WO2019001183A1 - 微型发光二极管显示器件及其制备方法 - Google Patents
微型发光二极管显示器件及其制备方法 Download PDFInfo
- Publication number
- WO2019001183A1 WO2019001183A1 PCT/CN2018/088176 CN2018088176W WO2019001183A1 WO 2019001183 A1 WO2019001183 A1 WO 2019001183A1 CN 2018088176 W CN2018088176 W CN 2018088176W WO 2019001183 A1 WO2019001183 A1 WO 2019001183A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- micro led
- quantum dot
- substrate
- dot material
- array
- Prior art date
Links
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 239000002096 quantum dot Substances 0.000 claims abstract description 217
- 239000000463 material Substances 0.000 claims abstract description 195
- 239000000758 substrate Substances 0.000 claims abstract description 131
- 238000000034 method Methods 0.000 claims abstract description 35
- 239000011248 coating agent Substances 0.000 claims abstract description 26
- 238000000576 coating method Methods 0.000 claims abstract description 26
- 230000001678 irradiating effect Effects 0.000 claims abstract 3
- 239000011358 absorbing material Substances 0.000 claims description 59
- 239000000843 powder Substances 0.000 claims description 17
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000007648 laser printing Methods 0.000 claims description 10
- 229920000642 polymer Polymers 0.000 claims description 10
- 239000013307 optical fiber Substances 0.000 claims description 9
- 238000005286 illumination Methods 0.000 claims description 6
- 239000003086 colorant Substances 0.000 claims description 5
- 238000007641 inkjet printing Methods 0.000 claims description 5
- 238000007598 dipping method Methods 0.000 claims 1
- 238000010030 laminating Methods 0.000 claims 1
- 238000009987 spinning Methods 0.000 claims 1
- 238000010521 absorption reaction Methods 0.000 abstract description 4
- 239000010410 layer Substances 0.000 description 78
- 238000005516 engineering process Methods 0.000 description 15
- 239000002131 composite material Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 7
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 6
- 239000004372 Polyvinyl alcohol Substances 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 229920002451 polyvinyl alcohol Polymers 0.000 description 6
- 239000004793 Polystyrene Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 5
- 239000004926 polymethyl methacrylate Substances 0.000 description 5
- 229920002223 polystyrene Polymers 0.000 description 5
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 4
- 229920005570 flexible polymer Polymers 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- -1 spin coating Substances 0.000 description 4
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229920002125 Sokalan® Polymers 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 239000004584 polyacrylic acid Substances 0.000 description 3
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 3
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 3
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- PFNQVRZLDWYSCW-UHFFFAOYSA-N (fluoren-9-ylideneamino) n-naphthalen-1-ylcarbamate Chemical compound C12=CC=CC=C2C2=CC=CC=C2C1=NOC(=O)NC1=CC=CC2=CC=CC=C12 PFNQVRZLDWYSCW-UHFFFAOYSA-N 0.000 description 2
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 2
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 238000005424 photoluminescence Methods 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 238000004528 spin coating Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- KTSFMFGEAAANTF-UHFFFAOYSA-N [Cu].[Se].[Se].[In] Chemical compound [Cu].[Se].[Se].[In] KTSFMFGEAAANTF-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- AQCDIIAORKRFCD-UHFFFAOYSA-N cadmium selenide Chemical compound [Cd]=[Se] AQCDIIAORKRFCD-UHFFFAOYSA-N 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- LCUOIYYHNRBAFS-UHFFFAOYSA-N copper;sulfanylideneindium Chemical compound [Cu].[In]=S LCUOIYYHNRBAFS-UHFFFAOYSA-N 0.000 description 1
- 239000011258 core-shell material Chemical group 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000005401 electroluminescence Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- XCAUINMIESBTBL-UHFFFAOYSA-N lead(ii) sulfide Chemical group [Pb]=S XCAUINMIESBTBL-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910000476 molybdenum oxide Inorganic materials 0.000 description 1
- 239000002707 nanocrystalline material Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- PQQKPALAQIIWST-UHFFFAOYSA-N oxomolybdenum Chemical compound [Mo]=O PQQKPALAQIIWST-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
- H01L33/50—Wavelength conversion elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2933/00—Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
- H01L2933/0008—Processes
- H01L2933/0033—Processes relating to semiconductor body packages
- H01L2933/0041—Processes relating to semiconductor body packages relating to wavelength conversion elements
Definitions
- the present disclosure relates to the field of light emitting diode (LED) display technologies, for example, to a miniature light emitting diode (Micro LED) display device and a method of fabricating the same.
- LED light emitting diode
- Micro LED miniature light emitting diode
- Micro LED is a miniature LED array structure with self-luminous display characteristics. Its technical advantages include all solid state, long life, high brightness, low power consumption, small size, ultra high resolution and can be used in extreme environments such as high temperature or radiation. . Compared with the Organic Light Emitting Diode (OLED) technology, which is also a self-luminous display, the Micro LED is not only highly efficient, but also has a long life, and the material is not easily affected by the environment and is relatively stable, and can also avoid residual Shadow phenomenon and so on.
- OLED Organic Light Emitting Diode
- Micro LED display mode is usually monochrome display, the colorization of Micro LED display is a technology to expand Micro LED application, Red Green Blue (RGB) three-color LED method is the technical direction to realize Micro LED colorization.
- RGB three-color LED method full color display is mainly based on the basic principles of three primary colors (red, green, blue), and the implementation method is: applying different currents to red-LED, green-LED, blue-LED, respectively
- the brightness value can be controlled to achieve the combination of the three primary colors to achieve full color display, which is a commonly used method for LED large screens.
- the RGB three-color method of the Micro LED requires three chips of red, green and blue, which increases the process and technical difficulty. The yield is reduced and the production cost is increased.
- the use of blue micro LEDs with red and green luminescent media technology there are many problems in the method of coating phosphors, such as: the phosphor coating will absorb part of the energy, reducing the conversion rate.
- Quantum dot display is a new display technology.
- Quantum Dot As an emerging semiconductor nanocrystalline material, Quantum Dot (QD) has the advantages of high quantum efficiency, precise spectral adjustment, narrow half-peak width and wide color gamut. It can be used for display to significantly improve the display gamut range. At the same time reduce display power consumption and so on.
- the application of quantum dots in display technology mainly includes two aspects: Quantum Dots Light Emitting Diode Displays (QLED) based on quantum dot electroluminescence properties and quantum dot backlights based on quantum dot photoluminescence properties.
- Source Technology Quantum Dots-Backlight Unit, QD-BLU.
- QD-BLU Quantum Dot-Backlight Unit
- the quantum dots are directly coated on an Ultraviolet Light Emitting Diode (UV LED)/blue LED by a spin coating or a spray coating technique, so that the RGB trichromatic light is excited, and then the color ratio is fully realized. Colorization. Since the surface of the Micro LED is not even and uniform after processing, it is difficult to achieve the precision or uniformity of the coating film directly on the micro LED. The size of the nozzle in the spraying equipment is large, and the size of the coated pixel is too large, which is difficult to realize. High-density coating or high-resolution display of quantum dots, and the uniformity of coated quantum dots is poor, and more defects appear when spraying, and the color of multi-color quantum dots interact with each other, so that the colorization quality is significantly degraded.
- UV LED Ultraviolet Light Emitting Diode
- blue LED blue LED
- the present application provides a Micro LED display device and a preparation method thereof, which are capable of uniformly coating a quantum dot material, have high coating precision, and are easy to control to reduce color interaction of multicolor quantum dots.
- the present application provides a method for fabricating a micro LED display device, comprising: preparing a micro LED chip array on a substrate, wherein the micro LED chip array includes a plurality of micro LED chips, the method further comprising:
- the substrate comprises a substrate and a layer of heat absorbing material overlying the substrate;
- the substrate Illuminating the substrate with a laser beam array, wherein the plurality of laser beams in the laser beam array are respectively in one-to-one correspondence with some or all of the plurality of micro LED chips; the heat absorbing material layer Deformation occurs under irradiation of the laser beam array, and the quantum dot material is transferred to the upper surface of the Micro LED chip that is illuminated by the laser beam array and the quantum dot material is oriented.
- the method further includes transferring at least two different colored quantum dot materials to the array of Micro LED chips.
- the at least two different color quantum dot materials comprise quantum dot material 1 and quantum dot material 2 of different colors.
- the obtaining a substrate comprises: acquiring a substrate 1 , wherein the substrate 1 comprises a substrate 1 and a layer of heat absorbing material covering the substrate 1 ;
- the coating the quantum dot material on the heat absorbing material layer comprises: coating the quantum dot material on the heat absorbing material layer 1;
- the illuminating the substrate with the laser beam array comprises: illuminating the substrate 1 with a laser beam array, wherein the plurality of laser beams in the laser beam array 1 respectively correspond to the first partial micro LED chip ;
- the layer of heat absorbing material on the substrate is deformed under illumination by the laser beam array, and the quantum dot material is transferred to an upper surface of a Micro LED chip that is illuminated by the laser beam array and the quantum dot material is oriented.
- the layer of heat absorbing material on the substrate 1 is deformed under irradiation of the laser beam array, and the quantum dot material is transferred to the upper surface of the first partial micro LED chip;
- the method further includes:
- the substrate 2 comprises a substrate 2 and a layer 2 of heat absorbing material covering the substrate 2;
- the substrate 2 is irradiated with a laser beam array 2, wherein the plurality of laser beams in the laser beam array 2 respectively correspond to the second partial micro LED chip; the heat absorbing material layer 2 on the substrate 2 Deformation under the illumination of the laser beam array, transferring the quantum dot material to the upper surface of the second partial micro LED chip;
- the first partial micro LED chip and the second partial micro LED chip are Micro LED chips at different positions in the micro LED chip array.
- the quantum dot material is applied to the layer of heat absorbing material by one of the following processes: inkjet printing, dip coating, coating, spin coating, film coating, or laser printing.
- the coating the quantum dot material on the heat absorbing material layer comprises: coating a discrete quantum dot material and a discrete quantum dot material on the heat absorbing material layer, wherein The quantum dot material is in one-to-one correspondence with the third partial micro LED chip, and the quantum dot material 2 corresponds to the fourth partial micro LED chip, and the third partial micro LED chip and the fourth partial micro LED chip are Micro LED chips in different positions in the Micro LED chip array;
- Placing the substrate above the array of micro LED chips, and the quantum dot material facing the array of micro LED chips comprises: placing the substrate over the array of micro LED chips, The quantum dot material is oriented toward the third portion of the Micro LED chip, and the quantum dot material is oriented toward the fourth portion of the Micro LED chip;
- the illuminating the substrate with a laser beam array comprises:
- Illuminating the substrate with a laser beam array wherein the plurality of laser beams in the laser beam array are at least one-to-one corresponding to the third partial Micro LED chip and the fourth partial Micro LED chip;
- the layer of heat absorbing material on the substrate is deformed under illumination by the laser beam array, and the quantum dot material is transferred to an upper surface of a Micro LED chip that is illuminated by the laser beam array and the quantum dot material is oriented.
- the heat absorbing material layer on the substrate is deformed under the irradiation of the laser beam array, and the quantum dot material is transferred to the upper surface of the third partial Micro LED chip to transfer the quantum dot material To the upper surface of the fourth portion of the Micro LED chip.
- the quantum dot material 1 and the quantum dot material 2 are both applied to the heat absorbing material by a laser printing or inkjet printing process.
- the plurality of Micro LED chips are blue micro LED chips
- the quantum dot material is a red quantum dot material
- the quantum dot material is a green quantum dot material.
- the laser beam array is formed by a laser irradiation mask, the mask includes an opaque portion and a light transmitting portion, and the light transmitting portion corresponds to the part or all of the Micro LED chips. .
- the laser beam array is formed by an optical fiber.
- the laser light emitted by the laser forms an array of laser beams of a specific size through the optical fibers.
- the quantum dot material is a quantum dot solution, a quantum dot powder, or a quantum dot-polymer powder.
- the quantum dot solution may be a solution formed by a quantum dot and a solvent, such as an aqueous solution of quantum dots or a chloroform solution of quantum dots, or a composite solution of quantum dots, that is, a quantum dot, a mixture of a polymer and a solvent.
- a solvent such as an aqueous solution of quantum dots or a chloroform solution of quantum dots, or a composite solution of quantum dots, that is, a quantum dot, a mixture of a polymer and a solvent.
- An oil soluble or water soluble complex solution Oil-soluble composite solution such as quantum dot, polymethyl methacrylate and chloroform complex solution, wherein polymethyl methacrylate can also be replaced by polystyrene and its derivatives, chloroform can also be replaced by toluene, xylene Or an organic solvent such as anisole.
- a water-soluble complex solution such as a quantum dot, a mixed solution of polyvinyl alcohol and ethanol, wherein polyvinyl alcohol can also be replaced by polyvinylpyrrolidone or polyacrylic acid and derivatives thereof, and ethanol can also be replaced by water, methanol or isopropyl alcohol.
- a hydrophilic solvent such as an alcohol.
- Quantum Dots - Polymer powder refers to a composite powder of quantum dots and a polymer, wherein the polymer may be polymethyl methacrylate, polystyrene and its derivatives, polyvinyl alcohol, polyvinyl pyrrolidone or polyacrylic acid. And its derivatives.
- Quantum dot materials can also be composite powders of quantum dots with organic or inorganic materials.
- the organic material may be polymethyl methacrylate, polystyrene and its derivatives, polyvinyl alcohol, polyvinyl pyrrolidone or polyacrylic acid and derivatives thereof
- the inorganic material may be silicon dioxide, titanium dioxide, Molybdenum oxide, graphene, sodium chloride, calcium chloride, potassium bromide.
- the above quantum dots may be Cadmium Telluride (CdTe), Cadmium Selenide (CdSe), Cadmium Sulfide (CdS), Zinc Selenide (ZnSe), Indium Phosphide (Indium Phosphide).
- InP copper indium sulfide
- CuInSe copper indium selenide
- PbS lead sulfide
- the quantum dot material 1 and the quantum dot material 2 coated have a thickness in the range of 100 nm to 2 ⁇ m.
- the thickness of the quantum dot material 1 and the thickness of the quantum dot material 2 are both in the range of 100 nm to 2 ⁇ m.
- the present application also provides a miniature light emitting diode Micro LED display device prepared by the above method, the Micro LED display device comprising: a substrate comprising a plurality of Micro LED chips, and a preset Micro in the plurality of Micro LED chips The LED chip is covered with a quantum dot material.
- the method for preparing display devices based on Micro LED and quantum dot materials is mainly to directly apply quantum dot materials on the surface of Micro LED chips by means of inkjet.
- the unevenness of the surface of Micro LEDs will affect the precision and uniformity of the coating layer, and The influence of the size of the device nozzle makes it difficult to achieve high density and uniform coating of quantum dots.
- multi-color quantum dot materials are coated, multi-color quantum dot materials are easily affected and the display quality is lowered.
- the flatness of the material layer seriously affects the luminescent properties of the OLED, and the flatness needs to satisfy the nanometer level.
- the present application provides a method for preparing a micro LED display device, which is coated on a surface of a micro LED chip, and the surface flatness is controlled at a submicron level, which requires lower technical requirements and is easier to implement.
- the red and green chips are reduced, which is beneficial to improve the yield and display quality and reduce the process cost.
- coating quantum dots directly on the Micro LED chip it is easy to realize high-density distribution and size uniformity of nano-quantum dots, and easy to control and reduce mutual influence between multi-color quantum dot materials, and improve high-resolution color display. quality.
- laser printing technology can be used to print different color quantum dot materials onto the surface of the heat absorbing material, and the simultaneous transfer of different color quantum dot materials can be realized by using a mask corresponding to the Micro LED chip.
- FIG. 1 is a structural diagram of a micro LED chip array according to an embodiment of the present application.
- FIG. 2 is a perspective structural view of a mask 1 according to an embodiment of the present application.
- FIG. 3 is a top plan view of a mask 1 according to an embodiment of the present application.
- FIG. 4 is a schematic diagram of preparing a red quantum dot material according to an embodiment of the present application.
- FIG. 5 is a perspective structural view of a mask 2 according to an embodiment of the present application.
- FIG. 6 is a top view of a mask 2 according to an embodiment of the present application.
- FIG. 7 is a schematic diagram of preparing a green quantum dot material according to an embodiment of the present application.
- FIG. 8 is a structural diagram of a micro LED chip array according to another embodiment of the present application.
- An array of blue Micro LED chips 2 is prepared on the substrate 1, and the structure of the array of Micro LED chips 2 is as shown in FIG.
- the three-dimensional structure of the reticle one is as shown in FIG. 2, and the top view is as shown in FIG.
- a substrate 5 is prepared: the substrate 5 includes a substrate 6 and a layer 7 of a heat absorbing material is evaporated on the substrate 6.
- the red quantum dot material 8 is applied to the layer 7 of heat absorbing material by ink jet printing technology.
- the substrate 6 is a flexible polymer film, and the substrate 6 has a thickness of 0.15 mm.
- the heat absorbing material layer 7 is composed of a three-layer structure, the first layer is adjacent to the substrate -6, the material is titanium dioxide (TiO2), the thickness is 500 nm, and the second layer is located below the first layer, which is bismuth and titanium metal.
- the composite structure of the oxide has a thickness of 1000 nm, and the third layer is located below the second layer, and the material and thickness are consistent with the first layer.
- the red quantum dot material 8 is an aqueous solution of red quantum dots, and the red quantum dot material 8 has a thickness of 100 nm.
- a substrate 5 is placed over the array of Micro LED chips 2, and the red quantum dot material 8 faces the Micro LED chip 2.
- a layer of red quantum dot material 8 is prepared on the array of Micro LED chips 2 according to a schematic diagram of the preparation of red quantum dot material 8 as shown in FIG.
- an optical beam expanding assembly 10 is placed between the laser 9 and the reticle, the reticle 1 and the substrate 5 are aligned with the array of Micro LED chips 2, and the laser 9 emits laser light.
- the optical beam expanding assembly 10 is formed, a laser beam is formed, and the laser beam array formed by the mask plate is irradiated on the substrate 5, and the heat absorbing material layer 7 is deformed by the heat absorbing expansion, and the red quantum dot material 8 and the Micro are The array of LED chips 2 is in contact, and the red quantum dot material 8 is transferred onto the array of Micro LED chips 2.
- Preparing a mask 2 preparing a mask 2 by using a photolithography technique, the mask 2 having an opaque portion 3 and an array of Micro LED chips 2 in a 2i-1 row 2j column and a 2i row 2j-1 column
- the three-dimensional structure of the mask 2 is as shown in FIG. 5, and the top view is as shown in FIG. 6.
- the substrate 2 is prepared: the substrate 2 includes a substrate 12 and a layer of heat absorbing material 23 is vapor-deposited on the substrate 12.
- the green quantum dot material 14 is applied to the heat absorbing material layer 23 by a coating technique.
- the substrate 22 is a flexible polymer film, the substrate 12 has a thickness of 0.03 mm, and the heat absorbing material layer 13 is composed of a three-layer structure.
- the first layer is adjacent to the substrate 12 and the material is alumina. (Al2O3), the thickness is 1000nm, the second layer is located below the first layer, is a composite structure of aluminum and tungsten metal oxide, the thickness is 500nm, and the third layer is located below the second layer, and the material and thickness are consistent with the first layer.
- the green quantum dot material 14 is a solution of green quantum dots.
- the green quantum dot material 14 is a composite solution formed of green quantum dots, polyvinyl alcohol and ethanol, and the green quantum dot material 14 has a thickness of 2 ⁇ m;
- Substrate two 11 is placed over the array of Micro LED chips 2, and the quantum dot material layer 214 is oriented toward the Micro LED chip 2.
- a layer of green quantum dot material 14 is prepared on the array of Micro LED chips 2 according to the schematic of preparing a green quantum dot material as shown in FIG.
- the laser 9 is connected to the optical fiber 15, the optical fiber 15 is inserted into the aperture of the mask 2.
- the mask 2 and the substrate 2 are aligned with the array of the Micro LED chip 2, and the laser 9 emits a laser light, which is conducted through the optical fiber 15, and the laser beam array formed by the second mask is irradiated on the substrate 2, and the endothermic material layer 13 is deformed by the endothermic expansion, and the green quantum dot material 14 is in contact with the array of the micro LED chip 2.
- the green quantum dot material 14 is transferred to the array of Micro LED chips 2.
- different quantum dot materials are separately transferred by preparing different mask plates, thereby avoiding interaction between quantum dot materials of different colors, and effectively improving the color display quality.
- the micro LED chip array structure in FIG. 1 is taken as an example to describe a specific implementation manner, and the arrangement structure of the chip can be adaptively changed according to actual needs.
- the arrangement of the micro LED chips can be various. By changing the color of the transparent portion of the mask and the color of the quantum dot material coated on the substrate, it is possible to apply various quantum dot materials such as red, yellow, green, and blue on different micro LED chips, thereby constructing various kinds.
- Combined Micro LED display device is taken as an example to describe a specific implementation manner, and the arrangement structure of the chip can be adaptively changed according to actual needs.
- the arrangement of the micro LED chips can be various.
- An array of Micro LED chips 2 is prepared on the substrate 1, and the structure of the array of Micro LED chips 2 is as shown in FIG.
- Preparing a mask 3 preparing a mask 3 by using a photolithography technique, the mask 3 having a light transmitting portion corresponding to all of the Micro LED chips 2 in the array of Micro LED chips 2;
- the substrate 3 comprises a substrate 3 and a layer 3 of a heat absorbing material is evaporated on the substrate 3;
- the substrate three is a flexible polymer film, and the substrate has a thickness of 0.10 mm.
- the heat absorbing material layer 3 is composed of a three-layer structure, the first layer is adjacent to the substrate three, the material is SiO2, the thickness is 800 nm, and the second layer is located below the first layer, which is a composite structure of tin and indium metal oxide. The thickness is 600 nm, and the third layer is located below the second layer, and the material and thickness are consistent with the first layer.
- the red quantum dot material is a red quantum dot-polymer powder. In one embodiment, the red quantum dot material is a composite powder of red quantum dots and polymethyl methacrylate.
- the green quantum dot material is a green quantum dot-polymer powder. In one embodiment, the green quantum dot material is a composite powder of green quantum dots and polystyrene.
- a layer of quantum dot material is prepared on the array of Micro LED chips 2.
- the mask plate 3 and the substrate 3 are aligned with the array of the Micro LED chips 2, the laser emits laser light, and the laser beam array formed by the mask plate 3 is irradiated on the substrate 3, and the heat absorbing material layer has three heat absorption expansion. Deformation occurs, the red quantum dot material and the green quantum dot material are in contact with the array of Micro LED chips 2, and the red quantum dot material and the green quantum dot material are transferred to the array of Micro LED chips 2.
- the red quantum dot material and the green quantum dot material are printed on the surface of the heat absorbing material layer 3 of the substrate 3 by laser printing technology, and the simultaneous transfer of the red quantum dot material and the green quantum dot material is realized.
- An array of Micro LED chips 2 is prepared on the substrate 1, and the structure of the array of Micro LED chips 2 is as shown in FIG.
- the Micro LED chip 2 is a blue Micro LED chip.
- a mask 4 is prepared by photolithography, and the mask 4 has a 3jth, 2i-1, 3rd, 2nd, and 2ith columns in the 2i-1th column and the Micro LED chip 2 array.
- the substrate 4 comprises a substrate 4 and a layer 4 of heat absorbing material is evaporated on the substrate 4;
- the substrate four is a flexible polymer film, and the substrate has a thickness of 0.10 mm.
- the heat absorbing material layer 4 is composed of a three-layer structure, the first layer is adjacent to the substrate four, the material is SiO2, the thickness is 800 nm, and the second layer is located below the first layer, which is a composite structure of tin and indium metal oxide. The thickness is 600 nm, and the third layer is located below the second layer, and the material and thickness are consistent with the first layer.
- the red quantum dot material is a red quantum dot-polymer powder. In one embodiment, the red quantum dot material is a composite powder of red quantum dots and polystyrene.
- the green quantum dot material is a green quantum dot-polymer powder. In one embodiment, the green quantum dot material is a composite powder of green quantum dots and polyvinyl alcohol.
- a substrate 4 is placed over the array of Micro LED chips 2, and the quantum dot material layer faces the Micro LED chip 2.
- a layer of quantum dot material is prepared on the array of Micro LED chips 2.
- the mask plate 4 and the substrate 4 are aligned with the array of the Micro LED chips 2, and the laser emits laser light.
- the laser beam array formed by the mask plate 4 is irradiated on the substrate 4, and the heat absorbing material layer absorbs heat. Deformation occurs, the red quantum dot material and the green quantum dot material are in contact with the array of Micro LED chips 2, and the red quantum dot material and the green quantum dot material are transferred to the array of Micro LED chips 2.
- the red quantum dot material and the green quantum dot material are printed on the surface of the heat absorbing material layer of the substrate 4 by laser printing technology, thereby realizing simultaneous transfer of the red quantum dot material and the green quantum dot material.
- An array of Micro LED chips 2 is prepared on the substrate 1, and the structure of the array of Micro LED chips 2 is as shown in FIG.
- the substrate 5 comprises a substrate 5 and a layer 5 of heat absorbing material is evaporated on the substrate 5;
- the red quantum dot material is a red quantum dot powder
- the green quantum dot material is a green quantum dot powder.
- the quantum dot material has a thickness of 500 nm.
- a layer of quantum dot material is prepared on the array of Micro LED chips 2.
- the laser is connected to an optical fiber, and the optical fiber is in one-to-one correspondence with all chips of the array of Micro LED chips 2.
- the laser light emitted by the laser forms an array of laser beams through the optical fiber, and is irradiated onto the substrate 5.
- the heat absorbing material layer is deformed by the heat absorbing expansion, and the red quantum dot material and the green quantum dot material are in contact with the array of the Micro LED chip 2, and the red quantum is The dot material and the green quantum dot material are transferred to the array of Micro LED chips 2.
- the disclosure discloses that the quantum dot material is coated on the upper surface of the Micro LED chip, and the surface flatness can be controlled on the submicron level, which is lower in requirements and is easier to implement.
- the red and green chips are reduced, which is beneficial to improve the yield and display quality and reduce the process cost.
- coating quantum dots directly on the Micro LED chip it is easy to realize high-density distribution and size uniformity of nano-quantum dot materials, and easy to control and reduce mutual influence between multi-color quantum dot materials, and improve high-resolution colorization. Display quality.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Led Device Packages (AREA)
Abstract
一种微型发光二极管 Micro LED 显示器件及其制备方法。该方法包括:在基板上制备 Micro LED 芯片阵列,Micro LED 芯片阵列包括多个 Micro LED 芯片,该方法还包括:获取基材,基材包括衬底和覆于衬底上的吸热材料层;在吸热材料层上涂覆量子点材料;将基材放置于 Micro LED 芯片阵列上方,且量子点材料朝向 Micro LED 芯片阵列;采用激光束阵列照射基材,激光束阵列中的多束激光束与多个 Micro LED 芯片中部分或全部Micro LED 芯片一一对应;基材上的吸热材料层在激光束阵列照射下发生形变,将量子点材料转移至被激光束阵列照射且量子点材料朝向的 Micro LED 芯片的上表面。
Description
本公开涉及发光二极管(Light Emitting Diode,LED)显示器技术领域,例如涉及一种微型发光二极管(Micro LED)显示器件及其制备方法。
Micro LED为微型化LED阵列结构,具有自发光显示特性,其技术优势包括全固态、长寿命、高亮度、低功耗、体积较小、超高分辨率以及可应用于高温或辐射等极端环境。相较于同为自发光显示的有机发光二级管(Organic Light Emitting Diode,OLED)技术,Micro LED不仅效率较高、寿命较长,且材料不易受到环境影响而相对稳定,也能避免产生残影现象等。
Micro LED显示方式通常是单色显示,Micro LED显示的彩色化是拓展Micro LED应用的一种技术,红绿蓝(Red Green Blue,RGB)三色LED法是实现Micro LED彩色化的技术方向之一。RGB三色LED法全彩显示主要是基于三原色(红、绿、蓝)调色基本原理,实施方法为:分别对红色-LED、绿色-LED、蓝色-LED,施以不同的电流,即可控制其亮度值,从而实现三原色的组合,达到全彩色显示的效果,这是LED大屏幕所普遍采用的方法。这种LED大屏幕全彩色显示组合方式直接应用于微矩阵LED显示屏还存在许多问题,例如:Micro LED的RGB三色法需要红绿蓝三个芯片,增加了工艺工序和技术上的难度,使得成品率降低,生产成本增加。另外,使用蓝光Micro LED搭配红色和绿色发光介质的技术,其中涂覆荧光粉的方法存在许多问题,如:荧光粉涂层将会吸收部分能量,降低了转化率。
量子点显示是新型显示技术。量子点(Quantum Dot,QD)作为一种新兴的半导体纳米晶材料,具有量子效率高、光谱精确可调、半峰宽窄以及色域广等优点,应用于显示可显著提高显示色域范围,并同时降低显示功耗等。量子点在显示技术领域的应用主要包括两个方面:基于量子点电致发光特性的量子点发光二极管显示技术(Quantum Dots Light Emitting Diode Displays,QLED)以及基于量子点光致发光特性的量子点背光源技术(Quantum Dots-Backlight Unit,QD-BLU)。而量子点电致发光QLED存在的主要问题是缺乏稳定高效的蓝光材 料。
利用Micro LED和QLED两种技术的优势,并结合量子点光致发光的特性,是实现Micro LED显示彩色化的一个技术方向。一般采用旋转涂布或雾状喷涂技术将量子点直接涂覆在紫外发光二极管(Ultraviolet Light Emitting Diode,UV LED)/蓝光LED上,使其受激发出RGB三色光,再通过色彩配比实现全彩色化。由于Micro LED经过加工后表面并非平整均一,直接在Micro LED涂覆量子点,难以实现涂覆膜的精度或均匀性,喷涂设备中喷头尺寸较大,涂覆的像素点尺寸偏大,难以实现量子点高密度涂覆或高分辨率显示,且涂覆的量子点均匀性差,喷涂时会出现较多的缺陷,同时多色量子点颜色相互影响,使得彩色化质量显著下降。
发明内容
本申请提供一种Micro LED显示器件及其制备方法,该方法能够均匀涂覆量子点材料、涂覆精度高且易于控制减少多色量子点颜色相互影响。
本申请提供一种Micro LED显示器件的制备方法,包括:在基板上制备Micro LED芯片阵列,其中,所述Micro LED芯片阵列包括多个Micro LED芯片,所述方法还包括:
获取基材,其中,所述基材包括衬底和覆于所述衬底上的吸热材料层;
在所述吸热材料层上涂覆量子点材料;
将所述基材放置于所述Micro LED芯片阵列的上方,且所述量子点材料朝向所述Micro LED芯片阵列;
采用激光束阵列照射所述基材,其中,所述激光束阵列中的多束激光束分别与所述多个Micro LED芯片中的部分或全部Micro LED芯片一一对应;所述吸热材料层在所述激光束阵列照射下发生形变,将所述量子点材料转移至所述被所述激光束阵列照射且所述量子点材料朝向的Micro LED芯片的上表面。
在一实施例中,所述方法还包括:向所述Micro LED芯片阵列转移至少两种不同颜色的量子点材料。
在一实施例中,所述至少两种不同颜色的量子点材料包括不同颜色的量子点材料一和量子点材料二。
在一实施例中,所述获取基材包括:获取基材一,其中,所述基材一包括衬底一和覆于所述衬底一上的吸热材料层一;
所述在所述吸热材料层上涂覆量子点材料,包括:在所述吸热材料层一上涂覆所述量子点材料一;
将所述基材放置于所述Micro LED芯片阵列的上方,且所述量子点材料朝向所述Micro LED芯片阵列,包括:将所述基材一放置于所述Micro LED芯片阵列的上方,且所述量子点材料一朝向全部Micro LED芯片;
所述采用激光束阵列照射所述基材,包括:采用激光束阵列一照射所述基材一,其中,所述激光束阵列一中的多束激光束分别与第一部分Micro LED芯片一一对应;
所述基材上的吸热材料层在所述激光束阵列照射下发生形变,将所述量子点材料转移至被所述激光束阵列照射且所述量子点材料朝向的Micro LED芯片的上表面,包括:
所述基材一上的吸热材料层一在所述激光束阵列一照射下发生形变,将所述量子点材料一转移至所述第一部分Micro LED芯片的上表面;
所述方法还包括:
获取基材二,其中,所述基材二包括衬底二和覆于所述衬底二上的吸热材料层二;
在所述吸热材料层二上涂覆所述量子点材料二;
将所述基材二放置于所述Micro LED芯片阵列的上方,且所述量子点材料二朝向全部Micro LED芯片;
采用激光束阵列二照射所述基材二,其中,所述激光束阵列二中的多束激光束分别与第二部分Micro LED芯片一一对应;所述基材二上的吸热材料层二在所述激光束阵列二照射下发生形变,将所述量子点材料二转移至所述第二部分Micro LED芯片的上表面;
其中,所述第一部分Micro LED芯片和所述第二部分Micro LED芯片为所述Micro LED芯片阵列中不同位置的Micro LED芯片。
在一实施例中,所述量子点材料是通过如下工艺之一涂覆于所述吸热材料层上的:喷墨打印、浸蘸、涂布、旋涂、覆膜或激光打印。
在一实施例中,所述在所述吸热材料层上涂覆量子点材料,包括:在所述吸热材料层上涂覆离散的量子点材料一和离散的量子点材料二,其中所述量子点材料一与第三部分Micro LED芯片一一对应,所述量子点材料二与第四部分Micro LED芯片一一对应,所述第三部分Micro LED芯片和第四部分Micro LED 芯片为所述Micro LED芯片阵列中不同位置的Micro LED芯片;
所述将所述基材放置于所述Micro LED芯片阵列的上方,且所述量子点材料朝向所述Micro LED芯片阵列,包括:将所述基材放置于所述Micro LED芯片阵列的上方,所述量子点材料一朝向所述第三部分Micro LED芯片,且所述量子点材料二朝向所述第四部分Micro LED芯片;
所述采用激光束阵列照射所述基材,包括:
采用激光束阵列照射所述基材,其中,所述激光束阵列中的多束激光束至少与所述第三部分Micro LED芯片以及所述第四部分Micro LED芯片一一对应;
所述基材上的吸热材料层在所述激光束阵列照射下发生形变,将所述量子点材料转移至被所述激光束阵列照射且所述量子点材料朝向的Micro LED芯片的上表面,包括:
所述基材上的吸热材料层在所述激光束阵列照射下发生形变,将所述量子点材料一转移至所述第三部分Micro LED芯片的上表面,将所述量子点材料二转移至所述第四部分Micro LED芯片的上表面。
在一实施例中,所述量子点材料一和所述量子点材料二均是采用激光打印或喷墨打印工艺涂覆于所述吸热材料上的。在一实施例中,所述多个Micro LED芯片为蓝色Micro LED芯片,所述量子点材料一为红色量子点材料,所述量子点材料二为绿色量子点材料。
在一实施例中,所述激光束阵列是由激光照射掩模板形成,所述掩模板包括不透光部分和透光部分,所述透光部分与所述部分或全部Micro LED芯片一一对应。激光经过掩模板不透光部分时,激光束无法通过,从而形成特定的激光束阵列。在一实施例中,所述激光束阵列是通过光纤形成。激光器发射的激光通过光纤形成特定大小的激光束阵列。在一实施例中,所述量子点材料为量子点溶液、量子点粉末或量子点-聚合物粉末。在一实施例中,量子点溶液可以是量子点与溶剂形成的溶液,如量子点的水溶液或量子点的氯仿溶液,还可以是量子点的复合溶液,即量子点、聚合物与溶剂混合形成的油溶性或水溶性的复合溶液。油溶性复合溶液如量子点、聚甲基丙烯酸甲酯与氯仿形成的复合溶液,其中,聚甲基丙烯酸甲酯还可以替换为聚苯乙烯及其衍生物,氯仿还可以替换为甲苯、二甲苯或苯甲醚等有机溶剂。水溶性复合溶液如量子点、聚乙烯醇与乙醇形成的复合混溶液,其中,聚乙烯醇还可以替换为聚乙烯吡咯烷酮或聚丙烯酸及其衍生物,乙醇还可以替换为水、甲醇或异丙醇等亲水性溶剂。量子点- 聚合物粉末是指量子点与聚合物形成的复合材料粉末,其中,聚合物可以是聚甲基丙烯酸甲酯、聚苯乙烯及其衍生物、聚乙烯醇、聚乙烯吡咯烷酮或聚丙烯酸及其衍生物。量子点材料还可以为量子点与有机或无机材料形成的复合材料粉末。在一实施例中,有机材料可以是聚甲基丙烯酸甲酯、聚苯乙烯及其衍生物、聚乙烯醇、聚乙烯吡咯烷酮或聚丙烯酸及其衍生物,无机材料可以是二氧化硅、二氧化钛、氧化钼、石墨烯、氯化钠、氯化钙、溴化钾。上述量子点可以是碲化镉(Cadmium Telluride,CdTe)、硒化镉(Cadmium Selenide,CdSe)、硫化镉(Cadmium Sulfide,CdS)、硒化锌(Zinc Selenide,ZnSe)、磷化铟(Indium Phosphide,InP)、铜铟硫(CuInS)、铜铟硒(CuInSe)或者硫化铅(Lead Sulfide,PbS)核心及其核壳结构量子点。
在一实施例中,涂覆于的所述量子点材料一和所述量子点材料二的厚度在100nm~2μm厚度范围内。
在一实施例中,所述量子点材料一的厚度和量子点材料二的厚度均在100nm~2μm厚度范围内。
本申请还提供一种采用上述方法制备的微型发光二极管Micro LED显示器件,该Micro LED显示器件包括:基板,所述基板包括多个Micro LED芯片,所述多个Micro LED芯片中的预设Micro LED芯片上覆盖量子点材料。
基于Micro LED和量子点材料制备显示器件的方法主要是直接采用喷墨的方式在Micro LED芯片表面涂覆量子点材料,Micro LED表面的不平整会影响涂覆层的精度和均匀性,且受设备喷头尺寸的影响,难以实现量子点的高密度和均匀涂覆,同时涂覆不同色的量子点材料时容易造成多色量子点材料相互影响,降低了显示质量。制备OLED显示器件,材料层的平整度严重影响OLED的发光性能,平整度需要满足纳米级别。本申请提供了一种Micro LED显示器件的制备方法,将量子点材料涂覆于Micro LED芯片上表面,表面平整度控制在亚微米级别即可,对技术条件要求更低,更容易实现。与RGB三色芯片相比,减少了红光和绿光芯片,有利于提高成品率和显示质量,降低工艺成本。与直接在Micro LED芯片上涂覆量子点相比,易于实现纳米量子点的高密度分布和尺寸均匀性,同时易于控制减少多种颜色量子点材料之间的相互影响,提高高分辨彩色化显示质量。另外,可以利用激光打印技术将不同颜色的量子点材料打印至吸热材料表面,利用与Micro LED芯片对应的掩模板实现不同颜色量子点材料的同时转移。
图1为本申请一实施例提供的Micro LED芯片阵列结构图;
图2为本申请一实施例提供的掩模板一的立体结构图;
图3为本申请一实施例提供的掩模板一的俯视图;
图4为本申请一实施例提供的制备红色量子点材料示意图;
图5为本申请一实施例提供的掩模板二的立体结构图;
图6为本申请一实施例提供的掩模板二的俯视图;
图7为本申请一实施例提供的制备绿色量子点材料示意图;
图8为本申请另一实施例提供的Micro LED芯片阵列结构图。
附图标记说明:
1-基板;2-Micro LED芯片;3-不透光部分;4-透光部分;5-基材一;6-衬底一;7-吸热材料层一;8-红色量子点材料;9-激光器;10-光学扩束组件;11-基材二;12-衬底二;13-吸热材料层二;14-绿色量子点材料;15-光纤。
以下将结合实施例和附图对本申请的构思及产生的技术效果进行描述,以充分地理解本申请的目的、特征和效果。
实施例1
在本实施例中,采用以下步骤制备Micro LED显示器件。
在基板1上制备蓝色Micro LED芯片2阵列,Micro LED芯片2阵列的结构图如图1所示。
制备掩模板一:利用光刻技术制备掩模板一,所述掩模板一具有不透光部分3和与Micro LED芯片2阵列位于第2i-1行第2j-1列的Micro LED芯片2相对应的透光部分4,其中i=1,2,3……n,j=1,2,3……n。掩模板一的立体结构如图2所示,俯视图如图3所示。
制备基材一5:该基材一5包括衬底一6和在衬底一6上蒸镀一层吸热材料层一7。
采用喷墨打印技术将红色量子点材料8涂覆于吸热材料层一7上。所述衬 底一6为柔性聚合物薄膜,衬底一6厚度为0.15mm。所述吸热材料层一7由三层结构构成,第一层与衬底一6相邻,材料为二氧化钛(TiO2),厚度为500nm,第二层位于第一层下方,为铋与钛金属氧化物的复合结构,厚度为1000nm,第三层位于第二层下方,材质和厚度与第一层一致。所述红色量子点材料8为红色量子点的水溶液,红色量子点材料8的厚度为100nm。
将基材一5放置于所述Micro LED芯片2阵列上方,且所述红色量子点材料8朝向所述Micro LED芯片2。
根据如图4所示的制备红色量子点材料8的示意图,在所述Micro LED芯片2阵列上制备一层红色量子点材料8。在一实施例中,在激光器9与掩模板一之间放置一个光学扩束组件10,所述掩模板一和所述基材一5与所述Micro LED芯片2阵列对准,激光器9发出激光,经光学扩束组件10后形成扩束的激光,经掩模板一后形成的激光束阵列照射在基材一5上,吸热材料层一7吸热膨胀发生形变,红色量子点材料8与Micro LED芯片2阵列接触,将红色量子点材料8转移至Micro LED芯片2阵列上。
制备掩模板二:利用光刻技术制备掩模板二,所述掩模板二具有不透光部分3和与Micro LED芯片2阵列位于第2i-1行第2j列和第2i行第2j-1列的Micro LED芯片2相对应的透光部分4,其中i=1,2,3……n,j=1,2,3……n。掩模板二的立体结构如图5所示,俯视图如图6所示。
制备基材二11:该基材二11包括衬底12和在衬底二12上蒸镀一层吸热材料层二13。
采用涂布技术将绿色量子点材料14涂覆于吸热材料层二13上。所述衬底二12为柔性聚合物薄膜,衬底二12厚度为0.03mm,所述吸热材料层二13由三层结构构成,第一层与衬底二12相邻,材料为氧化铝(Al2O3),厚度为1000nm,第二层位于第一层下方,为铝与钨金属氧化物的复合结构,厚度为500nm,第三层位于第二层下方,材质和厚度与第一层一致。所述绿色量子点材料14为绿色量子点的溶液。在一实施例中,绿色量子点材料14是由绿色量子点、聚乙烯醇和乙醇形成的复合溶液,绿色量子点材料14的厚度为2μm;
将基材二11放置于所述Micro LED芯片2阵列上方,且所述量子点材料层 二14朝向所述Micro LED芯片2。
根据如图7所示的制备绿色量子点材料示意图,在所述Micro LED芯片2阵列上制备一层绿色量子点材料14。本实施例中,激光器9与光纤15相连,所述光纤15插入所述掩模板二的孔隙内,所述掩模板二和所述基材二11与所述Micro LED芯片2阵列对准,激光器9发出激光,通过光纤15传导,经掩模板二后形成的激光束阵列照射在基材二11上,吸热材料层二13吸热膨胀发生形变,绿色量子点材料14与Micro LED芯片2阵列接触,将绿色量子点材料14转移至Micro LED芯片2阵列上。
本实施例通过制备不同的掩模板,分别转移不同的量子点材料,避免了不同颜色的量子点材料之间相互影响,有效地提高了彩色化显示质量。本实施例以图1中Micro LED芯片阵列结构为例进行说明具体实施方式,可以根据实际需要适应性地改变芯片的排列结构,Micro LED芯片的排列可以是多种多样的。通过改变掩模板的透光部分和基材上涂覆的量子点材料的颜色,可以实现在不同的Micro LED芯片上涂覆红、黄、绿以及蓝等多种量子点材料,从而构建多种组合的Micro LED显示器件。
实施例2
在本实施例中,采用以下步骤制备Micro LED显示器件。
在基板1上制备Micro LED芯片2阵列,Micro LED芯片2阵列的结构图如图8所示。
制备掩模板三:利用光刻技术制备掩模板三,所述掩模板三具有与Micro LED芯片2阵列中的全部Micro LED芯片2相对应的透光部分;
制备基材三:该基材三包括衬底三和在衬底三上蒸镀一层吸热材料层三;
采用激光打印技术将红色量子点材料打印至与Micro LED芯片2阵列位于第2i-1列第3j个位置和第2i列第2j-1个位置的Micro LED芯片2对应的吸热材料层三上,将绿色量子点材料打印至与Micro LED芯片2阵列位于第2i-1列第3j-2个位置和第2i列第2j个位置的Micro LED芯片2对应的吸热材料层三上,其中i=1,2,3……n,j=1,2,3……n。红色量子点材料和绿色量子点材料的厚度均为1μm。所述衬底三为柔性聚合物薄膜,衬底三厚度为0.10mm。所述吸热材 料层三由三层结构构成,第一层与衬底三相邻,材料为SiO2,厚度为800nm,第二层位于第一层下方,为锡与铟金属氧化物的复合结构,厚度为600nm,第三层位于第二层下方,材质和厚度与第一层一致。所述红色量子点材料为红色量子点-聚合物粉末,在一实施例中,红色量子点材料是红色量子点与聚甲基丙烯酸甲酯的复合材料粉末。所述绿色量子点材料为绿色量子点-聚合物粉末,在一实施例中,绿色量子点材料为是绿色量子点与聚苯乙烯的复合材料粉末。
将基材三放置于所述Micro LED芯片2阵列上方,且所述红色量子点材料和所述绿色量子点材料朝向所述Micro LED芯片2;
在所述Micro LED芯片2阵列上制备一层量子点材料。所述掩模板三和所述基材三与所述Micro LED芯片2阵列对准,激光器发出激光,经掩模板三后形成的激光束阵列照射在基材三上,吸热材料层三吸热膨胀发生形变,红色量子点材料和绿色量子点材料与Micro LED芯片2阵列接触,将红色量子点材料和绿色量子点材料转移至Micro LED芯片2阵列上。
本实施例通过激光打印技术,将红色量子点材料和绿色量子点材料打印至基材三的吸热材料层三的表面,实现了红色量子点材料和绿色量子点材料的同时转移。
实施例3
在本实施例中,采用以下步骤制备Micro LED显示器件。
在基板1上制备Micro LED芯片2阵列,Micro LED芯片2阵列的结构图如图8所示。Micro LED芯片2为蓝色Micro LED芯片。
制备掩模板四:利用光刻技术制备掩模板四,所述掩模板四具有与Micro LED芯片2阵列中第2i-1列第3j个、第2i-1列第3j-2个、第2i列第2j-1个和第2i列第2j个位置相对应的透光部分,其中i=1,2,3……n,j=1,2,3……n。
制备基材四:该基材四包括衬底四和在衬底四上蒸镀一层吸热材料层四;
采用激光打印技术将红色量子点材料打印至与Micro LED芯片2阵列位于第2i-1列第3j个位置和第2i列第2j-1个位置的Micro LED芯片2对应的吸热材料层四上,将绿色量子点材料打印至与Micro LED芯片2阵列位于第2i-1行第3j-2个位置和第2i列第2j个位置的Micro LED芯片2对应的吸热材料层四上, 其中i=1,2,3……n,j=1,2,3……n。红色量子点材料和绿色量子点材料的厚度均为1μm。所述衬底四为柔性聚合物薄膜,衬底四厚度为0.10mm。所述吸热材料层四由三层结构构成,第一层与衬底四相邻,材料为SiO2,厚度为800nm,第二层位于第一层下方,为锡与铟金属氧化物的复合结构,厚度为600nm,第三层位于第二层下方,材质和厚度与第一层一致。所述红色量子点材料为红色量子点-聚合物粉末,在一实施例中,红色量子点材料是红色量子点与聚苯乙烯的复合材料粉末。所述绿色量子点材料为绿色量子点-聚合物粉末,在一实施例中,绿色量子点材料是绿色量子点与聚乙烯醇的复合材料粉末。
将基材四放置于所述Micro LED芯片2阵列上方,且所述量子点材料层朝向所述Micro LED芯片2。
在所述Micro LED芯片2阵列上制备一层量子点材料。所述掩模板四和所述基材四与所述Micro LED芯片2阵列对准,激光器发出激光,经掩模板四后形成的激光束阵列照射在基材四上,吸热材料层四吸热膨胀发生形变,红色量子点材料和绿色量子点材料与Micro LED芯片2阵列接触,将红色量子点材料和绿色量子点材料转移至Micro LED芯片2阵列上。
本实施例通过激光打印技术,将红色量子点材料和绿色量子点材料打印至基材四的吸热材料层的表面,实现了红色量子点材料和绿色量子点材料的同时转移。
实施例4
在本实施例中,采用以下步骤制备Micro LED显示器件。
在基板1上制备Micro LED芯片2阵列,Micro LED芯片2阵列的结构图如图1所示。
制备基材五:该基材五包括衬底五和在衬底五上蒸镀一层吸热材料层五;
采用激光打印技术将红色量子点材料打印至与Micro LED芯片2阵列位于第2i-1行第2j-1列和第2i行第2j个位置的Micro LED芯片2对应的吸热材料层五上,将绿色量子点材料打印至与Micro LED芯片2阵列位于第2i-1行第2j个位置的Micro LED芯片2对应的吸热材料层五上,其中i=1,2,3……n,j=1,2,3……n。所述红色量子点材料为红色量子点粉末,所述绿色量子点材料为绿色量子点 粉末。量子点材料的厚度为500nm。
将基材五放置于所述Micro LED芯片2阵列上方,且所述红色量子点材料和所述绿色量子点材料朝向所述Micro LED芯片2;
在所述Micro LED芯片2阵列上制备一层量子点材料。激光器与光纤相连,所述光纤与Micro LED芯片2阵列的全部芯片一一对应。激光器发出的激光通过光纤形成激光束阵列,照射到所述基材五上,吸热材料层五吸热膨胀发生形变,红色量子点材料和绿色量子点材料与Micro LED芯片2阵列接触,将红色量子点材料和绿色量子点材料转移至Micro LED芯片2阵列上。
本公开将量子点材料涂覆于Micro LED芯片上表面,表面平整度控制在亚微米级别即可,对技术条件要求更低,更容易实现。与RGB三色芯片相比,减少了红光和绿光芯片,有利于提高成品率和显示质量,降低工艺成本。与直接在Micro LED芯片上涂覆量子点相比,易于实现纳米量子点材料的高密度分布和尺寸均匀性,同时易于控制减少多种颜色量子点材料之间的相互影响,提高高分辨彩色化显示质量。
Claims (13)
- 一种微型发光二极管Micro LED显示器件的制备方法,包括:在基板上制备Micro LED芯片阵列,其中,所述Micro LED芯片阵列包括多个Micro LED芯片,还包括:获取基材,其中,所述基材包括衬底和覆于所述衬底上的吸热材料层;在所述吸热材料层上涂覆量子点材料;将所述基材放置于所述Micro LED芯片阵列的上方,且所述量子点材料朝向所述Micro LED芯片阵列;采用激光束阵列照射所述基材,其中,所述激光束阵列中的多束激光束分别与所述多个Micro LED芯片中的部分或全部Micro LED芯片一一对应;所述基材上的吸热材料层在所述激光束阵列照射下发生形变,将所述量子点材料转移至被所述激光束阵列照射且所述量子点材料朝向的Micro LED芯片的上表面。
- 根据权利要求1所述的Micro LED显示器件的制备方法,还包括:向所述Micro LED芯片阵列转移至少两种不同颜色的量子点材料。
- 根据权利要求2所述的Micro LED显示器件的制备方法,其中,所述至少两种不同颜色的量子点材料包括不同颜色的量子点材料一和量子点材料二。
- 根据权利要求3所述的Micro LED显示器件的制备方法,其中,所述获取基材包括:获取基材一,其中,所述基材一包括衬底一和覆于所述衬底一上的吸热材料层一;所述在所述吸热材料层上涂覆量子点材料,包括:在所述吸热材料层一上涂覆所述量子点材料一;将所述基材放置于所述Micro LED芯片阵列的上方,且所述量子点材料朝向所述Micro LED芯片阵列,包括:将所述基材一放置于所述Micro LED芯片阵列的上方,且所述量子点材料一朝向全部Micro LED芯片;所述采用激光束阵列照射所述基材,包括:采用激光束阵列一照射所述基材一,其中,所述激光束阵列一中的多束激光束分别与第一部分Micro LED芯片一一对应;所述基材上的吸热材料层在所述激光束阵列照射下发生形变,将所述量子点材料转移至被所述激光束阵列照射且所述量子点材料朝向的Micro LED芯片的上表面,包括:所述基材一上的吸热材料层一在所述激光束阵列一照射下发生形变,将所述量子点材料一转移至所述第一部分Micro LED芯片的上表面;所述方法还包括:获取基材二,其中,所述基材二包括衬底二和覆于所述衬底二上的吸热材料层二;在所述吸热材料层二上涂覆所述量子点材料二;将所述基材二放置于所述Micro LED芯片阵列的上方,且所述量子点材料二朝向全部Micro LED芯片;采用激光束阵列二照射所述基材二,其中,所述激光束阵列二中的多束激光束分别与第二部分Micro LED芯片一一对应;所述基材二上的吸热材料层二在所述激光束阵列二照射下发生形变,将所述量子点材料二转移至所述第二部分Micro LED芯片的上表面;其中,所述第一部分Micro LED芯片和所述第二部分Micro LED芯片为所述Micro LED芯片阵列中不同位置的Micro LED芯片。
- 根据权利要求4所述的Micro LED显示器件的制备方法,其中,所述量子点材料是通过如下工艺之一涂覆于所述吸热材料上的:喷墨打印、浸蘸、涂布、旋涂、覆膜或激光打印。
- 根据权利要求3所述的Micro LED显示器件的制备方法,其中,所述在所述吸热材料层上涂覆量子点材料,包括:在所述吸热材料层上涂覆离散的量子点材料一和离散的量子点材料二,其中,所述量子点材料一与第三部分Micro LED芯片一一对应,所述量子点材料二与第四部分Micro LED芯片一一对应,所述第三部分Micro LED芯片和第四部分Micro LED芯片为所述Micro LED芯片阵列中不同位置的Micro LED芯片;所述将所述基材放置于所述Micro LED芯片阵列的上方,且所述量子点材料朝向所述Micro LED芯片阵列,包括:将所述基材放置于所述Micro LED芯片阵列的上方,所述量子点材料一朝向所述第三部分Micro LED芯片,且所述量子点材料二朝向所述第四部分Micro LED芯片;所述采用激光束阵列照射所述基材,包括:采用激光束阵列照射所述基材,其中,所述激光束阵列中的多束激光束至少与所述第三部分Micro LED芯片以及所述第四部分Micro LED芯片一一对应;所述基材上的吸热材料层在所述激光束阵列照射下发生形变,将所述量子点材料转移至被所述激光束阵列照射且所述量子点材料朝向的Micro LED芯片的上表面,包括:所述基材上的吸热材料层在所述激光束阵列照射下发生形变, 将所述量子点材料一转移至所述第三部分Micro LED芯片的上表面,将所述量子点材料二转移至所述第四部分Micro LED芯片的上表面。
- 根据权利要求6所述的Micro LED显示器件的制备方法,其中,所述量子点材料一和量子点材料二均是采用激光打印或喷墨打印工艺涂覆于所述吸热材料层上的。
- 根据权利要求3-6任一项所述的Micro LED显示器件的制备方法,其中,所述多个Micro LED芯片为蓝色Micro LED芯片,所述量子点材料一为红色量子点材料,所述量子点材料二为绿色量子点材料。
- 根据权利要求1-8任一项所述的Micro LED显示器件的制备方法,其中,所述激光束阵列是由激光照射掩模板形成,所述掩模板包括不透光部分和透光部分,所述透光部分与所述部分或全部所述Micro LED芯片一一对应。
- 根据权利要求1-8任一项所述的Micro LED显示器件的制备方法,其中,所述激光束阵列是通过光纤形成。
- 根据权利要求1-10任一项所述的Micro LED显示器件的制备方法,其中,所述量子点材料为量子点溶液、量子点粉末或量子点-聚合物粉末。
- 根据权利要求1-11任一项所述的Micro LED显示器件的制备方法,其中,涂覆于所述吸热材料层上的所述量子点材料的厚度为100nm~2μm。
- 一种采用权利要求1-12任一项所述的方法制备的微型发光二极管Micro LED显示器件,包括:基板,所述基板包括多个Micro LED芯片,所述多个Micro LED芯片中的预设Micro LED芯片上覆盖量子点材料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710499014.6A CN107331758B (zh) | 2017-06-27 | 2017-06-27 | 一种Micro LED显示器件的制备方法 |
CN201710499014.6 | 2017-06-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019001183A1 true WO2019001183A1 (zh) | 2019-01-03 |
Family
ID=60198119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/088176 WO2019001183A1 (zh) | 2017-06-27 | 2018-05-24 | 微型发光二极管显示器件及其制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107331758B (zh) |
WO (1) | WO2019001183A1 (zh) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107331758B (zh) * | 2017-06-27 | 2019-03-05 | 南方科技大学 | 一种Micro LED显示器件的制备方法 |
CN108511390B (zh) * | 2018-05-09 | 2020-07-07 | 广东普加福光电科技有限公司 | 一种量子点全彩微显示器件的制备方法 |
CN108878602B (zh) * | 2018-06-29 | 2020-05-19 | 武汉大学 | 一种三基色垂直结构微型led芯片制造与转印方法 |
CN109216590B (zh) * | 2018-09-21 | 2020-11-03 | 福州大学 | 一种柔性彩色micro-LED显示器件制备方法 |
CN109713005A (zh) * | 2019-02-15 | 2019-05-03 | 易美芯光(北京)科技有限公司 | 一种白光Micro LED结构的工艺实现方式 |
CN109935614B (zh) | 2019-04-09 | 2021-10-26 | 南京大学 | 基于深硅刻蚀模板量子点转移工艺的微米全色qled阵列器件及其制备方法 |
CN110416148A (zh) * | 2019-07-23 | 2019-11-05 | 深圳市华星光电半导体显示技术有限公司 | 一种微器件巨量转移方法及通光片 |
KR20210081734A (ko) * | 2019-12-24 | 2021-07-02 | 엘지디스플레이 주식회사 | Led 이송 장치 |
CN111613699B (zh) * | 2020-05-25 | 2021-06-01 | 深圳市华星光电半导体显示技术有限公司 | 微型发光二极管及其制作方法 |
CN117239024A (zh) * | 2023-11-10 | 2023-12-15 | 中国科学院长春光学精密机械与物理研究所 | 基于硅基掩膜片的全彩色Micro-LED制备方法 |
CN118039754B (zh) * | 2024-04-12 | 2024-06-07 | 江西兆驰半导体有限公司 | 一种倒装mini发光二极管芯片的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916824A (zh) * | 2008-12-24 | 2010-12-15 | 索尼株式会社 | 转印基板和制造显示设备的方法 |
US20160072066A1 (en) * | 2014-09-05 | 2016-03-10 | Samsung Display Co., Ltd. | Donor mask and method of manufacturing organic light emitting display apparatus using the same |
CN107331758A (zh) * | 2017-06-27 | 2017-11-07 | 南方科技大学 | 一种Micro LED显示器件的制备方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011129345A (ja) * | 2009-12-17 | 2011-06-30 | Fujifilm Corp | 光熱変換シート、並びに、それを用いた有機電界発光素材シート、及び有機電界発光装置の製造方法 |
KR101606290B1 (ko) * | 2014-12-02 | 2016-03-24 | 서울대학교산학협력단 | 양자점 전사 인쇄 방법 |
CN107787527B (zh) * | 2015-06-08 | 2019-11-08 | 康宁股份有限公司 | 无转移的微led显示器 |
CN105514302B (zh) * | 2016-01-26 | 2017-07-18 | 京东方科技集团股份有限公司 | 量子点发光二极管亚像素阵列、其制造方法以及显示装置 |
CN105511155B (zh) * | 2016-02-22 | 2018-11-23 | 深圳市华星光电技术有限公司 | 量子点彩色滤光片的制造方法 |
CN106129083B (zh) * | 2016-06-30 | 2019-02-05 | 纳晶科技股份有限公司 | 一种量子点转印方法 |
CN106299144A (zh) * | 2016-09-23 | 2017-01-04 | 京东方科技集团股份有限公司 | 一种辅助基板、图案制备方法、qled显示基板及其制备方法 |
-
2017
- 2017-06-27 CN CN201710499014.6A patent/CN107331758B/zh active Active
-
2018
- 2018-05-24 WO PCT/CN2018/088176 patent/WO2019001183A1/zh active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101916824A (zh) * | 2008-12-24 | 2010-12-15 | 索尼株式会社 | 转印基板和制造显示设备的方法 |
US20160072066A1 (en) * | 2014-09-05 | 2016-03-10 | Samsung Display Co., Ltd. | Donor mask and method of manufacturing organic light emitting display apparatus using the same |
CN107331758A (zh) * | 2017-06-27 | 2017-11-07 | 南方科技大学 | 一种Micro LED显示器件的制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107331758A (zh) | 2017-11-07 |
CN107331758B (zh) | 2019-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019001183A1 (zh) | 微型发光二极管显示器件及其制备方法 | |
WO2018219199A1 (zh) | 显示器件及其制备方法 | |
WO2019100435A1 (zh) | 微型发光二极管显示装置及其制作方法 | |
WO2021174615A1 (zh) | 量子点显示面板及其制备方法 | |
TWI617020B (zh) | 有機發光二極體顯示器 | |
WO2017080077A1 (zh) | 量子点彩膜基板的制备方法及量子点彩膜基板 | |
CN107068707A (zh) | Micro LED彩色显示器件 | |
EP3440713A1 (en) | Micro-transfer printed led and color filter structure | |
CN111028704A (zh) | 一种显示面板及其制备方法 | |
CN105261635A (zh) | 发光二极管像素排列结构、印刷型显示装置及制备方法 | |
WO2020206713A1 (zh) | Oled显示装置及制备方法 | |
WO2021088139A1 (zh) | 显示装置及显示装置的制作方法 | |
WO2017173683A1 (zh) | 电致光致混合发光显示器件及其制作方法 | |
KR20070069418A (ko) | 적색칼라필터 및 이를 이용한 유기발광 표시장치 | |
US10854686B2 (en) | Package structure consisting of quantum dot material and packaging method for organic electroluminescence element and display device | |
CN108878497A (zh) | 显示基板及制造方法、显示装置 | |
KR20180099997A (ko) | 양자점 하이브리드 유기 발광 디스플레이 소자 및 그 제조 방법 | |
KR101030028B1 (ko) | 레이저 열전사 방법, 그를 이용한 유기막 패터닝 방법 및 유기전계발광표시장치의 제조방법 | |
CN108539031A (zh) | 量子点成膜方法、显示面板及其制作方法、显示装置 | |
US10338429B2 (en) | Method for manufacturing quantum dot color filter | |
CN111477618A (zh) | 一种量子点全彩Micro/Mini-LED显示屏结构及其制造方法 | |
CN106707619A (zh) | 一种白色面光源及其液晶显示器 | |
CN211858650U (zh) | 一种量子点全彩Micro/Mini-LED显示屏结构 | |
CN107680900B (zh) | 量子点膜及其制作方法、量子点器件 | |
WO2020042652A1 (zh) | Led显示器件及其制造方法、led显示面板 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18823494 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18823494 Country of ref document: EP Kind code of ref document: A1 |