WO2015120577A1 - 数据传输处理方法及装置 - Google Patents

数据传输处理方法及装置 Download PDF

Info

Publication number
WO2015120577A1
WO2015120577A1 PCT/CN2014/071974 CN2014071974W WO2015120577A1 WO 2015120577 A1 WO2015120577 A1 WO 2015120577A1 CN 2014071974 W CN2014071974 W CN 2014071974W WO 2015120577 A1 WO2015120577 A1 WO 2015120577A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
site
time
frequency resources
scheduling signaling
Prior art date
Application number
PCT/CN2014/071974
Other languages
English (en)
French (fr)
Inventor
李云波
张佳胤
罗毅
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202010261208.4A priority Critical patent/CN111586764A/zh
Priority to CN201480074942.2A priority patent/CN105981469B/zh
Priority to KR1020167020578A priority patent/KR101952223B1/ko
Priority to EP19218442.2A priority patent/EP3687257A1/en
Priority to EP14882387.5A priority patent/EP3086621B1/en
Priority to JP2016551193A priority patent/JP6410060B2/ja
Priority to PCT/CN2014/071974 priority patent/WO2015120577A1/zh
Publication of WO2015120577A1 publication Critical patent/WO2015120577A1/zh
Priority to US15/233,591 priority patent/US10602509B2/en
Priority to US16/789,982 priority patent/US11425709B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/04Scheduled or contention-free access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]

Definitions

  • the embodiments of the present invention relate to communication technologies, and in particular, to a data transmission processing method and apparatus. Background technique
  • the carrier sensing and channel reservation mechanism is adopted.
  • a certain time of the channel is reserved by one station, other stations will not allow data transmission during this time.
  • an access point AP
  • AP access point
  • only the access point can enjoy the time-frequency resource, and the non-associated neighbor site of the AP is in the No data is transmitted within the time-frequency resource. Therefore, in the prior art, there is a problem that data transmission is not efficient. Summary of the invention
  • Embodiments of the present invention provide a data transmission processing method and apparatus for improving transmission efficiency of a system.
  • an embodiment of the present invention provides a data transmission processing method, including:
  • the first site successfully reserves time-frequency resources
  • the first station allocates at least a part of the time-frequency resources of the time-frequency resource to the third station, so that the third station performs data transmission on the allocated time-frequency resource, where the third station A non-associated neighbor site for the first site.
  • the first station allocates the at least part of the time-frequency resource of the time-frequency resource to the third site, including:
  • the first station allocates time-frequency resources occupied by data transmission with the second station to the third station, where the second station is an associated station of the first station; a neighbor site of the second site; or,
  • the first station allocates the remaining time-frequency resources to the third station, where the remaining time-frequency resources are when the first station allocates the time-frequency resource to the associated station of the first station. No time-frequency resources are used.
  • the first station allocates time-frequency resources occupied by data transmission with the second station to the The third site, including:
  • the first station sends scheduling signaling to the third station, where the scheduling signaling includes an indication that the third station can be used for data transmission to the second station by the first station.
  • Information for transmitting data on time-frequency resources or,
  • the first station sends scheduling signaling to the third station, where the scheduling signaling includes an uplink station that indicates that the third station can receive data sent by the second station at the first station.
  • the first station allocates the remaining time-frequency resources to the third site, including: The first station sends scheduling signaling to the third station, where the scheduling signaling includes information indicating that the third station can perform data transmission in the remaining time-frequency resources.
  • the first station sends the scheduling signaling to the third station, including: The first station sends the scheduling signaling to the third station by using a plurality of scheduling signaling sending periods set in a downlink period.
  • the method further includes:
  • the first site establishes a neighbor list, where the neighbor list includes a neighbor site of the first site.
  • the first station allocates a time-frequency resource occupied by data transmission with the second station to the Before the third site, it also includes:
  • an embodiment of the present invention provides a data transmission processing method, including:
  • the third station acquires a time-frequency resource allocated by the first station to the third station, where the The allocated time-frequency resource is at least a part of the time-frequency resource of the time-frequency resource reserved by the first station; the third site is a non-associated neighbor site of the first site;
  • the third station performs data transmission on the allocated time-frequency resource.
  • the allocated time-frequency resource is at least a part of the time-frequency resource of the time-frequency resource reserved by the first station, and includes:
  • the allocated time-frequency resource is a time-frequency resource occupied by the first station and the second station for data transmission, where the second site is an associated site of the first site; a neighbor site of the second site; or,
  • the allocated time-frequency resource is the remaining time-frequency resource, where the remaining time-frequency resource is a time-frequency that is not used when the first station allocates the time-frequency resource to the associated site of the first site. Resources.
  • the third station acquires a time-frequency resource allocated by the first station to the third station, where
  • the allocated time-frequency resource is a time-frequency resource occupied by the first station and the second station for data transmission, and includes:
  • the third station receives the scheduling signaling sent by the first station, where the scheduling signaling includes an indication that the third station can be used for data transmission to the second station by the first station.
  • the third station receives the scheduling signaling sent by the first station, where the scheduling signaling includes an association station that indicates that the third station can receive the second station to send at the first station.
  • the third station acquires a time-frequency resource allocated by the first station to the third station, where The allocated time-frequency resource is the remaining time-frequency resource, including:
  • the third station receives the scheduling signaling sent by the first station, where the scheduling signaling includes information indicating that the third station can perform data transmission in the remaining time-frequency resources.
  • the receiving, by the third station, the scheduling signaling sent by the first station includes: The third station receives scheduling signaling sent by the first station by using a plurality of scheduling signaling sending periods set in a downlink period.
  • the third site is two access points
  • the APs are not mutually a neighboring site of the first site in a scenario of a neighboring site, where the first site is any one of the two APs
  • the third site includes :
  • the third station notifies the associated information of the third station to the indication information in the scheduling signaling;
  • the third station receives a schedule of an associated site of the third site.
  • the third station receiving the scheduling of the associated site of the third site includes:
  • the third station receives the scheduling of the associated site of the third station in a plurality of scheduling signaling sending periods set in the downlink period.
  • an embodiment of the present invention provides a site, where the site is a first site, and the site includes:
  • a reserved module configured to successfully reserve time-frequency resources
  • An allocating module configured to allocate at least a part of the time-frequency resource of the time-frequency resource to the third station, so that the third station performs data transmission on the allocated time-frequency resource, where the third station A non-associated neighbor site for the first site.
  • a first allocation unit configured to allocate time-frequency resources occupied by data transmission with the second station to the third station, where the second station is an associated station of the first station;
  • the site is not a neighbor site of the second site; or,
  • a second allocation unit configured to allocate the remaining time-frequency resources to the third station, where the remaining time-frequency resources are used by the first station to allocate the time-frequency to an associated station of the first station Time-frequency resources that are not used when resources are used.
  • the first allocating unit is specifically configured to:
  • the third station may perform data transmission information on the time-frequency resource occupied by the first station to perform data transmission to the second station; or
  • the second allocation unit is configured to: send, to the third station, scheduling signaling, where The scheduling signaling includes information indicating that the third station can perform data transmission in the remaining time-frequency resources.
  • the allocating module is specifically configured to: use multiple scheduling letters that are set in a downlink period The transmission period is caused to send the scheduling signaling to the third station.
  • the station further includes: an establishing module, configured to: Establishing a neighbor list, where the neighbor list includes a neighbor site of the first site.
  • the method may further include: an acquiring module, configured to acquire a neighbor list of the second site, where The neighbor list includes the neighbor site of the second site.
  • the embodiment of the present invention provides a site, where the site is a third site, and the site includes:
  • An acquiring module configured to acquire a time-frequency resource allocated by the first station to the third station, where the allocated time-frequency resource is at least a part of a time-frequency resource of the time-frequency resource reserved by the first station;
  • the third site is a non-associated neighbor site of the first site;
  • a transmission module configured to perform data transmission on the allocated time-frequency resource.
  • the allocated time-frequency resource is at least a part of the time-frequency resource of the time-frequency resource reserved by the first station, and includes:
  • the allocated time-frequency resource is a time-frequency resource occupied by the first station and the second station for data transmission, where the second site is an associated site of the first site; a neighbor site of the second site; or,
  • the allocated time-frequency resource is the remaining time-frequency resource, where the remaining time-frequency resource is a time-frequency that is not used when the first station allocates the time-frequency resource to the associated site of the first site. Resources.
  • the acquiring module when the allocated time-frequency resource is used for data transmission between the first site and the second site When the time-frequency resource is occupied, the acquiring module is specifically configured to:
  • the scheduling signaling includes a time-frequency resource that is used by the third station to be used for data transmission by the first station to the second station.
  • Information for data transmission or,
  • the scheduling signaling includes an indication that the associated site of the third station can be used by the first station to receive data sent by the second station.
  • the information about the data transmission is performed on the frequency resource, where the associated site of the third site is not a neighbor site of the first site.
  • the acquiring module when the allocated time-frequency resource is the remaining time-frequency resource, the acquiring module is specific And the method is: receiving the scheduling signaling sent by the first station, where the scheduling signaling includes information indicating that the third station can perform data transmission in the remaining time-frequency resources.
  • the acquiring module is specifically configured to: receive the first station by using in a downlink period The scheduling signaling sent by the multiple scheduling signaling transmission periods is set.
  • the APs are not mutually a neighboring site of the first site in the scenario of the neighboring site, where the first site is any one of the two APs, and the third site further includes:
  • a notification module configured to notify the associated site of the third site by using the indication information in the scheduling signaling
  • a receiving module configured to receive a schedule of an associated site of the third site.
  • the receiving module is specifically configured to: receive, by using, The scheduling of the associated site of the third site.
  • the first station successfully reserves the time-frequency resource, and allocates at least a part of the time-frequency resource of the time-frequency resource to the third station, so that the third station is in the allocated time-frequency resource.
  • the third site is a non-associated neighbor site of the first site, so that the third site may share the time-frequency resource reserved by the first site with the first site. Therefore, the transmission efficiency of the system is improved.
  • Embodiment 1 is a schematic flowchart of Embodiment 1 of a data transmission processing method according to the present invention
  • Embodiment 2 is a schematic flowchart of Embodiment 2 of a data transmission processing method according to the present invention
  • FIG. 3 is a schematic diagram 1 of the station communication of the present invention.
  • FIG. 4 is a schematic diagram 2 of the station communication of the present invention.
  • FIG. 5 is a schematic diagram 1 of setting a scheduling channel
  • 6 is a schematic diagram 2 of setting a scheduling channel
  • FIG. 7 is a schematic flowchart of Embodiment 3 of a data transmission processing method according to the present invention.
  • Embodiment 8 is a schematic flowchart of Embodiment 4 of a data transmission processing method according to the present invention.
  • Embodiment 9 is a schematic structural diagram of Embodiment 1 of a station according to the present invention.
  • Embodiment 2 of a station according to the present invention is a schematic structural diagram of Embodiment 2 of a station according to the present invention.
  • FIG. 11 is a schematic structural diagram of Embodiment 3 of a station according to the present invention.
  • FIG. 12 is a schematic structural diagram of Embodiment 4 of a station according to the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 1 is a schematic flowchart of a first embodiment of a data transmission processing method according to the present invention. As shown in FIG. 1, the method in this embodiment may include:
  • Step 101 The first station successfully reserves time-frequency resources.
  • Step 102 The first station allocates at least a part of time-frequency resources of the time-frequency resource to a third station, so that the third station performs data transmission on the allocated time-frequency resource, where
  • the third site is a non-associated neighbor site of the first site.
  • the solution proposed in the embodiment of the present invention is to perform primary link resource multiplexing based on a scheduling mechanism, where the scheduling mechanism refers to that all uplink and downlink resources in a basic service set (BSS) are connected.
  • the access point (AP) is scheduled, and the station (Station, referred to as STA) performs data transmission and reception in the scheduled time-frequency resources.
  • the first station successfully reserves a time-frequency resource through the contention channel, and the first station may be an AP.
  • the specific process of competing channels and reserving time-frequency resources is not of interest in this patent, and mechanisms in existing standards may be reused, or other mechanisms may be used.
  • the first station first listens to the channel, and after the channel is idle to reach the distributed coordination function interframe space (DIFS), generates a backoff random number. If the channel is idle until the backoff random number counts down to 0, then A station sends a Clear to Send (CTS-to-self) frame reserved channel, and the CTS-to-self frame contains a Duration field of the reserved channel duration. When other stations receive the CTS After the -to-self frame, no active transmission will be performed on the channel within the time indicated by the Duration field.
  • DIFS distributed coordination function interframe space
  • an AP that successfully reserves time-frequency resources will enjoy its own reserved time-frequency resources, that is, the AP.
  • the self may be scheduled within the time-frequency resource and the associated STA of the AP may be scheduled.
  • the first site that successfully competes to the channel schedules itself and the associated site of the first site within the time-frequency resource, and the first site will also At least a part of the time-frequency resource of the reserved time-frequency resource is allocated to the third station, so that the third station performs data transmission on the allocated time-frequency resource, where the third station is the first A non-associated neighbor site for the site.
  • the at least part of the time-frequency resource may be a time-frequency resource occupied by data transmission by the first station and the second station, where the second site is an associated site of the first site, where the The third station is not the neighbor station of the second station, and may also be used when the first station allocates the reserved time-frequency resources for the associated station of the first station.
  • Time-frequency resources (remaining time-frequency resources).
  • the neighboring site of the first site refers to a site that can correctly receive data sent by the first site, and may be an access point (AP) or a non-access point site (STA), which includes The associated site of the first site also includes a non-associated site of the first site.
  • the access point can only perform data communication with the associated site of the access point, and the non-associated site of the access point cannot perform data communication, but only allows specific signaling.
  • Interaction such as the first station in the present invention sends scheduling signaling to the third station
  • the non-access point site can only communicate with the associated site of the site, and the non-access The non-associated sites of the site of the point cannot communicate with the data, but only allow specific signaling interactions.
  • the first station successfully reserves time-frequency resources, and allocates at least a part of the time-frequency resources of the time-frequency resources to the third station, so that the third station is at the time of the allocation.
  • FIG. 2 is a schematic flowchart of a second embodiment of a data transmission processing method according to the present invention. As shown in FIG. 2, the method in this embodiment may include:
  • Step 201 The first station successfully reserves time-frequency resources.
  • Step 202 The first station allocates time-frequency resources occupied by data transmission with the second station to the third station, where the second station is an associated site of the first station, The third site is not a neighbor site of the second site.
  • the first station allocates time-frequency resources occupied by data transmission with the second station to the third station, including:
  • the first station sends scheduling signaling to the third station, where the scheduling signaling includes an indication that the third station can be used for data transmission to the second station by the first station.
  • Information for transmitting data on time-frequency resources or,
  • the first station sends scheduling signaling to the third station, where the scheduling signaling includes an uplink station that indicates that the third station can receive data sent by the second station at the first station.
  • the second site is an associated site of the first site
  • the third site is a non-associated neighbor site of the first site
  • the third site is not a neighbor site of the second site, that is, the third site and the second site are mutually inaudible to each other. Therefore, the third site is an exposed site of the first site and the second site link.
  • the data transmission by the first station and the second station includes two implementation manners, where the first implementation manner is that the first station performs downlink transmission, and the second implementation manner is The second site is sent upstream.
  • the first station When the first station is to transmit downlink (that is, in a downlink period), the first station may perform data transmission by using the first station and the second station by sending scheduling signaling to the third station.
  • the occupied time-frequency resource is allocated to the third station, where the scheduling signaling includes a time-frequency resource that is used by the third station to perform data transmission to the second station at the first station. Information on which data is sent.
  • a scenario in which two APs are mutually neighboring sites and a scenario in which two APs are not mutually neighboring sites are included that is, two BSSs have overlapping regions, but any one of the two APs is not in another AP.
  • the first site may correspond to the first AP
  • the third site may correspond to the unassociated neighbor AP of the first AP in the scenario where the two APs are mutually neighboring sites;
  • the third site may correspond to the unassociated STA of the first AP.
  • FIG. 3 is a schematic diagram of a station communication according to the present invention.
  • the first AP corresponds to an API (first site)
  • the neighbor AP corresponds to AP2
  • third The second site corresponds to the STA 11 , wherein the STA 11 is outside the coverage of the AP 2 (that is, the third site is not a neighbor site of the second site).
  • the API may allocate the time-frequency resource for the data transmission by the STA1 to the AP2 for downlink transmission.
  • the API may send a scheduling signaling to the AP2, where the scheduling is performed.
  • the signaling includes information indicating that the AP2 can perform data transmission on the time-frequency resource occupied by the API to perform data transmission to the STA11.
  • the AP2 can allocate the time-frequency in the API.
  • the data is sent to the STA 22 on the resource. Further, in order for the AP2 to send data to the STA 22, the process does not affect the data transmission by the API to the STA 11.
  • the STA 11 and the STA 22 are mutually inaudible.
  • the resource allocation principle 1 is summarized according to the foregoing.
  • the first station may allocate time-frequency resources occupied by data transmission to the second station to the third station for downlink transmission; if the location of the second station is in the overlapping area, the first A station may not allocate time-frequency resources occupied by data transmission to the second station to the third station.
  • the scheduling signaling sent by the first station to the third station may be transmitted through an air interface, where the first station associates the neighbor AP (third station) with the first station.
  • the STA of the BSS performs resource scheduling.
  • the first AP corresponds to an API (first site), and the unassociated STA of the first AP corresponds to a STA31 (third site).
  • the second site corresponds to the STA 11 , wherein the STA 11 is outside the coverage of the STA 31 (ie, the third site is not a neighbor site of the second site).
  • the API may allocate the time-frequency resource for the data transmission to the STA 11 to the STA 31 for uplink transmission.
  • the API may send a scheduling signaling to the STA 31, where the scheduling is performed.
  • the signaling includes information indicating that the STA 31 can perform data transmission on the time-frequency resource occupied by the API to perform data transmission to the STA 11.
  • the STA 31 notifies the indication information to the AP3. Therefore, the AP3 schedules the STA 31 according to the information of the sharable time-frequency resource sent by the STA 31, so that the STA 31 can send data to the AP3 on the allocated time-frequency resource.
  • the manner in which the STA 31 notifies the association indication information to the associated AP3 may be reported by a public uplink time-frequency resource, or may be in another manner, which is not limited herein.
  • the first station may perform data transmission by using the first station and the second station by sending scheduling signaling to the third station.
  • the occupied time-frequency resource is allocated to the third station, where the scheduling signaling includes an area that indicates that the associated station of the third station can receive data sent by the second station at the first station.
  • the information about the data transmission is performed on the time-frequency resource, where the associated site of the third site is not the neighbor site of the first site.
  • the third site may be related to the first The associated sites of the three sites directly communicate data.
  • a scenario in which two APs are mutually neighboring sites and a scenario in which two APs are not mutually neighboring sites are included that is, two BSSs have overlapping regions, but any one of the two APs is not in another AP.
  • the first site may be a first AP
  • the third site may be a non-associated neighbor AP of the first AP, where the third AP is a neighboring site.
  • the associated site of the site may correspond to the associated STA of the neighboring AP; in a scenario where the two APs are not mutually neighboring sites, the third site may correspond to the unassociated STA of the first AP, and the third The associated site of the site may correspond to the associated AP of the non-associated STA.
  • Figure 4 is a schematic diagram of the site communication of the present invention.
  • the first AP corresponds to an API (first site)
  • the neighbor AP corresponds to AP2 (third Sites, the associated STAs of the neighboring APs are corresponding to the STAs 22, and the second station is corresponding to the STAs 11, wherein the STAs 11 are outside the coverage of the AP2 (ie, the third site is not the neighbor of the second site) Site)
  • the STA 22 is not within the coverage of the API (ie, the associated site of the third site is not a neighbor site of the first site).
  • the API may allocate the time-frequency resource that the STA 11 sends to the API to the STA 22 for uplink transmission (that is, the AP2 receives the data sent by the STA 22), optionally, the The API may send a scheduling signaling to the AP2, where the scheduling signaling includes information indicating that the associated site of the AP2 may send data on the time-frequency resource occupied by the data received by the STA11 by the API, The associated site of the AP2 is not a neighboring site of the API. Further, the AP2 may schedule the STA 22 to perform data transmission on the allocated time-frequency resource by the API.
  • the process of the STA 22 transmitting data to the AP2 does not affect the API to receive the data sent by the STA 11 , because the STA 22 is not in the coverage of the API.
  • the resource allocation principle 2 is summarized according to the foregoing.
  • the first station may allocate the time-frequency resource occupied by the data sent by the second station to the associated station of the third station for uplink transmission, and the third station
  • the associated site is not in the overlapping area; if the location of the second site is in the overlapping area, the first station may not receive the time-frequency resource allocation occupied by the data sent by the second station. Give the associated site to the third site.
  • the first site is to the third site
  • the sent scheduling signaling may be transmitted through the air interface, which is equivalent to the first station using the neighboring AP (third station) as the STA of the BSS to which the first station belongs to perform resource scheduling.
  • the neighboring AP third station
  • the first AP corresponds to an API.
  • the unassociated STA of the first AP is corresponding to the STA 31 (the third station), the associated site of the third site is the AP3, and the second site is the STA11, where the STA11 is Outside the coverage of the STA 31 (ie, the third site is not a neighbor site of the second site), the AP3 is not in the coverage of the API (ie, the associated site of the third site is not the The neighbor site of the first site).
  • the API may allocate the time-frequency resource that the STA 11 sends to the API to the AP3 for downlink transmission (that is, the STA 31 may receive the data sent by the AP3), optionally
  • the API may send a scheduling signaling to the STA 31, where the scheduling signaling includes the associated station AP3 indicating that the STA 31 can perform data on the time-frequency resource occupied by the API receiving the data sent by the STA11.
  • Sending information that is, the STA 31 may receive data sent by the AP3), where the associated site of the third site is not a neighboring site of the API.
  • the STA 31 notifies the AP3 of the scheduling indication information, so that the AP3 schedules the associated STA of the AP3 according to the information of the sharable time-frequency resources sent by the STA 31, such as the STA 31.
  • the manner in which the STA 31 notifies the associated information to the associated AP3 may be reported by a public uplink time-frequency resource, or may be other manners, which is not limited herein.
  • FIG. 5 is a schematic diagram of the configuration of the scheduling channel.
  • the downlink and uplink time periods are generally scheduled in the beginning of the downlink period, but in the embodiment of the present invention, the two APs are neighbors.
  • the scheduling time has ended, and the third site may not have the opportunity to obtain the shared resource.
  • the STA of the BSS to which the third station belongs Assigned to the STA of the BSS to which the third station belongs. Therefore, according to the description of the above embodiments of the present invention, it is required in the embodiments of the present invention.
  • FIG. 6 is a schematic diagram of the scheduling channel configuration.
  • a scheduling signaling transmission period is set in the downlink period (corresponding to the scheduling channel in FIG. 6). If the AP performs scheduling in a certain scheduling signaling period, the subsequent scheduling period may be used for data transmission; if the AP misses a certain scheduling signaling period, it may also be scheduled in the next scheduling signaling period.
  • the first station may send the scheduling signaling to the third station by using multiple scheduling signaling sending periods set in a downlink period.
  • the AP may also perform scheduling in any downlink time period, but the scheduling mode requires all stations to maintain the listening state in the downlink time period until the scheduling signaling is received.
  • the method further includes: the first station establishing a neighbor list, where the neighbor list includes The neighbor site of the first site.
  • the first site may establish a neighbor list, and select the third site based on the neighbor list (the third site is a non-associated neighbor site of the first site), where And the neighbor list includes the AP and the STA that the first station can directly listen to, that is, the neighbor list that includes the first station in the neighbor list.
  • the method further includes: obtaining, by the first station, a neighbor list of the second station, The neighbor list includes the neighbor site of the second site.
  • the first station needs to obtain a neighbor list that is established by the second station, where the neighbor list includes the AP and the STA that the second station can directly monitor (the neighbor list includes the a neighboring site of the second site, in order to prevent the third station from performing data transmission on the allocated time-frequency resource to affect data transmission of the first site and the second site, the first site may be based on the a neighbor list of the first site and a neighbor list of the second site to learn the location of the second site and the third site, so that the first site selects a suitable third site (the third site is not And the neighboring site of the second site, and allocates time-frequency resources occupied by data transmission by the first site and the second site to the third site.
  • the manner in which the first site obtains the neighbor list of the second site may include two achievable modes: passive monitoring and active request.
  • the first station In the passive monitoring mode, the first station The point may be obtained by passively listening to a frame sent by the second station, such as a beacon frame, to obtain a neighbor list of the second station, and correspondingly, the second station may be in a neighbor list of the second station.
  • the active request mode the first station may actively send a request frame and then receive the response of the second site when there is a change or periodically.
  • the frame is configured to obtain the neighbor list information of the second site, and correspondingly, the second station may send the neighbor list of the second site according to the query of the first sending site.
  • the first station successfully reserves time-frequency resources, and allocates time-frequency resources occupied by data transmission by the first station and the second station to the third station, so that the third station The station performs data transmission on the allocated time-frequency resource, where the third site is a non-associated neighbor site of the first site, so that the third site may share the same with the first site.
  • the time-frequency resources reserved by the first station therefore, improve the transmission efficiency of the system.
  • FIG. 7 is a schematic flowchart of a third embodiment of a data transmission processing method according to the present invention. As shown in FIG. 7, the method in this embodiment may include:
  • Step 701 The first station successfully reserves time-frequency resources.
  • Step 702 The first station allocates the remaining time-frequency resources to the third station, where the remaining time-frequency resources are allocated by the first station to an associated site of the first site. Time-frequency resources that are not used when time-frequency resources are used.
  • the first station allocates the remaining time-frequency resources to the third station, where: the first station sends scheduling signaling to the third station, where the scheduling signaling includes Information indicating that the third station can perform data transmission within the remaining time-frequency resources.
  • the first station allocates time-frequency resources occupied by data transmission with the second station to the third station
  • the first station in the embodiment of the present invention Allocating the remaining time-frequency resources to the third station, where the remaining time-frequency resources are not used when the first station allocates the time-frequency resources reserved by the first station to the associated sites of the first station. Time-frequency resources.
  • the third site is a non-associated neighboring site of the first site, such as a neighboring AP or a neighboring STA.
  • the third station may perform data transmission on the allocated time-frequency resource. If the third station is an AP, the AP may directly directly address the allocated time-frequency resource.
  • the associated STA of the AP performs scheduling; if the third station is a STA The STA may notify the associated AP of the STA by using the scheduling indication information, so that the associated AP schedules the STA.
  • the manner in which the STA notifies the associated indication information to the associated AP may be reported by a public uplink time-frequency resource, or may be other manners, which is not limited herein.
  • the first station may send the scheduling signaling to the third station by using multiple scheduling signaling sending periods set in a downlink period.
  • the scheduling signaling sent by the first station to the third station may be transmitted through an air interface, where the first station performs the third station as an STA of the BSS to which the first station belongs.
  • Resource Scheduling may be transmitted through an air interface, where the first station performs the third station as an STA of the BSS to which the first station belongs.
  • the method further includes: the first station establishing a neighbor list, where the neighbor list includes The neighbor site of the first site.
  • the first station may establish a neighbor list, and select the third station based on the neighbor list (the third station is a non-associated neighbor site of the first station).
  • the first station successfully reserves the time-frequency resource, and allocates the time-frequency resource that is not used when the first station allocates the time-frequency resource to the associated station of the first station.
  • the third station is configured to enable the third station to perform data transmission on the allocated time-frequency resource, where the third station is a non-associated neighbor station of the first station, and thus the third station The station can share the time-frequency resources reserved by the first station with the first station, thereby improving the transmission efficiency of the system.
  • FIG. 8 is a schematic flowchart of Embodiment 4 of a data transmission processing method according to the present invention. As shown in FIG. 8, the method in this embodiment may include:
  • Step 801 The third station acquires a time-frequency resource allocated by the first station to the third station, where the allocated time-frequency resource is at least a part of a time-frequency resource of the time-frequency resource reserved by the first station.
  • the third site is a non-associated neighbor site of the first site.
  • Step 802 The third station performs data transmission on the allocated time-frequency resource.
  • the first site may be an AP
  • the third site may be a non-associated neighbor AP of the first site, or may be a non-associated STA of the first site, where the third The station may acquire the time and frequency reserved by the first station allocated by the first station for the third station. At least a portion of the time-frequency resources in the source, such that the third station can perform data transmission on the allocated time-frequency resources.
  • the allocated time-frequency resource may be a time-frequency resource occupied by data transmission by the first station and the second station, where the second site is an associated site of the first site;
  • the third site is not the neighboring site of the second site, and may be the remaining time-frequency resource, where the remaining time-frequency resource is the first site that is the associated site of the first site.
  • the third station acquires the first station to allocate the third station.
  • the time-frequency resource includes: the third station receiving the scheduling signaling sent by the first station, where the scheduling signaling includes indicating that the third station can be at the first station to the The information that the second station performs data transmission on the time-frequency resource occupied by the data transmission; or
  • the third station receives the scheduling signaling sent by the first station, where the scheduling signaling includes an association station that indicates that the third station can receive the second station to send at the first station.
  • the data transmission by the first station and the second station includes two implementation manners, where the first implementation manner is that the first station performs downlink transmission, and the second implementation manner is The second site is sent upstream.
  • a scenario in which two APs are mutually neighboring sites and a scenario in which two APs are not mutually neighboring sites are included that is, two BSSs have overlapping regions, but any one of the two APs is not in another AP.
  • the first site may correspond to the first AP
  • the third site may correspond to the unassociated neighbor AP of the first AP in the scenario where the two APs are mutually neighboring sites;
  • the third site may correspond to the unassociated STA of the first AP.
  • the third station may obtain the first station to allocate the third station by receiving the scheduling signaling sent by the first station.
  • a frequency resource where the scheduling signaling includes information indicating that the third station can perform data transmission on a time-frequency resource occupied by the first station to perform data transmission to the second station.
  • the process of the third site specifically acquiring the allocated time-frequency resource corresponds to the process shown in FIG. 3 in the foregoing embodiment 2, and details are not described herein again.
  • the third station may obtain the first station to allocate the third station by receiving the scheduling signaling sent by the first station.
  • the scheduling signaling includes an association station that indicates that the third station can perform data transmission on a time-frequency resource occupied by the first station receiving data sent by the second station (ie, The third station may receive information of data sent by the associated station, where the associated site of the third site is not a neighbor site of the first site.
  • the associated sites of the third site may correspond to the associated STAs of the unassociated neighboring APs.
  • the associated site of the third site may correspond to the associated AP of the non-associated STA.
  • the third station may directly perform data communication with an associated site of the third site.
  • the process of the third site specifically acquiring the allocated time-frequency resource corresponds to the process shown in FIG. 4 in the foregoing embodiment 2, and details are not described herein again.
  • the third station acquiring the time-frequency resource allocated by the first station to the third station includes: receiving, by the third station The scheduling signaling sent by the first station, where the scheduling signaling includes information indicating that the third station can perform data transmission in the remaining time-frequency resources.
  • the third site is a non-associated neighboring site of the first site, such as a neighboring AP or a neighboring STA.
  • the third station may perform data transmission on the allocated time-frequency resource. If the third station is an AP, the AP may directly directly address the allocated time-frequency resource.
  • the associated STA of the AP performs scheduling; if the third station is a STA, the STA may notify the associated AP of the STA by using the scheduling indication information, so that the associated AP performs scheduling on the STA.
  • the manner in which the STA notifies the associated indication information to the associated AP may be reported by a public uplink time-frequency resource, or may be other manners, which is not limited herein.
  • the method further includes: the third station notifying, by using the indication information in the scheduling signaling, the associated site of the third site, to enable the The associated station performs scheduling according to the indication information; the third station receives a schedule of the associated site of the third site.
  • the third station is configured to send multiple scheduling signaling periods in the downlink period. Receiving the scheduling of the associated site of the third site.
  • the receiving, by the third station, the scheduling signaling sent by the first station includes: sending, by the third station, the first station by using a plurality of scheduling signaling sending periods set in a downlink period Scheduling signaling.
  • the third station may further receive scheduling signaling that is sent by the first station by using an air interface, where the first station considers the third station to be the STA of the BSS to which the first station belongs. Perform resource scheduling.
  • the third station acquires at least a part of the time-frequency resources of the time-frequency resources reserved by the first station allocated by the first station to the third station, so as to perform on the allocated time-frequency resources.
  • FIG. 9 is a schematic structural diagram of Embodiment 1 of a station according to the present invention.
  • the site in the embodiment of the present invention may be the first site.
  • the site 90 provided in this embodiment includes: a reservation module 901 and an allocation module 902.
  • the reservation module 901 is configured to successfully reserve time-frequency resources.
  • the allocating module 902 is configured to allocate at least a part of the time-frequency resources of the time-frequency resource to the third station, so that the third station performs data transmission on the allocated time-frequency resource, where the third station A non-associated neighbor site for the first site.
  • the allocating module 902 includes:
  • a first allocation unit configured to allocate time-frequency resources occupied by data transmission with the second station to the third station, where the second station is an associated station of the first station;
  • the site is not a neighbor site of the second site; or,
  • a second allocation unit configured to allocate the remaining time-frequency resources to the third station, where the remaining time-frequency resources are used by the first station to allocate the time-frequency to an associated station of the first station Time-frequency resources that are not used when resources are used.
  • the first allocating unit is specifically configured to: send scheduling signaling to the third station, where the scheduling signaling includes indicating that the third station may be in the first station
  • the second station performs information transmission on the time-frequency resource occupied by the data transmission;
  • the associated site of the third site may receive information about data transmission on the time-frequency resource occupied by the data sent by the second site, where the associated site of the third site is not the first site. Neighboring site.
  • the second allocating unit is specifically configured to: send scheduling signaling to the third station, where the scheduling signaling includes indicating that the third station may be in the remaining time-frequency resource Information for data transmission.
  • the allocating module 902 is specifically configured to: send the scheduling signaling to the third station by using multiple scheduling signaling periods set in a downlink period.
  • the site further includes:
  • a setup module configured to establish a neighbor list, where the neighbor list includes a neighbor site of the first site.
  • the site further includes:
  • an obtaining module configured to acquire a neighbor list of the second site, where the neighbor list includes a neighbor site of the second site.
  • the site of the present embodiment can be used in the technical solutions of the data transmission processing method from Embodiment 1 to Embodiment 3.
  • the implementation principle and the technical effects are similar, and details are not described herein again.
  • FIG. 10 is a schematic structural diagram of Embodiment 2 of a station according to the present invention.
  • the site 100 in the embodiment of the present invention may be the first site.
  • the site 100 provided in this embodiment includes a processor 1001 and a memory 1002.
  • Site 100 can also include a transmitter 1003 and a receiver 1004.
  • the transmitter 1003 and the receiver 1004 can be connected to the processor 1001.
  • the transmitter 1003 is configured to transmit data or information
  • the receiver 1004 is configured to receive data or information
  • the memory 1002 is configured to store execution instructions.
  • the processor 1001 communicates with the memory 1002, and the processor 1001 invokes The execution instructions in the memory 1002 are used to perform the operations in the first to third embodiments of the data transmission processing method described above.
  • the site of the embodiment may be used to perform the technical solution of the data transmission processing method performed by the first site in the foregoing embodiment of the present invention.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • FIG. 11 is a schematic structural diagram of Embodiment 3 of a station according to the present invention.
  • the site in the embodiment of the present invention may be a third site.
  • the site 110 provided in this embodiment includes: an obtaining module 1101 and a transmitting module 1102.
  • the obtaining module 1101 is configured to acquire a time-frequency resource allocated by the first station to the third station, where the allocated time-frequency resource is at least a part of a time-frequency resource of the time-frequency resource reserved by the first station.
  • the third site is a non-associated neighbor site of the first site;
  • the transmission module 1102 is configured to perform data transmission on the allocated time-frequency resource.
  • the allocated time-frequency resource is at least a part of the time-frequency resource of the time-frequency resource reserved by the first station, and includes:
  • the allocated time-frequency resource is a time-frequency resource occupied by the first station and the second station for data transmission, where the second site is an associated site of the first site; a neighbor site of the second site; or,
  • the allocated time-frequency resource is the remaining time-frequency resource, where the remaining time-frequency resource is a time-frequency that is not used when the first station allocates the time-frequency resource to the associated site of the first site. Resources.
  • the acquiring module 1101 is specifically configured to: receive the first site The scheduling signaling is sent, where the scheduling signaling includes information indicating that the third station can perform data transmission on a time-frequency resource occupied by the first station to perform data transmission to the second station; Or,
  • the scheduling signaling includes an indication that the associated site of the third station can be used by the first station to receive data sent by the second station.
  • the information about the data transmission is performed on the frequency resource, where the associated site of the third site is not a neighbor site of the first site.
  • the acquiring module 1101 is specifically configured to: receive scheduling signaling sent by the first station, where the scheduling signaling There is included information indicating that the third station can perform data transmission within the remaining time-frequency resources.
  • the acquiring module 1101 is specifically configured to: receive scheduling signaling sent by the first station by using multiple scheduling signaling sending periods set in a downlink time period.
  • the third site further includes: a notification module, configured to notify the associated site of the third site by using the indication information in the scheduling signaling;
  • a receiving module configured to receive a schedule of an associated site of the third site.
  • the receiving module is specifically configured to: receive, by using a plurality of scheduling signaling sending periods set in a downlink period, a scheduling of an associated site of the third station.
  • the site of the embodiment can be used in the technical solution of the fourth embodiment of the data transmission processing method, and the implementation principle and the technical effect are similar, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of Embodiment 4 of a station according to the present invention.
  • the site 120 in the embodiment of the present invention may be a third site.
  • the site 120 provided in this embodiment includes a processor 1201 and a memory 1202.
  • Site 120 can also include a transmitter 1203 and a receiver 1204.
  • the transmitter 1203 and the receiver 1204 can be connected to the processor 1201.
  • the transmitter 1203 is configured to send data or information
  • the receiver 1204 is configured to receive data or information
  • the memory 1202 is configured to store execution instructions.
  • the processor 1201 communicates with the memory 1202, and the processor 1201 invokes
  • the execution instruction in the memory 1202 is configured to perform the operations in the fourth embodiment of the data transmission processing method.
  • the site of this embodiment may be used to perform the technical solution of the data transmission processing method performed by the third site in the foregoing embodiment of the present invention.
  • the implementation principle and technical effects are similar, and details are not described herein again.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

一种数据传输处理方法及装置。该方法包括:第一站点成功预留时频资源;所述第一站点将所述时频资源的至少一部分时频资源分配给第三站点,以使所述第三站点在所述分配的时频资源上进行数据传输,其中,所述第三站点为所述第一站点的非关联的邻居站点。该方法和装置实现了所述第三站点可以与所述第一站点共享所述第一站点预留的时频资源,因此,提高了系统的传输效率。

Description

数据传输处理方法及装置
技术领域
本发明实施例涉及通信技术, 尤其涉及一种数据传输处理方法及装置。 背景技术
无线局域网( Wireless Local Area Networks, 简称 WLAN )系统中采用载 波侦听和信道预留机制, 当信道的某段时间被一个站点预留后, 其它站点在 该时间内将不允许进行数据的发送。 现有技术中, 当接入点 (Access Point, 简称 AP )成功预留时频资源时, 只有所述接入点可以享用所述时频资源, 而 所述 AP的非关联的邻居站点则在所述时频资源内不进行数据的发送。 因此, 现有技术中, 数据传输存在效率不高的问题。 发明内容
本发明实施例提供一种数据传输处理方法及装置, 用以提高系统的传输 效率。
第一方面, 本发明实施例提供一种数据传输处理方法, 包括:
第一站点成功预留时频资源;
所述第一站点将所述时频资源的至少一部分时频资源分配给第三站点, 以使所述第三站点在所述分配的时频资源上进行数据传输, 其中, 所述第三 站点为所述第一站点的非关联的邻居站点。
结合第一方面, 在第一方面的第一种可能的实现方式中, 所述第一站点 将所述时频资源的至少一部分时频资源分配给第三站点, 包括:
所述第一站点将与第二站点进行数据传输所占用的时频资源分配给所述 第三站点, 其中, 所述第二站点是所述第一站点的关联站点; 所述第三站点 不是所述第二站点的邻居站点; 或者,
所述第一站点将剩余的时频资源分配给所述第三站点, 其中, 所述剩余 的时频资源为所述第一站点为所述第一站点的关联站点分配所述时频资源时 没有使用的时频资源。 结合第一方面的第一种可能的实现方式, 在第一方面的第二种可能的实 现方式中, 所述第一站点将与第二站点进行数据传输所占用的时频资源分配 给所述第三站点, 包括:
所述第一站点向所述第三站点发送调度信令, 其中, 所述调度信令中包 含指示所述第三站点可以在所述第一站点向所述第二站点进行数据发送所占 用的时频资源上进行数据发送的信息; 或者,
所述第一站点向所述第三站点发送调度信令, 其中, 所述调度信令中包 含指示所述第三站点的关联站点可以在所述第一站点接收所述第二站点发送 的数据所占用的时频资源上进行数据发送的信息, 其中, 所述第三站点的关 联站点不是所述第一站点的邻居站点。
结合第一方面的第一种可能的实现方式, 在第一方面的第三种可能的实 现方式中, 所述第一站点将剩余的时频资源分配给所述第三站点, 包括: 所述第一站点向所述第三站点发送调度信令, 其中, 所述调度信令中包 含指示所述第三站点可以在所述剩余的时频资源内进行数据传输的信息。
结合第一方面的第二种或第三种可能的实现方式, 在第一方面的第四种 可能的实现方式中, 所述第一站点向所述第三站点发送调度信令, 包括: 所述第一站点通过在下行时段中设置的多个调度信令发送时段向所述第 三站点发送所述调度信令。
结合第一方面、 第一方面的第一种至第四种任一种可能的实现方式, 在 第一方面的第五种可能的实现方式中, 所述第一站点将所述时频资源的至少 一部分时频资源分配给所述第三站点之前, 还包括:
所述第一站点建立邻居列表, 其中, 所述邻居列表中包含所述第一站点 的邻居站点。
结合第一方面的第二种可能的实现方式, 在第一方面的第六种可能的实 现方式中, 所述第一站点将与第二站点进行数据传输所占用的时频资源分配 给所述第三站点之前, 还包括:
所述第一站点获取所述第二站点的邻居列表, 其中, 所述邻居列表中包 含所述第二站点的邻居站点。
第二方面, 本发明实施例提供一种数据传输处理方法, 包括:
第三站点获取第一站点为所述第三站点分配的时频资源, 其中, 所述分 配的时频资源为所述第一站点预留的时频资源的至少一部分时频资源; 所述 第三站点为所述第一站点的非关联的邻居站点;
所述第三站点在所述分配的时频资源上进行数据传输。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述分配的时 频资源为所述第一站点预留的时频资源的至少一部分时频资源, 包括:
所述分配的时频资源为所述第一站点与第二站点进行数据传输所占用的 时频资源, 其中, 所述第二站点是所述第一站点的关联站点; 所述第三站点 不是所述第二站点的邻居站点; 或者,
所述分配的时频资源为剩余的时频资源, 其中, 所述剩余的时频资源为 所述第一站点为所述第一站点的关联站点分配所述时频资源时没有使用的时 频资源。
结合第二方面的第一种可能的实现方式, 在第二方面的第二种可能的实 现方式中, 所述第三站点获取第一站点为所述第三站点分配的时频资源, 其 中, 所述分配的时频资源为所述第一站点与所述第二站点进行数据传输所占 用的时频资源, 包括:
所述第三站点接收所述第一站点发送的调度信令, 其中, 所述调度信令 中包含指示所述第三站点可以在所述第一站点向所述第二站点进行数据发送 所占用的时频资源上进行数据发送的信息; 或者,
所述第三站点接收所述第一站点发送的调度信令, 其中, 所述调度信令 中包含指示所述第三站点的关联站点可以在所述第一站点接收所述第二站点 发送的数据所占用的时频资源上进行数据发送的信息, 其中, 所述第三站点 的关联站点不是所述第一站点的邻居站点。
结合第二方面的第一种可能的实现方式, 在第二方面的第三种可能的实 现方式中, 所述第三站点获取第一站点为所述第三站点分配的时频资源, 其 中, 所述分配的时频资源为所述剩余的时频资源, 包括:
所述第三站点接收所述第一站点发送的调度信令, 其中, 所述调度信令 中包含指示所述第三站点可以在所述剩余的时频资源内进行数据传输的信 息。
结合第二方面的第二种或第三种可能的实现方式, 在第二方面的第四种 可能的实现方式中, 所述第三站点接收所述第一站点发送的调度信令, 包括: 所述第三站点接收所述第一站点通过在下行时段中设置的多个调度信令 发送时段发送的调度信令。
结合第二方面的第二种至第四种任一种可能的实现方式, 在第二方面的 第五种可能的实现方式中,若所述第三站点为两个接入点 AP不互为邻居站点 场景下所述第一站点的邻居站点,其中,所述第一站点为所述两个 AP中任意一个, 所述第三站点接收所述第一站点发送的调度信令之后, 还包括:
所述第三站点将所述调度信令中的指示信息通知所述第三站点的关联站 点;
所述第三站点接收所述第三站点的关联站点的调度。
结合第二方面的第五种可能的实现方式, 在第二方面的第六种可能的实 现方式中, 所述第三站点接收所述第三站点的关联站点的调度, 包括:
所述第三站点在下行时段中设置的多个调度信令发送时段接收所述第三 站点的关联站点的调度。
第三方面, 本发明实施例提供一种站点, 所述站点为第一站点, 所述站 点, 包括:
预留模块, 用于成功预留时频资源;
分配模块,用于将所述时频资源的至少一部分时频资源分配给第三站点, 以使所述第三站点在所述分配的时频资源上进行数据传输, 其中, 所述第三 站点为所述第一站点的非关联的邻居站点。
结合第三方面, 在第三方面的第一种可能的实现方式中, 所述分配模块, 包括:
第一分配单元, 用于将与第二站点进行数据传输所占用的时频资源分配 给所述第三站点, 其中, 所述第二站点是所述第一站点的关联站点; 所述第 三站点不是所述第二站点的邻居站点; 或者,
第二分配单元, 用于将剩余的时频资源分配给所述第三站点, 其中, 所 述剩余的时频资源为所述第一站点为所述第一站点的关联站点分配所述时频 资源时没有使用的时频资源。
结合第三方面的第一种可能的实现方式, 在第三方面的第二种可能的实 现方式中, 所述第一分配单元具体用于:
向所述第三站点发送调度信令, 其中, 所述调度信令中包含指示所述第 三站点可以在所述第一站点向所述第二站点进行数据发送所占用的时频资源 上进行数据发送的信息; 或者,
向所述第三站点发送调度信令, 其中, 所述调度信令中包含指示所述第 三站点的关联站点可以在所述第一站点接收所述第二站点发送的数据所占用 的时频资源上进行数据发送的信息, 其中, 所述第三站点的关联站点不是所 述第一站点的邻居站点。
结合第三方面的第一种可能的实现方式, 在第三方面的第三种可能的实 现方式中, 所述第二分配单元具体用于: 向所述第三站点发送调度信令, 其 中, 所述调度信令中包含指示所述第三站点可以在所述剩余的时频资源内进 行数据传输的信息。
结合第三方面的第二种或第三种可能的实现方式, 在第三方面的第四种 可能的实现方式中, 所述分配模块具体用于: 通过在下行时段中设置的多个 调度信令发送时段向所述第三站点发送所述调度信令。
结合第三方面、 第三方面的第一种至第四种任一种可能的实现方式, 在 第三方面的第五种可能的实现方式中, 所述站点, 还包括: 建立模块, 用于 建立邻居列表, 其中, 所述邻居列表中包含所述第一站点的邻居站点。
结合第三方面的第二种可能的实现方式, 在第三方面的第六种可能的实 现方式中, 所述站点, 还包括: 获取模块, 用于获取所述第二站点的邻居列 表, 其中, 所述邻居列表中包含所述第二站点的邻居站点。
第四方面, 本发明实施例提供一种站点, 所述站点为第三站点, 所述站 点, 包括:
获取模块, 用于获取第一站点为所述第三站点分配的时频资源, 其中, 所述分配的时频资源为所述第一站点预留的时频资源的至少一部分时频资 源; 所述第三站点为所述第一站点的非关联的邻居站点;
传输模块, 用于在所述分配的时频资源上进行数据传输。
结合第四方面, 在第四方面的第一种可能的实现方式中, 所述分配的时 频资源为所述第一站点预留的时频资源的至少一部分时频资源, 包括:
所述分配的时频资源为所述第一站点与第二站点进行数据传输所占用的 时频资源, 其中, 所述第二站点是所述第一站点的关联站点; 所述第三站点 不是所述第二站点的邻居站点; 或者, 所述分配的时频资源为剩余的时频资源, 其中, 所述剩余的时频资源为 所述第一站点为所述第一站点的关联站点分配所述时频资源时没有使用的时 频资源。
结合第四方面的第一种可能的实现方式, 在第四方面的第二种可能的实 现方式中, 当所述分配的时频资源为所述第一站点与所述第二站点进行数据 传输所占用的时频资源时, 所述获取模块具体用于:
接收所述第一站点发送的调度信令, 其中, 所述调度信令中包含指示所 述第三站点可以在所述第一站点向所述第二站点进行数据发送所占用的时频 资源上进行数据发送的信息; 或者,
接收所述第一站点发送的调度信令, 其中, 所述调度信令中包含指示所 述第三站点的关联站点可以在所述第一站点接收所述第二站点发送的数据所 占用的时频资源上进行数据发送的信息, 其中, 所述第三站点的关联站点不 是所述第一站点的邻居站点。
结合第四方面的第一种可能的实现方式, 在第四方面的第三种可能的实 现方式中, 当所述分配的时频资源为所述剩余的时频资源时, 所述获取模块 具体用于: 接收所述第一站点发送的调度信令, 其中, 所述调度信令中包含 指示所述第三站点可以在所述剩余的时频资源内进行数据传输的信息。
结合第四方面的第二种或第三种可能的实现方式, 在第四方面的第四种 可能的实现方式中, 所述获取模块具体用于: 接收所述第一站点通过在下行 时段中设置的多个调度信令发送时段发送的调度信令。
结合第四方面的第二种至第四种任一种可能的实现方式, 在第四方面的 第五种可能的实现方式中,若所述第三站点为两个接入点 AP不互为邻居站点 场景下所述第一站点的邻居站点,其中,所述第一站点为所述两个 AP中任意一个, 所述第三站点, 还包括:
通知模块, 用于将所述调度信令中的指示信息通知所述第三站点的关联 站点;
接收模块, 用于接收所述第三站点的关联站点的调度。
结合第四方面的第五种可能的实现方式, 在第四方面的第六种可能的实 现方式中, 所述接收模块具体用于: 在下行时段中设置的多个调度信令发送 时段接收所述第三站点的关联站点的调度。 本发明中, 所述第一站点成功预留时频资源, 并将所述时频资源的至少 一部分时频资源分配给第三站点, 以使所述第三站点在所述分配的时频资源 上进行数据传输, 其中, 所述第三站点为所述第一站点的非关联的邻居站点, 从而所述第三站点可以与所述第一站点共享所述第一站点预留的时频资源, 因此, 提高了系统的传输效率。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作一简单地介绍, 显而易见地, 下 面描述中的附图是本发明的一些实施例, 对于本领域普通技术人员来讲, 在 不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明数据传输处理方法实施例一的流程示意图;
图 2为本发明数据传输处理方法实施例二的流程示意图;
图 3为本发明站点通信示意图一;
图 4为本发明站点通信示意图二;
图 5为调度信道的设置示意图一;
图 6为调度信道的设置示意图二;
图 7为本发明数据传输处理方法实施例三的流程示意图;
图 8为本发明数据传输处理方法实施例四的流程示意图;
图 9为本发明站点实施例一的结构示意图;
图 10为本发明站点实施例二的结构示意图;
图 11为本发明站点实施例三的结构示意图;
图 12为本发明站点实施例四的结构示意图。 具体实施方式 为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本发 明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于 本发明中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本发明保护的范围。 图 1为本发明数据传输处理方法实施例一的流程示意图, 如图 1所示, 本实施例的方法可以包括:
歩骤 101、 第一站点成功预留时频资源。
歩骤 102、 所述第一站点将所述时频资源的至少一部分时频资源分配给 第三站点, 以使所述第三站点在所述分配的时频资源上进行数据传输, 其中, 所述第三站点为所述第一站点的非关联的邻居站点。
本发明实施例中所提出的方案是基于调度机制下进行主链路资源复用 的, 其中, 所述调度机制指基本服务集(Basic service set, 简称 BSS ) 中所有 的上下行资源都由接入点 (Access point, 简称 AP )调度, 站点 (Station, 简 称 STA) 在被调度到的时频资源内进行数据的发送和接收。
本发明实施例中, 第一站点通过竞争信道成功预留一时频资源, 所述第 一站点可以为 AP。其中, 竞争信道和预留时频资源的具体过程不是本专利所 关注的, 可以复用现有标准中的机制, 也可以采用别的机制。 例如: 第一站 点首先侦听信道, 当信道空闲达到分布式协调帧间隔 (Distributed coordination function interframe space, 简称 DIFS)之后, 产生一个退避随机数, 如果信道 空闲直到退避随机数倒计时到 0, 则第一站点发送允许发送到自己 (Clear to Send, 简称 CTS-to-self) 帧预留信道, CTS-to-self 帧中含有预留信道时长的 持续时长 (Duration) 字段, 当其它站点接收到 CTS-to-self 帧之后, 将在该 Duration字段所表示的时间内, 在该信道上不进行主动发送。
现有的无线局域接入网 (Wireless local access network, 简称 WLAN) 标 准, 成功预留时频资源 (即成功竞争到信道) 的 AP将独享自身预留的时频 资源,即所述 AP可在所述时频资源内调度自身以及调度所述 AP的关联 STA。 相比之下, 在本发明实施例中, 成功竞争到信道的第一站点在所述时频资源 内调度自身以及所述第一站点的关联站点的同时, 所述第一站点还将会把预 留的时频资源的至少一部分时频资源分配给第三站点, 以使所述第三站点在 所述分配的时频资源上进行数据传输, 其中, 所述第三站点为所述第一站点 的非关联的邻居站点。 可选地, 所述至少一部分时频资源可以为第一站点与 第二站点进行数据传输所占用的时频资源 (其中, 所述第二站点是所述第一 站点的关联站点, 所述第三站点不是所述第二站点的邻居站点), 也可以为所 述第一站点为所述第一站点的关联站点分配所预留的时频资源时没有使用的 时频资源(剩余的时频资源)。 其中, 所述第一站点的邻居站点是指能够正确 接收所述第一站点所发送的数据的站点, 既可以是接入点 (AP) 也可以是非 接入点的站点 (STA) , 既包含所述第一站点的关联站点也包含所述第一站点 的非关联站点。 其中受到协议要求以及安全考虑, 接入点只能与所述接入点 的关联站点进行数据通信, 而与所述接入点的非关联站点不能进行数据的通 信, 而仅允许进行特定信令的交互 (如本发明中所述第一站点向所述第三站 点发送调度信令); 非接入点的站点只能与所述站点的关联站点进行数据通 信, 而与所述非接入点的站点的非关联站点不能进行数据的通信, 而仅允许 进行特定信令的交互。
本发明实施例中, 所述第一站点成功预留时频资源, 并将所述时频资源 的至少一部分时频资源分配给第三站点, 以使所述第三站点在所述分配的时 频资源上进行数据传输, 其中, 所述第三站点为所述第一站点的非关联的邻 居站点, 从而所述第三站点可以与所述第一站点共享所述第一站点预留的时 频资源, 因此, 提高了系统的传输效率。
图 2为本发明数据传输处理方法实施例二的流程示意图, 如图 2所示, 本实施例的方法可以包括:
歩骤 201、 第一站点成功预留时频资源。
歩骤 202、 所述第一站点将与第二站点进行数据传输所占用的时频资源 分配给所述第三站点, 其中, 所述第二站点是所述第一站点的关联站点; 所 述第三站点不是所述第二站点的邻居站点。
可选地, 所述第一站点将与第二站点进行数据传输所占用的时频资源分 配给所述第三站点, 包括:
所述第一站点向所述第三站点发送调度信令, 其中, 所述调度信令中包 含指示所述第三站点可以在所述第一站点向所述第二站点进行数据发送所占 用的时频资源上进行数据发送的信息; 或者,
所述第一站点向所述第三站点发送调度信令, 其中, 所述调度信令中包 含指示所述第三站点的关联站点可以在所述第一站点接收所述第二站点发送 的数据所占用的时频资源上进行数据发送的信息, 其中, 所述第三站点的关 联站点不是所述第一站点的邻居站点。
本发明实施例中, 由于所述第二站点是所述第一站点的关联站点, 所述 第三站点为所述第一站点的非关联的邻居站点, 所述第三站点不是所述第二 站点的邻居站点, 即所述第三站点与所述第二站点是互相侦听不到对方的, 因此, 所述第三站点为所述第一站点与所述第二站点链路的暴露站点。
本发明实施例中, 所述第一站点与第二站点进行数据传输包括两种可实 现方式, 其中, 第一种可实现方式为所述第一站点下行发送; 第二种可实现 方式为所述第二站点上行发送。
当所述第一站点将下行发送时(即在下行时段中), 所述第一站点可以通 过向所述第三站点发送调度信令来将所述第一站点与第二站点进行数据传输 所占用的时频资源分配给所述第三站点, 其中, 所述调度信令中包含指示所 述第三站点可以在所述第一站点向所述第二站点进行数据发送所占用的时频 资源上进行数据发送的信息。
本发明实施例中,包括了两个 AP互为邻居站点的场景以及两个 AP不互 为邻居站点的场景 (即两个 BSS有重叠区域, 但是两个 AP中的任一个 AP 不在另一个 AP的覆盖范围内)。 其中, 在两个 AP互为邻居站点的场景下, 所述第一站点可以对应为第一 AP, 所述第三站点可以对应为所述第一 AP的 非关联的邻居 AP; 在两个 AP不互为邻居站点的场景下, 所述第三站点可以 对应为所述第一 AP的非关联 STA。
图 3为本发明站点通信示意图一, 当两个 AP互为邻居站点时, 如图 3 所示, 所述第一 AP对应为 API (第一站点) , 所述邻居 AP对应为 AP2 (第 三站点) , 所述第二站点对应 STA11 , 其中, 所述 STA11在所述 AP2的覆 盖范围外 (即所述第三站点不是所述第二站点的邻居站点) 。 本发明实施例 中, API可以将给所述 STA1进行数据发送所占时频资源分配给所述 AP2作 下行发送, 可选地, 所述 API可以向所述 AP2发送一个调度信令, 该调度信 令中包含指示所述 AP2可以在所述 API 向所述 STA11进行数据发送所占用 的时频资源上进行数据发送的信息, 可选地, 所述 AP2可以在所述 API给分 配的时频资源上向 STA22进行数据发送。进一歩地,为了使 AP2向所述 STA22 发送数据的过程不会影响所述 API向所述 STA11进行数据发送,优选地,所 述 STA11与所述 STA22是互相侦听不到的。 本发明实施例中, 根据上述总 结了资源分配原则一, 如表 1所示, 在下行时段中, 若所述第二站点的位置 在所述第一站点所属 BSS与所述第三站点所属 BSS的重叠区域外时,则所述 第一站点可以将向所述第二站点进行数据发送所占用的时频资源分配给所述 第三站点作下行发送; 若所述第二站点的位置在所述重叠区域内, 则所述第 一站点不可以将向所述第二站点进行数据发送所占用的时频资源分配给第三 站点。 可选地, 所述第一站点向所述第三站点发送的调度信令可以通过空口 传输, 相当于所述第一站点把所述邻居 AP (第三站点)当作所述第一站点所 属 BSS的 STA进行资源调度。但需要强调的是,这里第一站点和第三站点之 间并不直接进行数据的通信。
表 1、 资源分配原则一
Figure imgf000012_0001
当两个 AP不互为邻居站点时, 如图 3所示, 所述第一 AP对应为 API (第一站点) , 所述第一 AP的非关联 STA对应为 STA31 (第三站点), 所述 第二站点对应 STA11 , 其中, 所述 STA11在所述 STA31的覆盖范围外 (即 所述第三站点不是所述第二站点的邻居站点) 。 本发明实施例中, API 可以 将给所述 STA11进行数据发送所占时频资源分配给所述 STA31作上行发送, 可选地,所述 API可以向所述 STA31发送一个调度信令,该调度信令中包含 指示所述 STA31可以在所述 API向所述 STA11进行数据发送所占用的时频 资源上进行数据发送的信息, 进一歩地, 所述 STA31将所述指示信息通知给 所述 AP3 ,从而所述 AP3根据所述 STA31发送过来的可共享时频资源的信息 对所述 STA31进行调度, 从而所述 STA31可以在所述 API给分配的时频资 源上向 AP3进行数据发送。可选地,所述 STA31将所述调度指示信息通知给 所述关联 AP3的方式可以为通过公共的上行时频资源进行上报, 也可以为其 它方式, 本发明实施例在此并不作限定。
当所述第二站点将上行发送时(即在上行时段中), 所述第一站点可以通 过向所述第三站点发送调度信令来将所述第一站点与第二站点进行数据传输 所占用的时频资源分配给所述第三站点, 其中, 所述调度信令中包含指示所 述第三站点的关联站点可以在所述第一站点接收所述第二站点发送的数据所 占用的时频资源上进行数据发送的信息, 其中, 所述第三站点的关联站点不 是所述第一站点的邻居站点。 本发明实施例中, 所述第三站点可以与所述第 三站点的关联站点直接进行数据通信。
本发明实施例中,包括了两个 AP互为邻居站点的场景以及两个 AP不互 为邻居站点的场景 (即两个 BSS有重叠区域, 但是两个 AP中的任一个 AP 不在另一个 AP的覆盖范围内)。 其中, 在两个 AP互为邻居站点的场景下, 所述第一站点可以对应为第一 AP, 所述第三站点可以对应为所述第一 AP的 非关联的邻居 AP, 所述第三站点的关联站点可以对应为所述邻居 AP的关联 STA; 在两个 AP不互为邻居站点的场景下, 所述第三站点可以对应为所述第 一 AP的非关联 STA, 所述第三站点的关联站点可以对应为所述非关联 STA 的关联 AP。
图 4为本发明站点通信示意图二, 当两个 AP互为邻居站点时, 如图 4 所示, 所述第一 AP对应为 API (第一站点) , 所述邻居 AP对应为 AP2 (第 三站点 ),所述邻居 AP的关联 STA对应为 STA22,所述第二站点对应 STA11, 其中,所述 STA11在所述 AP2的覆盖范围外(即所述第三站点不是所述第二 站点的邻居站点) ·, 所述 STA22不在所述 API的覆盖范围内(即所述第三站 点的关联站点不是所述第一站点的邻居站点) 。 本发明实施例中, API 可以 将所述 STA11给所述 API进行数据发送所占时频资源分配给 STA22作上行 发送 (即所述 AP2接收所述 STA22发送的数据) , 可选地, 所述 API可以 向所述 AP2发送一个调度信令,该调度信令中包含指示所述 AP2的关联站点 可以在所述 API接收所述 STA11发送的数据所占用的时频资源上进行数据发 送的信息,其中,所述 AP2的关联站点不是所述 API的邻居站点。进一歩地, 所述 AP2可以调度 STA22在所述 API给分配的时频资源上进行数据发送。 其中, 由于所述 STA22不在所述 API的覆盖范围内, 因此, 所述 STA22向 所述 AP2发送数据的过程不会影响所述 API接收所述 STA11发送的数据。 本发明实施例中, 根据上述总结了资源分配原则二, 如表 2所示, 在上行时 段中, 若所述第二站点的位置在所述第一站点所属 BSS与所述第三站点所属 BSS 的重叠区域外时, 则所述第一站点可以将接收所述第二站点发送的数据 所占用的时频资源分配给所述第三站点的关联站点作上行发送, 且所述第三 站点的关联站点不处于所述重叠区域内; 若所述第二站点的位置在所述重叠 区域内, 则所述第一站点不可以将接收所述第二站点发送的数据所占用的时 频资源分配给第三站点的关联站点。 可选地, 所述第一站点向所述第三站点 发送的调度信令可以通过空口传输, 相当于所述第一站点把所述邻居 AP (第 三站点)当作所述第一站点所属 BSS的 STA进行资源调度。但需要强调的是, 这里第一站点和第三站点之间并不直接进行数据的通信。
表 2、 资源分配原则二
Figure imgf000014_0001
当两个 AP不互为邻居站点时, 如图 4所示, 所述第一 AP对应为 API
(第一站点) , 所述第一 AP的非关联 STA对应为 STA31 (第三站点), 所述 第三站点的关联站点对应为 AP3 , 所述第二站点对应 STA11 , 其中, 所述 STA11在所述 STA31的覆盖范围外(即所述第三站点不是所述第二站点的邻 居站点) ·, 所述 AP3不在所述 API的覆盖范围内 (即所述第三站点的关联站 点不是所述第一站点的邻居站点)。本发明实施例中, API可以将所述 STA11 给所述 API进行数据发送所占时频资源分配给所述 AP3作下行发送(即所述 STA31可以接收所述 AP3发送的数据),可选地,所述 API可以向所述 STA31 发送一个调度信令,该调度信令中包含指示所述 STA31的关联站点 AP3可以 在所述 API接收所述 STA11发送的数据所占用的时频资源上进行数据发送 (即所述 STA31可以接收所述 AP3发送的数据)的信息, 其中, 所述第三站 点的关联站点不是所述 API的邻居站点。进一歩地,所述 STA31将所述调度 指示信息通知给所述 AP3 ,从而所述 AP3根据所述 STA31发送过来的可共享 时频资源的信息对所述 AP3的关联 STA进行调度, 如 STA31。 可选地, 所 述 STA31将所述指示信息通知给所述关联 AP3的方式可以为通过公共的上行 时频资源进行上报, 也可以为其它方式, 本发明实施例在此并不作限定。
图 5为调度信道的设置示意图一, 如图 5所示, 现有的调度机制中一般 在下行时段的开始部分进行下行以及上行时段的调度, 但是对于本发明实施 例中两个 AP互为邻居站点的场景中, 当第一站点按照现有调度机制中调度 信道的设置方式将可共享资源分配给第三站点之后, 调度时间已经结束, 导 致所述第三站点可能没有机会把获得的共享资源分配给所述第三站点所属 BSS的 STA。 因此, 根据本发明上述实施例的记载可知本发明实施例中需要 有多个调度信令发送机会, 图 6为调度信道的设置示意图二, 如图 6所示, 本发明实施例中在下行时段设置过个调度信令发送时段 (对应图 6中的调度 信道) , 若 AP在某一个调度信令时段进行了调度, 则后续的调度时段可以 用于数据的传输; 若 AP错过了某一个调度信令时段, 也可以在下一个调度 信令时段进行调度。
可选地, 如图 6所示, 所述第一站点可以通过在下行时段中设置的多个 调度信令发送时段向所述第三站点发送所述调度信令。
可选地, 本发明实施例中, AP还可以在任何下行时间段内进行调度, 但 是该种调度方式要求所有的站点在下行时间段内保持监听状态直到收到调度 信令为止。
可选地, 所述第一站点将所述时频资源的至少一部分时频资源分配给所 述第三站点之前, 还包括: 所述第一站点建立邻居列表, 其中, 所述邻居列 表中包含所述第一站点的邻居站点。
本发明实施例中, 所述第一站点可以建立邻居列表, 并基于所述邻居列 表来选取所述第三站点 (所述第三站点为所述第一站点的非关联的邻居站 点),其中,所述邻居列表中包含所述第一站点可以直接监听到的 AP及 STA (即所述邻居列表中包含所述第一站点的邻居站点) 。
可选地, 所述第一站点将与第二站点进行数据传输所占用的时频资源分 配给所述第三站点之前, 还包括: 所述第一站点获取所述第二站点的邻居列 表, 其中, 所述邻居列表中包含所述第二站点的邻居站点。
本发明实施例中, 所述第一站点需获取第二站点建立好的邻居列表, 所 述邻居列表中包含所述第二站点可以直接监听到的 AP及 STA (所述邻居列 表中包含所述第二站点的邻居站点) , 为了避免所述第三站点在分配的时频 资源上进行数据传输影响所述第一站点与所述第二站点的数据传输, 所述第 —站点可以基于所述第一站点的邻居列表以及所述第二站点的邻居列表来获 知所述第二站点与所述第三站点的位置, 从而所述第一站点选取合适的第三 站点 (所述第三站点不是所述第二站点的邻居站点) , 并将所述第一站点与 第二站点进行数据传输所占用的时频资源分配给所述第三站点。
可选地, 所述第一站点获取第二站点的邻居列表的方式可以包括两种可 实现的方式: 被动监听及主动请求。 其中, 在被动监听方式中, 所述第一站 点可以通过被动监听所述第二站点发出的帧, 如信标帧 (Beacon) 来获取所 述第二站点的邻居列表, 对应地, 所述第二站点可以在所述第二站点的邻居 列表有变化时或者周期性地主动向所述第一站点发送所述第二站点的邻居列 表; 在主动请求方式中, 所述第一站点可以通过主动发送请求帧, 然后接收 所述第二站点的响应帧来获取所述第二站点的邻居列表信息, 对应地, 所述 第二站点可以根据所述第一发送站点的询问来发送所述第二站点的邻居列 表。
本发明实施例中, 所述第一站点成功预留时频资源, 并将所述第一站点 与第二站点进行数据传输所占用的时频资源分配给第三站点, 以使所述第三 站点在所述分配的时频资源上进行数据传输, 其中, 所述第三站点为所述第 一站点的非关联的邻居站点, 从而所述第三站点可以与所述第一站点共享所 述第一站点预留的时频资源, 因此, 提高了系统的传输效率。
图 7为本发明数据传输处理方法实施例三的流程示意图, 如图 7所示, 本实施例的方法可以包括:
歩骤 701、 第一站点成功预留时频资源。
歩骤 702、 所述第一站点将剩余的时频资源分配给所述第三站点, 其中, 所述剩余的时频资源为所述第一站点为所述第一站点的关联站点分配所述时 频资源时没有使用的时频资源。
可选地, 所述第一站点将剩余的时频资源分配给所述第三站点, 包括: 所述第一站点向所述第三站点发送调度信令, 其中, 所述调度信令中包 含指示所述第三站点可以在所述剩余的时频资源内进行数据传输的信息。
本发明实施例与上述实施例的区别在于, 上述实施例中第一站点将与第 二站点进行数据传输所占用的时频资源分配给第三站点, 而本发明实施例中 所述第一站点将剩余的时频资源分配给第三站点, 所述剩余的时频资源为所 述第一站点为所述第一站点的关联站点分配所述第一站点预留的时频资源时 没有使用的时频资源。
本发明实施例中, 所述第三站点为所述第一站点的非关联的邻居站点, 如邻居 AP或者邻居 STA。 进一歩地, 所述第三站点可以在所述分配的时频 资源上进行数据传输, 若所述第三站点为 AP时, 则所述 AP可以在所述分配 的时频资源上直接对所述 AP的关联 STA进行调度; 若所述第三站点为 STA 时, 则所述 STA可以将所述调度指示信息通知给所述 STA的关联 AP, 以使 所述关联 AP对所述 STA进行调度。可选地, 所述 STA将所述调度指示信息 通知给所述关联 AP 的方式可以为通过公共的上行时频资源进行上报, 也可 以为其它方式, 本发明实施例在此并不作限定。
可选地, 如图 6所示, 所述第一站点可以通过在下行时段中设置的多个 调度信令发送时段向所述第三站点发送所述调度信令。
可选地, 所述第一站点向所述第三站点发送的调度信令可以通过空口传 输,相当于所述第一站点把所述第三站点当作所述第一站点所属 BSS的 STA 进行资源调度。
可选地, 所述第一站点将所述时频资源的至少一部分时频资源分配给所 述第三站点之前, 还包括: 所述第一站点建立邻居列表, 其中, 所述邻居列 表中包含所述第一站点的邻居站点。
本发明实施例中, 所述第一站点可以建立邻居列表, 并基于所述邻居列 表来选取所述第三站点 (所述第三站点为所述第一站点的非关联的邻居站 点) 。
本发明实施例中, 所述第一站点成功预留时频资源, 并将所述第一站点 为所述第一站点的关联站点分配所述时频资源时没有使用的时频资源分配给 所述第三站点, 以使所述第三站点在所述分配的时频资源上进行数据传输, 其中, 所述第三站点为所述第一站点的非关联的邻居站点, 从而所述第三站 点可以与所述第一站点共享所述第一站点预留的时频资源, 因此, 提高了系 统的传输效率。
图 8为本发明数据传输处理方法实施例四的流程示意图, 如图 8所示, 本实施例的方法可以包括:
歩骤 801、 第三站点获取第一站点为所述第三站点分配的时频资源, 其 中, 所述分配的时频资源为所述第一站点预留的时频资源的至少一部分时频 资源; 所述第三站点为所述第一站点的非关联的邻居站点。
歩骤 802、 所述第三站点在所述分配的时频资源上进行数据传输。
本发明实施例中, 所述第一站点可以为 AP, 所述第三站点可以为第一站 点的非关联的邻居 AP, 也可以为所述第一站点的非关联的 STA, 所述第三站 点可以获取所述第一站点为所述第三站点分配的所述第一站点预留的时频资 源中至少一部分时频资源, 从而所述第三站点可以在所述分配的时频资源上 进行数据传输。 可选地, 所述分配的时频资源可以为所述第一站点与第二站 点进行数据传输所占用的时频资源 (其中, 所述第二站点是所述第一站点的 关联站点; 所述第三站点不是所述第二站点的邻居站点), 也可以为剩余的时 频资源, 其中, 所述剩余的时频资源为所述第一站点为所述第一站点的关联 站点分配所述时频资源时没有使用的时频资源。
可选地, 若所述分配的时频资源为所述第一站点与所述第二站点进行数 据传输所占用的时频资源, 所述第三站点获取第一站点为所述第三站点分配 的时频资源, 包括: 所述第三站点接收所述第一站点发送的调度信令, 其中, 所述调度信令中包含指示所述第三站点可以在所述第一站点向所述第二站点 进行数据发送所占用的时频资源上进行数据发送的信息; 或者,
所述第三站点接收所述第一站点发送的调度信令, 其中, 所述调度信令 中包含指示所述第三站点的关联站点可以在所述第一站点接收所述第二站点 发送的数据所占用的时频资源上进行数据发送的信息, 其中, 所述第三站点 的关联站点不是所述第一站点的邻居站点。
本发明实施例中, 所述第一站点与第二站点进行数据传输包括两种可实 现方式, 其中, 第一种可实现方式为所述第一站点下行发送; 第二种可实现 方式为所述第二站点上行发送。
本发明实施例中,包括了两个 AP互为邻居站点的场景以及两个 AP不互 为邻居站点的场景 (即两个 BSS有重叠区域, 但是两个 AP中的任一个 AP 不在另一个 AP的覆盖范围内)。 其中, 在两个 AP互为邻居站点的场景下, 所述第一站点可以对应为第一 AP, 所述第三站点可以对应为所述第一 AP的 非关联的邻居 AP; 在两个 AP不互为邻居站点的场景下, 所述第三站点可以 对应为所述第一 AP的非关联 STA。
当所述第一站点将下行发送时(即在下行时段中), 所述第三站点可以通 过接收所述第一站点发送的调度信令来获取第一站点为所述第三站点分配的 时频资源, 其中, 所述调度信令中包含指示所述第三站点可以在所述第一站 点向所述第二站点进行数据发送所占用的时频资源上进行数据发送的信息。 本发明实施例中, 所述第三站点具体地获取分配的时频资源的过程与上述实 施例二中如图 3所示的过程相对应, 在此不再赘述。 当所述第二站点将上行发送时(即在上行时段中), 所述第三站点可以通 过接收所述第一站点发送的调度信令来获取第一站点为所述第三站点分配的 时频资源, 其中, 所述调度信令中包含指示所述第三站点的关联站点可以在 所述第一站点接收所述第二站点发送的数据所占用的时频资源上进行数据发 送 (即所述第三站点可以接收所述关联站点发送的数据) 的信息, 其中, 所 述第三站点的关联站点不是所述第一站点的邻居站点。 其中, 在两个 AP互 为邻居站点的场景下, 所述第三站点的关联站点可以对应为所述非关联的邻 居 AP的关联 STA; 在两个 AP不互为邻居站点的场景下,所述第三站点的关 联站点可以对应为所述非关联 STA的关联 AP。 本发明实施例中, 所述第三 站点可以与所述第三站点的关联站点直接进行数据通信。 本发明实施例中, 所述第三站点具体地获取分配的时频资源的过程与上述实施例二中如图 4所 示的过程相对应, 在此不再赘述。
可选地, 若所述分配的时频资源为所述剩余的时频资源, 所述第三站点 获取第一站点为所述第三站点分配的时频资源, 包括: 所述第三站点接收所 述第一站点发送的调度信令, 其中, 所述调度信令中包含指示所述第三站点 可以在所述剩余的时频资源内进行数据传输的信息。
本发明实施例中, 所述第三站点为所述第一站点的非关联的邻居站点, 如邻居 AP或者邻居 STA。 进一歩地, 所述第三站点可以在所述分配的时频 资源上进行数据传输, 若所述第三站点为 AP时, 则所述 AP可以在所述分配 的时频资源上直接对所述 AP的关联 STA进行调度; 若所述第三站点为 STA 时, 则所述 STA可以将所述调度指示信息通知给所述 STA的关联 AP, 以使 所述关联 AP对所述 STA进行调度。可选地, 所述 STA将所述调度指示信息 通知给所述关联 AP 的方式可以为通过公共的上行时频资源进行上报, 也可 以为其它方式, 本发明实施例在此并不作限定。
可选地, 若所述第三站点为两个接入点 AP不互为邻居站点场景下所述第 一站点的邻居站点, 其中, 所述第一站点为所述两个 AP中任意一个, 所述第三站 点接收所述第一站点发送的调度信令之后, 还包括: 所述第三站点将所述调 度信令中的指示信息通知所述第三站点的关联站点, 以使所述关联站点根据 所述指示信息进行调度;所述第三站点接收所述第三站点的关联站点的调度。 其中, 可选地, 所述第三站点在下行时段中设置的多个调度信令发送时段接 收所述第三站点的关联站点的调度。
可选地, 所述第三站点接收所述第一站点发送的调度信令, 包括: 所述 第三站点接收所述第一站点通过在下行时段中设置的多个调度信令发送时段 发送的调度信令。
可选地, 所述第三站点还可以接收所述第一站点通过空口传输发送的调 度信令, 相当于所述第一站点把所述第三站点当作所述第一站点所属 BSS的 STA进行资源调度。
本发明实施例中, 第三站点获取第一站点为所述第三站点分配的所述第 一站点预留的时频资源的至少一部分时频资源, 从而在所述分配的时频资源 上进行数据传输, 其中, 所述第三站点为所述第一站点的非关联的邻居站点, 从而所述第三站点可以与所述第一站点共享所述第一站点预留的时频资源, 因此, 提高了系统的传输效率。
图 9为本发明站点实施例一的结构示意图。 本发明实施例中所述站点可 以为第一站点, 如图 9所示, 本实施例提供的站点 90包括: 预留模块 901及 分配模块 902。
其中, 预留模块 901用于成功预留时频资源;
分配模块 902用于将所述时频资源的至少一部分时频资源分配给第三站 点, 以使所述第三站点在所述分配的时频资源上进行数据传输, 其中, 所述 第三站点为所述第一站点的非关联的邻居站点。
可选地, 所述分配模块 902, 包括:
第一分配单元, 用于将与第二站点进行数据传输所占用的时频资源分配 给所述第三站点, 其中, 所述第二站点是所述第一站点的关联站点; 所述第 三站点不是所述第二站点的邻居站点; 或者,
第二分配单元, 用于将剩余的时频资源分配给所述第三站点, 其中, 所 述剩余的时频资源为所述第一站点为所述第一站点的关联站点分配所述时频 资源时没有使用的时频资源。
可选地, 所述第一分配单元具体用于: 向所述第三站点发送调度信令, 其中, 所述调度信令中包含指示所述第三站点可以在所述第一站点向所述第 二站点进行数据发送所占用的时频资源上进行数据发送的信息; 或者,
向所述第三站点发送调度信令, 其中, 所述调度信令中包含指示所述第 三站点的关联站点可以在所述第一站点接收所述第二站点发送的数据所占用 的时频资源上进行数据发送的信息, 其中, 所述第三站点的关联站点不是所 述第一站点的邻居站点。
可选地, 所述第二分配单元具体用于: 向所述第三站点发送调度信令, 其中, 所述调度信令中包含指示所述第三站点可以在所述剩余的时频资源内 进行数据传输的信息。
可选地, 所述分配模块 902具体用于: 通过在下行时段中设置的多个调 度信令发送时段向所述第三站点发送所述调度信令。
可选地, 所述站点还包括:
建立模块, 用于建立邻居列表, 其中, 所述邻居列表中包含所述第一站 点的邻居站点。
可选地, 若所述分配模块 902包含所述第一分配单元时, 所述站点还包 括:
获取模块, 用于获取所述第二站点的邻居列表, 其中, 所述邻居列表中 包含所述第二站点的邻居站点。
本实施例的站点, 可以用于数据传输处理方法实施例一至实施例三的技 术方案, 其实现原理和技术效果类似, 此处不再赘述。
图 10为本发明站点实施例二的结构示意图。本发明实施例中所述站点可 以为第一站点, 如图 10所示, 本实施例提供的站点 100包括处理器 1001和 存储器 1002。 站点 100还可以包括发射器 1003及接收器 1004。 其中, 发射 器 1003及接收器 1004可以和处理器 1001相连。 其中, 发射器 1003用于发 送数据或信息, 接收器 1004用于接收数据或信息, 存储器 1002用于存储执 行指令, 当站点 100运行时, 处理器 1001与存储器 1002之间通信, 处理器 1001 调用存储器 1002中的执行指令, 用于执行上述数据传输处理方法实施 例一至实施例三中的操作。
本实施例的站点, 可以用于执行本发明上述实施例中第一站点所执行的 数据传输处理方法的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
图 11为本发明站点实施例三的结构示意图。本发明实施例中所述站点可 以为第三站点, 如图 11所示, 本实施例提供的站点 110包括: 获取模块 1101 及传输模块 1102。 其中, 获取模块 1101 用于获取第一站点为所述第三站点分配的时频资 源, 其中, 所述分配的时频资源为所述第一站点预留的时频资源的至少一部 分时频资源; 所述第三站点为所述第一站点的非关联的邻居站点;
传输模块 1102用于在所述分配的时频资源上进行数据传输。
可选地, 所述分配的时频资源为所述第一站点预留的时频资源的至少一 部分时频资源, 包括:
所述分配的时频资源为所述第一站点与第二站点进行数据传输所占用的 时频资源, 其中, 所述第二站点是所述第一站点的关联站点; 所述第三站点 不是所述第二站点的邻居站点; 或者,
所述分配的时频资源为剩余的时频资源, 其中, 所述剩余的时频资源为 所述第一站点为所述第一站点的关联站点分配所述时频资源时没有使用的时 频资源。
可选地, 当所述分配的时频资源为所述第一站点与所述第二站点进行数 据传输所占用的时频资源时, 所述获取模块 1101具体用于: 接收所述第一站 点发送的调度信令, 其中, 所述调度信令中包含指示所述第三站点可以在所 述第一站点向所述第二站点进行数据发送所占用的时频资源上进行数据发送 的信息; 或者,
接收所述第一站点发送的调度信令, 其中, 所述调度信令中包含指示所 述第三站点的关联站点可以在所述第一站点接收所述第二站点发送的数据所 占用的时频资源上进行数据发送的信息, 其中, 所述第三站点的关联站点不 是所述第一站点的邻居站点。
可选地, 当所述分配的时频资源为所述剩余的时频资源时, 所述获取模 块 1101具体用于: 接收所述第一站点发送的调度信令, 其中, 所述调度信令 中包含指示所述第三站点可以在所述剩余的时频资源内进行数据传输的信 息。
可选地, 所述获取模块 1101具体用于: 接收所述第一站点通过在下行时 段中设置的多个调度信令发送时段发送的调度信令。
可选地, 若所述第三站点为两个接入点 AP不互为邻居站点场景下所述第 一站点的邻居站点, 其中, 所述第一站点为所述两个 AP中任意一个, 所述第三站 点, 还包括: 通知模块, 用于将所述调度信令中的指示信息通知所述第三站点的关联 站点;
接收模块, 用于接收所述第三站点的关联站点的调度。
可选地, 所述接收模块具体用于: 在下行时段中设置的多个调度信令发 送时段接收所述第三站点的关联站点的调度。
本实施例的站点, 可以用于数据传输处理方法实施例四的技术方案, 其 实现原理和技术效果类似, 此处不再赘述。
图 12为本发明站点实施例四的结构示意图。本发明实施例中所述站点可 以为第三站点, 如图 12所示, 本实施例提供的站点 120包括处理器 1201和 存储器 1202。 站点 120还可以包括发射器 1203及接收器 1204。 其中, 发射 器 1203及接收器 1204可以和处理器 1201相连。 其中, 发射器 1203用于发 送数据或信息, 接收器 1204用于接收数据或信息, 存储器 1202用于存储执 行指令, 当站点 120运行时, 处理器 1201与存储器 1202之间通信, 处理器 1201 调用存储器 1202中的执行指令, 用于执行上述数据传输处理方法实施 例四中的操作。
本实施例的站点, 可以用于执行本发明上述实施例中第三站点所执行的 数据传输处理方法的技术方案, 其实现原理和技术效果类似, 此处不再赘述。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分歩 骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算机可 读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的歩骤; 而 前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码 的介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种数据传输处理方法, 其特征在于, 包括:
第一站点成功预留时频资源;
所述第一站点将所述时频资源的至少一部分时频资源分配给第三站点, 以使所述第三站点在所述分配的时频资源上进行数据传输, 其中, 所述第三 站点为所述第一站点的非关联的邻居站点。
2、 根据权利要求 1所述的方法, 其特征在于, 所述第一站点将所述时频 资源的至少一部分时频资源分配给第三站点, 包括:
所述第一站点将与第二站点进行数据传输所占用的时频资源分配给所述 第三站点, 其中, 所述第二站点是所述第一站点的关联站点; 所述第三站点 不是所述第二站点的邻居站点; 或者,
所述第一站点将剩余的时频资源分配给所述第三站点, 其中, 所述剩余 的时频资源为所述第一站点为所述第一站点的关联站点分配所述时频资源时 没有使用的时频资源。
3、 根据权利要求 2所述的方法, 其特征在于, 所述第一站点将与第二站 点进行数据传输所占用的时频资源分配给所述第三站点, 包括:
所述第一站点向所述第三站点发送调度信令, 其中, 所述调度信令中包 含指示所述第三站点可以在所述第一站点向所述第二站点进行数据发送所占 用的时频资源上进行数据发送的信息; 或者,
所述第一站点向所述第三站点发送调度信令, 其中, 所述调度信令中包 含指示所述第三站点的关联站点可以在所述第一站点接收所述第二站点发送 的数据所占用的时频资源上进行数据发送的信息, 其中, 所述第三站点的关 联站点不是所述第一站点的邻居站点。
4、 根据权利要求 2所述的方法, 其特征在于, 所述第一站点将剩余的时 频资源分配给所述第三站点, 包括:
所述第一站点向所述第三站点发送调度信令, 其中, 所述调度信令中包 含指示所述第三站点可以在所述剩余的时频资源内进行数据传输的信息。
5、 根据权利要求 3或 4所述的方法, 其特征在于, 所述第一站点向所述 第三站点发送调度信令, 包括:
所述第一站点通过在下行时段中设置的多个调度信令发送时段向所述第 三站点发送所述调度信令。
6、 根据权利要求 1〜5中任一项所述的方法, 其特征在于, 所述第一站点 将所述时频资源的至少一部分时频资源分配给所述第三站点之前, 还包括: 所述第一站点建立邻居列表, 其中, 所述邻居列表中包含所述第一站点 的邻居站点。
7、 根据权利要求 3所述的方法, 其特征在于, 所述第一站点将与第二站 点进行数据传输所占用的时频资源分配给所述第三站点之前, 还包括:
所述第一站点获取所述第二站点的邻居列表, 其中, 所述邻居列表中包 含所述第二站点的邻居站点。
8、 一种数据传输处理方法, 其特征在于, 包括:
第三站点获取第一站点为所述第三站点分配的时频资源, 其中, 所述分 配的时频资源为所述第一站点预留的时频资源的至少一部分时频资源; 所述 第三站点为所述第一站点的非关联的邻居站点;
所述第三站点在所述分配的时频资源上进行数据传输。
9、 根据权利要求 8所述的方法, 其特征在于, 所述分配的时频资源为所 述第一站点预留的时频资源的至少一部分时频资源, 包括:
所述分配的时频资源为所述第一站点与第二站点进行数据传输所占用的 时频资源, 其中, 所述第二站点是所述第一站点的关联站点; 所述第三站点 不是所述第二站点的邻居站点; 或者,
所述分配的时频资源为剩余的时频资源, 其中, 所述剩余的时频资源为 所述第一站点为所述第一站点的关联站点分配所述时频资源时没有使用的时 频资源。
10、 根据权利要求 9所述的方法, 其特征在于, 所述第三站点获取第一 站点为所述第三站点分配的时频资源, 其中, 所述分配的时频资源为所述第 —站点与所述第二站点进行数据传输所占用的时频资源, 包括:
所述第三站点接收所述第一站点发送的调度信令, 其中, 所述调度信令 中包含指示所述第三站点可以在所述第一站点向所述第二站点进行数据发送 所占用的时频资源上进行数据发送的信息; 或者,
所述第三站点接收所述第一站点发送的调度信令, 其中, 所述调度信令 中包含指示所述第三站点的关联站点可以在所述第一站点接收所述第二站点 发送的数据所占用的时频资源上进行数据发送的信息, 其中, 所述第三站点 的关联站点不是所述第一站点的邻居站点。
11、 根据权利要求 9所述的方法, 其特征在于, 所述第三站点获取第一 站点为所述第三站点分配的时频资源, 其中, 所述分配的时频资源为所述剩 余的时频资源, 包括:
所述第三站点接收所述第一站点发送的调度信令, 其中, 所述调度信令 中包含指示所述第三站点可以在所述剩余的时频资源内进行数据传输的信 息。
12、 根据权利要求 10或 11所述的方法, 其特征在于, 所述第三站点接 收所述第一站点发送的调度信令, 包括:
所述第三站点接收所述第一站点通过在下行时段中设置的多个调度信令 发送时段发送的调度信令。
13、 根据权利要求 10〜12中任一项所述的方法, 其特征在于, 若所述第 三站点为两个接入点 AP不互为邻居站点场景下所述第一站点的邻居站点,其中, 所述第一站点为所述两个 AP中任意一个,所述第三站点接收所述第一站点发送 的调度信令之后, 还包括:
所述第三站点将所述调度信令中的指示信息通知所述第三站点的关联站 点;
所述第三站点接收所述第三站点的关联站点的调度。
14、 根据权利要求 13所述的方法, 其特征在于, 所述第三站点接收所述 第三站点的关联站点的调度, 包括:
所述第三站点在下行时段中设置的多个调度信令发送时段接收所述第三 站点的关联站点的调度。
15、 一种站点, 其特征在于, 所述站点为第一站点, 所述站点, 包括: 预留模块, 用于成功预留时频资源;
分配模块,用于将所述时频资源的至少一部分时频资源分配给第三站点, 以使所述第三站点在所述分配的时频资源上进行数据传输, 其中, 所述第三 站点为所述第一站点的非关联的邻居站点。
16、 根据权利要求 15所述的站点, 其特征在于, 所述分配模块, 包括: 第一分配单元, 用于将与第二站点进行数据传输所占用的时频资源分配 给所述第三站点, 其中, 所述第二站点是所述第一站点的关联站点; 所述第 三站点不是所述第二站点的邻居站点; 或者,
第二分配单元, 用于将剩余的时频资源分配给所述第三站点, 其中, 所 述剩余的时频资源为所述第一站点为所述第一站点的关联站点分配所述时频 资源时没有使用的时频资源。
17、 根据权利要求 16所述的站点, 其特征在于, 所述第一分配单元具体 用于:
向所述第三站点发送调度信令, 其中, 所述调度信令中包含指示所述第 三站点可以在所述第一站点向所述第二站点进行数据发送所占用的时频资源 上进行数据发送的信息; 或者,
向所述第三站点发送调度信令, 其中, 所述调度信令中包含指示所述第 三站点的关联站点可以在所述第一站点接收所述第二站点发送的数据所占用 的时频资源上进行数据发送的信息, 其中, 所述第三站点的关联站点不是所 述第一站点的邻居站点。
18、 根据权利要求 16所述的站点, 其特征在于, 所述第二分配单元具体 用于: 向所述第三站点发送调度信令, 其中, 所述调度信令中包含指示所述 第三站点可以在所述剩余的时频资源内进行数据传输的信息。
19、 根据权利要求 17或 18所述的站点, 其特征在于, 所述分配模块具 体用于: 通过在下行时段中设置的多个调度信令发送时段向所述第三站点发 送所述调度信令。
20、 根据权利要求 15〜19中任一项所述的站点, 其特征在于, 还包括: 建立模块, 用于建立邻居列表, 其中, 所述邻居列表中包含所述第一站 点的邻居站点。
21、 根据权利要求 17所述的站点, 其特征在于, 还包括:
获取模块, 用于获取所述第二站点的邻居列表, 其中, 所述邻居列表中 包含所述第二站点的邻居站点。
22、 一种站点, 其特征在于, 所述站点为第三站点, 所述站点, 包括: 获取模块, 用于获取第一站点为所述第三站点分配的时频资源, 其中, 所述分配的时频资源为所述第一站点预留的时频资源的至少一部分时频资 源; 所述第三站点为所述第一站点的非关联的邻居站点; 传输模块, 用于在所述分配的时频资源上进行数据传输。
23、 根据权利要求 22所述的站点, 其特征在于, 所述分配的时频资源为 所述第一站点预留的时频资源的至少一部分时频资源, 包括:
所述分配的时频资源为所述第一站点与第二站点进行数据传输所占用的 时频资源, 其中, 所述第二站点是所述第一站点的关联站点; 所述第三站点 不是所述第二站点的邻居站点; 或者,
所述分配的时频资源为剩余的时频资源, 其中, 所述剩余的时频资源为 所述第一站点为所述第一站点的关联站点分配所述时频资源时没有使用的时 频资源。
24、 根据权利要求 23所述的站点, 其特征在于, 当所述分配的时频资源 为所述第一站点与所述第二站点进行数据传输所占用的时频资源时, 所述获 取模块具体用于:
接收所述第一站点发送的调度信令, 其中, 所述调度信令中包含指示所 述第三站点可以在所述第一站点向所述第二站点进行数据发送所占用的时频 资源上进行数据发送的信息; 或者,
接收所述第一站点发送的调度信令, 其中, 所述调度信令中包含指示所 述第三站点的关联站点可以在所述第一站点接收所述第二站点发送的数据所 占用的时频资源上进行数据发送的信息, 其中, 所述第三站点的关联站点不 是所述第一站点的邻居站点。
25、 根据权利要求 23所述的站点, 其特征在于, 当所述分配的时频资源 为所述剩余的时频资源时, 所述获取模块具体用于: 接收所述第一站点发送 的调度信令, 其中, 所述调度信令中包含指示所述第三站点可以在所述剩余 的时频资源内进行数据传输的信息。
26、 根据权利要求 24或 25所述的站点, 其特征在于, 所述获取模块具 体用于: 接收所述第一站点通过在下行时段中设置的多个调度信令发送时段 发送的调度信令。
27、 根据权利要求 24〜26中任一项所述的站点, 其特征在于, 若所述第 三站点为两个接入点 AP不互为邻居站点场景下所述第一站点的邻居站点,其中, 所述第一站点为所述两个 AP中任意一个, 所述第三站点, 还包括:
通知模块, 用于将所述调度信令中的指示信息通知所述第三站点的关联 站点;
接收模块, 用于接收所述第三站点的关联站点的调度。
28、根据权利要求 27所述的站点,其特征在于,所述接收模块具体用于: 在下行时段中设置的多个调度信令发送时段接收所述第三站点的关联站点的 调度。
PCT/CN2014/071974 2014-02-11 2014-02-11 数据传输处理方法及装置 WO2015120577A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN202010261208.4A CN111586764A (zh) 2014-02-11 2014-02-11 数据传输处理方法及装置
CN201480074942.2A CN105981469B (zh) 2014-02-11 2014-02-11 数据传输处理方法及装置
KR1020167020578A KR101952223B1 (ko) 2014-02-11 2014-02-11 데이터 전송 처리 방법 및 장치
EP19218442.2A EP3687257A1 (en) 2014-02-11 2014-02-11 Data transmission processing method and apparatus
EP14882387.5A EP3086621B1 (en) 2014-02-11 2014-02-11 Data transmission processing method and apparatus
JP2016551193A JP6410060B2 (ja) 2014-02-11 2014-02-11 データ送信処理方法および装置
PCT/CN2014/071974 WO2015120577A1 (zh) 2014-02-11 2014-02-11 数据传输处理方法及装置
US15/233,591 US10602509B2 (en) 2014-02-11 2016-08-10 Data transmission processing method and apparatus
US16/789,982 US11425709B2 (en) 2014-02-11 2020-02-13 Data transmission processing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/071974 WO2015120577A1 (zh) 2014-02-11 2014-02-11 数据传输处理方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/233,591 Continuation US10602509B2 (en) 2014-02-11 2016-08-10 Data transmission processing method and apparatus

Publications (1)

Publication Number Publication Date
WO2015120577A1 true WO2015120577A1 (zh) 2015-08-20

Family

ID=53799488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/071974 WO2015120577A1 (zh) 2014-02-11 2014-02-11 数据传输处理方法及装置

Country Status (6)

Country Link
US (2) US10602509B2 (zh)
EP (2) EP3687257A1 (zh)
JP (1) JP6410060B2 (zh)
KR (1) KR101952223B1 (zh)
CN (2) CN105981469B (zh)
WO (1) WO2015120577A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107770871A (zh) * 2016-08-22 2018-03-06 华为技术有限公司 消息收发方法、终端设备和网络设备

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3917251A1 (en) * 2016-12-23 2021-12-01 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Data transmission method and apparatus
US11375411B2 (en) * 2020-01-24 2022-06-28 Cisco Technology, Inc. Resource unit sharing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419789A (zh) * 2000-03-23 2003-05-21 西门子公司 无线通信系统中的资源分配方法
CN1780458A (zh) * 2004-11-24 2006-05-31 北京三星通信技术研究有限公司 基于时频无线信道资源分配方法
CN101527962A (zh) * 2008-03-03 2009-09-09 中兴通讯股份有限公司 一种资源分配的方法
CN103313407A (zh) * 2012-03-08 2013-09-18 中国移动通信集团公司 一种高速铁路专网的时频资源分配方法及装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7774468B1 (en) * 2000-07-28 2010-08-10 Siddhartha Nag Network traffic admission control
KR100608006B1 (ko) * 2004-08-31 2006-08-02 삼성전자주식회사 무선랜상에서 데이터를 전송하는 방법, 액세스 포인트장치 및 스테이션 장치
US7639658B2 (en) 2005-03-18 2009-12-29 Qualcomm Incorporated Efficient wireless transmission opportunity handoff
JP2006314034A (ja) * 2005-05-09 2006-11-16 Matsushita Electric Ind Co Ltd 無線通信方法及び無線通信システム
JP4364165B2 (ja) * 2005-06-17 2009-11-11 株式会社東芝 無線通信装置
TWI487355B (zh) * 2006-01-04 2015-06-01 內數位科技公司 Wlan系統中提供多模式有效率操作方法及系統
US8014818B2 (en) 2006-01-04 2011-09-06 Interdigital Technology Corporation Methods and systems for providing efficient operation of multiple modes in a WLAN system
TWI451774B (zh) 2006-01-31 2014-09-01 Interdigital Tech Corp 無線通信系統中提供及利用非競爭基礎頻道方法及裝置
US20070195731A1 (en) * 2006-02-21 2007-08-23 Camp William O Jr Methods, systems and computer program products for establishing a point-to-point communication connection
JP5028476B2 (ja) 2006-04-24 2012-09-19 インターデイジタル テクノロジー コーポレーション 無線メッシュ型ネットワークにおけるtxop使用法のための方法及びシグナリング手順
FR2910655B1 (fr) 2006-12-22 2009-02-27 Thales Sa Procede de reservation et d'allocation dynamique de creneaux temporels dans un reseau avec garantie de service
WO2010150952A1 (en) * 2009-06-23 2010-12-29 Lg Electronics Inc. Method for transmitting scheduling information in mobile communication system and femtocell base station apparatus using the same
US9031032B2 (en) * 2009-10-05 2015-05-12 Futurewei Technologies, Inc. System and method for inter-cell interference coordination
US8442001B2 (en) * 2009-10-21 2013-05-14 Qualcomm Incorporated Systems, methods and apparatus for facilitating handover control using resource reservation with frequency reuse
CA2696037A1 (en) 2010-03-15 2011-09-15 Research In Motion Limited Advertisement and dynamic configuration of wlan prioritization states
US8681612B2 (en) * 2010-10-07 2014-03-25 Qualcomm Incorporated Methods and devices to implement a reduced contention period to facilitate channel access for access terminals operating in a wireless communication environment
CN102843785B (zh) * 2011-06-25 2015-04-08 华为技术有限公司 无线局域网中逆向协议传输的方法及装置
JP5559753B2 (ja) * 2011-08-01 2014-07-23 日本電信電話株式会社 基地局装置および無線通信方法
US9179476B2 (en) * 2011-10-11 2015-11-03 Qualcomm Incorporated Multi-user transmission during reverse direction grant
US9345026B2 (en) * 2012-07-09 2016-05-17 Qualcomm Incorporated Methods and apparatus for requested reverse direction protocol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1419789A (zh) * 2000-03-23 2003-05-21 西门子公司 无线通信系统中的资源分配方法
CN1780458A (zh) * 2004-11-24 2006-05-31 北京三星通信技术研究有限公司 基于时频无线信道资源分配方法
CN101527962A (zh) * 2008-03-03 2009-09-09 中兴通讯股份有限公司 一种资源分配的方法
CN103313407A (zh) * 2012-03-08 2013-09-18 中国移动通信集团公司 一种高速铁路专网的时频资源分配方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3086621A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107770871A (zh) * 2016-08-22 2018-03-06 华为技术有限公司 消息收发方法、终端设备和网络设备
EP3496488A4 (en) * 2016-08-22 2019-07-03 Huawei Technologies Co., Ltd. COMMUNICATION METHOD, TERMINAL DEVICE, AND NETWORK DEVICE
US10973043B2 (en) 2016-08-22 2021-04-06 Huawei Technologies Co., Ltd. Communication method, terminal device, and network device
CN107770871B (zh) * 2016-08-22 2021-09-14 华为技术有限公司 消息收发方法、终端设备和网络设备

Also Published As

Publication number Publication date
JP2017506040A (ja) 2017-02-23
US11425709B2 (en) 2022-08-23
CN105981469A (zh) 2016-09-28
KR101952223B1 (ko) 2019-02-26
EP3086621A1 (en) 2016-10-26
EP3086621A4 (en) 2017-01-25
US20200187183A1 (en) 2020-06-11
CN105981469B (zh) 2020-04-21
KR20160103108A (ko) 2016-08-31
EP3687257A1 (en) 2020-07-29
JP6410060B2 (ja) 2018-10-24
US10602509B2 (en) 2020-03-24
US20160353423A1 (en) 2016-12-01
EP3086621B1 (en) 2020-01-22
CN111586764A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
US10194468B2 (en) Wireless channel reservation
EP2962508B1 (en) Methods and apparatuses for differentiated fast initial link setup
WO2017016484A1 (zh) 无线通信系统、基站侧和用户设备侧的装置及方法
US20130170470A1 (en) Method and Apparatus for Device Discovery through Beaconing
US20170055287A1 (en) Channel access method and system, stations and computer readable storage medium
WO2015169025A1 (zh) 并行数据传输处理方法、装置及计算机存储介质
WO2015165084A1 (zh) 非授权频谱的调度方法、设备及用户设备ue
WO2017133646A1 (zh) 设备到设备d2d资源的配置方法及装置
WO2014134954A1 (zh) 业务数据的传输处理、传输方法及装置
JP6440126B2 (ja) データ送信方法、装置、及びシステム
WO2013010430A1 (zh) 一种业务数据传输方法及系统
CN105900513B (zh) 竞争信道的方法和装置
WO2017016305A1 (zh) 数据传输方法、系统、用户设备及基站
WO2015062507A1 (zh) 一种d2d资源配置信息的传输方法及设备
WO2016188245A1 (zh) 信道协商方法、站点及系统
JP2016536846A (ja) 情報伝送方法、基地局、およびユーザ機器
WO2024036671A1 (zh) 侧行通信的方法及装置
US11425709B2 (en) Data transmission processing method and apparatus
US10757686B2 (en) Method and user equipment for requesting common information from an access node
WO2017075982A1 (zh) 一种数据传输方法及装置
WO2015106417A1 (zh) 预留信道的方法及通信设备
WO2016131182A1 (zh) 一种随机接入方法、站点和接入点
US20230239917A1 (en) Operation of wireless communication devices in unlicensed spectrum for frame-based equipment (fbe) networks
WO2017012125A1 (zh) 无线接入点同步协作方法、设备及系统
WO2015096029A1 (zh) 数据传输方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14882387

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2014882387

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014882387

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167020578

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016551193

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE