WO2019001268A1 - 一种peg化硫杂蒽酮类光引发剂及光敏树脂组合物 - Google Patents

一种peg化硫杂蒽酮类光引发剂及光敏树脂组合物 Download PDF

Info

Publication number
WO2019001268A1
WO2019001268A1 PCT/CN2018/090825 CN2018090825W WO2019001268A1 WO 2019001268 A1 WO2019001268 A1 WO 2019001268A1 CN 2018090825 W CN2018090825 W CN 2018090825W WO 2019001268 A1 WO2019001268 A1 WO 2019001268A1
Authority
WO
WIPO (PCT)
Prior art keywords
peg
group
photosensitive resin
resin composition
polyethylene glycol
Prior art date
Application number
PCT/CN2018/090825
Other languages
English (en)
French (fr)
Inventor
主辉
林美娜
赵宣
Original Assignee
北京键凯科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810040940.1A external-priority patent/CN109206611B/zh
Application filed by 北京键凯科技股份有限公司 filed Critical 北京键凯科技股份有限公司
Publication of WO2019001268A1 publication Critical patent/WO2019001268A1/zh
Priority to US16/729,825 priority Critical patent/US11174239B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D335/10Dibenzothiopyrans; Hydrogenated dibenzothiopyrans
    • C07D335/12Thioxanthenes
    • C07D335/14Thioxanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • C07D335/16Oxygen atoms, e.g. thioxanthones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives

Definitions

  • the present invention relates to the field of 3D printing technology, and in particular to a PEGylated thioxanthone photoinitiator and a photosensitive resin composition comprising the same and its use in 3D printing.
  • 3D printing technology is a concept proposed in relation to two-dimensional printing. Scans E.M. and Cima M.J. of the Massachusetts Institute of Technology first applied for a patent on 3D printing (patent number US5204055) in 1991. Based on this patent, 3D printing is formed by using HP thermal bubble jet spray bonding material to bond the powder.
  • the working principle of 3DP is similar to inkjet printing. It is a rapid prototyping technology based on the principle of droplet ejection. Under the excitation of digital signal, the liquid in the working chamber of the nozzle instantly forms droplets and is at a certain speed. The frequency is ejected from the nozzle, sprayed to a specified position, and solidified and stacked layer by layer to obtain a molded part.
  • 3D printing technologies such as SLA (Sterolithography Apparatus), SLS (Selective Laser Sintered), and FDM (Fused Deposition Modeling) have been developed.
  • the principle of light curing is widely used in 3D printing. It is the most important principle of 3D printing technology in the early days.
  • the implementation method is as follows: using a liquid formula with photosensitive properties to cure it into a certain shape under specific illumination, and then The layers are stacked to get the final product. It is characterized by high precision and fast forming, and is suitable for various 3D printing technologies such as 3DP, SLA, DLP (Digital Light Procession).
  • the 3D printing formulation with photosensitive property used in the principle of photocuring the main components are generally divided into: active component, photosensitizer, diluent and other components, wherein
  • the active component is a component which can cure a liquid formulation under certain conditions.
  • the active component generally contains two or more reactive groups, and can form a network structure during the reaction to form a conformity. Performance required solids.
  • the active groups mainly have the following types: one is an acrylic reactive group, the other is an epoxy reactive group, and there may be some other cationic monomers (such as oxabutanes, spiro orthoesters). , bicyclic orthoester, spiro orthocarbonate, cyclic lactone, etc.).
  • Photosensitizer mainly photoinitiator, which can generate free radicals, cations, etc. under the irradiation of light of a specific wavelength to initiate the curing reaction of the active material.
  • the photosensitizer further comprises a light stabilizer, a photoinhibitor, a photosensitizer and the like to adjust the speed and extent of the curing reaction of the active material.
  • Diluent is divided into two categories: one is an inert diluent, similar to a solvent, and the other is a reactive diluent, which contains the same active group as the active component (often only one reactive group), such as : Monoacrylates and monoepoxy derivatives.
  • components added to adjust the properties of the formulation, or to add a certain property to the formulation including fillers, leveling agents, polymerization inhibitors, anti-settling agents, dyes, pigments, and the like.
  • curing performance can be quickly cured under specific light irradiation, curing shrinkage rate is low.
  • a special-purpose 3D printed material it should have high tensile strength, flexural strength, hardness and toughness, chemical resistance, no deformation after washing, and good thermal stability.
  • the present invention provides a PEGylated thioxanthone compound having the structure of Formula I,
  • R 1-8 is independently selected from the group consisting of: H, OH, alkyl, alkoxy, aryl, aralkyl, aromatic or non-aromatic heterocyclic, heterocycloalkyl, halogen and -X- PEG;
  • R 1-8 is -X-PEG
  • X is a linking group selected from the group consisting of: -(CH 2 ) i -, -(CH 2 ) i O-, -(CH 2 ) i S-, -(CH 2 ) i CO-, -(CH 2 ) i COO -, - (CH 2) i NH -, - (CH 2) i CONH -, - (CH 2) i OCOO -, - (CH 2) i OCONH -, - (CH 2) i NHCONH- and -O
  • i is an integer from 0 to 10;
  • PEG is a polyethylene glycol residue, and the molecular weight of PEG is 200 Da-100 KDa.
  • 1 , 2, 3, 4, 5, 6, 7, or 8 of the R 1-8 may be -X-PEG; when more than 2 of the R 1-8 are -X - PEG, wherein the -X-PEG is the same or not identical.
  • the alkyl group is an alkyl group of C 1-6 , particularly an alkyl group of C 1-3 such as a methyl group, an ethyl group, a n-propyl group or an isopropyl group.
  • the alkoxy group is, for example, a C1-6 alkoxy group, particularly a C1-3 alkoxy group such as a methoxy group, an ethoxy group, a n-propoxy group or an isopropoxy group.
  • the halogen is F, Cl, Br or I, preferably F, Cl or Br, more preferably Cl.
  • the aryl group is selected from the group consisting of phenyl, naphthyl, anthracenyl, phenanthryl, anthracenyl and anthracenyl.
  • the heterocyclic group is, for example, a nitrogen-containing heterocyclic ring; and the nitrogen-containing heterocyclic group is a five- or six-membered ring.
  • the R 1-8 is independently selected from the group consisting of H, OH, alkyl, alkoxy, halogen, and -X-PEG, and at least one of R 1-8 is -X-PEG.
  • said R 1-8 is independently selected from the group consisting of: H, methyl, methoxy, F, Cl, Br, I, and -X-PEG, and at least one of R 1-8 is -X- PEG.
  • said R 2 and/or R 4 is -X-PEG.
  • the X is selected from the group consisting of: -(CH 2 ) i -, -(CH 2 ) i O-, -(CH 2 ) i S-, -(CH 2 ) i CO-, -(CH 2 ) i One or a combination of two or more of NH- and -(CH 2 ) i CONH-; more specifically, the X is selected from the group consisting of: -(CH 2 ) i -, -(CH 2 ) i O- and - (CH 2 ) i CO-.
  • said X is -(CH 2 ) i -.
  • the i is an integer of 0-5, such as 0, 1, 2, 3, 4 or 5.
  • the X is selected from the group consisting of: a single bond, -CH 2 -, -CH 2 CH 2 -, -CH 2 CH 2 CH 2 -, -CH 2 CONHCH 2 -, -CH 2 CONHCH 2 CH 2 -, - CH 2 CH 2 CONHCH 2 -, -CH 2 CH 2 CONHCH 2 CH 2 -, -CH 2 NHCOCH 2 -, -CH 2 NHCOCH 2 CH 2 -, -CH 2 CH 2 NHCOCH 2 CH 2 -, -OCH 2 -, -OCH 2 CH 2 , -CH 2 OCH 2 -, -CH 2 OCH 2 CH 2 -, -CH 2 CH 2 OCH 2 -, -CH 2 CH 2 OCH 2 CH 2
  • the PEG is a linear, Y-type, multi-branched polyethylene glycol residue, and includes, for example, a linear double-end PEG, a Y-type PEG, a 4-arm branched PEG, a 6-arm branched PEG, or an 8-arm branched PEG. .
  • the PEG is a linear polyethylene glycol residue having the structure shown in Formula II:
  • p is an integer of from 1 to 2000, preferably an integer of from 10 to 1820, more preferably an integer of from 10 to 230.
  • the PEG is a Y-type or U-type polyethylene glycol residue having one of the structures shown in Formula III or IV:
  • n and i are independently selected from an integer of from 1 to 1000, preferably from 5 to 910, more preferably from 5 to 120.
  • the PEG is a multi-branched polyethylene glycol residue having the structure shown in Formula V:
  • k is an integer from 1 to 600, preferably an integer from 3 to 80, more preferably an integer from 3 to 40,
  • j is an integer of 3-8
  • R is a core molecule of a multi-branched polyethylene glycol, and R is selected from the group consisting of residues of pentaerythritol, oligo-pentaerythritol, methyl glucoside, sucrose, diethylene glycol, propylene glycol, glycerol, and polyglycerol; specifically, R is selected from: Residues of pentaerythritol, dipentaerythritol and tripent pentaerythritol.
  • the PEG is a linear polyethylene glycol residue having the structure shown in Formula II.
  • X is a single bond
  • PEG is a linear polyethylene glycol residue having a structure represented by Formula II, that is, - X-PEG has the following structure:
  • p is an integer of from 1 to 240, preferably an integer of from 1 to 120.
  • the molecular weight of the PEG may be 500-800,000 Da (specifically, 500 Da, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 or 80 KDa), etc.; more specifically, the molecular weight of PEG is 500-10000 Da, such as 500-5000 Da.
  • the PEG has a molecular weight of 3500 Da.
  • the PEGylated thioxanthone compound has the structure shown in Formula VI:
  • the -X-PEG is
  • the PEG has a molecular weight of from 500 to 80,000 Da, preferably from 500 to 10,000 Da, more preferably from 500 to 5,000 Da.
  • R 1 and R 2-8 are independently selected from the group consisting of: H, OH, alkyl, alkoxy, and halogen; more specifically, R 1 and R 2-8 are independently selected. From: H, methyl, methoxy, F, Cl, Br and I.
  • R 1 and R 5-8 are both H, and R 3 and R 4 are both methyl groups, in which case the PEGylated thioxanthone compound has Structure shown in formula VII:
  • the -X-PEG is
  • the PEG has a molecular weight of from 500 to 80,000 Da, preferably from 500 to 10,000 Da, more preferably from 500 to 5,000 Da, specifically, such as 3,500 Da.
  • the PEGylated thioxanthone compound has the structure shown in Formula VIII:
  • the mPEG is a linear polyethylene glycol residue having the structure shown in Formula II;
  • the mPEG has a molecular weight of 500 to 80,000 Da, preferably 500 to 10,000 Da, more preferably 500 to 5000 Da, specifically, 3,500 Da.
  • Another aspect of the present invention provides a photoinitiator comprising the above PEGylated thioxanthone compound of the present invention.
  • Another aspect of the present invention also provides a photosensitive resin composition comprising a photosensitizer comprising the above photoinitiator of the present invention.
  • composition further comprises an active ingredient and a diluent.
  • the content (mass percentage) of each component in the composition is: active component: 0.01-60%; diluent: 20-90%; photosensitizer: 0.01-20%.
  • the content (% by mass) of the active component in the composition is 1 to 40% (specifically, 1%, 5%, 10%, 15%, 20%, 25%, 30%, 35% or 40%), preferably 10-30%.
  • the content (% by mass) of the diluent in the composition is 40-90% (specifically, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%) %, 85% or 90%), preferably 60-85%.
  • the content (mass percentage) of the photoinitiator in the composition is from 0.1 to 10.0% (specifically, 0.1%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5%, 3.0%, 4.0%, 5.0%, 6.0%, 7.0%, 8.0%, 9.0% or 10.0%), preferably 0.5-5.0%.
  • the active ingredient of the present invention refers to a PEG, a PEG-polyester copolymer or the like having more than one reactive group.
  • the reactive group means a group capable of undergoing polymerization, such as a double bond and an epoxy group.
  • the active component includes, but is not limited to, one or more of the following substances: PEG acrylate, PEG epoxy ether, polyethylene glycol acrylate, polyethylene glycol epoxy Small substituted polyacrylic acid and epoxy derivative small molecules such as diol, diol diacrylate and diol dialkylene oxide.
  • the PEG acrylate is PEG diacrylate or a multi-arm PEG acrylate having an arm number of 3-8 (specifically, 3, 4, 5, 6, 7, or 8) .
  • the PEG epoxy ether is PEG bis epoxide or the number of arms is 3-8 (specifically, 3, 4, 5, 6, 7, or 8) Arm PEG epoxy ether.
  • the PEG has a molecular weight of 500 to 80,000 Da (specifically, such as 500, 1000, 5000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000 or 80,000 Da), more preferably 1000- 50000 Da; In one embodiment of the invention, the PEG has a molecular weight of 10,000 Da.
  • the polyethylene glycol acrylate is polyglycol diacrylate.
  • the polyglycol epoxy ether is a polyglycol dihydroxy ether.
  • the number of ethylene glycol repeating units condensed in the polyglycol is 2-50 (specifically, 2, 5, 10, 15, 20, 25, 30, 35 40, 45 or 50), preferably 2-40.
  • the glycol is selected from the group consisting of ethylene glycol, propylene glycol, and butylene glycol.
  • the acrylic acid and the epoxy are generally fully substituted, but may be partially substituted, but the number of substitutions is greater than 1.
  • the active component is an eight-arm polyethylene glycol acrylate (8arm-PEG-Aclt); in a more preferred embodiment of the invention, the eight-arm poly The ethylene glycol acrylate has a molecular weight of 10,000 Da.
  • the polyglycidyl diacetate derivative and the diepoxy derivative have the same chemical formula as the corresponding PEG derivative, but the polyglycol is a compound (a single component having a determined molecular weight) instead of The polymer has a condensation number of ethylene glycol of 1 to 50, and acrylic acid or epoxy is completely substituted.
  • the photosensitizer of the present invention is generally a substance which is capable of undergoing changes under specific lighting conditions.
  • the most important component is a photoinitiator.
  • a light stabilizer, a photoinhibitor, and/or a photosensitizer may be appropriately added to adjust the reaction rate and reaction time of the activating component.
  • the diluent comprises a non-reactive diluent and/or a reactive diluent.
  • the non-reactive diluent is a solvent selected from the group consisting of water, buffer, ethanol, isopropanol, DMSO, DMF, dioxane and THF, and a water-soluble solvent having a boiling point of more than 70 ° C.
  • the diluent is water.
  • the reactive diluent is a substance having one reactive group, including but not limited to one or more of the following: ethyl acrylate, butyl acrylate, isobutyl acrylate, glycidyl acrylate Small molecular radical monomers such as ethyl methacrylate, butyl methacrylate, isobutyl methacrylate, glycidyl methacrylate and allyl methacrylate, and monomethoxy PEG acrylate, Monomethoxy PEG epoxy ether, monomethoxy polyethylene glycol acrylate and monomethoxy polyethylene glycol epoxy ether.
  • the molecular weight of the PEG is 500-800,000 Da (specifically, such as 500, 1000, 5000, 10000, 20000, 30000, 40,000, 50000, 60,000, 70,000 or 80,000 Da), more preferably 1000. -50000Da.
  • the polyethylene glycol has a condensation degree of 2-50 (specifically, 2, 5, 10, 15, 20, 25, 30, 35, 40, 45). Or 50), more preferably 2-40.
  • the photosensitive resin composition further includes an auxiliary additive which is an inert substance which does not participate in the photocuring process, and is usually added to satisfy certain physicochemical properties or special properties of the formed printed product.
  • the auxiliary additive is selected from the group consisting of: a co-initiator, an antifoaming agent, a leveling agent, a polymerization inhibitor, an antioxidant, an anti-settling agent, a pigment, a fluorescent agent, a filler, a wetting and dispersing agent, a toughening agent, and a crosslinking agent.
  • a co-initiator an antifoaming agent
  • a leveling agent e.g., ethylene glycol dimethoxysulfate
  • a polymerization inhibitor e.g., 1, 2-butanethoxysulfate
  • an antioxidant e.g., 1,3-diol-diol-butane
  • an anti-settling agent e.g., 1,3-d
  • the auxiliary additive content (% by mass) in the composition is from 0 to 10%, more preferably from 0.01 to 10%.
  • the addition of a certain amount of antifoaming agent can suppress or eliminate the foaming in the photosensitive resin composition, and has the advantages of small surface tension, strong defoaming power, good diffusibility and permeability, and good gas permeability; in particular,
  • the antifoaming agent is selected from one or more of a silicone-based antifoaming agent, a mineral oil-based antifoaming agent, a polyether antifoaming agent, and a fatty alcohol defoaming agent.
  • the leveling agent is selected from the group consisting of: an acrylic leveling agent, a silicone leveling agent, and a fluorocarbon stream.
  • the flat agents One or more of the flat agents.
  • the antioxidant is selected from the group consisting of: pentaerythritol tetrakis(3,5-di-tert-butyl-4-hydroxy)phenylpropionate, phenyl tris(2,4-di-tert-butyl)phosphite, N, N'-bis-(3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl)hexanediamine, 2,6-di-tert-butyl-4-methylphenol and tert-butyl pair One or more of hydroxyanisole.
  • the polymerization inhibitor is selected from the group consisting of: a radical polymerization inhibitor, a combination of one or more of a phenolic polymerization inhibitor, an inorganic compound polymerization inhibitor, and an organometallic compound polymerization inhibitor; in one embodiment of the present invention, the polymerization inhibitor is a phenolic polymerization inhibitor, Such as hydroquinone.
  • the co-initiator is selected from one or more of triethanolamine, N,N-dimethylbenzylamine, N,N-dimethylaniline and triethylamine.
  • Adding a certain amount of pigment can make the photocured product have a specific color; adding a certain amount of wetting and dispersing agent can improve the suspension stability of the pigment in the composition; those skilled in the art can select the type of pigment and specific according to actual needs. ingredient.
  • the auxiliary additive includes a co-initiator, and the content (% by mass) of the co-initiator in the photosensitive resin composition is 0.01 to 5.0% (specifically, 0.01%, 0.1%). , 0.5%, 1.0%, 1.5%, 2.0%, 3.0%, 4.0% or 5.0%), preferably 0.1-2.0%.
  • the auxiliary additive comprises a polymerization inhibitor
  • the content of the polymerization inhibitor (% by mass) in the photosensitive resin composition is 0-1%, preferably 0.001 to 1% (specific For example, 0.001%, 0.005%, 0.01%, 0.05%, 0.1%, 0.5% or 1%), preferably 0.001-0.1%, more preferably 0.005-0.05%.
  • the composition comprises: an active component, a photoinitiator, a diluent, and a co-initiator.
  • the composition comprises: an active component, a photoinitiator, a diluent, a co-initiator, and a polymerization inhibitor.
  • the composition comprises: an eight-arm polyethylene glycol acrylate, a PEGylated thioxanthone compound of the formula IX of the invention, triethanolamine, and water.
  • the photosensitive composition comprises: an eight-arm polyethylene glycol acrylate, a PEGylated thioxanthone compound of the formula IX of the present invention, triethanolamine, water, and para-benzene. Diphenol.
  • the mass percentage of each component in the composition is: eight-arm polyethylene glycol acrylate: 10-30%, and the PEGylated thiazepine of the above formula IX of the present invention
  • Anthrone compounds 0.5-5.0%, triethanolamine: 0.1-2.0%, water: 60-85%, hydroquinone: 0.005-0.05%.
  • compositions of the present invention further comprise an auxiliary functional component that provides the photosensitive composition with a particular function.
  • the content (mass percentage) of the auxiliary functional component is 0 to 20.0%, preferably 0.1 to 20.0% (specifically, 0.1%, 0.5%, 1.0%, 1.5%, 2.0%) 3.0%, 4.0%, 5.0%, 6.0%, 7.0%, 8.0%, 9.0%, 10.0%, 15.0% or 20.0%), more preferably 0.1-10.0%.
  • the content (mass percentage) of each component in the composition is: active component: 0.01-60%; diluent: 20-90%; photosensitizer: 0.01-20%, Accessory component: 0-20%.
  • the auxiliary functional components of the present invention include, but are not limited to, gelatin and acrylic acid derivatized gelatin, hyaluronic acid and acrylic acid derivatized hyaluronic acid, chitosan and modified chitosan, cellulose and carboxy One or more of methyl cellulose, alginate and modified alginate, collagen, agarose and various cell nutrient solutions, which can improve the cell growth environment and adjust the mechanical properties of the hydrogel.
  • the polyester segment portion is selected from one of polylactide, polyglycolide, a copolymer of glycolide and lactide, polycaprolactone, or the like. A variety of combinations. More specifically, the polyester segment portion is a copolymer of glycolide and lactide and/or polycaprolactone;
  • the molecular weight of the polyester segment ranges from 800 to 80,000 Da (specifically, such as 800, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 20000, 30000, 40000, 50000, 6000, 70,000 or 80000 Da), more preferably 1000-40000 Da; further preferably 1000-10000 Da.
  • the number of arms is selected from an integer of 3-8 (specifically, such as 3, 4, 5, 6, 7, or 8), more specifically Ground, the number of arms is 4 or 8.
  • the molecular weight of the multi-arm or linear polyethylene glycol segment ranges from 800 to 80,000 Da (specifically, such as 800, 1000, 2000, 3000, 4000, 5000, 10000, 20000, 30000). , 40000, 50000, 60000, 70000 or 80000 Da), more preferably 2000-40000 Da.
  • the auxiliary functional component is selected from the group consisting of gelatin and acrylic acid derivatized gelatin, hyaluronic acid, and acrylic acid derivatized hyaluronic acid, chitosan, and modification. Chitosan, cellulose and carboxymethyl cellulose, alginate and modified alginate, collagen, agarose and various cell nutrient solutions can improve the cell growth environment and regulate the mechanical properties of hydrogels.
  • a combination of one or more of the components; specifically, the auxiliary functional component is contained in the composition in an amount (% by mass) of from 0.1 to 10.0%, preferably from 0.5 to 5.0%.
  • the auxiliary functional component is acrylic acid derivatized hyaluronic acid (HA-Aclt).
  • the auxiliary functional component is acrylic acid derivatized gelatin (Gel-Aclt).
  • the auxiliary functional component in the composition, is a block polymer of a multi-arm or linear polyethylene glycol polyester whose end group is modified with an acrylate; specifically
  • the content (% by mass) of the auxiliary functional component in the composition is from 0.1 to 20.0%, more preferably from 1 to 10%.
  • the auxiliary functional component is a block polymer of a multi-arm polyethylene glycol polycaprolactone whose end group is modified with an acrylate, wherein
  • the polycaprolactone segment has a molecular weight in the range of 800 to 80,000 Da, preferably 1000 to 40,000 Da, further preferably 1000 to 10,000 Da;
  • the polyethylene glycol segment has a molecular weight in the range of 800 to 80,000 Da, preferably 2000 to 40,000 Da;
  • the number of arms is selected from an integer from 3 to 8, preferably 4 or 8.
  • the auxiliary functional component is a block polymer of an eight-arm polyethylene glycol polycaprolactone whose end group is modified with an acrylate: 8arm-PEG 10k - PCL 3k -Aclt (wherein the polycaprolactone segment has a molecular weight of 3000 Da and the polyethylene glycol segment has a molecular weight of 10000 Da).
  • Another aspect of the present invention provides an application of the above PEGylated thioxanthone compound and photosensitive resin composition in the preparation of a consumable for 3D printing.
  • the 3D printing includes a 3D printing form such as 3DP, SLA, and DLP.
  • Another aspect of the present invention provides a hydrogel obtained by 3D printing of the above photosensitive resin composition.
  • Another aspect of the invention also provides the use of the above hydrogel in cell culture.
  • the PEGylated thioxanthone compound provided by the invention has low toxicity and environmental protection, has less residual amount of debris as a photoinitiator, can improve the compatibility of the photoinitiator and the photosensitive resin composition system, and has high initiation efficiency and heat stability. Good sex.
  • the photosensitive resin composition provided by the invention has reasonable composition and content of each component, and can print a hydrogel of a specific structure in 3D, and the hydrogel has less cytotoxicity and good biocompatibility, and can be used for 3D cell culture. And other fields of bioengineering.
  • FIG. 1 is a synthetic route diagram of mPEG-TX provided in Example 1.
  • Example 2 is a synthetic route diagram of mPEG-CO-TX provided in Example 2.
  • FIG. 3 shows the priming effects of mPEG-TX and mPEG-CO-TX provided as the photoinitiator respectively in Example 3, with the solution B being left and the solution A being right.
  • Figure 4 is a diagram showing the formulation solution provided in Example 15 and its solid hydrogel obtained by 3D printing, wherein Figure A is a picture of the formulation solution prepared in Example 15, and the B, C, and D diagrams are respectively the above formula solution. Solid hydrogel images of different shapes and structures obtained by 3D printing.
  • Figure 5 is a diagram showing the formulation solution provided in Example 16 and its solid hydrogel obtained by 3D printing, wherein Figure A is a picture of the formulation solution prepared in Example 16, and the B, C, and D diagrams are respectively prepared by using the above formula solution. Solid hydrogel images of different shapes and structures obtained by 3D printing.
  • Alkyl means a straight or branched hydrocarbon chain radical which does not contain an unsaturated bond
  • a C1-6 alkyl group means a straight or branched alkyl group having 1 to 6 carbon atoms, such as Methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, n-hexyl, etc.; if the alkyl group is substituted by an aryl group, then the corresponding "aralkyl""Free radical, C 7-14 aralkyl refers to an aralkyl group having 7-14 carbon atoms, such as benzyl, diphenylmethyl or phenethyl; if the alkyl group is substituted by a heterocyclic group, then This corresponds to a "heterocyclylalkyl" radical.
  • Alkoxy refers to a substituted hydroxyl group formed after the hydrogen is substituted alkyl
  • C 1-6 alkoxy refers to an alkoxy group having 1 to 6 carbon atoms, such as methoxy, ethoxy Base, propoxy, butoxy, and the like.
  • Aryl means a monocyclic or polycyclic radical, including polycyclic radicals containing a monoaryl group and/or a fused aryl group, such as containing 1-3 monocyclic or fused rings and 6- 18 carbon ring atoms, such as phenyl, biphenyl, naphthyl, anthryl, phenanthryl, anthryl and fluorenyl.
  • Heterocyclyl includes heteroaromatic groups and heteroalicyclic groups containing from 1 to 3 monocyclic and/or fused rings and from 3 to about 18 ring atoms. Suitable heteroaryl groups in the compounds of the invention contain 1, 2 or 3 heteroatoms selected from N, O or S atoms, preferably nitrogen atoms.
  • the "combination” means a group formed by linking two or more of the linked linking groups by chemical bonding, for example, -(CH 2 ) i -
  • the combination with -(CH 2 ) i CONH- may be -(CH 2 ) i CONH(CH 2 ) i , specifically, the combination of -CH 2 - and -CH 2 CH 2 CONH- may be -CH 2 CH 2 CONHCH 2 -, -CH 2 CH 2 CH 2 CONH-.
  • the "combination” is used to define the chemical structure of the linking group, and does not involve the preparation steps, combination order, and the like of the linking group.
  • the polyethylene glycol in the present invention is preferably characterized by molecular weight, followed by the number of repeating units.
  • Example 3 Comparison of two photoinitiators of mPEG-TX and mPEG-CO-TX
  • Solution A 8arm-PEG-Aclt (500 mg), mPEG-TX (17 mg, prepared in Example 1) was added to water (1.5 mL), followed by triethanolamine (40 ⁇ L).
  • Solution B 8arm-PEG-Aclt (500 mg), mPEG-CO-TX (17 mg, prepared in Example 2) was added to water (1.5 mL), followed by triethanolamine (40 ⁇ L).
  • Example 4 Formulation 1 and its 3D printing
  • Component content 8arm-PEG 10k -Aclt 25% Photoinitiator (mPEG 3500 -TX) 1% Triethanolamine 0.9% water 73.09%
  • Example 12 Formulation 9 and its 3D printing
  • Example 13 Formulation 10 and its 3D printing
  • Gel-Aclt is acrylic acid derivatized gelatin.
  • Example 14 Formulation 11 and its 3D printing
  • HA-Aclt is acrylic acid derivatized hyaluronic acid.
  • 150 g of the solution was prepared according to the formulation of Table 12, as shown in Figure 4A. It was then placed in a resin bath of FormLab's Form23D printer for 3D printing. The result is a pale yellow-yellow solid hydrogel as shown in Figures B, C and D of Figure 4.
  • the above formula solution has moderate viscosity and fluidity, is easy to print and shape, and does not block the nozzle, and the gel forming speed is fast and the conditions are mild.
  • the gel obtained by 3D printing has good shape, small volume shrinkage, good strength, moderate hardness, maintains its shape and structure, does not collapse or swell, and has good biocompatibility.
  • 8arm-PEG 10k -PCL 3k -Aclt is a block polymer of octagonal polyethylene glycol polyester modified by acrylate, wherein the polyester segment is polycaprolactone, and polyethylene
  • the molecular weight of the alcohol segment portion was 10 KDa, and the molecular weight of the polyester segment portion was 3 KDa.
  • 150 g of the solution was prepared according to the formulation of Table 13, as shown in Figure A, Figure A. It was then placed in a resin bath of FormLab's Form23D printer for 3D printing. The result is a pale yellow-yellow solid hydrogel as shown in Figures B, C and D of Figure 5.
  • the above formula solution has moderate viscosity and fluidity, is easy to print and shape, and does not block the nozzle, and the gel forming speed is fast and the conditions are mild.
  • the gel obtained by 3D printing has good shape, small volume shrinkage, good strength, moderate hardness, maintains its shape and structure, does not collapse or swell, and has good biocompatibility.
  • the content is a percentage by mass
  • the photoinitiator (mPEG 3500 -TX) used is the product prepared in Example 1, and the 8arm-PEG 10k- Aclt used by Beijing is used.
  • the molecular weight is 10KDa, and has the following structure:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyethers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

本发明公开了一种PEG化硫杂蒽酮类光引发剂及光敏树脂组合物,所述的PEG化硫杂蒽酮类化合物,低毒环保,作为光引发剂固化后碎片残留量少,可提高光引发剂与光敏树脂组合物体系的相容性,引发效率高,热稳定性好。本发明提供的光敏树脂组合物中各组分成分及含量搭配合理,能够3D打印出特定结构的水凝胶,该水凝胶细胞毒性较小,生物相容性较好,可用于3D细胞培养等生物工程领域。

Description

一种PEG化硫杂蒽酮类光引发剂及光敏树脂组合物 技术领域
本发明涉及3D打印技术领域,具体涉及一种PEG化硫杂蒽酮类光引发剂及包含该光引发剂的光敏树脂组合物及其在3D打印中的应用。
背景技术
3D打印技术是相对于二维平面打印而提出的概念,美国麻省理工学院的Scans E.M.和Cima M.J.等人于1991年最早申请了关于3D打印的专利(专利号US5204055)。基于这个专利开发的3D打印成形是采用惠普热气泡喷头喷射粘接材料使粉末粘接成型。3DP的工作原理类似于喷墨打印,是一种基于液滴喷射原理的快速成形技术,即在数字信号的激励下,使喷嘴工作腔内的液体在瞬间形成液滴,并以一定的速度和频率从喷嘴喷出,喷射到指定位置,固化后逐层堆积,得到成形零件。由此发展出SLA(Sterolithography Apparatus,立体光刻)、SLS(Selective Laser Sintered,选择性激光烧结)、FDM(Fused Deposition Modeling,熔丝沉积)等3D打印技术。
光固化原理在3D打印中应用较广泛,是早期最重要的3D打印技术原理,其实施方式如下:利用一种具有光敏性能的液体配方,使其在特定光照下固化成一定的形状,然后逐层堆积得到最后的产品。其特点为精度非常高,成型较快,适合于3DP、SLA、DLP(Digital Light Procession,数字光处理)等多种3D打印技术。
光固化原理所用的具有光敏性能的3D打印配方,其主要成分一般分为:活性组分、光敏剂、稀释剂及其他组分,其中,
活性组分:活性组分即在一定条件下,能使液体配方固化的组分,活性组分一般包含两个或两个以上的活性基团,在反应时能够形成网状结构,从而形成符合性能要求的固体。活性基团主要有以下几类:一类是丙烯酸类活性基团,另一类为环氧活性基团,此外还可能有一些其他阳离子单体(如氧杂丁烷类、螺环原酸酯、双环原酸酯、螺环原碳酸酯、环内酯等)。
光敏剂:主要为光引发剂,这类物质能够在特定波长的光照射下,能够产生自由基、阳离子等,引发活性物质的固化反应。除此之外,光敏剂还包含光稳定剂、光抑制剂、光敏化剂等等组分,用以调节活性物质固化反应的速度及程度。
稀释剂:稀释剂分为两类:一类为惰性稀释剂,类似于溶剂,另一类为活性稀释剂,其含有与活性组分相同的活性基团(往往只有一个活性基团),如:单丙烯酸酯类及单环氧衍生物等。
其他组分:用以调节配方性能,或者为配方增加某种性能而加入的组分,包括填料、流平剂、阻聚剂、防沉降剂、染料、颜料等。
由于3D打印的特殊性,一个好的光敏3D打印配方需要满足以下要求:
1、固化前的理化性能:必须是无毒、不易燃、挥发性小的液态物;不发生暗反应、长时间放置不沉降;粘度较低,pH值接近中性等。
2、固化性能:特定光照射下能够迅速固化、固化收缩率低。除非有特殊用途的3D打印材料,还应该有较高的 拉伸强度、弯曲强度、硬度和韧性,耐化学试剂,水洗后不变形,并拥有良好的热稳定性。
发明内容
本发明一方面提供一种PEG化硫杂蒽酮类化合物,其具有式Ⅰ所示的结构,
Figure PCTCN2018090825-appb-000001
其中,R 1-8独立地选自:H、OH、烷基、烷氧基、芳基、芳烷基、芳族或非芳族的杂环基、杂环烷基、卤素和-X-PEG;
且R 1-8中至少有一个为-X-PEG;
X为连接基团,选自:-(CH 2) i-、-(CH 2) iO-、-(CH 2) iS-、-(CH 2) iCO-、-(CH 2) iCOO-、-(CH 2) iNH-、-(CH 2) iCONH-、-(CH 2) iOCOO-、-(CH 2) iOCONH-、-(CH 2) iNHCONH-和-O(CH 2) iCOO-中的一种或两种以上的组合,其中,i为0-10的整数;
PEG为聚乙二醇残基,PEG的分子量为200Da-100KDa。
具体地,所述的R 1-8中可以有1、2、3、4、5、6、7或8个为-X-PEG;当所述R 1-8中有2个以上为-X-PEG,其中所述-X-PEG相同或不完全相同。
具体地,所述的烷基如C 1-6的烷基,特别是C 1-3的烷基,如甲基、乙基、正丙基或异丙基。
具体地,所述的烷氧基如C 1-6的烷氧基,特别是C 1-3的烷氧基,如甲氧基、乙氧基、正丙氧基或异丙氧基。
具体地,所述的卤素为F、Cl、Br或I,优选为F、Cl或Br,更优选为Cl。
具体地,所述的芳基选自:苯基、萘基、蒽基、菲基、茚基和芘基。
具体地,所述的杂环基如含氮杂环;所述含氮杂环基如五元或六元环。
具体地,所述R 1-8独立地选自:H、OH、烷基、烷氧基、卤素和-X-PEG,且R 1-8中至少有一个为-X-PEG。
更具体地,所述R 1-8独立地选自:H、甲基、甲氧基、F、Cl、Br、I和-X-PEG,且R 1-8中至少有一个为-X-PEG。
在本发明的一个实施例中,所述的R 2和/或R 4为-X-PEG。
具体地,所述X选自:-(CH 2) i-、-(CH 2) iO-、-(CH 2) iS-、-(CH 2) iCO-、-(CH 2) iNH-和-(CH 2) iCONH-中的一种或两种以上的组合;更具体地,所述X选自:-(CH 2) i-、-(CH 2) iO-和-(CH 2) iCO-。
在本发明的一个优选实施例中,所述的X为-(CH 2) i-。
具体地,所述i为0-5的整数,如0、1、2、3、4或5。
具体地,所述X选自:单键、-CH 2-、-CH 2CH 2-、-CH 2CH 2CH 2-、-CH 2CONHCH 2-、-CH 2CONHCH 2CH 2-、-CH 2CH 2CONHCH 2-、-CH 2CH 2CONHCH 2CH 2-、-CH 2NHCOCH 2-、-CH 2NHCOCH 2CH 2-、-CH 2CH 2NHCOCH 2-、 -CH 2CH 2NHCOCH 2CH 2-、-OCH 2-、-OCH 2CH 2、-CH 2OCH 2-、-CH 2OCH 2CH 2-、-CH 2CH 2OCH 2-、-CH 2CH 2OCH 2CH 2-、-CH 2SCH 2-、-CH 2SCH 2CH 2-、-CH 2CH 2SCH 2-和-CH 2CH 2SCH 2CH 2-中的一种或两种以上的组合。
在本发明的一个更优选的实施例中,所述X为-(CH 2) i-且i=0,即X为单键。
所述PEG为直链、Y型、多分支的聚乙二醇残基,例如包括直链双端PEG、Y型PEG、4臂支链PEG、6臂支链PEG或8臂支链PEG等。
在本发明一具体实施方式中,所述PEG为直链聚乙二醇残基,具有通式Ⅱ所示的结构:
Figure PCTCN2018090825-appb-000002
其中,p是1-2000的整数,优选为10-1820的整数,更优选为10-230的整数。
在本发明另一具体实施方式中,所述PEG为Y型或U型聚乙二醇残基,具有通式Ⅲ或Ⅳ所示的结构中的一种:
Figure PCTCN2018090825-appb-000003
Figure PCTCN2018090825-appb-000004
其中,n和i独立地选自1-1000的整数,优选为5-910的整数,更优选为5-120的整数。
在本发明另一具体实施方式中,所述PEG为多分支聚乙二醇残基,具有通式Ⅴ所示的结构:
Figure PCTCN2018090825-appb-000005
其中,k是1-600的整数,优选为3-80的整数,更优选为3-40的整数,
j是3-8的整数,
R是多分支聚乙二醇的核心分子,R选自:季戊四醇、寡聚季戊四醇、甲基葡萄糖苷、蔗糖、二甘醇、丙二醇、甘油和聚甘油的残基;具体地,R选自:季戊四醇、二聚季戊四醇和三聚季戊四醇的残基。
在本发明的一个优选实施例中,所述的PEG为直链聚乙二醇残基,具有通式Ⅱ所示的结构。
在本发明的一个更优选的实施例中,所述-X-PEG中,X为单键,PEG为直链聚乙二醇残基,其具有通式Ⅱ所示的结构,即所述-X-PEG具有如下结构:
Figure PCTCN2018090825-appb-000006
其中,p是1-240的整数,优选为1-120的整数。
具体地,所述的PEG的分子量可为500-80000Da(具体可为500Da,1、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50、55、60、65、70、75或80KDa)等;更具体地,PEG的分子量为500-10000Da,如500-5000Da。
在本发明的一个实施例中,所述PEG分子量为3500Da。
在本发明的一个优选实施例中,所述的PEG化硫杂蒽酮类化合物具有式Ⅵ所示的结构:
Figure PCTCN2018090825-appb-000007
其中,所述PEG、X、R 1、R 2-8具有本发明上述定义。
具体地,式Ⅵ中,所述-X-PEG为
Figure PCTCN2018090825-appb-000008
具体地,式Ⅵ中,所述PEG的分子量为500-80000Da,优选为500-10000Da,更优选为500-5000Da。
具体地,式Ⅵ中,所述R 1和R 2-8独立地选自:H、OH、烷基、烷氧基和卤素;更具体地,所述R 1和R 2-8独立地选自:H、甲基、甲氧基、F、Cl、Br和I。
在本发明的一个优选实施例中,式Ⅵ中,所述R 1和R 5-8均为H,R 3和R 4均为甲基,此时所述PEG化硫杂蒽酮类化合物具有式Ⅶ所示的结构:
Figure PCTCN2018090825-appb-000009
其中所述PEG和X具有本发明上述定义。
具体地,式Ⅶ中,所述-X-PEG为
Figure PCTCN2018090825-appb-000010
具体地,式Ⅶ中,所述PEG的分子量为500-80000Da,优选为500-10000Da,更优选为500-5000Da,具体如3500Da。
在本发明的一个优选实施例中,所述的PEG化硫杂蒽酮类化合物具有式Ⅷ所示的结构:
Figure PCTCN2018090825-appb-000011
所述mPEG为直链聚乙二醇残基,具有通式Ⅱ所示的结构;即:
Figure PCTCN2018090825-appb-000012
具体地,所述mPEG的分子量为500-80000Da,优选为500-10000Da,更优选为500-5000Da,具体如3500Da。
本发明另一方面还提供一种光引发剂,其包含本发明上述PEG化硫杂蒽酮类化合物。
本发明另一方面还提供一种光敏树脂组合物,其包括光敏剂,所述光敏剂包括本发明上述光引发剂。
具体地,所述的组合物还包括活性组分和稀释剂。
具体地,所述组合物中各成分的含量(质量百分比)分别为:活性组分:0.01-60%;稀释剂:20-90%;光敏剂:0.01-20%。
具体地,所述的组合物中活性组分的含量(质量百分比)为1-40%(具体如1%、5%、10%、15%、20%、25%、30%、35%或40%),优选为10-30%。
具体地,所述的组合物中稀释剂的含量(质量百分比)为40-90%(具体如40%、45%、50%、55%、60%、65%、70%、75%、80%、85%或90%),优选为60-85%。
具体地,所述的组合物中光引发剂的含量(质量百分比)为0.1-10.0%(具体如0.1%、0.5%、1.0%、1.5%、2.0%、2.5%、3.0%、4.0%、5.0%、6.0%、7.0%、8.0%、9.0%或10.0%),优选为0.5-5.0%。
本发明所述的活性组分,指具有一个以上的活性基团的PEG、PEG-聚酯共聚物或其类似物。活性基团是指能够发生聚合反应的基团,如双键和环氧基等。具体地,所述的活性组分包括但不限于下面所述物质中的一种或多种:PEG丙烯酸酯、PEG环氧基醚、多缩乙二醇丙烯酸酯、多缩乙二醇环氧基醚、二元醇二丙烯酸酯和二元醇二环氧烷等多取代丙烯酸类及环氧类衍生物小分子。
具体地,所述活性组分中,所述的PEG丙烯酸酯为PEG双丙烯酸酯或臂数为3-8(具体可为3、4、5、6、7或8)的多臂PEG丙烯酸酯。
具体地,所述活性组分中,所述的PEG环氧基醚为PEG双环氧基醚或臂数为3-8(具体可为3、4、5、6、7或8)的多臂PEG环氧基醚。
具体地,所述活性组分中,所述的PEG的分子量500至80000Da(具体如500、1000、5000、10000、20000、30000、40000、50000、60000、70000或80000Da),更优选为1000-50000Da;在本发明的一个实施例中,所述PEG 分子量为10000Da。
具体地,所述活性组分中,所述的多缩乙二醇丙烯酸酯为多缩乙二醇双丙烯酸酯。
具体地,所述活性组分中,所述的多缩乙二醇环氧基醚为多缩乙二醇双环氧基醚。
具体地,所述活性组分中,所述的多缩乙二醇中缩合的乙二醇重复单元个数为2-50(具体如2、5、10、15、20、25、30、35、40、45或50),优选为2-40。
具体地,所述活性组分中,所述的二元醇选自:乙二醇、丙二醇和丁二醇。
所述活性组分中,所述的丙烯酸及环氧一般为全取代,但也可部分取代,但取代的个数大于1。
在本发明的一个优选实施例中,所述的活性组分为八臂聚乙二醇丙烯酸酯(8arm-PEG-Aclt);在本发明的一个更优选的实施例中,所述八臂聚乙二醇丙烯酸酯的分子量为10000Da。
所述多缩乙二醇类的双丙烯酸衍生物及双环氧衍生物,其化学式与相应的PEG类衍生物相同,但多缩乙二醇为化合物(具有确定分子量的单一组分)而不是聚合物,其缩合的乙二醇个数为1-50,丙烯酸或环氧为完全取代。
本发明所述的光敏剂,通常为能够在特定的光照条件下发生变化的物质。其中最重要的组分为光引发剂,除此之外,还可以适当添加光稳定剂、光抑制剂和/或光敏化剂等,用以调节活化组分的反应速率及反应时间。
具体地,所述稀释剂包括非活性稀释剂和/或活性稀释剂。
具体地,所述非活性稀释剂为溶剂,选自:水、缓冲液、乙醇、异丙醇、DMSO、DMF、二氧六环和THF等沸点大于70℃的水溶性溶剂。
在本发明的一个实施例中,所述稀释剂为水。
具体地,所述活性稀释剂为带有一个活性基团的物质,包括但不限于下列物质中的一种或多种:丙烯酸乙酯、丙烯酸丁酯、丙烯酸异丁酯、丙烯酸环氧丙酯、甲基丙烯酸乙酯、甲基丙烯酸丁酯、甲基丙烯酸异丁酯、甲基丙烯酸环氧丙酯和甲基丙烯酸烯丙酯等小分子自由基单体及单甲氧基PEG丙烯酸酯、单甲氧基PEG环氧基醚、单甲氧基多缩乙二醇丙烯酸酯和单甲氧基多缩乙二醇环氧基醚。
具体地,所述活性稀释剂中,所述的PEG的分子量为500-80000Da(具体如500、1000、5000、10000、20000、30000、40000、50000、60000、70000或80000Da),更优选为1000-50000Da。
具体地,所述活性稀释剂中,所述的多缩乙二醇中乙二醇缩合度为2-50(具体如2、5、10、15、20、25、30、35、40、45或50),更优选为2-40。
具体地,所述的光敏树脂组合物中还包括辅助添加剂,所述辅助添加剂为不参与光固化过程的惰性物质,这些物质通常为满足所形成打印产品的某些物化性质或特殊性能所添加的,所述的辅助添加剂选自:助引发剂、消泡剂、流平剂、阻聚剂、抗氧化剂、防沉降剂、颜料、荧光剂、填料、润湿分散剂、增韧剂和交联剂等中的一种或多种。
具体地,所述的组合物中辅助添加剂含量(质量百分比)为0-10%,更优选为0.01-10%。
添加一定量的消泡剂可抑制或消除光敏树脂组合物中的起泡,使其具有表面张力小、消泡力强、扩散性和渗透性好和气体透过性好等优点;具体地,所述的消泡剂选自:有机硅类消泡剂、矿物油类消泡剂、聚醚类消泡剂和脂肪醇类消泡剂中的一种或多种。
添加一定量的流平剂可使材料固化过程中表面平整、光滑和均匀;具体地,所述的流平剂选自:丙烯酸类流平剂、有机硅类流平剂和氟碳化合物类流平剂中的一种或多种。
具体地,所述的抗氧化剂选自:四(3,5-二叔丁基-4-羟基)苯丙酸季戊四醇酯、三(2,4-二叔丁基)亚磷酸苯酯、N,N′-双-(3-(3,5-二叔丁基-4-羟基苯基)丙酰基)己二胺、2,6-二叔丁基-4-甲基苯酚和叔丁基对羟基茴香醚中的一种或多种。
添加一定量的阻聚剂可提高光敏树脂组合物的储藏稳定性,延长使用寿命,保证其在有效期内不会自动固化;具体地,所述的阻聚剂选自:自由基阻聚剂、酚类阻聚剂、无机化合物阻聚剂、有机金属化合物阻聚剂中的一种或多种的组合;在本发明的一个实施例中,所述的阻聚剂为酚类阻聚剂,如对苯二酚。
具体地,所述的助引发剂选自:三乙醇胺、N,N-二甲基苄胺、N,N-二甲基苯胺和三乙胺中的一种或多种。
添加一定量的颜料可使光固化后的产品具有特定颜色;添加一定量的润湿分散剂,可提高颜料在组合物中的悬浮稳定性;本领域技术人员可根据实际需要选择颜料种类和具体成分。
在本发明的一个优选实施例中,所述的辅助添加剂包括助引发剂,在所述光敏树脂组合物中助引发剂的含量(质量百分比)为0.01-5.0%(具体如0.01%、0.1%、0.5%、1.0%、1.5%、2.0%、3.0%、4.0%或5.0%),优选为0.1-2.0%。
在本发明的一个优选实施例中,所述的辅助添加剂包括阻聚剂,在所述光敏树脂组合物中阻聚剂含量(质量百分比)为0-1%,优选为0.001-1%(具体如0.001%、0.005%、0.01%、0.05%、0.1%、0.5%或1%),优选为0.001-0.1%,更优选为0.005-0.05%。
在本发明的一个实施例中,所述组合物包括:活性组分、光引发剂、稀释剂和助引发剂。
在本发明的另一个实施例中,所述组合物包括:活性组分、光引发剂、稀释剂、助引发剂和阻聚剂。
在本发明的一个优选实施例中,所述组合物包括:八臂聚乙二醇丙烯酸酯、本发明式Ⅸ所示的PEG化硫杂蒽酮类化合物、三乙醇胺和水。
在本发明的另一个优选实施例中,所述光敏组合物包括:八臂聚乙二醇丙烯酸酯、本发明式Ⅸ所示的PEG化硫杂蒽酮类化合物、三乙醇胺、水和对苯二酚。
在本发明一个更优选的实施例中,所述组合物中各成分的质量百分比分别为:八臂聚乙二醇丙烯酸酯:10-30%,本发明上述式Ⅸ所示的PEG化硫杂蒽酮类化合物:0.5-5.0%,三乙醇胺:0.1-2.0%,水:60-85%,对苯二酚:0.005-0.05%。
具体地,本发明所述的组合物还包括辅助功能组分,使该光敏组合物具备特殊的功能。
具体地,所述组合物中,所述辅助功能组分的含量(质量百分比)为0-20.0%,优选为0.1-20.0%(具体如0.1%、0.5%、1.0%、1.5%、2.0%、3.0%、4.0%、5.0%、6.0%、7.0%、8.0%、9.0%、10.0%、15.0%或20.0%),更优选为0.1-10.0%。
在本发明的一个实施例中,所述组合物中各成分的含量(质量百分比)分别为:活性组分:0.01-60%;稀释剂:20-90%;光敏剂:0.01-20%,辅助功能组分:0-20%。本发明所述的辅助功能组分,包括但不限于:明胶及丙烯酸衍生化的明胶、透明质酸及丙烯酸衍生化的透明质酸、壳聚糖及改性的壳聚糖、纤维素及羧甲基纤维素、海藻酸盐及改性的海藻酸盐、胶原蛋白、琼脂糖和各种细胞营养液等可以改善细胞生长环境、调节水凝胶力学性能的组分中的一种或多种的组合,和/或,端基被丙烯酸酯修饰的多臂或直链的聚乙二醇聚酯的嵌段聚合物,其可使水凝胶具有生物降解性。具体地,上述嵌段聚合物中,所述聚酯链段部分选自:聚丙交酯、聚乙交酯、乙交酯与丙交酯的共聚物、聚己内酯等中的一种或多种的组合。更具体地,所述聚酯链段 部分为乙交酯与丙交酯的共聚物和/或聚己内酯;
具体地,所述的嵌段聚合物中,聚酯链段的分子量范围为800-80000Da(具体如800、1000、2000、3000、4000、5000、6000、7000、8000、9000、10000、20000、30000、40000、50000、60000、70000或80000Da),更优选为1000-40000Da;进一步优选为1000-10000Da。
具体地,所述的多臂聚乙二醇聚酯的嵌段聚合物中,所述臂数选自3-8的整数(具体如3、4、5、6、7或8),更具体地,臂数为4或8。
具体地,所述的嵌段聚合物中,多臂或直链聚乙二醇链段的分子量范围为800-80000Da(具体如800、1000、2000、3000、4000、5000、10000、20000、30000、40000、50000、60000、70000或80000Da),更优选为2000-40000Da。
在本发明的一个实施例中,所述组合物中,所述辅助功能组分选自:明胶及丙烯酸衍生化的明胶、透明质酸及丙烯酸衍生化的透明质酸、壳聚糖及改性的壳聚糖、纤维素及羧甲基纤维素、海藻酸盐及改性的海藻酸盐、胶原蛋白、琼脂糖和各种细胞营养液等可以改善细胞生长环境、调节水凝胶力学性能的组分中的一种或多种的组合;具体地,所述辅助功能组分在组合物中的含量(质量百分比)为0.1-10.0%,优选为0.5-5.0%。
在本发明的一个优选实施例中,所述组合物中,所述辅助功能组分为丙烯酸衍生化的透明质酸(HA-Aclt)。
在本发明的另一个优选实施例中,所述组合物中,所述辅助功能组分为丙烯酸衍生化的明胶(Gel-Aclt)。
在本发明的另一个实施例中,所述组合物中,所述辅助功能组分为端基被丙烯酸酯修饰的多臂或直链的聚乙二醇聚酯的嵌段聚合物;具体地,所述辅助功能组分在组合物中的含量(质量百分比)为0.1-20.0%,更优选为1-10%。
在本发明的一个优选实施例中,所述组合物中,所述辅助功能组分为端基被丙烯酸酯修饰的多臂聚乙二醇聚己内酯的嵌段聚合物,其中,所述聚己内酯链段的分子量范围为800-80000Da,优选为1000-40000Da,进一步优选为1000-10000Da;所述聚乙二醇链段的分子量范围为800-80000Da,优选为2000-40000Da;所述臂数选自3-8的整数,优选为4或8。
在本发明的一个更优选实施例中,所述组合物中,所述辅助功能组分为端基被丙烯酸酯修饰的八臂聚乙二醇聚己内酯的嵌段聚合物:8arm-PEG 10k-PCL 3k-Aclt(其中所述聚己内酯链段的分子量为3000Da,聚乙二醇链段的分子量为10000Da)。
本发明另一方面提供一种上述PEG化硫杂蒽酮类化合物和光敏树脂组合物在制备用于3D打印的耗材中的应用。
具体地,上述应用中,所述的3D打印包括3DP、SLA和DLP等3D打印形式。
本发明另一方面还提供一种上述光敏树脂组合物经3D打印得到的水凝胶。
本发明另一方面还提供一种上述水凝胶在细胞培养中的应用。
本发明提供的PEG化硫杂蒽酮类化合物,低毒环保,作为光引发剂固化后碎片残留量少,可提高光引发剂与光敏树脂组合物体系的相容性,引发效率高,热稳定性好。本发明提供的光敏树脂组合物中各组分成分及含量搭配合理,能够3D打印出特定结构的水凝胶,该水凝胶细胞毒性较小,生物相容性较好,可用于3D细胞培养等生物工程领域。
附图说明
图1所示为实施例1提供的mPEG-TX的合成路线图。
图2所示为实施例2提供的mPEG-CO-TX的合成路线图。
图3所示为实施例3提供的mPEG-TX和mPEG-CO-TX分别作为光引发剂的引发效果,左为B溶液,右为A溶液。
图4所示为实施例15提供的配方溶液及其经3D打印得到固体水凝胶图片,其中,A图为实施例15配制的配方溶液图片,B、C、D图分别为采用上述配方溶液经3D打印得到的不同形状和结构的固体水凝胶图片。
图5所示为实施例16提供的配方溶液及其经3D打印得到固体水凝胶图片,其中,A图为实施例16配制的配方溶液图片,B、C、D图分别为采用上述配方溶液经3D打印得到的不同形状和结构的固体水凝胶图片。
具体实施方式
除非另有定义,本发明中所使用的所有科学和技术术语具有与本发明涉及技术领域的技术人员通常理解的相同的含义,如:
“烷基”指的是直链或支链的且不含不饱和键的烃链自由基,C 1-6的烷基指含有1-6个碳原子的直链或支链烷基,如甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、正己基等;如烷基被芳基取代,那么其相应为“芳烷基”自由基,C 7-14的芳烷基是指含7-14个碳原子的芳烷基,如苄基、二苯甲基或苯乙基等;如果烷基被杂环基取代,那么其相应为“杂环基烷基”自由基。
“烷氧基”指的是羟基中的氢被烷基取代后形成的取代基,C 1-6的烷氧基指含有1-6个碳原子的烷氧基,如甲氧基、乙氧基、丙氧基、丁氧基等。
“芳基”指的是单环或多环自由基,包括含单芳基基团和/或稠芳基基团的多环自由基,如包含1-3个单环或稠环及6-18个碳环原子,如苯基、联苯基、萘基、蒽基、菲基、茚基和芘基等。
“杂环基”包括含1至3个单环和/或稠环及3至约18个环原子的杂芳香族基团和杂脂环基团。本发明的化合物中的合适的杂芳基含1、2或3种杂原子,所述杂原子选自N、O或S原子,优选为氮原子。
本发明中,关于连接基团X的定义中,所述“组合”是指所列举的连接基团中的两个以上通过化学键键合连接后形成的基团,例如-(CH 2) i-与-(CH 2) iCONH-的组合可为-(CH 2) iCONH(CH 2) i,具体地,如-CH 2-与-CH 2CH 2CONH-的组合可为-CH 2CH 2CONHCH 2-、-CH 2CH 2CH 2CONH-。所述“组合”用于限定连接基团的化学结构,不涉及连接基团的制备步骤、组合顺序等。
本发明中所述聚乙二醇优选采用分子量表征,其次为重复单元数。
下面将结合本发明实施例,对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:mPEG-TX的合成
mPEG-TX的合成路线如图1所示,具体步骤如下:
在浓硫酸(45mL)中,加入硫代水杨酸(6g,38.9mmol),搅拌5min使其混合均匀(冰水浴)。将2,3-二甲基苯酚(14.25g,116mmol)在30min内分批加入到搅拌中的混合溶液中,混合溶液在10℃下搅拌2h,然后加热到高温反应温度,搅拌3h,反应完毕后,将反应液在室温下放置过夜。搅拌下,将反应液导入10倍体积的沸水中煮沸5min,待冷却后,过滤,滤出物用水及二氧六环(20:80,V/V)重结晶。得到中间体TX-OH约7.8g。NMR:7.5-8.45H,苯环上H;2.51,3H,甲基H;2.25,3H,甲基H。
mPEG(14g,4mmol,分子量为3500Da)甲苯共沸除水,冷却,然后加入TX-OH(2.56g,10mmol)及ph3P(2620mg,10mmol),滴加DIAD(偶氮二羧酸二异丙酯)(1.4mL,8mmol),溶液随DIAD加入而慢慢变红,室温反应过夜,HPLC监测反应,过滤,浓缩,异丙醇/乙醚沉淀,乙醚充分洗涤除去DIAD,干燥得产物12.5g。HPLC(>95%),NMR:7.4-8.55H,苯环上H;3.4-.38:320H,mPEG上的H;3.3,3H,CH3O;2.55,3H,甲基H;2.23,3H,甲基H。
实施例2:mPEG-CO-TX的合成
mPEG-CO-TX的合成路线如图2所示,具体步骤如下:
mPEG(14g,4mmol,分子量为3500Da)中加入琥珀酸酐(0.5g,5mmol,100),稍微加热(约37℃),搅拌使其溶解,然后加入TEA(0.83mL,6mmol),反应过夜,HPLC检测,水洗一遍。浓缩,异丙醇沉淀,乙醚洗涤得到中间体mPEG-SA 13g。HPLC>97%,NMR:4.1,2H,CH2OCO;3.4-3.8,310H,PEG上H;3.3,3H,CH3O;2.3-2.5,2组H,每组2个,OCOCH2CH2COOH。
mPEG-SA(2.35g,0.67mmol)中加入DCC(165mg,0.8mmol)、DMAP(12mg,0.1mmol)、QTX-1(203mg,0.8mmol)、HOBt(108mg,0.8mmol)及DCM(30mL),室温搅拌过夜,HPLC监测反应基本完全。浓缩,沉淀,过滤得产物2.3g。HPLC(>95%),NMR:7.4-8.55H,苯环上H;4.3,2H,CH2OCO;3.4-3.8,310H,PEG上H;3.3,3H,CH3O;2.8-3.0,2组H,每组2个,OCOCH2CH2COOH;2.55,3H,甲基H;2.23,3H,甲基H。
实施例3:mPEG-TX及mPEG-CO-TX两种光引发剂的对比
分别配制A、B两种溶液:
A溶液:将8arm-PEG-Aclt(500mg)、mPEG-TX(17mg,实施例1制备)加入水(1.5mL)中,然后加入三乙醇胺(40μL)。
B溶液:将8arm-PEG-Aclt(500mg)、mPEG-CO-TX(17mg,实施例2制备)加入水(1.5mL)中,然后加入三乙醇胺(40μL)。
然后将A、B两瓶溶液静置12小时消泡,随后将两瓶溶液放入恒温光照箱(22℃,2750Lux)中照射60min取出,如图3所示,A瓶(含有mPEG-TX)已经形成黄色透明的水凝胶,而B瓶仍为液体,且变得不透明,这是因为酯键水解生成不溶于水的TX-OH的缘故。从这个实验可以表明,本申请实施例1制备得到的mPEG-TX比中间用酯键连接PEG及TX分子的mPEG-CO-TX光引发效果更好,稳定性也更高。
实施例4:配方1及其3D打印
表1 配方1的组分及含量
组分 含量
8arm-PEG 10k-Aclt 25%
光引发剂(mPEG 3500-TX) 1%
三乙醇胺 0.9%
73.09%
对苯二酚 0.01%
总量 100%
根据表1的配方配制100g溶液。然后将其放入BESK 3D打印机(型号1510)的树脂槽中,利用Q3DP软件进行3D打印。所得为黄色固体水凝胶。
实施例5:配方2及其3D打印
表2 配方2的组分及含量
组分 含量
8arm-PEG 10k-Aclt 20%
光引发剂(mPEG 3500-TX) 1%
78.09%
三乙醇胺 0.9%
对苯二酚 0.01%
总量 100%
根据表2的配方配制100g溶液。然后将其放入BESK 3D打印机(型号1510)的树脂槽中,利用Q3DP软件进行3D打印。所得为黄色固体水凝胶。
实施例6:配方3及其3D打印
表3 配方3的组分及含量
组分 含量
8arm-PEG 10k-Aclt 15%
光引发剂(mPEG 3500-TX) 1%
83.09%
三乙醇胺 0.9%
对苯二酚 0.01%
总量 100%
根据表3的配方配制100g溶液。然后将其放入BESK 3D打印机(型号1510)的树脂槽中,利用Q3DP软件进行3D打印。所得为黄色固体水凝胶。
实施例7:配方4及其3D打印
表4 配方4的组分及含量
组分 含量
8arm-PEG 10k-Aclt 30%
光引发剂(mPEG 3500-TX) 1%
68.09%
三乙醇胺 0.9%
对苯二酚 0.01%
总量 100%
根据表4的配方配制100g溶液。然后将其放入BESK 3D打印机(型号1510)的树脂槽中,利用Q3DP软件进行3D打印。所得为黄色固体水凝胶。
实施例8:配方5及其3D打印
表5 配方5的组分及含量
组分 含量
8arm-PEG 10k-Aclt 25%
光引发剂(mPEG 3500-TX) 1.7%
72.79%
三乙醇胺 0.5%
对苯二酚 0.01%
总量 100%
根据表5的配方配制100g溶液。然后将其放入BESK 3D打印机(型号1510)的树脂槽中,利用Q3DP软件进行3D打印。所得为黄色固体水凝胶。
实施例9:配方6及其3D打印
表6 配方6的组分及含量
组分 含量
8arm-PEG 10k-Aclt 25%
光引发剂(mPEG 3500-TX) 3.4%
三乙醇胺 0.9%
70.69%
对苯二酚 0.01%
总量 100%
根据表6的配方配制100g溶液。然后将其放入BESK 3D打印机(型号1510)的树脂槽中,利用Q3DP软件进行3D打印。所得为黄色固体水凝胶。
实施例10:配方7及其3D打印
表7 配方7的组分及含量
组分 含量
8arm-PEG 10k-Aclt 25%
光引发剂(mPEG 3500-TX) 7.1%
三乙醇胺 1.9%
65.99%
对苯二酚 0.01%
总量 100%
根据表7的配方配制100g溶液。然后将其放入BESK 3D打印机(型号1510)的树脂槽中,利用Q3DP软件进行3D打印。所得为黄色固体水凝胶。
实施例11:配方8及其3D打印
表8 配方8的组分及含量
组分 含量
8arm-PEG 10k-Aclt 25%
光引发剂(mPEG 3500-TX) 1.7%
三乙醇胺 0.2%
73.09%
对苯二酚 0.01%
总量 100%
根据表8的配方配制100g溶液。然后将其放入BESK 3D打印机(型号1510)的树脂槽中,利用Q3DP软件进行3D打印。所得为黄色固体水凝胶。
实施例12:配方9及其3D打印
表9 配方9的组分及含量
组分 含量
8arm-PEG 10k-Aclt 20%
光引发剂(mPEG 3500-TX) 1.7%
三乙醇胺 0.2%
78.09%
对苯二酚 0.01%
总量 100%
根据表9的配方配制100g溶液。然后将其放入FormLab公司的Form23D打印机的树脂槽中进行3D打印。所得为黄色固体水凝胶。
实施例13:配方10及其3D打印
表10 配方10的组分及含量
组分 含量
8arm-PEG 10k-Aclt 25%
Gel-Aclt 1%
光引发剂(mPEG 3500-TX) 1.7%
三乙醇胺 0.2%
72.1%
总量 100%
注:Gel-Aclt为丙烯酸衍生化的明胶。
根据表10的配方配制100g溶液。然后将其放入FormLab公司的Form23D打印机的树脂槽中进行3D打印。所得为黄色固体水凝胶。
实施例14:配方11及其3D打印
表11 配方11的组分及含量
组分 含量
8arm-PEG 10k-Aclt 25%
HA-Aclt 2%
光引发剂(mPEG 3500-TX) 1.7%
三乙醇胺 0.2%
71.09%
对苯二酚 0.01%
总量 100%
注:HA-Aclt为丙烯酸衍生化的透明质酸。
根据表11的配方配制100g溶液。然后将其放入FormLab公司的Form23D打印机的树脂槽中进行3D打印。所得为黄色固体水凝胶。
实施例15配方12及其3D打印
表12 配方12的组分及含量
组分 含量
8arm-PEG 10k-Aclt 25%
光引发剂(mPEG 3500-TX) 1.7%
三乙醇胺 0.2%
73.1%
总量 100%
根据表12的配方配制150g溶液,如图4中A图所示。然后将其放入FormLab公司的Form23D打印机的树脂槽中进行3D打印。所得为淡黄色-黄色固体水凝胶,如图4中B、C、D图所示。
上述配方溶液粘度和流动性适中,打印塑形容易,且不会堵塞喷头,凝胶成型速度快,条件温和。3D打印得到的凝胶,成型良好,体积收缩率小,强度好,硬度适中,可维持其形状和结构,不塌陷也不溶胀,生物相容性好。
实施例16配方13及其3D打印
表13 配方13的组分及含量
组分 含量
8arm-PEG 10k-Aclt 25%
8arm-PEG 10k-PCL 3k-Aclt 1.3%
光引发剂(mPEG 3500-TX) 1.7%
三乙醇胺 0.2%
71.8%
总量 100%
注:表中8arm-PEG 10k-PCL 3k-Aclt为被丙烯酸酯修饰的八臂聚乙二醇聚酯的嵌段聚合物,其中聚酯链段部分为聚己内酯,且其中聚乙二醇链段部分的分子量为10KDa,聚酯链段部分的分子量为3KDa。
根据表13的配方配制150g溶液,如图5中A图所示。然后将其放入FormLab公司的Form23D打印机的树脂槽中进行3D打印。所得为淡黄色-黄色固体水凝胶,如图5中B、C、D图所示。
上述配方溶液粘度和流动性适中,打印塑形容易,且不会堵塞喷头,凝胶成型速度快,条件温和。3D打印得到的凝胶,成型良好,体积收缩率小,强度好,硬度适中,可维持其形状和结构,不塌陷也不溶胀,生物相容性好。
本发明实施例4-16的配方中,所述含量均为质量百分比含量,所用的光引发剂(mPEG 3500-TX)均为实施例1制备的产品,所用的8arm-PEG 10k-Aclt由北京键凯科技股份有限公司提供,其分子量为10KDa,具有如下结构:
Figure PCTCN2018090825-appb-000013
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换等,均应包含在本发明的保护范围之内。

Claims (23)

  1. 一种PEG化硫杂蒽酮类化合物,其具有式Ⅰ所示的结构,
    Figure PCTCN2018090825-appb-100001
    其中,R 1-8独立地选自:H、OH、烷基、烷氧基、芳基、芳烷基、芳族或非芳族的杂环基、杂环烷基、卤素和-X-PEG;
    且R 1-8中至少有一个为-X-PEG;
    X为连接基团,选自:-(CH 2) i-、-(CH 2) iO-、-(CH 2) iS-、-(CH 2) iCO-、-(CH 2) iCOO-、-(CH 2) iNH-、-(CH 2) iCONH-、-(CH 2) iOCOO-、-(CH 2) iOCONH-、-(CH 2) iNHCONH-和-O(CH 2) iCOO-中的一种或两种以上的组合,其中,i为0-10的整数;
    PEG为聚乙二醇残基,PEG的分子量为200Da-100KDa。
  2. 如权利要求1所述的化合物,其特征在于,所述R 1-8中,所述的烷基为C 1-6的烷基;和/或,
    所述的烷氧基为C 1-6的烷氧基;和/或,
    所述的卤素为F、Cl或Br;和/或,
    所述的芳基选自:苯基、萘基、蒽基、菲基、茚基和芘基;和/或,
    所述的杂环基为含氮五元环或含氮六元环;和/或,
    所述X选自:-(CH 2) i-、-(CH 2) iO-、-(CH 2) iS-、-(CH 2) iCO-、-(CH 2) iNH-和-(CH 2) iCONH-中的一种或两种以上的组合;和/或,
    i为0-5的整数。
  3. 如权利要求1或2所述的化合物,其特征在于,所述PEG为直链聚乙二醇残基,具有通式Ⅱ所示的结构:
    Figure PCTCN2018090825-appb-100002
    其中,p是1-2000的整数;
    或,
    所述PEG为Y型或U型聚乙二醇残基,具有通式Ⅲ或Ⅳ所示结构中的一种:
    Figure PCTCN2018090825-appb-100003
    其中,n和i独立地选自1-1000的整数;
    或,
    所述PEG为多分支聚乙二醇残基,具有通式Ⅴ所示的结构:
    Figure PCTCN2018090825-appb-100004
    其中,k是1-600的整数,
    j是3-8的整数,
    R是多分支聚乙二醇的核心分子,R选自:季戊四醇、寡聚季戊四醇、甲基葡萄糖苷、蔗糖、二甘醇、丙二醇、甘油和聚甘油的残基。
  4. 如权利要求1-3任一项所述的化合物,其特征在于,所述的PEG为直链聚乙二醇残基,具有通式Ⅱ所示的结构;和/或,所述X为单键。
  5. 如权利要求1-4任一项所述的化合物,其特征在于,所述的PEG的分子量为500-80000Da。
  6. 如权利要求1-5任一项所述的化合物,其特征在于,所述的R 2和/或R 4为-X-PEG。
  7. 如权利要求1-6任一项所述的化合物,其特征在于,所述的化合物具有式Ⅵ所示的结构:
    Figure PCTCN2018090825-appb-100005
  8. 如权利要求1-7任一项所述的化合物,其特征在于,所述的化合物具有式Ⅶ所示的结构:
    Figure PCTCN2018090825-appb-100006
  9. 如权利要求1-8任一项所述的化合物,其特征在于,所述的化合物具有式Ⅷ所示的结构:
    Figure PCTCN2018090825-appb-100007
  10. 一种光引发剂,其包含如权利要求1-9任一项所述的PEG化硫杂蒽酮类化合物。
  11. 一种光敏树脂组合物,其包括光敏剂,所述光敏剂包括如权利要求10所述的光引发剂;优选地,所述的组合物还包括活性组分和稀释剂;
    更优选地,所述的组合物中活性组分的含量为1-40%,优选为10-30%;和/或,
    所述的组合物中稀释剂的含量为40-90%,优选为60-85%;和/或,
    所述的组合物中光引发剂的含量为0.1-10%,优选为0.5-5%。
  12. 如权利要求11所述的光敏树脂组合物,其特征在于,所述的活性组分选自:PEG丙烯酸酯、PEG环氧基醚、多缩乙二醇丙烯酸酯、多缩乙二醇环氧基醚、二元醇二丙烯酸酯和二元醇二环氧烷中的一种或多种。
  13. 如权利要求12所述的光敏树脂组合物,其特征在于,所述的PEG丙烯酸酯为PEG双丙烯酸酯或臂数为3-8的多臂PEG丙烯酸酯;和/或,
    所述的PEG环氧基醚为PEG双环氧基醚或臂数为3-8的多臂PEG环氧基醚;和/或,
    所述的多缩乙二醇丙烯酸酯为多缩乙二醇双丙烯酸酯;和/或,
    所述的多缩乙二醇环氧基醚为多缩乙二醇双环氧基醚;和/或,
    所述的二元醇选自:乙二醇、丙二醇和丁二醇。
  14. 如权利要求11-13任一项所述的光敏树脂组合物,其特征在于,所述的活性组分为八臂聚乙二醇丙烯酸酯。
  15. 如权利要求11-14任一项所述的光敏树脂组合物,其特征在于,所述稀释剂包括非活性稀释剂和/或活性稀释剂;
    优选地,所述非活性稀释剂为溶剂,选自:水、缓冲液、乙醇、异丙醇、DMSO、DMF、二氧六环和THF;和/或,
    所述活性稀释剂选自:丙烯酸乙酯、丙烯酸丁酯、丙烯酸异丁酯、丙烯酸环氧丙酯、甲基丙烯酸乙 酯、甲基丙烯酸丁酯、甲基丙烯酸异丁酯、甲基丙烯酸环氧丙酯、甲基丙烯酸烯丙酯及单甲氧基PEG丙烯酸酯、单甲氧基PEG环氧基醚、单甲氧基多缩乙二醇丙烯酸酯和单甲氧基多缩乙二醇环氧基醚中的一种或多种。
  16. 如权利要求12-15任一项所述的光敏树脂组合物,其特征在于,所述的PEG的分子量为500-80000Da;和/或,所述的多缩乙二醇中乙二醇缩合度为2-50。
  17. 如权利要求11-16任一项所述的光敏树脂组合物,其特征在于,所述的光敏树脂组合物还包括辅助添加剂;所述的辅助添加剂选自:助引发剂、消泡剂、流平剂、阻聚剂、抗氧化剂、防沉降剂、颜料、荧光剂、填料、润湿分散剂、增韧剂和交联剂中的一种或多种;
    所述的组合物中辅助添加剂含量为0-10%;
    优选地,
    所述的辅助添加剂包括助引发剂;
    所述的助引发剂选自:三乙醇胺、N,N-二甲基苄胺、N,N-二甲基苯胺和三乙胺中的一种或多种;
    所述的光敏树脂组合物中助引发剂的含量为0-5%;
    和/或,
    所述的辅助添加剂包括阻聚剂;
    所述的阻聚剂选自:酚类阻聚剂、醌类阻聚剂、芳烃硝基化合物阻聚剂和无机化合物阻聚剂中的一种或多种;
    所述的光敏树脂组合物中阻聚剂含量为0-1%。
  18. 如权利要求11-17任一项所述的光敏树脂组合物,其特征在于,所述的组合物还包括辅助功能组分;
    优选地,所述的组合物中辅助功能组分的含量为0-20%,优选为0.1-20.0%,更优选为0.1-10.0%。
  19. 如权利要求18所述的光敏树脂组合物,其特征在于,所述辅助功能组分包括:选自明胶及丙烯酸衍生化的明胶、透明质酸及丙烯酸衍生化的透明质酸、壳聚糖及改性的壳聚糖、纤维素及羧甲基纤维素、海藻酸盐及改性的海藻酸盐、胶原蛋白、琼脂糖和细胞营养液中的一种或多种的组合,和/或,端基被丙烯酸酯修饰的多臂或直链的聚乙二醇聚酯的嵌段聚合物。
  20. 如权利要求19所述的光敏树脂组合物,其特征在于,所述多臂或直链的的聚乙二醇聚酯的嵌段聚合物中,所述聚酯链段部分选自:聚丙交酯、聚乙交酯、乙交酯与丙交酯的共聚物和聚己内酯中的一种或多种的组合;和/或,
    所述聚酯链段部分的分子量为800-80000Da;和/或,
    所述聚乙二醇链段部分的分子量范围为800-80000Da;和/或,
    所述的多臂聚乙二醇聚酯的嵌段聚合物中,所述臂数范围为3-8。
  21. 如权利要求18或19所述的光敏树脂组合物,其特征在于,所述辅助功能组分为丙烯酸衍生化的透明质酸、丙烯酸衍生化的明胶或端基被丙烯酸酯修饰的多臂聚乙二醇聚己内酯的嵌段聚合 物。
  22. 一种权利要求1-9任一项所述的PEG化硫杂蒽酮类化合物、权利要求10所述的光引发剂或权利要求11-21任一项所述的光敏树脂组合物在制备用于3D打印的耗材中的应用。
  23. 一种权利要求11-22任一项所述的光敏树脂组合物经3D打印得到的水凝胶。
PCT/CN2018/090825 2017-06-29 2018-06-12 一种peg化硫杂蒽酮类光引发剂及光敏树脂组合物 WO2019001268A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/729,825 US11174239B2 (en) 2017-06-29 2019-12-30 PEGylated thioxanthone photoinitiator and photosensitive resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710518727.2 2017-06-29
CN201710518727 2017-06-29
CN201810040940.1 2018-01-16
CN201810040940.1A CN109206611B (zh) 2017-06-29 2018-01-16 一种peg化硫杂蒽酮类光引发剂及光敏树脂组合物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/729,825 Continuation US11174239B2 (en) 2017-06-29 2019-12-30 PEGylated thioxanthone photoinitiator and photosensitive resin composition

Publications (1)

Publication Number Publication Date
WO2019001268A1 true WO2019001268A1 (zh) 2019-01-03

Family

ID=64741925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090825 WO2019001268A1 (zh) 2017-06-29 2018-06-12 一种peg化硫杂蒽酮类光引发剂及光敏树脂组合物

Country Status (1)

Country Link
WO (1) WO2019001268A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1243325A (en) * 1984-07-04 1988-10-18 Godwin Berner Liquid thioxanthonecarboxylic acid esters
WO1997049664A1 (en) * 1996-06-21 1997-12-31 Lambson Fine Chemicals Limited Photoinitiators
CN101090897A (zh) * 2002-02-26 2007-12-19 太阳化学公司 新型稠环化合物及其作为阳离子光固引发剂的应用
CN104765251A (zh) * 2014-11-06 2015-07-08 青岛科技大学 一种高韧性3d打印用光敏树脂及其制备方法
WO2016122455A1 (en) * 2015-01-27 2016-08-04 Hewlett-Packard Development Company, L.P. Polymeric photoactive agents
CN108084298A (zh) * 2016-11-21 2018-05-29 中国石油化工股份有限公司 具有引发聚合反应功能的组合物及制备丙烯酰胺共聚物的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1243325A (en) * 1984-07-04 1988-10-18 Godwin Berner Liquid thioxanthonecarboxylic acid esters
WO1997049664A1 (en) * 1996-06-21 1997-12-31 Lambson Fine Chemicals Limited Photoinitiators
CN101090897A (zh) * 2002-02-26 2007-12-19 太阳化学公司 新型稠环化合物及其作为阳离子光固引发剂的应用
CN104765251A (zh) * 2014-11-06 2015-07-08 青岛科技大学 一种高韧性3d打印用光敏树脂及其制备方法
WO2016122455A1 (en) * 2015-01-27 2016-08-04 Hewlett-Packard Development Company, L.P. Polymeric photoactive agents
CN108084298A (zh) * 2016-11-21 2018-05-29 中国石油化工股份有限公司 具有引发聚合反应功能的组合物及制备丙烯酰胺共聚物的方法

Similar Documents

Publication Publication Date Title
CN103153278B (zh) 聚合物组合物和方法
US6316517B1 (en) Radiation-polymerizable composition, flushing and grinding vehicle containing same
EP1616921B1 (en) Novel radiation curable compositions
EP1616920B1 (en) Novel polymeric initiators
CN103555120B (zh) 一种聚丙烯酸酯接枝改性聚酯水性涂料及其制备方法
ES2590468T3 (es) Aglutinante fotorreactivo
CN102712820A (zh) 辐射可固化水性涂料组合物
JP2006028508A (ja) 新規な高分子共開始剤
JP2006028518A (ja) 新規な光反応性ポリマー
US8334352B2 (en) Branched polyesteramine acrylate
JP6144101B2 (ja) 芳香族末端キャップとオリゴマー分子量分布とを有する新規のゲル化剤組成物
KR100408922B1 (ko) 용매를 주성분으로 한 피복물에 대한 유동성개질제
WO2019001268A1 (zh) 一种peg化硫杂蒽酮类光引发剂及光敏树脂组合物
JP2005187659A (ja) 活性エネルギー線硬化型組成物
CN110229341A (zh) 一种有机硅树脂基非离子型超分散剂及其制备方法
JP2008223014A (ja) 紫外線硬化型インク組成物、該紫外線硬化型インク組成物を用いたインクジェット記録方法、並びに該紫外線硬化型インク組成物が収容されてなるインク容器およびインクジェット記録装置
TW201302828A (zh) 苯并品納可(benzopinacol)金屬酯聚合起始劑
CN109206611B (zh) 一种peg化硫杂蒽酮类光引发剂及光敏树脂组合物
US20080198213A1 (en) Ultraviolet-ray curable ink composition, inkjet recording method and apparatus, and ink container
CN110746523B (zh) 一种木质素基大分子光引发剂及其制备方法和应用
CA2397161A1 (en) Energy curable inks and methods of preparing same
KR20040015181A (ko) 광-개시제 조성물
CN111377817A (zh) 树脂与墨水
JP2004075983A5 (zh)
JP7338226B2 (ja) 樹脂、ワニス組成物、印刷インキ及び印刷物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18822980

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18822980

Country of ref document: EP

Kind code of ref document: A1