WO2019000749A1 - 射线探伤磁性工装 - Google Patents

射线探伤磁性工装 Download PDF

Info

Publication number
WO2019000749A1
WO2019000749A1 PCT/CN2017/108825 CN2017108825W WO2019000749A1 WO 2019000749 A1 WO2019000749 A1 WO 2019000749A1 CN 2017108825 W CN2017108825 W CN 2017108825W WO 2019000749 A1 WO2019000749 A1 WO 2019000749A1
Authority
WO
WIPO (PCT)
Prior art keywords
bracket
receiving portion
radiographic
magnetic
shaft hole
Prior art date
Application number
PCT/CN2017/108825
Other languages
English (en)
French (fr)
Inventor
吴伟城
林家根
刘宁
Original Assignee
广船国际有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广船国际有限公司 filed Critical 广船国际有限公司
Publication of WO2019000749A1 publication Critical patent/WO2019000749A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/06Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and measuring the absorption
    • G01N23/18Investigating the presence of flaws defects or foreign matter

Definitions

  • the invention relates to the technical field of radiographic inspection, in particular to a radiographic tool for radiographic inspection.
  • the non-destructive testing method for radiographic inspection is widely used.
  • the flaw detector for generating radiation should be fixed at a distance of not less than 600 mm from the surface of the ferromagnetic workpiece to obtain the position. Negative film that meets the standard quality requirements.
  • the object of the present invention is to provide a radiographic tool for effectively repairing a radiographic flaw detector, which has a simple structure and is convenient to carry.
  • Providing a radiographic magnetic tooling comprising:
  • Magnetic suction cup that can be attached to the surface of a ferromagnetic workpiece
  • bracket having opposite first and second ends along a length thereof, the first end being coupled to the magnetic chuck;
  • a bracket is disposed on the bracket adjacent to the second end for supporting the radiographic flaw detector.
  • the bracket includes a first bracket and a second bracket, and the first bracket and the second bracket are respectively disposed at the The opposite sides of the bracket, when the bracket is tilted, at least one of the first bracket and the second bracket can be used to support a radiographic flaw detector.
  • the first bracket has a first groove opening toward the surface of the ferromagnetic workpiece
  • the second bracket has an opening facing away from The second groove of the surface of the ferromagnetic workpiece, the size of the first groove and the size of the second groove are matched to the shape of the radiation flaw detector.
  • the bracket is movably connected to the bracket, and the bracket is provided with a limit baffle, the bracket has a first mounting position and a And two mounting positions, and when the bracket is in the first mounting position or the second mounting position, the bracket may abut against the limiting baffle to support the radiographic flaw detector.
  • the bracket includes a first receiving portion, a second receiving portion and a third receiving portion which are vertically connected in sequence, the first bearing a bracket portion is parallel to the third receiving portion and located at a side of the second receiving portion, and the first receiving portion, the second receiving portion, and the third receiving portion are formed for Supporting a groove of the radiographic inspection machine, one end of the first receiving portion is connected to the bracket through a first pin shaft, the limiting baffle is disposed adjacent to the second end, and the limiting baffle a length extending along a width direction of the bracket, the bracket being rotatable along an axis of the first pin shaft to the same position when the bracket is in the first mounting position or in the second mounting position The limit baffle is abutted to support the radiographic flaw detector.
  • the bracket includes a first supporting plate and a second supporting plate which are arranged in parallel and spaced apart, and the first supporting plate and the second supporting plate a first shaft hole penetrating through the thickness direction thereof, and an end of the first receiving portion away from the second receiving portion is provided with a first penetrating portion of the first receiving portion in a width direction of the bracket a two-axis hole, two ends of the limiting baffle are perpendicularly connected to the first supporting plate and the second supporting plate, respectively, the first receiving portion is located at the first supporting plate and the second Between the support plates, the first receiving portion may be coupled to the bracket through the first pin shaft that cooperates with the first shaft hole and the second shaft hole to position the bracket a first mounting position, a distance between a surface of the second receiving portion away from the groove and a second shaft hole is equal to the limit baffle and the first shaft hole Distance between The bracket is rotatable to the second receiving portion to abut the limiting ba
  • the first receiving portion is disposed near one end of the second receiving portion and extends through the first bearing along the width direction of the bracket.
  • a third shaft hole of the bracket is matched with the first pin shaft, and the first receiving portion is configured to cooperate with the first shaft hole and the third shaft hole
  • the first pin shaft is coupled to the bracket such that the bracket is in the second mounting position, and the end surface of the first receiving portion away from the end of the second receiving portion is opposite to the third
  • the distance between the shaft holes is equal to the distance between the limit baffle and the first shaft hole, and the bracket is rotatable until the first receiving portion abuts the limit baffle.
  • the leg includes a first segment and a second segment that are vertically connected, and the first segment is away from the end of the second segment and the bracket Vertically connected, the second segment is parallel to the bracket and aligned with the adsorption surface of the magnetic chuck.
  • the bracket further includes a connecting plate disposed adjacent to the first end, and two ends of the connecting plate are respectively associated with the first supporting plate,
  • the second supporting plate is connected
  • the connecting plate is connected to the magnetic chuck
  • the leg comprises a first connecting segment, a second connecting segment and a third connecting segment which are vertically connected in sequence, and the first connecting segment is parallel to
  • the third connecting segment is located at one side of the second connecting segment, and the first connecting segment is disposed at a distal end of the second connecting segment with a fourth shaft hole, and the first connecting segment passes the a second pin shaft mating second pin is coupled to the first end of the bracket, the second connecting segment being away from a side of the first connecting segment and the third connecting segment and the fourth shaft
  • the distance between the holes is equal to the distance between the second pin and the web.
  • the connecting plate is provided with two ear plates spaced apart from the first end, and the magnetic chuck is mounted to the two by the third pin. Between the ear plates.
  • the invention has the beneficial effects that the bracket with the bracket is fixedly connected with the magnetic suction cup, and the radiographic flaw detector is placed on the bracket, and the magnetic suction cup is adsorbed on the surface of the ferromagnetic workpiece to be detected and the bracket is shaken by the supporting action of the supporting foot. It is guaranteed that the radiographic flaw detector can be fixed, so that the radiographic flaw detector can be used to transmit the weld on the surface of the ferromagnetic workpiece. Compared with the prior art, the radiographic magnetic tooling of the present invention has a simple structure and is convenient to use, and does not cause any damage to the ferromagnetic workpiece.
  • FIG. 1 is a first use state diagram of a radiographic magnetic tooling according to a first embodiment of the present invention.
  • FIG. 2 is a second use state diagram of the radiographic magnetic tooling according to the first embodiment of the present invention.
  • FIG 3 is a third view showing a state of use of the radiographic magnetic tooling according to the first embodiment of the present invention.
  • FIG. 4 is a view showing a fourth use state of the radiographic magnetic tooling according to the first embodiment of the present invention.
  • FIG. 5 is a first use state diagram of the radiographic magnetic tooling according to the second embodiment of the present invention.
  • Figure 6 is a second view showing the state of use of the radiographic magnetic tooling according to the second embodiment of the present invention.
  • Fig. 7 is a non-use state diagram of the radiographic inspection tooling tool according to the second embodiment of the present invention.
  • Figure 8 is a view taken along the line A in Figure 7.
  • 100 magnetic suction cup; 200, bracket; 210, first support plate; 220, second support plate; 230, intermediate connector; 240, connecting plate; 300, leg; 310, first segment; 320, second segment; 330, a first connecting section; 340, a second connecting section; 350, a third connecting section; 410, a first bracket; 420, a second bracket; 430, a first receiving portion; 431, a second shaft hole; 432, the third shaft hole; 440, the second receiving portion; 450, the third receiving portion; 500, the limit baffle.
  • first”, “second”, “third”, “fourth”, “fifth” are used for descriptive purposes only, and are not to be construed as indicating or implying relative importance or implicit indication of the indicated The number of technical features. Thus, features defining “first”, “second”, “third”, “fourth”, “fifth” may include one or more of the features, either explicitly or implicitly.
  • the term "fixed” is to be understood broadly, and may be, for example, a fixed connection, a detachable connection, or an integral body; it may be a mechanical connection or a mechanical connection, unless otherwise explicitly defined and defined. It is an electrical connection; it can be directly connected or indirectly connected through an intermediate medium, which can be the internal connection of two components or the interaction of two components.
  • an intermediate medium which can be the internal connection of two components or the interaction of two components.
  • the first feature "on” or “under” the second feature may include direct contact of the first and second features, and may also include first and second features, unless otherwise specifically defined and defined. It is not in direct contact but through additional features between them.
  • the first feature "on” the second feature includes the first feature directly above and above the second feature, or merely indicating that the first feature is at a higher level than the second feature.
  • the first feature "under” the second feature includes the first feature directly below and below the second feature, or merely indicating that the first feature level is less than the second feature.
  • the radiographic magnetic tooling of the embodiment includes: a magnetic chuck 100 that can be adsorbed on the surface of the ferromagnetic workpiece 1; and a bracket 200 that has a length along the length thereof.
  • the first end and the second end are connected to the magnetic chuck 100; the leg 300 is disposed on the bracket 200 adjacent to the first end, and the leg 300 can be combined with the ferromagnetic workpiece 1
  • the surface is abutted; a bracket is disposed on the bracket 200 adjacent to the second end for supporting the radiographic flaw detector.
  • the bracket 200 with the bracket is fixedly connected with the magnetic chuck 100, and the radiation detecting machine 2 is placed on the bracket.
  • the magnetic chuck 100 is adsorbed on the surface of the ferromagnetic workpiece 1 to be detected and the bracket 200 is avoided by the supporting action of the legs 300.
  • the shaking ensures that the radiation flaw detector 2 can be fixed, thereby facilitating the radiographic inspection machine 2 to transparently scan the weld bead on the surface of the ferromagnetic workpiece 1.
  • the radiographic magnetic tooling of the present invention has a simple structure and is convenient to use, and does not cause any damage to the ferromagnetic workpiece 1.
  • the high voltage cable can also be supported.
  • the bracket includes a first bracket 410 and a second bracket 420.
  • the first bracket 410 and the second bracket 420 are respectively disposed on opposite sides of the bracket 200, and when the bracket 200 is tilted At least one of the first bracket 410 and the second bracket 420 can be used to support the radiographic flaw detector 2.
  • the angle between the surface of the ferromagnetic workpiece 1 and the horizontal plane is different.
  • the surface of the ferromagnetic workpiece 1 is parallel to the horizontal plane and needs to be from below the ferromagnetic workpiece 1.
  • the radiographic magnetic tooling of the embodiment is provided with a bracket on each side of the bracket 200. Both brackets have support positions for supporting the radiographic flaw detector 2, and irons having different angles with respect to the horizontal plane. When the surface of the magnetic workpiece 1 is fixed to the surface of the ferromagnetic workpiece 1 by the radiation detecting magnetic tool, the support position of at least one of the two brackets can stably support the radiation flaw detector 2.
  • the first bracket 410 has a first groove opening toward the surface of the ferromagnetic workpiece 1
  • the second bracket 420 has a second groove opening away from the surface of the ferromagnetic workpiece 1, the first groove Both the dimensions and the dimensions of the second recess match the shape of the radiographic flaw detector 2.
  • the radiographic magnetic tooling is fixed to the upper surface of the ferromagnetic workpiece 1 through the magnetic chuck 100 and the legs 300 and close to the weld, and then The radiation flaw detector 2 is placed on the second groove of the second bracket 420 to support and fix the radiation flaw detector 2; if the weld seam is located on the lower surface of the ferromagnetic workpiece 1, the radiographic inspection tool is passed through the magnetic chuck
  • the 100 and the legs 300 are fixed to the upper and lower surfaces of the ferromagnetic workpiece 1 and adjacent to the weld, and then the radiation flaw detector 2 is placed on the first groove of the first bracket 410 to support and fix the radiation flaw detector 2.
  • the distance X of the surface of the ferromagnetic workpiece 1 to the radiation flaw detector 2 is fixed to 600 mm, and the length of the leg 300 is Y, the radiation flaw detector 2 and the cable has a weight of 50KG and a safety factor of 1.5.
  • a 200kg magnetic chuck 100 can be used.
  • the relationship between the length of the leg 300 and the magnetic force of the magnetic chuck 100 is (design calculation, ignoring the weight of the bracket 200):
  • Disk suction force F ⁇ foot length Y ⁇ radiation flaw detector weight 50kg ⁇ filming distance 0.6m ⁇ safety factor 1.5 45kg ⁇ m
  • the leg 210 calculated in this embodiment has a length of 250 mm.
  • the radiation flaw detector 2 is placed on the first bracket 410, which is suitable for the full position filming operation of the weld seam;
  • the placement position of the radiographic flaw detector 2 can be switched between the first bracket 410 or the second bracket 420, which is suitable for the full position of the weld bead.
  • the radiation flaw detector 2 is placed in the second tray.
  • Frame 420 position suitable for all-position filming of welds.
  • the leg 300 includes a first segment 310 and a second segment 320 that are vertically connected, and an end of the first segment 310 away from the second segment 320 is perpendicularly connected to the bracket 200, and the second segment 320 is parallel to the
  • the bracket 200 is aligned with the adsorption surface of the magnetic chuck 100. Thereby, the bracket 200 is vertically connected with the surface of the ferromagnetic workpiece 1 to realize vertical transillumination of the weld bead, and the relative position of the ferromagnetic workpiece 1 and the radiographic flaw detector 2 is fixed, and the best transillumination sensitivity can be obtained.
  • the radiographic inspection tooling of the present invention can be fixed at a position where the ferromagnetic workpiece 1 requires a film, and can reliably support the weight of the radiation flaw detector 2 and the high voltage cable.
  • the bracket in the above embodiment is fixedly coupled to the bracket 200. Therefore, it is necessary to design a bracket of a plurality of structures to support and fix the radiographic flaw detector 2 at any angle of the ferromagnetic workpiece 1.
  • the embodiment improves the structure of the bracket and the connection manner between the bracket and the bracket 200 on the basis of the above embodiment, and the bracket can be used to realize the multi-angle ferromagnetic workpiece 1 by using the radiation flaw detector 2
  • the weld is transilluminated.
  • the bracket is movably connected to the bracket 200 , and the bracket 200 is provided with a limit baffle 500 having a first mounting position and a second When the bracket is in the first mounting position or the second mounting position, the bracket may abut against the limiting baffle 500 to support the radiographic flaw detector 2.
  • the radiographic flaw detector 2 can be stably supported and fixed.
  • the bracket has two different mounting positions, which enables the use of the radiographic inspection machine 2 to perform transillumination of the weld on the multi-angle ferromagnetic workpiece 1.
  • the bracket includes a first receiving portion 430, a second receiving portion 440, and a third support that are vertically connected in this order
  • the first receiving portion 430 is parallel to the second receiving portion 450 and located at one side of the second receiving portion 440, and the first receiving portion 430 and the second supporting portion
  • the portion 440 and the second receiving portion 450 form a groove for supporting the radiation flaw detector 2
  • one end of the first receiving portion 430 is connected to the bracket 200 through a first pin
  • the baffle 500 is disposed adjacent to the second end, and a length of the limiting baffle 500 extends along a width direction of the bracket 200, the bracket is in the first mounting position or in the second mounting position
  • the bracket is rotatable along the axis of the first pin shaft to abut against the limit stop plate 500 to support the radiographic flaw detector 2.
  • the first receiving portion 430, the second receiving portion 440 and the second receiving portion 450 are an integral structure, the connection between the first receiving portion 430 and the second receiving portion 440, and the second bearing
  • the connection between the bracket 440 and the second receiving portion 450 is provided with chamfering, and the one end of the first receiving portion 430 and the second receiving portion 450 away from the second receiving portion 440 is also provided with chamfering, the chamfering
  • the arrangement can smoothly rotate the bracket in one direction to abut against the limit stop plate 500.
  • the bracket 200 includes a first support plate 210 and a second support plate 220 which are disposed in parallel and spaced apart.
  • the first support plate 210 and the second support plate 220 are respectively provided with a first axial hole extending through the thickness direction thereof.
  • One end of the first receiving portion 430 away from the second receiving portion 440 is provided with a second shaft hole 431 penetrating the first receiving portion 430 along the width direction of the bracket 200, the limit
  • the two ends of the baffle 500 are perpendicularly connected to the first support plate 210 and the second support plate 220 respectively, and the first receiving portion 430 is located at the first support plate 210 and the second support plate 220
  • the first receiving portion 430 is connectable to the bracket 200 through the first pin shaft that cooperates with the first shaft hole and the second shaft hole 431, so that the bracket In the first mounting position, a distance between a surface of the second receiving portion 440 away from the groove and a second shaft hole 431 is equal to the limit baffle 500 and the first a distance
  • the bracket is in the first mounting position, and the bracket is rotatable to the second receiving portion 440 to abut the limiting baffle 500.
  • the radiographic magnetic tooling in this state can be applied to the ferromagnetic workpiece 1 parallel to the horizontal plane.
  • the lower surface, the side surface of the ferromagnetic workpiece 1 perpendicular to the horizontal plane, and the lower surface of the inclined ferromagnetic workpiece 1 are vertically transilluminated.
  • the bracket when the radiographic magnetic tooling is in a non-use state, the bracket can be directly rotated between the two supporting plates to facilitate the transportation of the magnetic tooling by the radiographic inspection.
  • One end of the first receiving portion 430 adjacent to the second receiving portion 440 is provided with a second shaft hole 432 penetrating the first receiving portion 430 in the width direction of the bracket 200, the second shaft
  • the hole 432 is matched with the first pin shaft, and the first receiving portion 430 can pass through the first pin shaft and the bracket that cooperate with the first shaft hole and the second shaft hole 432 200 is connected such that the bracket is in the second mounting position, and the distance between the end surface of the first receiving portion 430 away from the end of the second receiving portion 440 and the second shaft hole 432 Equal to the distance between the limiting baffle 500 and the first shaft hole, the bracket is rotatable to the first receiving portion 430 to abut the limiting baffle 500.
  • the bracket is in the second mounting position, and the bracket is rotatable until the first receiving portion 430 abuts the limiting baffle 500.
  • the radiographic magnetic tooling in this state can be applied to the ferromagnetic workpiece 1 parallel to the horizontal plane.
  • the surface, the side surface of the ferromagnetic workpiece 1 perpendicular to the horizontal plane, and the upper surface of the inclined ferromagnetic workpiece 1 are vertically transilluminated.
  • the bracket since the bracket is detachably connected to the first support plate 210 and the second support plate 220 through the pin shaft, the bracket can be installed in the first mounting position or the second mounting according to the angle of the ferromagnetic workpiece 1. Bit.
  • a fifth is further disposed adjacent to the limiting baffle 500 at the first supporting plate 210 and the second supporting plate 220 respectively.
  • a shaft hole when the bracket is in the first mounting position, the third shaft hole 432 cooperates with the fifth shaft hole and passes through the fourth pin The shaft connection is fixed; when the bracket is in the second mounting position, the second shaft hole 431 cooperates with the fifth shaft hole and is fixed by the fourth pin shaft connection.
  • an intermediate connecting member 230 is disposed between the two supporting plates, and the intermediate connecting member 230 is disposed adjacent to the center of the bracket 200 along the longitudinal direction thereof, and the two ends of the intermediate connecting member 230 are respectively respectively.
  • the connection with the two support plates can improve the structural stability of the bracket 200 on the one hand, and on the other hand, the bracket can be rotated away from the limit baffle 500 to abut the intermediate connecting member 230, that is, the intermediate connecting member 230
  • the collapsed bracket (non-use state) has a fixed effect.
  • the bracket 200 further includes a connecting plate 240 disposed adjacent to the first end, and two ends of the connecting plate 240 are respectively connected to the first supporting plate 210 and the second supporting plate 220, and the connecting plate 240 Connected to the magnetic chuck 100, the leg 300 includes a first connecting section 330, a second connecting section 340 and a third connecting section 350 which are vertically connected in series, the first connecting section 330 being parallel to the third connecting section 350 is located at one side of the second connecting section 340, and a fourth shaft hole is disposed at an end of the first connecting section 330 away from the second connecting section 340, and the first connecting section 330 passes the a second pin that is mated with a four-axis hole is coupled to the first end of the bracket 200, and a side of the second connecting segment 340 away from the first connecting segment 330 and the third connecting segment 350 is The distance between the fourth shaft holes is equal to the distance between the second pin shaft and the connecting plate 240.
  • the leg 300 adopts the structural design, and can be rotated to abut against the connecting plate 240 in use to realize the supporting leg 300, thereby improving the stability of the bracket 200; when not in use, the leg 300 can be completely rotated directly to the two supporting plates. between.
  • the connecting plate 240 is spaced apart from the first end by two ear plates, and the magnetic chuck 100 is mounted between the two ear plates through a third pin.
  • the magnetic chuck 100 can also be fixedly connected to the ear plate.
  • the magnetic chuck 100 is further provided with a control magnetic chuck 100 for selective adsorption.
  • a control rod on the surface of the ferromagnetic workpiece 1 the control rod has a first position and a second position; the magnetic chuck 100 is in contact with the surface of the ferromagnetic workpiece 1, and when the control rod is in the first position, the magnetic chuck 100 is only adsorbed on the surface of the ferromagnetic workpiece 1
  • the lever is in the second position, the magnetic chuck 100 can be disengaged from the surface of the ferromagnetic workpiece 1.
  • the tooling is made of aluminum alloy with suitable specifications to ensure the strength of the bracket 200 itself while minimizing the weight of the bracket 200 itself for convenient use.
  • the bracket is made of two plates which are arranged at intervals, and the two plates are respectively connected to the two support plates through the pin shaft, and the plate is provided with a groove for supporting the radiation flaw detector 2, and the bottom of the groove may be
  • the plane can also be a curved surface, preferably a curved surface, which is advantageous for the stability of the radiographic flaw detector 2.
  • the tooling fixes the radiation flaw detector 2 to the position where the film is required by the magnetic chuck 100, and the vertical penetration of the weld seam can be realized regardless of the angle of the workpiece, and the relative position of the workpiece and the radiation flaw detector 2 can be fixed, and the most can be obtained.
  • Good transillumination sensitivity is optimal from the technology of radiographic inspection itself.
  • the radiographic magnetic tooling of the invention is applicable to various industries, such as ships, roads, bridges, buildings and the like, and can improve the efficiency and quality of the radiographing of the ferromagnetic material components.
  • the description of the term "preferred embodiment” or the like means that a specific feature, structure, material or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the invention.
  • the schematic representation of the above terms does not necessarily mean the same embodiment or example.
  • the particular features, structures, materials, or characteristics described may be combined in a suitable manner in any one or more embodiments or examples.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

一种射线探伤磁性工装,包括:磁力吸盘(100),可吸附在铁磁性工件(1)表面;支架(200),支架(200)沿其长度方向具有相对的第一端和第二端,第一端与磁力吸盘(100)连接;支脚(300),邻近第一端设置在支架(200)上,支脚(300)可与铁磁性工件(1)表面抵接;托架(410,420),靠近第二端设置在支架(200)上,用于承托射线探伤机(2)。该磁性工装方便射线探伤机(2)对铁磁性工件(1)表面的焊缝进行透照,结构简单,使用方便,对铁磁性工件(1)不会造成任何损伤。

Description

射线探伤磁性工装 技术领域
本发明涉及射线探伤检测技术领域,具体涉及一种射线探伤磁性工装。
背景技术
船舶、罐体、桥梁、钢结构等焊缝质量检测广泛使用射线探伤无损检测方法,检测过程中需要将产生射线的探伤机固定在距离铁磁性工件表面不小于600mm透照距离的位置,以获得符合标准质量要求的底片。目前,用于固定射线探伤机的方法主要有以下几种:
(1)、使用固定尺寸的木凳(木架)固定;木凳的高度相对固定,而焊缝拍片的位置随机,难于确保射线束对焊缝的垂直透照;木架使用一段时间后连接的榫头松动造成支撑不稳,曾经用L型铁片上螺丝固定,又增加了木架的重量,船上(现场)作业极不方便;
(2)、利用现场的脚手架用绳子绑扎固定;由于现场脚手架是固定的,其位置不一定刚好适合拍片的位置,因此需要用绳子将整个射线机绑扎固定,固定用时长却不容易对准位置;
(3)、利用船用吊篮、高空车固定;每次拍片需要同时使用两台船用吊篮或高空车同时作业,一台用于放置射线探伤机,另一台用于人员从放置射线探伤机的吊篮(高空车)上撤离,在拍片作业过程中,船用吊篮、高空车均存在一定程度的晃动,以致拍片的清晰度降低,难于达到技术要求,高空车的车臂越长、船用吊篮钢丝绳越长,拍片的清晰度越低。作业人员需要在高空中从一个船用吊篮(高空车)上攀爬过旁边的另一台吊篮(高空车),存在巨大的安 全隐患;
(4)、在铁磁性工件上焊接临时支撑等对射线探伤机进行固定;由于需要在铁磁性工件表面进行焊接,损伤铁磁性工件。临时支撑为了方便后续的拆除,通常只是局部点焊,有时会存在假焊,强度不够,存在仪器或者作业人员的高坠隐患。
发明内容
本发明的目的在于提供一种可以有效固定射线探伤机的射线探伤磁性工装,且其结构简单,方便携带。
为达此目的,本发明采用以下技术方案:
提供一种射线探伤磁性工装,包括:
磁力吸盘,可吸附在铁磁性工件表面;
支架,所述支架沿其长度方向具有相对的第一端和第二端,所述第一端与所述磁力吸盘连接;
支脚,邻近所述第一端设置在所述支架上,所述支脚可与铁磁性工件表面抵接;
托架,靠近所述第二端设置在所述支架上,用于承托射线探伤机。
作为本发明所述的射线探伤磁性工装的一种优选的技术方案,所述托架包括第一托架和第二托架,所述第一托架和所述第二托架分别设置在所述支架相对的两侧,所述支架倾斜时,所述第一托架和所述第二托架中的至少一个可用于承托射线探伤机。
作为本发明所述的射线探伤磁性工装的一种优选的技术方案,所述第一托架具有开口朝向所述铁磁性工件表面的第一凹槽,所述第二托架具有开口背离 所述铁磁性工件表面的第二凹槽,所述第一凹槽的尺寸和所述第二凹槽的尺寸均与射线探伤机的形状相匹配。
作为本发明所述的射线探伤磁性工装的一种优选的技术方案,所述托架与所述支架活动连接,所述支架上设置有限位挡板,所述托架具有第一安装位和第二安装位,且所述托架处于所述第一安装位或者所述第二安装位时,所述托架可与所述限位挡板抵接以承托射线探伤机。
作为本发明所述的射线探伤磁性工装的一种优选的技术方案,所述托架包括依次垂直连接的第一承托部、第二承托部和第三承托部,所述第一承托部与所述第三承托部平行并位于所述第二承托部的一侧,所述第一承托部、所述第二承托部和所述第三承托部形成用于承托射线探伤机的凹槽,所述第一承托部的一端通过第一销轴与所述支架连接,所述限位挡板邻近所述第二端设置,且所述限位挡板的长度沿所述支架的宽度方向延伸,所述托架处于所述第一安装位或者处于所述第二安装位时,所述托架可沿所述第一销轴的轴线转动至与所述限位挡板抵接以承托射线探伤机。
作为本发明所述的射线探伤磁性工装的一种优选的技术方案,所述支架包括平行且间隔设置的第一支撑板和第二支撑板,所述第一支撑板和所述第二支撑板上分别设置有贯穿其厚度方向的第一轴孔,所述第一承托部远离所述第二承托部的一端设置有沿所述支架的宽度方向贯穿所述第一承托部的第二轴孔,所述限位挡板的两端分别与所述第一支撑板和所述第二支撑板垂直连接,所述第一承托部位于所述第一支撑板和所述第二支撑板之间,所述第一承托部可通过与所述第一轴孔、所述第二轴孔相配合的所述第一销轴与所述支架连接,以使所述托架处于所述第一安装位,所述第二承托部远离所述凹槽的一侧的表面与所述第二轴孔之间的距离等于所述限位挡板与所述第一轴孔之间的距离,以 使所述托架可转动至所述第二承托部与所述限位挡板抵接。
作为本发明所述的射线探伤磁性工装的一种优选的技术方案,所述第一承托部靠近所述第二承托部的一端设置有沿所述支架的宽度方向贯穿所述第一承托部的第三轴孔,所述第三轴孔与所述第一销轴相匹配,所述第一承托部可通过与所述第一轴孔、所述第三轴孔相配合的所述第一销轴与所述支架连接,以使所述托架处于所述第二安装位,所述第一承托部远离所述第二承托部的一端的端面与所述第三轴孔之间的距离等于所述限位挡板与所述第一轴孔之间的距离,所述托架可转动至所述第一承托部与所述限位挡板抵接。
作为本发明所述的射线探伤磁性工装的一种优选的技术方案,所述支脚包括垂直连接的第一段和第二段,所述第一段远离所述第二段的一端与所述支架垂直连接,所述第二段平行于所述支架并与所述磁力吸盘的吸附面对齐。
作为本发明所述的射线探伤磁性工装的一种优选的技术方案,所述支架还包括靠近所述第一端设置的连接板,所述连接板的两端分别与所述第一支撑板、所述第二支撑板连接,所述连接板与所述磁力吸盘连接,所述支脚包括依次垂直连接的第一连接段、第二连接段和第三连接段,所述第一连接段平行于所述第三连接段并位于所述第二连接段的一侧,所述第一连接段远离所述第二连接段的一端设置有第四轴孔,所述第一连接段通过与所述第四轴孔相配合的第二销轴与所述支架的第一端连接,所述第二连接段远离所述第一连接段和所述第三连接段的一侧与所述第四轴孔之间的距离等于所述第二销轴与所述连接板之间的距离。
作为本发明所述的射线探伤磁性工装的一种优选的技术方案,所述连接板朝向所述第一端间隔设置有两个耳板,所述磁力吸盘通过第三销轴安装于两个所述耳板之间。
本发明的有益效果:本发明将带有托架的支架与磁力吸盘固定连接,托架上放置射线探伤机,磁力吸盘吸附在待检测的铁磁性工件表面并通过支脚的支撑作用避免支架晃动,保证可以对射线探伤机进行固定,从而方便射线探伤机对铁磁性工件表面的焊缝进行透照。与现有技术相比,本发明的射线探伤磁性工装的结构简单,使用方便,对铁磁性工件不会造成任何损伤。
附图说明
图1为本发明实施例一所述的射线探伤磁性工装的第一使用状态图。
图2为本发明实施例一所述的射线探伤磁性工装的第二使用状态图。
图3为本发明实施例一所述的射线探伤磁性工装的第三使用状态图。
图4为本发明实施例一所述的射线探伤磁性工装的第四使用状态图。
图5为本发明实施例二所述的射线探伤磁性工装的第一使用状态图。
图6为本发明实施例二所述的射线探伤磁性工装的第二使用状态图。
图7为本发明实施例二所述的射线探伤磁性工装的非使用状态图。
图8为图7的A向视图。
图1至8中:
1、铁磁性工件;2、射线探伤机;
100、磁力吸盘;200、支架;210、第一支撑板;220、第二支撑板;230、中间连接件;240、连接板;300、支脚;310、第一段;320、第二段;330、第一连接段;340、第二连接段;350、第三连接段;410、第一托架;420、第二托架;430、第一承托部;431、第二轴孔;432、第三轴孔;440、第二承托部;450、第三承托部;500、限位挡板。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
在本发明的描述中,需要理解的是,术语“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”、“第三”、“第四”、“第五”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”、“第五”的特征可以明示或者隐含地包括一个或者更多个该特征。
在本发明的描述中,除非另有明确的规定和限定,术语“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个部件内部的连通或两个部件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征之“上”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征之“下”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
如图1至图4所示,本实施例提供的射线探伤磁性工装,包括:磁力吸盘100,可吸附在铁磁性工件1表面;支架200,所述支架200沿其长度方向具有 相对的第一端和第二端,所述第一端与所述磁力吸盘100连接;支脚300,邻近所述第一端设置在所述支架200上,所述支脚300可与铁磁性工件1表面抵接;托架,靠近所述第二端设置在所述支架200上,用于承托射线探伤机。
本实施例将带有托架的支架200与磁力吸盘100固定连接,托架上放置射线探伤机2,磁力吸盘100吸附在待检测的铁磁性工件1表面并通过支脚300的支撑作用避免支架200晃动,保证可以对射线探伤机2进行固定,从而方便射线探伤机2对铁磁性工件1表面的焊缝进行透照。与现有技术相比,本发明的射线探伤磁性工装的结构简单,使用方便,对铁磁性工件1不会造成任何损伤。
本实施例中,托架承托射线探伤机2时,还可以承托高压电缆。
所述托架包括第一托架410和第二托架420,所述第一托架410和所述第二托架420分别设置在所述支架200相对的两侧,所述支架200倾斜时,所述第一托架410和所述第二托架420中的至少一个可用于承托射线探伤机2。
在实际探伤操作中,对于不同的铁磁性工件1而言,其铁磁性工件1表面与水平面之间的夹角不同,例如,铁磁性工件1表面平行于水平面,需要从铁磁性工件1的下方对铁磁性工件1表面的焊缝进行透照,或者从铁磁性工件1的上方对铁磁性工件1表面的焊缝进行透照;或者,铁磁性工件1表面垂直于水平面,需要从铁磁性工件1表面的一侧对铁磁性工件1表面的焊缝进行透照;又或者,铁磁性工件1表面呈倾斜状态,需要从铁磁性工件1的斜上方对该焊缝进行透照。
本实施例的射线探伤磁性工装在支架200的两侧分别设置有一个托架,两个托架均具有可用于承托射线探伤机2的支撑位,对于与水平面之间的夹角不同的铁磁性工件1表面,将射线探伤磁性工装固定在铁磁性工件1表面时,两个托架中至少有一个托架的支撑位可稳定支撑射线探伤机2。
第一托架410具有开口朝向所述铁磁性工件1表面的第一凹槽,所述第二托架420具有开口背离所述铁磁性工件1表面的第二凹槽,所述第一凹槽的尺寸和所述第二凹槽的尺寸均与射线探伤机2的形状相匹配。
当铁磁性工件1平行于水平面时,若焊缝位于铁磁性工件1的上表面,将射线探伤磁性工装通过磁力吸盘100和支脚300固定在铁磁性工件1的上表面并靠近焊缝,然后将射线探伤机2放在第二托架420的第二凹槽上,即可对射线探伤机2进行支撑并固定;若焊缝位于铁磁性工件1的下表面,将射线探伤磁性工装通过磁力吸盘100和支脚300固定在铁磁性工件1的上下表面并靠近焊缝,然后将射线探伤机2放在第一托架410的第一凹槽上,即可对射线探伤机2进行支撑并固定。
如图1至4所示,本实施例中,射线探伤磁性工装在实际应用过程中,铁磁性工件1表面到射线探伤机2的距离X固定为600mm,支脚300的长度为Y,射线探伤机2及电缆的重量为50KG,安全系数为1.5,可使用200kg磁力吸盘100。支脚300的长度与磁力吸盘100的磁力关系为(设计计算,忽略支架200的自重):
磁盘吸力F×支脚长度Y≥射线探伤机重量50kg×拍片距离0.6m×安全系数1.5=45kg·m
本实施例中计算得到的支脚210长度为250mm。
铁磁性工件1与水平面之间的夹角为90°~180°时,射线探伤机2放置在第一托架410上,适合于焊缝的全位置拍片作业;
铁磁性工件1与水平面之间的夹角为45°~90°时,射线探伤机2的放置位置可在第一托架410或第二托架420之间切换,适合于焊缝的全位置拍片作业;
铁磁性工件1与水平面之间的夹角为0~45°时,射线探伤机2放置在第二托 架420位置,适合于焊缝的全位置拍片作业。
所述支脚300包括垂直连接的第一段310和第二段320,所述第一段310远离所述第二段320的一端与所述支架200垂直连接,所述第二段320平行于所述支架200并与所述磁力吸盘100的吸附面对齐。从而使支架200与铁磁性工件1的表面垂直连接,以实现对焊缝的垂直透照,并实现铁磁性工件1与射线探伤机2相对位置的固定,可以获得最好的透照灵敏度。
本发明的射线探伤磁性工装能够固定在铁磁性工件1需要拍片的位置,且能够可靠地支撑起射线探伤机2及高压电缆的重量。
实施例二
上述实施例中的托架与支架200之间固定连接,因此需要设计多种结构的托架对铁磁性工件1任意角度时的射线探伤机2的支撑和固定。
本实施例在上述实施例的基础上对托架的结构及其与支架200之间的连接方式进行了改进,设置一个托架即可实现采用射线探伤机2对多角度的铁磁性工件1上的焊缝进行透照。
本实施例中的部分附图标记沿用实施例一中的附图标记。
如图5至图8所示,本实施例中,所述托架与所述支架200活动连接,所述支架200上设置有限位挡板500,所述托架具有第一安装位和第二安装位,且所述托架处于所述第一安装位或者所述第二安装位时,所述托架可与所述限位挡板500抵接以承托射线探伤机2。
本实施例中,托架与限位挡板500抵接后,可以稳定地支撑、固定射线探伤机2。托架具有两个不同的安装位,可以实现采用射线探伤机2对多角度的铁磁性工件1上的焊缝进行透照。
所述托架包括依次垂直连接的第一承托部430、第二承托部440和第三承托 部450,所述第一承托部430与所述第二承托部450平行并位于所述第二承托部440的一侧,所述第一承托部430、所述第二承托部440和所述第二承托部450形成用于承托射线探伤机2的凹槽,所述第一承托部430的一端通过第一销轴与所述支架200连接,所述限位挡板500邻近所述第二端设置,且所述限位挡板500的长度沿所述支架200的宽度方向延伸,所述托架处于所述第一安装位或者处于所述第二安装位时,所述托架可沿所述第一销轴的轴线转动至与所述限位挡板500抵接以承托射线探伤机2。
本实施例中,第一承托部430、第二承托部440和第二承托部450为一体结构,第一承托部430与第二承托部440的连接处,以及第二承托部440与第二承托部450的连接处均设置有倒角,第一承托部430和第二承托部450远离第二承托部440的一端也设置有倒角,该倒角的设置可以使托架沿一个方向顺利转动至与限位挡板500抵接。
所述支架200包括平行且间隔设置的第一支撑板210、第二支撑板220,所述第一支撑板210和所述第二支撑板220上分别设置有贯穿其厚度方向的第一轴孔,所述第一承托部430远离所述第二承托部440的一端设置有沿所述支架200的宽度方向贯穿所述第一承托部430的第二轴孔431,所述限位挡板500的两端分别与所述第一支撑板210和所述第二支撑板220垂直连接,所述第一承托部430位于所述第一支撑板210和所述第二支撑板220之间,所述第一承托部430可通过与所述第一轴孔、所述第二轴孔431相配合的所述第一销轴与所述支架200连接,以使所述托架处于所述第一安装位,所述第二承托部440远离所述凹槽的一侧的表面与所述第二轴孔431之间的距离等于所述限位挡板500与所述第一轴孔之间的距离,以使所述托架可转动至所述第二承托部440与所述限位挡板500抵接。
托架处于第一安装位,且托架可转动至第二承托部440与限位挡板500抵接,该状态下的射线探伤磁性工装可以适用于对平行于水平面的铁磁性工件1的下表面、垂直于水平面的铁磁性工件1的侧面以及倾斜的铁磁性工件1的下表面进行垂直透照。
本实施例中,射线探伤磁性工装处于非使用状态时,可以直接转动托架至两个支撑板之间,便于射线探伤磁性工装的运输。所述第一承托部430靠近所述第二承托部440的一端设置有沿所述支架200的宽度方向贯穿所述第一承托部430的第二轴孔432,所述第二轴孔432与所述第一销轴相匹配,所述第一承托部430可通过与所述第一轴孔、所述第二轴孔432相配合的所述第一销轴与所述支架200连接,以使所述托架处于所述第二安装位,所述第一承托部430远离所述第二承托部440的一端的端面与所述第二轴孔432之间的距离等于所述限位挡板500与所述第一轴孔之间的距离,所述托架可转动至所述第一承托部430与所述限位挡板500抵接。
托架处于第二安装位,且托架可转动至第一承托部430与限位挡板500抵接,该状态下的射线探伤磁性工装可以适用于平行于水平面的铁磁性工件1的上表面、垂直于水平面的铁磁性工件1的侧面以及倾斜的铁磁性工件1的上表面进行垂直透照。
本实施例中,由于托架通过销轴与第一支撑板210、第二支撑板220可拆卸连接,因此可以根据铁磁性工件1的角度情况将托架安装在第一安装位或者第二安装位。
本实施例中,托架与限位挡板500抵接后,为了进一步固定住托架,在第一支撑板210和第二支撑板220邻近限位挡板500处还分别设置有一个第五轴孔,当托架处于第一安装位时,第三轴孔432与第五轴孔相配合并通过第四销 轴连接固定;当托架处于第二安装位时,第二轴孔431与第五轴孔相配合并通过第四销轴连接固定。
作为本发明一个优选的实施方案,两个所述支撑板之间还设置有一个中间连接件230,该中间连接件230邻近支架200沿其长度方向的中心设置,中间连接件230的两端分别与两个支撑板连接,一方面可以提高支架200的结构稳定性,另一方面,托架可朝向远离限位挡板500的方向转动至与中间连接件230抵接,即中间连接件230对收拢后的托架(非使用状态)具有固定作用。
所述支架200还包括靠近所述第一端设置的连接板240,所述连接板240的两端分别与所述第一支撑板210、所述第二支撑板220连接,所述连接板240与所述磁力吸盘100连接,所述支脚300包括依次垂直连接的第一连接段330、第二连接段340和第三连接段350,所述第一连接段330平行于所述第三连接段350并位于所述第二连接段340的一侧,所述第一连接段330远离所述第二连接段340的一端设置有第四轴孔,所述第一连接段330通过与所述第四轴孔相配合的第二销轴与所述支架200的第一端连接,所述第二连接段340远离所述第一连接段330和所述第三连接段350的一侧与所述第四轴孔之间的距离等于所述第二销轴与所述连接板240之间的距离。
支脚300采用该结构设计,使用时可以转动至与连接板240抵接,以实现支撑支脚300,从而提高支架200的稳定性;不需要使用时,可以直接将支脚300完全转动至两个支撑板之间。
所述连接板240朝向所述第一端间隔设置有两个耳板,所述磁力吸盘100通过第三销轴安装于两个所述耳板之间。
其中,磁力吸盘100也可以与耳板固定连接。
于本实施例中,磁力吸盘100上还设置有控制磁力吸盘100选择性吸附在 铁磁性工件1表面的控制杆,控制杆具有第一位置和第二位置;磁力吸盘100与铁磁性工件1表面接触,控制杆处于第一位置时,磁力吸盘100仅仅吸附在铁磁性工件1表面;控制杆处于第二位置时,磁力吸盘100可与铁磁性工件1表面脱离。
该工装采用合适规格铝合金材料制作,保证支架200本身的强度的同时尽量减轻支架200自身的重量,以方便使用。
具体地,托架采用间隔设置的两块板材制成,两块板材分别通过销轴与两个支撑板连接,板材上开设有用于承托射线探伤机2的凹槽,凹槽的底部可以为平面也可以为弧面,优选为弧面,有利于射线探伤机2的稳定。
工装通过磁力吸盘100将射线探伤机2固定在需要拍片的位置,不论工件的角度如何,均可实现对焊缝的垂直透照,且实现工件与射线探伤机2相对位置的固定,可以获得最好的透照灵敏度,从射线探伤的技术本身实现最优。
在高空作业时,只需要使用一台船用吊篮或高空车,将人和设备运送到指定位置,摆放好装置后人员与吊篮、高空车一起撤离,不再需要同时使用两台吊篮、高空车,减少能耗、提高工作效率,更关键的是作业人员不再有高空攀爬的安全隐患。
本发明的射线探伤磁性工装适用于各个行业,例如船舶、道路、桥梁、建筑等行业,可提高铁磁性材料构件的射线拍片的效率及工作质量。
在本说明书的描述中,参考术语“优选的实施方式”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上实施例仅用来说明本发明的详细方法,本发明并不局限于上述详细方法,即不意味着本发明必须依赖上述详细方法才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

  1. 一种射线探伤磁性工装,其特征在于,包括:
    磁力吸盘,可吸附在铁磁性工件表面;
    支架,所述支架沿其长度方向具有相对的第一端和第二端,所述第一端与所述磁力吸盘连接;
    支脚,邻近所述第一端设置在所述支架上,所述支脚可与铁磁性工件表面抵接;
    托架,靠近所述第二端设置在所述支架上,用于承托射线探伤机。
  2. 根据权利要求1所述的射线探伤磁性工装,其特征在于,所述托架包括第一托架和第二托架,所述第一托架和所述第二托架分别设置在所述支架相对的两侧,所述支架倾斜时,所述第一托架和所述第二托架中的至少一个可用于承托射线探伤机。
  3. 根据权利要求2所述的射线探伤磁性工装,其特征在于,所述第一托架具有开口朝向所述铁磁性工件表面的第一凹槽,所述第二托架具有开口背离所述铁磁性工件表面的第二凹槽,所述第一凹槽的尺寸和所述第二凹槽的尺寸均与射线探伤机的形状相匹配。
  4. 根据权利要求1所述的射线探伤磁性工装,其特征在于,所述托架与所述支架活动连接,所述支架上设置有限位挡板,所述托架具有第一安装位和第二安装位,且所述托架处于所述第一安装位或者所述第二安装位时,所述托架可与所述限位挡板抵接以承托射线探伤机。
  5. 根据权利要求4所述的射线探伤磁性工装,其特征在于,所述托架包括依次垂直连接的第一承托部、第二承托部和第三承托部,所述第一承托部与所述第三承托部平行并位于所述第二承托部的一侧,所述第一承托部、所述第二承托部和所述第三承托部形成用于承托射线探伤机的凹槽,所述第一承托部的 一端通过第一销轴与所述支架连接,所述限位挡板邻近所述第二端设置,且所述限位挡板的长度沿所述支架的宽度方向延伸,所述托架处于所述第一安装位或者处于所述第二安装位时,所述托架可沿所述第一销轴的轴线转动至与所述限位挡板抵接以承托射线探伤机。
  6. 根据权利要求5所述的射线探伤磁性工装,其特征在于,所述支架包括平行且间隔设置的第一支撑板和第二支撑板,所述第一支撑板和所述第二支撑板上分别设置有贯穿其厚度方向的第一轴孔,所述第一承托部远离所述第二承托部的一端设置有沿所述支架的宽度方向贯穿所述第一承托部的第二轴孔,所述限位挡板的两端分别与所述第一支撑板和所述第二支撑板垂直连接,所述第一承托部位于所述第一支撑板和所述第二支撑板之间,所述第一承托部可通过与所述第一轴孔、所述第二轴孔相配合的所述第一销轴与所述支架连接,以使所述托架处于所述第一安装位,所述第二承托部远离所述凹槽的一侧的表面与所述第二轴孔之间的距离等于所述限位挡板与所述第一轴孔之间的距离,以使所述托架可转动至所述第二承托部与所述限位挡板抵接。
  7. 根据权利要求6所述的射线探伤磁性工装,其特征在于,所述第一承托部靠近所述第二承托部的一端设置有沿所述支架的宽度方向贯穿所述第一承托部的第三轴孔,所述第三轴孔与所述第一销轴相匹配,所述第一承托部可通过与所述第一轴孔、所述第三轴孔相配合的所述第一销轴与所述支架连接,以使所述托架处于所述第二安装位,所述第一承托部远离所述第二承托部的一端的端面与所述第三轴孔之间的距离等于所述限位挡板与所述第一轴孔之间的距离,所述托架可转动至所述第一承托部与所述限位挡板抵接。
  8. 根据权利要求1至7任一项所述的射线探伤磁性工装,其特征在于,所述支脚包括垂直连接的第一段和第二段,所述第一段远离所述第二段的一端与 所述支架垂直连接,所述第二段平行于所述支架并与所述磁力吸盘的吸附面对齐。
  9. 根据权利要求6或7所述的射线探伤磁性工装,其特征在于,所述支架还包括靠近所述第一端设置的连接板,所述连接板的两端分别与所述第一支撑板、所述第二支撑板连接,所述连接板与所述磁力吸盘连接,所述支脚包括依次垂直连接的第一连接段、第二连接段和第三连接段,所述第一连接段平行于所述第三连接段并位于所述第二连接段的一侧,所述第一连接段远离所述第二连接段的一端设置有第四轴孔,所述第一连接段通过与所述第四轴孔相配合的第二销轴与所述支架的第一端连接,所述第二连接段远离所述第一连接段和所述第三连接段的一侧与所述第四轴孔之间的距离等于所述第二销轴与所述连接板之间的距离。
  10. 根据权利要求9所述的射线探伤磁性工装,其特征在于,所述连接板朝向所述第一端间隔设置有两个耳板,所述磁力吸盘通过第三销轴安装于两个所述耳板之间。
PCT/CN2017/108825 2017-06-30 2017-10-31 射线探伤磁性工装 WO2019000749A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710527359.8 2017-06-30
CN201710527359.8A CN107300563A (zh) 2017-06-30 2017-06-30 射线探伤磁性工装

Publications (1)

Publication Number Publication Date
WO2019000749A1 true WO2019000749A1 (zh) 2019-01-03

Family

ID=60135206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108825 WO2019000749A1 (zh) 2017-06-30 2017-10-31 射线探伤磁性工装

Country Status (2)

Country Link
CN (1) CN107300563A (zh)
WO (1) WO2019000749A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107300563A (zh) * 2017-06-30 2017-10-27 广船国际有限公司 射线探伤磁性工装
CN108225802B (zh) * 2017-12-12 2020-04-14 中车青岛四方机车车辆股份有限公司 夹具装置
CN109613029A (zh) * 2019-01-30 2019-04-12 中国电建集团贵州工程有限公司 一种受热面γ射线探伤磁性支架

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311038A (ja) * 1994-03-23 1995-11-28 Kansai Electric Power Co Inc:The 傾斜測定装置
CN201421440Y (zh) * 2009-05-13 2010-03-10 中船澄西船舶修造有限公司 X光探伤机磁性专用托架
CN101915808A (zh) * 2010-07-22 2010-12-15 中国特种设备检测研究院 焊缝超声检测扫查装置
CN202145202U (zh) * 2011-07-20 2012-02-15 北京时代之峰科技有限公司 一种用于超声波探伤的机械扫查架
CN204945099U (zh) * 2015-09-18 2016-01-06 天津大学 声发射传感器的cfrp固定支架
CN107300563A (zh) * 2017-06-30 2017-10-27 广船国际有限公司 射线探伤磁性工装

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07311038A (ja) * 1994-03-23 1995-11-28 Kansai Electric Power Co Inc:The 傾斜測定装置
CN201421440Y (zh) * 2009-05-13 2010-03-10 中船澄西船舶修造有限公司 X光探伤机磁性专用托架
CN101915808A (zh) * 2010-07-22 2010-12-15 中国特种设备检测研究院 焊缝超声检测扫查装置
CN202145202U (zh) * 2011-07-20 2012-02-15 北京时代之峰科技有限公司 一种用于超声波探伤的机械扫查架
CN204945099U (zh) * 2015-09-18 2016-01-06 天津大学 声发射传感器的cfrp固定支架
CN107300563A (zh) * 2017-06-30 2017-10-27 广船国际有限公司 射线探伤磁性工装

Also Published As

Publication number Publication date
CN107300563A (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
WO2019000749A1 (zh) 射线探伤磁性工装
CN101915808B (zh) 焊缝超声检测扫查装置
CN201749108U (zh) 焊缝超声检测扫查装置
WO2018121079A1 (zh) 安检设备及方法
CN210435609U (zh) 一种焊接定位工装
CN108303434A (zh) 一种小直径管工业射线探伤专用工装
CN208432574U (zh) 焊接结构型材自动超声扫查装置
CN110208389A (zh) 一种检测隧道型缺陷对比试块的制作方法及装置
CN109580665B (zh) 射线探伤仪用工装及其使用方法和应用
CN219737334U (zh) 一种小直径管焊接接头射线检测角度调整装置
JP3310860B2 (ja) 炉壁管の放射線検査用フィルム貼付装置
CN206848066U (zh) 一种车用焊板的焊点强度检测装置
CN211741120U (zh) 一种用于钢结构检测x射线探伤机的对中器
CN107389800B (zh) 非磁性金属薄板焊缝超声扫查装置
CN207268716U (zh) 一种小直径管工业射线探伤专用工装
CN207882180U (zh) 探伤机回转装置及探伤系统
CN216583597U (zh) 一种铝合金管件超声波检测用工作台
CN215415225U (zh) 一种基于钻具摩擦焊焊缝检测的相控阵系统
CN211318257U (zh) 辅助管对接缝探伤设备的作业装置
CN213181389U (zh) 一种b型套筒角焊缝超声波检测装置
CN210243530U (zh) 一种便携式工业x射线小径管检测装置
CN218157881U (zh) 管对接焊接接头外观检验工具
CN215727799U (zh) 一种射线管头倾斜角度和透照焦距测量装置
CN211278461U (zh) 一种贴片机器人的贴片执行机构
CN215985887U (zh) 一种液化气球罐对接焊缝自动检测设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17915484

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17915484

Country of ref document: EP

Kind code of ref document: A1