WO2019001368A1 - 一种通信方法、装置及存储介质 - Google Patents

一种通信方法、装置及存储介质 Download PDF

Info

Publication number
WO2019001368A1
WO2019001368A1 PCT/CN2018/092454 CN2018092454W WO2019001368A1 WO 2019001368 A1 WO2019001368 A1 WO 2019001368A1 CN 2018092454 W CN2018092454 W CN 2018092454W WO 2019001368 A1 WO2019001368 A1 WO 2019001368A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
module
output
recovered
delay
Prior art date
Application number
PCT/CN2018/092454
Other languages
English (en)
French (fr)
Inventor
左天健
张森
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18825262.1A priority Critical patent/EP3637711B1/en
Priority to JP2019572620A priority patent/JP6949152B2/ja
Priority to KR1020207002504A priority patent/KR20200016984A/ko
Publication of WO2019001368A1 publication Critical patent/WO2019001368A1/zh
Priority to US16/726,604 priority patent/US11258650B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4917Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using multilevel codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/361Modulation using a single or unspecified number of carriers, e.g. with separate stages of phase and amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0045Arrangements at the receiver end
    • H04L1/0054Maximum-likelihood or sequential decoding, e.g. Viterbi, Fano, ZJ algorithms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03828Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties
    • H04L25/03866Arrangements for spectral shaping; Arrangements for providing signals with specified spectral properties using scrambling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/497Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems by correlative coding, e.g. partial response coding or echo modulation coding transmitters and receivers for partial response systems
    • H04L25/4975Correlative coding using Tomlinson precoding, Harashima precoding, Trellis precoding or GPRS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to a communication method, apparatus, and storage medium.
  • PAM4 4-level pulse amplitude modulation
  • the equalizers are used to equalize the data in the transmitting device or the receiving device to further improve system performance.
  • the signal transmitted by the transmitting device will be affected by the low-pass filtering effect of the device, and become a distorted signal with a smear, so that the signal generates severe intersymbol interference (ISI) at the receiving device.
  • the role of the receiver equalizer is to eliminate the ISI in the system as much as possible. For example, it can be directly balanced to a 4-level output by a feed forward equalizer (FFE).
  • FFE feed forward equalizer
  • the FFE acts as a high-pass filter that cancels the low-pass filtering of the channel.
  • the additive white gaussian noise channel (AWGN) introduced by the channel is also filtered by the FFE, so that the power spectrum of the noise is no longer flat, resulting in the FFE output being non-whitened noise.
  • AWGN additive white gaussian noise channel
  • the maximum likelihood sequence detection (MLSD) module When performing equalization and signal demodulation on the channels in which ISI and AWGN are present, setting the maximum likelihood sequence detection (MLSD) module based on the Euclid distance at the receiving device is considered to be the optimal performance scheme.
  • the working principle of the MLSD module is equivalent to comparing the received signal with all possible transmission sequences, and the path in which the Euclid distance is the smallest is used as the demodulation sequence. If the noise of the input MLSD module is not whitened, the performance of the MLSD module may deteriorate, resulting in continuous error in the final output of the receiving device.
  • the embodiment of the present application provides a communication method, device, and storage medium, which are used to reduce the probability of occurrence of a continuous error condition in a communication system.
  • an embodiment of the present application provides a communication method, where a transmitting device modulates a received signal to be transmitted to obtain a modulated signal.
  • the modulation can be electrical modulation.
  • the transmitting device performs the N-round operation on the modulated signal to obtain the encoded signal; N is a positive integer; wherein the output of the first round of the N-round operation is based on the modulated signal and the Nth processed by the first delay module
  • the output of the wheel operation is determined; the output of the ith wheel operation in the N-round operation is determined according to the output of the i-1th wheel operation and the output of the Nth wheel operation processed by the second delay module; i is greater than 1 And an integer less than or equal to N.
  • the embodiments of the present application are applicable to various scenarios, such as PAM-M modulation, QAM-E, and the like, which are modulated by a modulation method.
  • the QAM-E modulation includes two paths, and each channel may also be referred to as a PAM- M modulation, where M and E can be integers greater than one.
  • the delay between the output and the input of the first delay module is 1 symbol period. That is to say, the signal output by the first delay module is a signal of one symbol period before the input signal of the first delay module. That is to say, the input of the first operation module of the N operation modules includes two parts, the first part is a modulated signal, and the second part is a coded signal output by the coding module before one symbol period, wherein one symbol period
  • the encoded signal output by the previous encoding module may refer to the encoded signal corresponding to the signal of one symbol period before the signal to be transmitted.
  • the delay between the output and the input of the second delay module is i symbol periods. That is to say, the signal output by the second delay module is the signal of the first symbol period before the input signal of the second delay module. That is, the input of the i-th operation module of the N operation modules includes two parts, the first part is the output of the previous operation module, and the second part is the coded signal output by the coding module before i symbol periods, wherein The coded signal output by the coding module before the i symbol period may refer to the coded signal corresponding to the signal of the i symbol period before the signal to be transmitted.
  • the output of the first round of operation is to perform the first operation on the modulated signal and the output of the Nth round operation processed by the first delay module, and will perform The result of the first operation is obtained by modulo operation;
  • the output of the ith round operation is to perform the first operation on the output of the i-1th round operation and the output of the Nth round operation processed by the second delay module, and
  • the result of the first operation is obtained by performing a modulo operation.
  • the output of the first round of operation is obtained by XORing the modulated signal with the output of the Nth round operation processed by the first delay module; the output of the ith round operation is The XOR-1 operation output is XORed with the output of the Nth wheel operation processed by the second delay module.
  • the transmitting device modulates the received signal to be transmitted, including: the transmitting device performs the M-level pulse amplitude modulation PAM-M on the received signal to be transmitted. Modulation; wherein the modulo operation comprises performing a modulo operation on the result of performing the first operation on M.
  • N is determined according to the target level number and M of the receiving end equalizer of the receiving device, so that the probability of occurrence of a continuous error condition in the communication system can be further reduced.
  • the method further includes: after determining, by the transmitting device, that the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is greater than a threshold value, sending the encoded signal to the transmitting device a receiving device; the transmitting device determines that the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is not greater than a threshold value, and then transmits the modulated signal to the receiving device, thereby further reducing a continuous error condition in the communication system. Probability.
  • the sending device determines whether the degree of non-whitening of noise in the signal to be recovered received by the receiving device is greater than a degree threshold, and includes receiving a non-noise for indicating a signal to be recovered received by the receiving device.
  • the embodiment of the present application provides a communication method, where a receiving device performs maximum likelihood detection processing on a received signal to be recovered, and obtains a detected signal; the receiving device processes the signal according to the detection and the third delay module. The detected signal is processed to obtain a decoded signal.
  • the delay between the output and the input of the third delay module is N symbol periods; N is determined according to the target level of the receiving end equalizer and the M; wherein, The recovered signal is subjected to M-level pulse amplitude modulation PAM-M modulation in the transmitting device.
  • N and the M refer to the description in the foregoing embodiment, which is not limited in the embodiment of the present application. That is to say, the output of the maximum likelihood detection module processed by the third delay module is the detected signal of the first few symbol periods of the detection module.
  • the receiving device performs processing according to the detected signal and the detected signal processed by the third delay module to obtain the decoded signal, including: the receiving device detects the post signal and the third delay module.
  • the processed post-detection signal performs a second operation, and the result of the second operation is subjected to a modulo operation to obtain a decoded signal.
  • the receiving device performs a P-round exclusive-OR operation on the detected signal and the detected signal processed by the third delay module, and uses the signal outputted by the P-th wheel exclusive OR operation as the decoded signal;
  • the output of the first round exclusive OR operation in the P round exclusive OR operation is determined according to the detected signal and the detected signal processed by the fourth delay module;
  • the jth round exclusive OR operation in the P round exclusive OR operation The output is determined according to the output of the x-1th XOR operator and the detected signal processed by the fifth delay module; j is an integer greater than 1 and less than or equal to P, and P is a positive integer.
  • the delay between the output and the input of the fourth delay module is 1 symbol period. That is to say, the signal output by the fourth delay module is a signal of one symbol period before the input signal of the fourth delay module.
  • the delay between the output and the input of the fifth delay module is j symbol periods, that is, the signal output by the fifth delay module is the input of the fifth delay module. The signal of the previous j symbol periods of the signal can further reduce the probability of occurrence of continuous error conditions in the communication system.
  • the modulo operation includes modulo M on the result of performing the second operation, thereby further reducing the probability of occurrence of a continuous error condition in the communication system.
  • the method further includes: if the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is greater than a threshold value, Demodulating the decoded signal to obtain a recovered signal; if the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is not greater than a threshold value, the detected signal is demodulated to obtain a recovered signal.
  • the receiving device determines whether the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is not greater than a threshold value, and the method includes: the receiving device performs a decision process on the signal to be recovered, to obtain a post-decision signal; The receiving device estimates the noise whitening tap in the signal to be recovered according to the post-decision signal and the signal to be recovered; determining the degree of non-whitening and the threshold of the noise in the signal to be recovered according to the magnitude relationship between the noise whitening tap and the decision threshold The relationship between size.
  • the method further includes: the receiving device sends the indication to the sending device for indicating The indication information of the magnitude of the non-whitening of the noise in the signal to be recovered received by the receiving device and the magnitude of the threshold.
  • the application further provides a communication device.
  • the communication device may be any one of a transmitting device or a receiving device that performs data transmission in a wireless manner.
  • a communication chip, a terminal device, or a network device for example, a base station or the like.
  • the transmitting device and the receiving device are opposite.
  • the communication device can function as the above-described transmitting device, and in some communication processes, the communication device can function as the above-described receiving device.
  • the transmitting device is a base station, and the corresponding receiving device is a terminal device; for uplink data transmission, the transmitting device is a terminal device, and the corresponding receiving device is a base station; for D2D (device to device) data transmission, sending The device is a UE, and the corresponding receiving device may also be a UE.
  • This application does not limit the communication method.
  • Any of the transmitting device and the receiving device may be a terminal device or a communication chip usable for the terminal device, or a network device or a communication chip usable for the network device.
  • the embodiment of the present application provides a communication apparatus, to perform the method in any one of the foregoing possible implementation manners, or the communication apparatus is configured to perform any one of the foregoing possible implementation manners.
  • the communication device is a communication chip.
  • the communication device further comprises various modules operable to perform the communication method in any of the possible implementations of the first aspect above.
  • the communication device further comprises various modules operable to perform the communication method of any of the possible implementations of the second aspect above.
  • a communication apparatus comprising: a processor and a memory for storing a computer program, the processor for calling and running the computer program from a memory, such that the communication device performs the first aspect described above A method of any of the possible implementations, or the communication device for performing the method of any of the possible implementations of the second aspect above.
  • the processor is one or more, and the memory is one or more.
  • the memory can be integrated with the processor or the memory can be separate from the processor.
  • the communication device further includes a transmitter (transmitter) and a receiver (receiver).
  • a system comprising the above-described transmitting device and receiving device.
  • a computer program product comprising: a computer program (also referred to as a code, or an instruction) that, when executed, causes the computer to perform any of the first aspects described above A method in a mode, or causing a computer to perform the method of any of the possible implementations of the second aspect above.
  • a computer program also referred to as a code, or an instruction
  • a computer readable medium storing a computer program (which may also be referred to as a code, or an instruction), when executed on a computer, causes the computer to perform any of the first aspects described above A method in a possible implementation, or a computer causing a method to perform the method in any of the possible implementations of the second aspect above.
  • a computer program which may also be referred to as a code, or an instruction
  • FIG. 1 is a schematic structural diagram of a system according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of a communication device
  • Figure 3 is a signal spectrum diagram corresponding to the normal non-return-to-zero system and a Nyquist-filtered eye diagram
  • Figure 4 is a signal spectrum diagram corresponding to duobinary and a Nyquist filter eye diagram
  • 5 is a Nyquist-filtered eye diagram corresponding to a 4-level PAM-4 signal, a 7-level polybinary PAM-4 signal, and a 13-level polybinary PAM-4 signal, from left to right;
  • Figure 6 is a schematic diagram of different requirements for channel frequency response of different levels of polybinary PAM-4 signals
  • FIG. 7 is a schematic structural diagram of an encoding module according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another coding module provided in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another sending apparatus according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of another sending apparatus according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of another sending apparatus according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another communication apparatus according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of a decoding module according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another decoding module according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of another receiving apparatus according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural diagram of another receiving apparatus according to an embodiment of the present disclosure.
  • FIG. 17 is a schematic structural diagram of another receiving apparatus according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of another receiving apparatus according to an embodiment of the present disclosure.
  • FIG. 20 is a schematic flowchart diagram of a communication method according to an embodiment of the present application.
  • FIG. 21 is a schematic flowchart diagram of another communication method according to an embodiment of the present application.
  • FIG. 22 is a schematic structural diagram of another communication apparatus according to an embodiment of the present disclosure.
  • FIG. 23 is a schematic structural diagram of another communication apparatus according to an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 is a schematic diagram showing a system architecture provided by an embodiment of the present application.
  • the system architecture applicable to the embodiment of the present application includes a sending device 10 and is connected to the sending device 10 by wire or wireless.
  • Receiving device 20 receives the transmitted signal from the receiving device 20.
  • the transmitting device 10 may obtain an original signal that needs to be transmitted from a user or a server, and perform such processing, such as modulation and coding, on the original signal, and then send the processed signal to the receiving device 20.
  • the receiving device 20 also performs a certain process on the received signal, and then restores the original signal transmitted by the transmitting device 10.
  • the transmitting device 10 When the data is transmitted from the terminal device to the network device, the transmitting device 10 may be a terminal device, and the receiving device 20 may be a network device; when data is transmitted from the network device to the terminal device, the transmitting device 10 may be a network device, and the receiving device 20 may It is a terminal device.
  • the foregoing terminal device may refer to a user equipment (User Equipment, UE), an access terminal device, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal device, a mobile device, a user terminal device, a terminal device, and a wireless communication.
  • Device user agent or user device.
  • the access terminal device may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, or a Personal Digital Assistant (PDA).
  • the network device may be a device for communicating with a transmitting device, for example, may be a base station (Base Transceiver Station, BTS for short) in a GSM system or a CDMA system, or a base station (NodeB, NB for short) in a WCDMA system. It may also be an evolved base station (Evolutional Node B, eNB or eNodeB for short) in the LTE system, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device or a future in a future 5G network. Network devices and the like in an evolved PLMN network.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB evolved base station
  • eNodeB evolved base station
  • the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a network side device or a future in a future 5G network
  • FIG. 2 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication apparatus may be a chip or a circuit, such as a chip that can be disposed on the transmitting apparatus 10 or Circuit.
  • the communication device can correspond to the transmitting device in the embodiment of the present application.
  • the communication device can include a modulation module 101 and an encoding module 102.
  • the modulation module 101 is configured to modulate the received signal to be transmitted to obtain a modulated signal.
  • the sending device obtains a plurality of original signals that need to be sent by a user or a server.
  • the original signal may be processed to be input to the modulation module, for example, some forward correction may be performed on the original signal. Processing by error coding, Gray coding, etc., after processing, the signal to be transmitted is obtained, and the signal to be transmitted is input to the modulation module for modulation and coding.
  • the modulation module 101 in the embodiment of the present application modulates the signal to be transmitted, and specifically, may be electrical modulation.
  • the embodiment of the present application is applicable to various scenarios.
  • the modulation module 101 can modulate a signal to be transmitted by using a PAM-M modulation, a QAM-E, or the like.
  • the QAM-E modulation includes two paths, and each channel can also be called For PAM-M modulation, where M and E can be integers greater than one.
  • the encoding module 102 is configured to: after the modulated signal is processed by the N operating modules connected in sequence, obtain the encoded signal, and send the encoded signal; N is a positive integer; wherein the first operating module of the N operating modules The input is connected to the modulation module and the output of the Nth operation module processed by the first delay module; the input of the i-th operation module of the N operation modules is connected to the output of the i-1th operation module and passes through the second extension The output of the Nth operational module processed by the module; i is an integer greater than 1 and less than or equal to N.
  • the encoding in encoding module 102 can be electrical encoding.
  • the encoding in the modulation module 101 may be an encoding that increases the amount of single symbol information, and the encoding in the encoding module 102 may serve to increase system robustness.
  • the delay between the output and the input of the first delay module is 1 symbol period. That is to say, the signal output by the first delay module is a signal of one symbol period before the input signal of the first delay module. That is to say, the input of the first operation module of the N operation modules includes two parts, the first part is a modulated signal, and the second part is a coded signal output by the coding module before one symbol period, wherein one symbol period
  • the encoded signal output by the previous encoding module may refer to the encoded signal corresponding to the signal of one symbol period before the signal to be transmitted.
  • the delay between the output and the input of the second delay module is i symbol periods. That is to say, the signal output by the second delay module is the signal of the first symbol period before the input signal of the second delay module. That is, the input of the i-th operation module of the N operation modules includes two parts, the first part is the output of the previous operation module, and the second part is the coded signal output by the coding module before i symbol periods, wherein The coded signal output by the coding module before the i symbol period may refer to the coded signal corresponding to the signal of the i symbol period before the signal to be transmitted.
  • a symbol period in the embodiment of the present application is a delay between adjacent two symbols, and the symbol may be a PAM symbol or a QAM symbol, etc., which is not limited in the embodiment of the present application.
  • the symbol period can be preset, random, or generated according to a one-point rule.
  • the signal to be transmitted described in the embodiment of the present application may be a binary bit sequence, which may be binary bit quantization information of text, audio, video, or the like.
  • the bit sequence with a certain length received by the modulation module may be referred to as a signal to be sent at a time, where a certain length may be preset or may be determined according to actual conditions.
  • a 2-bit binary bit signal can correspond to a 4-level signal to be transmitted.
  • the encoding module 102 sequentially receives the modulated signal corresponding to the signal 1 to be transmitted, the modulated signal corresponding to the signal 2 to be transmitted, the modulated signal corresponding to the signal 3 to be transmitted, and the signal 4 to be transmitted.
  • Modulated signal Let N be 3. Among them, 1, 2, 3, and 4 of the signal to be transmitted 1, the signal to be transmitted 2, the signal 3 to be transmitted, and the signal 4 to be transmitted are only identifiers, so that the encoding module 102 sequentially receives two adjacent ones. The delay between the transmitted signals is one symbol period.
  • the signal of the previous symbol period of the signal 2 to be transmitted is the signal 1 to be transmitted, so that the output of the first operational module can be based on the signal to be transmitted. 2 corresponding to the modulated signal and the encoded signal generated by the signal 1 to be transmitted.
  • the output of other operating modules can use the encoded signal generated by the signal 1 to be transmitted as the output of the Nth operating module processed by the delay module, or Use random sequences or empty sequences.
  • the modulated signal corresponding to the signal 4 to be transmitted may be obtained by operating the encoded signal corresponding to the signal 3 to be transmitted. It can be seen that the encoded signal corresponding to the signal 3 to be transmitted is corresponding to the fourth round operation. After the encoded signal is processed by the delay module, the delay between the input and the input of the delay module is 1 symbol period.
  • the signal outputted by the second round of operation may be obtained by operating the signal outputted by the first round of operation and the encoded signal corresponding to the signal 2 to be transmitted.
  • the encoded signal corresponding to the signal 2 to be transmitted is
  • the encoded signal corresponding to the 4-wheel operation is processed by the delay module, and the delay between the input and the input of the delay module can be 2 symbol periods.
  • the signal outputted by the third round of operation may be obtained by operating the signal outputted by the second round of operation and the encoded signal corresponding to the signal 1 to be transmitted.
  • the signal outputted by the fourth round of operation may be a signal outputted by the third round of operation and an empty sequence, a preset sequence, an encoded signal corresponding to the signal to be transmitted 1, an encoded signal corresponding to the signal to be transmitted 2, or a signal to be transmitted. 3
  • the corresponding encoded signal corresponding to the encoded signal is operated.
  • the modulated module outputs a modulated signal output by the encoding module 102, based on the modulated signal output by the modulation module and the first few outputs of the encoding module.
  • the coded signal changes the correlation between adjacent sequences, thereby reducing the probability of continuous error conditions in the communication system, and further providing a possibility for the latter to cooperate with the receiving device to further reduce the probability of continuous error conditions in the communication system.
  • the foundation in order to improve the overall performance of the system.
  • some components in the transmitting device and the receiving device generate more filtering effects, such as the equalizer of the transmitting device and the equalizer of the receiving device, and the additive generated by the channel at this time.
  • Gaussian white noise is severely low-pass filtered after passing through the equalizer, becoming non-whitening noise.
  • the performance of MLSD will be degraded under non-white noise input, and there will be a large number of consecutive errors. In this strong ISI, the problem of continuous error is particularly serious.
  • the above solution provided by the embodiment of the present application can achieve better effects for the scenario, that is, cooperate with the receiving device to weaken the correlation of the signal before and after the sequence. Providing a basis and providing a basis for cooperating with the receiving device to reduce the probability of a continuous error condition in the communication system, thereby improving system performance.
  • Each of the N operation modules in the coding module performs one round operation, and the operations performed in each operation module may include an operation, or a combination of multiple operations, including, for example, addition, modulo operation, Any one of the exclusive OR operations or a combination of any of a plurality of arithmetic methods, and the like.
  • the operation module includes a first operator and a ejector connected in sequence, and the input of the first operator is an input of the operation module, and the modulo is taken.
  • the output of the device is the output of the operating module.
  • the output of the first round of operation is obtained by performing a first operation on the modulated signal and the output of the Nth round operation processed by the first delay module, and performing a modulo operation on the result of performing the first operation;
  • the output of the i-th wheel operation is performed by performing a first operation on the output of the i-1th round operation and the output of the Nth round operation processed by the second delay module, and performing a modulo operation on the result of performing the first operation.
  • the modulation module is specifically configured to perform M-level pulse amplitude modulation M (PAM-M) modulation on the received signal to be transmitted;
  • the modulo device is configured to take The input signal of the modulo performs a modulo operation on M.
  • PAM-M M-level pulse amplitude modulation M
  • the modulo operation includes performing a modulo operation on the result of performing the first operation on M;
  • M is the number of levels of the signal to be transmitted received by the modulation module.
  • the first operation can have a variety of choices, such as one or more levels of subtraction, or subtraction and modulo operations.
  • the modulation module 101 in the embodiment of the present application may adopt a polybinary coding mode for the received signal to be transmitted, and the polybinary coding is controlled to be introduced in some symbols.
  • ISI while there is no ISI in the remaining symbols, this approach can increase the band utilization to the theoretical maximum. Since the introduced intersymbol interference is known, the sample value of the symbol can be obtained by rejecting the intersymbol interference from the result of the final sampling. Can improve the frequency band utilization better.
  • Figure 3 shows the spectrum of the signal corresponding to the non-return-to-zero (NRZ) (left side of Figure 3) and the eye diagram of the Nyquist filter (the right side of Figure 3).
  • Figure 4 shows the duobinary (duobinary is also called the polybinary with a memory length of 1 encoding) corresponding to the signal spectrum (left side of Figure 4) and the Nyquist filtered eye diagram (right of Figure 4).
  • the Nyquist filter filters the signal through a low-pass filter with a baud rate as shown by the dashed line in Figure 3 and the dotted line in the signal spectrum of Figure 4.
  • the modulation module 101 if the modulation module 101 adopts PAM-M modulation, and the signal received by the modulation module 101 is a signal to be transmitted of the PAM-4, the modulation module 101 performs a process of polybinary encoding the signal to be transmitted of the PAM-4. Can be expressed by the formula (1):
  • r k is the output 7-level polybinary PAM-4 signal
  • s k is the signal to be transmitted of the PAM-4 of the input modulation module 101
  • s k-1 is the input modulation module 101 and is in the s k
  • g k is the signal of the 13-level polybinary PAM-4
  • s k is the signal to be transmitted of the PAM-4 of the input modulation module 101
  • s k-1 is the input modulation module 101 and is at s k PAM-4 signal to be transmitted before the one symbol period
  • s k-2 and the signal to be transmitted in the first two symbol periods s k PAM-4 input modulation module 101
  • s k-3 is input modulation The signal to be transmitted of PAM-4 of module 101 and three symbol periods before s k .
  • Figure 5 shows, from left to right, a Nyquist-filtered eye diagram corresponding to a 4-level PAM-4 signal, a 7-level polybinary PAM-4 signal, and a 13-level polybinary PAM-4 signal.
  • the 7-level polybinary PAM-4 signal and the 13-level polybinary PAM-4 signal can be restored to the original 4-level PAM-4 signal after passing through the MLSD module on the receiving device 20 side.
  • the decoding process of the receiving device on the polybinary is represented by formula (3) and formula (4), wherein the parameters in formula (3) and formula (4) can be referred to the formulas (1) and (2) above. content
  • Feed forward equalizer adaptively choose whether to add polybinary encoding and add several levels of polybinary encoding.
  • Figure 6 exemplarily shows different requirements of different levels of polybinary PAM-4 signals for channel frequency response. As shown in Figure 6, different levels of polybinary PAM4 signals have different channel frequency response requirements, in order to make the signals in a specific transmission. Better transmission performance is obtained in the channel.
  • the L-level polybinary code closest to the channel frequency response curve is selected, and L is the target level of the receiver equalizer, and then the receiving device is adjusted.
  • the low pass or high pass filter function of the FFE may multiply the channel frequency response and the frequency response of the device in the receiving device (such as the receiver equalizer in the receiving device, in this example with the receiver equalizer as the FFE) Matching with the frequency response required for L-level polybinary coding, if the time domain representation is changed to the FFE, the impulse response convolution channel impulse response is equal to the impulse response required for the L-level polybinary coding.
  • the longest dotted line with the widest bandwidth indicates the system frequency response required for PAM-4 signal transmission, and the dotted line indicates the system frequency response required for the 7-level polybinary PAM-4 signal transmission.
  • the short dotted line indicates The 13-level polybinary PAM-4 transmits the required system frequency response, and the solid line indicates the frequency response of a system.
  • a 7-level polybinary PAM-4 code can be selected. Transmission, optionally, setting the receiving device FFE to low-pass filtering, and the frequency response corresponding to each part can be expressed by formula (5):
  • h 1,2 is the target impulse response corresponding to equation (1) or equation (3)
  • h t is the impulse response of the link end-to-end system, which can measure the end-to-end frequency response.
  • H(f) is obtained by Fourier transform
  • h Eq is a low-pass filtered impulse response introduced by an equalizer (which can be a transmitter equalizer in the transmitting device and/or a receiver equalizer in the receiving device) .
  • the data bit stream of the signal to be transmitted is subjected to multi-level mapping to generate an ideal 4-level PAM-4 signal, optionally, in the transmitting device 10. It also includes a shaping filter and a transmitter equalizer.
  • the 4-level polybinary PAM-4 signal can be filtered by a shaping filter to achieve spectral compression of the signal.
  • the low-pass characteristics of the channel and the introduced Gaussian white noise make the end signal eye diagram.
  • the degraded 4-level polybinary PAM-4 signal is sent to the receiving end equalizer to perform 7-level equalization, and the signal outputted by the receiving end equalizer is sent to the MLSD of the receiving device.
  • the module performs 4-level decision after eliminating ISI, and the MLSD module outputs a standard PAM4 signal, and performs demapping to restore the original data bit stream of the signal to be transmitted.
  • the low-pass filtering caused by the channel and the low-pass filtering caused by the equalizer need to reach the low pass of h 1 or h 2 in the above formula (1) and formula (2).
  • Filtering effect if the channel bandwidth is narrow, the low-pass filtering contribution from the transmitter equalizer and/or the receiver equalizer is little or no.
  • the additive white Gaussian noise generated by the channel has no obvious filtering after passing through the equalizer.
  • the effect of the whitening of the noise is still obvious, that is, the non-whitening characteristics are less obvious. In this case, the performance of the MLSD module in the receiving device is better, and the output continuous error is less.
  • the solution provided, for example, the signal to be transmitted is processed by the encoding module 102, or in this case, the solution provided by the embodiment of the present application is not used.
  • the channel bandwidth is wider, and the low-pass filtering effect that the transmitter equalizer and/or the receiver equalizer needs to contribute is more.
  • the additive white Gaussian noise generated by the channel is seriously low after passing through the equalizer. Through filtering, it becomes a non-whitening noise. Since the performance of the MLSD module is degraded under the non-white noise input, a large number of consecutive errors occur. Therefore, the scheme provided by the embodiment of the present application can reduce the correlation of the sequence before and after, thereby reducing the correlation. The probability of a continuous error condition in a communication system.
  • the delay module may be one, or may be multiple integrations.
  • the first delay module, the second delay module, the third delay module, the fourth delay module, and the first The first, second, third, fourth, and fifth of the five delay modules are only for distinguishing, and are not limited.
  • the third delay module may include a fourth delay module and a fifth delay module.
  • the fourth delay module may be a fifth delay module, and the fourth delay module may also be a module included in the fifth delay module, and any two delay modules may also be two different delay modules.
  • the delay module in the embodiment of the present application may be a logical delay module or a physical delay module.
  • the delay module should be a module that can be called a delay.
  • FIG. 7 exemplarily shows a schematic structural diagram of an encoding module provided by an embodiment of the present application.
  • the encoding module 102 performs N round operation, and each round operation can be performed by a subtractor, a modulator, and a delay.
  • the coding module comprises a total of N subtractors, N modulators and N-level delay modules.
  • the input and input of each delay module of the N delay modules may be one symbol period, so that the first operation module may be connected as a first delay module, and the remaining delay modules may be referred to as a second The delay module, as shown in FIG.
  • the input precoder_in(a k ) of the encoding module 102 is derived from the modulated signal output by the modulation module 101 in FIG. 2, and the encoded signal output by the encoding module 102.
  • the value of Precoder_out The relationship with the value a k of Pecoder_in can be expressed by the formula (6):
  • a k is a modulated signal
  • the value range of i is (1, N), and mod is the modulo operation.
  • Precoder_out(t) ⁇ [precoder_in(t)-precoder_out(t-T)]mod M ⁇
  • precoder_out( t) can correspond to the above formula (6) ; precoder_in(t) can correspond to a k in the above formula (6); precoder_out(tT) can correspond to the above formula (6) ;precoder_out(t-2*T) can correspond to the above formula (6) ;precoder_out(tN*T) can correspond to the above formula (6) .
  • the symbol period can be the time interval between one symbol and the next symbol. As shown in FIG. 7, one symbol period can be a length of time that a delay module can support.
  • the delay module can include devices such as delays.
  • the symbol period can be preset, randomly determined, or generated according to certain rules.
  • the symbol period on the transmitting device side may be the same as or different from the symbol period on the receiving device side. In an alternative embodiment, the symbol period on the transmitting device side is the same as the symbol period on the receiving device side.
  • N is determined according to the target level number and M of the receiving end equalizer of the receiving device.
  • N is determined by equation (8):
  • L is the target level of the receiver equalizer of the receiving device.
  • L may be the target level of the receiver equalizer, where L is determined based on the low pass filtered impulse response introduced by the transmitter equalizer and the receiver equalizer and the impulse response of the link end-to-end system. If the receiving device includes a decision module, then L may be the number of levels output by the decision module (slicer).
  • the determination of L in the formula (8) can be determined according to the scheme provided in the related content of FIG. 3 to FIG. 6 in the above content, for example, the modulation module uses the PAM-M modulation method, and the modulation module is used to receive The signal to be transmitted is subjected to M-level pulse amplitude modulation PAM-M modulation; M is the number of levels of the signal to be transmitted received by the modulation module, and M is 4, for example, the final target needs to be balanced to 7 levels.
  • M the number of levels of the signal to be transmitted received by the modulation module
  • M 4, for example, the final target needs to be balanced to 7 levels.
  • the value of L is 7 and the value of N is 1. If the final target needs to be a 13-level polybinary PAM-4 signal, then the value of L is 13 and the value of N is 3; The target needs to be equalized to a 4-level PAM-4 signal, then L is 4 and N is 1.
  • each of the N operational modules includes an exclusive OR operator. That is to say, the output of the first round operation is obtained by XORing the modulated signal and the output of the Nth round operation processed by the first delay module; the output of the ith round operation is the i-1th round The output of the operation is XORed with the output of the Nth round of operation processed by the second delay module.
  • FIG. 8 is a schematic structural diagram showing another coding module provided in the embodiment of the present application. As shown in FIG. 8, the coding module 102 includes N XOR operators and N delay modules, one of which is an operation module. One round of operation can be performed, and one operation corresponds to one XOR operator and one delay module. As shown in FIG.
  • the input precoder_in(a k ) of the encoding module 102 is derived from the modulation module 101 outputting the modulated signal in FIG. 2, and the encoding module 102 outputs the encoded signal.
  • the value of Precoder_out The relationship with the value a k of Pecoder_in can be expressed by the formula (9):
  • xor represents an exclusive OR operation, and the rest of the parameters are referred to the related descriptions of the above formulas (6) to (8), and are not described herein again.
  • M is an integer greater than 1, and the value of M has multiple selection manners. For example, M may be predefined or determined according to actual scenarios. This embodiment of the present application provides an alternative embodiment. In the case where the solution provided by the above formula (9) is applied, M can be made 2.
  • the channel bandwidth is narrow, the low-pass filtering contribution of the transmitter equalizer and the receiver equalizer is little or no.
  • the additive white Gaussian noise generated by the channel is not obvious after passing through the equalizer.
  • the filtering effect and the whitening characteristics of the noise are still obvious.
  • the performance of the MLSD is good, and the output continuous error condition rarely or does not appear.
  • the channel bandwidth is wide, the low-pass filtering that the transmitter equalizer and/or the receiver equalizer needs to contribute is more. At this time, the additive white Gaussian noise generated by the channel is severely low-pass filtered after passing through the equalizer.
  • FIG. 9 exemplarily shows the structure of another transmitting device provided by the embodiment of the present application, As shown in FIG. 9, the transmitting device 10 can include a transmitting end switch module 103.
  • the transmitting end switch module 103 is connected to both the modulation module and the encoding module.
  • the transmitting end switch module is configured to: after the non-whitening degree of noise in the signal to be recovered received by the receiving device is greater than a degree threshold, send the encoded signal output by the encoding module to the receiving device; and the to-be-recovered device received at the receiving device The degree of non-whitening of the noise in the signal is not greater than the threshold, and the modulated signal output by the modulation module is sent to the receiving device.
  • the degree of non-whitening is greater than the degree threshold, that is, the degree of non-whitening is large, and the degree of whitening is small
  • the signal processed by the encoding module 102 is transmitted, thereby reducing the probability of occurrence of continuous error in the communication system.
  • the degree of non-whitening is not greater than the threshold, that is, the degree of non-whitening is small, and the degree of whitening is large
  • the signal output by the modulation module 101 is directly sent, that is, the signal that is not processed by the encoding module 102 is transmitted, thereby saving system resources. .
  • the transmitting end switch module determines the degree of non-whitening of the noise in the signal to be recovered received by the receiving device. For example, according to the channel bandwidth, the signal to be recovered may be acquired and analyzed. In another optional implementation manner, the transmitting end switch module receives the instruction sent by the decision module, selects the modulated signal output by the transmission modulation module 101 according to the instruction, or outputs the signal output by the encoding module 102. The decision module can be set at the transmitting device, or at the receiving device side, or at the top management layer. The decision module can determine the degree of non-whitening of the noise in the signal to be recovered received by the receiving device in various manners, for example, according to the channel bandwidth, for example, acquiring the signal to be recovered and performing analysis.
  • FIG. 10 exemplarily shows a schematic structural diagram of another transmitting apparatus according to an embodiment of the present application.
  • the transmitting end switching module 103 in the transmitting apparatus is connected to the decision module 206.
  • the sending end switch module is further configured to receive, by the determining module, indication information for indicating a magnitude relationship between a degree of non-whitening of the noise in the signal to be recovered received by the receiving device and a degree threshold.
  • the indication information may be an instruction for directly transmitting the loop, and the sending end switch module 103 directly executes the instruction after receiving the indication information, and the instruction may be some commands or may be identifiers.
  • the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is not greater than the threshold value, and the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is greater than the threshold value, and the decision module determines After the non-whitening degree of the noise in the signal to be recovered is related to the degree threshold value, the transmission switch module directly sends 1 or 0. In a specific operation, the transmitting end switch module may be an alternate one.
  • the transmitting apparatus 10 in the embodiment of the present application further includes a transmitting end equalizer.
  • the transmitting end equalizer is directly connected to the encoding module 102 in FIG. 2.
  • the modulation module 101 adopts PAM-M modulation, as shown in FIG. 2,
  • the signal to be transmitted received by the modulation module 101 in the transmitting device 10 is first mapped by the PAM-M, and then processed by the encoding module 102.
  • an optional form can be formed.
  • the shapping filter is used for equalization processing at the transmitting end (ie, the transmitting end equalizer can be a shaping filter) and then sent to the transmission channel.
  • the transmission channel first converts the digital signal into an analog signal, and the analog signal is modulated to a laser for electro-optical conversion, and then sent to the fiber link.
  • the signal output by the encoding module can be equalized by the transmitter equalizer to improve system performance.
  • the receiving device 20 first converts the optical signal into an electrical signal and performs analog-to-digital conversion, which introduces Gaussian white noise.
  • the data stream sampled by the receiving device is first equalized by the receiver equalizer, and the equalization target can be set to the L level. After the equalized signal is processed by MLSD, it is processed by the PAM to be mapped into the original data stream.
  • the transmitting device also includes a transmitting end equalizer.
  • the transmitter equalizer can directly connect the coding module in FIG. 2 and receive the signal output by the coding module, thereby further improving system performance.
  • FIG. 11 is a schematic structural diagram of another transmitting apparatus provided by an embodiment of the present application. As shown in FIG. 11, the transmitting end equalizer is connected to the transmitting end switching module, and the transmitting end is provided. The equalizer is used to equalize the signal output by the transmitting switch module, and send the equalized signal to the receiving device; wherein the signal output by the transmitting switch module is the encoded signal or the modulated signal.
  • the equalization processing may be performing filtering processing and/or nonlinear compensation, etc., and may also include other processing, for example, equalizing a signal output by the transmitting end switch module, that is, outputting the transmitting end switching module.
  • the signal is filtered and/or nonlinearly compensated.
  • FIG. 12 is a schematic structural diagram of another communication apparatus according to an embodiment of the present disclosure.
  • the communication apparatus may be a chip or a circuit, such as may be disposed in the receiving apparatus 20. Chip or circuit.
  • the communication device can correspond to a receiving device in the above content.
  • the communication device can include a maximum likelihood detection module 201 and a decoding module 202.
  • the maximum likelihood detection module 201 is configured to process the received signal to be recovered to obtain a detected signal.
  • the maximum likelihood detection module may be referred to as an MLSD module, and the working principle of the MLSD module has been described above, and will not be described herein.
  • the decoding module 202 is configured to: after the detected signal is processed by the operation module, obtain a decoded signal; wherein the input of the operation module is connected to the output of the maximum likelihood detection module and the maximum likelihood detection module processed by the third delay module. Output; the output of the arithmetic module is the output of the decoding module.
  • the output of the maximum likelihood detection module processed by the third delay module is the detected signal of the first few symbol periods of the detection module.
  • the delay between the output and the input of the third delay module is N symbol periods; N is determined according to the target level of the receiving end equalizer and the M; wherein, The recovered signal is subjected to M-level pulse amplitude modulation PAM-M modulation in the transmitting device.
  • N and the M refer to the description in the foregoing embodiment, which is not limited in the embodiment of the present application.
  • the detection module outputs a series of processing on the detected signal output by the maximum likelihood detection module, and generates a decoded signal based on the detected signal and the first few detected signals. Therefore, the adjacent sequence can be weakened, thereby reducing the probability of occurrence of continuous error conditions in the communication system, and further providing a basis for further cooperation with the transmitting device to further reduce the probability of occurrence of continuous error conditions in the communication system, thereby improving the overall system. performance.
  • the arithmetic module in the decoding module may include an operation, and may also include a combination of multiple operations, such as an addition operation, a modulo operation, an exclusive OR operation, or a combination of any of a plurality of operation modes, and the like.
  • the operation module includes a second operator and a modulo that are sequentially connected; wherein the input of the second operator is an input of the operation module, and the output of the ejector is an output of the operation module. That is, the receiving device performs a second operation on the detected signal and the detected signal processed by the third delay module, and performs a modulo operation on the result of the second operation to obtain a decoded signal.
  • the second operation can have various options, such as addition operations of one or more stages, or addition and modulo operations, and the like.
  • the delay between the input and the output of the third delay module is P symbol periods
  • the selection manner of the P is various, for example, may be preset or according to a certain rule. The determination may be randomly generated or determined according to an actual application scenario.
  • P is equal to N in the scheme on the transmitting device side described in FIG. 2 to FIG. 11 above. In this case, P is determined by the following formula (10):
  • P in the formula (10) is the same as N in the above formula (8), and other parameters in the formula (10) are described in the formula (8), and will not be described again.
  • FIG. 13 is a schematic structural diagram of a decoding module according to an embodiment of the present disclosure.
  • the decoding module includes an adder, a modulo, and a multi-level delay module.
  • the multi-level delay module in FIG. 13 may be collectively referred to as The third delay module.
  • the input of the current time decoding module is added to the adder output after a delay of a plurality of symbol periods, and then sent to a modulo, and the result of the modulo can be used as the output of the current time decoder.
  • the decoded signal output by the decoding module 202 can be determined according to formula (11):
  • d k is the detected signal
  • d kj is the detected signal of the first j symbol periods of d k
  • f k is the decoded signal
  • M can be described in the above formula (1) to formula (10)
  • the third delay The delay between the input and output of the module is P symbol periods, and P can be referred to in the above formula (10), and details are not described herein again.
  • d k in formula (11) can also be described as the signal processed by the maximum likelihood detection module at time k, and f k can also be described as decoding the signal processed by the maximum likelihood detection module at time k. Code block.
  • the decoded signal output by the decoding module 202 can also be determined according to formula (12):
  • Decoder_out(t) [decoder_in(t)+decoder_in(t-T)...+decoder_in(t-P*T)]mod M...Formula (12)
  • T is the symbol period of the signal
  • M is the number of levels of the signal to be transmitted received by the modulation module when the modulated signal in the transmitting device is PAM-M modulated, as defined by M in the foregoing.
  • decoder_out(t) may be f k in the above formula (11); decoder_in(t) may be d k in the above formula (11); decoder_in(tT) may be d k-1 in the above formula (11) ;decoder_in(tP*T) can be d kP in the above formula (11).
  • the embodiment of the present application provides another optional implementation manner, where the operation module includes P exclusive OR operators connected in sequence; and the input of the first XOR operator of the P exclusive OR operators is connected to the maximum likelihood detection module.
  • the output of the maximum likelihood detection module processed by the fifth delay module; j is an integer greater than 1 and less than or equal to P, and P is a positive integer.
  • the receiving device performs a P-round exclusive OR operation on the detected signal and the detected signal processed by the third delay module, and uses the signal outputted by the P-th wheel exclusive OR operation as the decoded signal; wherein, the P-round XOR operation
  • the output of the first round of the exclusive OR operation is determined according to the detected signal and the detected signal processed by the fourth delay module; the output of the jth round exclusive OR operation in the P-round exclusive OR operation is according to the j-th
  • the output of the 1-round XOR operator and the detected signal processed by the fifth delay module are determined.
  • the third delay module may include a fourth delay module and a fifth delay module.
  • the delay between the output and the input of the fourth delay module is 1 symbol period. That is to say, the signal output by the fourth delay module is a signal of one symbol period before the input signal of the fourth delay module.
  • the delay between the output and the input of the fifth delay module is j symbol periods, that is, the signal output by the fifth delay module is the input of the fifth delay module. The signal of the previous j symbol periods of the signal can further reduce the probability of occurrence of continuous error conditions in the communication system.
  • FIG. 14 exemplarily shows a schematic structural diagram of another decoding module in the embodiment of the present application.
  • the decoding module 202 includes a plurality of XOR operators and a plurality of delay modules.
  • P XOR operators and P delay modules may be included, wherein a P-delay module connected to the first XOR operator is referred to as a fourth delay module.
  • the rest can be referred to as a fifth delay module.
  • the input MLSD_out (also referred to as decoder_in(t))(d k ) of the decoding module 202 is derived from the maximum likelihood detection module 201 outputting the detected signal in FIG. 12, and the decoding module 202 outputs the decoded signal f. k .
  • the relationship between the value f k of the decoder_out(t) and the value d k of the decoder_in(t) can be expressed by the formula (13):
  • xor represents an exclusive OR operation, and the rest of the parameters are described in the above formula (11), and are not described herein again.
  • the value of the M is as described above.
  • the embodiment of the present application provides an optional implementation manner. In the case that the solution provided by the foregoing formula (13) is applied, M may be set to 2.
  • the channel bandwidth is narrow, the low-pass filtering contribution of the transmitter equalizer and the receiver equalizer is little or no.
  • the additive white Gaussian noise generated by the channel is not obvious after passing through the equalizer.
  • the filtering effect and the whitening characteristics of the noise are still obvious.
  • the performance of the MLSD is good, and the output continuous error condition rarely or does not appear.
  • the channel bandwidth is wide, the low-pass filtering that the transmitter equalizer and/or the receiver equalizer needs to contribute is more. At this time, the additive white Gaussian noise generated by the channel is severely low-pass filtered after passing through the equalizer.
  • FIG. 15 exemplarily shows a schematic structural diagram of another receiving apparatus provided by the embodiment of the present application.
  • the receiving device 200 can include a receiving end switch module 203.
  • the receiving device further includes a demodulation module 204 coupled to the receiving end switch module 203.
  • the receiving end switch module is connected to the maximum likelihood detecting module and the decoding module, and the other end is connected to the demodulating module.
  • the receiving end switch module is configured to: after the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is greater than a degree threshold, send the decoded signal output by the decoding module to the demodulation module; receive at the receiving device When the degree of non-whitening of the noise in the signal to be recovered is not greater than the threshold, the detected signal output by the maximum likelihood detection module is sent to the demodulation module.
  • the demodulation module is configured to: after receiving the decoded signal, demodulate the received decoded signal to obtain a restored signal; and after receiving the detected signal, the received detected signal Demodulation is performed to obtain a recovered signal.
  • the degree threshold that is, the degree of non-whitening is large
  • the signal processed by the decoding module 202 is output to the demodulation module 204, thereby reducing the probability of occurrence of continuous error conditions in the communication system
  • the degree of whitening is not greater than the threshold, that is, the degree of non-whitening is small
  • the signal output by the maximum likelihood detection module 201 is directly transmitted to the demodulation module 204, that is, the signal that is not processed by the decoding module 202 is transmitted, thereby saving system resources. .
  • the receiving end switch module determines the degree of non-whitening of the noise in the signal to be recovered received by the receiving device. For example, according to the channel bandwidth, the signal to be recovered may be acquired and analyzed. In another optional implementation manner, the receiving end switch module receives the instruction sent by the decision module, selects whether to output the signal processed by the decoding module 202 to the demodulation module 204 according to the instruction, or directly sends the maximum likelihood detection to the demodulation module 204. The signal output by module 201.
  • the decision module can be set at the transmitting device, or at the receiving device side, or at the top management layer. The decision module can determine the degree of non-whitening of the noise in the signal to be recovered received by the receiving device in various manners, for example, according to the channel bandwidth, for example, acquiring the signal to be recovered and performing analysis.
  • FIG. 16 exemplarily shows a schematic structural diagram of another receiving apparatus according to an embodiment of the present application.
  • the receiving end switch module 203 in the receiving apparatus is connected to the decision module 206.
  • the receiving end switch module is further configured to receive, by the determining module, indication information for indicating a magnitude relationship between a degree of non-whitening of the noise in the signal to be recovered received by the receiving device and a degree threshold.
  • the indication information may be an instruction for directly transmitting the loop, and the receiving end switch module 203 directly executes the instruction after receiving the indication information, and the instruction may be some commands or may be an identifier.
  • the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is not greater than the threshold value, and the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is greater than the threshold value, and the decision module determines After the non-whitening degree of the noise in the signal to be recovered is related to the degree threshold value, the transmission switch module directly sends 1 or 0. In a specific operation, the receiving end switch module may be an alternative switch.
  • the determining module is configured to send, according to the signal to be recovered, a size relationship between the degree of non-whitening of the noise and the degree threshold of the signal to be recovered received by the receiving device to the receiving switch module.
  • the indication information of the receiving end is further configured to: receive the indication information.
  • FIG. 17 is a schematic structural diagram of another receiving apparatus according to an embodiment of the present application.
  • the receiving apparatus further includes a determining module 2051 connected to the decision module, and performs decision processing on the signal to be restored. , get the signal after the judgment.
  • the decision module is specifically configured to estimate a noise whitening tap in the signal to be recovered according to the signal after the decision and the signal to be recovered; and determine the signal to be recovered according to the relationship between the noise whitening tap and the decision threshold.
  • the magnitude relationship between the degree of non-whitening of the noise and the degree threshold; the indication information indicating the magnitude relationship between the degree of non-whitening of the noise in the signal to be recovered received by the receiving device and the degree threshold is transmitted to the receiving switch module.
  • a tap coefficient calculation module 2052 may also be included.
  • the coding module and the decoding module in the embodiment of the present application are bypassed.
  • the decision module 206 acquires the received signal to be recovered on the one hand, and the decision module on the other hand.
  • the signal to be recovered and the noise are included in the signal to be recovered received by the decision module 206, and the post-decision signal output by the decision module 2051 includes only the signal, and the decision module 206
  • the subtracted signal is subtracted from the post-decision signal by the subtractor, and the noise in the signal to be recovered is obtained, and then the noise whitening tap in the signal to be recovered is estimated according to the noise in the signal to be recovered, and then the noise is whitened and judged.
  • the thresholds are compared to determine the magnitude of the degree of non-whitening of the noise in the signal to be recovered and the degree threshold.
  • the noise whitening tap is greater than the decision threshold, determining that the degree of non-whitening of the noise is greater than a degree threshold, and if the noise whitening tap is not greater than the decision threshold, determining that the degree of non-whitening of the noise is not greater than a degree threshold.
  • the decision threshold and the degree threshold may be the same or different.
  • the decision threshold and the degree threshold may be preset or generated according to certain rules. In this way, it can be accurately determined whether the degree of non-whitening of the noise is not greater than the degree threshold.
  • the degree of non-whitening of noise can be described by a noise whitening tap.
  • the noise whitening tap output by the noise whitening parameter estimation (NWPE) module 2061 is greater than the decision threshold, indicating that the noise is not whitened, that is, the degree of whitening is small, the encoding module and the decoding module are started; if the noise whitening tap Not greater than the decision threshold, indicating that the degree of non-whitening of the noise is small, and the degree of whitening is large, the encoding module and/or the decoding module are not activated, that is, the transmitting switch module directly outputs the signal output by the modulation module, and/or the receiving end. The switch module directly outputs the signal output by the maximum likelihood detection module.
  • the noise whitening tap estimation module is used to quantify the whitening tap of the system noise.
  • the NWPE module 2061 may include an autoregressive filter (AR) module.
  • AR autoregressive filter
  • the function of the AR module is to estimate a noise whitening tap.
  • the corresponding AR module may be set to 2 taps. After the tap is normalized to the maximum value, the modulo value
  • the encoding module and/or the decoding module are started.
  • the decision threshold can be set to the empirical value verified by the system, for example, it can be set to 0.5. If the NWPE module is set to multi-tap, the decision threshold can be set to compare a vector according to a certain calculation rule, or the multi-tap of the NWPE module is weighted and compared with the decision threshold.
  • FIG. 18 is a schematic structural diagram of another receiving apparatus according to an embodiment of the present application.
  • the receiving apparatus further includes receiving end equalization connected to the maximum likelihood detecting module, the decision module, and the decision module.
  • the device is configured to equalize the received signal to obtain a signal to be recovered, and output the signal to be recovered to a maximum likelihood detection module, a decision module, and a decision module.
  • the equalization processing may be performing filtering processing and/or nonlinear compensation, etc., and may also include other processing, for example, equalizing a signal output by the transmitting end switch module, that is, outputting the transmitting end switching module.
  • the signal is filtered and/or nonlinearly compensated.
  • the equalizer can be added directly before the maximum likelihood detection module 201 on the basis of FIG. 12, that is, the receiver equalizer, the maximum likelihood detection module, and the decoding module are sequentially connected.
  • the receiver equalizer may be an FFE.
  • the decision module 2051 can be connected to the receiver equalizer 205 through the tap coefficient calculation module 2052, that is, the decision signal output by the decision module 2051 is fed back to the receiver equalizer 205 again to assist the receiver.
  • the equalizer 205 performs equalization processing to further improve system performance.
  • FIG. 19 exemplarily shows the simulation effect diagram of the solution provided by the embodiment of the present application, as shown in FIG. 19, the total number of symbols used in the simulation. For 60,000, the simulation results are shown in Figure 19. It can be seen that the conventional scheme has a large number of consecutive two errors, three consecutive errors or even more consecutive errors, and the total number of errors of the system is 694. After adopting the embodiment of the present application, the number of consecutive error codes is greatly reduced compared with the conventional scheme, and continuous error codes are basically not present, and most of the error codes are discrete errors that occur independently.
  • the total number of errors is also greatly reduced, from 694 to 356 in the conventional scheme. It can be seen that in the scenario in which the MLSD output has continuous error in the case that the noise characteristic does not satisfy the Gaussian white noise in the embodiment of the present application, the continuous error can be eliminated to a large extent, and the performance of the system is improved.
  • the division of the unit or the module in the embodiment of the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • FIG. 20 is a schematic flowchart diagram of a communication method provided by an embodiment of the present application. As shown in FIG. 20, the method includes:
  • Step 301 The transmitting device modulates the received signal to be transmitted to obtain a modulated signal.
  • the modulation can be electrical modulation.
  • the embodiments of the present application are applicable to various scenarios, such as PAM-M modulation, QAM-E, and the like, which are modulated by a modulation method.
  • the QAM-E modulation includes two paths, and each channel may also be referred to as a PAM- M modulation, where M and E can be integers greater than one.
  • the signal to be transmitted described in the embodiment of the present application may be a binary bit sequence, which may be binary bit quantization information of text, audio, video, or the like.
  • a bit sequence having a certain length received by the modulation module may be referred to as a to-be-transmitted signal, where a certain length may be preset or may be determined according to actual conditions, such as 4
  • a 2-bit binary bit signal can correspond to a 4-level signal to be transmitted.
  • Step 302 The transmitting device performs N-round operation on the modulated signal to obtain a coded signal; N is a positive integer; wherein, the output of the first round operation in the N-round operation is processed according to the modulated signal and after the first delay module The output of the Nth wheel operation is determined; the output of the ith wheel operation in the N wheel operation is determined according to the output of the i-1th wheel operation and the output of the Nth wheel operation processed by the second delay module; Is an integer greater than 1 and less than or equal to N.
  • Performing the N-round operation in step 302 may also be referred to as encoding the modulated signal, which may be electrical coding.
  • the encoding in step 301 may be an encoding that increases the amount of single symbol information, and the encoding of step 302 may serve to increase system robustness.
  • the coding effect in the two steps can be different, and the specific operation mode can also be different. It can be seen from the above examples that the embodiment of the present application provides a basis for the later cooperation with the receiving device to reduce the probability of occurrence of continuous error conditions in the communication system, thereby improving the overall performance of the system.
  • the delay between the output and the input of the first delay module is 1 symbol period. That is to say, the signal output by the first delay module is a signal of one symbol period before the input signal of the first delay module. That is to say, the input of the first operation module of the N operation modules includes two parts, the first part is a modulated signal, and the second part is a coded signal output by the coding module before one symbol period, wherein one symbol period
  • the encoded signal output by the previous encoding module may refer to the encoded signal corresponding to the signal of one symbol period before the signal to be transmitted.
  • the delay between the output and the input of the second delay module is i symbol periods. That is to say, the signal output by the second delay module is the signal of the first symbol period before the input signal of the second delay module. That is, the input of the i-th operation module of the N operation modules includes two parts, the first part is the output of the previous operation module, and the second part is the coded signal output by the coding module before i symbol periods, wherein The coded signal output by the coding module before the i symbol period may refer to the coded signal corresponding to the signal of the i symbol period before the signal to be transmitted.
  • the output of the first round of operation is to perform the first operation on the modulated signal and the output of the Nth round operation processed by the first delay module, and will perform The result of the first operation is obtained by modulo operation;
  • the output of the ith round operation is to perform the first operation on the output of the i-1th round operation and the output of the Nth round operation processed by the second delay module, and
  • the result of the first operation is obtained by performing a modulo operation.
  • the output of the first round of operation is obtained by XORing the modulated signal with the output of the Nth round operation processed by the first delay module; the output of the ith round operation is The XOR-1 operation output is XORed with the output of the Nth wheel operation processed by the second delay module.
  • the transmitting device modulates the received signal to be transmitted, including: the transmitting device performs the M-level pulse amplitude modulation PAM-M on the received signal to be transmitted. Modulation; wherein the modulo operation comprises performing a modulo operation on the result of performing the first operation on M.
  • N is determined according to the target level number and M of the receiving end equalizer of the receiving device, so that the probability of occurrence of a continuous error condition in the communication system can be further reduced.
  • the method further includes: after determining, by the transmitting device, that the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is greater than a threshold value, sending the encoded signal to the transmitting device a receiving device; the transmitting device determines that the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is not greater than a threshold value, and then transmits the modulated signal to the receiving device, thereby further reducing a continuous error condition in the communication system. Probability.
  • the sending device determines whether the degree of non-whitening of noise in the signal to be recovered received by the receiving device is greater than a degree threshold, and includes receiving a non-noise for indicating a signal to be recovered received by the receiving device.
  • FIG. 21 is a schematic flowchart diagram of a communication method provided by an embodiment of the present application. As shown in FIG. 21, the method includes:
  • Step 401 The receiving device performs maximum likelihood detection processing on the received signal to be recovered, to obtain a detected signal.
  • Step 402 The receiving device performs processing according to the detected signal and the detected signal processed by the third delay module to obtain a decoded signal.
  • the delay between the output and the input of the third delay module is N symbol periods; N is determined according to the target level of the receiving end equalizer and the M; wherein, The recovered signal is subjected to M-level pulse amplitude modulation PAM-M modulation in the transmitting device.
  • N and the M refer to the description in the foregoing embodiment, which is not limited in the embodiment of the present application. That is to say, the output of the maximum likelihood detection module processed by the third delay module is the detected signal of the first few symbol periods of the detection module.
  • the receiving device performs processing according to the detected signal and the detected signal processed by the third delay module to obtain the decoded signal, including: the receiving device detects the post signal and the third delay module.
  • the processed post-detection signal performs a second operation, and the result of the second operation is subjected to a modulo operation to obtain a decoded signal.
  • the receiving device performs a P-round exclusive-OR operation on the detected signal and the detected signal processed by the third delay module, and uses the signal outputted by the P-th wheel exclusive OR operation as the decoded signal;
  • the output of the first round exclusive OR operation in the P round exclusive OR operation is determined according to the detected signal and the detected signal processed by the fourth delay module;
  • the jth round exclusive OR operation in the P round exclusive OR operation The output is determined according to the output of the x-1th XOR operator and the detected signal processed by the fifth delay module; j is an integer greater than 1 and less than or equal to P, and P is a positive integer.
  • the delay between the output and the input of the fourth delay module is 1 symbol period. That is to say, the signal output by the fourth delay module is a signal of one symbol period before the input signal of the fourth delay module.
  • the delay between the output and the input of the fifth delay module is j symbol periods, that is, the signal output by the fifth delay module is the input of the fifth delay module. The signal of the previous j symbol periods of the signal can further reduce the probability of occurrence of continuous error conditions in the communication system.
  • the modulo operation includes modulo M on the result of performing the second operation, thereby further reducing the probability of occurrence of a continuous error condition in the communication system.
  • the method further includes: if the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is greater than a threshold value, Demodulating the decoded signal to obtain a recovered signal; if the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is not greater than a threshold value, the detected signal is demodulated to obtain a recovered signal.
  • the receiving device determines whether the degree of non-whitening of the noise in the signal to be recovered received by the receiving device is not greater than a threshold value, and the method includes: the receiving device performs a decision process on the signal to be recovered, to obtain a post-decision signal; The receiving device estimates the noise whitening tap in the signal to be recovered according to the post-decision signal and the signal to be recovered; determining the degree of non-whitening and the threshold of the noise in the signal to be recovered according to the magnitude relationship between the noise whitening tap and the decision threshold The relationship between size.
  • the method further includes: the receiving device sends the indication to the sending device for indicating The indication information of the magnitude of the non-whitening of the noise in the signal to be recovered received by the receiving device and the magnitude of the threshold. See the above for a description of the balance.
  • the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the embodiment of the present application provides a communication device, which may be a transmitting device, or a chip inside the transmitting device, for implementing the functions implemented by the transmitting device, and FIG. Corresponding processes or steps in the method embodiment, such as the corresponding processes or steps performed by the terminal device in the above embodiment.
  • the communication device has the function of the transmitting device 10 as shown in FIG. 2.
  • FIG. 22 exemplarily shows a schematic structural diagram of a communication apparatus according to an embodiment of the present application. As shown in FIG. 22, the communication apparatus 330 may include a transceiver 331, and a processor 332.
  • the transceiver 331 is configured to perform communication interaction with other devices.
  • the transceiver 331 can be an RF circuit, a WiFi module, a communication interface, a Bluetooth module, or the like.
  • the receiving module and the sending module corresponding to the transceiver 331 can execute the method flow executed by the receiving module and the sending module.
  • the processor 332 is configured to implement a function of the processing module, for example, performing N-round operation on the modulated signal to obtain a coded signal and the like.
  • the communication device 330 may further include: a memory 334, configured to store a program or the like.
  • the program can include program code, the program code including instructions.
  • Memory 334 may include RAM and may also include non-volatile memory, such as at least one disk storage.
  • the processor 332 executes the application stored in the memory 334 to implement the above functions.
  • the transceiver 331, the processor 332, and the memory 334 may be connected to each other through a bus 333.
  • the bus 333 may be a peripheral component interconnect (PCI) bus or an extended industry standard structure (extended industry). Standard architecture, EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard structure
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 22, but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application provides a communication device, which may be a receiving device, or a chip inside the receiving device, for implementing the functions implemented by the receiving device, and FIG. 21 above. Corresponding processes or steps in the illustrated method embodiments, such as corresponding processes or steps performed by the network device in the above embodiments.
  • the communication device has the function of the receiving device 20 as shown in FIG.
  • FIG. 23 exemplarily shows a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the communication apparatus 340 may include a transceiver 341 and a processor 342.
  • the transceiver 341 is configured to perform communication interaction with other devices, and the transceiver 341 can be an RF circuit, a WiFi module, a communication interface, a Bluetooth module, or the like.
  • the receiving module and the sending module corresponding to the transceiver 341 can execute the method flow executed by the receiving module and the sending module.
  • the processor 342 is configured to implement a function of the processing module, for example, processing according to the detected signal and the detected signal processed by the third delay module, and obtaining a decoded signal and the like.
  • the communication device 340 may further include: a memory 344 for storing a program or the like.
  • the program can include program code, the program code including instructions.
  • Memory 344 may include RAM and may also include non-volatile memory, such as at least one disk storage.
  • the processor 342 executes the application stored in the memory 344 to implement the above functions.
  • the transceiver 341, the processor 342, and the memory 344 may be connected to each other through a bus 343; the bus 343 may be a peripheral component interconnect (PCI) bus or an extended industry standard structure (extended industry) Standard architecture, EISA) bus, etc.
  • PCI peripheral component interconnect
  • EISA extended industry standard structure
  • the bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in FIG. 23, but it does not mean that there is only one bus or one type of bus.
  • the size of the serial numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, i.e., may be located in one place, or may be distributed over multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • a computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, computer instructions can be wired from a website site, computer, server or data center (eg Coax, fiber, digital subscriber line (DSL) or wireless (eg, infrared, wireless, microwave, etc.) is transmitted to another website, computer, server, or data center.
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • Useful media can be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media (eg, Solid State Disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Power Engineering (AREA)
  • Artificial Intelligence (AREA)
  • Quality & Reliability (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Dc Digital Transmission (AREA)
  • Optical Communication System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法、装置及存储介质,用于降低通信系统中出现连续误码情况的概率。本申请实施例中将接收到的待发送的信号进行调制,得到调制后信号,进一步将调制后信号进行N轮操作,得到编码后信号;N轮操作中的第1轮操作的输出是根据调制后信号和经过第一延时模块处理的第N轮操作的输出确定的;N轮操作中的第i轮操作的输出是根据第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出确定的;i为大于1且小于等于N的整数,如此,可减少通信系统发生连续误码的概率。

Description

一种通信方法、装置及存储介质
本申请要求在2017年06月30日提交中国专利局、申请号为201710526780.7、发明名称为“一种通信方法、装置及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种通信方法、装置及存储介质。
背景技术
网络宽带需求的迅速增长推动着运营商加速部署100G/400G城域网以满足用户的需求,短距光模块要求低成本、占用空间小、功耗低,因此通常使用光通信中最简单的强度调制直接检测技术,比如4电平脉冲幅度调制(4 level pulse amplitude modulation,PAM4)信号就具有实现简单而且低功耗的特性,是短距互联优选解决方案之一。PAM4信号是一种四电平调制格式,与OOK信号在相同比特速率的情况下带宽仅为后者的一半。
但是实际情况下高带宽的光电、电光器件成本较高,人们常常使用低带宽器件传输高速率信号,并在发送装置或者接收装置辅助均衡器对数据进行均衡处理以进一步提升系统性能。此时发送装置发送的信号将受到器件低通滤波效应的影响,变成具有拖尾的畸变信号,使得信号在接收装置产生严重的符号间干扰(intersymbol interference,ISI)。接收端均衡器的作用就是尽量消除系统中的ISI,比如可以通过前向反馈均衡器(feed forward equalizer,FFE)直接均衡到4电平输出。此时FFE的作用相当于一个高通滤波器,能够抵消信道的低通滤波作用。但是信道引入的加性高斯白噪声(additive white gaussian noise channel,AWGN)也会被FFE滤波,使得噪声的功率谱不再是平坦的,导致FFE输出为非白化噪声。
在对存在ISI和AWGN的信道进行均衡和信号解调时,在接收装置设置基于欧基里德距离的最大似然序列检测(maximum likelihood sequence detection,MLSD)模块被认为是性能最优的方案,其MLSD模块的工作原理相当于将接收到的信号与所有可能发送序列比较,把其中欧基里德距离最小的那条路径作为解调序列。如果输入MLSD模块的噪声非白化程度较强,则MLSD模块性能会劣化,导致最终接收装置输出结果可能会出现连续误码。
发明内容
本申请实施例提供一种通信方法、装置及存储介质,用于降低通信系统中出现连续误码情况的概率。
第一方面,本申请实施例提供一种通信方法,发送装置将接收到的待发送的信号进行调制,得到调制后信号。该调制可以是电调制。发送装置将调制后信号进行N轮操作,得到编码后信号;N为正整数;其中,N轮操作中的第1轮操作的输出是根据调制后信号和经过第一延时模块处理的第N轮操作的输出确定的;N轮操作中的第i轮操作的输出是根据第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出确定的;i为大于1且小于等于N的整数。通过上述示例可以看出,本申请实施例中为后期与接收装置配合从而降低通信系统中出现连续误码情况的概率提供了基础,进而提升系统整体性能。
本申请实施例适用于多种场景,比如可以使用PAM-M调制、QAM-E等等调制方式对待发送的信号进行调制,其中,QAM-E调制包括两路,每路也可以称为PAM-M调制,其中,M和E可以是大于1的整数。
一种可选地实施方式中,第一延时模块的输出与输入之间的时延为1个符号周期。也就是说,第一延时模块所输出的信号是第一时延模块的输入信号之前一个符号周期的信号。也就是说,N个操作模块中的第1个操作模块的输入包括两部分,第一部分是调制后信号,第二部分是一个符号周期之前编码模块所输出的编码后信号,其中,一个符号周期之前编码模块所输出的编码后信号可以指在待发送的信号前1个符号周期的信号对应的编码后信号。
另一种可选地实施方式中,第二延时模块的输出与输入之间的时延为i个符号周期。也就是说,第二延时模块所输出的信号是第二时延模块的输入信号之前i个符号周期的信号。也就是说,N个操作模块中的第i个操作模块的输入包括两部分,第一部分是前一个操作模块的输出,第二部分是i个符号周期之前编码模块所输出的编码后信号,其中,i个符号周期之前编码模块所输出的编码后信号可以指在待发送的信号前i个符号周期的信号对应的编码后信号。
为了提高系统的灵活性,一种可选地实施方式中,第1轮操作的输出是将调制后信号和经过第一延时模块处理的第N轮操作的输出进行第一运算,并将进行第一运算的结果进行取模运算得到的;第i轮操作的输出是将第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出进行第一运算,并将进行第一运算的结果进行取模运算得到的。另一种可选地实施方式中,第1轮操作的输出是将调制后信号和经过第一延时模块处理的第N轮操作的输出进行异或运算得到的;第i轮操作的输出是将第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出进行异或运算得到的。
为了进一步提升系统性能,一种可选地实施方式中,发送装置将接收到的待发送的信号进行调制,包括:发送装置将接收到的待发送的信号进行M电平脉冲幅度调制PAM-M调制;其中,取模运算包括将进行第一运算的结果对M进行取模运算。
一种可选地实施方式中,N根据接收装置的接收端均衡器的目标电平数和M确定,从而可以进一步降低通信系统中出现连续误码情况的概率。
一种可选地实施方式中,发送装置得到编码后信号之后,还包括:发送装置在确定接收装置接收到的待恢复的信号中噪声的非白化程度大于程度阈值,则将编码后信号发送给接收装置;发送装置在确定接收装置接收到的待恢复的信号中噪声的非白化程度不大于程度阈值,则将调制后信号发送给接收装置,从而可以进一步降低通信系统中出现连续误码情况的概率。
一种可选地实施方式中,发送装置确定接收装置接收到的待恢复的信号中噪声的非白化程度是否大于程度阈值,包括接收用于指示接收装置接收到的待恢复的信号中噪声的非白化程度与程度阈值的大小关系的指示信息;根据指示信息确定接收装置接收到的待恢复的信号中噪声的非白化程度是否大于程度阈值,从而可以进一步降低通信系统中出现连续误码情况的概率。
第二方面,本申请实施例提供一种通信方法,接收装置对接收到的待恢复的信号进行最大似然检测处理,得到检测后信号;接收装置根据检测后信号和经过第三延时模块处理的检测后信号,进行处理,得到解码后信号。
一种可选地实施方式中,第三延时模块的输出与输入之间的时延为N个符号周期;N根据接收装置的接收端均衡器的目标电平数和M确定;其中,待恢复的信号在发送装置中进行M电平脉冲幅度调制PAM-M调制。N和M的相关内容可参见上述实施例中的介绍,本申请实施例中不做限定。也就是说,经过第三延时模块处理的最大似然检测模块的输出为检测模块前几个符号周期的检测后信号。
一种可选地实施方式中,接收装置根据检测后信号和经过第三延时模块处理的检测后信号,进行处理,得到解码后信号,包括:接收装置将检测后信号和第三延时模块处理的检测后信号进行第二运算,并将进行了第二运算的结果进行取模运算,得到解码后信号。另一种可选地实施方式中,接收装置将检测后信号和第三延时模块处理的检测后信号进行P轮异或运算,将第P轮异或运算输出的信号作为解码后信号;其中,P轮异或运算中的第1轮异或运算的输出是根据检测后信号和经过第四延时模块处理的检测后信号确定的;P轮异或运算中的第j轮异或运算的输出是根据第j-1轮异或运算器的输出和经过第五延时模块处理的检测后信号确定的;j为大于1且小于等于P的整数,P为正整数。
一种可选地实施方式中,第四延时模块的输出与输入之间的时延为1个符号周期。也就是说,第四延时模块所输出的信号是第四时延模块的输入信号之前一个符号周期的信号。一种可选地实施方式中,第五延时模块的输出与输入之间的时延为j个符号周期,也就是说,第五延时模块所输出的信号是第五时延模块的输入信号之前j个符号周期的信号,从而可以进一步降低通信系统中出现连续误码情况的概率。
一种可选地实施方式中,取模运算包括将进行了第二运算的结果对M进行取模,从而可以进一步降低通信系统中出现连续误码情况的概率。
为了更好的提高系统性能,一种可选地实施方式中,接收装置确定出解码后信号之后,还包括:在接收装置接收到的待恢复的信号中噪声的非白化程度大于程度阈值,则对解码后信号进行解调制,得到恢复后的信号;在接收装置接收到的待恢复的信号中噪声的非白化程度不大于程度阈值,则对检测后信号进行解调制,得到恢复后的信号。
一种可选地实施方式中,接收装置确定接收装置接收到的待恢复的信号中噪声的非白化程度是否不大于程度阈值,包括:接收装置对待恢复的信号进行判决处理,得到判决后信号;接收装置根据判决后信号和待恢复的信号,估计待恢复的信号中的噪声白化抽头;根据噪声白化抽头与判决阈值之间的大小关系,确定待恢复的信号中噪声的非白化程度与程度阈值之间的大小关系。
为了进一步提高系统性能,一种可选地实施方式中,接收装置确定待恢复的信号中噪声的非白化程度与程度阈值之间的大小关系之后,还包括:接收装置向发送装置发送用于指示接收装置接收到的待恢复的信号中噪声的非白化程度与程度阈值的大小关系的指示信息。
第三方面,相应于第一方面和第二方面的通信方法,本申请还提供了一种通信装置。通信装置可以是以无线方式进行数据传输的任意一种发送装置或接收装置。例如,通信芯片、终端设备、或者网络设备(例如基站等)。在通信过程中,发送装置和接收装置是相对的。在某些通信过程中,通信装置可以作为上述发送装置,在某些通信过程中,通信装置可以作为上述接收装置。例如,对于下行数据传输,发送装置是基站,对应的接收装置是终端设备;对于上行数据传输,发送装置是终端设备,对应的接收装置是基站;对于D2D(device to device)的数据传输,发送装置是UE,对应的接收装置也可以是UE。本申请 对通信方式不做不做限定。
发送装置和接收装置中的任一个可以为终端设备或可用于终端设备的通信芯片,或为网络设备或可用于网络设备的通信芯片。
第四方面,本申请实施例提供了一种通信装置,以执行上述第一方面中任一种可能实现方式中的方法,或者该通信装置用于执行上述第二方面中任一种可能实现方式中的方法。
在一种设计中,通信装置为通信芯片。
可选的,通信装置还包括可用于执行上述第一方面中任一种可能实现方式中的通信方法的各个模块。或者,可选的,通信装置还包括可用于执行上述第二方面中任一种可能实现方式中的通信方法的各个模块。
第五方面,提供了一种通信装置,包括,处理器和存储器,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信装置执行上述第一方面中任一种可能实现方式中的方法,或者该通信装置用于执行上述第二方面中任一种可能实现方式中的方法。
可选的,处理器为一个或多个,存储器为一个或多个。
可选的,存储器可以与处理器集成在一起,或者存储器与处理器分离设置。
可选的,该通信装置还包括,发射机(发射器)和接收机(接收器)。
第六方面,提供了一种系统,系统包括上述发送装置和接收装置。
第七方面,提供了一种计算机程序产品,计算机程序产品包括:计算机程序(也可以称为代码,或指令),当计算机程序被运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法,或者使得计算机执行上述第二方面中任一种可能实现方式中的方法。
第八方面,提供了一种计算机可读介质,计算机可读介质存储有计算机程序(也可以称为代码,或指令)当其在计算机上运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法,或者使得计算机执行上述第二方面中任一种可能实现方式中的方法。
附图说明
图1为本申请实施例提供的一种系统架构示意图;
图2为一种通信装置的结构示意图;
图3为普通不归零制对应的信号频谱图和经过奈奎斯特滤波眼图;
图4为duobinary对应的信号频谱图和经过奈奎斯特滤波眼图;
图5为从左至右依次展示了4电平PAM-4信号、7电平polybinary PAM-4信号和13电平polybinary PAM-4信号对应的经过奈奎斯特滤波眼图;
图6为不同电平polybinary PAM-4信号对信道频率响应的不同需求的示意图;
图7为本申请实施例提供的一种编码模块的结构示意图;
图8为本申请实施例中提供的另一种编码模块的结构示意图;
图9为本申请实施例提供的另一种发送装置的结构示意图;
图10为本申请实施例提供的另一种发送装置的结构示意图;
图11为本申请实施例提供的另一种发送装置的结构示意图;
图12为本申请实施例提供的另一种通信装置的结构示意图;
图13为本申请实施例提供的一种解码模块的结构示意图;
图14为本申请实施例提供的另一种解码模块的结构示意图;
图15为本申请实施例提供的另一种接收装置的结构示意图;
图16为本申请实施例提供的另一种接收装置的结构示意图;
图17为本申请实施例提供的另一种接收装置的结构示意图;
图18为本申请实施例提供的另一种接收装置的结构示意图;
图19为采用本申请实施例提供的方案的仿真效果示意图;
图20为本申请实施例提供的一种通信方法的流程示意图;
图21为本申请实施例提供的另一种通信方法的流程示意图;
图22为本申请实施例提供的另一种通信装置的结构示意图;
图23为本申请实施例提供的另一种通信装置的结构示意图。
具体实施方式
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile Communication,简称GSM)系统、码分多址(Code Division Multiple Access,简称CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,简称WCDMA)通用分组无线业务(General Packet Radio Service,简称GPRS)系统、长期演进(Long Term Evolution,简称LTE)系统、LTE频分双工(Frequency Division Duplex,简称FDD)系统、LTE时分双工(Time Division Duplex,简称TDD)、通用移动通信系统(Universal Mobile Telecommunication System,简称UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称WiMAX)通信系统,以及5G通信系统等。
图1示例性示出了本申请实施例提供的一种系统架构示意图,如图1所示,本申请实施例适用的系统架构包括发送装置10,以及与发送装置10通过有线或无线等方式连接的接收装置20。本申请实施例中发送装置10可以从用户或服务器等处获取需要发送的原始信号,并将此类原始信号进行一定的处理,比如调制编码等,之后将处理过的信号发送给接收装置20。接收装置20对接收到的信号也进行一定的处理后,恢复出发送装置10所发送的原始信号。当数据从终端设备发送至网络设备时,发送装置10可以是终端设备,接收装置20可以是网络设备;当数据从网络设备发送至终端设备时,发送装置10可以是网络设备,接收装置20可以是终端设备。
上述终端设备可以指用户设备(User Equipment,UE)、接入终端设备、用户单元、用户站、移动站、移动台、远方站、远程终端设备、移动设备、用户终端设备、终端设备、无线通信装置、用户代理或用户装置。接入终端设备可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称SIP)电话、无线本地环路(Wireless Local Loop,简称WLL)站、个人数字处理(Personal Digital Assistant,简称PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备等。
上述网络设备可以是用于与发送装置进行通信的设备,例如,可以是GSM系统或CDMA中的基站(Base Transceiver Station,简称BTS),也可以是WCDMA系统中的基站(NodeB,简称NB),还可以是LTE系统中的演进型基站(Evolutional Node B,简称eNB或eNodeB),或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G 网络中的网络侧设备或未来演进的PLMN网络中的网络设备等。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
基于以上实施例以及相同构思,图2为本申请实施例提供的一种通信装置的结构示意图,如图2所示,该通信装置可以为芯片或电路,比如可设置于发送装置10的芯片或电路。该通信装置可以对应本申请实施例中的发送装置。该通信装置可以包括调制模块101和编码模块102。
调制模块101,用于将将接收到的待发送的信号进行调制,得到调制后信号。本申请实施例中发送装置获取多个用户或服务器等需要发送的原始信号,本申请实施例中可以对原始信号进行一定的处理之后再输入至调制模块,比如可以对原始信号进行一些前向纠错编码、格雷编码等处理,处理后得到待发送的信号,并将待发送的信号输入至调制模块进行调制编码。
本申请实施例中的调制模块101对待发送的信号进行调制,具体来说,可以是电调制。本申请实施例适用于多种场景,比如调制模块101可以使用PAM-M调制、QAM-E等等调制方式对待发送的信号进行调制,其中,QAM-E调制包括两路,每路也可以称为PAM-M调制,其中,M和E可以是大于1的整数。
编码模块102,用于将调制后信号经过依次连接的N个操作模块的处理后,得到编码后信号,发送编码后信号;N为正整数;其中,N个操作模块中的第1个操作模块的输入连接调制模块和经过第一延时模块处理的第N个操作模块的输出;N个操作模块中的第i个操作模块的输入连接第i-1个操作模块的输出和经过第二延时模块处理的第N个操作模块的输出;i为大于1且小于等于N的整数。
编码模块102中的编码可以是电编码。可选地,调制模块101中的编码可以是增加单符号信息量的编码,编码模块102中的编码可以起到增加系统鲁棒性的作用。
一种可选地实施方式中,第一延时模块的输出与输入之间的时延为1个符号周期。也就是说,第一延时模块所输出的信号是第一时延模块的输入信号之前一个符号周期的信号。也就是说,N个操作模块中的第1个操作模块的输入包括两部分,第一部分是调制后信号,第二部分是一个符号周期之前编码模块所输出的编码后信号,其中,一个符号周期之前编码模块所输出的编码后信号可以指在待发送的信号前1个符号周期的信号对应的编码后信号。
另一种可选地实施方式中,第二延时模块的输出与输入之间的时延为i个符号周期。也就是说,第二延时模块所输出的信号是第二时延模块的输入信号之前i个符号周期的信号。也就是说,N个操作模块中的第i个操作模块的输入包括两部分,第一部分是前一个操作模块的输出,第二部分是i个符号周期之前编码模块所输出的编码后信号,其中,i个符号周期之前编码模块所输出的编码后信号可以指在待发送的信号前i个符号周期的信号对应的编码后信号。
本申请实施例中的一个符号周期为相邻两个符号之间的时延,符号可以为PAM符号或QAM符号等,本申请实施例不做限制。符号周期可以是预设的,也可以是随机的,也可以是根据一点规则生成的。
本申请实施例中所描述的待发送信号可以是二进制比特序列,该二进制比特序列可以 是文字、音频、视频等的二进制比特量化信息。一种可选地的实施方式中,可以将调制模块接收到的具有一定长度的比特序列称为一个时刻的待发送信号,其中,一定长度可以是预设的,也可以根据实际情况去确定,比如4电平调制的情况下,2比特的二进制比特信号可以对应一个4电平的待发送信号。
举个例子,编码模块102依次收到待发送的信号1对应的调制后信号,待发送的信号2对应的调制后信号,待发送的信号3对应的调制后信号,待发送的信号4对应的调制后信号。令N为3。其中,待发送的信号1、待发送的信号2、待发送的信号3和待发送的信号4中的1、2、3和4仅仅是标识,令编码模块102依次收到相邻两个待发送的信号之间的时延为一个符号周期。
该示例中,针对待发送的信号2对应的调制后信号,待发送的信号2的前一个符号周期的信号是待发送的信号1,这样,第1个操作模块的输出可以根据待发送的信号2对应的调制后信号和待发送的信号1所生成的编码后信号来得到。针对其它操作模块,由于之前仅有一个编码后信号,因此其它操作模块的输出可以使用待发送的信号1所生成的编码后信号作为经过延时模块处理的第N个操作模块的输出,也可以使用随机序列或者空序列。
该示例中,针对待发送的信号4对应的调制后信号。第1轮操作所输出的信号可以是将调制后信号和待发送的信号3对应的编码后信号进行操作得到的,可见,待发送的信号3对应的编码后信号为将第4轮操作对应的编码后信号经过延时模块处理得到的,延时模块的输入和输入之间的时延为1个符号周期。第2轮操作所输出的信号可以是将第1轮操作所输出的信号和待发送的信号2对应的编码后信号进行操作得到的,可见,待发送的信号2对应的编码后信号为将第4轮操作对应的编码后信号经过延时模块处理得到的,延时模块的输入和输入之间的时延此时可以为2个符号周期。第3轮操作所输出的信号可以是将第2轮操作所输出的信号和待发送的信号1对应的编码后信号进行操作得到的。第4轮操作所输出的信号可以是将第3轮操作所输出的信号和空序列、预设序列、待发送信号1对应的编码后信号、待发送信号2对应的编码后信号或待发送信号3对应的编码后信号对应的编码后信号进行操作得到的。
通过上述示例可以看出,本申请实施例中通过编码模块102对调制模块输出的调制后信号进行了一系列的处理,基于调制模块输出的调制后信号和及编码模块自己所输出的前几个编码后信号,变更了相邻序列之间的关联性,从而可以降低通信系统中出现连续误码情况的概率,进一步为后期与接收装置配合进一步降低通信系统中出现连续误码情况的概率提供了基础,进而为提升系统整体性能。
尤其在信道带宽较宽的场景下,发送装置和接收装置中的一些元件均会产生较多的滤波作用,比如发送装置的均衡器和接收装置的均衡器等元件,此时信道产生的加性高斯白噪声在经过均衡器之后被严重低通滤波,成为了非白化的噪声,在非白噪声输入下MLSD的性能会劣化,会有大量连续误码出。在这种强ISI下,连续误码的问题尤为严重,本申请实施例所提供的上述方案针对该种场景可以体现出更好的效果,即为与接收装置配合从而减弱信号前后序列的相关性提供基础,且为与接收装置配合从而降低通信系统中出现连续误码情况的概率提供基础,进而可以提升系统性能。
编码模块中N个操作模块中的每个操作模块执行一轮操作,每个操作模块中所进行的运算可以包括一种运算,或包括多种运算的组合,比如包括加法运算、取模运算、异或运算中的任一种或任多种运算方式的组合等等。一种可选地实施方式中,针对N个操作模块 中的每个操作模块,操作模块包括依次连接的第一运算器和取模器,第一运算器的输入是操作模块的输入,取模器的输出是操作模块的输出。也就是说,第1轮操作的输出是将调制后信号和经过第一延时模块处理的第N轮操作的输出进行第一运算,并将进行第一运算的结果进行取模运算得到的;第i轮操作的输出是将第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出进行第一运算,并将进行第一运算的结果进行取模运算得到的。进一步,一种可选地实施方式中,调制模块,具体用于将接收到的待发送的信号进行M电平脉冲幅度调制(pulse amplitude modulation M,PAM-M)调制;取模器用于将取模器的输入信号对M进行取模运算。也就是说取模运算包括将进行第一运算的结果对M进行取模运算;M为调制模块接收到的待发送的信号的电平数。第一运算可以有多种选择,比如为一级或多级的减法运算,或者为减法运算和取模运算等等。
为了能进一步降低高速信号对器件带宽的要求,本申请实施例中调制模块101中可以对接收到的待发送的信号采用polybinary编码方式,采用polybinary编码是一种有控制的在某些码元引入ISI,而在其余码元无ISI,该方式能使频带利用率提高到理论上的最大值。因为引入的码间干扰是确知的,所以从最终抽样的结果中剔除掉码间干扰,就可以获得本码元的抽样值。能够较好的提高频带利用率。
图3展示普通不归零制(non-return-to-zero,NRZ)对应的信号频谱图(图3左侧)和经过奈奎斯特滤波眼图(图3右侧),图4展示duobinary(duobinary也称作做记忆长度为1编码的polybinary)对应的信号频谱图(图4左侧)和经过奈奎斯特滤波眼图(图4右侧)。奈奎斯特滤波即如图3信号频谱图和图4信号频谱图中的虚线所示将信号经过带宽为波特率的低通滤波器进行滤波。从图3和图4可以看出,在信号频谱图上,NRZ的频谱主瓣第一次过零点的位置在等于波特率的位置,而duobinary则在波特率一半的位置。从经过奈奎斯特滤波眼图上可以看出NRZ信号经过滤波之后,由于窄带滤波引入的ISI使得眼图已经十分的闭合,而duobinary信号的眼图在经过窄带滤波之后依然张开的十分明显,因为duobinary的主瓣刚好在奈奎斯特滤波的范围之内,不会产生明显的由于窄带滤波造成的ISI。通过图3和图4可以看出polybinary编码可以提高频带利用率。
本申请实施例中若调制模块101采用PAM-M调制,调制模块101接收到的信号为PAM-4的待发送的信号,则调制模块101对PAM-4的待发送的信号做polybinary编码的过程可以用公式(1)表示:
r k=s k+s k-1……公式(1)
公式(1)中,r k为输出的7电平polybinary PAM-4信号,s k为输入调制模块101的PAM-4的待发送的信号;s k-1为输入调制模块101的且在s k前一个符号周期的PAM-4的待发送的信号。
上述公式(1)可以视为7电平polybinary PAM-4信号,r k为输入调制模块101的PAM-4的待发送的信号s k经过一个抽头系数为[1 1]的低通滤波器h 1,其中,h 1=[1 1]。
相应地,对PAM-4的待发送的信号做polybinary编码的过程还可以用公式(2)表示:
g k=s k+s k-1+s k-2+s k-3……公式(2)
公式(2)中,g k为13电平polybinary PAM-4的信号,s k为输入调制模块101的PAM-4的待发送的信号;s k-1为输入调制模块101的且在s k前一个符号周期的PAM-4的待发送的信号;s k-2为输入调制模块101的且在s k前两个符号周期的PAM-4的待发送的信号;s k-3为输入调制模块101的且在s k前三个符号周期的PAM-4的待发送的信号。
上述公式(2)可以视为13电平polybinary PAM-4信号g k为PAM-4的待发送的信号s k经过一个抽头系数为[1 2 1]的低通滤波器h 2,其中,h 2=[1 1 1 1]。
图5从左至右依次展示了4电平PAM-4信号、7电平polybinary PAM-4信号和13电平polybinary PAM-4信号对应的经过奈奎斯特滤波眼图。7电平polybinary PAM-4信号和13电平polybinary PAM-4信号在接收装置20侧经过MLSD模块后可以恢复到原始的4电平PAM-4信号。可选地,接收装置对polybinary的解码过程用公式(3)和公式(4)表示,其中,公式(3)和公式(4)中的参数可参见上述公式(1)和公式(2)的内容
Figure PCTCN2018092454-appb-000001
Figure PCTCN2018092454-appb-000002
进一步,由于传输信道中的发送装置、传输链路以及接收装置都有滤波效应,一种可选地实施方式中,传输系统可根据链路自身的低通滤波特性,结合接收装置带数字滤波功能的前向均衡器(Feed forward equalizer,FFE),自适应选择是否加polybinary编码以及加几电平的polybinary编码。图6示例性示出了不同电平polybinary PAM-4信号对信道频率响应的不同需求的示意图,如图6所示,不同电平polybinary PAM4信号对信道频率响应要求不同,为了使得信号在特定传输信道中获得较佳的传输性能,一种可选地实施方式中,选择最接近信道频率响应曲线要求的L电平polybinary编码,L为接收端均衡器的目标电平数,进而通过调节接收装置的FFE的低通或高通滤波函数可使得信道频率响应和接收装置中的器件(比如接收装置中的接收端均衡器,该示例中以接收端均衡器为FFE进行举例说明)的频率响应相乘与L电平polybinary编码所需的频率响应匹配,如果换到时域表示即为FFE的冲激响应卷积信道冲激响应等于L电平polybinary编码所需冲激响应。如图6所示,带宽最宽的长点虚线表示PAM-4信号传输所需的系统频率响应,点划虚线表示7电平polybinary PAM-4信号传输所需的系统频率响应,短点虚线表示13电平polybinary PAM-4先好传输所需的系统频率响应,实线表示某系统的频率响应,根据上述描述,一种可选地实施方式中,可以选择7电平polybinary PAM-4编码进行传输,可选地,将接收装置FFE设置为低通滤波,各部分对应的频率响应可以用公式(5)表示:
Figure PCTCN2018092454-appb-000003
在公式(5)中,h 1,2为公式(1)或公式(3)对应的目标冲激响应,h t为链路端到端系统的冲激响应,可以通过测量端到端的频率响应H(f)并对其做傅里叶变换得到,h Eq为均衡器(可为发送装置中的发送端均衡器和/或接收装置中的接收端均衡器)引入的低通滤波冲激响应。
确定选择7电平polybinary PAM-4编码进行传输,则待发送的信号的数据比特流在经过多电平映射后,产生理想的4电平PAM-4信号,可选地,若发送装置10中还包括成形滤波器和发送端均衡器,则可将4电平polybinary PAM-4信号通过成形滤波器滤波实现信号的频谱压缩,信道的低通特性以及引入的高斯白噪声使得收端信号眼图明显劣化,若接收装置中包括接收端均衡器,则劣化的4电平polybinary PAM-4信号送入接收端均衡器后做7电平均衡,接收端均衡器输出的信号送入接收装置的MLSD模块消除ISI之后进行4电平判决,MLSD模块输出标准的PAM4信号,进行解映射即可恢复原来的待发送的信号的数据比特流。
从公式(5)可以看出,信道引起的低通滤波和均衡器引起的低通滤波级联起来需要达到上述公式(1)和公式(2)相关内容中的h 1或h 2的低通滤波效果,如果信道带宽较窄, 发送端均衡器和/或接收端均衡器贡献的低通滤波作用很小甚至没有,此时信道产生的加性高斯白噪声在经过均衡器之后没有明显的滤波效果,噪声的白化特性依然明显,即非白化特性较不明显,此种情况下,接收装置中的MLSD模块的性能较好,输出连续误码情况较少,此时可以选择使用本申请实施例提供的方案,比如将待发送的信号经过编码模块102的处理,或者在该种情况下不使用本申请实施例所提供的方案。另一种情况下,信道带宽较宽,发送端均衡器和/或接收端均衡器需要贡献的低通滤波作用较多,此时信道产生的加性高斯白噪声在经过均衡器之后被严重低通滤波,成为了非白化的噪声,由于非白噪声输入下MLSD模块的性能会劣化,会有大量连续误码出现,因此使用本申请实施例提供的方案可以减弱前后序列的相关性,从而降低通信系统中出现连续误码情况的概率。
本申请实施例中延时模块可以是一个,也可以是多个集成,本申请实施例中的第一延时模块、第二延时模块、第三延时模块、第四延时模块和第五延时模块中的第一、第二、第三、第四和第五仅仅是为了区分,并不具有限定意义,比如第三延时模块可以包括第四延时模块和第五延时模块,而第四延时模块可以是第五延时模块,第四延时模块也可是包括在第五延时模块中的一个模块,任两个延时模块也可以是两个不同的延时模块。本申请实施例中的延时模块可以是逻辑上的延时模块也可以是物理上的延时模块。延时模块应为可以称为delay模块。
图7示例性示出了本申请实施例提供的一种编码模块的结构示意图,如图7所示,编码模块102对应进行N轮操作,每轮操作都可以由减法器、取模器和延时模块来完成。编码模块中共包括N个减法器、N个取模器以及N级延时模块组成。其中,N个延时模块中的每个延时模块的输入和输入可以是一个符号周期,如此第1个操作模块连接的可以称为第一延时模块,其余延时模块可以称为第二延时模块,如图7所示,编码模块102的输入precoder_in(a k)来自于图2中调制模块101输出的调制后信号,编码模块102输出的编码后信号
Figure PCTCN2018092454-appb-000004
。其中Precoder_out的值
Figure PCTCN2018092454-appb-000005
和Pecoder_in的值a k的关系可以通过公式(6)表示:
Figure PCTCN2018092454-appb-000006
在公式(6)中,a k为调制后信号;
Figure PCTCN2018092454-appb-000007
为第1个操作模块的输出信号;
Figure PCTCN2018092454-appb-000008
为第2个操作模块的输出信号;
Figure PCTCN2018092454-appb-000009
为第i-1个操作模块的输出信号;
Figure PCTCN2018092454-appb-000010
为第i个操作模块的输出信号;
Figure PCTCN2018092454-appb-000011
为第N个操作模块的输出信号,即编码后信号;
Figure PCTCN2018092454-appb-000012
Figure PCTCN2018092454-appb-000013
前一个符号周期的编码后信号;
Figure PCTCN2018092454-appb-000014
Figure PCTCN2018092454-appb-000015
前两个符号周期的编码后信号;
Figure PCTCN2018092454-appb-000016
Figure PCTCN2018092454-appb-000017
前i个符号周期的编码后信号;
Figure PCTCN2018092454-appb-000018
Figure PCTCN2018092454-appb-000019
前N个符号周期的编码后信号;
i的取值范围为(1,N],mod为取模运算。
上述公式(6)也可以描述为公式(7):
precoder_out(t)={[precoder_in(t)-precoder_out(t-T)]mod M}
-{[precoder_out(t-2*T)]mod M}
...
-{[precoder_out(t-N*T)]mod M}……公式(7)
在公式(7)中,T为信号的符号周期,M为调制信号进行PAM-M调制时调制模块接收到的待发送的信号的电平数,与前述内容中的M的定义一样,precoder_out(t)为可以对应为上述公式(6)中的
Figure PCTCN2018092454-appb-000020
;precoder_in(t)为可以对应为上述公式(6)中的a k;precoder_out(t-T)可以对应为上述公式(6)中的
Figure PCTCN2018092454-appb-000021
;precoder_out(t-2*T)可以对应为上述公式(6)中的
Figure PCTCN2018092454-appb-000022
;precoder_out(t-N*T)可以对应为上述公式(6)中的
Figure PCTCN2018092454-appb-000023
上述公式(6)中的
Figure PCTCN2018092454-appb-000024
也可以描述为将第k时刻调制后信号进行编码模块处理后的码块;
Figure PCTCN2018092454-appb-000025
是将
Figure PCTCN2018092454-appb-000026
延迟N个符号周期的结果。符号周期可以是一个符号与下一个符号之间的时间间隔,如图7所示,一个符号周期可以是一个延时模块能够支持的时间长度。延时模块可包括延时器等器件。符号周期可以是预设的,也可以是随机确定的,也可以是根据一定的规则生成的。发送装置侧的符号周期与接收装置侧的符号周期可以相同,也可以不同,一种可选地实施方案中,发送装置侧的符号周期与接收装置侧的符号周期相同。
一种可选地实施方式中,N根据接收装置的接收端均衡器的目标电平数和M确定。提供一种可选地实施方式,N通过公式(8)确定:
Figure PCTCN2018092454-appb-000027
在公式(8)中,L为接收装置的接收端均衡器的目标电平数。L可以为接收端均衡器的目标电平数,其中,L根据发送端均衡器和接收端均衡器引入的低通滤波冲激响应以及链路端到端系统的冲激响应确定。若接收装置包括判决模块,则L可以为判决模块(slicer)输出的电平数。
公式(8)中的L的确定可以根据上述内容中图3至图6的相关内容所提供的方案进行确定,举个例子,比如调制模块使用PAM-M调制方式,且调制模块用于将接收到的待发送的信号进行M电平脉冲幅度调制PAM-M调制;M为调制模块接收到的待发送的信号的电平数,以M为4举例,比如最终目标需要均衡为7电平的polybinary PAM-4信号,则L取值为7,N取值为1;若最终目标需要均衡为13电平的polybinary PAM-4信号,则L取值为13,N取值为3;若最终目标需要均衡为4电平PAM-4信号,则L取值为4,N取值为1。
本申请实施例提供一种可选地实施方式中,N个操作模块中的每个操作模块包括异或运算器。也就是说,第1轮操作的输出是将调制后信号和经过第一延时模块处理的第N轮操作的输出进行异或运算得到的;第i轮操作的输出是将第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出进行异或运算得到的。图8示例性示出了本申请实施例中提供的另一种编码模块的结构示意图,如图8所示,编码模块102包括N个异或运算器和N个延时模块,其中一个操作模块可以进行一轮操作,一轮操作对应使用一个异或运算器和一个延时模块。如图8所示,编码模块102的输入precoder_in(a k)来自于图2中调制模块101输出调制后信号,编码模块102输出编码后信号
Figure PCTCN2018092454-appb-000028
。其中Precoder_out的值
Figure PCTCN2018092454-appb-000029
和Pecoder_in的值a k的关系可以通过公式(9)表示:
Figure PCTCN2018092454-appb-000030
公式(9)中xor表示异或运算,其余参数参见上述公式(6)至公式(8)相关描述,在此不再赘述。本申请实施例中,M为大于1的整数,M的取值,有多种选择方式,比如,M可以是预先定义,或者根据实际场景去确定。本申请实施例提供这一种可选地实施方式,在应用上述公式(9)所提供的方案的情况下,可以使M为2。
基于前述内容,可知如果信道带宽较窄,则发送端均衡器和接收端均衡器贡献的低通滤波作用很小甚至没有,此时信道产生的加性高斯白噪声在经过均衡器之后没有明显的滤波效果,噪声的白化特性依然明显。此时MLSD的性能较好,输出连续误码情况很少或没有出现。相反,如果信道带宽较宽,则发送端均衡器和/或接收端均衡器需要贡献的低通滤波作用较多,此时信道产生的加性高斯白噪声在经过均衡器之后被严重低通滤波,成为了非白化的噪声,导致最终连续误码较为严重,为了更好的在这两种场景下工作,图9示例性示出了本申请实施例提供的另一种发送装置的结构示意图,如图9所示,发送装置10中可包括发送端开关模块103。
可选地,发送端开关模块103与调制模块和编码模块均连接。发送端开关模块,用于:在接收装置接收到的待恢复的信号中噪声的非白化程度大于程度阈值,则将编码模块输出的编码后信号发送给接收装置;在接收装置接收到的待恢复的信号中噪声的非白化程度不大于程度阈值,则将调制模块输出的调制后信号发送给接收装置。如此,在非白化程度大于程度阈值,即非白化程度较大的情况下,白化程度较小的情况下,发送经过编码模块102处理的信号,从而降低通信系统中出现连续误码情况的概率,而在非白化程度不大于程度阈值,即非白化程度较小,白化程度较大的情况下,直接发送调制模块101输出的信号,即发送未经过编码模块102处理的信号,从而可以节省系统资源。
一种可选地实施方式中,发送端开关模块自己确定接收装置接收到的待恢复的信号中噪声的非白化程度,比如可以根据信道带宽,再比如获取待恢复的信号并进行分析。另一种可选地实施方式中,发送端开关模块接收决策模块发送的指令,根据指令选择传输调制模块101所输出的调制后信号,还是输出编码模块102输出的信号。决策模块可以设置在发送装置,也可以设置在接收装置侧,也可以设置在高层管理层。决策模块可以有多种方式确定接收装置接收到的待恢复的信号中噪声的非白化程度,比如可以根据信道带宽,再比如获取待恢复的信号并进行分析等。
图10示例性示出了本申请实施例提供的另一种发送装置的结构示意图,如图10所示,发送装置中的发送端开关模块103连接决策模块206。可选地,发送端开关模块还用于接收决策模块发送的用于指示接收装置接收到的待恢复的信号中噪声的非白化程度与程度阈值的大小关系的指示信息。一种可选地实施方式中,该指示信息可以直接是选择传输那个回路的指令,发送端开关模块103接收到该指示信息后直接执行该指令,该指令可以是一些命令,也可以是标识,比如用1标识接收装置接收到的待恢复的信号中噪声的非白化程度不大于程度阈值,用0标识接收装置接收到的待恢复的信号中噪声的非白化程度大于程度阈值,决策模块判定出待恢复的信号中噪声的非白化程度与程度阈值的大小关系后直接向发送端开关模块发送1或0。具体操作中,发送端开关模块可为二选一的开关。
为了进一步提高系统性能,本申请实施例中的发送装置10还包括发送端均衡器。一种可选地实施方式中,发送端均衡器直接与图2中的编码模块102连接,在一种可选地实施方式中,上述调制模块101采用PAM-M调制,如图2所示,发送装置10中的调制模块101接收到的待发送的信号首先经过PAM-M映射,之后再经过编码模块102的处理,可 选地,为了进一步降低对传输带宽的要求,可选的可以通过成形滤波器(Shapping filter)做发送端的均衡处理(即发送端均衡器可以为成形滤波器),然后送入传输信道。以光纤传输信道为例,传输信道首先将数字信号转换为模拟信号,模拟信号被调制到激光器进行电光转换,然后送入光纤链路。如此,编码模块输出的信号可以经过发送端均衡器进行均衡处理,从而提高系统性能。相应地接收装置20首先将光信号转换为电信号,并进行模数转换,传输信道会引入高斯白噪声。接收装置被采样的数据流首先被接收端均衡器进行均衡处理,均衡目标可以设定为L电平。均衡后的信号进行MLSD处理后,再经过处理被PAM解映射为原始的数据流。
发送装置中还包括发送端均衡器。发送端均衡器可在图2中直接连接编码模块,接收编码模块输出的信号,从而进一步提升系统性能。另一种可选地实施方式中图11示例性示出了本申请实施例提供的另一种发送装置的结构示意图,如图11所示,发送端均衡器与发送端开关模块连接,发送端均衡器用于将发送端开关模块输出的信号进行均衡,并将均衡后的信号发送给接收装置;其中,发送端开关模块输出的信号为编码后信号,或者为调制后信号。可选地,均衡处理可以是进行滤波处理和/或非线性补偿等等,也可以包括其它处理,举例来说,将发送端开关模块输出的信号进行均衡,即为将发送端开关模块输出的信号进行滤波和/或非线性补偿。
基于以上实施例以及相同构思,图12为本申请实施例提供的另一种通信装置的结构示意图,如图12所示,该通信装置可以为芯片或电路,比如可设置于接收装置20中的芯片或电路。该通信装置可以对应上述内容中的接收装置。该通信装置可以包括最大似然检测模块201和解码模块202。
最大似然检测模块201,用于对接收到的待恢复的信号进行处理,得到检测后信号。最大似然检测模块可以简称为MLSD模块,MLSD模块的工作原理上述内容已经介绍,在此不再赘述。
解码模块202,用于将检测后信号经过运算模块的处理,得到解码后信号;其中,运算模块的输入连接最大似然检测模块的输出和经过第三延时模块处理的最大似然检测模块的输出;运算模块的输出是解码模块的输出。
也就是说,经过第三延时模块处理的最大似然检测模块的输出为检测模块前几个符号周期的检测后信号。一种可选地实施方式中,第三延时模块的输出与输入之间的时延为N个符号周期;N根据接收装置的接收端均衡器的目标电平数和M确定;其中,待恢复的信号在发送装置中进行M电平脉冲幅度调制PAM-M调制。N和M的相关内容可参见上述实施例中的介绍,本申请实施例中不做限定。
通过上述示例可以看出,本申请实施例中通过解码模块202对最大似然检测模块输出的检测后信号进行了一系列的处理,基于检测后信号,以及前几个检测后信号生成解码后信号,从而可以减弱相邻序列,从而可以降低通信系统中出现连续误码情况的概率,进一步为后期与发送装置配合进一步降低通信系统中出现连续误码情况的概率提供了基础,进而可以提升系统整体性能。
解码模块中的运算模块可以包括一种运算,也可以包括多种运算的组合,比如包括加法运算、取模运算、异或运算中的任一种或任多种运算方式的组合等等。一种可选地实施方式中运算模块包括依次连接的第二运算器和取模器;其中,第二运算器的输入是运算模块的输入,取模器的输出是运算模块的输出。也就是说,接收装置将检测后信号和第三延 时模块处理的检测后信号进行第二运算,并将进行了第二运算的结果进行取模运算,得到解码后信号。第二运算可以有多种选择,比如为一级或多级的加法运算,或者为加法运算和取模运算等等。
一种可选地实施方式中,第三延时模块输入和输出之间的时延为P个符号周期,P的选取方式有多种,比如可以是预设的,也可以是根据一定的规则确定的,也可以是随机生成的,也可以是根据实际的应用场景确定的,一种可选地实施方式中,P与上述图2至图11所描述的发送装置侧的方案中的N相等,这种情况下,P通过以下公式(10)确定:
Figure PCTCN2018092454-appb-000031
公式(10)中的P与上述公式(8)中的N相同,公式(10)中的其它参数参见公式(8)中描述,在此不再赘述。
图13示例性示出了本申请实施例提供的一种解码模块的结构示意图,解码模块包括加法器、取模器以及多级延时模块组成,图13中的多级延时模块可以统称为第三延时模块。如图13所示,当前时刻解码模块的输入加上分别经过多个符号周期延时后的加法器输出,再送入一个取模器,取模后的结果可作为当前时刻解码器的输出。解码模块202所输出的解码后信号可根据公式(11)确定:
f k=e k modM    ……公式(11)
在公式(11)中,
Figure PCTCN2018092454-appb-000032
d k是检测后信号,d k-j是d k的前j个符号周期的检测后信号,f k为解码后信号;M可参见上述公式(1)至公式(10)中描述,第三延时模块输入和输出之间的时延为P个符号周期,P可参见上述公式(10)中描述,在此不再赘述。
公式(11)中的d k也可描述为第k时刻的最大似然检测模块处理后的信号,f k也可以描述为将第k时刻的最大似然检测模块处理后的信号进行解码处理后的码块。
解码模块202所输出的解码后信号也可根据公式(12)确定:
decoder_out(t)=[decoder_in(t)+decoder_in(t-T)…+decoder_in(t-P*T)]mod M……公式(12)
在公式(12)中,T为信号的符号周期,M为发送装置中调制信号进行PAM-M调制时调制模块接收到的待发送的信号的电平数,与前述内容中的M的定义一样,decoder_out(t)可以为上述公式(11)中的f k;decoder_in(t)可以为上述公式(11)中的d k;decoder_in(t-T)可以为上述公式(11)中的d k-1;decoder_in(t-P*T)可以为上述公式(11)中的d k-P
本申请实施例提供另一种可选地实施方式,运算模块包括依次连接的P个异或运算器;P个异或运算器中的第1个异或运算器的输入连接最大似然检测模块的输出和经过第四延时模块处理的最大似然检测模块的输出;P个异或运算器中的第j个异或运算器的输入连接第j-1个异或运算器的输出和经过第五延时模块处理的最大似然检测模块的输出;j为大于1且小于等于P的整数,P为正整数。也就是说,接收装置将检测后信号和第三延时模块处理的检测后信号进行P轮异或运算,将第P轮异或运算输出的信号作为解码后信号;其中,P轮异或运算中的第1轮异或运算的输出是根据检测后信号和经过第四延时模块处理的检测后信号确定的;P轮异或运算中的第j轮异或运算的输出是根据第j-1轮异或运算器的输出和经过第五延时模块处理的检测后信号确定的。第三延时模块可以包括第四延时模块和第五延时模块。
一种可选地实施方式中,第四延时模块的输出与输入之间的时延为1个符号周期。也 就是说,第四延时模块所输出的信号是第四时延模块的输入信号之前一个符号周期的信号。一种可选地实施方式中,第五延时模块的输出与输入之间的时延为j个符号周期,也就是说,第五延时模块所输出的信号是第五时延模块的输入信号之前j个符号周期的信号,从而可以进一步降低通信系统中出现连续误码情况的概率。
图14示例性示出了本申请实施例中另一种解码模块的的结构示意图,如图14所示,解码模块202包括多个异或运算器和多个延时模块。如图14所示,可选地,可以包括P个异或运算器和P个延时模块,其中P个延时模块中与第1个异或运算器连接的称为第四延时模块,其余可称为第五延时模块。
如图14所示,解码模块202的输入MLSD_out(也可称为decoder_in(t))(d k)来自于图12中最大似然检测模块201输出检测后信号,解码模块202输出解码后信号f k。其中decoder_out(t)的值f k和decoder_in(t)的值d k的关系可以通过公式(13)表示:
f k=(d k)xor(d k-1)xor(d k-2)…xor(d k-N)……公式(13)
公式(13)中xor表示异或运算,其余参数参见上述公式(11)相关描述,在此不再赘述。本申请实施例中,M的取值参见上述描述,本申请实施例提供这一种可选地实施方式,在应用上述公式(13)所提供的方案的情况下,可以使M为2。
基于前述内容,可知如果信道带宽较窄,则发送端均衡器和接收端均衡器贡献的低通滤波作用很小甚至没有,此时信道产生的加性高斯白噪声在经过均衡器之后没有明显的滤波效果,噪声的白化特性依然明显。此时MLSD的性能较好,输出连续误码情况很少或没有出现。相反,如果信道带宽较宽,则发送端均衡器和/或接收端均衡器需要贡献的低通滤波作用较多,此时信道产生的加性高斯白噪声在经过均衡器之后被严重低通滤波,成为了非白化的噪声,导致最终连续误码较为严重,为了更好的在这两种场景下工作,图15示例性示出了本申请实施例提供的另一种接收装置的结构示意图,如图15所示,发送装置200中可包括接收端开关模块203。可选地,接收装置还包括与接收端开关模块203连接的解调制模块204。
如图15所示,接收端开关模块一端与最大似然检测模块和解码模块连接,另一端与解调制模块连接。可选地,接收端开关模块,用于在接收装置接收到的待恢复的信号中噪声的非白化程度大于程度阈值,则将解码模块输出的解码后信号发送给解调制模块;在接收装置接收到的待恢复的信号中噪声的非白化程度不大于程度阈值,则将最大似然检测模块输出的检测后信号发送给解调制模块。可选地,解调制模块,用于在接收到解码后信号之后,对接收到的解码后信号进行解调制,得到恢复后的信号;在接收到检测后信号之后,对接收到的检测后信号进行解调制,得到恢复后的信号。如此,在非白化程度大于程度阈值,即非白化程度较大的情况下,向解调制模块204输出经过解码模块202处理的信号,从而降低通信系统中出现连续误码情况的概率,而在非白化程度不大于程度阈值,即非白化程度较小的情况下,向解调制模块204直接发送最大似然检测模块201输出的信号,即发送未经过解码模块202处理的信号,从而可以节省系统资源。
一种可选地实施方式中,接收端开关模块自己确定接收装置接收到的待恢复的信号中噪声的非白化程度,比如可以根据信道带宽,再比如获取待恢复的信号并进行分析。另一种可选地实施方式中,接收端开关模块接收决策模块发送的指令,根据指令选择向解调制模块204输出经过解码模块202处理的信号,还是向解调制模块204直接发送最大似然检测模块201输出的信号。决策模块可以设置在发送装置,也可以设置在接收装置侧,也可 以设置在高层管理层。决策模块可以有多种方式确定接收装置接收到的待恢复的信号中噪声的非白化程度,比如可以根据信道带宽,再比如获取待恢复的信号并进行分析等。
图16示例性示出了本申请实施例提供的另一种接收装置的结构示意图,如图16所示,接收装置中的接收端开关模块203连接决策模块206。可选地,接收端开关模块还用于接收决策模块发送的用于指示接收装置接收到的待恢复的信号中噪声的非白化程度与程度阈值的大小关系的指示信息。一种可选地实施方式中,该指示信息可以直接是选择传输那个回路的指令,接收端开关模块203接收到该指示信息后直接执行该指令,该指令可以是一些命令,也可以是标识,比如用1标识接收装置接收到的待恢复的信号中噪声的非白化程度不大于程度阈值,用0标识接收装置接收到的待恢复的信号中噪声的非白化程度大于程度阈值,决策模块判定出待恢复的信号中噪声的非白化程度与程度阈值的大小关系后直接向发送端开关模块发送1或0。具体操作中,接收端开关模块可为二选一的开关。
一种可选地实施方式中,决策模块,用于根据待恢复的信号,向接收端开关模块发送用于指示接收装置接收到的待恢复的信号中噪声的非白化程度与程度阈值的大小关系的指示信息;接收端开关模块,还用于:接收指示信息。
图17示例性示出了本申请实施例提供的另一种接收装置的结构示意图,如图17所示,接收装置还包括与决策模块连接的判决模块2051,用于对待恢复的信号进行判决处理,得到判决后信号。可选地,决策模块,具体用于根据判决后信号和待恢复的信号,估计待恢复的信号中的噪声白化抽头;根据噪声白化抽头与判决阈值之间的大小关系,确定待恢复的信号中噪声的非白化程度与程度阈值之间的大小关系;向接收端开关模块发送用于指示接收装置接收到的待恢复的信号中噪声的非白化程度与程度阈值的大小关系的指示信息。如图17所示,可选地,还可包括抽头系数计算模块2052。
可选地,通信系统初始化启动时先旁路本申请实施例中的编码模块和解码模块,待系统正常工作之后,决策模块206一方面获取接收到的待恢复的信号,另一方面,决策模块接收经过判决模块2051输出的判决后信号,一种可能的情况下,决策模块206接收到的待恢复信号中包括信号和噪声,而判决模块2051输出的判决后信号中仅包括信号,决策模块206通过减法器将待恢复信号与判决后信号相减,则可到待恢复信号中的噪声,之后根据待恢复信号中的噪声估计待恢复的信号中的噪声白化抽头,进而将噪声白化抽头与判决阈值进行比较,确定出待恢复的信号中噪声的非白化程度与程度阈值的大小关系。
可选地,若噪声白化抽头大于判决阈值,则确定噪声的非白化程度大于程度阈值,若噪声白化抽头不大于判决阈值,则确定噪声的非白化程度不大于程度阈值。判决阈值与程度阈值可以相同也可以不同。判决阈值和程度阈值可以是预设的,也可以是根据一定规则生成的。如此,可以准确的确定出噪声的非白化程度是否不大于程度阈值。噪声的非白化程度可以用噪声白化抽头来描述。
若噪声白化抽头估计(Noise whitening parameter estimation,NWPE)模块2061输出的噪声白化抽头大于判决阈值,说明噪声非白化程度较大,即白化程度较小,则启动编码模块和解码模块;如果噪声白化抽头不大于判决阈值,说明噪声非白化程度较小,白化程度较大,则不启动编码模块和/或解码模块,也就是说发送端开关模块直接输出调制模块所输出的信号,和/或接收端开关模块直接输出最大似然检测模块所输出的信号。噪声白化抽头估计模块用于量化系统噪声的白化抽头。
NWPE模块2061中可以包括一个自回归(autoregressive filter,AR))模块,AR模块 的作用是估计噪声白化抽头的一种方法,比如,为了简化起见,可以将对应的AR模块设置为2抽头,对抽头进行最大值归一化后,对抽头[1 q]或[q 1]中的q取模值|q|并与判决阈值(threshold)进行比较,当|q|大于判决阈值时,说明噪声非白化程度较大,相对应的白化程度较下,则启动编码模块和解码模块,当|q|不大于判决阈值时,说明噪声非白化程度较小,相对应的白化程度较大,则不启动编码模块和/或解码模块。判决阈值的设置可以为经过系统验证的经验值,比如可以设置为0.5。如果NWPE模块设置为多抽头,可以设置判决阈值为一个向量按照某种计算规则进行比较,或者将NWPE模块的多抽头进行加权与判决阈值进行比较。
图18示例性示出了本申请实施例提供的另一种接收装置的结构示意图,如图18所示,接收装置还包括与最大似然检测模块、决策模块和判决模块均连接的接收端均衡器,用于对接收到的信号进行均衡,得到待恢复的信号;将待恢复的信号输出至最大似然检测模块、决策模块和判决模块。如此,可以进一步提高系统性能。可选地,均衡处理可以是进行滤波处理和/或非线性补偿等等,也可以包括其它处理,举例来说,将发送端开关模块输出的信号进行均衡,即为将发送端开关模块输出的信号进行滤波和/或非线性补偿。本申请实施例中,可以在图12的基础上直接在最大似然检测模块201之前添加接收到均衡器,即接收端均衡器、最大似然检测模块和解码模块依次连接。可选地,接收端均衡器可以是FFE。
可选地,如图17所示,判决模块2051可以通过抽头系数计算模块2052与接收端均衡器205连接,即判决模块2051输出的判决后信号再次反馈给接收端均衡器205,以辅助接收端均衡器205进行均衡处理,从而进一步提高系统性能。
根据本申请实施例提供的方案进行了7电平polybinary PAM4的仿真,图19示例性示出了采用本申请实施例提供的方案的仿真效果示意图,如图19所示,仿真采用的总符号数为60000个,仿真结果如图19所示。可以看到传统方案有大量的连续两个误码、连续3个误码甚至连续更多个数的误码,系统的总误码数目为694个。采用本申请实施例后,连续误码的数目比传统方案大幅度减少,连续误码基本没有出现,大部分的误码为独立出现的离散误码。采用本发明后,误码总数也大幅减少,从传统方案的694个变成了356个。可见,本申请实施例中在噪声特性不满足高斯白噪声情况下MLSD输出有连续误码的场景下,可以较大幅度消除连续误码,提升系统的性能。
需要说明的是,本申请实施例中对单元或模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。在本申请的实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
基于以上实施例以及相同构思,本申请实施例还提供一种通信方法,该通信方法可以由上述实施例中的发送装置10来实现。图20示例性示出了本申请实施例提供的一种通信方法的流程示意图,如图20所示,该方法包括:
步骤301,发送装置将接收到的待发送的信号进行调制,得到调制后信号。该调制可以是电调制。本申请实施例适用于多种场景,比如可以使用PAM-M调制、QAM-E等等调制方式对待发送的信号进行调制,其中,QAM-E调制包括两路,每路也可以称为PAM-M调制,其中,M和E可以是大于1的整数。
本申请实施例中所描述的待发送信号可以是二进制比特序列,该二进制比特序列可以 是文字、音频、视频等的二进制比特量化信息。一种可选地的实施方式中,可以将调制模块接收到的具有一定长度的比特序列称为一个待发送信号,其中,一定长度可以是预设的,也可以根据实际情况去确定,比如4电平调制的情况下,2比特的二进制比特信号可以对应一个4电平的待发送信号。
步骤302,发送装置将调制后信号进行N轮操作,得到编码后信号;N为正整数;其中,N轮操作中的第1轮操作的输出是根据调制后信号和经过第一延时模块处理的第N轮操作的输出确定的;N轮操作中的第i轮操作的输出是根据第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出确定的;i为大于1且小于等于N的整数。步骤302中进行N轮操作也可以称为将调制后信号进行编码,该编码可以是电编码。可选地,步骤301中的编码可以是增加单符号信息量的编码,步骤302的编码可以起到增加系统鲁棒性的作用。两个步骤中的编码作用可不同,具体操作方式也可不同。通过上述示例可以看出,本申请实施例中为后期与接收装置配合从而降低通信系统中出现连续误码情况的概率提供了基础,进而提升系统整体性能。
一种可选地实施方式中,第一延时模块的输出与输入之间的时延为1个符号周期。也就是说,第一延时模块所输出的信号是第一时延模块的输入信号之前一个符号周期的信号。也就是说,N个操作模块中的第1个操作模块的输入包括两部分,第一部分是调制后信号,第二部分是一个符号周期之前编码模块所输出的编码后信号,其中,一个符号周期之前编码模块所输出的编码后信号可以指在待发送的信号前1个符号周期的信号对应的编码后信号。
另一种可选地实施方式中,第二延时模块的输出与输入之间的时延为i个符号周期。也就是说,第二延时模块所输出的信号是第二时延模块的输入信号之前i个符号周期的信号。也就是说,N个操作模块中的第i个操作模块的输入包括两部分,第一部分是前一个操作模块的输出,第二部分是i个符号周期之前编码模块所输出的编码后信号,其中,i个符号周期之前编码模块所输出的编码后信号可以指在待发送的信号前i个符号周期的信号对应的编码后信号。
为了提高系统的灵活性,一种可选地实施方式中,第1轮操作的输出是将调制后信号和经过第一延时模块处理的第N轮操作的输出进行第一运算,并将进行第一运算的结果进行取模运算得到的;第i轮操作的输出是将第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出进行第一运算,并将进行第一运算的结果进行取模运算得到的。另一种可选地实施方式中,第1轮操作的输出是将调制后信号和经过第一延时模块处理的第N轮操作的输出进行异或运算得到的;第i轮操作的输出是将第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出进行异或运算得到的。
为了进一步提升系统性能,一种可选地实施方式中,发送装置将接收到的待发送的信号进行调制,包括:发送装置将接收到的待发送的信号进行M电平脉冲幅度调制PAM-M调制;其中,取模运算包括将进行第一运算的结果对M进行取模运算。
一种可选地实施方式中,N根据接收装置的接收端均衡器的目标电平数和M确定,从而可以进一步降低通信系统中出现连续误码情况的概率。
一种可选地实施方式中,发送装置得到编码后信号之后,还包括:发送装置在确定接收装置接收到的待恢复的信号中噪声的非白化程度大于程度阈值,则将编码后信号发送给接收装置;发送装置在确定接收装置接收到的待恢复的信号中噪声的非白化程度不大于程 度阈值,则将调制后信号发送给接收装置,从而可以进一步降低通信系统中出现连续误码情况的概率。
一种可选地实施方式中,发送装置确定接收装置接收到的待恢复的信号中噪声的非白化程度是否大于程度阈值,包括接收用于指示接收装置接收到的待恢复的信号中噪声的非白化程度与程度阈值的大小关系的指示信息;根据指示信息确定接收装置接收到的待恢复的信号中噪声的非白化程度是否大于程度阈值,从而可以进一步降低通信系统中出现连续误码情况的概率。
该方法实施例中所涉及的与本申请实施例提供的技术方案相关的概念,比如各个参数等的解释和详细说明及其他步骤请参见前述装置或其他实施例中关于这些内容的描述,此处不做赘述。
基于以上实施例以及相同构思,本申请实施例还提供一种通信方法,该通信方法可以由上述实施例中的接收装置20来实现。图21示例性示出了本申请实施例提供的一种通信方法的流程示意图,如图21所示,该方法包括:
步骤401,接收装置对接收到的待恢复的信号进行最大似然检测处理,得到检测后信号;
步骤402,接收装置根据检测后信号和经过第三延时模块处理的检测后信号,进行处理,得到解码后信号。
一种可选地实施方式中,第三延时模块的输出与输入之间的时延为N个符号周期;N根据接收装置的接收端均衡器的目标电平数和M确定;其中,待恢复的信号在发送装置中进行M电平脉冲幅度调制PAM-M调制。N和M的相关内容可参见上述实施例中的介绍,本申请实施例中不做限定。也就是说,经过第三延时模块处理的最大似然检测模块的输出为检测模块前几个符号周期的检测后信号。
一种可选地实施方式中,接收装置根据检测后信号和经过第三延时模块处理的检测后信号,进行处理,得到解码后信号,包括:接收装置将检测后信号和第三延时模块处理的检测后信号进行第二运算,并将进行了第二运算的结果进行取模运算,得到解码后信号。另一种可选地实施方式中,接收装置将检测后信号和第三延时模块处理的检测后信号进行P轮异或运算,将第P轮异或运算输出的信号作为解码后信号;其中,P轮异或运算中的第1轮异或运算的输出是根据检测后信号和经过第四延时模块处理的检测后信号确定的;P轮异或运算中的第j轮异或运算的输出是根据第j-1轮异或运算器的输出和经过第五延时模块处理的检测后信号确定的;j为大于1且小于等于P的整数,P为正整数。
一种可选地实施方式中,第四延时模块的输出与输入之间的时延为1个符号周期。也就是说,第四延时模块所输出的信号是第四时延模块的输入信号之前一个符号周期的信号。一种可选地实施方式中,第五延时模块的输出与输入之间的时延为j个符号周期,也就是说,第五延时模块所输出的信号是第五时延模块的输入信号之前j个符号周期的信号,从而可以进一步降低通信系统中出现连续误码情况的概率。
一种可选地实施方式中,取模运算包括将进行了第二运算的结果对M进行取模,从而可以进一步降低通信系统中出现连续误码情况的概率。
为了更好的提高系统性能,一种可选地实施方式中,接收装置确定出解码后信号之后,还包括:在接收装置接收到的待恢复的信号中噪声的非白化程度大于程度阈值,则对解码后信号进行解调制,得到恢复后的信号;在接收装置接收到的待恢复的信号中噪声的非白 化程度不大于程度阈值,则对检测后信号进行解调制,得到恢复后的信号。
一种可选地实施方式中,接收装置确定接收装置接收到的待恢复的信号中噪声的非白化程度是否不大于程度阈值,包括:接收装置对待恢复的信号进行判决处理,得到判决后信号;接收装置根据判决后信号和待恢复的信号,估计待恢复的信号中的噪声白化抽头;根据噪声白化抽头与判决阈值之间的大小关系,确定待恢复的信号中噪声的非白化程度与程度阈值之间的大小关系。
为了进一步提高系统性能,一种可选地实施方式中,接收装置确定待恢复的信号中噪声的非白化程度与程度阈值之间的大小关系之后,还包括:接收装置向发送装置发送用于指示接收装置接收到的待恢复的信号中噪声的非白化程度与程度阈值的大小关系的指示信息。关于均衡的相关介绍参见上述内容。
该方法实施例中所涉及的与本申请实施例提供的技术方案相关的概念,比如各个参数等的解释和详细说明及其他步骤请参见前述装置或其他实施例中关于这些内容的描述,此处不做赘述。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
基于以上实施例以及相同构思,本申请实施例提供一种通信装置,该通信装置可以为发送装置,也可以是发送装置内部的芯片,用于实现上述发送装置所实现的功能,以及图20所示方法实施例中的相应流程或者步骤,比如上述实施例中终端设备所执行的相应流程或步骤。该通信装置具有如图2所示的发送装置10的功能。图22示例性示出了本申请实施例提供的一种通信装置的结构示意图,如图22所示,通信装置330可以包括收发器331、处理器332。
收发器331,用于与其他设备进行通信交互,收发器331可以为RF电路、WiFi模块、通信接口、蓝牙模块等。收发器331对应的接收模块和发送模块,可以执行接收模块和发送模块所执行的方法流程。
处理器332,用于实现处理模块的功能,例如将调制后信号进行N轮操作,得到编码后信号等等方案。
可选的,通信装置330还可以包括:存储器334,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括指令。存储器334可能包含RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器332执行存储器334所存放的应用程序,实现上述功能。
一种可能的方式中,收发器331、处理器332和存储器334可以通过总线333相互连接;总线333可以是外设部件互连标准(peripheral component interconnect,PCI)总线或 扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图22中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
基于以上实施例以及相同构思,本申请实施例提供一种通信装置,该通信装置可以为接收装置,也可以是接收装置内部的芯片,用于实现上述接收装置所实现的功能,以及上述图21所示方法实施例中的相应流程或者步骤,比如上述实施例中网络设备执行的相应流程或步骤。该通信装置具有如图12所示的接收装置20的功能。图23示例性示出了本申请实施例提供的一种通信装置的结构示意图,如图23所示,通信装置340可以包括收发器341、处理器342。
收发器341,用于与其他设备进行通信交互,收发器341可以为RF电路、WiFi模块、通信接口、蓝牙模块等。收发器341对应的接收模块和发送模块,可以执行接收模块和发送模块所执行的方法流程。
处理器342,用于实现处理模块的功能,例如根据检测后信号和经过第三延时模块处理的检测后信号,进行处理,得到解码后信号等等方案。
可选的,通信装置340还可以包括:存储器344,用于存放程序等。具体地,程序可以包括程序代码,该程序代码包括指令。存储器344可能包含RAM,也可能还包括非易失性存储器(non-volatile memory),例如至少一个磁盘存储器。处理器342执行存储器344所存放的应用程序,实现上述功能。
一种可能的方式中,收发器341、处理器342和存储器344可以通过总线343相互连接;总线343可以是外设部件互连标准(peripheral component interconnect,PCI)总线或扩展工业标准结构(extended industry standard architecture,EISA)总线等。总线可以分为地址总线、数据总线、控制总线等。为便于表示,图23中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件 可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (46)

  1. 一种通信装置,其特征在于,包括:
    调制模块,用于将接收到的待发送的信号进行调制,得到调制后信号;
    编码模块,用于将所述调制后信号经过依次连接的N个操作模块的处理后,得到编码后信号,发送所述编码后信号;所述N为正整数;
    其中,所述N个操作模块中的第1个操作模块的输入连接所述调制模块和经过第一延时模块处理的第N个操作模块的输出;
    所述N个操作模块中的第i个操作模块的输入连接第i-1个操作模块的输出和经过第二延时模块处理的第N个操作模块的输出;所述i为大于1且小于等于N的整数。
  2. 如权利要求1所述的装置,其特征在于,所述第一延时模块的输出与输入之间的时延为1个符号周期;和/或;
    所述第二延时模块的输出与输入之间的时延为i个符号周期。
  3. 如权利要求1或2所述的装置,其特征在于,针对所述N个操作模块中的每个操作模块,所述操作模块包括依次连接的第一运算器和取模器,所述第一运算器的输入是所述操作模块的输入,所述取模器的输出是所述操作模块的输出;
    或者;
    所述N个操作模块中的每个操作模块包括异或运算器。
  4. 如权利要求3所述的装置,其特征在于,所述调制模块,具体用于将接收到的待发送的信号进行M电平脉冲幅度调制PAM-M调制;
    所述取模器用于将所述取模器的输入信号对所述M进行取模运算。
  5. 如权利要求4所述的装置,其特征在于,所述N根据接收装置的接收端均衡器的目标电平数和所述M确定。
  6. 如权利要求1至5任一项所述的装置,其特征在于,还包括与所述调制模块和编码模块连接的发送端开关模块,用于:
    在接收装置接收到的待恢复的信号中噪声的非白化程度大于程度阈值,则将所述编码模块输出的所述编码后信号发送给所述接收装置;
    在所述接收装置接收到的待恢复的信号中噪声的非白化程度不大于程度阈值,则将所述调制模块输出的所述调制后信号发送给所述接收装置。
  7. 如权利要求6所述的装置,其特征在于,所述发送端开关模块还连接决策模块,所述发送端开关模块还用于:
    接收所述决策模块发送的用于指示所述接收装置接收到的所述待恢复的信号中噪声的非白化程度与所述程度阈值的大小关系的指示信息。
  8. 一种通信装置,其特征在于,包括:
    最大似然检测模块,用于对接收到的待恢复的信号进行处理,得到检测后信号;
    解码模块,用于将所述检测后信号经过运算模块的处理,得到解码后信号;
    其中,所述运算模块的输入连接所述最大似然检测模块的输出和经过第三延时模块处理的所述最大似然检测模块的输出;所述运算模块的输出是所述解码模块的输出。
  9. 如权利要求8所述的装置,其特征在于,所述运算模块包括依次连接的第二运算器和取模器;其中,所述第二运算器的输入是所述运算模块的输入,所述取模器的输出是 所述运算模块的输出;
    或者;
    所述运算模块包括依次连接的P个异或运算器;所述P个异或运算器中的第1个异或运算器的输入连接所述最大似然检测模块的输出和经过第四延时模块处理的所述最大似然检测模块的输出;所述P个异或运算器中的第j个异或运算器的输入连接第j-1个异或运算器的输出和经过第五延时模块处理的所述最大似然检测模块的输出;所述j为大于1且小于等于P的整数,所述P为正整数。
  10. 如权利要求9所述的装置,其特征在于,所述第四延时模块的输出与输入之间的时延为1个符号周期;和/或;
    所述第五延时模块的输出与输入之间的时延为j个符号周期。
  11. 如权利要求9或10所述的装置,其特征在于,所述第三延时模块的输出与输入之间的时延为N个符号周期;所述N根据接收装置的接收端均衡器的目标电平数和所述M确定;
    其中,所述待恢复的信号在发送装置中进行M电平脉冲幅度调制PAM-M调制。
  12. 如权利要求11所述的装置,其特征在于,所述取模器用于将所述取模器的输入信号对所述M进行取模运算。
  13. 如权利要求8至12任一项所述的装置,其特征在于,还包括与所述最大似然检测模块和所述解码模块连接的接收端开关模块,所述接收端开关模块还与解调制模块连接;
    所述接收端开关模块,用于:
    在所述接收装置接收到的待恢复的信号中噪声的非白化程度大于程度阈值,则将所述解码模块输出的所述解码后信号发送给所述解调制模块;
    在所述接收装置接收到的待恢复的信号中噪声的非白化程度不大于程度阈值,则将所述最大似然检测模块输出的所述检测后信号发送给所述解调制模块;
    所述解调制模块,用于:
    在接收到所述解码后信号之后,对接收到的所述解码后信号进行解调制,得到恢复后的信号;
    在接收到所述检测后信号之后,对接收到的所述检测后信号进行解调制,得到恢复后的信号。
  14. 如权利要求13所述的装置,其特征在于,还包括与所述接收端开关模块连接的决策模块,用于:
    根据所述待恢复的信号,向所述接收端开关模块发送用于指示所述接收装置接收到的所述待恢复的信号中噪声的非白化程度与所述程度阈值的大小关系的指示信息;
    所述接收端开关模块,还用于:
    接收所述指示信息。
  15. 如权利要求14所述的装置,其特征在于,还包括与所述决策模块连接的判决模块,用于:
    对所述待恢复的信号进行判决处理,得到判决后信号;
    所述决策模块,具体用于:
    根据所述判决后信号和所述待恢复的信号,估计所述待恢复的信号中的噪声白化抽 头;
    根据所述噪声白化抽头与判决阈值之间的大小关系,确定所述待恢复的信号中噪声的非白化程度与所述程度阈值之间的大小关系;
    向所述接收端开关模块发送用于指示所述接收装置接收到的所述待恢复的信号中噪声的非白化程度与所述程度阈值的大小关系的所述指示信息。
  16. 一种通信方法,其特征在于,包括:
    发送装置将接收到的待发送的信号进行调制,得到调制后信号;
    所述发送装置将所述调制后信号进行N轮操作,得到编码后信号;所述N为正整数;
    其中,所述N轮操作中的第1轮操作的输出是根据所述调制后信号和经过第一延时模块处理的第N轮操作的输出确定的;
    所述N轮操作中的第i轮操作的输出是根据所述第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出确定的;所述i为大于1且小于等于N的整数。
  17. 如权利要求16所述的方法,其特征在于,所述第一延时模块的输出与输入之间的时延为1个符号周期;和/或;
    所述第二延时模块的输出与输入之间的时延为i个符号周期。
  18. 如权利要求16或17所述的方法,其特征在于,所述第1轮操作的输出是将所述调制后信号和经过第一延时模块处理的第N轮操作的输出进行第一运算,并将进行所述第一运算的结果进行所述取模运算得到的;所述第i轮操作的输出是将所述第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出进行第一运算,并将进行所述第一运算的结果进行所述取模运算得到的;
    或者;
    所述第1轮操作的输出是将所述调制后信号和经过第一延时模块处理的第N轮操作的输出进行异或运算得到的;所述第i轮操作的输出是将所述第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出进行异或运算得到的。
  19. 如权利要求18所述的方法,其特征在于,所述发送装置将接收到的待发送的信号进行调制,包括:
    所述发送装置将接收到的待发送的信号进行M电平脉冲幅度调制PAM-M调制;
    其中,所述取模运算包括将进行所述第一运算的结果对所述M进行取模运算。
  20. 如权利要求19所述的方法,其特征在于,所述N根据接收装置的接收端均衡器的目标电平数和所述M确定。
  21. 如权利要求16至20任一项所述的方法,其特征在于,所述发送装置得到编码后信号之后,还包括:
    所述发送装置在确定接收装置接收到的待恢复的信号中噪声的非白化程度大于程度阈值,则将所述编码后信号发送给所述接收装置;
    所述发送装置在确定所述接收装置接收到的待恢复的信号中噪声的非白化程度不大于程度阈值,则将所述调制后信号发送给所述接收装置。
  22. 如权利要求21所述的方法,其特征在于,所述发送装置确定接收装置接收到的待恢复的信号中噪声的非白化程度是否大于程度阈值,包括:
    接收用于指示所述接收装置接收到的所述待恢复的信号中噪声的非白化程度与所述程度阈值的大小关系的指示信息;
    根据所述指示信息确定所述接收装置接收到的待恢复的信号中噪声的非白化程度是否大于程度阈值。
  23. 一种通信方法,其特征在于,包括:
    接收装置对接收到的待恢复的信号进行最大似然检测处理,得到检测后信号;
    所述接收装置根据所述检测后信号和经过第三延时模块处理的所述检测后信号,进行处理,得到解码后信号。
  24. 如权利要求23所述的方法,其特征在于,所述接收装置根据所述检测后信号和经过第三延时模块处理的所述检测后信号,进行处理,得到解码后信号,包括:
    所述接收装置将所述检测后信号和所述第三延时模块处理的所述检测后信号进行第二运算,并将进行了所述第二运算的结果进行取模运算,得到所述解码后信号;
    或者;
    所述接收装置将所述检测后信号和所述第三延时模块处理的所述检测后信号进行P轮异或运算,将所述第P轮异或运算输出的信号作为所述解码后信号;其中,所述P轮异或运算中的第1轮异或运算的输出是根据所述检测后信号和经过第四延时模块处理的所述检测后信号确定的;所述P轮异或运算中的第j轮异或运算的输出是根据第j-1轮异或运算器的输出和经过第五延时模块处理的所述检测后信号确定的;所述j为大于1且小于等于P的整数,所述P为正整数。
  25. 如权利要求24所述的方法,其特征在于,所述第四延时模块的输出与输入之间的时延为1个符号周期;和/或;
    所述第五延时模块的输出与输入之间的时延为j个符号周期。
  26. 如权利要求24或25所述的方法,其特征在于,所述第三延时模块的输出与输入之间的时延为N个符号周期;所述N根据接收装置的接收端均衡器的目标电平数和M确定;
    其中,所述待恢复的信号在发送装置中进行M电平脉冲幅度调制PAM-M调制。
  27. 如权利要求26所述的方法,其特征在于,所述取模运算包括将进行了所述第二运算的结果对所述M进行取模。
  28. 如权利要求23至27任一项所述的方法,其特征在于,所述接收装置确定出解码后信号之后,还包括:
    在所述接收装置接收到的待恢复的信号中噪声的非白化程度大于程度阈值,则对所述解码后信号进行解调制,得到恢复后的信号;
    在所述接收装置接收到的待恢复的信号中噪声的非白化程度不大于程度阈值,则对所述检测后信号进行解调制,得到恢复后的信号。
  29. 如权利要求28所述的方法,其特征在于,所述接收装置确定所述接收装置接收到的待恢复的信号中噪声的非白化程度是否不大于程度阈值,包括:
    所述接收装置对所述待恢复的信号进行判决处理,得到判决后信号;
    所述接收装置根据所述判决后信号和所述待恢复的信号,估计所述待恢复的信号中的噪声白化抽头;
    根据所述噪声白化抽头与判决阈值之间的大小关系,确定所述待恢复的信号中噪声的非白化程度与所述程度阈值之间的大小关系。
  30. 如权利要求29所述的方法,其特征在于,所述接收装置确定所述待恢复的信号 中噪声的非白化程度与所述程度阈值之间的大小关系之后,还包括:
    所述接收装置向发送装置发送用于指示所述接收装置接收到的所述待恢复的信号中噪声的非白化程度与所述程度阈值的大小关系的所述指示信息。
  31. 一种通信装置,其特征在于,包括:
    处理器,用于将接收到的待发送的信号进行调制,得到调制后信号;将所述调制后信号进行N轮操作,得到编码后信号;所述N为正整数;
    收发器,用于发送所述编码后信号;
    其中,所述N轮操作中的第1轮操作的输出是根据所述调制后信号和经过第一延时模块处理的第N轮操作的输出确定的;
    所述N轮操作中的第i轮操作的输出是根据所述第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出确定的;所述i为大于1且小于等于N的整数。
  32. 如权利要求31所述的装置,其特征在于,所述第一延时模块的输出与输入之间的时延为1个符号周期;和/或;
    所述第二延时模块的输出与输入之间的时延为i个符号周期。
  33. 如权利要求31或32所述的装置,其特征在于,所述第1轮操作的输出是将所述调制后信号和经过第一延时模块处理的第N轮操作的输出进行第一运算,并将进行所述第一运算的结果进行所述取模运算得到的;所述第i轮操作的输出是将所述第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出进行第一运算,并将进行所述第一运算的结果进行所述取模运算得到的;
    或者;
    所述第1轮操作的输出是将所述调制后信号和经过第一延时模块处理的第N轮操作的输出进行异或运算得到的;所述第i轮操作的输出是将所述第i-1轮操作的输出和经过第二延时模块处理的第N轮操作的输出进行异或运算得到的。
  34. 如权利要求33所述的装置,其特征在于,所述处理器,用于:
    将接收到的待发送的信号进行M电平脉冲幅度调制PAM-M调制;
    其中,所述取模运算包括将进行所述第一运算的结果对所述M进行取模运算。
  35. 如权利要求34所述的装置,其特征在于,所述N根据接收装置的接收端均衡器的目标电平数和所述M确定。
  36. 如权利要求31至35任一项所述的装置,其特征在于,所述处理器,还用于:
    在确定接收装置接收到的待恢复的信号中噪声的非白化程度大于程度阈值,则通过所述收发器将所述编码后信号发送给所述接收装置;
    在确定所述接收装置接收到的待恢复的信号中噪声的非白化程度不大于程度阈值,则通过所述收发器将所述调制后信号发送给所述接收装置。
  37. 如权利要求36所述的装置,其特征在于,所述收发器,还用于:接收用于指示所述接收装置接收到的所述待恢复的信号中噪声的非白化程度与所述程度阈值的大小关系的指示信息;
    所述处理器,具体用于:
    根据所述指示信息确定所述接收装置接收到的待恢复的信号中噪声的非白化程度是否大于程度阈值。
  38. 一种通信装置,其特征在于,包括:
    收发器,用于接收待恢复的信号;
    处理器,用于对接收到的所述待恢复的信号进行最大似然检测处理,得到检测后信号;根据所述检测后信号和经过第三延时模块处理的所述检测后信号,进行处理,得到解码后信号。
  39. 如权利要求38所述的装置,其特征在于,所述处理器,具体用于:
    将所述检测后信号和所述第三延时模块处理的所述检测后信号进行第二运算,并将进行了所述第二运算的结果进行取模运算,得到所述解码后信号;
    或者;
    将所述检测后信号和所述第三延时模块处理的所述检测后信号进行P轮异或运算,将所述第P轮异或运算输出的信号作为所述解码后信号;其中,所述P轮异或运算中的第1轮异或运算的输出是根据所述检测后信号和经过第四延时模块处理的所述检测后信号确定的;所述P轮异或运算中的第j轮异或运算的输出是根据第j-1轮异或运算器的输出和经过第五延时模块处理的所述检测后信号确定的;所述j为大于1且小于等于P的整数,所述P为正整数。
  40. 如权利要求39所述的装置,其特征在于,所述第四延时模块的输出与输入之间的时延为1个符号周期;和/或;
    所述第五延时模块的输出与输入之间的时延为j个符号周期。
  41. 如权利要求39或40所述的装置,其特征在于,所述第三延时模块的输出与输入之间的时延为N个符号周期;所述N根据接收装置的接收端均衡器的目标电平数和M确定;
    其中,所述待恢复的信号在发送装置中进行M电平脉冲幅度调制PAM-M调制。
  42. 如权利要求41所述的装置,其特征在于,所述取模运算包括将进行了所述第二运算的结果对所述M进行取模。
  43. 如权利要求38至42任一项所述的装置,其特征在于,所述处理器,还用于:
    在接收到的待恢复的信号中噪声的非白化程度大于程度阈值,则对所述解码后信号进行解调制,得到恢复后的信号;
    在接收到的待恢复的信号中噪声的非白化程度不大于程度阈值,则对所述检测后信号进行解调制,得到恢复后的信号。
  44. 如权利要求43所述的装置,其特征在于,所述处理器,具体用于:
    对所述待恢复的信号进行判决处理,得到判决后信号;
    根据所述判决后信号和所述待恢复的信号,估计所述待恢复的信号中的噪声白化抽头;
    根据所述噪声白化抽头与判决阈值之间的大小关系,确定所述待恢复的信号中噪声的非白化程度与所述程度阈值之间的大小关系。
  45. 如权利要求44所述的装置,其特征在于,所述处理器,还用于:
    向发送装置发送用于指示所述接收装置接收到的所述待恢复的信号中噪声的非白化程度与所述程度阈值的大小关系的所述指示信息。
  46. 一种计算机存储介质,其特征在于,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令在被计算机调用时,使所述计算机执行如权利要求16至30任一权利要求所述的方法。
PCT/CN2018/092454 2017-06-30 2018-06-22 一种通信方法、装置及存储介质 WO2019001368A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18825262.1A EP3637711B1 (en) 2017-06-30 2018-06-22 Communication method and device, and storage medium
JP2019572620A JP6949152B2 (ja) 2017-06-30 2018-06-22 通信方法、通信装置、および記憶媒体
KR1020207002504A KR20200016984A (ko) 2017-06-30 2018-06-22 통신 방법, 통신 장치, 및 저장 매체
US16/726,604 US11258650B2 (en) 2017-06-30 2019-12-24 Communication method, communications apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710526780.7 2017-06-30
CN201710526780.7A CN109217979B (zh) 2017-06-30 2017-06-30 一种通信方法、装置及存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/726,604 Continuation US11258650B2 (en) 2017-06-30 2019-12-24 Communication method, communications apparatus, and storage medium

Publications (1)

Publication Number Publication Date
WO2019001368A1 true WO2019001368A1 (zh) 2019-01-03

Family

ID=64740367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092454 WO2019001368A1 (zh) 2017-06-30 2018-06-22 一种通信方法、装置及存储介质

Country Status (6)

Country Link
US (1) US11258650B2 (zh)
EP (1) EP3637711B1 (zh)
JP (1) JP6949152B2 (zh)
KR (1) KR20200016984A (zh)
CN (1) CN109217979B (zh)
WO (1) WO2019001368A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020164007A1 (zh) * 2019-02-13 2020-08-20 深圳市傲科光电子有限公司 一种 pam-n cdr 电路及其控制方法
US12034620B2 (en) * 2020-03-06 2024-07-09 Nokia Solutions And Networks Oy Forward error correction
CN114598393B (zh) * 2020-12-07 2024-10-18 华为技术有限公司 信号处理方法及装置、通信系统
CN112929083B (zh) * 2021-02-04 2022-04-26 烽火通信科技股份有限公司 一种相干光模块及其监测方法
CN114696852B (zh) * 2022-02-28 2023-11-07 深圳市紫光同创电子有限公司 接收机抽头系数获取方法、设备及存储介质

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105959064A (zh) * 2016-04-25 2016-09-21 武汉元昊科技有限公司 实现高速信号传输的强度调制与直接检测系统及方法
US9485121B2 (en) * 2014-01-27 2016-11-01 Multiphy Ltd. Digital baud rate clock recovery of heavily ISI-induced signals

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9927673D0 (en) * 1999-11-23 2000-01-19 Adaptive Broadband Ltd Precoder for data transmission
AU2392401A (en) * 1999-12-23 2001-07-09 Fernway Limited A modified tomlinson-harashima precoding method circuit for infinite impulse response (iir) channels
JP4351508B2 (ja) * 2003-02-28 2009-10-28 アギア システムズ インコーポレーテッド パルス振幅変調技法を使用する光伝送システム用のデュオバイナリ・パルス整形
KR100539248B1 (ko) 2004-02-05 2005-12-27 삼성전자주식회사 결정 피드백 이퀄라이저 및 피드백 필터 계수 업데이트 방법
WO2006001301A1 (ja) * 2004-06-25 2006-01-05 Evolvable Systems Research Institute Inc. 伝送装置および伝送方法
US20070025475A1 (en) * 2005-07-28 2007-02-01 Symbol Technologies, Inc. Method and apparatus for data signal processing in wireless RFID systems
CN101989429B (zh) * 2009-07-31 2012-02-01 华为技术有限公司 转码方法、装置、设备以及系统
US8712254B2 (en) * 2009-08-27 2014-04-29 Broadcom Corporation Electronic dispersion compensation within optical communications using reconstruction
AT11892U1 (de) 2010-02-22 2011-06-15 Ge Jenbacher Gmbh & Co Ohg Verbrennungsmotor
EP2603805A4 (en) * 2010-08-13 2016-10-19 Altera Corp INTEGRATED CIRCUIT CIRCUITS FOR REALIZING OR FACILITATING OSCILLOSCOPE MEASUREMENT, SCINTILLATION, AND / OR ERROR RATE OPERATIONS ON BITS
JP5437205B2 (ja) * 2010-09-08 2014-03-12 日本電信電話株式会社 光受信方法、光受信装置及びビート雑音推定器
WO2013101583A1 (en) * 2011-12-30 2013-07-04 Zte (Usa) Inc. Digital filter, partial response equalizer, and digital coherent receiver device and method
US9166844B2 (en) * 2012-11-16 2015-10-20 Rambus Inc. Receiver with duobinary mode of operation
WO2015027903A1 (en) * 2013-08-27 2015-03-05 Zte Corporation Optical communication using super-nyquist signals
JP6738682B2 (ja) * 2016-08-01 2020-08-12 日本ルメンタム株式会社 光送受信器、光送信集積回路及び光受信集積回路

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9485121B2 (en) * 2014-01-27 2016-11-01 Multiphy Ltd. Digital baud rate clock recovery of heavily ISI-induced signals
CN105959064A (zh) * 2016-04-25 2016-09-21 武汉元昊科技有限公司 实现高速信号传输的强度调制与直接检测系统及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KOSSEL, M. ET AL.: "A 10 Gb/s 8-Tap 6b 2-PAM/4-PAM Tomlinson-Harashima Precoding Transmitter for Future Memory-Link Applications in 22-nm SOI CMOS", IEEE JOURNAL OF SOLID-STATE CIRCUITS, vol. 12, no. 48, 4 December 2013 (2013-12-04), pages 3271, XP055565635 *
See also references of EP3637711A4
WENG, JIANFENG ET AL.: "Performance Analysis of M-PAM Signalling with Tomlinson Harashima Precoding over ISI Channels", GLOBAL TELECOMMUNICATIONS CONFERENCE, 2002. GLOBECOM, 17 November 2002 (2002-11-17), XP010636358 *

Also Published As

Publication number Publication date
EP3637711A1 (en) 2020-04-15
CN109217979A (zh) 2019-01-15
KR20200016984A (ko) 2020-02-17
EP3637711B1 (en) 2022-02-16
CN109217979B (zh) 2021-06-15
US11258650B2 (en) 2022-02-22
JP6949152B2 (ja) 2021-10-13
US20200136885A1 (en) 2020-04-30
JP2020526133A (ja) 2020-08-27
EP3637711A4 (en) 2020-05-13

Similar Documents

Publication Publication Date Title
US11258650B2 (en) Communication method, communications apparatus, and storage medium
CN105814855B (zh) 超Nyquist发送系统中的预编码
WO2019105244A1 (zh) 一种纠错方法和纠错装置
TWI422167B (zh) 干擾消除接收器及方法
US9077410B2 (en) Apparatus and method of transmitting data in multi-carrier system
JP4884959B2 (ja) 光ディジタル伝送システムおよび方法
US9825785B2 (en) Enhanced equalization based on a combination of reduced complexity MLSE and linear equalizer for heavily ISI-induced signals
TW432843B (en) Receiver for a digital transmission system
KR102241380B1 (ko) 광 통신 방법 및 장치
US10237096B2 (en) Processing of a faster-than-Nyquist signaling reception signal
CN107836100B (zh) 用于使用稀疏不连续的时域导频的低复杂度isi估计的方法和装置
US11444694B2 (en) Optical transmission system
US11581944B2 (en) Optical transmission system
US11855699B2 (en) Optical transmission system, optical transmitting apparatus and optical receiving apparatus
CN110740105A (zh) 信号处理方法和装置
US9231792B1 (en) Adaptive WiGig equalizer
WO2012164460A1 (en) Adaptively switching equalization operations in a node of a wireless network
CN109565436B (zh) Pam-4传输系统中的时钟和数据恢复
Lim The Performance Analysis of CCA Adaptive Equalization Algorithm for 16-QAM Signal
US9722816B2 (en) Precoding in faster-than-nyquist communications
EP3440813B1 (en) Apparatus and method for recovering clock data from an m-level signal
CN108781194B (zh) 无线通信网络中的方法和节点
JP2019121995A (ja) 中継装置および中継方法
KR20210133687A (ko) MIMO-Auto Encoder 기반의 데이터 전송 장치
JPS60154754A (ja) デイジタル信号の送受信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18825262

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019572620

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018825262

Country of ref document: EP

Effective date: 20200106

ENP Entry into the national phase

Ref document number: 20207002504

Country of ref document: KR

Kind code of ref document: A