WO2019001430A1 - 镁法脱硫副产物精制七水硫酸镁工艺的处理系统及方法 - Google Patents

镁法脱硫副产物精制七水硫酸镁工艺的处理系统及方法 Download PDF

Info

Publication number
WO2019001430A1
WO2019001430A1 PCT/CN2018/092906 CN2018092906W WO2019001430A1 WO 2019001430 A1 WO2019001430 A1 WO 2019001430A1 CN 2018092906 W CN2018092906 W CN 2018092906W WO 2019001430 A1 WO2019001430 A1 WO 2019001430A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium sulfate
outlet
magnesium
desulfurization
sulfate heptahydrate
Prior art date
Application number
PCT/CN2018/092906
Other languages
English (en)
French (fr)
Inventor
彭光辉
孙如意
苗灿
Original Assignee
河北纽思泰伦环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=60802719&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019001430(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 河北纽思泰伦环保科技有限公司 filed Critical 河北纽思泰伦环保科技有限公司
Publication of WO2019001430A1 publication Critical patent/WO2019001430A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/40Magnesium sulfates

Definitions

  • the invention relates to the technical field of by-product treatment after flue gas desulfurization, in particular to a treatment system and method for purifying magnesium sulfate heptahydrate by magnesium desulfurization by-product.
  • the present invention provides a treatment system and method for purifying a magnesium sulfate heptahydrate by a magnesium desulfurization by-product, which is used to solve the technical problem of waste of resources caused by direct discharge of magnesium desulfurization by-products in the prior art.
  • the treatment system and method can carry out layering and decontamination of the desulfurization by-product slurry, and the impurity removal effect is good, and impurities are avoided to affect the purity of the magnesium sulfate heptahydrate product; at the same time, the recycling of the magnesium resources also avoids the waste of resources, and reduces the waste. The occurrence of secondary pollution.
  • a first aspect of the embodiment of the present invention provides a processing system for purifying a magnesium sulfate heptahydrate by a magnesium desulfurization by-product, comprising a pretreatment device, an evaporation device, a crystallization device, and a drying device connected in series through a pipeline;
  • the pretreatment device comprises a heat preservation oxidation tank, a first plate frame filter press connected to the outlet of the heat preservation oxidation tank, a descaler connected to the outlet of the filtrate of the first plate frame filter press, and a heavy metal connected to the outlet of the descaler a treatment tank, an oxygen inlet is opened on the side wall of the heat preservation oxidation tank, and the oxygen inlet is connected with the oxidation fan; and the heat preservation oxidation tank is further provided with a circuit connection with the heat preservation oxidation tank, and is used for controlling the oxidation oxidation tank a tube heat exchanger of internal temperature; the outlet of the heavy metal processing tank is connected to the inlet of the second plate frame filter press, and the outlet of the second plate frame filter press is connected with the inlet of the filtrate tank;
  • the evaporation device is configured to evaporate the filtrate outputted by the pretreatment device
  • the crystallization device is configured to crystallize the filtrate outputted by the evaporation device to form a crystal
  • the drying device is for drying the crystal output from the crystallization device.
  • the inlet of the insulated oxidation tank is connected to the outlet of the crusher, and the inlet of the crusher is connected to the outlet of the hydrocyclone.
  • a stirrer is disposed in the heat preservation oxidation tank, and a circulation pump for forcibly circulating the liquid in the heat preservation oxidation tank is connected to the heat preservation oxidation tank.
  • the heavy metal processing tank is formed by connecting a plurality of small heavy metal processing tanks in series.
  • the evaporation device comprises a condensate preheater connected to the outlet of the filtrate tank, and a three-effect evaporator connected to the outlet of the condensate preheater.
  • the crystallization device comprises a crystallizer connected to the outlet of the three-effect evaporator, and an outer cooler connected in a loop with the crystallizer, the bottom of the sidewall of the crystallizer is provided with a liquid outlet, the liquid outlet It is connected to the inlet of the centrifuge through a pipe, and the liquid outlet of the centrifuge is connected to the mother liquor tank inlet through a pipe, and the centrifuge solids outlet is used for the discharge of the crystal obtained by centrifugation.
  • the mother liquid tank outlet is connected to the three-effect evaporator inlet via a pipeline via a pump.
  • the drying device comprises a fluidized bed dryer connected to the solids outlet of the centrifuge, and an air supply port and a cold air port are arranged on the bottom plate of the fluidized bed dryer, and the air supply port is connected with the air blower.
  • the cold air vent is connected with the chiller; and the fluidized bed dryer is provided with a finished discharge opening away from the inlet end.
  • an exhaust gas outlet is disposed on a top surface of the fluidized bed dryer, and the exhaust gas outlet is connected to a cyclone inlet, and the cyclone outlet is connected to the baghouse inlet.
  • a second aspect of the embodiment of the present invention provides a method for treating a magnesium sulfate heptahydrate by a magnesium desulfurization by-product, comprising the following steps:
  • the magnesium sulfate slurry is filtered to obtain a filtrate
  • the filtrate is descaled, and after the descaling is completed, the heavy metal in the filtrate is captured by a heavy metal treatment tank, and filtered again;
  • the refiltered filtrate was evaporated, crystallized and dried to give a magnesium sulfate heptahydrate product.
  • the processing system and method for purifying the magnesium sulfate heptahydrate by the magnesium desulfurization by-product as described in the present scheme adopting the first plate and frame filter press, the descaler, the heavy metal processing box and the second plate frame filter press in the pretreatment device
  • the machine removes the impurities in the by-product slurry in turn, and the first plate frame filter press and the descaler remove impurities such as silica, calcium sulfate, coal ash, etc.
  • the filter removes heavy metal ions such as iron, cadmium, lead and arsenic in the slurry to prevent heavy metal ions from affecting the purity of the magnesium sulfate heptahydrate product, and also avoids the heavy metal ions being discharged into the natural environment in the form of ions, causing heavy metal pollution.
  • the de-doping process ensures the decontamination effect of the slurry, thereby effectively recovering the high-purity magnesium sulfate heptahydrate product; in addition, the evaporation device and the crystallization device can effectively recover the magnesium sulfate heptahydrate product after the dewaxing magnesium sulfate solution. Avoid the waste of magnesium resources, and also avoid the occurrence of secondary pollution.
  • FIG. 1 is a schematic flow chart of a device in an embodiment of the present embodiment
  • FIG. 2 is a schematic flow chart of a preprocessing apparatus in an embodiment of the present solution
  • FIG. 3 is a schematic flow chart of an evaporation device in an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart of a crystallization apparatus in an embodiment of the present embodiment
  • FIG. 5 is a schematic view of a drying device in an embodiment of the present embodiment.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. .
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the embodiment provides a treatment system for purifying a magnesium sulfate heptahydrate by a magnesium desulfurization by-product, and the device system comprises a pretreatment device, an evaporation device, a crystallization device and a drying device which are sequentially connected by a pipeline.
  • the magnesium desulfurization by-product slurry is sent to the hydrocyclone 1 through a desulfurization and slagging pump to concentrate the solid portion of the slurry, so that the concentration of magnesium sulfite in the by-product slurry reaches a higher level to facilitate the subsequent oxidation reaction. Then, the by-product slurry is sent to the crusher 2 to destroy the magnesium sulphate crystal structure, and then sent to the heat-insulating oxidation tank 3 through the slurry pump for oxidation operation, and the heat-oxidation oxidation tank 3 passes through the tube heat exchanger 4 connected with the loop.
  • the heat preservation oxidation tank 3 is insulated, the air is blown into the oxidation oxidation tank 3 by the oxidation fan 5, and the pH in the oxidation oxidation tank 3 is maintained at 4-6, and the oxidation tank 3 is continuously maintained by the oxidation oxidation tank stirrer.
  • the reaction solution is stirred to sufficiently oxidize magnesium sulfite in the by-product slurry to magnesium sulfate, and the magnesium sulfate in the slurry is concentrated to a saturated state to ensure efficient oxidation of magnesium sulfite and the highest yield of magnesium sulfate;
  • a circulating pump is also connected to the oxidation oxidation tank 3 for forcibly circulating the reaction liquid in the oxidation oxidation tank 3 to reduce the amount of the catalyst by cyclic catalytic oxidation of magnesium sulfite. Production costs, improve economic efficiency.
  • the magnesium sulfate slurry obtained after the oxidation is completed is pumped to the first plate and frame filter press 6 for filtration treatment, and the main components of the filter cake remaining on the first plate frame filter press 6 are silica, calcium sulfate and coal ash. Therefore, it can be discarded into the coal pile, and the combustion system and the fly ash instrument can be comprehensively utilized as the coal enters the boiler, and the filter cake can also be directly mixed into the fly ash for comprehensive utilization; and the obtained filtrate enters the descaler to perform electric scaling.
  • the method for removing impurities in the filtrate ensures that the production process can be carried out safely and effectively, the descaled filtrate enters the heavy metal processing tank 7, and the flocculating agent and the acid-base reagent are respectively added to the heavy metal processing tank 7 to remove iron and cadmium in the filtrate.
  • Heavy metals such as lead and arsenic prevent heavy metal ions from affecting the purity of the magnesium sulfate heptahydrate product, and also prevent heavy metals from being discharged into the natural world by heavy ions, causing heavy metal contamination.
  • the solution in the heavy metal processing tank 7 is filtered through the second plate frame.
  • the machine 8 filters and removes impurities, and the filtrate is discharged into the filtrate pool 9 for temporary storage;
  • the heavy metal processing box is formed by connecting a plurality of small heavy metal processing boxes in series, so that it can be more according to actual needs.
  • the flocculant and the acid-base reagent are added to remove heavy metals such as iron, cadmium, lead and arsenic in the filtrate, and the heavy metal ions are completely prevented from affecting the purity of the magnesium sulfate heptahydrate product.
  • the filtrate in the filtrate tank 9 is sent to an evaporation device for evaporation concentration, and the filtrate is preheated by the condensed water preheater 10 and then enters the three-effect evaporator 11, which has a short physical evaporation time and evaporation.
  • the advantages of high speed and large concentration ratio can effectively maintain the original effect of magnesium sulfate, and the energy saving effect is remarkable, so that the production cost of the enterprise can be effectively reduced, and the economic benefit of the enterprise is improved.
  • the concentrated magnesium sulfate concentrate obtained by evaporation is discharged from the outlet of the three-effect evaporator 11 and enters the crystallizer 12, and the concentrated liquid is driven from the inside of the crystallizer 12 via an axial flow pump to the external cooler 13 which is connected in a loop with the crystallizer 12. The temperature is lowered, and the concentrated liquid after the temperature reduction treatment is returned to the crystallizer 12 through the loop.
  • the magnesium sulfate crystals in the concentrated liquid gradually precipitate and precipitate into the bottom of the crystallizer 12, and the material from the crystallizer 12
  • the liquid outlet is discharged into the centrifuge 14, and the supernatant liquid after centrifugation by the centrifuge 14 is introduced into the mother liquid tank 15 from the liquid outlet of the centrifuge 14 and sent to the three-effect evaporator 11 by the pump to be concentrated, and then enters the crystallizer 12 to continue to circulate and crystallize. Avoiding the waste of magnesium sulfate; the lower magnesium sulfate crystals are sent to the fluidized bed dryer 16 through the solids outlet of the centrifuge 14 for drying.
  • the bottom of the fluidized bed dryer 16 is provided with an air supply port and a cold air port, the air supply port is connected to the blower 17, and the cold air port is connected to the air cooler 18, and the air is blown into the fluidized bed dryer 16 through the blower 17 and the air cooler 18.
  • the flow allows the magnesium sulfate crystal to move and dry in a fluidized state, which can effectively improve the drying efficiency, and does not require the use of a higher drying temperature, thereby avoiding the destruction of the magnesium sulfate crystal structure by the high temperature; after the drying of the magnesium sulfate crystal is completed, the fluidized bed is dried.
  • the product discharge port of the device 16 is discharged to obtain a magnesium sulfate heptahydrate product, and the exhaust gas in the fluidized bed dryer 16 is passed through the exhaust gas outlet on the top surface of the fluidized bed dryer 16 into the cyclone dust collector, and then enters the bag dust removal. In the machine to recover solid powder in the exhaust gas.
  • the magnesium desulfurization by-product as described in the present embodiment refines the treatment system of the magnesium sulfate heptahydrate process, and the by-product slurry is oxidized into a magnesium sulfate solution by a pretreatment apparatus and layered to remove impurities, and then evaporated and concentrated by an evaporation device. After that, it enters the crystallization apparatus for crystallization, and the crystal body is dried by a drying device to obtain a magnesium sulfate heptahydrate crystal.
  • the treatment system for purifying the magnesium sulfate heptahydrate by using the magnesium desulfurization by-product as described in the present embodiment can effectively recover the magnesium resource in the magnesium desulfurization by-product, and the final recovery can be achieved by stratification and decontamination in the process of the pretreatment device.
  • the purity of magnesium sulfate in water is 99%.
  • the process system avoids the waste of magnesium resources and avoids the occurrence of secondary pollution.
  • the fluidized bed dryer according to the embodiment of the present invention can be arranged to move and dry the magnesium sulfate crystal in a fluidized state inside the fluidized bed dryer, thereby high drying efficiency and avoiding the use of a higher drying temperature, thereby avoiding High temperature damage to the crystal structure of magnesium sulfate.
  • the hydrocyclone according to the embodiment of the present invention can be arranged to concentrate the solid portion of the magnesium desulfurization by-product slurry to achieve a higher concentration of magnesium sulfite in the slurry to facilitate the subsequent oxidation reaction.
  • the setting of the crusher according to the embodiment of the present invention is for destroying crystals of magnesium sulfite in the slurry to facilitate oxidation of magnesium sulfite to magnesium sulfate.
  • the setting of the stirrer in the heat preservation oxidation tank in the embodiment of the present invention is for accelerating the oxidation of magnesium sulfite in the oxidation oxidation tank to magnesium sulfate, and at the same time effectively enriching the magnesium sulfate in the slurry to a saturated state;
  • the high solubility magnesium sulfate can reach a quasi-saturated or saturated concentration at the reaction liquid circulation temperature, thereby reducing the evaporation water required during the evaporation process, reducing the steam consumption and reducing the running cost.
  • the embodiment of the present invention further provides a method for treating a magnesium sulfate heptahydrate by a magnesium desulfurization by-product, comprising the following steps:
  • Step 1 the magnesium desulfurization by-product slurry is oxidized to obtain a magnesium sulfate slurry
  • Step 2 filtering the magnesium sulfate slurry to obtain a filtrate
  • Step 3 the filtrate is descaled, after the descaling is completed, the heavy metal in the filtrate is captured by a heavy metal treatment tank, and filtered again;
  • Step 4 The re-filtered filtrate is evaporated, crystallized and dried to obtain a magnesium sulfate heptahydrate product.

Abstract

一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统及方法,用于回收镁法脱硫副产物浆液中镁资源并生成七水硫酸镁,所述系统包括通过管道依次连接的预处理装置、蒸发装置、结晶装置以及干燥装置。采用本方案获得的镁法脱硫副产物精制七水硫酸工艺的处理系统及方法,可有效回收镁法脱硫副产物浆液中的镁资源,且回收得到的七水硫酸镁纯度可达99%。

Description

镁法脱硫副产物精制七水硫酸镁工艺的处理系统及方法
本方案申明享有2017年6月27日递交的申请号为201720755781.4、名称为“镁法脱硫副产物精制七水硫酸镁工艺的处理系统”中国专利申请的优先权,该中国专利申请的整体内容以参考的方式结合在本方案中。
技术领域
本方案涉及烟气脱硫后副产物处理技术领域,尤其涉及一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统及方法。
背景技术
近年来,国内建设了为数众多的镁法烟气脱硫装置,这些装置利用我国丰富的镁资源对燃煤锅炉排放烟气中的二氧化硫进行脱除,实现了燃煤锅炉烟气二氧化硫的达标排放。但是,这些脱硫装置产生的脱硫副产物却基本没有得到有效的处理,绝大多数脱硫副产物被作为废渣抛弃,这种做法不仅没有使镁资源得到充分的利用,而且对环境也造成了潜在的威胁。随着国家“节能减排”战略的实施,政府对企业的资源利用方式和污染物排放势必提出更高的要求,对镁法脱硫装置的副产物进行回收利用势在必行。
目前,国内回收镁法脱硫副产物主要以回收七水硫酸镁为主,即镁法脱硫副产物经氧化成硫酸镁,硫酸镁经浓缩结晶后得到七水硫酸镁,也就是国内常用的镁肥。但传统工艺中在氧化镁法脱硫副产物时,不仅氧化不充分,而且氧化效率低,具有运行费用高,工艺效率低的问题。而且国内在镁法脱硫回收硫酸镁方面还存在能耗高、成本高,回收的七水硫酸镁产品质量差。因而在回收过程中,回收的硫酸镁越多,亏损越大,导致很多镁法脱硫企业直接放弃回收七水硫酸镁,而是将脱硫副产物经氧化处理后直接排放,不仅造成资源的浪费,还有可能引起二次污染。
技术问题
鉴于此,本方案提供了一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统及方法,用以解决现有技术中镁法脱硫副产物直接排放导致资源浪费的技术问题,该工艺的处理系统和方法可对脱硫副产物浆液进行分层除杂,且除杂效果好,避免了杂质影响七水硫酸镁产品纯度;同时镁资源的回收再利用也避免了资源的浪费,减少了二次污染的发生。
技术解决方案
本方案实施例的第一方面提供了一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统,包括通过管道依次连接的预处理装置、蒸发装置、结晶装置以及干燥装置;
所述预处理装置包括保温氧化罐、与保温氧化罐出口连接的第一板框压滤机、与第一板框压滤机滤液出口连接的除垢器,以及与除垢器出口连接的重金属处理箱,所述保温氧化罐侧壁上开有氧气进口,所述氧气进口与氧化风机连接;于所述保温氧化罐上还设有与保温氧化罐呈回路连接的、并用以控制保温氧化罐内温度的列管换热器;所述重金属处理箱出口与第二板框压滤机进口连接,所述第二板框压滤机的出口与滤液池进口连接;
所述蒸发装置用于对所述预处理装置输出的滤液进行蒸发;
所述结晶装置用于对所述蒸发装置输出的滤液进行结晶,形成晶体;
所述干燥装置用于对所述结晶装置输出的晶体进行干燥。
可选的,所述保温氧化罐的进料口与破碎机出口连接,而所述破碎机进口与水力旋流器出口连接。
可选的,所述保温氧化罐内设有搅拌器,并于所述保温氧化罐上连接有对保温氧化罐内液体强制循环的循环泵。
可选的,所述重金属处理箱由多个小重金属处理箱串联而成。
可选的,所述蒸发装置包括与滤液池出口连接的冷凝水预热器,以及与冷凝水预热器出口连接的三效蒸发器。
可选的,所述结晶装置包括与三效蒸发器出口连接的结晶器、以及与结晶器呈回路连接的外冷器,所述结晶器的侧壁底部设有料液出口,所述料液出口通过管道与离心机的进口连接,所述离心机的液体出口通过管道与母液罐进口连接,所述离心机固体出口用于离心得到的结晶体的排出。
可选的,所述母液罐出口通过管道经由泵连接三效蒸发器进口。
可选的,所述干燥装置包括与离心机固体出口连接的流化床干燥器,于所述流化床干燥器的底板上设有送风口和冷风口,所述送风口与送风机连接,所述冷风口与冷风机连接;于所述流化床干燥器远离进料口端设有成品排料口。
可选的,于所述流化床干燥器的顶面上设有废气出口,所述废气出口与旋风除尘器进口连接,所述旋风除尘器出口与布袋除尘器进口连接。
本方案实施例的第二方面提供了一种镁法脱硫副产物精制七水硫酸镁工艺的处理方法,包括以下步骤:
对镁法脱硫副产物浆液进行氧化,得到硫酸镁浆液;
对所述硫酸镁浆液进行过滤,得到滤液;
对所述滤液进行除垢,除垢完成后通过重金属处理箱捕获所述滤液中的重金属,并重新进行过滤;
对重新过滤后的滤液进行蒸发、结晶和干燥,得到七水硫酸镁产品。
有益效果
本方案所述的镁法脱硫副产物精制七水硫酸镁工艺的处理系统及方法,采用预处理装置中的第一板框压滤机、除垢器、重金属处理箱、第二板框压滤机依次对副产物浆液中的杂质进行去除,第一板框压滤机和除垢器去除了浆液中的二氧化硅、硫酸钙、煤灰等杂质,而重金属处理箱和第二板框压滤机则去除了浆液中重金属离子铁、镉、铅、砷等,防止重金属离子影响七水硫酸镁产品纯度的同时,还避免了重金属离子以离子形式被排放至自然界中造成重金属污染,分层去杂的过程保证了浆液的去杂效果,从而可有效回收较高纯度的七水硫酸镁产品;另外,蒸发装置及结晶装置可有效对去杂后的硫酸镁溶液回收七水硫酸镁产品,避免镁资源的浪费,同时也避免了二次污染的发生。
附图说明
下面结合附图和具体实施方式对本方案作进一步详细的说明。
图1为本方案实施例中装置流程示意图;
图2为本方案实施例中预处理装置流程示意图;
图3为本方案实施例中蒸发装置流程示意图;
图4为本方案实施例中结晶装置流程示意图;
图5为本方案实施例中干燥装置示意图。
图中:1、水力旋流器;2、破碎机;3、保温氧化罐;4、列管换热器;5、氧化风机;6、第一板框压滤机;7、重金属处理箱;8、第二板框压滤机;9、滤液池;10、冷凝水预热器;11、三效蒸发器;12、结晶器;13、外冷器;14、离心机;15、母液罐;16、流化床干燥器;17、送风机;18、冷风机。
本方案的实施方式
下面结合实施例对本方案做进一步的详细描述,显然,所描述的实施例仅仅是本方案一部分实施例,而不是全部的实施例。基于本方案的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本方案保护的范围。
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本实用新型实施例。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本实用新型。在其它情况中,省略对众所周知的系统、装置以及方法的详细说明,以免不必要的细节妨碍本实用新型的描述。
应当理解,当在本说明书和所附权利要求书中使用时,术语“包括”指示所描述特征、整体、步骤、操作、元素和/或组件的存在,但并不排除一个或多个其它特征、整体、步骤、操作、元素、组件和/或其集合的存在或添加。
还应当理解,在此本方案说明书中所使用的术语仅仅是出于描述特定实施例的目的而并不意在限制本方案。如在本方案说明书和所附权利要求书中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
本实施例提供一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统,该装置系统包括通过管道依次连接的预处理装置、蒸发装置、结晶装置以及干燥装置。
镁法脱硫副产物浆液经脱硫排渣泵输送至水力旋流器1中对浆液中固体部分物质进行浓缩处理,以使副产物浆液中亚硫酸镁浓度达到较高水平以利于后续氧化反应的进行;随后副产物浆液至破碎机2中用以破坏亚硫酸镁晶体结构后经渣浆泵输送至保温氧化罐3中进行氧化操作,保温氧化罐3通过与其呈回路连接的列管换热器4对保温氧化罐3进行保温,利用氧化风机5向保温氧化罐3中鼓入空气,同时将保温氧化罐3中的pH维持在4~6,并通过保温氧化罐搅拌器持续对保温氧化罐3中的反应液进行搅拌,使副产物浆液中的亚硫酸镁充分氧化为硫酸镁,同时将浆液中硫酸镁提浓至饱和态,保证亚硫酸镁的高效氧化以及硫酸镁的最高收率;另外,于保温氧化罐3上还连接有循环泵,用以对保温氧化罐3中的反应液进行强制循环,以用循环催化氧化亚硫酸镁的方式来降低企业生产成本,提高经济效益。
可选的,还可以在保温氧化罐3中加入催化剂,能够更加快速地将副产物浆液中的亚硫酸镁充分氧化为硫酸镁。
氧化完成后得到的硫酸镁浆液经泵输送至第一板框压滤机6过滤处理,第一板框压滤机6上留有的滤饼主要成分是二氧化硅、硫酸钙、煤灰,因此可弃入煤堆,随煤进入锅炉的燃烧系统和粉煤灰仪器综合利用,另外滤饼也可以直接混入粉煤灰中综合利用;而得到的滤液进入除垢器中进行电解除垢,用以除去滤液中杂质保证生产过程可安全有效地进行,除垢后的滤液进入重金属处理箱7,并分别向重金属处理箱7中加入絮凝剂以及酸碱试剂以除去滤液中的铁、镉、铅、砷等重金属,避免重金属离子影响七水硫酸镁产品的纯度,同时也防止重金属以离子形式被排放至自然界中造成重金属污染,随后将重金属处理箱7中的溶液经第二板框压滤机8过滤去除杂质,滤液排入滤液池9中暂存待用;重金属处理箱由多个小重金属处理箱串联而成,从而可以根据实际需要多次加入絮凝剂以及酸碱试剂以除去滤液中的铁、镉、铅、砷等重金属,彻底避免重金属离子影响七水硫酸镁产品的纯度。
随后,滤液池9中的滤液被输送至蒸发装置进行蒸发浓缩,滤液先经冷凝水预热器10预热后再进入三效蒸发器11中,三效蒸发器11具有物理受热时间短、蒸发速度快、浓缩比重大等优点,因而可有效保持硫酸镁原效,且节能效果显著,因而可有效降低企业生产成本,有利于提高企业经济效益。
蒸发浓缩的得到的硫酸镁浓缩液从三效蒸发器11出口排出并进入结晶器12中,浓缩液由结晶器12内经由轴流泵打入至与结晶器12呈回路连接的外冷器13中进行降温,经降温处理后的浓缩液再通过回路回至结晶器12中,降温后的浓缩液中硫酸镁晶体会逐渐析出并沉入结晶器12的底部,并从结晶器12上的料液出口排出进入离心机14,经离心机14离心后的上层清液由离心机14液体出口进入母液罐15,并由泵输送至三效蒸发器11浓缩后在进入结晶器12继续循环结晶,避免造成硫酸镁的浪费;而下层硫酸镁晶体则通过离心机14固体出口被输送至流化床干燥器16进行干燥处理。
流化床干燥器16的底板上设有送风口和冷风口,送风口与送风机17连接,冷风口与冷风机18连接,经送风机17及冷风机18向流化床干燥器16内通入空气流以使硫酸镁晶体在流化状态运动并干燥,可有效提高干燥效率,且不用使用较高干燥温度,避免了高温对硫酸镁晶体结构的破坏;硫酸镁晶体干燥完成后经流化床干燥器16的成品排料口排出得到七水硫酸镁产品,而流化床干燥器16内的废气则通过流化床干燥器16顶面上的废气出口进入旋风除尘器中,随后再进入布袋除尘器中,以回收废气中的固体粉料。
综上所述,本实施例所述的镁法脱硫副产物精制七水硫酸镁工艺的处理系统,副产物浆液经预处理装置氧化成硫酸镁溶液并分层去除杂质后,经蒸发装置蒸发浓缩后进入结晶装置进行结晶,结晶体经干燥装置干燥处理后得到七水硫酸镁晶体。采用本实施例所述镁法脱硫副产物精制七水硫酸镁工艺的处理系统,可有效回收镁法脱硫副产物中的镁资源,且通过预处理装置过程中的分层去杂可使最终回收的七水硫酸镁纯度达99%。该工艺系统避免了镁资源的浪费,也避免了二次污染的发生。
本方案实施例所述流化床干燥器的设置,可使硫酸镁晶体在流化床干燥器内部以流化状态运动并干燥,因此干燥效率高,且不用使用较高的干燥温度,避免了高温对硫酸镁晶体结构的破坏。
本方案实施例所述水力旋流器的设置,可对镁法脱硫副产物浆液中固体部分进行浓缩处理,使浆液中亚硫酸镁浓度达到较高水平以利于后续氧化反应的进行。
本方案实施例所述破碎机的设置,用于对浆液中亚硫酸镁的晶体进行破坏,以利于亚硫酸镁氧化生成硫酸镁。
本方案实施例所述保温氧化罐内搅拌器的设置,用以加快保温氧化罐内的亚硫酸镁氧化为硫酸镁,同时还可有效的将浆液中的硫酸镁提浓至饱和态;另外,高溶解度的硫酸镁在反应液循环温度下可达到准饱和或饱和浓度,从而可降低蒸发过程中所需蒸发的水分,减少蒸汽消耗,降低运行成本。
本方案实施例还提供一种镁法脱硫副产物精制七水硫酸镁工艺的处理方法,包括以下步骤:
步骤1、对镁法脱硫副产物浆液进行氧化,得到硫酸镁浆液;
步骤2、对所述硫酸镁浆液进行过滤,得到滤液;
步骤3、对所述滤液进行除垢,除垢完成后通过重金属处理箱捕获所述滤液中的重金属,并重新进行过滤;
步骤4、对重新过滤后的滤液进行蒸发、结晶和干燥,得到七水硫酸镁产品。
所述处理方法的具体实现原理可以参照前述实施例,此处不再赘述。
以上所述实施例仅用以说明本方案的技术方案,而非对其限制;尽管参照前述实施例对本方案进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使对应技术方案的本质脱离本方案各实施例技术方案的精神和范围,均应包含在本方案的保护范围之内。

Claims (10)

  1. 一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统,其特征在于:包括通过管道依次连接的预处理装置、蒸发装置、结晶装置以及干燥装置;
    所述预处理装置包括保温氧化罐、与保温氧化罐出口连接的第一板框压滤机、与第一板框压滤机滤液出口连接的除垢器,以及与除垢器出口连接的重金属处理箱,所述保温氧化罐侧壁上开有氧气进口,所述氧气进口与氧化风机连接;于所述保温氧化罐上还设有与保温氧化罐呈回路连接的、并用以控制保温氧化罐内温度的列管换热器;所述重金属处理箱出口与第二板框压滤机进口连接,所述第二板框压滤机的出口与滤液池进口连接;
    所述蒸发装置用于对所述预处理装置输出的滤液进行蒸发;
    所述结晶装置用于对所述蒸发装置输出的滤液进行结晶,形成晶体;
    所述干燥装置用于对所述结晶装置输出的晶体进行干燥。
  2. 根据权利要求1所述的一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统,其特征在于:所述保温氧化罐的进料口与破碎机出口连接,而所述破碎机进口与水力旋流器出口连接。
  3. 根据权利要求1所述的一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统,其特征在于:所述保温氧化罐内设有搅拌器,并于所述保温氧化罐上连接有对保温氧化罐内液体强制循环的循环泵。
  4. 根据权利要求1所述的一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统,其特征在于:所述重金属处理箱由多个小重金属处理箱串联而成。
  5. 根据权利要求1所述的一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统,其特征在于:所述蒸发装置包括与滤液池出口连接的冷凝水预热器,以及与冷凝水预热器出口连接的三效蒸发器。
  6. 根据权利要求5所述的一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统,其特征在于:所述结晶装置包括与三效蒸发器出口连接的结晶器、以及与结晶器呈回路连接的外冷器,所述结晶器的侧壁底部设有料液出口,所述料液出口通过管道与离心机的进口连接,所述离心机的液体出口通过管道与母液罐进口连接,所述离心机固体出口用于离心得到的结晶体的排出。
  7. 根据权利要求6所述的一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统,其特征在于:所述母液罐出口通过管道经由泵连接三效蒸发器进口。
  8. 根据权利要求1所述的一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统,其特征在于:所述干燥装置包括与离心机固体出口连接的流化床干燥器,于所述流化床干燥器的底板上设有送风口和冷风口,所述送风口与送风机连接,所述冷风口与冷风机连接;于所述流化床干燥器远离进料口端设有成品排料口。
  9. 根据权利要求8所述的一种镁法脱硫副产物精制七水硫酸镁工艺的处理系统,其特征在于:于所述流化床干燥器的顶面上设有废气出口,所述废气出口与旋风除尘器进口连接,所述旋风除尘器出口与布袋除尘器进口连接。
  10. 一种镁法脱硫副产物精制七水硫酸镁工艺的处理方法,其特征在于,包括以下步骤:
    对镁法脱硫副产物浆液进行氧化,得到硫酸镁浆液;
    对所述硫酸镁浆液进行过滤,得到滤液;
    对所述滤液进行除垢,除垢完成后通过重金属处理箱捕获所述滤液中的重金属,并重新进行过滤;
    对重新过滤后的滤液进行蒸发、结晶和干燥,得到七水硫酸镁产品。
PCT/CN2018/092906 2017-06-27 2018-06-26 镁法脱硫副产物精制七水硫酸镁工艺的处理系统及方法 WO2019001430A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201720755781.4 2017-06-27
CN201720755781.4U CN206843088U (zh) 2017-06-27 2017-06-27 镁法脱硫副产物精制七水硫酸镁工艺的处理系统

Publications (1)

Publication Number Publication Date
WO2019001430A1 true WO2019001430A1 (zh) 2019-01-03

Family

ID=60802719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092906 WO2019001430A1 (zh) 2017-06-27 2018-06-26 镁法脱硫副产物精制七水硫酸镁工艺的处理系统及方法

Country Status (2)

Country Link
CN (1) CN206843088U (zh)
WO (1) WO2019001430A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206843088U (zh) * 2017-06-27 2018-01-05 河北纽思泰伦环保科技有限公司 镁法脱硫副产物精制七水硫酸镁工艺的处理系统
CN113856429B (zh) * 2021-09-30 2024-04-09 沈阳工业大学 一种基于资源化利用的镁法脱硫装置及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103588231A (zh) * 2013-11-28 2014-02-19 童裳慧 制备硫酸镁的方法
CN103785286A (zh) * 2014-02-17 2014-05-14 佛山市三叶环保设备工程有限公司 一种回收七水硫酸镁的镁法烟气脱硫工艺
CN104445306A (zh) * 2014-12-03 2015-03-25 北京中晶佳镁环境科技股份有限公司 制造硫酸镁的装置与方法
CN104528783A (zh) * 2015-01-09 2015-04-22 中节能六合天融环保科技有限公司 一种制备七水硫酸镁的结晶干燥一体化方法
CN205084611U (zh) * 2015-10-13 2016-03-16 日胜兴应用材料股份有限公司 镁法脱硫零排放回收系统
CN206843088U (zh) * 2017-06-27 2018-01-05 河北纽思泰伦环保科技有限公司 镁法脱硫副产物精制七水硫酸镁工艺的处理系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103588231A (zh) * 2013-11-28 2014-02-19 童裳慧 制备硫酸镁的方法
CN103785286A (zh) * 2014-02-17 2014-05-14 佛山市三叶环保设备工程有限公司 一种回收七水硫酸镁的镁法烟气脱硫工艺
CN104445306A (zh) * 2014-12-03 2015-03-25 北京中晶佳镁环境科技股份有限公司 制造硫酸镁的装置与方法
CN104528783A (zh) * 2015-01-09 2015-04-22 中节能六合天融环保科技有限公司 一种制备七水硫酸镁的结晶干燥一体化方法
CN205084611U (zh) * 2015-10-13 2016-03-16 日胜兴应用材料股份有限公司 镁法脱硫零排放回收系统
CN206843088U (zh) * 2017-06-27 2018-01-05 河北纽思泰伦环保科技有限公司 镁法脱硫副产物精制七水硫酸镁工艺的处理系统

Also Published As

Publication number Publication date
CN206843088U (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
US10131546B2 (en) Apparatus and method for producing magnesium sulfate from coal-fired boiler flue gas
WO2018040852A1 (zh) 一种用烟气余热处理脱硫废水的系统及方法
CN104445306B (zh) 制造硫酸镁的装置与方法
CN103585877B (zh) 利用烟气脱硫后浆液制备硫酸镁的系统
CN103588230B (zh) 制造硫酸镁的系统
CN1762550A (zh) 一种氧化镁烟气脱硫及产物浓浆法氧化回收工艺
CN103977694A (zh) 一种脱除烟气中二氧化硫的方法及其系统
CN103588231B (zh) 制备硫酸镁的方法
CN112919499A (zh) 一种碳酸氢钠干法脱硫灰资源化处理的方法
WO2019001430A1 (zh) 镁法脱硫副产物精制七水硫酸镁工艺的处理系统及方法
CN103224221A (zh) 一种利用一水硫酸亚铁渣分离硫酸与硫酸亚铁的方法
CN104383797B (zh) 一种烟气的干湿法净化回收处理工艺
CN102806004A (zh) 镁法脱硫副产物回收工艺
CN102923674A (zh) 钛白粉生产过程中含硫酸亚铁的副产物的回收利用方法
CN108128788A (zh) 一种从脱硫脱硝废水中回收硫酸钠的方法
CN111760457A (zh) 一种烟气脱硫废盐再生方法及设备
CN111672879A (zh) 一种基于火电厂节能环保一体化的废盐资源化系统及方法
CN108658353B (zh) 一种氯化钙废水处理工艺
CN103265053A (zh) 脱硫废液回收硫酸盐的方法及其设备系统
CN216226123U (zh) 一种钠基干法脱硫灰资源化利用装置
TWM573342U (zh) Processing system for purifying magnesium sulfate by magnesium by desulfurization by-product
CN214693342U (zh) 一种含有机物的工业盐混盐处理系统
CN205687575U (zh) 一种氧化镁湿法脱硫副产物的处理装置
CN111592163B (zh) 一种脱硫废水零排放处理系统及处理方法
CN212492410U (zh) 一种烟气脱硫废盐再生设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823170

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04-06-2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18823170

Country of ref document: EP

Kind code of ref document: A1