WO2018233456A1 - 背散射探测模块 - Google Patents

背散射探测模块 Download PDF

Info

Publication number
WO2018233456A1
WO2018233456A1 PCT/CN2018/088832 CN2018088832W WO2018233456A1 WO 2018233456 A1 WO2018233456 A1 WO 2018233456A1 CN 2018088832 W CN2018088832 W CN 2018088832W WO 2018233456 A1 WO2018233456 A1 WO 2018233456A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
backscatter
scintillator
detection module
module according
Prior art date
Application number
PCT/CN2018/088832
Other languages
English (en)
French (fr)
Inventor
张清军
李元景
赵自然
孙立风
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to US16/624,753 priority Critical patent/US20210141103A1/en
Priority to DE112018003135.7T priority patent/DE112018003135T5/de
Publication of WO2018233456A1 publication Critical patent/WO2018233456A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20185Coupling means between the photodiode and the scintillator, e.g. optical couplings using adhesives with wavelength-shifting fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/201Measuring radiation intensity with scintillation detectors using scintillating fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2006Measuring radiation intensity with scintillation detectors using a combination of a scintillator and photodetector which measures the means radiation intensity
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials
    • G01N23/203Measuring back scattering

Definitions

  • the present disclosure relates to a detection module, and more particularly to a backscatter detection module that detects backscattered X-rays.
  • the backscatter detectors use a scintillator material to convert backscattered X-rays into fluorescent photons, which are then collected by an optical sensor and converted into electrical signal outputs.
  • a scintillator material to convert backscattered X-rays into fluorescent photons, which are then collected by an optical sensor and converted into electrical signal outputs.
  • the general method is to equip both sides of the pencil beam of the scanning imaging system. Large area backscatter detector.
  • the scintillator material that generates fluorescent photons must have low afterglow, high X-ray absorptivity, and high light conversion efficiency, and its luminescence spectrum matches the spectral response of the photosensor.
  • the scintillator materials currently used for the backscatter detectors satisfying the conditions generally fall into two categories, namely powder screens (such as GOS, barium fluorochloride, etc.) or transparent crystals.
  • the powder screen type scintillator generally has low afterglow and high light conversion efficiency, but the density is low, resulting in low absorption efficiency for backscattered X-rays, and because of its low light transmittance, the powder screen type scintillator can only be used in a thin layer.
  • Structure; transparent crystal-based scintillators generally have high light conversion efficiency and high absorption efficiency for backscattered X-rays, but their high price and difficulty in making large-area processes are the reasons for limiting their use in backscattering.
  • the backscatter detector In addition to the scintillator material used in the backscatter detector, the backscatter detector mainly uses a scintillator film, and then uses a photomultiplier tube as a photoelectric conversion device; the backscatter detector is bulky, inconvenient to assemble, and has poor seismic performance, and The detection efficiency is low.
  • the purpose of the present disclosure is to overcome the deficiencies of the prior art described above, and to provide a backscatter detection module with high detection efficiency and compact structure.
  • a backscatter detection module includes a plate-shaped light-transmissive carrier, two layers of scintillators, and a light sensor;
  • the light-transmitting carrier is made of a material that is transparent to fluorescent photons, and has two relative transparent
  • the light plane and the at least one light-emitting end surface are located between the two light-transmissive planes;
  • the two layers of scintillators are respectively fixedly attached to the two light-transmitting planes; and the light sensor is coupled to the light-emitting end surface.
  • the light-transmissive carrier is stacked in a plurality, and each of the light-transmissive carriers has a layer of the scintillator attached thereto.
  • the light transmissive carrier is a unitary rectangular plate.
  • the light transmissive carrier includes two triangular prisms, and each of the three prisms has a total reflection surface and a light exit end surface, and the two total reflection surfaces are bonded to each other to make the two
  • the prism forms a rectangular parallelepiped structure, and each of the two light-emitting end faces is provided with a light sensor.
  • the light transmissive carrier includes a plurality of circular or square optical fibers arranged side by side, the optical fibers are optically bonded to the scintillator, and an end surface of the optical fiber is optically bonded to the photosensor. Pick up.
  • one end of each of the optical fibers is connected to one of the photosensors.
  • the optical fiber is stretched and integrated to form the light-emitting end surface.
  • a plurality of the optical fibers are bundled into one optical fiber bundle, and an end surface of the optical fiber bundle is corrected to form the light-emitting end surface and connected to the optical sensor.
  • the optical fiber is a wave-shifted optical fiber.
  • a metal housing having a lower opening and a PCB board for covering the opening, the PCB board being provided with a hard support structure for supporting a scintillator located on the bottom layer, the metal
  • the top surface of the inner surface of the outer casing is provided with an elastic material for crimping the scintillator located on the top layer, and a sealing ring is disposed between the PCB board and the metal outer casing.
  • the seal ring has the same structure as the hard support structure.
  • an auxiliary support mechanism for assisting the scintillator is provided between the hard support structure and the scintillator.
  • the inner surface of the metal casing is protected from light or coated with a reflective layer.
  • the photosensor is a photomultiplier tube or a silicon photodiode.
  • all exposed surfaces of the scintillator and the light transmissive carrier are mirror polished or coated with a reflective layer.
  • the two layers of the scintillator are scintillators of different materials.
  • the material of the scintillator on each of the light transmissive carriers is different.
  • a filter is disposed between two adjacent of the light-transmitting carriers.
  • the backscatter detection module of the present disclosure uses two layers of scintillators and a light-transmitting carrier to absorb X-rays, which greatly improves the detection efficiency.
  • the detection module uses a light-transmitting carrier as a light-guiding material, and a light sensor is disposed on the end surface to transmit light.
  • the carrier not only transmits fluorescent photons, but also changes the optical path, greatly reducing the thickness of the backscatter detector.
  • FIG. 1 is a schematic structural view of a backscatter detecting module according to Embodiment 1 of the present disclosure
  • FIG. 2 is a schematic structural view of the backscatter detecting module shown in FIG. 1 after being packaged;
  • FIG. 3 is a schematic view showing the use of the backscatter detecting module shown in FIG. 1;
  • FIG. 4 is a schematic structural diagram of a backscatter detecting module according to Embodiment 2 of the present disclosure
  • FIG. 5 is a schematic structural diagram of a backscatter detecting module according to Embodiment 3 of the present disclosure.
  • an embodiment of the present disclosure discloses a backscatter detection module including a light transmissive carrier 2, two layers of scintillators 1 and a photosensor 3.
  • the two-layer scintillator 1 emits fluorescent photons after receiving X-rays.
  • the structure of the scintillator 1 is a large-area thin plate having a thickness of about 0.2 mm to 0.8 mm, preferably 0.3 mm to 0.5 mm.
  • the light-transmitting carrier 2 is also in the form of a plate.
  • the light-transmissive carrier 2 is a unitary rectangular plate, and the upper surface and the lower surface thereof are both large flat surfaces, and the overall thickness is approximately 5 mm, which is relative to the scintillator. 1
  • the fluorescent photon produced is made of a transparent material, that is, the material selected for the light-transmitting carrier 2 has good photoconductivity to fluorescent photons, and specific materials such as PC, PMMA, quartz glass or polystyrene.
  • the light-transmitting carrier 2 has two opposite light-transmissive planes and at least one light-emitting end surface, and the light-emitting end surface is located between the two light-transmitting planes.
  • the upper surface and the lower surface of the light-transmitting carrier 1 are light-transmissive planes, and the end surface on the right side thereof is a light-emitting end surface.
  • the two layers of the scintillator 1 are respectively fixedly attached to the two light-transmissive planes, and the photosensor 3 is coupled to the light-emitting end surface.
  • the length of the side of the photosensitive surface of the photosensor 3 is equal to the sum of the thicknesses of the side surfaces of the scintillator 1 and the transparent carrier 2 In order to be able to receive more fluorescent photons.
  • the photosensor 3 is directly attached to the light-emitting end face, so that the photosensor 3 is directly coupled to the light-emitting end face, and in other embodiments of the present disclosure described later, the photosensor 3 can also be indirectly Coupling on the light exit end face.
  • the scintillator 1 and the light-transmitting carrier 2 are connected, they may be directly crimped, or may be optically bonded using a viscose having a good light transmittance.
  • the photosensor 3 is used for photoelectric conversion to convert fluorescent photons into electrical signals, and the specific type thereof is not limited.
  • a photomultiplier tube (PMT) or a silicon photomultiplier tube (SiPM) may be used, and a silicon photomultiplier tube is preferably used.
  • silicon photomultipliers Compared with general photodiodes, silicon photomultipliers have a signal response of about 10 5 magnifications and nanoseconds.
  • traditional photomultiplier tubes which also have high magnification and fast response, the negative feedback Geiger mode of silicon photomultiplier tube is safer and easier to operate with strong light pulses.
  • the high output signal level not only helps to improve the sensitivity of the detector, but also helps to increase the anti-interference and environmental resistance of the detector.
  • the silicon photomultiplier tube is much smaller than the conventional photomultiplier tube, thereby realizing the compact structure of the entire backscatter detector, and the silicon photomultiplier tube is small in size and mounted on the side of the scintillator 1 and the light transmissive carrier 2, Nor does it cause a large change in the blind spot (the area where multiple detectors are installed side by side without being covered by the scintillator 1).
  • the scintillator 1 and the light-transmitting carrier 2 constitute a sandwich structure, the backscattered X-rays reflected from the scanned object and the first portion located in FIG. After a layer of scintillator 1 interacts, the generated fluorescent photon penetrates the interface where the scintillator 1 and the light-transmitting carrier 2 intersect to enter the light-transmitting carrier 2, and is finally reflected by the light-transmitting carrier 2 after being reflected several times. Photographic surface collection.
  • the arrows in Fig. 1 indicate the traveling paths of X-rays and fluorescent photons. As can be seen from FIG.
  • the X-rays penetrate the light-transmitting carrier 2 and reach the lower portion of FIG. 1 below the light-transmitting carrier 2.
  • the second layer of scintillator interacts with the scintillator of the second layer and produces fluorescent photons. In this way, the absorption efficiency of the X-rays can be remarkably improved, and the detection efficiency of the X-rays can be improved.
  • the scintillator 1 and the light-transmitting carrier 2 in the present embodiment can also be formed into a structure of more layers such as "Five Meiji", “Seven Meiji”, etc., that is, the light-transmitting carrier 2 can be laminated.
  • a plurality of the scintillators are attached to each of the two light transmissive planes of each of the light transmissive carriers 2.
  • the plurality of light-transmitting carriers 2 referred to herein mean that the number of the light-transmitting carriers 2 is two or more. As the number of the light-transmitting carriers 2 increases, a part of the X-rays can pass through.
  • the two layers of the scintillator 1 on both sides of the transparent carrier 2 can be selected from different materials, for example, the upper scintillator is a GOS film, and the lower layer is a plastic scintillator, so that different types of scintillators can be used to detect the low energy of the X-ray. High energy part.
  • a more preferred manner is to use the above-mentioned plurality of "sandwich" structures, that is, to set a plurality of transparent carriers on a stack, and set the scintillators of each transparent carrier to different materials, for example, the first transparent carrier.
  • the scintillator is a GOS film
  • the scintillator on the second light-transmissive carrier is a plastic scintillator.
  • After setting the scintillators of different materials one or more sets of low energy portions in the backscattered X-rays are detected, and one or more sets of high energy portions in the back X-rays are detected to form a dual energy detector. Multiple groups can also be assigned to form a multi-energy detector for material identification.
  • the plurality of light-transmitting carriers may be pressed and pressed together, or a certain gap may be left between each other.
  • a filter may be further disposed between two adjacent light-transmitting carriers, so that a specific X-ray can enter the light-transmitting carrier, thereby being used for better material identification.
  • the filter and the light-transmitting carrier may be pressed and pressed together, or a certain gap may be left between each other.
  • the backscatter detection module further includes a metal casing 8 and a PCB board 6.
  • the metal casing 8 is manufactured by a stretching process to prevent the injection of external rays (such as cosmic rays, multiple scattered scattered rays, etc.), and has a lower portion having an opening, and a PCB board 6 is used to cover the opening.
  • the scintillator 1 and the light transmissive carrier 2 are placed inside the metal casing 8.
  • the inner surface of the metal casing 8 is protected from light or coated with a reflective layer to avoid interference from non-backscattered X-rays as much as possible.
  • An elastic material 4 for crimping the scintillator of the top layer is disposed at a top position of the inner surface of the metal casing 8, and a hard support structure 5 for supporting the scintillator located at the bottom layer is provided on the PCB board 6.
  • a sealing ring 7 is also disposed between the PCB board 6 and the metal casing 8. After the PCB board 6 is mounted, the PCB board 6 and the metal casing 8 press the scintillators on the upper and lower sides, so that the stability of the scintillator 1 and the light-transmitting carrier 2 can be ensured, and the two can be prevented from shaking.
  • the sealing ring 7 can also be of the same construction as the hard support structure 5, i.e.
  • the hard support structure 5 has both the dual function of support and sealing.
  • the hard support structure 5 substantially supports both ends of the scintillator 1, and an auxiliary support mechanism for assisting the scintillator 1 may be provided between the hard support structure 5 and the scintillator 1.
  • the auxiliary support mechanism is capable of providing support to the central position of the scintillator, making the scintillator more stable.
  • the metal casing 8 can be selected as the incident surface, which can effectively protect the detector elements such as the scintillator and the transparent carrier.
  • the PCB board When the backscattered X-ray energy is low, the PCB board is selected as the incident surface. Can improve detection efficiency. All exposed surfaces of the scintillator and the light transmissive carrier are mirror polished or coated with a reflective layer such that the path of the fluorescent photons is confined as much as possible within the scintillator, light transmissive carrier and photosensor.
  • the backscattering detection module of the present embodiment is used as follows.
  • the X-ray source 11 emits an X-ray beam 13 that is directed toward the object 12 and produces backscatter on the object 12, and the backscattered X-rays 14 are emitted from the surface of the object to the periphery, and two sides are disposed on both sides of the X-ray source 11.
  • the backscatter detection module 10 of the present invention converts the backscattered X-rays 14 into electrical signals for subsequent electronic devices to analyze and process the electrical signals.
  • the backscattering detection module of the present disclosure uses at least two layers of scintillator 1 and a light-transmitting carrier 2 to absorb X-rays, which greatly improves the detection efficiency, and combined with the multi-layer scintillator combination, can greatly improve the detection efficiency, or realize Dual energy detection (multi-energy detection) for substance identification.
  • the detection module utilizes a light-transmitting carrier as a light guiding material, and a light sensor is disposed on the end surface.
  • the light-transmitting carrier can not only transmit fluorescent photons, but also change the optical path, thereby greatly reducing the thickness of the backscattering detector.
  • the detection module further utilizes the silicon photomultiplier SiPM as a light sensor to further reduce the volume and reduce the dead zone.
  • the detection module adopts modular structure, modular design in structure and shock resistance, compact structure, convenient installation, strong shock resistance, and can effectively block external interference and visible light.
  • the detection module can select different incident surfaces according to the backscattered X-ray energy level, which can effectively protect the detector components and increase the back penetration depth as much as possible.
  • the backscattering detection module disclosed in the embodiment of the present disclosure has substantially the same structure as that of the first embodiment, and also includes a light transmissive carrier, two layers of scintillators, and a photo sensor, which is different from the first embodiment in that
  • the light transmissive carrier includes two triangular prisms 221 and 222, and the triangular prism 221 and the triangular prism 222 each have a total reflection surface and a light exit end surface.
  • the two total reflection surfaces are bonded to each other such that the two prisms 221 and 222 constitute a rectangular parallelepiped structure.
  • a photosensor 231 is provided on the light-emitting end surface of the triangular prism 221, and a photosensor 232 is provided on the light-emitting end surface of the triangular prism 222.
  • the fluorescent photons generated by the scintillator 211 are reflected by the total reflection surface of the prism 221, and then reach the photosensor 231.
  • the fluorescent photons generated on the scintillator 212 are reflected by the total reflection surface of the triangular prism 222, and then reach the photosensor 232.
  • the backscattering detection module of the present embodiment is not described in detail in the same manner as Embodiments 1 and 2, except that the light-transmitting carrier 2 in the present embodiment includes a plurality of side-by-side arrangements. Round or square fiber.
  • FIG. 5 is a front view showing the arrangement of the circular fibers
  • FIG. 6 is a front view showing the arrangement of the square fibers
  • FIG. 7 is the left side of the fibers shown in FIG. 5 and FIG. view.
  • the optical fibers are arranged in a plate shape.
  • the optical fiber is optically bonded to the scintillator 1, and the end face of the optical fiber is optically bonded to the photosensitive surface of the photosensor 3.
  • the remaining surface of the fiber can be coated with a reflective layer such that the fluorescent photons can only reach the photosensor from the fiber.
  • FIG. 8 shows a schematic diagram of the processing of an optical fiber.
  • each of the optical fibers may be independently connected to the optical sensor 3, or the optical fiber may be stretched and integrated to form an integral light-emitting end surface, and then connected to the optical sensor 3.
  • FIG. 9 is a schematic diagram of bundling an optical fiber.
  • each of the optical fibers in the light-transmitting carrier 2 may be bundled into one bundle, and the end face of the bundle is corrected, and then connected to the photosensor 3 at an end remote from the scintillator 1.
  • Figure 10 is a schematic illustration of the attachment of an optical fiber to a metal housing. As shown in FIG. 10, when the optical fiber is located in the metal casing 8, a corresponding protective cover 9 can be disposed on the PCB board 6 for protecting and limiting the light sensor 3 from shaking.
  • the light-transmitting carrier 2 When the light-transmitting carrier 2 is made of an optical fiber, it can be spliced by using a plurality of optical fibers, so that the light-transmitting carrier 2 can significantly reduce the cost while realizing a large area.
  • the fiber can also be selected as a wave-shifting fiber, so that the fluorescence spectrum generated by the scintillator matches the spectral response of the photosensor.

Abstract

一种背散射探测模块,包括板状的透光载体、两层闪烁体及光传感器;透光载体由可供荧光光子透过的材料制作,具有两个相对的透光平面以及至少一个出光端面,所述出光端面位于两个所述透光平面之间;两层闪烁体分别固定贴合于两个所述透光平面;光传感器耦合于所述出光端面。背散射探测模块采用两层闪烁体以及透光载体来吸收X射线,极大地提高了探测效率,本探测模块利用透光载体作为导光材料,并在端面设置光传感器,透光载体不仅能够传输荧光光子,还能够改变光路,极大地减小了背散射探测器的厚度。

Description

背散射探测模块
交叉引用
本公开要求于2017年6月20日提交的申请号为201710469197.7的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及一种探测模块,尤其涉及一种对背散射X射线进行探测的背散射探测模块。
背景技术
目前已有的背散射探测器,均是采用闪烁体材料将背散射X射线转换成荧光光子,荧光光子再经过光传感器收集并转换成电信号输出。考虑到背散射X射线的特点,若想提高背散射X射线的探测效率和灵敏度,就要求背散射探测器必须有足够大的灵敏面积,一般方式是在扫描成像系统的笔形束两侧配备若干大面积背散射探测器。
为了提高背散射X射线系统的性能指标,产生荧光光子的闪烁体材料必须余晖低、X射线吸收率高以及光转换效率高,其发光光谱与光传感器的光谱响应相匹配。目前满足条件的背散射探测器用的闪烁体材料一般分两类,即粉屏类(如GOS、氟氯化钡等)或透明晶体类。粉屏类的闪烁体一般余晖低、光转换效率高,但密度低,导致对背散射X射线的吸收效率也低,同时因其透光率低,所以粉屏类闪烁体只能采用薄层结构;透明晶体类的闪烁体一般光转换效率高,对背散射X射线的吸收效率也高,但其价格高、做成大面积工艺难,这些都是限制其在背散中使用的原因。
除背散射探测器所用闪烁体材料外,目前背散探测器主要采用闪烁体膜,再用光电倍增管作为光电转换器件;此种背散探测器体积大,装配不方便且抗震性能差,而且探测效率低。
在所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
公开内容
本公开的目的在于克服上述现有技术的不足,提供一种探测效率高、结构紧凑的背散射探测模块。
本公开的额外方面和优点将部分地在下面的描述中阐述,并且部分地将从描述中变得显然,或者可以通过本公开的实践而习得。
根据本公开的一个方面,一种背散射探测模块,包括板状的透光载体、两层闪烁体及光传感器;透光载体由可供荧光光子透过的材料制作,具有两个相对的透光平面以及至少一个出光端面,所述出光端面位于两个所述透光平面之间;两层闪烁体分别固定贴合于两个所述透光平面;光传感器耦合于所述出光端面。
根据本公开的一实施方式,所述透光载体层叠设置有多个,每个所述透光载体的两个透光平面上均贴合有一层所述闪烁体。
根据本公开的一实施方式,所述透光载体为整体的矩形板。
根据本公开的一实施方式,所述透光载体包括两个三棱镜,两个所述三棱镜各自具有一全反射面以及一出光端面,两个所述全反射面相互粘结以使两个所述三棱镜组成长方体结构,两个所述出光端面上各设置有一个光传感器。
根据本公开的一实施方式,所述透光载体包括多个并排设置的圆形或方形的光纤,所述光纤与所述闪烁体光学粘接,所述光纤的端面与所述光传感器光学粘接。
根据本公开的一实施方式,每个所述光纤的端面各连接有一个所述光传感器。
根据本公开的一实施方式,所述光纤拉伸融合为一体并形成所述出光端面。
根据本公开的一实施方式,多个所述光纤捆成一个光纤束,所述光纤束的端面进行修正后形成所述出光端面并与所述光传感器相连接。
根据本公开的一实施方式,所述光纤为移波光纤。
根据本公开的一实施方式,还包括下部开口的金属外壳以及用于封盖所述开口的PCB板,所述PCB板上设有对位于底层的闪烁体进行支撑的硬支撑结构,所述金属外壳的内表面的顶部位置设有用于对位于顶层的闪烁体进行压接的弹性材料,所述PCB板与金属外壳之间设有密封圈。
根据本公开的一实施方式,所述密封圈与硬支撑结构为同一结构。
根据本公开的一实施方式,所述硬支撑结构与所述闪烁体之间设有对闪烁体进行辅助支撑的辅助支撑机构。
根据本公开的一实施方式,所述金属外壳的内表面经过避光处理或涂有反射层。
根据本公开的一实施方式,所述光传感器为光电倍增管或硅光电二极管。
根据本公开的一实施方式,所述闪烁体和透光载体的所有暴露表面均镜面抛光或者涂有反射层。
根据本公开的一实施方式,两层所述闪烁体为不同材质的闪烁体。
根据本公开的一实施方式,每个所述透光载体上的闪烁体的材质不同。
根据本公开的一实施方式,相邻两个所述透光载体之间设置有滤波片。
由上述技术方案可知,本公开的优点和积极效果在于:
本公开的背散射探测模块,采用两层闪烁体以及透光载体来吸收X射线,极大地提高了探测效率,本探测模块利用透光载体作为导光材料,并在端面设置光传感器,透光载体不仅能够传输荧光光子,还能够改变光路,极大地减小了背散射探测器的厚度。
附图说明
通过参照附图详细描述其示例实施方式,本公开的上述和其它特征及优点将变得更加明显。
图1是本公开实施方式一所示的背散射探测模块的结构示意图;
图2是图1所示的背散射探测模块的封装完毕后的结构示意图;
图3是图1所示的背散射探测模块的使用示意图;
图4是本公开实施方式二所示的背散射探测模块的结构示意图;
图5至图10是本公开实施方式三所示的背散射探测模块的结构示意图。
图中附图标记:
1、211、212:闪烁体;
2、透光载体;
221、222:三棱镜;
3、231、232:光传感器;
4、弹性材料;
5、硬支撑结构;
6、PCB板;
7、密封圈;
8、金属外壳;
9、保护套;
10、背散射探测模块;
11、X光源;
12、物体;
13、X光束;
14、背散射X射线。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
实施方式一
如图1至图3所示,本公开实施方式公开了一种背散射探测模块,其包括透光载体2、两层闪烁体1以及光传感器3。两层闪烁体1在接收到X射线之后会发出荧光光子,该闪烁体1的结构形式为大面积的薄板状,其厚度约为0.2mm~0.8mm,优选为0.3mm~0.5mm。透光载体2同样成板状,更具体而言,该透光载体2为整体的矩形板,其上表面和下表面均为大平面,整体厚度大致可在5mm左右,其由相对于闪烁体1产生的荧光光子而言为透明的材料制作,也就是说,透光载体2选用的材料对荧光光子具有良好的光导性,具体材料例如PC、PMMA、石英玻璃或聚苯乙烯等。
该透光载体2具有两个相对的透光平面以及至少一个出光端面,出光端面位于这两个透光平面之间。在图1中,透光载体1的上表面和下表面为透光平面,其右侧的端面为出光端面。两层闪烁体1分别固定贴合在两个透光平面上,光传感器3耦合于出光端面,该光传感器3的光敏面的边长与闪烁体1以及透光载体2的侧面厚度之和相等,以便能够接收更多的荧光光子。在图1中,该光传感器3直接贴合在出光端面上,因而该光传感器3是直接耦合于出光端面上,而在后面叙述的本公开其他实施方式中,该光传感器3也可以间接地耦合于出光端面上。闪烁体1和透光载体2之间进行连接时,可以直接压接,也可以采用透光率很好的粘胶进行光学粘接。
光传感器3用于光电转换,将荧光光子转变为电信号,其具体类型并不限制,例如可以选用光电倍增管(PMT)或者硅光电倍增管(SiPM),其中优选采用硅光电倍增管。硅光电倍增管与一般光电二极管相比,有约10 5的放大倍数、纳秒量级的信 号响应。和同样具有高放大倍数、快速响应的传统光电倍增管相比,硅光电倍增管的负反馈盖革模式对强光脉冲更加安全,操作也更加简单。高的输出信号水平不但有利于提高探测器的灵敏度,还有利于增加探测器的抗干扰和抗环境变化能力。另外,硅光电倍增管比传统的光电倍增管体积小很多,由此实现了整个背散探测器紧凑的结构,且硅光电倍增管体积小,安装在闪烁体1和透光载体2的侧面,也不会对盲区(多个探测器并排安装时,没有被闪烁体1覆盖的区域)造成大的改变。
由图1可知,在本实施方式中,该闪烁体1和透光载体2组成“三明治”的夹心结构,从被扫描物体反射回来的背散射X射线与位于图1中的位于上部部位的第一层闪烁体1相互作用后,产生的荧光光子穿透闪烁体1和透光载体2相交的界面进入到透光载体2中,并在透光载体2经过若干次反射后最终被光传感器3的光敏面收集。在图1中的箭头表示了X射线与荧光光子的行进路径。由图1中可以看出,部分的X光并未被图1上层的闪烁体吸收的情况下,这些X射线穿透透光载体2后到达图1中位于下部部位的位于透光载体2下方的第二层闪烁体,并与该第二层的闪烁体相互作用并产生荧光光子。如此一来,就能够显著地提高X射线的吸收效率,提高了对X射线的探测效率。
进一步而言,在本实施方式中的闪烁体1和透光载体2还可以制成“五明治”、“七明治”等这样的更多层的结构,也就是说,透光载体2可以层叠设置有多个,在每个透光载体2的两个透光平面上均贴合有一层闪烁体。这里所说的多个透光载体2,表示的是透光载体2的数量为两个或两个以上,随着透光载体2的数量的增加,这样就能够使得一部分的X射线穿出一个透光载体后,会再进入另一个透光载体中,由此更进一步提高对X射线的吸收探测效率。此外,在透光载体2两侧的两层闪烁体1可以选择不同的材质,例如上层闪烁体选用GOS膜,下层为塑料闪烁体,这样可以利用不同种类的闪烁体来探测X射线的低能和高能部分。
更优选的方式是采用上述的多组“三明治”结构,即在层叠设置多个透光载体的基础上,将每个透光载体的闪烁体设置为不同材质,例如,第一个透光载体的闪烁体为GOS膜,第二个透光载体上的闪烁体为塑料闪烁体。设置不同材质的闪烁体后,上面一组或多组探测背散射X射线中的低能部分,下面一组或多组探测背散X射线中的高能部分,形成双能探测器。也可多组进行分配,形成多能探测器,以进行物质识别。多个透光载体之间可以压合贴实,也可以相互留有一定的间隙。
更进一步而言,还可以在相邻两个透光载体之间进一步设置滤波片,使得特定的 X射线能够进入透光载体中,由此可以用以更好的进行物质识别。滤波片和透光载体之间可以压合贴实,也可以相互留有一定的间隙。
参见图2及图3,在本实施方式中,该背散射探测模块还包括金属外壳8和PCB板6。金属外壳8是由拉伸工艺制造的,能够防止外部射线(如宇宙射线、多次散射的散射射线等)的射入,它的下部具有开口,PCB板6用于封盖该开口。闪烁体1和透光载体2被放置在金属外壳8的内部。金属外壳8的内表面经过避光处理或者涂有反射层,以尽可能地避免非背散射X射线的干扰。在金属外壳8的内表面的顶部位置设置有用于对顶层的闪烁体进行压接的弹性材料4,在PCB板6上设有对位于底层的闪烁体进行支撑的硬支撑结构5。在PCB板6与金属外壳8之间还设置有密封圈7。装上PCB板6后,该PCB板6和金属外壳8对上下两侧的闪烁体进行挤压,这样能够保证闪烁体1和透光载体2的稳定性,避免两者发生晃动。密封圈7也可与硬支撑结构5作为同一结构,即该硬支撑结构5同时具有支撑和密封的双重作用。该硬支撑结构5大体上支撑闪烁体1的两端,在硬支撑结构5与闪烁体1之间还可以设有对闪烁体1进行辅助支撑的辅助支撑机构。该辅助支撑机构能够对闪烁体的中部位置提供支撑,使得闪烁体更加稳定。在使用时,还可以根据背散射X射线能量高低选择入射面。当背散射X射线能量较高时,可以选择金属外壳8作为入射面,这样能够有效保护闪烁体、透光载体等探测器元件,当背散射X射线能量较低时,选用PCB板作为入射面,能够提高探测效率。在闪烁体和透光载体的所有暴露表面均镜面抛光或者涂有反射层,使得荧光光子的路径尽可能被限制在闪烁体、透光载体和光传感器内。
参见图3,本实施方式的背散射探测模块使用过程如下。X光源11发射出X光束13,该X光束13射向物体12,并在物体12上产生背散射,背散射X射线14从物体的表面向四周发射,在X光源11的两侧布置了两个本实用新型的背散射探测模块10,这两个背散射探测模块10将背散射X射线14转换为电信号,以供后续的电子设备对电信号进行分析处理。
本公开的背散射探测模块,采用至少两层闪烁体1以及透光载体2来吸收X射线,极大地提高了探测效率,并结合多层闪烁体组合,可以更大幅度提高探测效率,或实现双能探测(多能探测)以用于物质识别。本探测模块利用透光载体作为导光材料,并在端面设置光传感器,透光载体不仅能够传输荧光光子,还能够改变光路,极大地减小了背散射探测器的厚度。本探测模块进一步利用硅光电倍增管SiPM作为光 传感器后,能够进一步减小体积,减小探测死区。本探测模块采用模块化结构,在结构和抗震性上均为模块化设计,结构紧凑、安装方便、抗震性强,还能够有效地阻挡外部干扰和可见光。本探测模块可以根据背散射X射线能量高低选择不同的入射面,既能够有效保护探测器元件,也能够尽量大的增大背散穿透深度。
实施方式二
如图4所示,本公开实施方式公开的背散射探测模块与实施方式一的结构基本相同,同样包括透光载体、两层闪烁体以及光传感器,其与实施方式一的不同之处在于,透光载体包括两个三棱镜221和222,三棱镜221和三棱镜222各自具有一个全反射面以及一出光端面。这两个全反射面相互粘结,以使这两个三棱镜221和222组成长方体结构。在三棱镜221的出光端面上设置有光传感器231,在三棱镜222的出光端面上设有光传感器232。闪烁体211产生的荧光光子经过三棱镜221的全反射面反射后,到达光传感器231。在闪烁体212上产生的荧光光子经过三棱镜222的全反射面反射后,到达光传感器232。
实施方式三
参见图5至图10,本实施方式的背散射探测模块与实施方式一和二相同的地方不再赘述,其不同之处在于,在本实施方式中的透光载体2包括多个并排设置的圆形或方形的光纤。其中图5显示的是圆形光纤的排列方式的主视图,图6显示的是方形的光纤的排列方式的主视图,图7显示的是图5及图6所示的光纤在排列时的左视图。在本实施方式中,光纤排列为板状的结构。光纤与闪烁体1进行光学粘接,光纤的端面与光传感器3的光敏面进行光学粘接。光纤的其余表面可以涂反射层,使得荧光光子只能从光纤到达光传感器。
图8显示的是对光纤进行处理的示意图。如图8所示,每个光纤可以独立连接光传感器3,也可将光纤拉伸融合为一体并形成整体的出光端面,然后在与光传感器3进行连接。此外,图9是对光纤进行捆绑的示意图。如图9所示,还可以将透光载体2中的各个光纤捆成一个光纤束,对光纤束的端面进行修正后,在远离闪烁体1的一端与光传感器3连接。图10是将光纤固定于金属壳体的示意图。如图10所示,当光纤位于金属外壳8内时,可以在PCB板6上设置相应的保护套9,用来对光传感器3进行保护和限位,防止其晃动。
当透光载体2采用光纤时,可以利用多个光纤进行拼接,因而透光载体2在实现大面积的同时,能够显著地降低成本。光纤还可以选用移波光纤,使得闪烁体产生的荧光光谱与光传感器的光谱响应相匹配。
以上具体地示出和描述了本公开的示例性实施方式。应该理解,本公开不限于所公开的实施方式,相反,本公开意图涵盖包含在所附权利要求的精神和范围内的各种修改和等效布置。

Claims (18)

  1. 一种背散射探测模块,其特征在于,包括:
    板状的透光载体,由可供荧光光子透过的材料制作,具有两个相对的透光平面以及至少一个出光端面,所述出光端面位于两个所述透光平面之间;
    两层闪烁体,分别固定贴合于两个所述透光平面;
    光传感器,耦合于所述出光端面。
  2. 根据权利要求1所述的背散射探测模块,其特征在于,所述透光载体层叠设置有多个,每个所述透光载体的两个透光平面上均贴合有一层所述闪烁体。
  3. 根据权利要求1或2所述的背散射探测模块,其特征在于,所述透光载体为整体的矩形板。
  4. 根据权利要求1或2所述的背散射探测模块,其特征在于,所述透光载体包括两个三棱镜,两个所述三棱镜各自具有一全反射面以及一出光端面,两个所述全反射面相互粘结以使两个所述三棱镜组成长方体结构,两个所述出光端面上各设置有一个光传感器。
  5. 根据权利要求1或2所述的背散射探测模块,其特征在于,所述透光载体包括多个并排设置的圆形或方形的光纤,所述光纤与所述闪烁体光学粘接,所述光纤的端面与所述光传感器光纤粘接。
  6. 根据权利要求5所述的背散射探测模块,其特征在于,每个所述光纤的端面各连接有一个所述光传感器。
  7. 根据权利要求5所述的背散射探测模块,其特征在于,所述光纤拉伸融合为一体并形成所述出光端面。
  8. 根据权利要求5所述的背散射探测模块,其特征在于,多个所述光纤捆成一个光纤束,所述光纤束的端面进行修正后形成所述出光端面并与所述光传感器相连接。
  9. 根据权利要求5所述的背散射探测模块,其特征在于,所述光纤为移波光纤。
  10. 根据权利要求1所述的背散射探测模块,其特征在于,还包括下部开口的金属外壳以及用于封盖所述开口的PCB板,所述PCB板上设有对位于底层的闪烁体进行支撑的硬支撑结构,所述金属外壳的内表面的顶部位置设有用于对位于顶层的闪烁体进行压接的弹性材料,所述PCB板与金属外壳之间设有密封圈。
  11. 根据权利要求10所述的背散射探测模块,其特征在于,所述密封圈与硬支撑结构为同一结构。
  12. 根据权利要求11所述的背散射探测模块,其特征在于,所述硬支撑结构与所述闪烁体之间设有对闪烁体进行辅助支撑的辅助支撑机构。
  13. 根据权利要求10所述的背散射探测模块,其特征在于,所述金属外壳的内表面经过避光处理或涂有反射层。
  14. 根据权利要求1所述的背散射探测模块,其特征在于,所述光传感器为光电倍增管或硅光电二极管。
  15. 根据权利要求1所述的背散射探测模块,其特征在于,所述闪烁体和透光载体的所有暴露表面均镜面抛光或者涂有反射层。
  16. 根据权利要求1所述的背散射探测模块,其特征在于,两层所述闪烁体为不同材质的闪烁体。
  17. 根据权利要求2所述的背散射探测模块,其特征在于,每个所述透光载体上的闪烁体的材质不同。
  18. 根据权利要求17所述的背散射探测模块,其特征在于,相邻两个所述透光载体之间设置有滤波片。
PCT/CN2018/088832 2017-06-20 2018-05-29 背散射探测模块 WO2018233456A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/624,753 US20210141103A1 (en) 2017-06-20 2018-05-29 Backscatter detection module
DE112018003135.7T DE112018003135T5 (de) 2017-06-20 2018-05-29 Rückstreudetektionsmodul

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710469197.7 2017-06-20
CN201710469197.7A CN107045138B (zh) 2017-06-20 2017-06-20 背散射探测模块

Publications (1)

Publication Number Publication Date
WO2018233456A1 true WO2018233456A1 (zh) 2018-12-27

Family

ID=59546963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/088832 WO2018233456A1 (zh) 2017-06-20 2018-05-29 背散射探测模块

Country Status (4)

Country Link
US (1) US20210141103A1 (zh)
CN (1) CN107045138B (zh)
DE (1) DE112018003135T5 (zh)
WO (1) WO2018233456A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107045138B (zh) * 2017-06-20 2024-03-22 同方威视技术股份有限公司 背散射探测模块
JP7057084B2 (ja) * 2017-09-14 2022-04-19 キヤノン株式会社 放射線検出器および放射線検出システム
CN207752159U (zh) * 2017-09-27 2018-08-21 清华大学 阵列式大面积总放探测装置
CN107942367A (zh) * 2017-11-24 2018-04-20 合肥吾法自然智能科技有限公司 一种新型的γ光子高空间分辨率探测装置
CN113933888A (zh) * 2020-07-14 2022-01-14 中国科学技术大学 一种宇宙线缪子散射成像探测器
CN114114374A (zh) * 2021-11-22 2022-03-01 中国原子能科学研究院 一种闪烁体阵列及闪烁探测器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247774A (en) * 1978-06-26 1981-01-27 The United States Of America As Represented By The Department Of Health, Education And Welfare Simultaneous dual-energy computer assisted tomography
CN101604023A (zh) * 2008-06-12 2009-12-16 清华大学 用于辐射探测的阵列固体探测器
CN101937094A (zh) * 2009-06-30 2011-01-05 同方威视技术股份有限公司 双能x射线阵列探测器
CN103376461A (zh) * 2012-04-19 2013-10-30 中国科学院高能物理研究所 中子位置探测器、探测系统和探测方法
CN103760588A (zh) * 2005-04-26 2014-04-30 皇家飞利浦电子股份有限公司 光谱ct的检测器阵列
CN104035123A (zh) * 2014-06-27 2014-09-10 中国电子科技集团公司第八研究所 一种基于闪烁体与光纤耦合的β表面污染探测装置及方法
CN104391316A (zh) * 2014-12-08 2015-03-04 上海太弘威视安防设备有限公司 三维空间曲面多能量闪烁探测器
CN105810281A (zh) * 2016-05-03 2016-07-27 北京华力兴科技发展有限责任公司 斩波器和背散射成像装置
CN107045138A (zh) * 2017-06-20 2017-08-15 同方威视技术股份有限公司 背散射探测模块

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624438B2 (en) * 1997-11-20 2003-09-23 Orex Computed Radiography Ltd. Scanning apparatus
JPH11231056A (ja) * 1998-02-12 1999-08-27 Matsushita Electric Ind Co Ltd 基板検査用x線カメラおよびx線基板検査装置ならびにx線基板検査方法
CN102354696B (zh) * 2011-07-22 2013-05-01 上海奕瑞光电子科技有限公司 X射线探测器
CN104749604B (zh) * 2013-12-30 2018-06-01 同方威视技术股份有限公司 多技术融合闪烁探测器装置
US20160231439A1 (en) * 2015-02-06 2016-08-11 Thermo Fisher Scientific Messtechnik Gmbh Device and method for detection of radioactive radiation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247774A (en) * 1978-06-26 1981-01-27 The United States Of America As Represented By The Department Of Health, Education And Welfare Simultaneous dual-energy computer assisted tomography
CN103760588A (zh) * 2005-04-26 2014-04-30 皇家飞利浦电子股份有限公司 光谱ct的检测器阵列
CN101604023A (zh) * 2008-06-12 2009-12-16 清华大学 用于辐射探测的阵列固体探测器
CN101937094A (zh) * 2009-06-30 2011-01-05 同方威视技术股份有限公司 双能x射线阵列探测器
CN103376461A (zh) * 2012-04-19 2013-10-30 中国科学院高能物理研究所 中子位置探测器、探测系统和探测方法
CN104035123A (zh) * 2014-06-27 2014-09-10 中国电子科技集团公司第八研究所 一种基于闪烁体与光纤耦合的β表面污染探测装置及方法
CN104391316A (zh) * 2014-12-08 2015-03-04 上海太弘威视安防设备有限公司 三维空间曲面多能量闪烁探测器
CN105810281A (zh) * 2016-05-03 2016-07-27 北京华力兴科技发展有限责任公司 斩波器和背散射成像装置
CN107045138A (zh) * 2017-06-20 2017-08-15 同方威视技术股份有限公司 背散射探测模块

Also Published As

Publication number Publication date
CN107045138B (zh) 2024-03-22
DE112018003135T5 (de) 2020-03-05
CN107045138A (zh) 2017-08-15
US20210141103A1 (en) 2021-05-13

Similar Documents

Publication Publication Date Title
WO2018233456A1 (zh) 背散射探测模块
RU2411543C2 (ru) Детектор гамма- и нейтронного излучения
US7626176B2 (en) X-ray detector with in-pixel processing circuits
JP4406699B2 (ja) 光ファイバを利用した放射線及び中性子検出器
US8314399B2 (en) Radiation detector with optical waveguide and neutron scintillating material
EP3014302B1 (en) Detector arrangement for the detection of ionizing radiation and method for operating such a detector arrangement
CN205720688U (zh) 用于检测放射性辐射的装置
US20120032087A1 (en) Light collecting optical fiber, photodetection system, optical coupling structure and radio ray detection system
JPH067160B2 (ja) 放射線検出器
JP2010096648A (ja) 放射線−光変換素子、放射線検出器
CN206906590U (zh) 背散射探测模块
JP4724007B2 (ja) 放射線検出器
RU2377598C2 (ru) Сцинтилляционный детектор
JP2009031132A (ja) 放射線検出器
JP5032417B2 (ja) 放射線検出器
JP4635212B2 (ja) 光ファイバを利用した放射線又は中性子検出器
JP4635210B2 (ja) 光ファイバを利用した放射線又は中性子の検出器
US8916828B2 (en) Radiation detection apparatus and method of using same
JP2010169673A (ja) 放射線検出器
RU79683U1 (ru) Сцинтилляционный детектор
CN216696122U (zh) 一种用于x射线背散射探测器装置
RU79681U1 (ru) Экспресс-детектор
RU79682U1 (ru) Сцинтилляционный детектор
RU2373556C2 (ru) Экспресс-детектор
RU2371739C1 (ru) Сцинтилляционный детектор

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18820248

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18820248

Country of ref document: EP

Kind code of ref document: A1