission frame.
  • the second type of setup request frame may be a parallel transmission request frame, and when the one or more types of secondary node information are included, the second type of secondary node information includes at least frequency band range indication information and node identification information;
  • the response frame may be transmitted in parallel and includes at least band range indication information.
  • the foregoing frequency band range indication information indicates a starting position and bandwidth information of the frequency band, or indicates a temporary primary channel position and bandwidth information of the frequency band, or indicates subchannel list information, or indicates temporary primary channel location information.
  • the temporary primary channel location information indicates the location of the primary channel temporarily used by the secondary node in one parallel transmission.
  • the parallel wireless frame may include data of a plurality of secondary nodes, and the data sent to the secondary node includes response parameter adjustment indication information.
  • the above response parameter adjustment indication information is determined by the master node according to a predefined reference.
  • the response parameter adjustment indication information is determined by the primary node according to the response parameter of the first type of secondary node as a reference.
  • the response parameter adjustment indication information includes at least one of the following information: power adjustment information, and immediate response transmission time point adjustment signal.
  • the above response parameter adjustment indication information may be set in a MAC layer header portion of the data and/or a physical layer header portion.
  • the corresponding resources respectively corresponding to the multiple secondary nodes are determined according to the determined resource negotiation manner.
  • the following processing manners may be adopted. It should be noted that there is a similar processing to the case of the above-mentioned one type of secondary nodes that do not support parallel processing of messages, and details are not described herein again:
  • the master node sends a request message for requesting data transmission to the second type of secondary node, where the request message carries second resource range information for resources for parallel data transmission selected by the second type of secondary node;
  • the response message sent by the second type of secondary node determines the corresponding resource of the second type of secondary node, wherein the response message carries the corresponding resource selected by the second type of secondary node according to the second resource range information.
  • the request message sent to the second type of secondary node is at least one of the following: a unicast request to send an RTS frame, a unicast predetermined frame, and a multicast predetermined frame, where the reserved indication bit in the RTS frame indicates the second resource range carried Information, the information field of the unicast predetermined frame/multicast predetermined frame indicates the second resource range information for the second type of secondary nodes for parallel data transmission; the response message fed back by the second type of secondary node is the unicast permission to send the CTS frame or unicast The predetermined response frame, wherein the reserved indication bit in the CTS frame indicates the corresponding resource selected by the carried second type of secondary node, and the information field of the unicast predetermined response frame indicates the corresponding resource selected by the carried second type secondary node.
  • different corresponding resources may be used to send corresponding data to multiple secondary nodes at the same time, wherein each of the two types of secondary nodes is sent.
  • the data carries response parameter adjustment indication information for adjusting response information of the corresponding secondary node response data. It should be noted that, before using different corresponding resources to send corresponding data to multiple secondary nodes at the same time, it is also required to obtain response parameters corresponding to multiple secondary nodes, where the multiple secondary nodes are two types.
  • the response parameter adjustment indication information is determined by the primary node according to a predetermined reference; and when the plurality of secondary nodes further includes a type of secondary node that does not support message parallel processing, the response parameter adjustment indication information may be according to the above-mentioned one
  • the response parameters of the secondary nodes are determined based on the baseline.
  • the response parameter adjustment indication information may include multiple types, for example, at least one of the following: power adjustment information, immediate response transmission time point adjustment information, and carrier frequency offset pre-adjustment information.
  • the method further includes: determining that the resource corresponding to the primary node includes the primary channel resource, where, on the primary channel The data transmission time determines the transmission time of parallel data transmission on the secondary channel. That is, the upper limit of the time of the transmission opportunity acquired by the primary node is equal to the transmission opportunity time limit of the access category corresponding to the data occupying the primary channel in the parallel wireless frame.
  • the foregoing corresponding resources may be multiple types of resources, for example, may include at least one of the following: a frequency domain resource, a code division resource, and an airspace resource.
  • the first resource range information and the second resource range information include at least one of: a starting position and bandwidth information of the frequency band; a temporary primary channel position and bandwidth information of the frequency band. ; Temporary primary channel position of the band; subchannel list information.
  • a parallel data transmission processing device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 3 is a structural block diagram of a parallel data transmission processing apparatus according to an embodiment of the present invention. As shown in FIG. 3, the apparatus includes a first determining module 32, a second determining module 34, a third determining module 36, and a processing module 38. The device will be described.
  • the first determining module 32 is configured to determine a node type of a plurality of secondary nodes for performing parallel data transmission, wherein the node type comprises a second type of secondary node supporting message parallel processing; and the second determining module 34 is connected to the first
  • the determining module 32 is configured to determine, according to the node type, a resource negotiation manner for negotiating the secondary node resources of the parallel data transmission;
  • the third determining module 36 is connected to the second determining module 34, and is configured to determine according to the determined resource negotiation manner.
  • the processing module 38 is connected to the third determining module 36, and configured to perform parallel data transmission processing on the plurality of secondary nodes according to the corresponding resources.
  • the second determining module 34 includes at least one of the following: a first determining unit 42, The second determining unit 44 and the third determining unit 46 are described below.
  • the first determining unit 42 is configured to, when the node type of the multiple secondary nodes further includes a type of secondary node that does not support message parallel processing, determine to separately use the resources for separately negotiating resources for the primary node and the secondary node.
  • the second determining unit 44 is configured to determine, when the node type of the multiple secondary nodes includes only the second-type secondary nodes that support the message parallel processing, and adopt the resource negotiation manner for separately negotiating resources for the second-type secondary nodes;
  • the third determining unit 46 is configured to adopt a resource negotiation manner of simultaneous parallel negotiation for the second type of secondary nodes in a case where the node types of the plurality of secondary nodes include only the second type of secondary nodes supporting the message parallel processing.
  • FIG. 5 is a block diagram of a preferred structure of the third determining module 36 in the parallel data transmission processing apparatus according to the embodiment of the present invention.
  • the third determining module 36 includes a first transmitting unit 52 and a fourth determining unit 54.
  • the third determining module 36 will be described below.
  • the first sending unit 52 is configured to: after determining a corresponding resource of the primary node on the primary channel, send a request message for requesting data transmission to the second type of secondary node, where the request message is sent to the second type of secondary node.
  • Carrying the first resource range information except the resources occupied by the primary node; the fourth determining unit 54 is connected to the first sending unit 52, and is configured to determine the second-class secondary node according to the response message fed back by the second-type secondary node.
  • Corresponding resources, wherein the response message fed back by the second type of secondary nodes carries the corresponding resources of the second type of secondary nodes selected by the second type of secondary nodes according to the first resource range information.
  • FIG. 6 is a block diagram of a preferred structure of the third determining module 36 in the parallel data transmission processing apparatus according to the embodiment of the present invention. As shown in FIG. 6, the third determining module 36 includes all the structures shown in FIG. The fifth determining unit 62 is included, and the fifth determining unit 62 will be described below.
  • the fifth determining unit 62 is connected to the fourth determining unit 54 and configured to determine that the resource corresponding to the primary node includes the primary channel resource, wherein the data transmission time on the primary channel determines the transmission of the parallel data transmission on the secondary channel. .
  • FIG. 7 is a block diagram 3 of a preferred structure of a third determining module 36 in a parallel data transmission processing apparatus according to an embodiment of the present invention.
  • the third determining module 36 includes a second transmitting unit 72 and a sixth determining unit 74.
  • the third determining module 36 will be described below.
  • the second sending unit 72 is configured to, when the node type of the plurality of secondary nodes includes only the second-type secondary nodes supporting the message parallel processing, send a request message for requesting data transmission to the second-type secondary node, where the request message
  • the second resource range information for the parallel data transmission is selected for the second type of secondary node selection
  • the sixth determining unit 74 is connected to the second sending unit 72, and is configured to send according to the received second type of secondary node.
  • the response message determines a corresponding resource of the second type of secondary node, where the response message carries a corresponding resource selected by the second type of secondary node according to the second resource range information.
  • FIG. 8 is a block diagram showing a preferred structure of the processing module 38 in the parallel data transmission processing apparatus according to an embodiment of the present invention. As shown in FIG. 8, the processing module 38 includes a third transmitting unit 82, and the third transmitting unit 82 is provided below. Be explained.
  • the third sending unit 82 is configured to send corresponding data to multiple secondary nodes at different times by using different corresponding resources, where each data sent to the second type of secondary node carries a response for adjusting response data of the corresponding secondary node.
  • the response parameter adjustment indication information of the information is configured to send corresponding data to multiple secondary nodes at different times by using different corresponding resources, where each data sent to the second type of secondary node carries a response for adjusting response data of the corresponding secondary node.
  • FIG. 9 is a block diagram of a preferred structure of the processing module 36 in the parallel data transmission processing apparatus according to the embodiment of the present invention.
  • the processing module 38 includes an acquisition unit 92 in addition to all the structures shown in FIG. The acquisition unit 92 will be described below.
  • the obtaining unit 92 is connected to the sending unit 82, and is configured to acquire response parameters corresponding to the plurality of secondary nodes, where the response parameter adjustment indication information is used when the multiple secondary nodes further include a type of secondary node that does not support message parallel processing. Based on the response parameters of a class of secondary nodes.
  • a parallel data transmission processing device comprising the parallel data transmission processing device according to any one of the above.
  • a computer storage medium storing an execution instruction, the execution instruction being used to execute the parallel data transmission processing method according to any one of the above.
  • the method for establishing parallel multi-user transmission in the wireless local area network provided by the above embodiments and the preferred embodiment can effectively avoid parallel transmission and receive interference, and not only effectively solves the problems of parallel transmission synchronization and channel usage scheduling in the related art, and is compatible.
  • Traditional WLAN equipment effectively improves network efficiency.
  • the resource for parallel data transmission is a frequency domain resource
  • the description of the content range indication by the frequency range indication information will be described.
  • the operating bandwidth of the network is 160 MHz, one subchannel per 20 MHz, and the subchannel numbers are recorded as 0, 1, 2, 3, 4, 5, 6, and 7, respectively.
  • the primary channel of the BSS is the subchannel No. 2.
  • 10 is a schematic diagram of channel division according to a preferred embodiment of the present invention. As shown in FIG. 10, the channel plan further defines four 40 MHz channels and two 80 MHz channels. For example, 0 and 1 may form a 40 MHz channel, but 1 and 2 It is not possible to form a 40MHz channel.
  • the frequency range indication information may be a band start position (or channel start position) and bandwidth information.
  • the channel start position indication bit number is 3 bits
  • the channel bandwidth indication bit number is 2 bits
  • the 40MHz bandwidth of the 4, 5 subchannels is included.
  • the frequency range indication information may be the temporary primary channel location and bandwidth information of the frequency band. For example, when the indicated temporary primary channel is the primary channel number 6 and the channel bandwidth is 80 MHz, the frequency range is the 80 MHz bandwidth of the four subchannels of 4, 5, 6, and 7 according to the channel plan.
  • the frequency range indication information may be a temporary primary channel position of the frequency band, and the physical layer header of the wireless frame includes a transmission bandwidth indication of the wireless frame. For example, if the temporary primary channel position of a certain STA determined during the parallel transmission establishment process is the subchannel No. 6, the station performs carrier detection by using the subchannel No. 6 as the temporary primary channel in parallel transmission, and according to the detection result and the temporary The physical frame header sent on the primary channel learns the specific data bandwidth information.
  • the frequency range indication information may be subchannel list information. For example, 8 bits can be used to indicate which subchannels are available, and when the indication is "01001111", subchannels 1, 4, 5, 6, and 7 are available for use.
  • the AP forms a BSS with multiple non-AP STAs.
  • the BSS has an operating bandwidth of 40 MHz, including a 20 MHz primary channel and a 20 MHz secondary channel, but STA1 is a legacy STA supporting only the 11a standard, and the maximum bandwidth supported is 20 MHz, and STA2 is a HEW site, supporting OFDMA transmission and 40 MHz bandwidth.
  • the default detection channel for all stations contains at least the primary channel.
  • FIG. 11 is a schematic diagram of parallel transmission establishment according to a preferred embodiment of the present invention.
  • an AP wants to transmit data to STA1 and STA2 in parallel using OFDMA technology, and the AP competes to acquire a transmission opportunity TXOP (transmission opportunity), and initiates parallel.
  • Transfer establishment process :
  • the AP sends an RTS frame to the STA1. After receiving the STA1, the STA replies to the CTS frame. The AP then sends an RTS frame to the STA2.
  • the RTS frame includes frequency range indication information indicating that the next OFDMA parallel transmission is available for STA2.
  • the frequency band resource used by the data is the secondary channel, and STA2 replies to the CTS frame, and the frame includes the frequency band range indication information to confirm that the secondary channel is to be used.
  • the AP and STA2 use the reserved indication bits in the legacy RTS/CTS frame to carry the frequency range indication channel, specifically using the reserved bits in the SERVICE field in the RTS/CTS frame.
  • the above RTS/CTS frame uses the traditional frame format, and the transmission channel includes the primary channel, so that all stations can listen to the RTS/CTS, and the RTS/CTS carries the duration indication information for scheduling the current transmission opportunity to be occupied. Time, the listening site will not contend for the channel after hearing the information, so as to protect the transmission opportunity, wherein the upper limit of the time length of the transmission opportunity is the access category (Access Category, AC for short) of the STA1 data on the transmitted main channel.
  • the corresponding transmission opportunity time limit (TXOP limit) for example, the data of the STA1 belongs to the video access class (AC_VO), and the upper limit of the transmission opportunity time acquired by the AP is the TXOP limit corresponding to the AC_VO. It can be seen that the AP performs RTS/CTS interaction with STA1 and STA2, respectively, and protects the two links used for parallel transmission.
  • STA1 waits to receive data on the primary channel
  • STA2 waits to receive data on the secondary channel
  • the AP uses the OFDMA method to send data to STA1 and STA2 in parallel, where the subcarriers on the primary channel carry the data of STA1 and the secondary channel.
  • the upper subcarrier carries the data of STA2, and the above data frame for STA1 requires an immediate acknowledgement frame ACK (Acknowledgment)/BA (Block Acknowledgment), and STA1 waits for an interframe interval after receiving the data, and then replies ACK/BA; the above is given to STA2
  • the data frame requires an acknowledgement frame ACK/BA, and the data frame includes a response parameter adjustment indication, specifically, an immediate response transmission time point adjustment information, indicating that STA2 replies to the response frame ACK/BA after the delay time T, and the time T includes The time at which STA1 transmits ACK/BA and the appropriate interframe time.
  • STA1 replies to ACK/BA immediately after the interframe interval.
  • STA2 adjusts the indication information according to the response parameter, and delays the T time to reply ACK/BA.
  • the AP forms a BSS with multiple non-AP STAs.
  • the operating bandwidth of the BSS is 80 MHz, including a 20 MHz primary channel (assumed to be a subchannel No. 0) and three 20 MHz secondary channels (subchannels 1, 2, and 3), but STA1 is a legacy STA supporting the 11n standard, and supports The maximum bandwidth is 40MHz, STA2 is HEW site, supports OFDMA transmission and 80MHz bandwidth.
  • the default detection channel for all stations contains at least the primary channel.
  • FIG. 12 is a schematic diagram of parallel transmission establishment according to a preferred embodiment of the present invention. As shown in FIG. 12, an AP wants to transmit data to STA1 and STA2 in parallel using OFDMA technology, and the AP competes to acquire a transmission opportunity TXOP (transmission opportunity), and initiates parallel. Transfer establishment process:
  • the AP sends the RTS frame to the STA1.
  • the STA1 replies to the CTS frame.
  • the STA1 always transmits and receives on the 40MHz including the primary channel.
  • the AP then sends an RTS frame to the STA2.
  • the RTS frame includes the frequency range indication information.
  • the frequency band resources available for STA2 data in the next OFDMA parallel transmission are 2, 3 auxiliary channels, and STA2 replies to the CTS frame, and the frame includes frequency band range indication information to confirm the channel to be used, which is channel 3. That is, the frequency band that the AP and STA2 can negotiate. It can be seen that the AP performs RTS/CTS interaction with STA1 and STA2, respectively, and protects the two links used for parallel transmission.
  • STA1 waits to receive data on the primary channel
  • STA2 waits to receive data on the secondary channel 3
  • the AP uses OFDMA to transmit data to STA1 and STA2 in parallel, where the primary channel and the subcarrier on the secondary channel 1 Carrying the data of STA1, the subcarriers on the secondary channel 3 carry the data of STA2, and the data frame given to STA1 requires the immediate response frame BA, and STA1 waits for an interframe interval after receiving the data and returns BA; the above data to STA2
  • the frame request immediate response frame BA, the BA of STA2 and the BA of STA1 are sent in parallel on different subchannels
  • the data frame of STA2 includes the response parameter adjustment indication, which may specifically include power adjustment information, immediate response transmission time point adjustment information
  • the carrier frequency offset pre-adjustment information indicates that the STA2 adjusts its own BA transmission time point according to the immediate response transmission time point adjustment information; adjusts the carrier spectrum of the transmitting BA according to the carrier frequency offset pre-adjust
  • All or part of the response parameter adjustment indication may be located in the MAC frame header of the data frame, and specifically, the reserved bit of the MAC frame header may be used, and may be set in an information field added in the MAC frame header; the foregoing response parameter adjustment indication indicates all or part of It can also be located in the physical layer header of the data frame.
  • STA1 immediately replies to the BA on the primary channel and the secondary channel 1 after the interframe interval, and STA2 transmits the BA on channel 3 according to the response parameter adjustment indication, that is, the transmission band of the BA is the same as the frequency band of the received own data.
  • the AP forms a BSS with multiple non-AP STAs.
  • the operating bandwidth of the BSS is 160 MHz, including a 20 MHz primary channel (assumed to be a subchannel No. 0) and seven 20 MHz secondary channels (subchannels 1, 2, 3, 4, 5, 6, and 7), but STA1 is
  • the legacy STA supporting the 11ac standard supports a maximum bandwidth of 160 MHz.
  • STA2 and STA3 are HEW sites, supporting OFDMA transmission and 160 MHz bandwidth.
  • the AP wants to use the OFDMA technology to transmit data to STA1, STA2 and STA3 in parallel, and the AP competes to obtain the transmission opportunity TXOP (transmission opportunity), and initiates the parallel transmission establishment process:
  • the AP sends an RTS frame to the STA1, and indicates that the communication with the STA1 can dynamically adjust the bandwidth, indicating that the bandwidth available to the STA1 is 160 MHz, and the STA1 replies to the CTS frame after receiving the indication, and instructs the selection of the 40 MHz bandwidth to communicate with the AP.
  • the channel can be determined only by indicating the bandwidth value.
  • the 40 MHz bandwidth is a 40 MHz bandwidth including the primary channel, that is, 0, 1 subchannels in this embodiment; the AP then sends an RTS frame to STA2, and the RTS frame includes The frequency band range indication information indicating the frequency band resource available for the STA2 data in the next OFDMA parallel transmission.
  • the information indication method of the embodiment may be used, that is, the channel remaining by the channel selected by the STA1 is removed.
  • STA2 replies to the CTS frame, and the frame includes the frequency range indication information to confirm the channel to be used, which is the channel 2 and 3, that is, the AP and STA2 can negotiate.
  • the AP then sends an RTS frame to the STA3, where the RTS frame includes frequency range indication information indicating the frequency band resources available for STA3 data in the next OFDMA parallel transmission, ie
  • the remaining channels of the channel selected by STA1 and STA2 are 4, 5, 6, and 7 auxiliary channels, and STA2 replies with a CTS frame, and the frame includes frequency band range indication information to confirm the channel to be used, which is 4, 5, 6, and 7. No. channel. It can be seen that the AP performs RTS/CTS interaction with STA1, STA2, and STA3, respectively, and protects the three links used for parallel transmission.
  • the AP uses the OFDMA method to transmit data in parallel.
  • the subcarriers on the primary channel and the secondary channel 1 carry the data of STA1
  • the subcarriers on the secondary channel 2 and 3 carry the data of STA2, 4, 5, and 6.
  • the subcarriers on the secondary channel 7 carry the data of STA3.
  • the above data frame for STA1 requires an immediate response frame BA, and STA1 replies to BA after waiting for an interframe space after receiving the data; the above data frame for STA2, 3 requires subsequent block acknowledgment, that is, STA2 and STA3 receive the AP to send a BAR frame. (Block ACK request) Reply to the acknowledgement frame BA of the data frame.
  • STA1 After the parallel data frame is sent, STA1 immediately replies to the response frame BA. After receiving the response from STA1, the AP sends a BAR to STA2, STA2 replies to BA, and then the AP sends a BAR to STA3, and STA3 replies to BA.
  • the AP forms a BSS with multiple non-AP STAs.
  • the operating bandwidth of the BSS is 160 MHz, including a 20 MHz primary channel (assumed to be a subchannel No. 0) and seven 20 MHz secondary channels (subchannels 1, 2, 3, 4, 5, 6, and 7), but STA1 is
  • STA2 and STA3 are HEW sites, supporting OFDMA transmission and 160 MHz bandwidth.
  • FIG. 13 is a schematic diagram of parallel transmission establishment according to a preferred embodiment 4 of the present invention.
  • an AP may complete a parallel transmission establishment process using a parallel transmission request frame and a parallel transmission response frame.
  • the parallel transmission request frame and the parallel transmission response frame are newly defined frame formats, and cannot be parsed by a type of site.
  • the usage of these frames may be:
  • a legacy frame and a type of site may be used for transmission link establishment, and then the newly defined parallel transmission request frame and its response frame and the second type of site are used.
  • the transmission link is established, and the RTS/CTS is used to communicate with the STA1, and the coexisting transmission request frame is used to communicate with the STA2 and the STA3.
  • the specific AP sends the parallel transmission request frame to the STA2 and the STA3, and the frame carries the identification information of the STA2 and the STA3, respectively.
  • the frequency band range indication information, STA2 and STA3 transmit the response frame in parallel according to the sequence conference.
  • the AP sends a parallel transmission request frame to STA2 and STA3, where the frame carries the identification information of STA2 and STA3 and the frequency band range indication information, STA2 and STA3 transmits the response frame in parallel in order.
  • FIG. 14 is a schematic diagram of parallel transmission establishment according to a preferred embodiment 5 of the present invention.
  • an AP may complete a parallel transmission establishment process using a parallel transmission request frame and a parallel transmission response frame.
  • the above parallel transmission request frame and parallel transmission response frame are newly defined frame formats, which cannot be parsed by a class of sites. The use of these frames is as follows:
  • the AP sends a parallel request frame to STA2 and receives the parallel response frame of STA2. Similarly, the AP and STA3 perform the above process.
  • the above parallel request frame and response frame include frequency band range indication information.
  • modules or steps of the embodiments of the present invention can be implemented by a general computing device, which can be concentrated on a single computing device or distributed in multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from The steps shown or described are performed sequentially, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated into a single integrated circuit module. Thus, embodiments of the invention are not limited to any specific combination of hardware and software.
  • the above embodiments and preferred embodiments not only solve the problem that the WLAN network cannot directly establish parallel transmission data due to the characteristics of the WLAN itself, and thus the WLAN network cannot directly perform parallel data transmission. It can not only effectively avoid the interference of parallel transmission, but also effectively compatible with old and new devices of the network and effectively improve the efficiency of the network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供一种并行数据传输处理方法及装置,该方法包括:确定用于进行并行数据传输的多个次节点的节点类型,其中,节点类型包括支持消息并行处理的二类次节点(S202);依据节点类型确定用于协商并行数据传输的各个次节点资源的资源协商方式(S204);依据确定的资源协商方式确定分别对应于多个次节点的对应资源(S206);依据对应资源对多个次节点进行并行数据传输处理(S208)。利用本发明,解决了WLAN网络无法直接进行并行数据传输的问题,达到了有效避免并行传输受到干扰,有效兼容网络新旧设备,以及有效提高网络效率的效果。

Description

并行数据传输处理方法、装置及计算机存储介质 技术领域
本发明涉及通信领域,具体而言,涉及一种并行数据传输处理方法、装置及计算机存储介质。
背景技术
目前,随着更多的人使用无线局域网(Wireless Local Area Network,简称为WLAN)进行数据通信,WLAN网络负载也在不断加重,WLAN网络的效率会出现明显下降的趋势,单纯提高速率并不能解决该问题,为解决WLAN网络效率问题,在相关技术中,提出了并行多用户数据传输,其中,该并行多用户数据传输技术包括多用户多输入多输出(Multi-User Multiple Input Multiple Output,简称为MU-MIMO)技术(空域多址),正交频分多址(Orthogonal Frequency Division Multiple Access,简称为OFDMA)技术(频域多址)及IDMA(Interleave-Division Multiple-Access)技术(码分域多址)。图1是相关技术中WLAN基本服务集的结构示意图,如图1所示,在WLAN中,一个接入点站点(Access Point,简称为AP)以及与该AP相关联的多个非接入点站点(non-AP Station,简称non-AP STA)组成了一个基本服务集(basic service set,简称为BSS)。WLAN中所说的并行多用户数据传输一般为多个次节点同时向主节点发送数据,或者主节点同时给多个次节点发送数据,一般的,主节点为AP或特殊能力non-AP STA,次节点为一般non-AP STA。
因此,虽然多用户传输机制可以有效的提高WLAN网络的效率,但是在相关技术中由于WLAN自身的特点并不能建立有效并行传输链路,因而使得WLAN网络无法直接进行并行数据传输。
发明内容
本发明实施例提供了一种并行数据传输处理方法及装置,以至少解决相关技术中存在的WLAN网络无法直接进行并行数据传输的问题。
根据本发明实施例的一个方面,提供了一种并行数据传输处理方法,包括:确定用于进行并行数据传输的多个次节点的节点类型,其中,所述节点类型包括支持消息并行处理的二类次节点;依据所述节点类型确定用于协商并行数据传输的各个次节点 资源的资源协商方式;依据确定的所述资源协商方式确定分别对应于所述多个次节点的对应资源;依据所述对应资源对所述多个次节点进行并行数据传输处理。
优选地,依据所述节点类型确定用于协商并行数据传输的各个次节点资源的所述资源协商方式包括以下至少之一:在所述多个次节点的节点类型还包括不支持消息并行处理的一类次节点的情况下,确定对所述一类次节点与所述二类次节点采用分别单独协商资源的资源协商方式;在所述多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,确定对所述二类次节点采用分别单独协商资源的资源协商方式;在所述多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,对所述二类次节点采用同时并行协商的资源协商方式。
优选地,在所述多个次节点的节点类型还包括不支持消息并行处理的一类次节点的情况下,依据确定的所述资源协商方式确定分别对应于所述多个次节点的所述对应资源包括:在确定所述一类次节点在主信道上的对应资源后,向所述二类次节点发送用于请求数据传输的请求消息,其中,向所述二类次节点发送的请求消息中携带有除所述一类次节点所占用的资源外的第一资源范围信息;依据所述二类次节点反馈的响应消息确定所述二类次节点的所述对应资源,其中,所述二类次节点反馈的所述响应消息中携带有所述二类次节点依据所述第一资源范围信息选择的所述二类次节点的对应资源。
优选地,向所述二类次节点发送的请求消息包括以下至少之一:单播请求发送RTS帧、单播预定帧、多播预定帧,其中,单播所述RTS帧中的保留指示位指示携带的所述第一资源范围信息,所述单播预定帧或所述多播预定帧的信息域指示携带的所述第一资源范围信息;所述二类次节点反馈的响应消息为单播允许发送CTS帧或单播预定响应帧,其中,所述二类次节点反馈的所述CTS帧中的保留指示位指示携带的所述二类次节点选择的对应资源,所述单播预定响应帧的信息域指示携带的所述二类次节点选择的所述对应资源。
优选地,依据确定的所述资源协商方式确定分别对应于所述多个次节点的所述对应资源还包括:确定所述一类次节点所对应的资源包含主信道资源,其中,所述主信道上的数据传输时间决定所述并行数据传输在辅信道上的传输时间。
优选地,在所述多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,依据确定的所述资源协商方式确定分别对应于所述多个次节点的所述对应资源包括:向所述二类次节点发送用于请求数据传输的请求消息,其中,所述请求消息中携带有供所述二类次节点选择的用于并行数据传输的资源的第二资源范围信息;依 据接收到的所述二类次节点发送的响应消息确定所述二类次节点的所述对应资源,其中,所述响应消息中携带有所述二类次节点依据所述第二资源范围信息选择的所述对应资源。
优选地,所述请求消息为单播的请求发送RTS帧或多播预定帧,其中,所述RTS帧中的保留指示位指示携带的所述第三资源范围信息,所述多播预定帧的信息域指示用于所述二类次节点进行并行数据传输的所述第三资源范围信息;所述响应消息为单播允许发送CTS帧,所述CTS帧中的保留指示位指示携带的所述二类次节点选择的所述对应资源。
优选地,向所述二类次节点发送的所述请求消息为以下至少之一:单播请求发送RTS帧、单播预定帧、多播预定帧,其中,所述RTS帧中的保留指示位指示携带的所述第二资源范围信息,所述单播预定帧/多播预定帧的信息域指示用于所述二类次节点进行并行数据传输的所述第二资源范围信息;所述二类次节点反馈的响应消息所述响应消息为单播允许发送CTS帧或单播预定响应帧,其中,所述CTS帧中的保留指示位指示携带的所述二类次节点选择的所述对应资源,所述单播预定响应帧的信息域指示携带的所述二类次节点选择的所述对应资源。
优选地,在采用不同的对应资源在同一时刻向所述多个次节点发送对应的数据之前,还包括:获取对应于所述多个次节点的响应参数,其中,在所述多个次节点还包括不支持消息并行处理的一类次节点时,所述响应参数调整指示信息依据所述一类次节点的响应参数为基准。
优选地,所述响应参数调整指示信息包括以下至少之一:功率调整信息、立即响应发送时间点调整信息、载波频率偏移预调整信息。
优选地,所述对应资源包括以下至少之一:频域资源、码分资源、空域资源。
优选地,在所述对应资源为频域资源的情况下,所述第一资源范围信息、第二资源范围信息包括以下至少之一:频段的起始位置和带宽信息;频段的临时主信道位置和带宽信息;频段的临时主信道位置;子信道列表信息。
根据本发明实施例的另一方面,提供了一种并行数据传输处理装置,包括:第一确定模块,设置为确定用于进行并行数据传输的多个次节点的节点类型,其中,所述节点类型包括支持消息并行处理的二类次节点;第二确定模块,设置为依据所述节点类型确定用于协商并行数据传输的各个次节点资源的资源协商方式;第三确定模块, 设置为依据确定的所述资源协商方式确定分别对应于所述多个次节点的对应资源;处理模块,设置为依据所述对应资源对所述多个次节点进行并行数据传输处理。
优选地,所述第二确定模块包括以下至少之一:第一确定单元,设置为在所述多个次节点的节点类型还包括不支持消息并行处理的一类次节点的情况下,确定对所述一类次节点与所述二类次节点采用分别单独协商资源的资源协商方式;第二确定单元,设置为在所述多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,确定对所述二类次节点采用分别单独协商资源的资源协商方式;第三确定单元,设置为在所述多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,对所述二类次节点采用同时并行协商的资源协商方式。
优选地,所述第三确定模块包括:第一发送单元,设置为在确定所述一类次节点在主信道上的对应资源后,向所述二类次节点发送用于请求数据传输的请求消息,其中,向所述二类次节点发送的请求消息中携带有除所述一类次节点所占用的资源外的第一资源范围信息;第四确定单元,设置为依据所述二类次节点反馈的响应消息确定所述二类次节点的所述对应资源,其中,所述二类次节点反馈的所述响应消息中携带有所述二类次节点依据所述第一资源范围信息选择的所述二类次节点的对应资源。
优选地,所述第三确定模块还包括:第五确定单元,设置为确定所述一类次节点所对应的资源为主信道资源,其中,所述主信道上的数据传输时间决定所述并行数据传输在辅信道上的传输时间。
优选地,所述第三确定模块包括:第二发送单元,设置为在所述多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,向所述二类次节点发送用于请求数据传输的请求消息,其中,所述请求消息中携带有供所述二类次节点选择的用于并行数据传输的资源的第二资源范围信息;第六确定单元,设置为依据接收到的所述二类次节点发送的响应消息确定所述二类次节点的所述对应资源,其中,所述响应消息中携带有所述二类次节点依据所述第二资源范围信息选择的所述对应资源。
优选地,所述处理模块包括:第三发送单元,设置为采用不同的对应资源在同一时刻向所述多个次节点发送对应的数据,其中,向所述二类次节点发送的每个数据中携带有用于调整对应次节点响应所述数据的响应信息的响应参数调整指示信息。
优选地,所述处理模块还包括:获取单元,设置为获取对应于所述多个次节点的响应参数,其中,在所述多个次节点还包括不支持消息并行处理的一类次节点时,所述响应参数调整指示信息依据所述一类次节点的响应参数为基准。
根据本发明实施例的还一方面,提供了一种并行数据传输处理设备,包括上述任一项所述的装置。
根据本发明实施例的再一方面,提供了一种计算机存储介质,所述计算机存储介质存储有执行指令,所述执行指令用于执行上述任一项所述的并行数据传输处理方法。
通过本发明实施例,采用确定用于进行并行数据传输的多个次节点的节点类型,其中,所述节点类型包括支持消息并行处理的二类次节点;依据所述节点类型确定用于协商并行数据传输的各个次节点资源的资源协商方式;依据确定的所述资源协商方式确定分别对应于所述多个次节点的对应资源;依据所述对应资源对所述多个次节点进行并行数据传输处理,解决了相关技术中存在的由于WLAN自身的特点并不能建立有效并行传输链路,因而使得WLAN网络无法直接进行并行数据传输的问题,进而达到了不仅能够有效避免并行传输受到干扰,以及能够有效兼容网络新旧设备,有效提高网络效率的效果。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,本发明实施例的示意性实施例及其说明用于解释本发明实施例,并不构成对本发明实施例的不当限定。在附图中:
图1是相关技术中WLAN基本服务集的结构示意图;
图2是根据本发明实施例的并行数据传输处理方法的流程图;
图3是根据本发明实施例的并行数据传输处理装置的结构框图;
图4是根据本发明实施例的并行数据传输处理装置中第二确定模块34的优选结构框图;
图5是根据本发明实施例的并行数据传输处理装置中第三确定模块36的优选结构框图一;
图6是根据本发明实施例的并行数据传输处理装置中第三确定模块36的优选结构框图二;
图7是根据本发明实施例的并行数据传输处理装置中第三确定模块36的优选结构框图三;
图8是根据本发明实施例的并行数据传输处理装置中处理模块36的优选结构框图一;
图9是根据本发明实施例的并行数据传输处理装置中处理模块36的优选结构框图二;
图10是根据本发明优选实施方式的信道划分示意图;
图11是根据本发明优选实施例一的并行传输建立示意图;
图12是根据本发明优选实施例二的并行传输建立示意图;
图13是根据本发明优选实施例四的并行传输建立示意图;
图14是根据本发明优选实施例五的并行传输建立示意图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明实施例。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
在相关技术中,WLAN网络在使用OFDMA/FDMA等并行技术进行数据传输时遇到了一些问题,这是由下述的几个WLAN的特点引起的。
一是WLAN工作于免授权频段,站点相互竞争发送的数据很可能冲突,传统WLAN可以使用控制帧对信道资源进行预约从而保护数据传输,具体的可以使用RTS(request to send)和CTS(clear to send)帧交互预约信道时间,即预约一个传输机会TXOP(transmission opportunity),上述RTS/CTS帧中携带有将要进行的数据传输的持续时间指示,该指示可以发送RTS/CTS站点周围的旁听站点在持续时间内不竞争信道。为了保证公平性,上述预约的TXOP的时间长度不是随意设置的,而是跟将要传输的数据的QoS参数有关,具体的跟数据的接入类别(Access Category,简称为AC)有关,不同的AC具有不同的TXOP时间长度限制。并行数据传输涉及到多个站点数据的发送,还可能涉及多个接入类别数据的发送,发送冲突的概率更大。
二是WLAN中,既存在着早期的设备(legacy STA,可以称之为一类设备),也存在支持新特性的设备(例如,支持HEW小组定义的新特性的设备,可以称之为二类设备),新设备后向兼容早期的设备,两种设备在网络中共存,然而在相关技术中并不存在对应的兼容机制,用于支持并行发送一类设备和二类设备的数据。
三是WLAN特殊的信道使用规则。标准定义了最小的基本带宽,例如20MHz,所有数据的发送带宽必须为基本带宽的2的n次幂倍;并且一个BSS必须选择一个主信道,例如一个BSS的工作带宽为80MHz,包括四个20MHz的子信道,其中一个20MHz子信道作为网络的主信道,80MHz内的其他子信道为辅信道,数据发送不仅要满足协议信道化方案带宽的要求,而且每次发送都必须包含主信道,所有设备也在主信道检测信号,根据主信道检测结果判断信道状态,并进行数据接收。可以看出,站点是通过主信道的载波监听机制来触发数据接收的,若主节点直接使用OFDMA进行并行传输,那么所有次节点只能检测并接收包含主信道的数据,次节点无法得知单独的辅信道上的数据发送,造成数据发送的失败。
针对相关技术中的在无线局域网中使用并行传输技术存在的上述问题,基于对上述问题的分析得出,主要是在并行传输前缺乏有效的并行链路建立过程,基于此,在本实施例中,提供了一种并行传输链路的建立方案,以及基于该建立的并行传输链路进行并行数据传输。
在本实施例中提供了一种并行数据传输处理方法,图2是根据本发明实施例的并行数据传输处理方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,确定用于进行并行数据传输的多个次节点的节点类型,其中,该节点类型包括支持消息并行处理的二类次节点(同上述二类设备);
步骤S204,依据节点类型确定用于协商并行数据传输的各个次节点资源的资源协商方式;
步骤S206,依据确定的资源协商方式确定分别对应于多个次节点的对应资源;
步骤S208,依据该对应资源对多个次节点进行并行数据传输处理。
通过上述步骤,对于在网络中用于并行数据传输的基本服务集的主节点而言,先通过依据节点类型确定资源协商方式,之后,依据确定的资源协商方式对进行并行数据传输的多个次节点确定分别对应的对应资源,依据确定的对应资源进行并行数据传输处理,分别对用于并行数据传输的节点确定对应的对应资源,有效地避免了次节点间的干扰,依据节点类型确定对应资源,有效地实现了不同次节点间的兼容,即通过上述并行数据传输链路的建立,不仅解决了相关技术中存在的由于WLAN自身的特点并不能建立有效并行传输链路,因而使得WLAN网络无法直接进行并行数据传输的问题,进而达到了不仅能够有效避免并行传输受到干扰,以及能够有效兼容网络新旧设备,有效提高网络效率的效果。
上述处理包括并行传输链路的建立以及基于该建立的并行传输链路进行的并行数据传输,可以采用以下执行步骤:主节点获取传输机会,向不支持消息并行处理的一类次节点(同上述一类设备)发送一类建立请求帧并接收一类次节点发送的一类建立响应帧;和/或,主节点向二类次节点发送一类建立请求帧或二类建立请求帧,并接收二类次节点发送的一类建立响应帧或二类建立响应帧;主节点向上述次节点发送并行无线帧,并接收上述次节点发送的上述并行无线帧的响应帧。
其中,上述一类建立请求帧、一类建立响应帧、二类建立请求帧及二类建立响应帧用于上述并行无线帧发送前的传输建立过程,一类建立请求帧和一类建立响应帧为能被主节点、一类次节点和二类次节点所解析的帧,二类建立请求帧和二类建立响应帧为能被主节点和二类次节点所解析的帧。其中,上述一类建立请求帧、一类建立响应帧、二类建立请求帧及二类建立响应帧的发送频带包括网络主信道。上述主节点向次节点发送并行无线帧,是指主节点使用不同的资源(例如,包括以下至少之一:频域资源、码分域资源、空域资源)在同一时刻向多个节点传输数据帧。
下面结合实施场景对应的具体类型帧进行说明。
针对并行数据传输所对应的场景的不同,对应的资源协商方式也可以不同,例如,在多个次节点的节点类型还包括不支持消息并行处理的一类次节点的情况下,确定对一类次节点与二类次节点采用分别单独协商资源的资源协商方式;在多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,确定对二类次节点采用分别单独协商资源的资源协商方式;在多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,对二类次节点采用同时并行协商的资源协商方式。
针对并行数据传输所对应的场景的不同,依据确定的资源协商方式确定用于进行并行数据传输的分别对应于多个次节点的对应资源也可以采用不同的处理方式,具体地,该多个次节点的节点类型可以为包括一类次节点和二类次节点的情况,也可以为仅包括二类次节点的情况。下面分别说明。
例如,在该多个次节点的节点类型还包括不支持消息并行处理的一类次节点的情况下,主节点可以在确定一类次节点在主信道上的对应资源后,确定二类次节点的对应资源,其中,主信道上的数据传输时间决定并行数据传输在辅信道上的传输时间;实施时,可以采用以下处理方式:主节点在确定一类次节点在主信道上的对应资源后,向二类次节点发送用于请求数据传输的请求消息,其中,向二类次节点发送的请求消息中携带有除一类次节点所占用的资源外的第一资源范围信息;依据二类次节点反馈 的响应消息确定二类次节点的对应资源,其中,二类次节点反馈的响应消息中携带有二类次节点依据第一资源范围信息选择的二类次节点的对应资源。
其中,该主节点向二类次节点发送的请求消息可以包括以下至少之一:单播请求发送RTS帧、单播预定帧、多播预定帧,其中,单播RTS帧中的保留指示位指示携带的第一资源范围信息,单播预定帧或多播预定帧的信息域指示携带的第一资源范围信息;二类次节点反馈的响应消息为单播允许发送CTS帧或单播预定响应帧,其中,二类次节点反馈的单播CTS帧中的保留指示位指示携带的二类次节点选择的对应资源,该单播预定响应帧的信息域指示携带的该二类次节点选择的对应资源。
基于上述资源协商方式对应的场景,以上述并行传输链路的建立过程中所采用以下具体类型帧为例进行说明。该一类建立请求帧为请求发送帧,对应地,该一类次节点向主节点发送的一类建立响应帧为允许发送帧。向二类次节点发送的一类建立请求帧为包含频段范围指示信息的请求发送帧,对应地,该二类次节点发送的一类建立响应帧为包含频段范围指示信息的允许发送帧。
以上述资源为频域资源为例,上述请求发送帧包含的频段范围指示信息指示了主节点指示给二类次节点使用的频段范围,上述允许发送帧包含的频段范围指示信息指示了二类次节点确认的频段范围。其中,该允许发送帧包含的频段范围指示信息指示的频段范围,为请求发送帧包含的频段范围指示信息指示的频段范围的子集。较优地,频段范围指示信息可以设置在请求发送帧和允许发送帧中的物理层或MAC层信令域中。
上述二类建立请求帧可以为并行传输请求帧,且包含一个或多个二类次节点信息时,该二类次节点信息至少包含有频段范围指示信息及节点标识信息;上述二类建立响应帧可以为并行传输响应帧,且至少包含频段范围指示信息。其中,上述频段范围指示信息指示了频段的起始位置和带宽信息,或指示了频段的临时主信道位置和带宽信息,或指示了子信道列表信息,或指示了临时主信道位置信息。
其中,上述临时主信道位置信息指示了次节点在一次并行传输时临时使用的主信道的位置。上述并行无线帧中可以包含多个次节点的数据,且在发送给二类次节点的数据中包含有响应参数调整指示信息。上述响应参数调整指示信息由主节点按照预定义的基准来确定。
优选的,当该并行无线帧中还包含一类次节点的数据时,上述响应参数调整指示信息由主节点按照上述一类次节点的响应参数作为基准来确定。其中,上述响应参数调整指示信息至少包含下述信息的一项:功率调整信息、立即响应发送时间点调整信 息、载波频率偏移预调整信息。较优地,上述响应参数调整指示信息可以设置在数据的MAC层帧头部分和/或物理层帧头部分。
再例如,在该多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,依据确定的资源协商方式确定分别对应于多个次节点的对应资源。可以采用以下处理方式,需要指出的是,与上述还包括不支持消息并行处理的一类次节点的情况存在相似的处理在此不再赘述:
主节点向二类次节点发送用于请求数据传输的请求消息,其中,请求消息中携带有供二类次节点选择的用于并行数据传输的资源的第二资源范围信息;该主节点依据接收到的二类次节点发送的响应消息确定二类次节点的对应资源,其中,响应消息中携带有二类次节点依据第二资源范围信息选择的对应资源。其中,向二类次节点发送的请求消息为以下至少之一:单播请求发送RTS帧、单播预定帧、多播预定帧,其中,RTS帧中的保留指示位指示携带的第二资源范围信息,单播预定帧/多播预定帧的信息域指示用于二类次节点进行并行数据传输的第二资源范围信息;二类次节点反馈的响应消息为单播允许发送CTS帧或单播预定响应帧,其中,CTS帧中的保留指示位指示携带的二类次节点选择的对应资源,单播预定响应帧的信息域指示携带的二类次节点选择的对应资源。
优选地,依据对应资源对多个次节点进行并行数据传输处理时,可以采用不同的对应资源在同一时刻向多个次节点发送对应的数据,其中,向其中的二类次节点发送的每个数据中携带有用于调整对应次节点响应数据的响应信息的响应参数调整指示信息。需要说明的是,在采用不同的对应资源在同一时刻向多个次节点发送对应的数据之前,还需要获取对应于多个次节点的响应参数,其中,在该多个次节点均是二类次节点时,由主节点依据预定基准来确定响应参数调整指示信息;而在该多个次节点还包括不支持消息并行处理的一类次节点时,该响应参数调整指示信息可以依据上述一类次节点的响应参数为基准来确定。其中,该响应参数调整指示信息可以包括多种类型,例如,可以包括以下至少之一:功率调整信息、立即响应发送时间点调整信息、载波频率偏移预调整信息。
需要说明的是,在依据确定的资源协商方式确定分别对应于多个次节点的对应资源时,还可以包括:确定一类次节点所对应的资源包含主信道资源,其中,该主信道上的数据传输时间决定并行数据传输在辅信道上的传输时间。即主节点获取的传输机会的时间上限等于并行无线帧中占用主信道的数据所对应的接入类别的传输机会时间限制。
另外,上述对应资源可以为多种类型的资源,例如,可以包括以下至少之一:频域资源、码分资源、空域资源。其中,在该对应资源为频域资源的情况下,上述第一资源范围信息、第二资源范围信息包括以下至少之一:频段的起始位置和带宽信息;频段的临时主信道位置和带宽信息;频段的临时主信道位置;子信道列表信息。
在本实施例中还提供了一种并行数据传输处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的并行数据传输处理装置的结构框图,如图3所示,该装置包括第一确定模块32、第二确定模块34、第三确定模块36和处理模块38,下面对该装置进行说明。
第一确定模块32,设置为确定用于进行并行数据传输的多个次节点的节点类型,其中,节点类型包括支持消息并行处理的二类次节点;第二确定模块34,连接至上述第一确定模块32,设置为依据节点类型确定用于协商并行数据传输的各个次节点资源的资源协商方式;第三确定模块36,连接至上述第二确定模块34,设置为依据确定的资源协商方式确定分别对应于多个次节点的对应资源;处理模块38,连接至上述第三确定模块36,设置为依据对应资源对多个次节点进行并行数据传输处理。
图4是根据本发明实施例的并行数据传输处理装置中第二确定模块34的优选结构框图,如图4所示,该第二确定模块34包括以下至少之一:第一确定单元42、第二确定单元44、第三确定单元46,下面对该第二确定模块34进行说明。
第一确定单元42,设置为在多个次节点的节点类型还包括不支持消息并行处理的一类次节点的情况下,确定对一类次节点与二类次节点采用分别单独协商资源的资源协商方式;第二确定单元44,设置为在多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,确定对二类次节点采用分别单独协商资源的资源协商方式;第三确定单元46,设置为在多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,对二类次节点采用同时并行协商的资源协商方式。
图5是根据本发明实施例的并行数据传输处理装置中第三确定模块36的优选结构框图一,如图5所示,该第三确定模块36包括第一发送单元52和第四确定单元54,下面对该第三确定模块36进行说明。
第一发送单元52,设置为在确定一类次节点在主信道上的对应资源后,向二类次节点发送用于请求数据传输的请求消息,其中,向二类次节点发送的请求消息中携带有除一类次节点所占用的资源外的第一资源范围信息;第四确定单元54,连接至上述第一发送单元52,设置为依据二类次节点反馈的响应消息确定二类次节点的对应资源,其中,二类次节点反馈的响应消息中携带有二类次节点依据第一资源范围信息选择的二类次节点的对应资源。
图6是根据本发明实施例的并行数据传输处理装置中第三确定模块36的优选结构框图二,如图6所示,该第三确定模块36除包括图5所示的所有结构外,还包括:第五确定单元62,下面对该第五确定单元62进行说明。
第五确定单元62,连接上述第四确定单元54,设置为确定一类次节点所对应的资源包含主信道资源,其中,主信道上的数据传输时间决定并行数据传输在辅信道上的传输时。
图7是根据本发明实施例的并行数据传输处理装置中第三确定模块36的优选结构框图三,如图6所示,该第三确定模块36包括第二发送单元72和第六确定单元74,下面对该第三确定模块36进行说明。
第二发送单元72,设置为在多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,向二类次节点发送用于请求数据传输的请求消息,其中,请求消息中携带有供二类次节点选择的用于并行数据传输的资源的第二资源范围信息;第六确定单元74,连接至上述第二发送单元72,设置为依据接收到的二类次节点发送的响应消息确定二类次节点的对应资源,其中,响应消息中携带有二类次节点依据第二资源范围信息选择的对应资源。
图8是根据本发明实施例的并行数据传输处理装置中处理模块38的优选结构框图一,如图8所示,该处理模块38包括第三发送单元82,下面对该第三发送单元82进行说明。
第三发送单元82,设置为采用不同的对应资源在同一时刻向多个次节点发送对应的数据,其中,向二类次节点发送的每个数据中携带有用于调整对应次节点响应数据的响应信息的响应参数调整指示信息。
图9是根据本发明实施例的并行数据传输处理装置中处理模块36的优选结构框图二,如图9所示,该处理模块38除包括图8所示的所有结构外,还包括获取单元92,下面对该获取单元92进行说明。
获取单元92,连接至上述发送单元82,设置为获取对应于多个次节点的响应参数,其中,在多个次节点还包括不支持消息并行处理的一类次节点时,响应参数调整指示信息依据一类次节点的响应参数为基准。
在本发明实施例中,还提供了一种并行数据传输处理设备,包括上述任一项所述的并行数据传输处理装置。
在本发明实施例中,还提供了一种计算机存储介质,该计算机存储介质存储有执行指令,上述执行指令用于执行上述任一项所述的并行数据传输处理方法。
上述实施例及优选实施例提供的无线局域网中并行多用户传输的建立方法,能够有效避免并行传输收到干扰,不仅有效解决了相关技术中并行传输的同步及信道使用调度等问题,并且能够兼容传统WLAN设备,有效的提高了网络效率。
下面结合附图对本发明优选实施方式进行说明。
在进行优选实施方式的说明之前,在用于并行数据传输的资源为频域资源的情况下,对频率范围指示信息指示内容分情况进行说明。
假设网络的运行带宽为160MHz,每20MHz为一个子信道,子信道号分别记为0,1,2,3,4,5,6,7。BSS的主信道为2号子信道。图10是根据本发明优选实施方式的信道划分示意图,如图10所示,该信道规划还定义了四个40MHz信道和2个80MHz信道,例如0和1可以组成一个40MHz信道,但是1和2就不可以组成一个40MHz信道。
频率范围指示信息可以为频段起始位置(或称信道起始位置)和带宽信息。例如,信道起始位置指示比特数为3比特,信道带宽指示比特数为2比特,当信道起始位置指示的值为“100”,信道带宽指示的值为“01”时,则代表频率范围为从4号子信道开始,包括4,5两个子信道的40MHz带宽。
频率范围指示信息可以为频段的临时主信道位置和带宽信息。例如,当指示的临时主信道为6号主信道,信道带宽为80MHz,则根据信道规划,频率范围为4,5,6,7四个子信道的80MHz带宽。
频率范围指示信息可以为频段的临时主信道位置,在无线帧的物理层帧头包含有该无线帧的发送带宽指示。例如,在并行传输建立过程中确定的某个STA的临时主信道位置为6号子信道,则该站点在并行传输时以6号子信道作为临时主信道进行载波检测,并根据检测结果和临时主信道上发送的物理帧头获知具体的数据带宽信息。
频率范围指示信息可以为子信道列表信息。例如,可以使用8个bit分别指示那些子信道可用,当指示为“01001111”时,代表1,4,5,6,7号子信道可供使用。
实施例一
AP与多个non-AP STA组成一个BSS。其中,BSS的运行带宽为40MHz,包括20MHz主信道和20MHz辅信道,但其中STA1为仅支持11a标准的legacy STA,支持的最大带宽为20MHz,STA2为HEW站点,支持OFDMA传输和40MHz带宽。所有站点默认的检测信道至少包含主信道。
图11是根据本发明优选实施例一的并行传输建立示意图,如图11所示,AP想要使用OFDMA技术并行传输数据给STA1和STA2,则AP竞争获取传输机会TXOP(transmission opportunity),发起并行传输建立过程:
AP发送RTS帧给STA1,STA1收到后回复CTS帧;AP接下来再发送一个RTS帧给STA2,该RTS帧包含频段范围指示信息,该信息指示了接下来的OFDMA并行传输中可供STA2的数据使用的频段资源为辅信道,STA2回复CTS帧,该帧中包含频段范围指示信息以确认要使用辅信道。上述过程中AP和STA2使用传统RTS/CTS帧中的保留指示位携带频率范围指示信道,具体的使用RTS/CTS帧中的服务域(SERVICE field)中的保留比特。上述RTS/CTS帧使用传统帧格式,发送信道包含主信道,以便能够让所有站点都能够监听到RTS/CTS,且RTS/CTS中携带有持续时间指示信息,用于预约当前传输机会将要占用的时间,旁听站点听到该信息后将不会竞争信道,以便将传输机会进行保护,其中,上述传输机会的时间长度上限为发送的主信道上STA1数据的接入类别(Access Category,简称AC)对应的传输机会时间限制(TXOP limit),例如,STA1的数据属于视频接入类(AC_VO),则上述AP获取的传输机会时长上限就为AC_VO对应的TXOP limit。可以看出AP分别和STA1和STA2进行RTS/CTS交互,保护了并行传输所使用的两条链路。
上述过程完成后,STA1在主信道上等待接收数据,STA2则在辅信道上等待接收数据,AP使用OFDMA方式并行发送数据给STA1和STA2,其中主信道上的子载波承载STA1的数据,辅信道上的子载波承载STA2的数据,上述给STA1的数据帧要求立即应答帧ACK(Acknowledgment)/BA(Block Acknowledgment),STA1在接收完数据后等待一个帧间间隔后回复ACK/BA;上述给STA2的数据帧要求应答帧ACK/BA,且数据帧中包含响应参数调整指示,具体的为立即响应发送时间点调整信息,指示了STA2在延迟时间T后回复应答帧ACK/BA,上述时间T包括了STA1传输ACK/BA的时间和合适的帧间间隔时间。
数据接收完成后,STA1在帧间间隔后立即回复ACK/BA,STA2按照响应参数调整指示的信息,延迟T时间回复ACK/BA。
实施例二
AP与多个non-AP STA组成一个BSS。其中,BSS的运行带宽为80MHz,包括20MHz主信道(假设为0号子信道)和3个20MHz辅信道(1,2,3号子信道),但其中STA1为支持11n标准的legacy STA,支持的最大带宽为40MHz,STA2为HEW站点,支持OFDMA传输和80MHz带宽。所有站点默认的检测信道至少包含主信道。
图12是根据本发明优选实施例二的并行传输建立示意图,如图12所示,AP想要使用OFDMA技术并行传输数据给STA1和STA2,则AP竞争获取传输机会TXOP(transmission opportunity),发起并行传输建立过程:
AP发送RTS帧给STA1,STA1收到后回复CTS帧,STA1始终在包括主信道的40MHz上进行收发;AP接下来再发送一个RTS帧给STA2,该RTS帧包含频段范围指示信息,该信息指示了接下来的OFDMA并行传输中可供STA2的数据使用的频段资源,为2,3辅信道,STA2回复CTS帧,该帧中包含频段范围指示信息以确认要使用的信道,为3号信道,即AP和STA2可以协商使用的频段。可以看出AP分别和STA1和STA2进行RTS/CTS交互,保护了并行传输所使用的两条链路。
上述过程完成后,STA1在主信道上等待接收数据,STA2则在3号辅信道上等待接收数据,AP使用OFDMA方式并行发送数据给STA1和STA2,其中主信道和1号辅信道上的子载波承载STA1的数据,3号辅信道上的子载波承载STA2的数据,上述给STA1的数据帧要求立即应答帧BA,STA1在接收完数据后等待一个帧间间隔后回复BA;上述给STA2的数据帧要求立即应答帧BA,STA2的BA与STA1的BA在不同子信道上并行发送,且STA2的数据帧中包含响应参数调整指示,具体的可以包括功率调整信息、立即响应发送时间点调整信息、载波频率偏移预调整信息,指示了STA2按照立即响应发送时间点调整信息调整自己的BA发送时间点;按照载波频率偏移预调整信息调整发送BA的载波频谱;按照功率调整信息调整发送BA的功率,使得STA2发送的BA与STA1发送的BA能够并行传输保证被AP能够正确接收。上述全部或部分响应参数调整指示可以位于数据帧的MAC帧头中,具体的可以使用MAC帧头的保留位,可以设置在MAC帧头中增加的信息域中;上述响应参数调整指示全部或部分也可以位于数据帧的物理层帧头中。
STA1在帧间间隔后在主信道和1号辅信道立即回复BA,STA2按照响应参数调整指示在3号信道上发送BA,即BA的发送频带和接收到的自己的数据的频带相同。
实施例三
AP与多个non-AP STA组成一个BSS。其中,BSS的运行带宽为160MHz,包括20MHz主信道(假设为0号子信道)和7个20MHz辅信道(1,2,3,4,5,6,7号子信道),但其中STA1为支持11ac标准的legacy STA,支持的最大带宽为160MHz,STA2,STA3为HEW站点,支持OFDMA传输和160MHz带宽。AP想要使用OFDMA技术并行传输数据给STA1,STA2和STA3,则AP竞争获取传输机会TXOP(transmission opportunity),发起并行传输建立过程:
AP在发送RTS帧给STA1,且指示与STA1的通信可以动态调整带宽,指示可供STA1使用带宽为160MHz,STA1收到后回复CTS帧,且指示选择40MHz带宽与AP进行通信,现有技术中只指示带宽值就可以确定信道,例如,上述40MHz带宽是包括主信道的40MHz带宽,即该实施例中的0,1两个子信道;AP接下来再发送一个RTS帧给STA2,该RTS帧包含频段范围指示信息,该信息指示了接下来的OFDMA并行传输中可供STA2的数据使用的频段资源,例如,可以使用实施例一种的信息指示方法,即除去STA1选择的信道所剩余的信道,为2,3,4,5,6,7辅信道,STA2回复CTS帧,该帧中包含频段范围指示信息以确认要使用的信道,为2,3号信道,即AP和STA2可以协商使用的频段;最后,AP接下来再发送RTS帧给STA3,该RTS帧包含频段范围指示信息,该信息指示了接下来的OFDMA并行传输中可供STA3的数据使用的频段资源,即除去STA1和STA2选择的信道所剩余的信道,为4,5,6,7辅信道,STA2回复CTS帧,该帧中包含频段范围指示信息以确认要使用的信道,为4,5,6,7号信道。可以看出AP分别和STA1、STA2和STA3进行RTS/CTS交互,保护了并行传输所使用的三条链路。
上述过程完成后,AP使用OFDMA方式并行发送数据,其中主信道和1号辅信道上的子载波承载STA1的数据,2,3号辅信道上的子载波承载STA2的数据,4,5,6,7号辅信道上的子载波承载STA3的数据。上述给STA1的数据帧要求立即应答帧BA,STA1在接收完数据后等待一个帧间间隔后回复BA;上述给STA2,3的数据帧要求后续块确认,即STA2和STA3接收到AP发送BAR帧(Block ACK request)后回复数据帧的确认帧BA。
并行数据帧发送完成后,STA1立即回复应答帧BA,AP收到STA1的应答后,发送BAR给STA2,STA2回复BA,然后AP发送BAR给STA3,STA3回复BA。
实施例四
AP与多个non-AP STA组成一个BSS。其中,BSS的运行带宽为160MHz,包括20MHz主信道(假设为0号子信道)和7个20MHz辅信道(1,2,3,4,5,6,7号子信道),但其中STA1为支持11ac标准的legacy STA,支持的最大带宽为160MHz,STA2,STA3为HEW站点,支持OFDMA传输和160MHz带宽。
图13是根据本发明优选实施例四的并行传输建立示意图,如图13所示,AP可以使用并行传输请求帧和并行传输应答帧完成并行传输建立过程。上述并行传输请求帧和并行传输应答帧为新定义的帧格式,不能被一类站点所解析,这些帧的使用方法可以为:
若多用户并行传输的站点既有一类站点又有二类站点,则可以使用传统帧与一类站点进行传输链路建立,然后使用新定义的并行传输请求帧和其响应帧与二类站点进行传输链路建立,使用RTS/CTS与STA1通信,使用并存传输请求帧与STA2和STA3通信,具体的AP发送并行传输请求帧给STA2和STA3,该帧中分别携带有STA2和STA3的标识信息和频段范围指示信息,STA2和STA3按照顺序会议并行传输应答帧。
若多用户并行传输的站点都是二类站点,例如STA2和STA3,则AP发送并行传输请求帧给STA2和STA3,该帧中分别携带有STA2和STA3的标识信息和频段范围指示信息,STA2和STA3按照顺序会议并行传输应答帧。
实施例五
图14是根据本发明优选实施例五的并行传输建立示意图,如图14所示,AP可以使用并行传输请求帧和并行传输应答帧完成并行传输建立过程。上述并行传输请求帧和并行传输应答帧为新定义的帧格式,不能被一类站点所解析,这些帧的使用方法如下:
AP给STA2发送并行请求帧,并接收STA2的并行回应帧,同样的,AP与STA3也进行上述过程。上述并行请求帧和回应帧中包含有频段范围指示信息。
显然,本领域的技术人员应该明白,上述的本发明实施例的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明实施例不限制于任何特定的硬件和软件结合。
以上所述仅为本发明实施例的优选实施例而已,并不用于限制本发明实施例,对于本领域的技术人员来说,本发明实施例可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
如上所述,通过上述实施例及优选实施方式,不仅解决了相关技术中存在的由于WLAN自身的特点并不能建立有效并行传输链路,因而使得WLAN网络无法直接进行并行数据传输的问题,进而达到了不仅能够有效避免并行传输受到干扰,以及能够有效兼容网络新旧设备,有效提高网络效率的效果。

Claims (21)

  1. 一种并行数据传输处理方法,包括:
    确定用于进行并行数据传输的多个次节点的节点类型,其中,所述节点类型包括支持消息并行处理的二类次节点;
    依据所述节点类型确定用于协商并行数据传输的各个次节点资源的资源协商方式;
    依据确定的所述资源协商方式确定分别对应于所述多个次节点的对应资源;
    依据所述对应资源对所述多个次节点进行并行数据传输处理。
  2. 根据权利要求1所述的方法,其中,依据所述节点类型确定用于协商并行数据传输的各个次节点资源的所述资源协商方式包括以下至少之一:
    在所述多个次节点的节点类型还包括不支持消息并行处理的一类次节点的情况下,确定对所述一类次节点与所述二类次节点采用分别单独协商资源的资源协商方式;
    在所述多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,确定对所述二类次节点采用分别单独协商资源的资源协商方式;
    在所述多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,对所述二类次节点采用同时并行协商的资源协商方式。
  3. 根据权利要求2所述的方法,其中,在所述多个次节点的节点类型还包括不支持消息并行处理的一类次节点的情况下,依据确定的所述资源协商方式确定分别对应于所述多个次节点的所述对应资源包括:
    在确定所述一类次节点在主信道上的对应资源后,向所述二类次节点发送用于请求数据传输的请求消息,其中,向所述二类次节点发送的请求消息中携带有除所述一类次节点所占用的资源外的第一资源范围信息;
    依据所述二类次节点反馈的响应消息确定所述二类次节点的所述对应资源,其中,所述二类次节点反馈的所述响应消息中携带有所述二类次节点依据所述第一资源范围信息选择的所述二类次节点的对应资源。
  4. 根据权利要求3所述的方法,其中,
    向所述二类次节点发送的请求消息包括以下至少之一:单播请求发送RTS帧、单播预定帧、多播预定帧,其中,单播所述RTS帧中的保留指示位指示携带的所述第一资源范围信息,所述单播预定帧或所述多播预定帧的信息域指示携带的所述第一资源范围信息;
    所述二类次节点反馈的响应消息为单播允许发送CTS帧或单播预定响应帧,其中,所述二类次节点反馈的所述CTS帧中的保留指示位指示携带的所述二类次节点选择的对应资源,所述单播预定响应帧的信息域指示携带的所述二类次节点选择的所述对应资源。
  5. 根据权利要求3所述的方法,其中,依据确定的所述资源协商方式确定分别对应于所述多个次节点的所述对应资源还包括:
    确定所述一类次节点所对应的资源包含主信道资源,其中,所述主信道上的数据传输时间决定所述并行数据传输在辅信道上的传输时间。
  6. 根据权利要求2所述的方法,其中,在所述多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,依据确定的所述资源协商方式确定分别对应于所述多个次节点的所述对应资源包括:
    向所述二类次节点发送用于请求数据传输的请求消息,其中,所述请求消息中携带有供所述二类次节点选择的用于并行数据传输的资源的第二资源范围信息;
    依据接收到的所述二类次节点发送的响应消息确定所述二类次节点的所述对应资源,其中,所述响应消息中携带有所述二类次节点依据所述第二资源范围信息选择的所述对应资源。
  7. 根据权利要求6所述的方法,其中,
    向所述二类次节点发送的所述请求消息为以下至少之一:单播请求发送RTS帧、单播预定帧、多播预定帧,其中,所述RTS帧中的保留指示位指示携带的所述第二资源范围信息,所述单播预定帧/多播预定帧的信息域指示用于所述二类次节点进行并行数据传输的所述第二资源范围信息;
    所述二类次节点反馈的响应消息所述响应消息为单播允许发送CTS帧或单播预定响应帧,其中,所述CTS帧中的保留指示位指示携带的所述二类次节点选择的所述对应资源,所述单播预定响应帧的信息域指示携带的所述二类次节点选择的所述对应资源。
  8. 根据权利要求1所述的方法,其中,依据所述对应资源对所述多个次节点进行并行数据传输处理包括:
    采用不同的对应资源在同一时刻向所述多个次节点发送对应的数据,其中,向所述二类次节点发送的每个数据中携带有用于调整对应次节点响应所述数据的响应信息的响应参数调整指示信息。
  9. 根据权利要求8所述的方法,其中,在采用不同的对应资源在同一时刻向所述多个次节点发送对应的数据之前,还包括:
    获取对应于所述多个次节点的响应参数,其中,在所述多个次节点还包括不支持消息并行处理的一类次节点时,所述响应参数调整指示信息依据所述一类次节点的响应参数为基准。
  10. 根据权利要求8所述的方法,其中,所述响应参数调整指示信息包括以下至少之一:
    功率调整信息、立即响应发送时间点调整信息、载波频率偏移预调整信息。
  11. 根据权利要求1至10中任一项所述的方法,其中,所述对应资源包括以下至少之一:
    频域资源、码分资源、空域资源。
  12. 根据权利要求3至7中任一项所述的方法,其中,在所述对应资源为频域资源的情况下,所述第一资源范围信息、第二资源范围信息分别包括以下至少之一:
    频段的起始位置和带宽信息;
    频段的临时主信道位置和带宽信息;
    频段的临时主信道位置;
    子信道列表信息。
  13. 一种并行数据传输处理装置,包括:
    第一确定模块,设置为确定用于进行并行数据传输的多个次节点的节点类型,其中,所述节点类型包括支持消息并行处理的二类次节点;
    第二确定模块,设置为依据所述节点类型确定用于协商并行数据传输的各个次节点资源的资源协商方式;
    第三确定模块,设置为依据确定的所述资源协商方式确定分别对应于所述多个次节点的对应资源;
    处理模块,设置为依据所述对应资源对所述多个次节点进行并行数据传输处理。
  14. 根据权利要求13所述的装置,其中,所述第二确定模块包括以下至少之一:
    第一确定单元,设置为在所述多个次节点的节点类型还包括不支持消息并行处理的一类次节点的情况下,确定对所述一类次节点与所述二类次节点采用分别单独协商资源的资源协商方式;
    第二确定单元,设置为在所述多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,确定对所述二类次节点采用分别单独协商资源的资源协商方式;
    第三确定单元,设置为在所述多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,对所述二类次节点采用同时并行协商的资源协商方式。
  15. 根据权利要求13所述的装置,其中,所述第三确定模块包括:
    第一发送单元,设置为在确定所述一类次节点在主信道上的对应资源后,向所述二类次节点发送用于请求数据传输的请求消息,其中,向所述二类次节点发送的请求消息中携带有除所述一类次节点所占用的资源外的第一资源范围信息;
    第四确定单元,设置为依据所述二类次节点反馈的响应消息确定所述二类次节点的所述对应资源,其中,所述二类次节点反馈的所述响应消息中携带有所述二类次节点依据所述第一资源范围信息选择的所述二类次节点的对应资源。
  16. 根据权利要求15所述的装置,其中,所述第三确定模块还包括:
    第五确定单元,设置为确定所述一类次节点所对应的资源包含主信道资源,其中,所述主信道上的数据传输时间决定所述并行数据传输在辅信道上的传输时间。
  17. 根据权利要求13所述的装置,其中,所述第三确定模块包括:
    第二发送单元,设置为在所述多个次节点的节点类型仅包括支持消息并行处理的二类次节点的情况下,向所述二类次节点发送用于请求数据传输的请求消息,其中,所述请求消息中携带有供所述二类次节点选择的用于并行数据传输的资源的第二资源范围信息;
    第六确定单元,设置为依据接收到的所述二类次节点发送的响应消息确定所述二类次节点的所述对应资源,其中,所述响应消息中携带有所述二类次节点依据所述第二资源范围信息选择的所述对应资源。
  18. 根据权利要求13所述的装置,其中,所述处理模块包括:
    第三发送单元,设置为采用不同的对应资源在同一时刻向所述多个次节点发送对应的数据,其中,向所述二类次节点发送的每个数据中携带有用于调整对应次节点响应所述数据的响应信息的响应参数调整指示信息。
  19. 根据权利要求18所述的装置,其中,还包括:
    获取单元,设置为获取对应于所述多个次节点的响应参数,其中,在所述多个次节点还包括不支持消息并行处理的一类次节点时,所述响应参数调整指示信息依据所述一类次节点的响应参数为基准。
  20. 一种并行数据传输处理设备,包括权利要求13至19中任一项所述的装置。
  21. 一种计算机存储介质,所述计算机存储介质存储有执行指令,所述执行指令用于执行权利要求1至12中任一项所述的方法。
PCT/CN2014/086964 2014-05-09 2014-09-19 并行数据传输处理方法、装置及计算机存储介质 WO2015169025A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14891532.5A EP3142455B1 (en) 2014-05-09 2014-09-19 Parallel data transmission processing method and device, and computer storage medium
US15/281,438 US20170019818A1 (en) 2014-05-09 2016-09-30 Method and Device for Processing Parallel transmission, and Computer Storage Medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410196645.7A CN104185217B (zh) 2014-05-09 2014-05-09 并行数据传输处理方法及装置
CN201410196645.7 2014-05-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/281,438 Continuation-In-Part US20170019818A1 (en) 2014-05-09 2016-09-30 Method and Device for Processing Parallel transmission, and Computer Storage Medium

Publications (1)

Publication Number Publication Date
WO2015169025A1 true WO2015169025A1 (zh) 2015-11-12

Family

ID=51965879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/086964 WO2015169025A1 (zh) 2014-05-09 2014-09-19 并行数据传输处理方法、装置及计算机存储介质

Country Status (4)

Country Link
US (1) US20170019818A1 (zh)
EP (1) EP3142455B1 (zh)
CN (1) CN104185217B (zh)
WO (1) WO2015169025A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011188106A (ja) * 2010-03-05 2011-09-22 Sony Corp 無線通信装置、無線通信システム、無線通信方法およびプログラム
WO2015194732A1 (ko) * 2014-06-19 2015-12-23 엘지전자 주식회사 프레임을 수신하는 방법 및 장치
WO2016021994A1 (ko) * 2014-08-07 2016-02-11 주식회사 윌러스표준기술연구소 무선 통신 방법 및 무선 통신 단말
KR102163485B1 (ko) 2014-10-22 2020-10-07 주식회사 윌러스표준기술연구소 무선 통신 방법 및 무선 통신 단말
US10396952B2 (en) * 2014-12-03 2019-08-27 Intel IP Corporation Wireless device, method, and computer readable media for multiply-user request-to-send and clear-to-send and uplink ACK protection in a high efficiency wireless local-area network
US20160234834A1 (en) * 2015-02-09 2016-08-11 Huawei Technologies Co., Ltd. System and Method for Transmitting Data in a Wireless LAN Multi-User Transmission Opportunity
CN105991242A (zh) * 2015-03-05 2016-10-05 中兴通讯股份有限公司 数据发送方法、接收方法、发送装置及接收装置
CN106102183B (zh) * 2015-04-29 2019-09-20 华为技术有限公司 一种发送响应消息的方法及接入点、站点
WO2017031628A1 (zh) * 2015-08-21 2017-03-02 华为技术有限公司 一种数据传输控制方法及接入点、站点
US20170077999A1 (en) * 2015-09-10 2017-03-16 Qualcomm Incorporated Access point-controlled responses to uplink multi-user frames
US10693618B2 (en) 2015-09-28 2020-06-23 Nokia Technologies Oy Multiplexed messaging in wireless network
CN107645781B (zh) * 2016-07-21 2021-04-27 珠海市魅族科技有限公司 无线局域网的通信方法、通信装置、站点和接入点
US10159009B2 (en) * 2016-10-12 2018-12-18 Qualcomm Incorporated Method and apparatus for adaptation of EDCA parameters to ensure access by a wireless node
CN110858794B (zh) * 2018-08-24 2022-11-11 华为技术有限公司 多频段传输方法及装置
CN110890953B (zh) 2018-09-11 2022-07-19 华为技术有限公司 使用免授权频段的通信方法和通信装置
CN111132368B (zh) * 2019-12-23 2022-08-09 展讯通信(上海)有限公司 无线数据传输方法及装置、存储介质、终端
EP4319406A1 (en) * 2021-03-29 2024-02-07 Sony Group Corporation Communications device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070297366A1 (en) * 2006-01-05 2007-12-27 Robert Osann Synchronized wireless mesh network
CN101605334A (zh) * 2008-06-12 2009-12-16 中兴通讯股份有限公司 分层无线接入系统、异类频谱多通道终端、数据传输方法
CN101895952A (zh) * 2010-07-16 2010-11-24 山东省计算中心 无线传感器网络的多路由建立方法及并行数据传输方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI287375B (en) * 2004-11-23 2007-09-21 Inst Information Industry Parallel transmission method and the system of a wireless local area network
DK1925125T3 (en) * 2005-09-14 2016-12-12 Interdigital Tech Corp Method and apparatus for the protection of højoverførselshastighedstationer
US8879573B2 (en) * 2006-12-01 2014-11-04 Microsoft Corporation Media access control (MAC) protocol for cognitive wireless networks
US8355389B2 (en) * 2010-03-12 2013-01-15 Nokia Corporation Simultaneous transmissions during a transmission opportunity
CN103370897B (zh) * 2011-02-09 2017-04-26 瑞典爱立信有限公司 在分级异构小区部署中分发小区共用下行链路信号的方法、系统以及控制单元
WO2013044411A1 (en) * 2011-09-29 2013-04-04 Nokia Siemens Network Oy Resource aggregation in wireless communications
US9608789B2 (en) * 2012-05-11 2017-03-28 Interdigital Patent Holdings, Inc. Method and apparatus for transmitting acknowledgements in response to received frames
US9125214B2 (en) * 2012-09-04 2015-09-01 Cisco Technology, Inc. Dynamic enabling of wider channel transmissions with radio monitoring
US9712231B2 (en) * 2013-04-15 2017-07-18 Avago Technologies General Ip (Singapore) Pte. Ltd. Multiple narrow bandwidth channel access and MAC operation within wireless communications
US9736850B2 (en) * 2013-08-28 2017-08-15 Qualcomm Incorporated Adaptive RTS/CTS in high-efficiency wireless communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070297366A1 (en) * 2006-01-05 2007-12-27 Robert Osann Synchronized wireless mesh network
CN101605334A (zh) * 2008-06-12 2009-12-16 中兴通讯股份有限公司 分层无线接入系统、异类频谱多通道终端、数据传输方法
CN101895952A (zh) * 2010-07-16 2010-11-24 山东省计算中心 无线传感器网络的多路由建立方法及并行数据传输方法

Also Published As

Publication number Publication date
CN104185217A (zh) 2014-12-03
US20170019818A1 (en) 2017-01-19
EP3142455B1 (en) 2018-11-07
EP3142455A1 (en) 2017-03-15
EP3142455A4 (en) 2017-05-03
CN104185217B (zh) 2019-08-27

Similar Documents

Publication Publication Date Title
WO2015169025A1 (zh) 并行数据传输处理方法、装置及计算机存储介质
JP6868578B2 (ja) セカンダリチャネル上の基本帯域幅デバイス
US11937299B2 (en) Controlling transmissions from multiple user devices via a request-clear technique
US10194468B2 (en) Wireless channel reservation
US10542557B2 (en) System and method for digital communications with interference avoidance
US9907089B2 (en) Method and apparatus for retrieving a transmission opportunity control in reverse direction grant
JP6440126B2 (ja) データ送信方法、装置、及びシステム
WO2016037480A1 (zh) 一种实现并行多用户数据传输的方法及主节点
CN105900513B (zh) 竞争信道的方法和装置
EP3211924A1 (en) Method and device for resource sharing between stations in wireless local area network
WO2014190686A1 (zh) 干扰处理方法及设备
US20170208618A1 (en) Direct link scheduling method, access point and terminal device
US20170366307A1 (en) Parallel Multiuser Data Transmission Method and Primary Node
WO2020011000A1 (zh) 多接入点ap协作传输方法、相关装置及系统
WO2013037228A1 (zh) 静默模式指示方法、静默模式下的数据传输方法及装置
WO2017075982A1 (zh) 一种数据传输方法及装置
CN107534999B (zh) 一种数据传输方法及接入点、站点
WO2015120577A1 (zh) 数据传输处理方法及装置
WO2015096029A1 (zh) 数据传输方法和设备
KR101913261B1 (ko) 무선통신시스템에서 신호 송수신 방법
CN113473621A (zh) 竞争信道的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14891532

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014891532

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014891532

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE