WO2020042652A1 - Led显示器件及其制造方法、led显示面板 - Google Patents

Led显示器件及其制造方法、led显示面板 Download PDF

Info

Publication number
WO2020042652A1
WO2020042652A1 PCT/CN2019/084870 CN2019084870W WO2020042652A1 WO 2020042652 A1 WO2020042652 A1 WO 2020042652A1 CN 2019084870 W CN2019084870 W CN 2019084870W WO 2020042652 A1 WO2020042652 A1 WO 2020042652A1
Authority
WO
WIPO (PCT)
Prior art keywords
led chip
led
pixel
sub
red light
Prior art date
Application number
PCT/CN2019/084870
Other languages
English (en)
French (fr)
Inventor
韦冬
杨小龙
王建太
陈华山
邢汝博
Original Assignee
昆山工研院新型平板显示技术中心有限公司
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山工研院新型平板显示技术中心有限公司, 昆山国显光电有限公司 filed Critical 昆山工研院新型平板显示技术中心有限公司
Priority to US16/804,476 priority Critical patent/US11107949B2/en
Publication of WO2020042652A1 publication Critical patent/WO2020042652A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • G06F1/1652Details related to the display arrangement, including those related to the mounting of the display in the housing the display being flexible, e.g. mimicking a sheet of paper, or rollable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil

Definitions

  • the present application relates to the field of display technology, and particularly to an LED (Light Emitting Diode, light emitting diode) display device, a manufacturing method thereof, and an LED display panel.
  • LED Light Emitting Diode, light emitting diode
  • each pixel unit of a conventional Micro-LED display panel 10 includes a red sub-pixel R, a green sub-pixel G, and a blue sub-pixel B arranged on a substrate 110 in sequence.
  • the pixels respectively implement color conversion through their respective blue LED chips.
  • the red sub-pixel R is provided with a blue LED chip 111 and a quantum dot (QD) pattern layer 112 located on the blue LED chip 111.
  • the quantum dot pattern layer 112 is excited to emit red light when it is irradiated with blue light from the blue light LED chip 111 to realize red light conversion.
  • the green sub-pixel G is provided with a blue light LED chip 121 and the blue light LED chip.
  • the quantum dot pattern layer 122 on 121 is excited by the blue light emitted from the blue LED chip 121 to emit green light, thereby achieving green light conversion; and the blue LED in the blue sub-pixel B
  • the chip 131 directly emits blue light required for display.
  • the inkjet printing (IJP) process is generally used to form the quantum dot pattern layer 112 on the blue LED chip 111 of the red sub-pixel R, and the blue LED chip 121 on the green sub-pixel G to form the quantum dot pattern layer 112. Mentioned quantum dot pattern layer 122.
  • the shape of the quantum dot droplets ejected from the nozzle is very unstable, and many small droplets are often distributed around the main droplet.
  • the dispersed small droplets are easy to deviate.
  • the original position falls into the adjacent sub-pixel region, which will undoubtedly make the preparation of the quantum dot pattern layers 112, 122 (that is, the quantum dots need to be patterned multiple times) difficult, and limit the printing accuracy of the inkjet printing process.
  • the present application provides an LED display device, a manufacturing method thereof, and an LED display, which can reduce the difficulty of patterning the quantum dots, and at the same time, it is beneficial to realize the color conversion of the blue light LED chip at a high pixel density.
  • An LED display device includes a plurality of pixel units, and each pixel unit includes a red sub-pixel, a green sub-pixel, and a blue sub-pixel.
  • the red sub-pixel, the green sub-pixel, and the blue sub-pixel are respectively A first LED chip, a second LED chip and a third LED chip are provided, the first LED chip is a blue LED chip or a green LED chip, the second LED chip is a green LED chip, and the third LED is The chip is a blue light LED chip, and the red sub-pixel is further provided with a red light conversion block located on the first LED chip.
  • the green LED chip includes a gallium nitride-based LED chip.
  • the material of the gallium nitride-based LED chip includes indium gallium nitride.
  • the red light conversion block includes a quantum dot light conversion material.
  • the red sub-pixel further includes an adhesive layer disposed between the red light conversion block and the first LED chip.
  • a packaging material is provided on the second LED chip and the third LED chip, and the packaging material is further used for packaging the red light conversion block, and together with the red light conversion block, forms a packaging layer.
  • the surface of the packaging layer facing the first LED chip, the second LED chip, and the third LED chip is provided with an adhesive layer.
  • the packaging layer is formed on a board body, and the packaging layer is located between the board body and the first LED chip, the second LED chip, and the third LED chip;
  • the first LED chip, the second LED chip, and the third LED chip are disposed on a substrate;
  • An adhesive layer is provided around the board body, and is bonded to the base substrate around the board.
  • the adhesive layer is glue
  • the base substrate is a glass substrate, a plastic substrate or a flexible substrate.
  • An LED display panel includes a driving circuit and the above-mentioned LED display device, and the driving circuit is electrically coupled to the first LED chip, the second LED chip, and the third LED chip.
  • Providing a base substrate including a first region for forming a red sub-pixel, a second region for forming a green sub-pixel, and a third region for forming a blue sub-pixel;
  • a first LED chip, a second LED chip, and a third LED chip are respectively disposed in the first region, the second region, and the third region of the base substrate, wherein the first LED chip is a blue LED chip or a green LED.
  • An LED chip, the second LED chip is a green LED chip, and the third LED chip is a blue LED chip;
  • a red light conversion block is provided on the first LED chip in the first area.
  • the green LED chip includes a gallium nitride-based LED chip.
  • setting a red light conversion block on a first LED chip in the first area includes:
  • the red light quantum dot ink is dried to form the red light light conversion block.
  • setting a red light conversion block on a first LED chip in the first area includes:
  • Adopting inkjet printing technology to cause red light quantum dot ink to be deposited on the transfer medium through the plurality of hollowed-out areas;
  • the red light conversion block is aligned and bonded to the first LED chip in the first region through the adhesive layer.
  • the first LED chip is a blue light LED chip
  • the first LED chip is transferred to the first region using a mass transfer technology
  • the third LED chip is transferred to the third region simultaneously, and all the The second LED chip is transferred to the second area.
  • the first LED chip is a green LED chip
  • a third LED chip is transferred to the third region using a mass transfer technology
  • the second LED chip is transferred to the second region and synchronized with The first LED chip is transferred to the first area.
  • the green sub-pixel is designed with a green LED chip, and the preparation of the green light conversion block is omitted, thereby simplifying the preparation process of the light conversion block.
  • the light conversion block is a quantum dot light conversion block (that is, a quantum dot pattern) Layer)
  • it can reduce the difficulty of patterning the quantum dots.
  • it is not necessary to form a green light conversion block, so it is not restricted by the printing accuracy of the inkjet printing process, which is conducive to the realization of blue LED chips with high pixel density. Colorization.
  • FIG. 1 is a schematic cross-sectional view of a partial structure of an LED display panel
  • FIG. 2 is a schematic diagram of a partial pixel structure of an LED display panel according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a first embodiment of a method for manufacturing an LED display device according to the present application
  • FIG. 4 is a schematic structural diagram of a sub-pixel of the first embodiment of the LED display device of the LED display panel shown in FIG. 2;
  • FIG. 5 is a schematic structural diagram of a sub-pixel of a second embodiment of the LED display device of the LED display panel shown in FIG. 2;
  • FIG. 6 is a schematic flowchart of a second embodiment of a method for manufacturing an LED display device according to the present application.
  • FIG. 7 is a schematic diagram of an embodiment of forming a red light conversion block based on the method shown in FIG. 6;
  • FIG. 8 is a schematic diagram of another embodiment of forming a red light conversion block based on the method shown in FIG. 6; FIG.
  • FIG. 9 is a schematic structural diagram of a sub-pixel of a third embodiment of the LED display device of the LED display panel shown in FIG. 2.
  • FIG. 2 is a partial pixel structure diagram of an LED display panel according to an embodiment of the present application.
  • the LED display panel includes a plurality of data lines 21 extending along a column direction, a plurality of scanning lines 22 extending along a row direction, and a plurality of pixel units defined by the scanning lines 22 and the data lines 21. 23. These pixel units 23 are arranged in an array.
  • Each of the pixel units 23 includes a red (Red) sub-pixel 231, a green (Green) sub-pixel 232, and a blue (Blue) sub-pixel 233 arranged in this order.
  • the main purpose of this application is: a first LED chip, a second LED chip, and a third LED chip are respectively provided in the red sub-pixel 231, the green sub-pixel 232, and the blue sub-pixel 233, and the first LED chip is A blue LED chip or a green LED chip, the second LED chip is a green LED chip, the third LED chip is a blue LED chip, and the red sub-pixel 231 is further provided with the first LED Red light conversion block on the chip. That is, there are at least two alternatives:
  • a blue LED chip is set in the blue sub-pixel 233, a green LED chip is set in the green sub-pixel 232, a blue LED chip is set in the red sub-pixel 231 and a light conversion block located on the blue LED chip, and the light conversion block Red light conversion block.
  • a blue LED chip is set in the blue sub-pixel 233, a green LED chip is set in the green sub-pixel 232, a green LED chip is set in the red sub-pixel 231 and a light conversion block located on the green LED chip, and the light The conversion block is a red light conversion block.
  • All the above-mentioned LED chips may be Micro-LEDs, and the LED display panel may be regarded as a Micro-LED display panel.
  • the blue LED chip is used to emit blue light
  • the green LED chip is used to emit green light.
  • the method shown in FIG. 3 can be used to manufacture the LED display device in the LED display panel having the above structure.
  • the method for manufacturing the LED display device includes steps S31 to S33.
  • S31 Provide a base substrate including a first region for forming a red sub-pixel, a second region for forming a green sub-pixel, and a third region for forming a blue sub-pixel.
  • S32 setting a first LED chip, a second LED chip, and a third LED chip in the first region, the second region, and the third region of the base substrate, respectively, wherein the first LED chip is a blue LED chip or a green LED An LED chip, the second LED chip is a green LED chip, and the third LED chip is a blue LED chip.
  • a red light conversion block is set on the first LED chip in the first area.
  • FIG. 4 is a schematic structural diagram of a sub-pixel of the first embodiment of the LED display device of the LED display panel shown in FIG. 2.
  • each pixel unit 23 includes a red sub-pixel 231, a green sub-pixel 232, and a blue sub-pixel 233 which are sequentially arranged on the base substrate 230, wherein the blue sub-pixels are A blue LED chip 33 (ie, the aforementioned third LED chip) is provided in 233, a green LED chip 32 (ie, the aforementioned second LED chip) is provided in the green sub-pixel 232, and a blue LED chip 31 is provided in the red sub-pixel 231 (Ie the aforementioned first LED chip) and a light conversion block 34 located on the blue LED chip 31, and the light conversion block 34 is a red light conversion block, which is used to convert the blue light emitted by the blue light LED chip 31 into red light .
  • this embodiment can omit the green light conversion block, that is, the quantum dot pattern layer 122 shown in FIG. 1, thereby simplifying the manufacturing process without being restricted by the inkjet printing process.
  • the limitation of the printing accuracy of the green light conversion block is beneficial to realize the color conversion of the blue light LED chip at a high pixel density.
  • the red light conversion block 34 of the present application may be a quantum dot pattern layer doped with red light quantum dots.
  • the material of the red light quantum dot includes, but is not limited to, CdSe (cadmium selenide), CdS (cadmium sulfide), ZnS (zinc sulfide), ZnSe (zinc selenide), CuInS 2 (copper indium sulfur), and InS (indium sulfide) , CH 3 PbCl 3 (acid chloride), CH 3 PbBr 3 (tribromide acid), CH 3 PbI 3 (triiodide borate), CsPbCl 3 (boron trichloride, cesium), CsPbBr 3 (tribromide At least one of boron and cesium) and CsPbI 3 (boron and cesium triiodide).
  • red light conversion block 34 is a quantum dot light conversion block (equivalent to the quantum dot pattern layer described in the prior art)
  • this application only requires A red light quantum dot patterning process, and the green light quantum dot patterning process is omitted, so the difficulty of patterning the quantum dots as a whole can be reduced.
  • the green LED chip 32 is used to emit green light, and may be a GaN (gallium nitride) -based LED chip.
  • the material may include indium gallium nitride (InGaN).
  • at least one of the blue LED chip 31 and the blue LED chip 33 may be a GaN-based LED chip.
  • the present application can realize full GaN-based colorization display.
  • the red sub-pixel 231 further includes an adhesive layer 37 between the red light conversion block 34 and the blue LED chip 31, which is equivalent to bonding at this time.
  • a layer 37 is provided on the side of the encapsulation layer 36 facing the blue LED chip 31.
  • the encapsulation layer 36 is used for encapsulating the red light conversion block 34 to isolate water and oxygen. Therefore, the bonding layer 37 encloses the encapsulation layer 36 (including the encapsulation).
  • the red light conversion block 34) encapsulated by the layer 36 is adhered to the green LED chip 32 and the blue LED chip 33.
  • the adhesive layer 37 has good light transmittance, and particularly has strong transmission ability for blue light, such as glue.
  • the red light conversion block 34 may be directly disposed on the blue light LED chip 31.
  • the present application may use inkjet printing technology to cause red light quantum dot ink to be deposited on the packaged blue light LED chip 31, and then the red light quantum dots
  • the ink is dried to form the red light conversion block 34, and the red light conversion block 34 formed by the drying is encapsulated by the sealing layer 36.
  • the red light conversion block 34 can also be formed on the plate 35 first.
  • the inkjet printing technology is used to deposit the quantum dot ink on the plate 35 through the hollowed-out area, and then the quantum dot ink is dried to form the red light conversion block. 34.
  • an adhesive layer 37 such as glue, is applied around the board body 35 carrying the red light conversion block 34, and the board body 35 is turned over and placed on the base substrate 230. As a result, the plate body 35 and the base substrate 230 are adhered around, and at this time, no adhesive layer 37 is provided between the red light conversion block 34 and the blue LED chip 31.
  • FIG. 6 is a schematic flowchart of a second embodiment of a method for manufacturing an LED display device according to the present application.
  • This manufacturing method can be used to prepare an LED display device 20 having a sub-pixel structure as shown in FIG. 4.
  • the manufacturing method of this embodiment includes steps S51 to S54.
  • S51 Provide a base substrate including a first region for forming a red sub-pixel, a second region for forming a green sub-pixel, and a third region for forming a blue sub-pixel.
  • the base substrate 230 may be a glass substrate, a plastic substrate, or a flexible substrate.
  • the base substrate 230 is a flexible substrate, such as PI (Polyimide , Polyimide) substrate. It should be understood that the base substrate 230 is also provided with a driving circuit, a soldering point, and the like for driving each LED chip to emit light. Therefore, the base substrate 230 can also be regarded as a driving substrate.
  • the substrate 230 includes a first region 230a, a second region 230b, and a third region 230c arranged in this order.
  • the first region 230a can be regarded as a red sub-pixel region
  • the second region 230b can be regarded as a green sub-pixel region.
  • the third region 230c can be regarded as a blue sub-pixel region.
  • S52 Form a blue LED chip in the first region and the third region of the base substrate.
  • the blue LED chip 31 is formed in the first region 230 a where the red sub-pixel 231 is located, and the blue LED chip 33 is formed in the third region 230 c where the blue sub-pixel 233 is located.
  • the “forming” can be understood as that the blue LED chips 31 and 33 are soldered to corresponding soldering points on the base substrate 230 so as to be electrically coupled to the driving circuit.
  • S53 A green LED chip is formed in the second region.
  • the green LED chip 32 is soldered to a corresponding soldering point on the base substrate 230 located in the second region 230b, so as to be electrically coupled to the driving circuit.
  • the present application may use a mass transfer technology to simultaneously transfer the blue LED chips 31, 33 to the base substrate 230, and then transfer the green LED chips 32 to the base substrate
  • the second area 230b of 230 Specifically, a large number of blue LED chips are first arranged on a transfer board. The arrangement of these blue LED chips on the transfer board is the same as that of the red sub-pixels 231 and blue sub-pixels 233. Then, These blue LED chips are soldered to the first region 230 a and the third region 230 c on the base substrate 230 by a predetermined engineering technique.
  • the present application can also use the mass transfer technology to first transfer the green LED chip 32 to the second region 230b of the base substrate 230, and then use the mass transfer technology to simultaneously transfer the blue LED chips 31 and 33 to the base substrate. 230 on.
  • a red light conversion block is formed on the blue light LED chip in the first area.
  • a mask having a plurality of hollow regions 611 may be firstly used.
  • the board 61 is disposed on the blue LED chip 31 in the first area 230a of the package.
  • Each hollowed area 611 overlaps with the corresponding blue LED chip 31.
  • the inkjet printing technology is used to make the quantum dot ink 62 pass through the hollow.
  • a region 611 is deposited on the blue LED chip 31, and the quantum dot ink 62 is finally dried to form a red light conversion block 34.
  • the red light conversion block 34 is encapsulated by an encapsulation layer 36.
  • the mask plate 61 having a plurality of hollowed areas 611 may be first set on a transfer medium 71.
  • the transfer medium 71 may be A thin film, and then the inkjet printing technology is used to cause the quantum dot ink 62 to be deposited on the upper surface of the transfer medium 71 through the hollow area 611, and then the quantum dot ink 62 is dried to form the red light conversion Block 34, encapsulating the red light conversion block 34, removing the mask plate 61, and further coating an upper layer of the red light conversion block 34 with a sticky adhesive layer 37, such as glue, Turning the transfer medium 71 again, so that the upper surface of the red light conversion block 34 is aligned and bonded to the blue LED chip 31 in the first area 230a through the adhesive layer 37, and the transfer medium is finally removed. 71 is fine.
  • the LED display device shown in FIG. 4 can be obtained.
  • FIG. 9 is a schematic structural diagram of a sub-pixel of a third embodiment of the LED display device of the LED display panel shown in FIG. 2.
  • a green LED chip 92 is provided in the red sub-pixel 231, and the red The light-to-light conversion block 34 is located on the green LED chip 92.
  • the red quantum dots in the red light conversion block 34 are excited to emit red light.
  • the LED display panel of the embodiment shown in FIG. 2 may be the LED display device 20 of the embodiment shown in FIG. 4 or FIG. 5, or the LED display device 20 of the embodiment shown in FIG. 9.
  • the LED display panel has the same beneficial effects.
  • first”, “second”, and “third” in this application are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first”, “second”, and “third” may explicitly or implicitly include at least one of the features.
  • the meaning of "a plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise. All directional indicators (such as up, down, left, right, front, back, etc.) in the embodiments of the present application are only used to explain the relative positional relationship between components in a specific posture (as shown in the drawing) , Movement, etc., if the specific posture changes, the directional indication will change accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nonlinear Science (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种LED显示器件及其制造方法、LED显示面板。蓝色子像素(233)中设有蓝光LED芯片(33),绿色子像素(232)设有绿光LED芯片(32),红色子像素中(231)设有红光光转化块(34)及位于该红光光转化块(34)下方的蓝光LED芯片(33)或绿光LED芯片(32)。基于此,能够降低量子点图案化的难度,同时有利于实现高像素密度下蓝光LED芯片的彩色化转换。

Description

LED显示器件及其制造方法、LED显示面板
【技术领域】
本申请涉及显示技术领域,具体涉及LED(Light Emitting Diode, 发光二极管)显示器件及其制造方法、LED显示面板。
【背景技术】
当前,以LED作为发光像素的显示面板(下文统称LED显示面板)已广泛应用于显示领域。结合图1所示,现有一种Micro(微型)-LED显示面板10的每一像素单元包括依次排布于基板110上的红色子像素R、绿色子像素G和蓝色子像素B,各子像素分别通过各自的蓝光LED芯片实现彩色化转换,具体地,红色子像素R中设有蓝光LED芯片111及位于该蓝光LED芯片111上的量子点(Quantum Dot, 简称QD)图案层112,该量子点图案层112在受到蓝光LED芯片111发出的蓝光照射时被激发而发出红光,以此实现红光转换;同理,绿色子像素G中设有蓝光LED芯片121及位于该蓝光LED芯片121上的量子点图案层122,该量子点图案层122在受到蓝光LED芯片121发出的蓝光照射时被激发而发出绿光,以此实现绿光转换;而蓝色子像素B中的蓝光LED芯片131则直接发出显示所需的蓝光。
当前业界一般采用喷墨打印(Ink Jet Printing, 简称IJP)工艺在红色子像素R的蓝光LED芯片111上形成所述量子点图案层112,以及在绿色子像素G的蓝光LED芯片121上形成所述量子点图案层122。
采用该喷墨打印工艺形成量子点图案层的过程中,喷嘴喷出的量子点液滴形态非常不稳定,常常在主液滴周围分布有很多细小的液滴,分散出来的小液滴容易偏离原来的位置,落入到邻近子像素区域中,这无疑会使得量子点图案层112、122的制备(即量子点需要多次图案化)难度较高,并且限制喷墨打印工艺的打印精度。
另外,随着科学技术的不断发展,人们对LED显示面板的高像素密度的要求不断提高,而高像素密度的设计无疑会导致LED显示面板的每一子像素的尺寸变小,受限于喷墨打印工艺的打印精度的限制,当前很难实现高像素密度下蓝光LED芯片的彩色化转换。
【发明内容】
有鉴于此,本申请提供一种LED显示器件及其制造方法、LED显示器,能够降低量子点图案化的难度,同时有利于实现高像素密度下蓝光LED芯片的彩色化转换。
本申请一实施例的LED显示器件,包括多个像素单元,每一像素单元包括红色子像素、绿色子像素和蓝色子像素,所述红色子像素、绿色子像素和蓝色子像素中分别设有第一LED芯片、第二LED芯片和第三LED芯片,所述第一LED芯片为蓝光LED芯片或绿光LED芯片,所述第二LED芯片为绿光LED芯片,所述第三LED芯片为蓝光LED芯片,所述红色子像素中还设有位于第一LED芯片上的红光光转化块。
其中,所述绿光LED芯片包括氮化镓基LED芯片。
其中,所述氮化镓基LED芯片的材料包括铟氮化镓。
其中,所述红光光转化块包括量子点光转换材料。
其中,所述红色子像素还包括设置于所述红光光转换块和所述第一LED芯片之间的粘接层。
其中,所述第二LED芯片和所述第三LED芯片上设置有封装材料,所述封装材料进一步用于封装所述红光光转换块,与所述红光光转换块共同构成封装层。
其中,所述封装层朝向所述第一LED芯片、第二LED芯片、第三LED芯片的表面设置有粘接层。
其中,所述封装层形成与一板体上,所述封装层位于所述板体与所述第一LED芯片、第二LED芯片、第三LED芯片之间;
所述第一LED芯片、第二LED芯片、第三LED芯片设置于基板衬底上;
所述板体的四周设置有粘接层,与所述衬底基板在四周粘接。
其中,所述粘接层为胶水。
其中,所述衬底基板为玻璃基板、塑料基板或可挠式基板。
本申请一实施例的LED显示面板,包括驱动电路及上述LED显示器件,所述驱动电路电性耦接所述第一LED芯片、所述第二LED芯片和所述第三LED芯片。
本申请一实施例的显示器件的制造方法,包括:
提供一衬底基板,其包括用于形成红色子像素的第一区域、形成绿色子像素的第二区域、形成蓝色子像素的第三区域;
在所述衬底基板的第一区域、第二区域和第三区域分别设置第一LED芯片、第二LED芯片和第三LED芯片,其中,所述第一LED芯片为蓝光LED芯片或绿光LED芯片,所述第二LED芯片为绿光LED芯片,所述第三LED芯片为蓝光LED芯片;
在所述第一区域的第一LED芯片上设置红光光转化块。
其中,所述绿光LED芯片包括氮化镓基LED芯片。
其中,在所述第一区域的第一LED芯片上设置红光光转化块,包括:
将具有多个镂空区的掩膜板设置于所述第一区域的第一LED芯片上,所述镂空区与所述第一LED芯片上下重叠;
采用喷墨打印技术使得红光量子点墨水通过所述镂空区沉积在所述第一区域的第一LED芯片上;
将所述红光量子点墨水干燥形成所述红光光转化块。
其中,在所述第一区域的第一LED芯片上设置红光光转化块,包括:
将具有多个镂空区的掩膜板设置于一转移介质上;
采用喷墨打印技术使得红光量子点墨水通过所述多个镂空区沉积在所述转移介质上;
将所述红光量子点墨水干燥形成所述红光光转化块;
在所述红光光转化块的上表面形成一层粘接层;
通过所述粘接层将所述红光光转化块对位贴合于所述第一区域的第一LED芯片上。
其中,所述第一LED芯片为蓝光LED芯片,采用巨量转移技术将第一LED芯片转移至所述第一区域并同步将所述第三LED芯片转移至所述第三区域,以及将所述第二LED芯片转移至所述第二区域。
其中,所述第一LED芯片为绿光LED芯片,采用巨量转移技术将第三LED芯片转移至所述第三区域,以及将所述第二LED芯片转移至所述第二区域并同步将所述第一LED芯片转移至所述第一区域。
有益效果:本申请设计绿色子像素设有绿光LED芯片,而省略绿光光转化块的制备,从而简化光转化块的制备工艺,当光转化块为量子点光转化块(即量子点图案层)时,能够降低量子点图案化的难度,同时,由于无需形成绿光光转化块,从而无需受限于喷墨打印工艺的打印精度的限制,有利于实现高像素密度下蓝光LED芯片的彩色化转换。
【附图说明】
图1是LED显示面板的局部结构剖面示意图;
图2是本申请的LED显示面板一实施例的局部像素结构示意图;
图3是本申请LED显示器件的制造方法第一实施例的流程示意图;
图4是图2所示LED显示面板的LED显示器件的第一实施例的子像素的结构示意图;
图5是图2所示LED显示面板的LED显示器件的第二实施例的子像素的结构示意图;
图6是本申请LED显示器件的制造方法第二实施例的流程示意图;
图7是基于图6所示方法形成红光光转化块一实施例的场景示意图;
图8是基于图6所示方法形成红光光转化块另一实施例的场景示意图;
图9是图2所示LED显示面板的LED显示器件的第三实施例的子像素的结构示意图。
【具体实施方式】
图2是本申请的LED显示面板一实施例的局部像素结构示意图。请参阅图2,所述LED显示面板包括沿列方向延伸设置的多条数据线21、沿行方向延伸设置的多条扫描线22、以及由扫描线22和数据线21定义的多个像素单元23,这些像素单元23呈阵列排布。
每一所述像素单元23均包括依次排布的红色(Red)子像素231、绿色(Green)子像素232和蓝色(Blue)子像素233。
本申请的主要目的是:所述红色子像素231、绿色子像素232和蓝色子像素233中分别设有第一LED芯片、第二LED芯片和第三LED芯片,所述第一LED芯片为蓝光LED芯片或绿光LED芯片,所述第二LED芯片为绿光LED芯片,所述第三LED芯片为蓝光LED芯片,另外,所述红色子像素231中还设有位于所述第一LED芯片上的红光光转化块。也就是说,至少存在两种可选方案:
一、蓝色子像素233中设置蓝光LED芯片,绿色子像素232中设置绿光LED芯片,红色子像素231中设置蓝光LED芯片及位于该蓝光LED芯片上的光转化块,且该光转化块为红光光转化块。
二、蓝色子像素233中设置蓝光LED芯片,绿色子像素232中设置绿光LED芯片,红色子像素231中设置绿光LED芯片及位于该绿光LED芯片上的光转化块,且该光转化块为红光光转化块。
其中,上述所有LED芯片(包括蓝光LED芯片)可以为Micro-LED,于此,所述LED显示面板可视为Micro-LED显示面板。蓝光LED芯片用于发出蓝光,绿光LED芯片用于发出绿光。
本申请可以采用图3所示的方法制造具有上述结构的LED显示面板中的LED显示器件。如图3所示,所述LED显示器件的制造方法包括步骤S31~S33。
S31:提供一衬底基板,其包括用于形成红色子像素的第一区域、形成绿色子像素的第二区域、形成蓝色子像素的第三区域。
S32:在衬底基板的第一区域、第二区域和第三区域分别设置第一LED芯片、第二LED芯片和第三LED芯片,其中,所述第一LED芯片为蓝光LED芯片或绿光LED芯片,所述第二LED芯片为绿光LED芯片,所述第三LED芯片为蓝光LED芯片。
S33:在第一区域的第一LED芯片上设置红光光转化块。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。可以理解的是,此处所描述的具体实施例仅用于解释本申请,而非对本申请的限定。在不冲突的情况下,下述各个实施例及实施例中的特征可以相互组合。另外还需要说明的是,为了便于描述,所述附图中仅示出了与本申请相关的部分而非全部结构。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图4是图2所示LED显示面板的LED显示器件的第一实施例的子像素的结构示意图。结合图2和图4所示,每一像素单元23均包括在衬底基板230上依次排布的红色子像素231、绿色子像素232和蓝色子像素233,其中,所述蓝色子像素233中设置有蓝光LED芯片33(即前述第三LED芯片),绿色子像素232中设置有绿光LED芯片32(即前述第二LED芯片),而红色子像素231中设置有蓝光LED芯片31(即前述第一LED芯片)以及位于该蓝光LED芯片31上的光转化块34,且该光转化块34为红光光转化块,即用于将蓝光LED芯片31发出的蓝光转化为红光。
相比较于图1所示的LED显示面板,本实施方式能够省略绿光光转化块,即图1所示的量子点图案层122,从而简化制备工艺,同时无需受限于喷墨打印工艺形成该绿光光转化块的打印精度的限制,有利于实现高像素密度下蓝光LED芯片的彩色化转换。
鉴于量子点具有发光效率高、以及能够在承受多次的激发和光发射后仍具有良好的光稳定性等优点,本申请的红光光转化块34可以为掺有红光量子点的量子点图案层,该红光量子点的材质包括但不限于CdSe(硒化镉)、CdS(硫化镉)、ZnS(硫化锌)、ZnSe(硒化锌)、CuInS 2(铜铟硫)、InS(硫化铟)、CH 3PbCl 3(三氯化硼酸)、CH 3PbBr 3(三溴化硼酸)、CH 3PbI 3(三碘化硼酸)、CsPbCl 3(三氯化硼铯)、CsPbBr 3(三溴化硼铯)及CsPbI 3(三碘化硼铯)中的至少一种。
在所述红光光转化块34为量子点光转化块(相当于现有技术所述的量子点图案层)的应用场景中,相比较于图1所示的现有技术,本申请只需要一道红光量子点图案化工艺,而省略了绿光量子点图案化这一道工艺,因此能够从整体上降低量子点图案化的难度。
所述绿光LED芯片32用于发出绿光,其可以为GaN(氮化镓)基LED芯片,例如其材料可以包括铟氮化镓(InGaN)。同理,所述蓝光LED芯片31和蓝光LED芯片33中的至少一者也可以为GaN基LED芯片。于此,本申请可以实现全GaN基彩色化显示。
请继续参阅图4,在所述红色子像素231中,所述红色子像素231还包括位于红光光转化块34和蓝光LED芯片31之间的粘接层37,此时相当于将粘接层37设置于封装层36朝向蓝光LED芯片31的那侧,该封装层36用于对红光光转化块34进行封装以隔绝水氧,由此该粘接层37将封装层36(包括封装层36所封装的红光光转化块34)粘接于绿光LED芯片32和蓝光LED芯片33上。其中,该粘接层37具有良好的透光性,尤其是对蓝光具有很强的透过能力,例如为胶水。
如图5所示,为图2所示LED显示面板的LED显示器件的第二实施例的子像素的结构示意图。其中,为了便于描述,本申请对相同结构元件采用相同的标号。所述红光光转化块34可以直接设置于蓝光LED芯片31上,具体地,本申请可以采用喷墨打印技术使得红光量子点墨水沉积在封装后的蓝光LED芯片31上,然后将红光量子点墨水干燥形成所述红光光转化块34,并通过封装层36对干燥形成的红光光转化块34进行封装。还可先将红光光转换块34形成在板体35上,例如采用喷墨打印技术使量子点墨水通过镂空区沉积在板体35上,然后将量子点墨水干燥以形成红光光转换块34,进一步地,在承载所述红光光转化块34的板体35的四周涂布粘接层37,例如为胶水,将所述板体35翻转后与所述衬底基板230重叠设置,由此板体35和衬底基板230在四周粘接,此时,红光光转化块34和蓝光LED芯片31之间未设置粘接层37。
图6是本申请LED显示器件的制造方法第二实施例的流程示意图。该制造方法可用于制备具有图4所示子像素结构的LED显示器件20。如图6所示,本实施例的制造方法包括步骤S51~S54。
S51:提供一衬底基板,其包括用于形成红色子像素的第一区域、形成绿色子像素的第二区域、形成蓝色子像素的第三区域。
请结合图4所示,所述衬底基板230可以为玻璃基板、塑料基板或可挠式基板,而对于制造柔性LED显示器件20的场景,该衬底基板230为柔性基板,例如PI(Polyimide, 聚酰亚胺)基板。应理解,该衬底基板230上还会设置有用于驱动各个LED芯片发光的驱动电路、焊接点等,因此,该衬底基板230也可以视为驱动基板。
衬底基板230上包括依次排布的第一区域230a、第二区域230b和第三区域230c,该第一区域230a可视为红色子像素区域,第二区域230b可视为绿色子像素区域,第三区域230c可视为蓝色子像素区域。
S52:在衬底基板的第一区域和第三区域形成蓝光LED芯片。
请继续参阅图3,所述蓝光LED芯片31形成于红色子像素231所在的第一区域230a,所述蓝光LED芯片33形成于蓝色子像素233所在的第三区域230c。所述“形成”可理解为蓝光LED芯片31、33与衬底基板230上对应的焊接点相焊接,以此与驱动电路电性耦接。
S53:在所述第二区域中形成绿光LED芯片。
所述绿光LED芯片32与衬底基板230上位于第二区域230b内对应的焊接点相焊接,以此与驱动电路电性耦接。
为满足LED显示器件20的高像素密度的设计要求,本申请可以采用巨量转移技术将蓝光LED芯片31、33同步转移至衬底基板230上,然后将绿光LED芯片32转移至衬底基板230的第二区域230b。具体地,以先将巨量的蓝光LED芯片排布于一转移板上,这些蓝光LED芯片在转移板上的排布方式与红色子像素231和蓝色子像素233的排布方式相同,然后通过预定工程技术将这些蓝光LED芯片焊接到衬底基板230上的第一区域230a和第三区域230c。
当然,本申请也可以采用巨量转移技术先将绿光LED芯片32转移至衬底基板230的第二区域230b,然后再采用巨量转移技术将蓝光LED芯片31、33同步转移至衬底基板230上。
S54:在第一区域的蓝光LED芯片上形成红光光转化块。
以红光光转化块34可以为掺有红光量子点的量子点图案层为例,结合图7所示,在一种实施例方式中,本步骤首先可以将具有多个镂空区611的掩膜板61设置于完成封装的第一区域230a的蓝光LED芯片31上,每一镂空区611与对应的一个蓝光LED芯片31上下重叠,然后,采用喷墨打印技术使得量子点墨水62通过所述镂空区611沉积在所述蓝光LED芯片31上,最后将量子点墨水62干燥以此形成红光光转化块34,进一步地,通过封装层36对所述红光光转化块34进行封装。
在另一种实施例方式中,结合图8所示,本步骤S54可以首先将具有多个镂空区611的所述掩膜板61设置于一转移介质71上,该所述转移介质71可以为一层薄膜,然后采用喷墨打印技术使得量子点墨水62通过所述镂空区611沉积在所述转移介质71的上表面,接着将所述量子点墨水62干燥以此形成所述红光光转化块34,并对所述红光光转化块34进行封装,撤去掩膜板61,进一步在所述红光光转化块34的上表面涂布一层具有粘性的粘接层37,例如胶水,再翻转所述转移介质71,使得将所述红光光转化块34的上表面通过粘接层37对位贴合于所述第一区域230a的蓝光LED芯片31上,最后去除所述转移介质71即可。最终可得到如图4所示的LED显示器件。
图9是图2所示LED显示面板的LED显示器件的第三实施例的子像素的结构示意图。结合图2和图9所示,在前述实施例的描述基础上,但与其不同的是,在本实施例的LED显示器件20中,红色子像素231中设置绿光LED芯片92,所述红光光转化块34位于该绿光LED芯片92上。绿光LED芯片92发出的绿光照射至红光光转化块34时,红光光转化块34中的红光量子点受激发而发出红光。
在本申请中,图2所示实施例的LED显示面板可以为采用前述图4或图5所述实施例的LED显示器件20,也可以采用前述图9所述实施例的LED显示器件20,于此,该LED显示面板具有与其相同的有益效果。
应理解,本申请中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本申请实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,例如各实施例之间技术特征的相互结合,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种LED显示器件,包括多个像素单元,每一所述像素单元包括红色子像素、绿色子像素和蓝色子像素,其中,所述红色子像素、绿色子像素和蓝色子像素中分别设有第一LED芯片、第二LED芯片和第三LED芯片,所述第一LED芯片为蓝光LED芯片或绿光LED芯片,所述第二LED芯片为绿光LED芯片,所述第三LED芯片为蓝光LED芯片,所述红色子像素中还设有位于所述第一LED芯片上的红光光转化块。
  2. 根据权利要求1所述的LED显示器件,其中,所述绿光LED芯片包括氮化镓基LED芯片。
  3. 根据权利要求2所述的LED显示器件,其中,所述氮化镓基LED芯片的材料包括铟氮化镓。
  4. 根据权利要求1所述的LED显示器件,其中,所述红光光转化块包括量子点光转换材料。
  5. 根据权利要求1所述的LED器件,其中,所述红色子像素还包括设置于所述红光光转换块和所述第一LED芯片之间的粘接层。
  6. 根据权利要求1所述的LED器件,其中,所述第二LED芯片和所述第三LED芯片上设置有封装材料,所述封装材料进一步用于封装所述红光光转换块,与所述红光光转换块共同构成封装层。
  7. 根据权利要求6所述的LED器件,其中,所述封装层朝向所述第一LED芯片、第二LED芯片、第三LED芯片的表面设置有粘接层。
  8. 根据权利要求6所述的LED器件,其中,所述封装层形成与一板体上,所述封装层位于所述板体与所述第一LED芯片、第二LED芯片、第三LED芯片之间;
    所述第一LED芯片、第二LED芯片、第三LED芯片设置于基板衬底上;
    所述板体的四周设置有粘接层,与所述衬底基板在四周粘接。
  9. 根据权利要求8所述的LED器件,其中,所述粘接层为胶水。
  10. 根据权利要求8所述的LED器件,其中,所述衬底基板为玻璃基板、塑料基板或可挠式基板。
  11. 一种LED显示面板,其中,所述LED显示面板包括驱动电路及LED显示器件,所述LED显示器件包括多个像素单元,每一所述像素单元包括红色子像素、绿色子像素和蓝色子像素,所述红色子像素、绿色子像素和蓝色子像素中分别设有第一LED芯片、第二LED芯片和第三LED芯片,所述第一LED芯片为蓝光LED芯片或绿光LED芯片,所述第二LED芯片为绿光LED芯片,所述第三LED芯片为蓝光LED芯片,所述红色子像素中还设有位于所述第一LED芯片上的红光光转化块,所述驱动电路电性耦接所述第一LED芯片、所述第二LED芯片和所述第三LED芯片。
  12. 根据权利要求11所述的LED显示面板,其中,所述绿光LED芯片包括氮化镓基LED芯片。
  13. 根据权利要求11所述的LED显示面板,其中,所述红光光转化块包括量子点光转换材料。
  14. 根据权利要求11所述的LED显示面板,其中,所述LED显示面板为柔性显示面板。
  15. 一种LED显示器件的制造方法,其中,所述方法包括:
    提供一衬底基板,所述衬底基板包括用于形成红色子像素的第一区域、形成绿色子像素的第二区域、形成蓝色子像素的第三区域;
    在所述衬底基板的第一区域、第二区域和第三区域分别设置第一LED芯片、第二LED芯片和第三LED芯片,其中,所述第一LED芯片为蓝光LED芯片或绿光LED芯片,所述第二LED芯片为绿光LED芯片,所述第三LED芯片为蓝光LED芯片;
    在所述第一区域的第一LED芯片上设置红光光转化块。
  16. 根据权利要求15所述的方法,其中,所述绿光LED芯片包括氮化镓基LED芯片。
  17. 根据权利要求15所述的方法,其中,在所述第一区域的第一LED芯片上设置红光光转化块,包括:
    将具有多个镂空区的掩膜板设置于所述第一区域的第一LED芯片上,所述镂空区与所述第一LED芯片上下重叠;
    采用喷墨打印技术使得红光量子点墨水通过所述镂空区沉积在所述第一区域的第一LED芯片上;
    将所述红光量子点墨水干燥形成所述红光光转化块。
  18. 根据权利要求15所述的方法,其中,在所述第一区域的第一LED芯片上设置红光光转化块,包括:
    将具有多个镂空区的掩膜板设置于一转移介质上;
    采用喷墨打印技术使得红光量子点墨水通过所述多个镂空区沉积在所述转移介质上;
    将所述红光量子点墨水干燥形成所述红光光转化块;
    在所述红光光转化块的上表面形成一层粘接层;
    通过所述粘接层将所述红光光转化块对位贴合于所述第一区域的第一LED芯片上。
  19. 根据权利要求15所述的方法,其中,
    所述第一LED芯片为蓝光LED芯片,采用巨量转移技术将第一LED芯片转移至所述第一区域并同步将所述第三LED芯片转移至所述第三区域,以及将所述第二LED芯片转移至所述第二区域。
  20. 根据权利要求15所述的方法,其中,
    所述第一LED芯片为绿光LED芯片,采用巨量转移技术将第三LED芯片转移至所述第三区域,以及将所述第二LED芯片转移至所述第二区域并同步将所述第一LED芯片转移至所述第一区域。
PCT/CN2019/084870 2018-08-31 2019-04-28 Led显示器件及其制造方法、led显示面板 WO2020042652A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/804,476 US11107949B2 (en) 2018-08-31 2020-02-28 LED display device, method for manufacturing the same, and LED display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811013940.9A CN110875345A (zh) 2018-08-31 2018-08-31 Led显示器件及其制造方法、led显示面板
CN201811013940.9 2018-08-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/804,476 Continuation US11107949B2 (en) 2018-08-31 2020-02-28 LED display device, method for manufacturing the same, and LED display panel

Publications (1)

Publication Number Publication Date
WO2020042652A1 true WO2020042652A1 (zh) 2020-03-05

Family

ID=69642663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/084870 WO2020042652A1 (zh) 2018-08-31 2019-04-28 Led显示器件及其制造方法、led显示面板

Country Status (3)

Country Link
US (1) US11107949B2 (zh)
CN (1) CN110875345A (zh)
WO (1) WO2020042652A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115720644A (zh) * 2021-05-27 2023-02-28 京东方科技集团股份有限公司 背光模组、其制作方法及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173037A1 (ja) * 2011-06-13 2012-12-20 シャープ株式会社 表示装置
CN107068707A (zh) * 2017-06-13 2017-08-18 深圳市华星光电技术有限公司 Micro LED彩色显示器件
CN107390430A (zh) * 2017-08-09 2017-11-24 青岛海信电器股份有限公司 一种液晶显示装置
US20180074372A1 (en) * 2016-09-12 2018-03-15 Seoul Semiconductor Co., Ltd. Display apparatus
CN108291141A (zh) * 2015-10-09 2018-07-17 英特曼帝克司公司 窄带红色磷光体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063550A (ja) * 2006-08-10 2008-03-21 Sumitomo Chemical Co Ltd 蛍光体
CN105278150B (zh) * 2015-11-05 2017-09-01 深圳市华星光电技术有限公司 量子点彩膜基板及其制作方法与液晶显示装置
CN105372867A (zh) * 2015-12-02 2016-03-02 深圳市华星光电技术有限公司 量子点彩膜基板的制作方法
JP2017157724A (ja) * 2016-03-02 2017-09-07 デクセリアルズ株式会社 表示装置及びその製造方法、並びに発光装置及びその製造方法
US10068884B2 (en) * 2016-04-01 2018-09-04 Seoul Semiconductor Co., Ltd. Display apparatus and manufacturing method thereof
CN106252528B (zh) 2016-08-26 2018-10-12 纳晶科技股份有限公司 发光器件的制作方法、发光器件及混合发光器件
KR102321892B1 (ko) * 2017-04-11 2021-11-05 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
CN206947335U (zh) 2017-04-27 2018-01-30 山东晶泰星光电科技有限公司 一种倒装rgb‑led封装模组及其显示屏
TWI739931B (zh) * 2017-10-18 2021-09-21 優顯科技股份有限公司 顯示裝置
CN108153023B (zh) * 2018-01-18 2021-03-23 Oppo广东移动通信有限公司 显示屏及电子设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173037A1 (ja) * 2011-06-13 2012-12-20 シャープ株式会社 表示装置
CN108291141A (zh) * 2015-10-09 2018-07-17 英特曼帝克司公司 窄带红色磷光体
US20180074372A1 (en) * 2016-09-12 2018-03-15 Seoul Semiconductor Co., Ltd. Display apparatus
CN107068707A (zh) * 2017-06-13 2017-08-18 深圳市华星光电技术有限公司 Micro LED彩色显示器件
CN107390430A (zh) * 2017-08-09 2017-11-24 青岛海信电器股份有限公司 一种液晶显示装置

Also Published As

Publication number Publication date
US20200203563A1 (en) 2020-06-25
US11107949B2 (en) 2021-08-31
CN110875345A (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
US10304901B1 (en) Micro light-emitting diode display device and manufacturing method thereof
US11269215B2 (en) Method of manufacturing light emitting module and light emitting module
US10741608B2 (en) Manufacturing method of micro light-emitting diode display panel
US20190244937A1 (en) Display device and method for manufacturing the same, and light-emitting device and method for manufacturing the same
JP5372009B2 (ja) オプトエレクトロニクス部品およびその製造方法
CN110676282B (zh) 一种无电学接触的全彩化μLED微显示器件及其制造方法
CN112885823B (zh) 显示面板及其制备方法、显示装置
TWI640109B (zh) 顯示裝置
WO2021190052A1 (zh) 显示基板及其制备方法、显示面板及其制备方法
KR20210134309A (ko) 발광 소자를 갖는 유닛 픽셀, 픽셀 모듈 및 디스플레이 장치
US10381400B2 (en) Method of manufacturing light emitting device
CN110707200B (zh) 量子点发光器件图案化方法及量子点发光器件
TWI740438B (zh) 微型發光二極體的轉移方法
JP2022520755A (ja) ディスプレイ用発光素子の転写方法およびディスプレイ装置
US10229896B2 (en) Light emitting diode apparatus and method for manufacturing the same
JP2018142687A (ja) 発光装置の製造方法
CN109494216A (zh) 堆叠结构微型led显示器
WO2020042652A1 (zh) Led显示器件及其制造方法、led显示面板
CN109449146A (zh) 堆叠结构微型led显示器的制备方法
CN110875417A (zh) Led显示器件及其制造方法、led显示面板
WO2020100449A1 (ja) マイクロled表示装置及びマイクロled表示装置の配線方法
WO2020248201A1 (zh) 微型发光二极管的巨量转移方法及系统
CN112614828B (zh) 显示面板及其制作方法
US20240072218A1 (en) Display device and method for fabricating the same
KR102238776B1 (ko) 복합형 led디스플레이

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19853365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19853365

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19853365

Country of ref document: EP

Kind code of ref document: A1