WO2019001377A1 - 基于单模块的空调器电量检测方法和空调器 - Google Patents

基于单模块的空调器电量检测方法和空调器 Download PDF

Info

Publication number
WO2019001377A1
WO2019001377A1 PCT/CN2018/092556 CN2018092556W WO2019001377A1 WO 2019001377 A1 WO2019001377 A1 WO 2019001377A1 CN 2018092556 W CN2018092556 W CN 2018092556W WO 2019001377 A1 WO2019001377 A1 WO 2019001377A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
fan
indoor
air conditioner
input command
Prior art date
Application number
PCT/CN2018/092556
Other languages
English (en)
French (fr)
Inventor
吕兴宇
许国景
刘聚科
程永甫
刘运涛
宋世芳
徐贝贝
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019001377A1 publication Critical patent/WO2019001377A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the field of air conditioning equipment, and in particular, to a single module based air conditioner power detecting method, and an air conditioner using the same.
  • the high power consumption of air conditioners is an important reason for limiting the widespread use of air conditioners, especially for civilian use.
  • the user can hardly understand the actual power consumption of the various components in the air conditioner, and the actual power consumption of the air conditioner in different operating modes.
  • the basic understanding of the user's power consumption of air conditioners comes from the publicity and traditional cognition of popular science news, which not only can not help users save energy, but also may prompt users to choose unreasonable air conditioning usage according to the usage habits of ordinary household appliances. For example, in order to save power and frequently switch the inverter air conditioner, this aspect sacrifices the user experience, and on the other hand does not achieve the purpose of energy saving.
  • the prior art also designs a method for calculating the power consumption of the air conditioner according to the established empirical model, such as the Chinese patent (Application No. 2015104690759) "Method, device and air conditioner for detecting the power consumption of the air conditioner
  • the technical solution disclosed in the article “acquisition of the angle of the indoor air guide strip, the temperature of the indoor heat exchanger, the indoor temperature and the indoor environmental humidity, by establishing the effective value of the voltage of the outdoor unit, the angle of the air guide of the indoor unit,
  • the power estimation model function associated with the temperature of the indoor heat exchanger, the indoor ambient temperature, and the indoor ambient humidity estimates the operating power of the indoor fan; ...the indoor control of the temperature of the indoor heat exchanger, the operating power of the indoor fan, and the voltage of the outdoor unit
  • the effective value is used as the first input variable, and the operating power of the PTC heater is modeled according to the first input variable to estimate the operating power of the PTC heater.
  • the complex data model will definitely reduce the speed and accuracy of air conditioner data processing.
  • the step causes the processor to fail to respond quickly to user requests, and at the same time, due to the complex linkage between the various components, it is even more difficult to calculate the power consumption of some of the components according to the user's request.
  • the complex data model obtained in the above patent application relies on the pattern recognition method to calculate the compensation value. For each mode of each air conditioner, at least seven model empirical constants must be obtained based on experimental empirical data. Faced with more and more air conditioners with functional modes, the amount of experimental data is huge, time-consuming and labor-intensive.
  • the method for detecting the power consumption of the air conditioner disclosed in the prior art cannot form an accurate, fast, and flexible method for detecting the power consumption of the air conditioner under the premise of ensuring rapid response to the user request.
  • the invention aims to form an accurate, fast and flexible air conditioner power consumption detecting method under the premise of ensuring quick response to user requests.
  • the invention provides a single module based air conditioner power detecting method, characterized in that the method comprises:
  • the data processing device receives a first input command including a set of switch signals
  • the data processing device receives a second input command including at least one timing signal
  • the indoor unit power includes at least one single module power of the indoor main circuit board power, the indoor display module power, the indoor fan power, and the electric heating power;
  • the outdoor unit power includes the outdoor main circuit board power, the compressor running power, the outdoor fan power, At least one single module power of the electronic expansion valve power and the four-way valve power;
  • the data processing device receives a third input command including a module selection signal
  • the data processing device invokes, displays, and/or transmits an indoor unit power consumption and/or an outdoor unit power consumption associated with the first input instruction, the second input instruction, and the third input instruction in response to the third input instruction.
  • the data processing device continuously determines, according to the third input instruction, a change trend of the selected module power corresponding to the selected signal of the module in the chronograph period corresponding to the timing signal, if the selected module power variation trend satisfies Determining, calling, displaying, and/or transmitting the indoor unit power and/or the outdoor unit power associated with the first input command, the second input command, and the third input command into power consumption; if the module power is selected If the change trend does not satisfy the set condition, when the time period is terminated, the indoor unit power and/or the outdoor unit power associated with the first input command, the second input command, and the third input command are converted into power consumption, and then called, Display and / or transfer.
  • the setting condition is: in the counting period, whether the increment of the selected module power is greater than a set value, and if it is greater than the set value, the first input instruction, the second
  • the indoor unit power of the input command and the third input command and/or the outdoor unit power of the air conditioner are converted into power consumption and displayed and/or transmitted; if not greater than the set value, the first time is associated when the time period expires
  • the indoor unit power and/or the outdoor unit power of the input command, the second input command, and the third input command are converted into power consumption, and then called, displayed, and/or transmitted.
  • the set value ⁇ (5W, 10W).
  • the data processing apparatus receives a fourth input instruction including at least one inquiry signal
  • the converted at least one power consumption is transmitted to the server for storage, and the server receives and responds to the fourth input command, and retrieves the power consumption value of the selected module corresponding to the query signal.
  • the indoor unit main circuit board power P g ' is equal to the rated power of the chip
  • the indoor display module power P x is equal to the sum of the control panel power P g "" and the power P of the prompt light in the working state";
  • the electric heating power P t is equal to the rated electric heating power P t0 .
  • the indoor unit main circuit board power P g ' is equal to the rated power of the chip
  • the indoor display module power P x is equal to the sum of the control panel power P g "" and the power P of the prompt light in the working state";
  • the electric heating power P t is equal to a sum of the set electric heating power P t0 and the corrected electric heating power P t ′, and the corrected electric heating power P t ′ is divided into a plurality of data segments corresponding to the indoor fan driving duty ratio, Each data segment has a corresponding correction weight, and the corrected electric heating power P t ' increases in each data segment as the indoor fan drive duty ratio increases, and the corrected electric heating power P t 'is equal to the fan drive The cumulative value of the product of the ratio increment and the weight of each data segment;
  • the electric heating power P t (P t0 + P t ') k 1 , where k 1 is a deflector correction coefficient, and the deflector correction coefficient deviates from the deflector
  • the distance from the original position increases with increasing distance; k 1 ⁇ (0.9, 1.1).
  • the outdoor unit main circuit board power P g is equal to the chip rated power
  • the outdoor fan power P f2 is:
  • the outdoor fan is a DC fan
  • 1 ⁇ m ⁇ n, m,n is an integer
  • d 1 , d m-1 , d m , d n is an increasing constant
  • P 1 , P m-1 , P m are increasing set values
  • the corresponding rated power set value P f2 ' is selected according to the speed of the outdoor fan, and the outdoor fan power P f2 is equal to the product of the rated power set value and the voltage correction parameter k 2 k 2 ⁇ (0.9, 1.1), the voltage correction parameter k 2 increases as the mains voltage increases;
  • the electronic expansion valve power P d is equal to the rated power of the electronic expansion valve
  • the four-way valve power P s is equal to the four-way valve rated power.
  • the outdoor fan is an AC fan
  • the rated power is divided into two gears, corresponding to each gear speed corresponding to a rated power value P 01 and P 02 , according to the speed of the outdoor fan to select the corresponding rating
  • the power value is taken as the rated power set value P f2 '.
  • the single module air conditioner electric quantity detecting method automatically controls the start and stop state of the air conditioner and selects the counting period of the electric energy consumption, and determines the respective air conditioners by the data processing device associating the air conditioning start and stop state and the timing period.
  • the power of a single module is independently calculated and stored, and the power consumption of any one of the single modules is calculated, called, displayed, and transmitted according to the module selection process that the user can actively intervene.
  • the entire association, determination, calculation, and calling process are independent of
  • the environmental parameters of the air-conditioned room or the complex data model have the advantages of high data calculation accuracy, fast response and good flexibility.
  • the invention also discloses an air conditioner, which adopts a single module-based air conditioner electric quantity detecting method.
  • the single module based air conditioner power detecting method includes:
  • the data processing device receives a first input command including a set of switch signals
  • the data processing device receives a second input command including at least one timing signal
  • the indoor unit power includes at least one single module power of the indoor main circuit board power, the indoor display module power, the indoor fan power, and the electric heating power;
  • the outdoor unit power includes the outdoor main circuit board power, the compressor running power, the outdoor fan power, At least one single module power of the electronic expansion valve power and the four-way valve power;
  • the data processing device receives a third input command including a module selection signal
  • the data processing device invokes, displays, and/or transmits an indoor unit power consumption and/or an outdoor unit power consumption associated with the first input instruction, the second input instruction, and the third input instruction in response to the third input instruction.
  • the power consumption of any one of the single modules in the chronograph period or the plurality of single modules can be transmitted, displayed, recalled, calculated according to the needs of the user or the manufacturer, and the process of detecting and calculating,
  • Each module is guaranteed to be relatively independent, and the coupling relationship between the calculation process and the air conditioning environment is small, and the calculation accuracy is high and flexible.
  • it avoids the complicated modeling process, so that users can understand the actual power consumption of each single module, indoor unit, outdoor unit and whole machine, and establish good usage habits according to the actual power consumption, while ensuring the comfort of use. To save energy.
  • FIG. 1 is a flow chart of a first embodiment of a single module-based air conditioner power detecting method according to the present invention
  • FIG. 2 is a flow chart of a second embodiment of a single module-based air conditioner power detecting method according to the present invention.
  • FIG. 1 is a flow chart showing a first embodiment of a single module-based air conditioner power detecting method according to the present invention. As shown, it is implemented by the following steps.
  • the data processing of the entire air conditioner power detection is realized by a data processing device, and the data processing device is preferably an independent MCU to improve the accuracy and speed of the entire power calculation process; the data processing device can also It is realized by the control chip of the indoor unit.
  • the data processing device receives a first input command that includes a set of switch signals.
  • the first input command may be derived from a remote control of the air conditioner, including but not limited to a conventional infrared remote control, and a smart terminal remote control that is open through a software interface.
  • the first input command can also originate from communication with the indoor unit motherboard.
  • the indoor unit mainboard receives the remote control signal to generate and transmit the first input command to the data processing device.
  • the data processing device is responsive to the first input command to receive a switch state of the air conditioner.
  • the data processing device can also receive a standby command including a standby signal.
  • the data processing device responds to the standby command to receive the standby state of the air conditioner, and monitors the power consumption of the air conditioner in the standby state by the data processing device, and the power of the portion is usually derived from the standby state display device, the switching power supply of the air conditioner, and the control.
  • the basic energy consumption of the board's chip is responsive to the first input command to receive a switch state of the air conditioner.
  • the data processing device can also receive a standby command including a standby signal.
  • the data processing device responds to the standby command to receive the standby state of the air conditioner, and monitors the power consumption of the air conditioner in the standby state by the data processing device, and the power of the portion is usually derived from the standby state display device, the switching power supply of the air conditioner, and the control.
  • a second input command including at least one timing signal is also received prior to the data processing device beginning to operate.
  • the timing signal in the second input command corresponds to a fixed power consumption counting period, the timing period may be set by the user, or may be a default setting at the factory, and the data processing device responds to the second input command to receive the timing period.
  • the duration of the chronograph period is preferably several hours, which is sufficient to keep the operating state of the air conditioner relatively stable.
  • a plurality of timing periods may also be determined by the plurality of timing signals by the second input command.
  • the data processing device correlates the first input command and the second input command to further determine the indoor unit power and/or the outdoor unit power of the air conditioner in the time period corresponding to the timing signal. Mainly, the data processing device determines the change trend of the indoor unit power and the outdoor unit power in the current switch state according to the set timing period, and calculates the corresponding power amount at the set time node.
  • the indoor unit power includes at least one single module power of the indoor main circuit board power, the indoor display module power, the indoor fan power, and the electric heating power
  • the outdoor unit power includes the outdoor main circuit board power and the compressor operation. At least one single module power of power, outdoor fan power, electronic expansion valve power, and four-way valve power.
  • each single module power is independently calculated and stored, and can be independently called.
  • the data processing device In determining the indoor unit power and/or the outdoor unit power, the data processing device simultaneously determines whether the power of each single module is within a reasonable interval, and if a reasonable interval is exceeded, an alarm signal is generated.
  • the data processing apparatus further receives a third input command including a module selection signal.
  • the data processing device is responsive to the third input command to receive the module selection information.
  • the selected module corresponding to the default setting of the module selection signal is an empty adjustment machine, that is, in the start and stop state of the air conditioner determined by the first input command, in the timing period set by the second input command, the single module of the air conditioner as a whole The sum of power consumption.
  • a more preferred manner is that the module selection signal accepts the active intervention of the user, and the user can actively output the third input instruction including the module selection signal for intervention through the remote control terminal or through the indoor unit motherboard. .
  • the user actively selects the power consumption of one of the single modules through the selected signal of the module, or the power consumption of the independent indoor unit, and the power consumption of the independent outdoor unit.
  • the data processing device determines, in response to the third input instruction, the power consumption of the indoor unit associated with the first input command, the second input command, and the third input command, and/or the power consumption of the outdoor unit, further invoking, displaying, and/or transmitting the power consumption of the indoor unit
  • the outdoor unit consumes power to a display device of a specified user terminal, server, cloud platform, or air conditioner.
  • the third input command is preferably a set of remote control coded signals, and the remote control coded signals respectively correspond to the selected module for each single module, all single modules included in the indoor unit, and all the singles included in the outdoor unit. Modules and all single modules included in the complete machine.
  • the remote control coded signal is generated by the buttons on the remote terminal and the actions on the buttons. Taking the display action as an example, after receiving the corresponding coded signal, the data processing device continuously or switches the display of the power consumption of each single module corresponding to the set duration, the power consumption of the indoor unit, the power consumption of the outdoor unit, and the whole on the selected display device. The machine consumes power, so that the user can clearly understand the power consumption of the various functional components of the air conditioner during the time period.
  • the data processing device is independently set and the data calculation of each single module does not interfere with each other, and is not affected by the air conditioning operation mode, the data calculation process is accurate and the response is fast. Further, in the calculation process, the start-stop time corresponding to the switch signal included in the first input instruction is matched with the clock of the MCU to obtain the running season of the air conditioner and the corresponding external environment data, and transmitted to the cloud platform to obtain the external environment through association.
  • the relationship between the data, the operating time of the air conditioner and the power consumption of each single module is used as a basis for further optimizing the operation of the air conditioner, or generating a chart as a basis for guiding the user to use the air conditioner reasonably. This type of analysis does not depend on parameters such as heat exchanger temperature, room temperature and ambient temperature, which are more frequently changed, and is more intuitive and accurate for the user.
  • the user actively controls the start and stop state of the air conditioner and selects the counting period of the power consumption, and determines the air conditioner by the data processing device associating the air conditioning start and stop state and the timing period.
  • the power of each single module is independently calculated and stored, and the power consumption of any one of the single modules is calculated, called, displayed, and transmitted according to the module selection process that the user can actively intervene, and the entire association, determination, calculation, and calling process are independent.
  • the environmental parameters of the air-conditioned room or the complex data model have the advantages of high data calculation accuracy, fast response and good flexibility.
  • the process of determining the power consumption of each single module, the indoor unit, the outdoor unit, or the whole machine according to the first input instruction, the second input instruction, and the third input instruction association taking the display action as an example, generating the display value is a continuous
  • the superimposed value of the continuously accumulating changes, due to the data transfer delay and the limitation of the processor's data processing capability, the process of the superposition calculation has data redundancy to some extent.
  • the data processing device after the data processing device responds to the third input command, it first determines the power variation trend of the selected module corresponding to the selected signal of the module in the timing period corresponding to the timing signal.
  • the indoor unit power and/or the outdoor unit power associated with the first input command, the second input command, and the third input command are immediately converted into power consumption, displayed and/or transmitted, and the corresponding correspondence is recorded.
  • Time node If the change trend does not satisfy the set condition, the time node is terminated at the end of the time period, and the time unit is terminated, and the indoor unit power and/or the outdoor unit power of the first input command, the second input command, and the third input command are associated. Displayed and/or transmitted after conversion to power consumption. Thereby avoiding too frequent operations, reducing data processing and removing redundant data, reducing the error between single-module calculation and multi-module accumulated value, and improving detection accuracy.
  • the setting condition for judging the change trend is preferably whether the increment of the selected module power is greater than the set value in the counting period, and the increment is defined as the absolute value of the selected module change value for two consecutive time points. For example, the power increment of the selected module relative to the previous second. If the power increment is greater than the set value, the indoor unit power and/or the outdoor unit power associated with the first input command, the second input command, and the third input command are converted into power consumption, displayed and/or transmitted, and the corresponding correspondence is recorded. Time node. If it is not greater than the set value, when the time period is terminated, the indoor unit power and/or the outdoor unit power associated with the first input command, the second input command, and the third input command are converted into power consumption and displayed. Or transfer, and record as a time node when the timing period is terminated. Preferably, the set value ⁇ (5W, 10W).
  • the data processing device transmits the converted power consumption to the server for storage.
  • the user can query any of the power consumption.
  • the data processing apparatus receives a fourth input instruction including at least one inquiry signal, and the server receives and responds to the fourth input instruction to retrieve the power consumption amount in any one of the time periods corresponding to the inquiry signal.
  • the air conditioner operates during the [T 1 , T 2 ] time period
  • the query signal corresponds to the power consumption in the [T 3 , T 4 ] time period
  • the server retrieves the power consumption of the plurality of time nodes in the query time period. And further transfer or display.
  • the complex environmental parameters in the environment in which the air conditioner is used, and the operational state of its various functional components are complex coupled relationships, and it is basically impossible to obtain a relationship between a single formula determination, and it is more difficult to determine the environmental parameters to the components using a data model.
  • the operating state further compensates for the impact on power consumption.
  • Establishing a complex data model with the prior art determines the power of each single module.
  • the single module air conditioner electric quantity detecting method disclosed by the invention determines the power in the chronograph period by using the physical properties and experience values of each single module, simplifies the coupling relationship between the various components, and keeps the power calculation of each single module relatively independent. There is no need to carry out extensive experimental modeling for different models and air conditioning environments.
  • the indoor unit main circuit board power P g ' is equal to the chip rated power.
  • the indoor unit main board power P g ' mainly is the sum of the power of the main chip and the power of other components in standby operation.
  • the data processing device determines the power and power change trend of the module according to the first input command and the second input command, it is preferably compared with the interval to determine whether to fall into the interval and store or output.
  • the indoor display module power P x is equal to the sum of the control board power P g "" and the power P of the cue lamp in the active state".
  • the control board power P g ” is the total power of all devices on the control panel.
  • the indoor fan power P f1 is obtained by detecting the indoor fan drive duty ratio.
  • the indoor fan power P f1 P 1 ;
  • the indoor fan power P f1 P n , where 1 ⁇ m ⁇ n, m,n is an integer, m,n ⁇ [1,5], where d 1 , d m-1 , d m , d n are increasing constants, P 1 , P m-1 , P m are increasing set values.
  • the indoor fan drive duty cycle is 70%, the indoor fan power According to different models, it is only necessary to adjust the value of the set value according to the ability of different motors. While ensuring the independent calculation of the fan power consumption, it is not necessary to re-detect and calculate the empirical formula.
  • the electric heating power P t is a rated electric heating power P t0 .
  • the electrical heating power P t is affected by the operating state of the indoor fan.
  • the electric heating power P t is equal to the set electric heating power P t0 and the corrected electric heating power P t
  • the sum of the corrected electric heating power P t ' increases as the indoor fan drive duty ratio increases.
  • the electric heating power P t0 is set to a constant value, which can be selected according to different models of electric heating.
  • the corrected electric heating power P t ' is related to the rotational speed of the indoor fan.
  • the corrected electric heating power P t 'corresponding to the indoor fan driving duty ratio is divided into a plurality of data segments, each data segment having a corresponding correction weight w, correcting electricity
  • the heating power P t ' increases in each data segment as the indoor fan drive duty cycle increases, and the corrected electric heating power P t 'increments is equal to the cumulative value of the fan drive duty cycle and the weight value product.
  • the electric heating power P t0 is set to 630W.
  • the corrected electric heating power P t ' is divided into a plurality of data segments according to the following list according to the indoor fan driving duty ratio, and each data segment has a corresponding correction weight w.
  • the position of the air deflector also affects the power of the electric heating.
  • the electric heating power P t (P t0 +P t ')k 1 , where k 1 is the deflector correction coefficient, and the deflector correction coefficient increases as the distance of the deflector from the original position increases; k 1 ⁇ (0.9, 1.1).
  • the standard position is the set running position
  • the standard position is preferably the stepping motor setting step signal corresponding to the running position. If it deviates from the standard position, it is corrected by the air deflector correction coefficient.
  • the correction coefficient of a specific set of preferred air deflectors is shown in the following table:
  • the outdoor unit main circuit board power P g is equal to the chip rated power.
  • the outdoor unit main board power P g is mainly the sum of the power of the main chip and the power of other components in standby operation.
  • the data processing device determines the power and the power change trend of the module according to the first input command and the second input command, it is preferably compared with the interval to determine that the power value does not exceed the interval and then stores or Output.
  • the outdoor fan is a DC fan
  • the outdoor fan power P f2 P n , where 1 ⁇ m ⁇ n, m,n is an integer, m,n ⁇ [1,5], where d 1 , d m-1 , d m , d n are increasing constants, P 1 , P m-1 , P m are increasing set values.
  • the outdoor fan drive duty cycle is 70%, the outdoor fan power According to different models, it is only necessary to adjust the value of the set value according to the ability of different motors. While ensuring the independent calculation of the fan power consumption, it is not necessary to re-detect and calculate the empirical formula.
  • the outdoor fan is an AC fan, first select the corresponding rated power set value P f2 ' according to the speed of the outdoor fan.
  • the rated power is preferably divided into two gears according to the rotational speed of the outdoor fan, and one rated power value P 01 and P 02 is assigned corresponding to each wind speed. Determine the wind speed gear position to which the current outdoor fan speed belongs, and then select the corresponding rated power value as the rated power set value P f2 '.
  • the outdoor fan power P f2 is equal to the product of the rated power set value and the voltage correction parameter k 2 , and the outdoor fan power P f2 increases as the mains voltage increases, k 2 ⁇ (0.9, 1.1).
  • a set of specific preferred deflector correction factors are shown in the following table:
  • the electronic expansion valve power P d is equal to the rated power of the electronic expansion valve.
  • the motor controlling the electronic expansion valve has a short operating time, and the power is usually between 0 and 5 W, preferably 3 W.
  • the four-way valve power P s is equal to the four-way valve rated power, and the four-way valve operates only in the heating mode, and the power is usually between 0 and 5 W, preferably 4 W.
  • the power determinations of the modules of the indoor unit and the outdoor unit are relatively independent from each other, and the coupling relationship is appropriately corrected to ensure the accuracy of the data, and also ensure that the power of each single module can be independently determined. Called and calculated for power consumption based on the timing period. After the experiment, the error of the air conditioner power detection can be controlled within 5%.
  • the invention also discloses an air conditioner, which adopts any single module-based air conditioner electric quantity detecting method as disclosed in the above embodiments.
  • the power consumption of any one of the single modules in the chronograph period or the plurality of single modules can be transmitted, displayed, recalled, calculated according to the needs of the user or the manufacturer, and the process of detecting and calculating,
  • Each module is guaranteed to be relatively independent, and the coupling relationship between the calculation process and the air conditioning environment is small, and the calculation accuracy is high and flexible.
  • it avoids the complicated modeling process, so that users can understand the actual power consumption of each single module, indoor unit, outdoor unit and whole machine, and establish good usage habits according to the actual power consumption, while ensuring the comfort of use. To save energy.
  • For a detailed description of the specific steps of the method for detecting the electric quantity of the air conditioner based on the single module refer to the detailed description of the above embodiments, and details are not described herein again.

Abstract

一种基于单模块的空调器电量检测方法,数据处理装置接收包括开关机信号的第一输入指令;包括计时信号的第二输入指令;关联第一输入指令和第二输入指令确定空调器在计时信号对应的计时周期中的室内机和/或室外机功率;其中室内机功率包括室内机主电路板功率、室内显示模块功率、室内风机功率、电加热功率中的至少一个单模块功率;室外机功率包括室外机主电路板功率、压缩机运行功率、室外风机功率、电子膨胀阀功率、四通阀功率中的至少一个单模块功率;接收包括模块选定信号的第三输入指令;数据处理装置响应第三输入指令,调用、显示和/或传输室内机和/或室外机消耗电量。还公开一种使用该方法的空调器。

Description

基于单模块的空调器电量检测方法和空调器 技术领域
本发明涉及空气调节设备技术领域,尤其涉及一种基于单模块的空调器电量检测方法,以及采用该种电量检测方法的空调器。
背景技术
空调器耗电高是限制空调器广泛使用的一个重要原因,尤其是针对民用使用场所。实际上,用户几乎不能清楚地了解到空调器中各个部件的实际耗电情况,也不了解空调器在不同的运行模式下的实际耗电情况。用户对于空调器耗电的基本认知来自于科普新闻的宣传和传统的认知,这不仅不能帮助用户节约能耗,更可能促使用户按照普通家用电器的使用习惯选择不合理的空调使用方式,比如为了省电频繁地开关变频空调器等,这一方面牺牲了用户体验,另一方面并未达到节能省电的目的。
为了帮助用户了解使用空调器时的电量,现有技术中设计了多种方式检测空调器使用时的电量消耗,如中国专利申请(申请号2013102004604)《空调器的电能检测方法及电能检测装置》中公开的技术方案,根据输入交流电的电压瞬时值和输入交流电的电流瞬时值计算空调器在预设时间段内的电能信息。这种方法的检测精度较低,用户也很难了解自己对空调器的控制方式对空调器电量的影响。为了进一步提高检测的精度,现有技术中还设计了根据既定的经验模型计算空调器耗电量的方法,如中国专利(申请号2015104690759)《空调器的耗电量检测方法、装置和空调器》中所公开的技术方案“获取室内机导风条的角度、室内换热器的温度、室内温度和室内环境湿度,通过建立与室外机的电压有效值、室内机的导风条的角度、室内换热器的温度、室内环境温度和室内环境湿度相关联的功 率估计模型函数估算室内风机的运行功率;…室内控制其将室内换热器的温度、室内风机的运行功率和室外机的电压有效值作为第一输入变量,以及根据第一输入变量对PTC加热器的运行功率进行建模以估算出PTC加热器的运行功率。”不难理解,对于空调器来说,其内部设置的数据处理系统的能力有限,复杂的数据模型必定会降低空调器数据处理的速度和精度,进一步导致处理器无法快速响应用户请求,同时,由于各个部件之间的复杂联动的耦合关系,更无法根据用户请求计算显示其中部分部件的耗电量。而且,作为输入参数,室内换热器的温度、室内环境温度和室内环境温度的检测存在明显的滞后性,很难在很短的时间内准确的计算出理想的耗电量数据。此外,上述专利申请中得到的复杂数据模型依赖于模式识别法计算补偿值,对于每一款空调的每一个模式,必须根据实验经验数据得到至少七个模型经验常数。面对功能模式越来越多的空调器,造成实验数据量庞大,耗时耗力。
综上所述,现有技术中所公开的空调器消耗电量检测方法,无法在保证快速响应用户请求的前提下,形成一种准确、快速、灵活的空调器耗电量检测方法。
发明内容
本发明旨在在保证快速响应用户请求的前提下,形成一种准确、快速、灵活的空调器消耗电量检测方法。
本发明提供一种基于单模块的空调器电量检测方法,其特征在于,所述方法包括:
数据处理装置接收包括一组开关机信号的第一输入指令;
数据处理装置接收包括至少一个计时信号的第二输入指令;
由所述数据处理装置关联所述第一输入指令和所述第二输入指令确定空调器在所述计时信号对应的计时周期中的室内机功率和/或室外机功率;其中所述室内机功率包括室内机主电路板功率、室内显示模块功率、室内风机功 率、电加热功率中的至少一个单模块功率;所述室外机功率包括室外机主电路板功率、压缩机运行功率、室外风机功率、电子膨胀阀功率、四通阀功率中的至少一个单模块功率;
数据处理装置接收包括模块选定信号的第三输入指令;
数据处理装置响应所述第三输入指令,调用、显示和/或传输关联所述第一输入指令、第二输入指令和第三输入指令的室内机消耗电量和/或室外机消耗电量。
进一步的,所述数据处理装置响应所述第三输入指令,连续判断所述计时信号对应的计时周期中模块选定信号对应的选定模块功率的变化趋势,如果选定模块功率变化趋势满足设定条件,则将关联所述第一输入指令、第二输入指令和第三输入指令的室内机功率和/或室外机功率换算为消耗电量后调用、显示和/或传输;如果选定模块功率变化趋势不满足设定条件,则在计时周期终止时,将关联所述第一输入指令、第二输入指令和第三输入指令的室内机功率和/或室外机功率换算为消耗电量后调用、显示和/或传输。
进一步的,所述设定条件为,在所述计时周期中,所述选定模块功率的增量是否大于设定值,如果大于设定值,则将关联所述第一输入指令、第二输入指令和第三输入指令的室内机功率和/或空调其室外机功率换算为消耗电量后显示和/或传输;如果不大于设定值,则在计时周期终止时,将关联所述第一输入指令、第二输入指令和第三输入指令的室内机功率和/或室外机功率换算为消耗电量后调用、显示和/或传输。
优选的,所述设定值∈(5W,10W)。
进一步的,数据处理装置接收包括至少一个查询信号的第四输入指令;
换算出的至少一个消耗电量传输至服务器中存储,服务器接收并响应第四输入指令,调取所述查询信号对应的选定模块的所述消耗电量值。
进一步的,确定室内机功率时:
所述室内机主电路板功率P g’等于芯片额定功率;
所述室内显示模块功率P x等于控制板功率P g”与处于工作状态的提示灯的功率P”之和;
所述室内风机功率P f1为:当室内风机驱动占空比d<d 1时,所述室内风机功率P f1=P 1;当风机驱动占空比d m-1<d<d m时,所述室内风机功率
Figure PCTCN2018092556-appb-000001
当风机驱动占空比d>d n时,所述室内风机功率P f1=P n,其中1≤m≤n,m,n为整数,d 1,d m-1,d m,d n为递增的常数,P 1,P m-1,P m为递增的设定值;
所述电加热功率P t等于额定电加热功率P t0
作为另一种备选方案,确定室内机功率时:
所述室内机主电路板功率P g’等于芯片额定功率;
所述室内显示模块功率P x等于控制板功率P g”与处于工作状态的提示灯的功率P”之和;
所述室内风机功率P f1为:当室内风机驱动占空比d<d 1时,所述室内风机功率P f1=P 1;当风机驱动占空比d m-1<d<d m时,所述室内风机功率
Figure PCTCN2018092556-appb-000002
当风机驱动占空比d>d n时,所述室内风机功率P f1=P n,其中1≤m≤n,m,n为整数,d 1,d m-1,d m,d n为递增的常数,P 1,P m-1,P m为递增的设定值;
所述电加热功率P t等于设定电加热功率P t0和校正电加热功率P t’之和,所述校正电加热功率P t’对应所述室内风机驱动占空比分为多个数据段,每一个数据段具有对应的校正权重,所述校正电加热功率P t’在每一个数据段中随所述室内风机驱动占空比的增加而增加,校正电加热功率P t’等于风机驱动占空比增量和每一个数据段权重值乘积的累加值;
如果导风板运行,则所述电加热功率P t=(P t0+P t’)k 1,其中k 1为导风板校正系数,所述导风板校正系数随所述导风板偏离原始位置距离的增加而增加;k 1∈(0.9,1.1)。
进一步的,确定室外机功率时:
所述室外机主电路板功率P g等于芯片额定功率;
所述压缩机运行功率
Figure PCTCN2018092556-appb-000003
其中U为电源电压有效值,I为电源电流有效值;
所述室外风机功率P f2为:
如果室外风机为直流风机,则当室外风机驱动占空比d<d 1时,所述室外风机功率P f2=P 1;当风机驱动占空比d m-1<d<d m时,所述室外风机功率
Figure PCTCN2018092556-appb-000004
当风机驱动占空比d>d n时,所述室外风机功率P f2=P n,其中1≤m≤n,m,n为整数,其中,d 1,d m-1,d m,d n为递增的常数,P 1,P m-1,P m为递增的设定值;
如果室外风机为交流风机,则根据室外风机的转速选取对应的额定功率设定值P f2’,室外风机功率P f2等于额定功率设定值和电压修正参数k 2的乘积k 2∈(0.9,1.1),电压修正参数k 2随市电电压的增加而增加;
所述电子膨胀阀功率P d等于电子膨胀阀额定功率;
所述四通阀功率P s等于四通阀额定功率。
进一步的,如果室外风机为交流风机,根据室外风机的转速,将额定功率分为两档,对应每一档风速对应分配一个额定功率值P 01和P 02,根据室外风机的转速选取对应的额定功率值作为额定功率设定值P f2’。
本发明所提供的单模块的空调器电量检测方法,由用户主动控制空调器的启停状态并选定电量消耗的计时周期,通过数据处理装置关联空调启停状态和计时周期确定空调器中各个单模块的功率,独立计算并存储,并根据用户可以主动干预的模块选定过程,计算并调用、显示、传输其中任意一个单模块的消耗电量,整个关联、确定、计算、调用过程不依赖于空调房间的环境参数或者复杂的数据模型,具有数据计算精度高、响应速度快且灵活性好的优点。
本发明同时公开一种空调器,采用基于单模块的空调器电量检测方法。基于单模块的空调器电量检测方法包括:
数据处理装置接收包括一组开关机信号的第一输入指令;
数据处理装置接收包括至少一个计时信号的第二输入指令;
由所述数据处理装置关联所述第一输入指令和所述第二输入指令确定空调器在所述计时信号对应的计时周期中的室内机功率和/或室外机功率;其中所述室内机功率包括室内机主电路板功率、室内显示模块功率、室内风机功率、电加热功率中的至少一个单模块功率;所述室外机功率包括室外机主电路板功率、压缩机运行功率、室外风机功率、电子膨胀阀功率、四通阀功率中的至少一个单模块功率;
数据处理装置接收包括模块选定信号的第三输入指令;
数据处理装置响应所述第三输入指令,调用、显示和/或传输关联所述第一输入指令、第二输入指令和第三输入指令的室内机消耗电量和/或室外机消耗电量。
本发明所公开的空调器中,可以根据用户需求,或者厂家的需求传输、显示、调用、计算设定计时周期中任意一个单模块,或多个单模块的消耗电量,检测计算的过程中,各模块保证相对独立,且计算过程与空调使用环境的耦合关系小,计算精度高且灵活。同时还避免了繁杂的建模过程,使得用户可以了解各个单模块、室内机、室外机以及整机的实际消耗电量,并根据实际耗电量建立良好的使用习惯,在保证使用舒适性的同时起到节约能耗的目的。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明所公开的基于单模块的空调器电量检测方法第一种实施例的流程图;
图2为本发明所公开的基于单模块的空调器电量检测方法第二种实施例的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参见图1所示为本发明所公开的基于单模块的空调器电量检测方法第一种实施例的流程图。如图所示,具有由以下步骤实现。
与现有技术完全不同,首先,整个空调器电量检测的数据处理通过数据处理装置实现,数据处理装置优选为一颗独立的MCU,以提高整个电量计算过程的精度和速度;数据处理装置也可以是由室内机的控制芯片实现。在检测电量的过程中,数据处理装置接收包括一组开关信号的第一输入指令。第一输入指令可以来源于空调器的遥控装置,包括但不限于传统的红外遥控器,以及通过软件接口开放的智能终端遥控装置。第一输入指令还可以来源于与室内机主板的通信。室内机主板接收遥控信号生成并传输第一输入指令至数据处理装置。数据处理装置响应第一输入指令以接收空调器的开关状态。数据处理装置还可以接收包括待机信号的待机指令。数据处理装置响应待机指令以接收空调器的待机状态,通过数据处理装置监控在待机状态下空调器的耗电情况,这部分的电量通常是来源于待机状态显示装置、空调器的开关电源、控制板的芯片的基本能耗。
在数据处理装置开始运行之前,还接收包括至少一个计时信号的第二输入指令。第二输入指令中的计时信号对应一个固定的消耗电量统计计时周期, 计时周期可以是用户设定的,也可以是出厂时的默认设定,数据处理装置响应第二输入指令以接收计时周期。计时周期的时长优选为数小时,足以保持空调器的工作状态相对稳定。在空调器的一次启停控制中,也可以通过第二输入指令通过多个计时信号确定多个计时周期。
数据处理装置关联第一输入指令和第二输入指令,进一步确定空调器在计时信号对应的计时周期中的室内机功率和/或室外机功率。主要的,数据处理装置根据设定的计时周期确定在本次开关状态中,室内机功率、室外机功率的变化趋势,并在设定的时间节点计算对应的电量。具体来说,其中室内机功率包括室内机主电路板功率、室内显示模块功率、室内风机功率、电加热功率中的至少一个单模块功率,室外机功率包括室外机主电路板功率、压缩机运行功率、室外风机功率、电子膨胀阀功率、四通阀功率中的至少一个单模块功率。在数据处理装置中,每一个单模块功率均独立计算和存储,并可以独立调用。在确定室内机功率和/或室外机功率的过程中,数据处理装置同时判定每一个单模块的功率是否在合理的区间内,如果超出了合理的区间,则生成报警信号。
数据处理装置进一步接收包括模块选定信号的第三输入指令。数据处理装置响应第三输入指令以接收模块选定信息。模块选定信号默认设定对应的选定模块为空调整机,即在第一输入指令确定的空调器启停状态下,在第二输入指令设定的计时周期中,空调器各个单模块整体消耗电量之和。在本实施例中,一种更为优选的方式是,模块选定信号接受用户的主动干预,用户可以通过遥控终端或者通过室内机主板主动输出包括进行干预的模块选定信号的第三输入指令。比如,用户通过模块选定信号主动选择获知其中某一个单模块的消耗电量,或者独立的室内机消耗电量,以及独立的室外机消耗电量。数据处理装置响应第三输入指令,确定关联第一输入指令、第二输入指令和第三输入指令的室内机消耗电量和/或室外机消耗电量,进一步调用、显示和/或传输室内机消耗电量、室外机消耗电量至指定的用户终端、服务器、 云平台或者空调器的显示装置。一种优选的方式为,第三输入指令优选为一组遥控器编码信号,遥控器编码信号分别对应选定的模块为每一个单模块、室内机包括的全部单模块、室外机包括的全部单模块以及整机包括的全部单模块。遥控器编码信号通过遥控终端上的按键,以及在按键上的动作生成。以显示动作为例,数据处理设备接收到对应的编码信号后,在选定的显示设备上连续或切换显示对应设定时长的各个单模块消耗电量、室内机消耗电量、室外机消耗电量、整机消耗电量,从而使得用户可以清楚地了解到在计时周期中空调器各个功能部件的耗电情况。由于数据处理装置独立设置、各个单模块的数据计算互不干扰,也不受到空调运行模式的影响,数据计算过程精确、响应快速。进一步的,在计算过程中,通过第一输入指令包括的开关信号对应的启停时刻配合MCU的时钟可以得到空调器的运行季节以及对应的外部环境数据,传输至云平台从而通过关联得到外部环境数据、空调运行时长和各单模块消耗电量之间的关系,作为进一步优化控制空调器运行的基础,或者生成图表,作为指导用户合理使用空调的基础。这种分析方式不依赖于变化频次较高的换热器温度、室内温度以及环境温度等参数,对于用户来说更为直观准确。
本实施例所提供的单模块的空调器电量检测方法,由用户主动控制空调器的启停状态并选定电量消耗的计时周期,通过数据处理装置关联空调启停状态和计时周期确定空调器中各个单模块的功率,独立计算并存储,并根据用户可以主动干预的模块选定过程,计算并调用、显示、传输其中任意一个单模块的消耗电量,整个关联、确定、计算、调用过程不依赖于空调房间的环境参数或者复杂的数据模型,具有数据计算精度高、响应速度快且灵活性好的优点。
在根据第一输入指令、第二输入指令和第三输入指令关联确定各个单模块、室内机、室外机或整机的消耗电量的过程中,以显示动作为例,生成显示值是一个连续并不断累积变化的叠加值,由于数据传递延时以及处理器数 据处理能力的限制,叠加计算的过程在一定程度上存在数据的冗余。为了降低数据的冗余量,数据处理装置响应第三输入指令后,首先判断计时信号对应的计时周期中模块选定信号对应的选定模块的功率变化趋势。如果变化趋势满足设定条件,则即刻将关联第一输入指令、第二输入指令和第三输入指令的室内机功率和/或室外机功率换算为消耗电量后显示和/或传输,并记录对应的时间节点。如果变化趋势不满足设定条件,则在计时周期终止时以计时周期终止时为时间节点,将关联第一输入指令、第二输入指令和第三输入指令的室内机功率和/或室外机功率换算为消耗电量后显示和/或传输。从而避免过于频繁的进行运算,降低数据处理量并去除冗余的数据,降低单模块计算和多模块累加值之间的误差,提高检测精度。
判断变化趋势的设定条件优选为在所述计时周期中,选定模块功率的增量是否大于设定值,增量的定义为连续两个时间点选定模块变化值的绝对值。例如选定模块相对于前一秒的功率增量。如果功率增量大于设定值,则将关联第一输入指令、第二输入指令和第三输入指令的室内机功率和/或室外机功率换算为消耗电量后显示和/或传输,并记录对应的时间节点。如果不大于设定值,则在计时周期终止时,将关联所述第一输入指令、第二输入指令和第三输入指令的室内机功率和/或室外机功率换算为消耗电量后显示和/或传输,并将计时周期终止时作为时间节点记录。优选的,设定值∈(5W,10W)。
同时,数据处理装置将换算出的消耗电量传输至服务器中存储。用户可以查询任意一个消耗电量。具体来说,数据处理装置接收包括至少一个查询信号的第四输入指令,服务器接收并响应第四输入指令,调取查询信号对应的任意一个时间段内的所述消耗电量。例如,空调器在[T 1,T 2]时间段内运行,查询信号对应查询[T 3,T 4]时间段内的消耗电量,服务器调取查询时间段内多个时间节点的消耗电量,并进一步传输或者显示。
空调器的使用环境中复杂的环境参数,以及其各个功能部件的运行状态是复杂耦合的关系,基本无法得到一个单一的公式确定之间的关系,更很难 利用一个数据模型确定环境参数对部件运行状态,进一步补偿对消耗电量的影响。与现有技术中建立复杂的数据模型确定每一个单模块的功率不同。本发明所公开的单模块空调器电量检测方法利用每一个单模块的物理性质和经验值确定其在计时周期中的功率,简化各个部件之间的耦合关系,保持各个单模块的电量计算相对独立,无需采用针对不同机型以及空调环境进行大量的实验建模。
具体来说,为了达到上述目的,确定室内机功率时:
所述室内机主电路板功率P g’等于芯片额定功率。室内机主电路板功率P g’主要为主芯片工作时的功率以及待机工作的其它元器件功率的总和。一般在0-5W区间,数据处理装置根据第一输入指令和第二输入指令确定该模块功率及功率变化趋势时,优选与这一区间进行对比,确定落入该区间后存储或输出。
所述室内显示模块功率P x等于控制板功率P g”与处于工作状态的提示灯的功率P”之和。其中,控制板功率P g”为控制板上所有器件工作时的总功率。提示灯功率为P”=P L*X,其中P L为单个提示灯点亮的功率,X为电量的提示灯的数量。
所述室内风机功率P f1通过检测室内风机驱动占空比获得。当室内风机驱动占空比d<d 1时,所述室内风机功率P f1=P 1;当风机驱动占空比d m-1<d<d m时,所述室内风机功率
Figure PCTCN2018092556-appb-000005
当风机驱动占空比d>d n时,所述室内风机功率P f1=P n,其中1≤m≤n,m,n为整数,m,n∈[1,5],其中,d 1,d m-1,d m,d n为递增的常数,P 1,P m-1,P m为递增的设定值。优选的,n=5,d 1=10%,d 2=30%,d 3=60%,d 4=85%,d 5=95%,P 1=7W,P 2=22W,P 3=46W,P 4=90W,P 5=110W。举例来说,如果室内风机驱动占空比为70%,则室内风机功率
Figure PCTCN2018092556-appb-000006
根据不同的机型,仅需要根据不同电机的能力调整设定值的数值即可,在保证风机消耗电量计算独立的同时,无 需重新检测并计算经验公式。
所述电加热功率P t为额定电加热功率P t0
针对大部分的情况,电加热功率P t受到室内风机的运行状态的影响。为了提高电加热功率P t的计算精度,同时对风机的运行状态进行校正和补偿,在另一种实施方式中,电加热功率P t等于设定电加热功率P t0和校正电加热功率P t’之和,校正电加热功率P t’随所述室内风机驱动占空比的增加而增加。具体来说,设定电加热功率P t0为一个常数值,可以根据电加热的不同型号进行选取。校正电加热功率P t’与室内风机的转速有关,优选的,校正电加热功率P t’对应室内风机驱动占空比分为多个数据段,每一个数据段具有对应的校正权重w,校正电加热功率P t’在每一个数据段中随所述室内风机驱动占空比的增加而增加,校正电加热功率P t’的增量等于风机驱动占空比和权重值乘积的累加值。举例来说,对于某一型号的电加热装置,设定电加热功率P t0为630W。校正电加热功率P t’根据室内风机驱动占空比按照以下列表分为多个数据段,每一个数据段具有对应的校正权重w。
d 40%-50% 50%-60% 60%-80% 80%-95%
w 700 700 300 200
如果当前检测到的室内风机占空比为70%,则校正电加热功率为(50%-40%)*700+(60%-50%)*700+(70%-60%)*300=170W。电加热功率P t等于设定电加热功率P t0和校正电加热功率P t’之和,即630W+170W=800W。
当室内风机运行时,导风板的位置同样也会对电加热的功率造成影响,为了对导风板角度形成的误差进行校正,如果导风板运行,则电加热功率P t=(P t0+P t’)k 1,其中k 1为导风板校正系数,所述导风板校正系数随所述导风板偏离原始位置距离的增加而增加;k 1∈(0.9,1.1)。优选的,导风板处于标准位置时,k 1=1,标准位置为设定的运行位置,标准位置优选为步进电机设定步长信号对应运行位置。如果偏离该标准位置,则通过导风板校正系数对 其进行校正,一组具体的优选导风板校正系数如下表所示:
偏离角度 <-20° -20°~-10° -10°~-5° -5°~5° 5°~10° 10°~20° >20°
k1 0.94 0.96 0.98 1 1.02 1.05 1.08
进一步的,确定室外机功率时,
所述室外机主电路板功率P g等于芯片额定功率。室外机主电路板功率P g主要为主芯片工作时的功率以及待机工作的其它元器件功率的总和。一般在0-5W区间内,数据处理装置根据第一输入指令和第二输入指令确定该模块的功率以及功率变化趋势时,优选与这一区间进行对比,确定功率值不超过该区间后存储或输出。
所述压缩机运行功率
Figure PCTCN2018092556-appb-000007
其中U为电源电压有效值,I为电源电流有效值。
在获得室外风机功率P f2时,首先需要确定室外风机的类型。
如果室外风机为直流风机,则当室外风机驱动占空比d<d 1时,所述室外风机功率P f2=P 1;当风机驱动占空比d m-1<d<d m时,所述室外风机功率
Figure PCTCN2018092556-appb-000008
当风机驱动占空比d>d n时,所述室外风机功率P f2=P n,其中1≤m≤n,m,n为整数,m,n∈[1,5],其中,d 1,d m-1,d m,d n为递增的常数,P 1,P m-1,P m为递增的设定值。优选的,n=5,d 1=10%,d 2=30%,d 3=60%,d 4=85%,d 5=95%,P 1=7W,P 2=22W,P 3=46W,P 4=90W,P 5=110W。举例来说,如果室外风机驱动占空比为70%,则室外风机功率
Figure PCTCN2018092556-appb-000009
根据不同的机型,仅需要根据不同电机的能力调整设定值的数值即可,在保证风机消耗电量计算独立的同时,无需重新检测并计算经验公式。
由于交流风机不论是双速风机还是单速风机都采用开环控制。所以,如果室外风机为交流风机,则首先根据室外风机的转速选取对应的额定功率设定值P f2’。选取对应的额定功率设定值P f2’时,优选根据室外风机的转速,将 额定功率分为两档,对应每一档风速对应分配一个额定功率值P 01和P 02。判定当前室外风机的转速所属的风速档位,进而选取对应的额定功率值作为额定功率设定值P f2’。根据实际应用场景的不同,也可以设定跟多的额定功率值作为额定功率设定值。
室外风机功率P f2等于额定功率设定值和电压修正参数k 2的乘积,且室外风机功率P f2随市电电压的增加而增加,k 2∈(0.9,1.1)。一组具体的优选导风板校正系数如下表所示:
市电电压(V) <200 <210 200 >230 >240
k 2 0.9 0.95 1 1.05 1.1
所述电子膨胀阀功率P d等于电子膨胀阀额定功率。控制电子膨胀阀的电机的动作时间较短,功率通常在0-5W之间,优选为3W。
所述四通阀功率P s等于四通阀额定功率,四通阀仅在制热模式运行,功率通常在0-5W之间,优选为4W。
在上述实施例中,室内机和室外机各模块的功率确定彼此相对独立,同时对耦合关系进行了适度校正,保证了数据的准确性,同时也确保了每一个单模块的功率可以独立确定、调用,并根据计时周期进行消耗电量的计算。经过实验,可以将空调器电量检测的误差控制在5%以内。
本发明同时还公开了一种空调器,采用如上述实施例所公开的任意一种基于单模块的空调器电量检测方法。本发明所公开的空调器中,可以根据用户需求,或者厂家的需求传输、显示、调用、计算设定计时周期中任意一个单模块,或多个单模块的消耗电量,检测计算的过程中,各模块保证相对独立,且计算过程与空调使用环境的耦合关系小,计算精度高且灵活。同时还避免了繁杂的建模过程,使得用户可以了解各个单模块、室内机、室外机以及整机的实际消耗电量,并根据实际耗电量建立良好的使用习惯,在保证使用舒适性的同时起到节约能耗的目的。基于单模块的空调器电量检测方法的具体步骤详见上述实施例的详细描述,在此不再赘述。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 基于单模块的空调器电量检测方法,其特征在于,所述方法包括:
    数据处理装置接收包括一组开关机信号的第一输入指令;
    数据处理装置接收包括至少一个计时信号的第二输入指令;
    由所述数据处理装置关联所述第一输入指令和所述第二输入指令确定空调器在所述计时信号对应的计时周期中的室内机功率和/或室外机功率;其中所述室内机功率包括室内机主电路板功率、室内显示模块功率、室内风机功率、电加热功率中的至少一个单模块功率;所述室外机功率包括室外机主电路板功率、压缩机运行功率、室外风机功率、电子膨胀阀功率、四通阀功率中的至少一个单模块功率;
    数据处理装置接收包括模块选定信号的第三输入指令;
    数据处理装置响应所述第三输入指令,调用、显示和/或传输关联所述第一输入指令、第二输入指令和第三输入指令的室内机消耗电量和/或室外机消耗电量。
  2. 根据权利要求1所述的基于单模块的空调器电量检测方法,其特征在于:
    所述数据处理装置响应所述第三输入指令,连续判断所述计时信号对应的计时周期中模块选定信号对应的选定模块功率的变化趋势,如果选定模块功率变化趋势满足设定条件,则将关联所述第一输入指令、第二输入指令和第三输入指令的室内机功率和/或室外机功率换算为消耗电量后调用、显示和/或传输;如果选定模块功率变化趋势不满足设定条件,则在计时周期终止时,将关联所述第一输入指令、第二输入指令和第三输入指令的室内机功率和/或室外机功率换算为消耗电量后调用、显示和/或传输。
  3. 根据权利要求2所述的基于单模块的空调器电量检测方法,其特征在于,
    所述设定条件为,在所述计时周期中,所述选定模块功率的增量是否大于设定值,如果大于设定值,则将关联所述第一输入指令、第二输入指令和第三输入指令的室内机功率和/或空调其室外机功率换算为消耗电量后显示 和/或传输;如果不大于设定值,则在计时周期终止时,将关联所述第一输入指令、第二输入指令和第三输入指令的室内机功率和/或室外机功率换算为消耗电量后调用、显示和/或传输。
  4. 根据权利要求3所述的基于单模块的空调器电量检测方法,其特征在于,所述设定值∈(5W,10W)。
  5. 根据权利要求4所述的基于单模块的空调器电量检测方法,其特征在于,数据处理装置接收包括至少一个查询信号的第四输入指令;
    换算出的至少一个消耗电量传输至服务器中存储,服务器接收并响应第四输入指令,调取所述查询信号对应的选定模块的所述消耗电量值。
  6. 根据权利要求1至5任一项所述的基于单模块的空调器电量检测方法,
    其特征在于,
    确定室内机功率时:
    所述室内机主电路板功率P g’等于芯片额定功率;
    所述室内显示模块功率P x等于控制板功率P g”与处于工作状态的提示灯的功率P”之和;
    所述室内风机功率P f1为:当室内风机驱动占空比d<d 1时,所述室内风机功率P f1=P 1;当风机驱动占空比d m-1<d<d m时,所述室内风机功率
    Figure PCTCN2018092556-appb-100001
    当风机驱动占空比d>d n时,所述室内风机功率P f1=P n,其中1≤m≤n,m,n为整数,d 1,d m-1,d m,d n为递增的常数,P 1,P m-1,P m为递增的设定值;
    所述电加热功率P t等于额定电加热功率P t0
  7. 根据权利要求1至5任一项所述的基于单模块的空调器电量检测方法,
    其特征在于,
    确定室内机功率时:
    所述室内机主电路板功率P g’等于芯片额定功率;
    所述室内显示模块功率P x等于控制板功率P g”与处于工作状态的提示灯的功率P”之和;
    所述室内风机功率P f1为:当室内风机驱动占空比d<d 1时,所述室内风机功率P f1=P 1;当风机驱动占空比d m-1<d<d m时,所述室内风机功率
    Figure PCTCN2018092556-appb-100002
    当风机驱动占空比d>d n时,所述室内风机功率P f1=P n,其中1≤m≤n,m,n为整数,d 1,d m-1,d m,d n为递增的常数,P 1,P m-1,P m为递增的设定值;
    所述电加热功率P t等于设定电加热功率P t0和校正电加热功率P t’之和,所述校正电加热功率P t’对应所述室内风机驱动占空比分为多个数据段,每一个数据段具有对应的校正权重,所述校正电加热功率P t’在每一个数据段中随所述室内风机驱动占空比的增加而增加,校正电加热功率P t’等于风机驱动占空比增量和每一个数据段权重值乘积的累加值;
    如果导风板运行,则所述电加热功率P t=(P t0+P t’)k 1,其中k 1为导风板校正系数,所述导风板校正系数随所述导风板偏离原始位置距离的增加而增加;k 1∈(0.9,1.1)。
  8. 根据权利要求7所述的基于单模块的空调器电量检测方法,其特征在于:
    确定室外机功率时:
    所述室外机主电路板功率P g等于芯片额定功率;
    所述压缩机运行功率
    Figure PCTCN2018092556-appb-100003
    其中U为电源电压有效值,I为电源电流有效值;
    所述室外风机功率P f2为:
    如果室外风机为直流风机,则当室外风机驱动占空比d<d 1时,所述室外风机功率P f2=P 1;当风机驱动占空比d m-1<d<d m时,所述室外风机功率
    Figure PCTCN2018092556-appb-100004
    当风机驱动占空比d>d n时,所述室外风机功率P f2=P n,其中1≤m≤n,m,n为整数,其中,d 1,d m-1,d m,d n为递 增的常数,P 1,P m-1,P m为递增的设定值;
    如果室外风机为交流风机,则根据室外风机的转速选取对应的额定功率设定值P f2’,室外风机功率P f2等于额定功率设定值和电压修正参数k 2的乘积k 2∈(0.9,1.1),电压修正参数k 2随市电电压的增加而增加;
    所述电子膨胀阀功率P d等于电子膨胀阀额定功率;
    所述四通阀功率P s等于四通阀额定功率。
  9. 根据权利要求8所述的基于单模块的空调器电量检测方法,其特征在于,
    如果室外风机为交流风机,根据室外风机的转速,将额定功率分为两档,对应每一档风速对应分配一个额定功率值P 01和P 02,根据室外风机的转速选取对应的额定功率值作为额定功率设定值P f2’。
  10. 一种空调器,其特征在于,采用如权利要求1至9任一项所述的基于单模块的空调器电量检测方法。
PCT/CN2018/092556 2017-06-26 2018-06-25 基于单模块的空调器电量检测方法和空调器 WO2019001377A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710494500.9A CN107255348B (zh) 2017-06-26 2017-06-26 基于单模块的空调器电量检测方法和空调器
CN201710494500.9 2017-06-26

Publications (1)

Publication Number Publication Date
WO2019001377A1 true WO2019001377A1 (zh) 2019-01-03

Family

ID=60023452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092556 WO2019001377A1 (zh) 2017-06-26 2018-06-25 基于单模块的空调器电量检测方法和空调器

Country Status (2)

Country Link
CN (1) CN107255348B (zh)
WO (1) WO2019001377A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107255348B (zh) * 2017-06-26 2019-12-31 青岛海尔空调器有限总公司 基于单模块的空调器电量检测方法和空调器
CN109374963B (zh) * 2018-09-30 2021-09-28 四川长虹空调有限公司 一种空调电量计算方法
CN109539482A (zh) * 2018-10-29 2019-03-29 珠海格力电器股份有限公司 电量计算方法、装置及空调系统
CN110658383B (zh) * 2019-10-09 2021-09-28 广东美的制冷设备有限公司 功率检测方法、装置、空调器以及存储介质
CN110658382B (zh) * 2019-10-09 2022-03-04 广东美的制冷设备有限公司 功率检测方法、装置、空调器以及存储介质
CN112944601B (zh) * 2021-02-01 2022-03-15 珠海格力电器股份有限公司 一种空调内机的功率确定装置、方法和空调
CN113757923A (zh) * 2021-08-26 2021-12-07 佛山市顺德区美的电子科技有限公司 空调器及其电量计量方法和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5520478B2 (ja) * 2008-12-24 2014-06-11 東芝キヤリア株式会社 空気調和機
CN105091220A (zh) * 2015-07-31 2015-11-25 广东美的制冷设备有限公司 空调器的耗电量检测方法、装置和空调器
CN105180345A (zh) * 2015-07-14 2015-12-23 广东美的制冷设备有限公司 空调器及其耗电量检测方法及装置
CN105276758A (zh) * 2014-07-25 2016-01-27 海信(山东)空调有限公司 一种变频空调器耗电量估算方法及装置
CN105605730A (zh) * 2015-12-18 2016-05-25 宁波奥克斯空调有限公司 一种空调用电负荷自定义的方法
CN107255348A (zh) * 2017-06-26 2017-10-17 青岛海尔空调器有限总公司 基于单模块的空调器电量检测方法和空调器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2909062Y (zh) * 2006-03-24 2007-06-06 四川长虹电器股份有限公司 空调器
CA2853033C (en) * 2011-10-21 2019-07-16 Nest Labs, Inc. User-friendly, network connected learning thermostat and related systems and methods
CN102721143B (zh) * 2012-06-27 2014-12-24 美的集团股份有限公司 多联机空调电量划分方法
CN103630739B (zh) * 2012-08-23 2016-03-16 美的集团股份有限公司 一种空调器用电量测量方法与系统
CN105953353B (zh) * 2015-12-18 2019-01-29 华南理工大学 中央空调冷源系统定额控制方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5520478B2 (ja) * 2008-12-24 2014-06-11 東芝キヤリア株式会社 空気調和機
CN105276758A (zh) * 2014-07-25 2016-01-27 海信(山东)空调有限公司 一种变频空调器耗电量估算方法及装置
CN105180345A (zh) * 2015-07-14 2015-12-23 广东美的制冷设备有限公司 空调器及其耗电量检测方法及装置
CN105091220A (zh) * 2015-07-31 2015-11-25 广东美的制冷设备有限公司 空调器的耗电量检测方法、装置和空调器
CN105605730A (zh) * 2015-12-18 2016-05-25 宁波奥克斯空调有限公司 一种空调用电负荷自定义的方法
CN107255348A (zh) * 2017-06-26 2017-10-17 青岛海尔空调器有限总公司 基于单模块的空调器电量检测方法和空调器

Also Published As

Publication number Publication date
CN107255348A (zh) 2017-10-17
CN107255348B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
WO2019001377A1 (zh) 基于单模块的空调器电量检测方法和空调器
WO2019001378A1 (zh) 一种空调器压缩机运行功率检测方法和空调器
CN107621048B (zh) 一种空调的控制方法及装置
US7489988B2 (en) Generator control system, generating apparatus control method, program and record medium
CN103206767B (zh) 变频空调器的节能控制方法及装置
TWI577941B (zh) 空調機溫度節能控制裝置及溫度節能控制方法
CN103388880A (zh) 一种空调器的控制方法
WO2018214704A1 (zh) 用于空调控制的方法及装置
CN203274124U (zh) 风机盘管智能控制器
CN104990222A (zh) 空调控制方法及装置
CN110986300B (zh) 空调器的智能制热控制方法及空调器
CN111023431B (zh) 变频空调的变频系数可调的控时调温方法、装置及空调器
WO2019128069A1 (zh) 一种自适应发电机空调控制方法及装置
WO2019034124A1 (zh) 自动调温空调器控制方法及空调器
CN109812936A (zh) 一种空调及其空调出风温度调节方法与装置
CN109556243B (zh) 用于空调器的控制方法
CN113266931B (zh) 一种空调器的变频控制方法、系统及空调器
US20190338994A1 (en) A dc varaiable speed compressor control method and control system
WO2021175202A1 (zh) 变频空调的制热控制方法和变频空调
WO2023236550A1 (zh) 空调器的控制方法、装置及空调器
WO2023159977A1 (zh) 空调节能的控制方法、控制系统、电子设备和存储介质
CN110925937A (zh) 一种空调的控制方法、终端设备和系统
CN115235049A (zh) 一种空调主机节能控制方法和装置
CN108302718A (zh) 空调控制方法及空调器
CN112240627B (zh) 空调器控制方法和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18825011

Country of ref document: EP

Kind code of ref document: A1