WO2018235150A1 - 構造物の強度予測方法、構造物の造形方法、構造物の積層造形支援方法およびプログラム - Google Patents

構造物の強度予測方法、構造物の造形方法、構造物の積層造形支援方法およびプログラム Download PDF

Info

Publication number
WO2018235150A1
WO2018235150A1 PCT/JP2017/022625 JP2017022625W WO2018235150A1 WO 2018235150 A1 WO2018235150 A1 WO 2018235150A1 JP 2017022625 W JP2017022625 W JP 2017022625W WO 2018235150 A1 WO2018235150 A1 WO 2018235150A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength
scanning direction
anisotropy
estimated
estimate
Prior art date
Application number
PCT/JP2017/022625
Other languages
English (en)
French (fr)
Inventor
恵子 須田
山田 高光
Original Assignee
東レエンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レエンジニアリング株式会社 filed Critical 東レエンジニアリング株式会社
Priority to EP17914472.0A priority Critical patent/EP3643475A4/en
Priority to US16/623,847 priority patent/US11465356B2/en
Priority to PCT/JP2017/022625 priority patent/WO2018235150A1/ja
Publication of WO2018235150A1 publication Critical patent/WO2018235150A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/10Additive manufacturing, e.g. 3D printing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces

Definitions

  • the present invention relates to a method of predicting strength of a structure, a method of forming a structure, a method of supporting additive manufacturing of a structure, and a program.
  • Patent Document 1 a method of forming a structure is known (see, for example, Patent Document 1).
  • Patent Document 1 discloses a method of forming a structure in which a three-dimensional structure is formed by a layered manufacturing method in which a material is scanned in a predetermined direction to form a layer, and a plurality of layers are stacked.
  • Patent Document 1 Since the method for forming a structure described in Patent Document 1 scans a material in a predetermined direction to form a structure, the formed structure has a scanning direction and a direction different from the scanning direction. The strength is considered to be different. For this reason, the structure formed by the layered manufacturing method as in Patent Document 1 has a problem that it is difficult to accurately predict the strength, unlike a structure formed by putting it in a mold.
  • the present invention has been made to solve the above problems, and one object of the present invention is to provide a structure capable of accurately predicting the strength of a structure formed by the additive manufacturing method. It is an object of the present invention to provide a strength prediction method, a method of forming a structure, a method of supporting additive manufacturing of a structure, and a program.
  • the method of predicting strength of a structure according to the first aspect of the present invention is a method of predicting strength of a structure formed by additive manufacturing, and includes a scanning direction of a material, a scanning pitch, and a stacking direction. And the lamination method of the material containing at least one of the lamination pitch is acquired, and the strength of the structure is estimated in consideration of the anisotropy of the strength by the lamination method of the material.
  • a method of laminating a material including at least one of a scanning direction, a scanning pitch, a laminating direction and a laminating pitch of the material is obtained.
  • the strength of the structure is estimated in consideration of the strength anisotropy due to the lamination method of
  • the strength of the entire structure can be estimated in consideration of the anisotropy of the strength of the structure based on the method of laminating materials, so that the strength of the structure formed by the layered manufacturing method can be accurately determined. It can be predicted.
  • the estimating of strength is performed by grouping portions in common with methods of laminating materials so that the strength anisotropy of the grouped portions is equal. , Estimate the strength of the structure. According to this structure, since the strength can be predicted by performing similar analysis on the portions grouped in common by the method of laminating the materials, it is possible to suppress the prediction of the strength of the structure from becoming complicated. it can.
  • the structure is configured such that the solid portion of the inside of the edge is scanned to scan the layer after the edge is scanned, and estimating the strength: Grouping the edges as a first group to estimate the strength of the edges of the structure and grouping the solid portions as a second group to estimate the strength of solid portions of the structure.
  • this structure it is possible to easily predict the strength of the boundary surface of the structure with the edge serving as the boundary surface of the structure as the first group. Further, since the strength can be predicted separately from the boundary surface of the structure with the inside of the structure as the second group, the strength of the structure can be predicted more accurately.
  • the structure is configured to be shaped such that the scanning direction of the material is different between adjacent layers, and it is possible to estimate the strength And estimating the strength of the structure as assuming that the structure has strength anisotropy in multiple directions.
  • the strength of the structure can be estimated based on the plurality of scanning directions of the material, and the strength of the structure can be estimated. Therefore, the strength of the structure can be made more accurately. It can be predicted.
  • estimating the strength includes changing the scanning direction of the material in the layer to estimate the strength of a plurality of types of structures. Based on the estimated intensities, the scanning direction of the material in the layer shaping the structure is determined. According to this structure, since the scanning direction of the material at the time of shaping the structure can be determined so as to satisfy the desired strength, the desired strength can be secured in the shaped structure.
  • a method of forming a structure according to a second aspect of the present invention estimates a strength of a structure to be formed in consideration of strength anisotropy in the scanning direction of the material in the layer, and based on the estimated strength, the structure The scanning direction of the material to be shaped is determined, and the material is laminated by the additive manufacturing method to form a structure.
  • the strength of the structure to be formed is estimated in consideration of the anisotropy of the strength in the scanning direction of the material in the layer.
  • the strength of the entire structure can be estimated in consideration of the anisotropy of the strength of the structure, so that the strength of the structure formed by the layered manufacturing method can be accurately determined. It can be predicted.
  • the scanning direction of the material for forming the structure is determined, and the material is laminated by the layered manufacturing method to form the structure. As a result, since the scanning direction of the material at the time of shaping the structure can be determined so as to satisfy the desired strength, reduction in the strength of the shaped structure can be suppressed.
  • the strength of the structure to be formed is estimated in consideration of the strength anisotropy due to the scanning direction of the material in the layer, and the estimated structure strength is If it is less than the predetermined value, it is taught to add a reinforcing member and to laminate the materials by the additive manufacturing method to form a structure.
  • the strength of the structure to be shaped is estimated in consideration of the anisotropy of the strength in the scanning direction of the material in the layer.
  • the strength of the entire structure can be estimated in consideration of the anisotropy of the strength of the structure, so that the strength of the structure formed by the layered manufacturing method can be accurately determined. It can be predicted.
  • a reinforcing member is added, and teaching is made to laminate materials by the additive manufacturing method to form a structure. Thereby, it is possible to reinforce the structure by the reinforcing member and to effectively enhance the strength of the formed structure.
  • a program according to a fourth aspect of the present invention provides a computer according to the first aspect, wherein the method for predicting strength of a structure according to the first aspect, the method for shaping a structure according to the second aspect, or the method for supporting additive manufacturing of a structure according to the third aspect Make it run.
  • the method for predicting strength of a structure according to the first aspect, the method for forming a structure according to the second aspect, or lamination of structures according to the third aspect By causing the computer to execute the formation support method, it is possible to accurately predict the strength of the structure formed by the layered formation method.
  • the strength of the structure formed by the additive manufacturing method can be accurately predicted.
  • FIG. 5 illustrates a first example of material stacking according to one embodiment.
  • FIG. 5 illustrates an example finite element mesh of a structure according to one embodiment.
  • FIG. 7 illustrates a second example of material stacking according to one embodiment.
  • FIG. 7 illustrates a third example of material stacking according to one embodiment.
  • FIG. 7 is a graph showing stress versus strain for creation of physical properties of a structure according to one embodiment. It is the graph which showed the physical property example for prediction of the strength of the structure by one embodiment.
  • It is a flow figure for explaining strength prediction processing of a structure by one embodiment.
  • It is a flowchart for demonstrating the modeling process of the structure by one Embodiment.
  • It is a flow figure for explaining the modeling method teaching processing of the structure by one embodiment.
  • the structure forming device 100 includes a computer 1 and a 3D printer 2.
  • the computer 1 is configured to be able to execute the program 11.
  • the computer 1 is configured to perform control of forming the structure 3 by the 3D printer 2 based on three-dimensional data of the structure 3 (see FIG. 2).
  • the computer 1 is also configured to execute the program 11 to predict (estimate) the strength of the structure 3 to be formed.
  • the computer 1 that executes the intensity prediction may be provided separately from the 3D printer 2. That is, the computer 1 can predict the strength of the structure 3 even if provided separately from the 3D printer 2 if the stack information can be read in the form of electronic data from the 3D printer 2.
  • the 3D printer 2 is configured to form a three-dimensional (three-dimensional) structure 3 by the additive manufacturing method. Specifically, the 3D printer 2 is configured to scan the thread-like material 31 in a predetermined direction to form the structure 3. Further, the 3D printer 2 is configured to form the structure 3 by laminating the materials 31. For example, as shown in FIG. 2, the 3D printer 2 scans the material 31 in the X direction to form a layer, and scans the material 31 in the Y direction orthogonal to the X direction to form a layer, and Are repeated to laminate the material 31 in the Z direction to form the structure 3. As the material 31, a resin, metal or the like that can be melted by the 3D printer 2 is used. For example, the 3D printer 2 shapes the structure 3 by a heat melt lamination method (FDM method). Although the structure 3 shown in FIGS. 2 to 5 has a cubic shape, the shape of the structure 3 is not limited to the cubic shape.
  • FDM method heat melt lamination method
  • the computer 1 is configured to obtain a stacking method of the material 31 including at least one of the scanning direction, the scanning pitch, the stacking direction, and the stacking pitch of the material 31. Then, the computer 1 is configured to estimate the strength of the structure 3 in consideration of the anisotropy of the strength due to the method of stacking the materials 31. The computer 1 is also configured to model the anisotropy of strength to estimate the strength of the structure 3.
  • the scanning direction of the material 31 may be set by the 3D printer 2, or the information set by the computer 1 may be used by the 3D printer 2. For example, the computer that controls the 3D printer 2 may not have a program for predicting the intensity.
  • the computer that predicts the strength of the structure 3 and the computer that operates the 3D printer 2 may be separate computers.
  • the scanning pitch and the lamination pitch of the material 31 may be set based on the thickness of the thread-like material 31.
  • the stacking direction may be the Z direction (vertical direction), the horizontal direction (XY direction), or an oblique direction tilted from the horizontal direction.
  • the computer 1 is configured to predict (estimate) the strength of the structure 3 by the finite element method. For example, as shown in FIG. 3, the computer 1 virtually divides the structure 3 into a plurality of meshes, gives physical properties such as elastic modulus, Poisson's ratio, Young's modulus, density, etc. to each mesh, It is configured to predict (estimate) the overall intensity.
  • the mesh spacing is set to be larger than the diameter of the thread-like material 31. As a result, it is possible to suppress that the mesh interval becomes excessively small and the total number of meshes increases, so it is possible to suppress the complexity of the strength prediction process by the computer 1.
  • the computer 1 is configured to group portions common to the stacking method of the material 31 and to estimate the strength of the structure 3 assuming that the strengths of the grouped portions are equal in anisotropy. For example, as shown in FIG. 4, the computer 1 scans the edge of the structure 3 and then scans the solid part inside the edge to form a first group of edges if the layer is to be shaped. The grouping is performed as 32 to estimate the strength of the edge of the structure 3, and the solid portions are grouped as the second group 33 to estimate the strength of the solid portion of the structure 3.
  • the edge is very thin as shown in FIG. 4, if the mesh (elements) is equally divided as shown in FIG. 3, the outermost peripheral element has a mixture of the edge and the solid portion inside.
  • the shapes of the elements for predicting the strength may be made different between the first group 32 and the second group 33.
  • the first group 32 may be a set of plate-like elements
  • the second group 33 may be a set of cubic-like elements to perform an intensity prediction (estimate).
  • the first group 32 which is the edge of the structure 3
  • the first group 32 is divided into elements having a thickness substantially equal to that of the edge.
  • intensity estimation can be performed while suppressing an excessive increase in the number of elements for predicting the intensity, it is possible to suppress an increase in the processing load of intensity estimation and It is possible to suppress an increase in time.
  • the computer 1 when the structure 3 is shaped such that the scanning directions of the material 31 are different between adjacent layers, the computer 1 has anisotropy of strength in a plurality of directions. As a thing, it is comprised so that the intensity
  • the computer 1 changes the scanning direction (lamination method) of the material 31 in the layer to estimate the strengths of the plurality of types of structures 3, and based on the estimated strength, in the layer forming the structure 3
  • the scanning direction of the material 31 is configured to be determined.
  • the computer 1 forms the structure 3 according to the scanning direction (lamination method) of the material 31 for forming the structure 3 that provides the highest strength among the plurality of types of structures 3 different in the scanning direction of the material 31 Control to Moreover, when the direction of the load applied to the completed structure 3 is determined in a predetermined direction, the strength in the predetermined direction may be emphasized and evaluated.
  • the scanning direction (lamination method) of the material 31 may be determined so as to form the structure 3 so as to increase the strength in a predetermined direction in which the load applied to the structure 3 is increased.
  • the computer 1 determines the scanning direction of the material 31 for forming the structure 3 based on the estimated strength, controls the 3D printer 2 and stacks the material 31 according to the layered manufacturing method to obtain the structure 3 It is configured to be shaped.
  • the computer 1 adds the reinforcing member 34 as shown in FIG. 5 and forms the structure 3 by laminating the material 31 by the layered manufacturing method. It is configured to teach you to
  • the computer 1 makes the stress for the strain different between the scanning direction of the material 31 and the direction orthogonal to the scanning direction.
  • Physical properties are estimated.
  • the stress in the direction orthogonal to the scanning direction is subtracted from the stress in the scanning direction by a predetermined ratio to estimate physical properties. That is, the computer 1 estimates the physical properties based on the stacking method.
  • the physical properties may be determined based on experimental values, or the physical properties may be determined by calculation such as the homogenization method.
  • the computer 1 gives physical properties to each mesh (see FIG. 3) of the finite element method in consideration of anisotropy based on the estimated physical properties as shown in FIG.
  • physical properties in the X direction and Y direction are given to be equal
  • physical properties in the Z direction are the X direction
  • Y direction is smaller than Y direction.
  • the computer 1 is configured to predict the strength of the structure 3 in consideration of such physical properties as well as constraint conditions and load conditions.
  • the computer 1 is configured to determine the destruction of the structure 3 based on the strength of the structure 3 in consideration of the anisotropy of the strength due to the method of laminating the material 31.
  • a method of laminating the material 31 is obtained.
  • the method of laminating the material 31 may be determined based on the shape of the structure 3 or may be determined by the user.
  • grouping is performed based on the method of laminating the materials 31. Specifically, parts in which the material 31 is stacked in common are grouped. For example, in the case of the second lamination example shown in FIG. 4, the edge is taken as the first group 32, and the solid part (painted part) is taken as the second group 33. Moreover, in the case of the 1st lamination example shown in FIG. 2, let the structure 3 whole be one group.
  • step S3 the partial strength of the structure 3 is estimated in consideration of strength anisotropy based on the stacking method of the material 31 for each group.
  • step S4 the strength of the entire structure 3 is predicted. Thereafter, the strength prediction process of the structure is ended.
  • step S11 of FIG. 9 estimation of the strengths of a plurality of types of structures 3 in which the scanning direction (lamination method) of the material 31 is changed is performed.
  • step S12 the scanning direction (lamination method) of the material 31 is determined based on the estimated strength of the structure 3. That is, the scanning direction (lamination method) is determined so as to form the structure 3 so as to increase the strength.
  • step S13 the structure 3 is formed in the scanning direction (stacking method) determined by the 3D printer 2 being controlled. Thereafter, the formation processing of the structure is finished.
  • step S21 of FIG. 10 the strength of the structure 3 is estimated in consideration of the strength anisotropy based on the scanning direction (lamination method) of the material 31.
  • step S22 it is determined whether the estimated strength of the structure 3 is less than a predetermined value. If it is less than the predetermined value, the process proceeds to step S23. If it is equal to or more than the predetermined value, the process proceeds to step S24.
  • the predetermined value may be determined by multiplying the predicted maximum stress by the safety factor.
  • step S23 the reinforcement member 34 is added to estimate the strength of the structure 3.
  • the reinforcing member 34 is, for example, formed in a cylindrical shape by metal.
  • the structure 3 scans and laminates the material 31 around the reinforcing member 34 in a state where the reinforcing member 34 is erected.
  • the reinforcing member 34 preferably has physical properties different from those of the material 31. In particular, the reinforcing member 34 is preferably higher in strength than the material 31. Thereafter, the process returns to step S22.
  • step S22 it is determined whether the strength of the structure 3 estimated by adding the reinforcing member 34 is less than a predetermined value. If it is the predetermined value or more, the process proceeds to step S24. If it is less than the predetermined value, the process proceeds to step S23, the reinforcement member 34 is changed, and the strength of the structure 3 is estimated.
  • the reinforced member 34 after the change is selected to have a higher strength than the reinforced member 34 before the change.
  • the modified reinforcing member 34 may be made of a material that is higher in strength than the unmodified reinforcing member 34.
  • the reinforcing member 34 after the change may be selected to have a structure that is higher in strength than the reinforcing member 34 before the change.
  • the reinforcing member 34 after the change may be selected to be larger than the reinforcing member 34 before the change. Thereafter, the process returns to step S22.
  • the processes in steps S22 to S23 are repeated until it is determined in step S22 that the estimated strength of the structure 3 is equal to or higher than a predetermined value.
  • step S24 a modeling method is taught in which the strength of the structure 3 is equal to or higher than a predetermined value. Thereafter, the method of teaching how to form a structure is ended.
  • the method of stacking the material 31 including at least one of the scanning direction, the scanning pitch, the stacking direction, and the stacking pitch of the material 31 is obtained.
  • the strength of the structure 3 is estimated in consideration of the property.
  • the strength of the entire structure 3 can be estimated in consideration of the anisotropy of the strength of the structure 3 based on the method of laminating the material 31.
  • the intensity can be predicted accurately.
  • the portions having a common stacking method of the materials 31 are grouped, and the strength of the structure 3 is estimated on the assumption that the strengths of the grouped portions have the same anisotropy of strength.
  • the strength can be predicted by performing similar analysis on portions where the stacking method of the material 31 is in common and is grouped, it is possible to suppress that the prediction of the strength of the structure 3 becomes complicated.
  • the edge is grouped as the first group 32 to estimate the strength of the edge of the structure 3, and the solid portion is grouped as the second group 33 to be structured.
  • Estimate the strength of the solid part of object 3 As a result, it is possible to easily predict the strength of the boundary surface of the structure 3 with the edge that becomes the boundary surface of the structure 3 as the first group 32. Further, since the strength can be predicted separately from the boundary surface of the structure 3 by setting the inside of the structure 3 as the second group 33, the strength of the structure 3 can be predicted more accurately.
  • the structure 3 in the case where the structure 3 is shaped such that the scanning directions of the material 31 are different between adjacent layers, the structure 3 has anisotropy of strength in a plurality of directions. As, the strength of the structure 3 is estimated. As a result, since the strength of the structure 3 can be estimated based on the plurality of scanning directions of the material 31 with the strength anisotropy in the plurality of directions, the strength of the structure 3 can be more accurately predicted. can do.
  • the scanning direction of the material 31 in the layer is changed to estimate the strength of the plurality of types of structures 3, and the structure 3 is shaped based on the estimated strength.
  • the scanning direction of the material 31 in the layer is determined. Therefore, since the scanning direction of the material 31 at the time of shaping the structure 3 can be determined so as to satisfy the desired strength, the desired strength can be secured in the shaped structure 3.
  • the scanning direction of the material 31 for forming the structure 3 is determined, and the material 31 is laminated by the layered manufacturing method to form the structure 3 Do.
  • the scanning direction of the material 31 at the time of shaping the structure 3 can be determined so as to satisfy the desired strength, so that reduction in the strength of the shaped structure 3 can be suppressed.
  • the reinforcing member 34 when the strength of the structure 3 estimated is less than the predetermined value, the reinforcing member 34 is added, and the material 31 is laminated by the layered manufacturing method to form the structure 3 Teach. Thereby, the strength of the structure 3 formed by reinforcing the structure 3 by the reinforcing member 34 can be effectively enhanced.
  • the structure may be shaped by a lamination molding method other than the hot melt lamination method.
  • the structure may be shaped by an optical shaping method, an inkjet method, or the like.
  • the strength of the structure may be predicted (estimated) by a method other than the finite element method.
  • the strength of the structure may be predicted by a finite difference method, a boundary element method, a particle method or the like.
  • stacking method of the material containing lamination direction and lamination pitch was shown, this invention is not limited to this.
  • the effect is small compared to the stacking direction, the stacking pitch, etc., the shrinkage of the material and the discharge amount from the 3D printer change depending on the material temperature at the time of modeling, so warping occurs and local density change etc. Can occur and affect the strength of the structure. Therefore, in the present invention, information on the material temperature may also be acquired to estimate the strength of the structure.
  • the strength of the structure may be predicted by grouping other than the edges and solid portions of the structure. Also, the strength of the structure may be predicted by dividing it into three or more groups.
  • the material may be scanned in one direction or in three or more directions.
  • the scanning directions may not be orthogonal to each other.
  • the inside of the structure may be hollow.
  • a pillar or a beam may be formed in the hollow portion.
  • the reinforcing member may have a shape other than a cylindrical shape.
  • the reinforcing member may have a prismatic shape, or may have a bent or curved shape.
  • the reinforcing member may be made of other than metal.
  • the reinforcing member may be made of resin, FRP (fiber reinforced plastic) or the like.
  • the processing operation of the computer has been described using a flow driven flow chart in which processing is sequentially performed along the processing flow, but the present invention is not limited to this.
  • the processing operation of the computer may be performed by event-driven (event-driven) processing that executes processing on an event basis.
  • the operation may be completely event driven, or the combination of event driving and flow driving may be performed.

Abstract

積層造形法により造形した構造物の強度を精度よく予測することが可能な構造物の強度予測方法を提供する。具体的には、この構造物の強度予測方法は、積層造形法により造形した構造物3の強度予測方法であって、材料31の走査方向、走査ピッチ、積層方向および積層ピッチのうち少なくとも1つを含む材料31の積層方法を取得し、材料31の積層方法による強度の異方性を考慮して構造物3の強度を推定する。

Description

構造物の強度予測方法、構造物の造形方法、構造物の積層造形支援方法およびプログラム
 この発明は、構造物の強度予測方法、構造物の造形方法、構造物の積層造形支援方法およびプログラムに関する。
 従来、構造物の造形方法が知られている(たとえば、特許文献1参照)。
 上記特許文献1には、材料を所定の方向に走査して層を形成し、複数の層を積層する積層造形法により立体構造物を造形する構造物の造形方法が開示されている。
特開2003-039563号公報
 上記特許文献1に記載の構造物の造形方法は、材料を所定の方向に走査して構造物を造形するため、造形された構造物は、走査方向と、走査方向とは異なる方向とにおいて、強度が異なると考えられる。このため、上記特許文献1のような積層造形法により造形された構造物は、型に入れて成形された構造物と異なり、強度を精度よく予測することが困難であるという問題点がある。
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、積層造形法により造形した構造物の強度を精度よく予測することが可能な構造物の強度予測方法、構造物の造形方法、構造物の積層造形支援方法およびプログラムを提供することである。
 上記目的を達成するために、この発明の第1の局面による構造物の強度予測方法は、積層造形法により造形した構造物の強度予測方法であって、材料の走査方向、走査ピッチ、積層方向および積層ピッチのうち少なくとも1つを含む材料の積層方法を取得し、材料の積層方法による強度の異方性を考慮して構造物の強度を推定する。
 この発明の第1の局面による構造物の強度予測方法では、上記のように、材料の走査方向、走査ピッチ、積層方向および積層ピッチのうち少なくとも1つを含む材料の積層方法を取得し、材料の積層方法による強度の異方性を考慮して構造物の強度を推定する。これにより、材料の積層方法に基づいて、構造物の強度の異方性を考慮して、構造物全体の強度を推定することができるので、積層造形法により造形した構造物の強度を精度よく予測することができる。
 上記第1の局面による構造物の強度予測方法において、好ましくは、強度を推定することは、材料の積層方法が共通する部分をグループ化して、グループ化した部分の強度の異方性が等しいとして、構造物の強度を推定することを含む。このように構成すれば、材料の積層方法が共通してグループ化された部分を同様の解析により強度を予測することができるので、構造物の強度の予測が複雑になるのを抑制することができる。
 この場合、好ましくは、構造物は、縁部が走査された後、縁部の内部の中実部分が走査されて、層が造形されるように構成されており、強度を推定することは、縁部を第1グループとしてグループ化して、構造物の縁部の強度を推定するとともに、中実部分を第2グループとしてグループ化して構造物の中実部分の強度を推定することを含む。このように構成すれば、構造物の境界面となる縁部を第1グループとして構造物の境界面の強度を容易に予測することができる。また、構造物の内部を第2グループとして、構造物の境界面とは別個に強度を予測することができるので、構造物の強度をより精度よく予測することができる。
 上記第1の局面による構造物の強度予測方法において、好ましくは、構造物は、隣接する層間で、材料の走査方向が異なるように造形されるように構成されており、強度を推定することは、構造物が複数の方向の強度の異方性を有するものとして、構造物の強度を推定することを含む。このように構成すれば、材料の複数の走査方向に基づいて、複数の方向の強度の異方性を持たせて構造物の強度を推定することができるので、構造物の強度をより精度よく予測することができる。
 上記第1の局面による構造物の強度予測方法において、好ましくは、強度を推定することは、層における材料の走査方向を変化させて複数の種類の構造物の強度の推定を行うことを含み、推定した強度に基づいて、構造物を造形する層における材料の走査方向を決定する。このように構成すれば、所望の強度を満たすように、構造物を造形する際の材料の走査方向を決定することができるので、造形した構造物において所望の強度を確保することができる。
 この発明の第2の局面による構造物の造形方法は、層における材料の走査方向による強度の異方性を考慮して造形する構造物の強度を推定し、推定した強度に基づいて、構造物を造形する材料の走査方向を決定して、積層造形法により材料を積層して構造物を造形する。
 この発明の第2の局面による構造物の造形方法では、上記のように、層における材料の走査方向による強度の異方性を考慮して造形する構造物の強度を推定する。これにより、材料の走査方向に基づいて、構造物の強度の異方性を考慮して、構造物全体の強度を推定することができるので、積層造形法により造形した構造物の強度を精度よく予測することができる。また、推定した強度に基づいて、構造物を造形する材料の走査方向を決定して、積層造形法により材料を積層して構造物を造形する。これにより、所望の強度を満たすように、構造物を造形する際の材料の走査方向を決定することができるので、造形した構造物の強度が小さくなるのを抑制することができる。
 この発明の第3の局面による構造物の積層造形支援方法は、層における材料の走査方向による強度の異方性を考慮して造形する構造物の強度を推定し、推定した構造物の強度が所定値未満の場合、補強部材を追加して、積層造形法により材料を積層して構造物を造形するよう教示する。
 この発明の第3の局面による構造物の積層造形支援方法では、上記のように、層における材料の走査方向による強度の異方性を考慮して造形する構造物の強度を推定する。これにより、材料の走査方向に基づいて、構造物の強度の異方性を考慮して、構造物全体の強度を推定することができるので、積層造形法により造形した構造物の強度を精度よく予測することができる。また、推定した構造物の強度が所定値未満の場合、補強部材を追加して、積層造形法により材料を積層して構造物を造形するよう教示する。これにより、補強部材により構造物を補強して造形される構造物の強度を効果的に高めることができる。
 この発明の第4の局面によるプログラムは、第1の局面による構造物の強度予測方法、第2の局面による構造物の造形方法、または、第3の局面による構造物の積層造形支援方法をコンピュータに実行させる。
 この発明の第4の局面によるプログラムでは、上記のように、第1の局面による構造物の強度予測方法、第2の局面による構造物の造形方法、または、第3の局面による構造物の積層造形支援方法をコンピュータに実行させることにより、積層造形法により造形した構造物の強度を精度よく予測することができる。
 本発明によれば、上記のように、積層造形法により造形した構造物の強度を精度よく予測することができる。
一実施形態による構造物造形装置の概略を示したブロック図である。 一実施形態による材料の第1積層例を示した図である。 一実施形態による構造物の有限要素法のメッシュ例を示した図である。 一実施形態による材料の第2積層例を示した図である。 一実施形態による材料の第3積層例を示した図である。 一実施形態による構造物の物性の作成のためのひずみに対する応力を示したグラフである。 一実施形態による構造物の強度の予測のための物性例を示したグラフである。 一実施形態による構造物の強度予測処理を説明するためのフロー図である。 一実施形態による構造物の造形処理を説明するためのフロー図である。 一実施形態による構造物の造形方法教示処理を説明するためのフロー図である。
 以下、本発明を具体化した実施形態を図面に基づいて説明する。
 [本実施形態]
(構造物造形装置の構成)
 図1~図7を参照して、本実施形態による構造物造形装置100の構成について説明する。
 図1に示すように、構造物造形装置100は、コンピュータ1と、3Dプリンタ2とを備えている。コンピュータ1は、プログラム11を実行可能に構成されている。
 コンピュータ1は、構造物3(図2参照)の3次元のデータに基づいて、3Dプリンタ2により、構造物3を造形させる制御を行うように構成されている。また、コンピュータ1は、プログラム11を実行して、造形される構造物3の強度を予測(推定)するように構成されている。なお、強度予測を実行するコンピュータ1は、3Dプリンタ2とは別個に設けられていてもよい。つまり、コンピュータ1は、3Dプリンタ2から積層情報を電子データの形で読み込めれば、3Dプリンタ2とは別個に設けられていても構造物3の強度を予測することが可能である。
 3Dプリンタ2は、積層造形法により立体的な(3次元の)構造物3を造形するように構成されている。具体的には、3Dプリンタ2は、糸状の材料31を所定の方向に走査して構造物3を造形するように構成されている。また、3Dプリンタ2は、材料31を積層して構造物3を造形するように構成されている。たとえば、3Dプリンタ2は、図2に示すように、X方向に材料31を走査して層を形成する工程と、X方向と直交するY方向に材料31を走査して層を形成する工程とを繰り返して、材料31をZ方向に積層して構造物3を造形するように構成されている。なお、材料31は、3Dプリンタ2により融解可能な樹脂や金属などが用いられる。たとえば、3Dプリンタ2は、熱溶解積層法(FDM法)により構造物3を造形する。なお、図2~図5に示す構造物3は、立方体形状を有しているが、構造物3の形状は、立方体形状に限られない。
 ここで、本実施形態では、コンピュータ1は、材料31の走査方向、走査ピッチ、積層方向および積層ピッチのうち少なくとも1つを含む材料31の積層方法を取得するように構成されている。そして、コンピュータ1は、材料31の積層方法による強度の異方性を考慮して構造物3の強度を推定するように構成されている。また、コンピュータ1は、強度の異方性をモデル化して、構造物3の強度を推定するように構成されている。なお、材料31の走査方向は、3Dプリンタ2により設定されてもよいし、コンピュータ1により設定された情報を3Dプリンタ2で使用してもよい。たとえば、3Dプリンタ2を制御するコンピュータに強度を予測するプログラムが搭載されていなくてもよい。つまり、構造物3の強度を予測するコンピュータと、3Dプリンタ2を動作させるコンピュータとは別個のコンピュータであってもよい。また、材料31の走査ピッチおよび積層ピッチは、糸状の材料31の太さに基づいて設定されてもよい。また、積層方向は、Z方向(上下方向)であってもよいし、水平方向(XY方向)であってもよいし、水平方向から傾いた斜め方向であってもよい。
 コンピュータ1は、有限要素法により、構造物3の強度を予測(推定)するように構成されている。たとえば、図3に示すように、コンピュータ1は、構造物3を複数のメッシュに仮想分割して、各メッシュにおいて、弾性率、ポアソン比、ヤング率、密度などの物性を与えて、構造物3全体の強度を予測(推定)するように構成されている。また、メッシュの間隔は、糸状の材料31の径よりも大きくなるように設定される。これにより、メッシュの間隔が過度に小さくなり、メッシュの総数が多くなるのを抑制することができるので、コンピュータ1による強度予測処理が煩雑になるのを抑制することが可能である。
 また、コンピュータ1は、材料31の積層方法が共通する部分をグループ化して、グループ化した部分の強度の異方性が等しいとして、構造物3の強度を推定するように構成されている。たとえば、コンピュータ1は、図4に示すように、構造物3の縁部を走査した後、縁部の内部の中実部分を走査して、層が造形される場合、縁部を第1グループ32としてグループ化して、構造物3の縁部の強度を推定するとともに、中実部分を第2グループ33としてグループ化して構造物3の中実部分の強度を推定するように構成されている。ここで、図4のように縁部が非常に薄い場合に、図3のように均等にメッシュ(要素)を分割すると、最外周部の要素は縁部と内部の中実部分とが混在し、正確な強度推定ができないおそれがある。そのため、第1グループ32と第2グループ33とで強度を予測するための要素の形状を異ならせてもよい。たとえば、第1グループ32を板状の要素の集合とし、第2グループ33を立方体状の要素の集合として強度の予測(推定)を行ってもよい。この場合、構造物3の縁部である第1グループ32は、縁部と略等しい厚さを有する要素に分割される。これにより、一つの要素に複数のグループが混在することを抑制することができるので、より精度よく強度推定を行うことが可能である。また、強度を予測するための要素の個数が過度に増加するのを抑制しながら強度推定を行うことができるので、強度推定の処理負担が増大するのを抑制することが可能であるとともに、処理時間が長くなるのを抑制することが可能である。
 また、コンピュータ1は、図2に示すように、構造物3が隣接する層間で材料31の走査方向が異なるように造形される場合、構造物3が複数の方向の強度の異方性を有するものとして、構造物3の強度を推定するように構成されている。
 また、コンピュータ1は、層における材料31の走査方向(積層方法)を変化させて複数の種類の構造物3の強度の推定を行い、推定した強度に基づいて、構造物3を造形する層における材料31の走査方向を決定するように構成されている。たとえば、コンピュータ1は、材料31の走査方向の異なる複数の種類の構造物3のうち、最も高い強度が得られる構造物3を造形する材料31の走査方向(積層方法)により構造物3を造形する制御を行う。また、完成した構造物3にかかる荷重の方向が所定の方向で決まっている場合、当該所定の方向に関する強度を重視して評価しても良い。たとえば、構造物3にかかる荷重が大きくなる所定の方向の強度が高くなるように、材料31の走査方向(積層方法)を決定して構造物3を造形するように制御してもい。
 また、コンピュータ1は、推定した強度に基づいて、構造物3を造形する材料31の走査方向を決定して、3Dプリンタ2を制御して積層造形法により材料31を積層して構造物3を造形するように構成されている。また、コンピュータ1は、推定した構造物3の強度が所定値未満の場合、図5に示すように、補強部材34を追加して、積層造形法により材料31を積層して構造物3を造形するよう教示するように構成されている。
 コンピュータ1は、たとえば、構造物3の物性を推定(作成)する際に、図6に示すように、材料31の走査方向と、走査方向と直交する方向とで、ひずみに対する応力を異なるようにして物性を推定する。たとえば、走査方向と直交する方向の応力は、走査方向の応力に対して、所定の割合減算されて物性が推定される。つまり、コンピュータ1は、積層方法に基づいて、物性を推定する。この場合、実験値に基づいて物性を求めてもよいし、均質化法等の計算により物性を求めてもよい。
 また、コンピュータ1は、推定した物性に基づいて、図7に示すように、異方性を考慮して、有限要素法の各メッシュ(図3参照)に、それぞれ、物性を与える。たとえば、図2に示す第1積層例のように積層された場合、X方向およびY方向(走査方向)の物性は、等しくなるように与えられ、Z方向(積層方向)の物性は、X方向およびY方向に比べて小さくなるように与えられる。そして、コンピュータ1は、このような物性に、拘束条件や荷重条件を加味して、構造物3の強度を予測するように構成されている。
 また、コンピュータ1は、材料31の積層方法による強度の異方性を考慮した構造物3の強度に基づいて、構造物3の破壊の判定を行うように構成されている。
(構造物の強度予測処理)
 次に、図8を参照して、構造物の強度予測処理について説明する。なお、構造物の強度予測処理は、コンピュータ1により実行される。
 図8のステップS1において、材料31の積層方法が取得される。材料31の積層方法は、構造物3の形状に基づいて決定されてもよいし、ユーザにより決定されてもよい。ステップS2において、材料31の積層方法に基づいてグループ化が行われる。具体的には、材料31の積層方法が共通する部分をグループ化する。たとえば、図4に示す第2積層例の場合、縁部を第1グループ32とし、中実部分(塗潰し部)を第2グループ33とする。また、図2に示す第1積層例の場合、構造物3全体を1つのグループとする。
 ステップS3において、グループ毎に、材料31の積層方法に基づいて強度の異方性を考慮して構造物3の部分的な強度を推定する。ステップS4において、構造物3全体の強度を予測する。その後、構造物の強度予測処理が終了される。
(構造物の造形処理)
 次に、図9を参照して、構造物の造形処理について説明する。なお、構造物の造形処理は、コンピュータ1により実行される。
 図9のステップS11において、材料31の走査方向(積層方法)を変化させた複数の種類の構造物3の強度の推定が行われる。ステップS12において、推定した構造物3の強度に基づいて材料31の走査方向(積層方法)が決定される。つまり、強度が高くなるよう構造部3を造形するよう走査方向(積層方法)が決定される。
 ステップS13において、3Dプリンタ2が制御されて決定された走査方向(積層方法)により構造物3が造形される。その後、構造物の造形処理が終了される。
(構造物の造形方法教示処理)
 次に、図10を参照して、構造物の造形方法教示処理について説明する。なお、構造物の造形方法教示処理は、コンピュータ1により実行される。
 図10のステップS21において、材料31の走査方向(積層方法)に基づいて強度の異方性を考慮して構造物3の強度の推定が行われる。ステップS22において、推定した構造物3の強度が所定値未満か否かが判断される。所定値未満であれば、ステップS23に進み、所定値以上であれば、ステップS24に進む。なお、所定値は、予想最大応力に安全率を乗じて決定してもよい。
 ステップS23において、図5に示すように、補強部材34を追加して構造物3の強度の推定が行われる。補強部材34は、たとえば、金属により円柱状に形成されている。また、補強部材34を追加した場合、構造物3は、補強部材34が立てられた状態で、補強部材34の周りに材料31を走査して積層させる。補強部材34は、材料31と異なる物性であることが好ましい。特に、補強部材34は、材料31よりも強度が高いことが好ましい。その後、ステップS22に戻る。
 ステップS22において、補強部材34を追加して推定した構造物3の強度が所定値未満か否かが判断される。所定値以上であれば、ステップS24に進む。所定値未満であれば、ステップS23に進み、補強部材34を変更して構造物3の強度の推定が行われる。変更後の補強部材34は、変更前の補強部材34に対して強度が高いものが選択される。たとえば、変更後の補強部材34は、変更前の補強部材34に対して強度が高い材料のものが選択されてもよい。また、変更後の補強部材34は、変更前の補強部材34に対して強度が高い構造のものが選択されてもよい。また、変更後の補強部材34は、変更前の補強部材34に対して大きいものが選択されてもよい。その後、ステップS22に戻る。ステップS22において、推定した構造物3の強度が所定値以上と判断されるまで、ステップS22~S23の処理が繰り返される。
 ステップS22において、推定した構造物3の強度が所定値以上と判断されると、ステップS24において、構造物3の強度が所定値以上となる造形方法を教示する。その後、構造物の造形方法教示処理が終了される。
 (本実施形態の効果)
 次に、本実施形態の効果について説明する。
 本実施形態では、上記のように、材料31の走査方向、走査ピッチ、積層方向および積層ピッチのうち少なくとも1つを含む材料31の積層方法を取得し、材料31の積層方法による強度の異方性を考慮して構造物3の強度を推定する。これにより、材料31の積層方法に基づいて、構造物3の強度の異方性を考慮して、構造物3全体の強度を推定することができるので、積層造形法により造形した構造物3の強度を精度よく予測することができる。
 また、本実施形態では、上記のように、材料31の積層方法が共通する部分をグループ化して、グループ化した部分の強度の異方性が等しいとして、構造物3の強度を推定する。これにより、材料31の積層方法が共通してグループ化された部分を同様の解析により強度を予測することができるので、構造物3の強度の予測が複雑になるのを抑制することができる。
 また、本実施形態では、上記のように、縁部を第1グループ32としてグループ化して、構造物3の縁部の強度を推定するとともに、中実部分を第2グループ33としてグループ化して構造物3の中実部分の強度を推定する。これにより、構造物3の境界面となる縁部を第1グループ32として構造物3の境界面の強度を容易に予測することができる。また、構造物3の内部を第2グループ33として、構造物3の境界面とは別個に強度を予測することができるので、構造物3の強度をより精度よく予測することができる。
 また、本実施形態では、上記のように、構造物3が隣接する層間で材料31の走査方向が異なるように造形される場合、構造物3が複数の方向の強度の異方性を有するものとして、構造物3の強度を推定する。これにより、材料31の複数の走査方向に基づいて、複数の方向の強度の異方性を持たせて構造物3の強度を推定することができるので、構造物3の強度をより精度よく予測することができる。
 また、本実施形態では、上記のように、層における材料31の走査方向を変化させて複数の種類の構造物3の強度の推定を行い、推定した強度に基づいて、構造物3を造形する層における材料31の走査方向を決定する。これにより、所望の強度を満たすように、構造物3を造形する際の材料31の走査方向を決定することができるので、造形した構造物3において所望の強度を確保することができる。
 また、本実施形態では、上記のように、推定した強度に基づいて、構造物3を造形する材料31の走査方向を決定して、積層造形法により材料31を積層して構造物3を造形する。これにより、所望の強度を満たすように、構造物3を造形する際の材料31の走査方向を決定することができるので、造形した構造物3の強度が小さくなるのを抑制することができる。
 また、本実施形態では、上記のように、推定した構造物3の強度が所定値未満の場合、補強部材34を追加して、積層造形法により材料31を積層して構造物3を造形するよう教示する。これにより、補強部材34より構造物3を補強して造形される構造物3の強度を効果的に高めることができる。
 [変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
 たとえば、上記実施形態では、熱溶解積層法により構造物を造形する例を示したが、本発明はこれに限られない。本発明では、熱溶解積層法以外の積層造形法により構造物を造形してもよい。たとえば、光造形法、インクジェット法などにより構造物を造形してもよい。
 また、上記実施形態では、有限要素法により構造物の強度を予測(推定)する構成の例を示したが、本発明はこれに限られない。本発明では、有限要素法以外により構造物の強度を予測(推定)してもよい。たとえば、有限差分法、境界要素法、粒子法などにより構造物の強度を予測してもよい。
 また、上記実施形態では、積層方向および積層ピッチを含む材料の積層方法に基づいて構造物の強度を推定する構成の例を示したが、本発明はこれに限られない。ここで、積層方向や積層ピッチなどと比較すれば影響は小さいものの、造形時の材料温度によって材料の収縮や3Dプリンタからの吐出量が変化するため、そり変形の発生や局所的な密度変化などが発生し、構造物の強度に影響を及ぼす可能性がある。このため、本発明では、材料温度の情報も取得して構造物の強度を推定しても良い。
 また、上記実施形態では、構造物の縁部と中実部分とを異なるグループに分けて構造物の強度を予測する構成の例を示したが、本発明はこれに限られない。本発明では、構造物の縁部および中実部分以外をグループ化して構造物の強度を予測してもよい。また、3以上のグループに分けて構造物の強度を予測してもよい。
 また、上記実施形態では、材料をX方向およびY方向の互いに直交する2方向に走査する構成の例を示したが、本発明はこれに限られない。本発明では、材料を1方向に走査してもよいし、3方向以上に走査してもよい。また、複数方向に走査する場合、走査する方向は互いに直交する方向でなくてもよい。
 また、上記実施形態では、構造物の内側を中実にして造形する構成の例を示したが、本発明はこれに限られない。本発明では、構造物の内側を中空にしてもよい。この場合、強度を確保するために、中空部に柱や梁を造形してもよい。
 また、上記実施形態では、補強部材が円柱形状を有する構成の例を示したが、本発明はこれに限られない。本発明では、補強部材は、円柱形状以外の形状を有していてもよい。たとえば、補強部材は、角柱形状を有していてもよいし、屈曲または湾曲した形状を有していてもよい。
 また、上記実施形態では、補強部材が金属により形成されている構成の例を示したが、本発明はこれに限られない。本発明では、補強部材は、金属以外により形成されていてもよい。たとえば、補強部材は、樹脂やFRP(繊維強化プラスチック)などにより形成されていてもよい。
 また、上記実施形態では、説明の便宜上、コンピュータの処理動作を処理フローに沿って順番に処理を行うフロー駆動型のフローチャートを用いて説明したが、本発明はこれに限らない。本発明では、コンピュータの処理動作を、イベント単位で処理を実行するイベント駆動型(イベントドリブン型)の処理により行ってもよい。この場合、完全なイベント駆動型で行ってもよいし、イベント駆動およびフロー駆動を組み合わせて行ってもよい。
 1 コンピュータ
 3 構造物
 11 プログラム
 31 材料
 32 第1グループ
 33 第2グループ
 34 補強部材

Claims (8)

  1.  積層造形法により造形した構造物の強度予測方法であって、
     材料の走査方向、走査ピッチ、積層方向および積層ピッチのうち少なくとも1つを含む材料の積層方法を取得し、
     材料の積層方法による強度の異方性を考慮して前記構造物の強度を推定する、構造物の強度予測方法。
  2.  前記強度を推定することは、材料の積層方法が共通する部分をグループ化して、グループ化した部分の強度の異方性が等しいとして、前記構造物の強度を推定することを含む、請求項1に記載の構造物の強度予測方法。
  3.  前記構造物は、縁部が走査された後、前記縁部の内部の中実部分が走査されて、層が造形されるように構成されており、
     前記強度を推定することは、前記縁部を第1グループとしてグループ化して、前記構造物の前記縁部の強度を推定するとともに、前記中実部分を第2グループとしてグループ化して前記構造物の前記中実部分の強度を推定することを含む、請求項2に記載の構造物の強度予測方法。
  4.  前記構造物は、隣接する層間で、材料の走査方向が異なるように造形されるように構成されており、
     前記強度を推定することは、前記構造物が複数の方向の強度の異方性を有するものとして、前記構造物の強度を推定することを含む、請求項1~3のいずれか1項に記載の構造物の強度予測方法。
  5.  前記強度を推定することは、層における材料の走査方向を変化させて複数の種類の前記構造物の強度の推定を行うことを含み、
     推定した強度に基づいて、前記構造物を造形する層における材料の走査方向を決定する、請求項1~4のいずれか1項に記載の構造物の強度予測方法。
  6.  層における材料の走査方向による強度の異方性を考慮して造形する構造物の強度を推定し、
     推定した強度に基づいて、前記構造物を造形する材料の走査方向を決定して、積層造形法により材料を積層して前記構造物を造形する、構造物の造形方法。
  7.  層における材料の走査方向による強度の異方性を考慮して造形する構造物の強度を推定し、
     推定した前記構造物の強度が所定値未満の場合、補強部材を追加して、積層造形法により材料を積層して前記構造物を造形するよう教示する、構造物の積層造形支援方法。
  8.  請求項1~5のいずれか1項に記載された構造物の強度予測方法、請求項6に記載された構造物の造形方法、または、請求項7に記載された構造物の積層造形支援方法をコンピュータに実行させる、プログラム。
PCT/JP2017/022625 2017-06-20 2017-06-20 構造物の強度予測方法、構造物の造形方法、構造物の積層造形支援方法およびプログラム WO2018235150A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP17914472.0A EP3643475A4 (en) 2017-06-20 2017-06-20 METHOD FOR PREDICTING THE STRENGTH OF A STRUCTURE, METHOD FOR MANUFACTURING A STRUCTURE, METHOD TO SUPPORT THE STRUCTURE OF A STRUCTURE AND PROGRAM
US16/623,847 US11465356B2 (en) 2017-06-20 2017-06-20 Method for predicting strength of structure, method for modeling structure, support method for additive manufacturing of structure, and recording medium
PCT/JP2017/022625 WO2018235150A1 (ja) 2017-06-20 2017-06-20 構造物の強度予測方法、構造物の造形方法、構造物の積層造形支援方法およびプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022625 WO2018235150A1 (ja) 2017-06-20 2017-06-20 構造物の強度予測方法、構造物の造形方法、構造物の積層造形支援方法およびプログラム

Publications (1)

Publication Number Publication Date
WO2018235150A1 true WO2018235150A1 (ja) 2018-12-27

Family

ID=64736919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022625 WO2018235150A1 (ja) 2017-06-20 2017-06-20 構造物の強度予測方法、構造物の造形方法、構造物の積層造形支援方法およびプログラム

Country Status (3)

Country Link
US (1) US11465356B2 (ja)
EP (1) EP3643475A4 (ja)
WO (1) WO2018235150A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110941925A (zh) * 2019-11-26 2020-03-31 国网河南省电力公司电力科学研究院 用于分析特高压变电站架空线结构力学特性的方法
US20200130281A1 (en) * 2017-06-20 2020-04-30 Toray Engineering Co., Ltd. Method for predicting strength of structure, method for modeling structure, support method for additive manufacturing of structure, and recording medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068342A (ja) * 1992-06-25 1994-01-18 Matsushita Electric Works Ltd 三次元形状造形物の製造方法
JP2002166481A (ja) * 2000-11-29 2002-06-11 Aspect:Kk 3次元造形シミュレーション装置および3次元造形装置
JP2003039563A (ja) 2001-07-27 2003-02-13 Autostrade Co Ltd 多泡性造形材料による立体造形装置
JP2005523391A (ja) * 2002-04-17 2005-08-04 ストラッタシス, インコーポレイテッド 高精度造形フィラメント
JP2013097521A (ja) * 2011-10-31 2013-05-20 Toray Ind Inc 複合材料の強度解析方法
JP2016517367A (ja) * 2013-03-15 2016-06-16 スリーディー システムズ インコーポレーテッド 3次元印刷用材料系

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571471A (en) * 1984-08-08 1996-11-05 3D Systems, Inc. Method of production of three-dimensional objects by stereolithography
GB2378150A (en) * 2001-07-31 2003-02-05 Dtm Corp Fabricating a three-dimensional article from powder
ES2681980T3 (es) * 2011-06-28 2018-09-17 Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. Aparato para formar objetos tridimensionales utilizando solidificación lineal
GB201113506D0 (en) * 2011-08-05 2011-09-21 Materialise Nv Impregnated lattice structure
EP2737965A1 (en) * 2012-12-01 2014-06-04 Alstom Technology Ltd Method for manufacturing a metallic component by additive laser manufacturing
WO2014165643A2 (en) * 2013-04-04 2014-10-09 Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. Apparatus and method for forming three-dimensional objects using linear solidification with travel axis correction and power control
US9481131B2 (en) * 2013-07-18 2016-11-01 Mitsubishi Electric Research Laboratories, Inc. Method and apparatus for printing 3D objects using additive manufacturing and material extruder with translational and rotational axes
US9676033B2 (en) * 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
US10220569B2 (en) * 2013-12-03 2019-03-05 Autodesk, Inc. Generating support material for three-dimensional printing
CA2979003A1 (en) * 2014-03-21 2015-09-24 Laing O'rourke Australia Pty Limited Method and apparatus for fabricating a composite object
US10565333B2 (en) * 2014-04-25 2020-02-18 Alberto Daniel Lacaze Structural analysis for additive manufacturing
US20170136694A1 (en) * 2014-05-21 2017-05-18 Bae Systems Plc Additive manufacture of composite materials
US10065375B2 (en) * 2014-06-04 2018-09-04 Mitsubishi Hitachi Power Systems, Ltd. Additive manufacturing system, modeling-data providing apparatus and providing method
US9987800B2 (en) * 2014-11-17 2018-06-05 Formlabs, Inc. Systems and methods of simulating intermediate forms for additive fabrication
US10095818B2 (en) * 2015-01-30 2018-10-09 The Boeing Company Strength prediction system and method for composite laminates
WO2016170030A1 (de) * 2015-04-21 2016-10-27 Covestro Deutschland Ag Verfahren zur herstellung von 3d objekten
CN107635749A (zh) * 2015-06-10 2018-01-26 Ipg光子公司 多光束增材制造
US20170341300A1 (en) * 2016-05-26 2017-11-30 Wisconsin Alumni Research Foundation Additive Manufacturing Process Continuous Reinforcement Fibers And High Fiber Volume Content
US10353378B2 (en) * 2016-08-18 2019-07-16 Wisconsin Alumni Research Foundation Homogenization of material properties in additively manufactured structures
EP3379434B1 (en) * 2017-03-22 2022-09-28 Tata Consultancy Services Limited A system and method for design of additively manufactured products
US11130292B2 (en) * 2017-05-08 2021-09-28 Autodesk, Inc. Estimating physical property of 3D printed parts
KR102611302B1 (ko) * 2017-06-15 2023-12-06 유니포미티 랩스, 인코포레이티드 적층 제조를 위한 다층 파라미터-가변 융합 및 증착 전략들
EP3643475A4 (en) * 2017-06-20 2021-07-07 Toray Engineering Co., Ltd. METHOD FOR PREDICTING THE STRENGTH OF A STRUCTURE, METHOD FOR MANUFACTURING A STRUCTURE, METHOD TO SUPPORT THE STRUCTURE OF A STRUCTURE AND PROGRAM

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068342A (ja) * 1992-06-25 1994-01-18 Matsushita Electric Works Ltd 三次元形状造形物の製造方法
JP2002166481A (ja) * 2000-11-29 2002-06-11 Aspect:Kk 3次元造形シミュレーション装置および3次元造形装置
JP2003039563A (ja) 2001-07-27 2003-02-13 Autostrade Co Ltd 多泡性造形材料による立体造形装置
JP2005523391A (ja) * 2002-04-17 2005-08-04 ストラッタシス, インコーポレイテッド 高精度造形フィラメント
JP2013097521A (ja) * 2011-10-31 2013-05-20 Toray Ind Inc 複合材料の強度解析方法
JP2016517367A (ja) * 2013-03-15 2016-06-16 スリーディー システムズ インコーポレーテッド 3次元印刷用材料系

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3643475A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200130281A1 (en) * 2017-06-20 2020-04-30 Toray Engineering Co., Ltd. Method for predicting strength of structure, method for modeling structure, support method for additive manufacturing of structure, and recording medium
US11465356B2 (en) * 2017-06-20 2022-10-11 Toray Engineering Co., Ltd. Method for predicting strength of structure, method for modeling structure, support method for additive manufacturing of structure, and recording medium
CN110941925A (zh) * 2019-11-26 2020-03-31 国网河南省电力公司电力科学研究院 用于分析特高压变电站架空线结构力学特性的方法
CN110941925B (zh) * 2019-11-26 2022-08-09 国网河南省电力公司电力科学研究院 用于分析特高压变电站架空线结构力学特性的方法

Also Published As

Publication number Publication date
EP3643475A4 (en) 2021-07-07
EP3643475A1 (en) 2020-04-29
US11465356B2 (en) 2022-10-11
US20200130281A1 (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP6762744B2 (ja) 構造物の強度予測方法、構造物の造形方法、構造物の積層造形支援方法およびプログラム
Takezawa et al. High-stiffness and strength porous maraging steel via topology optimization and selective laser melting
US11247272B2 (en) Achieving functionally-graded material composition through bicontinuous mesostructural geometry in additive manufacturing
JP2018195303A (ja) 付加製造により誘起される状態を考慮した、付加製造部品の構造最適化法
JP6012613B2 (ja) 構造容積内での複合材料の多層の分布の決定
US10906248B2 (en) Additive manufacturing method for improved core structure
CN1867919A (zh) 用于确定优化的减震处理配置和面板形状配置的方法
WO2018181306A1 (ja) 3次元積層造形条件決定方法、3次元積層造形実行方法、3次元積層造形条件決定装置、および3次元積層造形実行装置
JP6645892B2 (ja) 積層造形の残留応力低減システム、積層造形の残留応力低減方法および積層造形の残留応力低減プログラム
CN111226219B (zh) 层叠复合构件的形状最优化解析方法及形状最优化解析装置
JP2016107638A (ja) 情報処理方法、情報処理装置、立体物の製造方法、立体造形装置及びプログラム
Barnett et al. Weak support material techniques for alternative additive manufacturing materials
Nisja et al. Short review of nonplanar fused deposition modeling printing
Gaynor Topology optimization algorithms for additive manufacturing
WO2018235150A1 (ja) 構造物の強度予測方法、構造物の造形方法、構造物の積層造形支援方法およびプログラム
Gao et al. Crack path-engineered 2D octet-truss lattice with bio-inspired crack deflection
Bhooshan et al. Design workflow for additive manufacturing: a comparative study
Pütz et al. Reconstruction of microstructural and morphological parameters for RVE simulations with machine learning
Cho et al. Development of a new sheet deposition type rapid prototyping system
Dakhli et al. Experimental and numerical prototyping of a complex cement column formwork for construction
JP6788373B2 (ja) スライス画像作成装置、三次元造形システム、および、スライス画像作成方法
Marschall et al. Design, simulation, testing and application of laser-sintered conformal lattice structures on component level
van Alphen Structural optimization for 3D concrete printing
Revfi et al. Bead optimization in long fiber reinforced polymer structures: Consideration of anisotropic material properties resulting from the manufacturing process
Leiva et al. An analyticall Bi-Directional growth parameterization to obtain optimal castable topology designs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017914472

Country of ref document: EP

Effective date: 20200120

NENP Non-entry into the national phase

Ref country code: JP