WO2018233416A1 - 指纹识别及像素驱动电路以及具有该电路的显示装置 - Google Patents

指纹识别及像素驱动电路以及具有该电路的显示装置 Download PDF

Info

Publication number
WO2018233416A1
WO2018233416A1 PCT/CN2018/087447 CN2018087447W WO2018233416A1 WO 2018233416 A1 WO2018233416 A1 WO 2018233416A1 CN 2018087447 W CN2018087447 W CN 2018087447W WO 2018233416 A1 WO2018233416 A1 WO 2018233416A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
circuit
sub
pixel driving
fingerprint
Prior art date
Application number
PCT/CN2018/087447
Other languages
English (en)
French (fr)
Inventor
杨盛际
董学
吕敬
陈小川
玄明花
韩卫锋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/322,027 priority Critical patent/US10789442B2/en
Publication of WO2018233416A1 publication Critical patent/WO2018233416A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/12Fingerprints or palmprints
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/60OLEDs integrated with inorganic light-sensitive elements, e.g. with inorganic solar cells or inorganic photodiodes
    • H10K59/65OLEDs integrated with inorganic image sensors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2354/00Aspects of interface with display user

Definitions

  • the present disclosure relates to the field of display technologies, and in particular, to a fingerprint recognition and pixel driving circuit and a display device having the same.
  • the pixel driving circuit design is a core technology of an organic light emitting display such as an AM-OLED (Active Matrix Organic Light Emitting Diode) display.
  • Organic light-emitting diodes OLEDs
  • OLEDs are current-driven and require a constant current to control illumination.
  • the threshold voltage of the driving transistor of each pixel point is uneven, which causes the current flowing through each pixel point OLED to change, thereby affecting the whole The display of the image.
  • the capacitive fingerprint recognition technology can be realized based on the semiconductor silicon capacitance effect.
  • the image quality of the fingerprint recognition is good, generally no distortion, small size, and high security.
  • the pixel driving circuit and the fingerprint recognition circuit are usually separately provided, and thus the functions are simply added up in combination.
  • Embodiments of the present disclosure propose a fingerprint recognition and pixel driving circuit and a display device including such a circuit.
  • the fingerprint recognition and pixel driving circuit includes: a first scan line, a second scan line, a third scan line, a light emission control line, a data write line, a pixel driving sub-circuit, and a fingerprint identification sub-circuit.
  • the pixel driving sub-circuit has a first scanning end, a second scanning end, a third scanning end, an illumination control end, and a data writing end, and the first scanning end of the pixel driving sub-circuit is connected to the first scanning line to receive a first scan signal, a second scan end of the pixel drive sub-circuit is connected to the second scan line to receive a second scan signal, and a third scan end of the pixel drive sub-circuit is connected to the third scan line Receiving a third scan signal, the light emission control end of the pixel driving sub-circuit is connected to the light emission control line to receive an emission control signal, and the data writing end of the pixel driving sub-circuit is connected to the data writing line to Receiving a data signal, the pixel driving sub-circuit drives the light emitting elements of the pixels to emit light according to the first scan signal, the second scan signal, the third scan signal, the light emission control signal, and the data signal.
  • the fingerprint identification sub-circuit has a first read end and a reset end, and the first read end and the reset end are electrically connected to the first scan line, the second scan line, and the third scan line, respectively Any two of the two to generate fingerprint data according to any two of the first scan signal, the second scan signal, and the third scan signal.
  • the fingerprint recognition and pixel driving circuit further includes a read line
  • the fingerprint identification sub-circuit further has a second read end, the second read end of the fingerprint identification sub-circuit and the read line Connected, the fingerprint identification sub-circuit outputs the fingerprint data to the read line through the second read end.
  • the fingerprint identification sub-circuit includes: a reset signal providing end for providing a reset signal; a detecting electrode for forming a detecting capacitance with the finger; The fingerprint identification sub-circuit resets the potential of the detection electrode by using a reset signal of the reset signal supply end in response to receiving a valid level signal from the reset terminal.
  • the fingerprint identification sub-circuit further includes: a reference capacitor, one end of the reference capacitor is connected to the detecting electrode and forms a first node; and the first transistor, the control end of the first transistor is a reset end of the fingerprint identification sub-circuit, a first end of the first transistor is connected to the reset signal supply end, a second end of the first transistor is connected to the first node, and a second transistor is a control end of the second transistor is connected to the first node, a first end of the second transistor is connected to the reset signal supply end, and a third transistor, a control end of the third transistor is The other end of the reference capacitor is connected to form a second node, the first end of the third transistor is connected to the second end of the second transistor, and the second end of the third transistor is the fingerprint identification sub-circuit a second read end, the second node serving as a first read end of the fingerprint identification sub-circuit.
  • the first read end of the fingerprint identification sub-circuit is connected to the third scan line, and the reset end of the fingerprint recognition sub-circuit is connected to the second scan line.
  • the first read end of the fingerprint identification sub-circuit is connected to the first scan line
  • the reset end of the fingerprint recognition sub-circuit is connected to the second scan line
  • the first read end of the fingerprint identification sub-circuit is connected to the first scan line
  • the reset end of the fingerprint recognition sub-circuit is connected to the third scan line
  • the pixel driving sub-circuit includes: a driving transistor for driving the light-emitting element of the pixel to emit light; and a threshold voltage compensation circuit connected to the driving transistor for compensating a voltage of the control terminal of the driving transistor In order to eliminate the influence of the threshold voltage of the driving transistor on the illuminating current when the illuminating element emits light.
  • the pixel driving sub-circuit further includes: a fourth transistor, a control end of the fourth transistor is an emission control end of the pixel driving sub-circuit, and a first end of the fourth transistor is used Receiving a power supply voltage, a second end of the fourth transistor is connected to the first end of the driving transistor, a second end of the driving transistor and a control end are connected to the threshold voltage compensation circuit, a seventh transistor, A first end of the seventh transistor is coupled to the second end of the drive transistor, a second end of the seventh transistor is coupled to the light emitting element, and a control terminal of the seventh transistor is coupled to the threshold voltage compensation circuit.
  • the threshold voltage compensation circuit includes: a storage capacitor, one end of the storage capacitor is connected to the control terminal of the driving transistor and forms a third node;
  • a fifth transistor a first end of the fifth transistor is grounded, a second end of the fifth transistor is connected to the other end of the storage capacitor and forms a fourth node; and a sixth transistor is controlled by the sixth transistor And a control end of the fifth transistor, and as a third scan end of the pixel driving sub-circuit, a first end of the sixth transistor is connected to the third node, and a second end of the sixth transistor The end is connected to the second end of the driving transistor; the eighth transistor, the control end of the eighth transistor is connected to the control end of the seventh transistor, and serves as a first scanning end of the pixel driving sub-circuit a first end of the eighth transistor is a data write end of the pixel driving sub-circuit, a second end of the eighth transistor is connected to the fourth node, and a ninth transistor, a control end of the ninth transistor For the second scan end of the pixel driving sub-circuit, the first end of the ninth transistor is grounded, and the second end of the ninth transistor is connected to the third node.
  • the working process of the fingerprint identification sub-circuit includes a fingerprint recognition reset phase and a fingerprint acquisition phase, in which the second transistor and the third transistor are turned off, the first a transistor is turned on, the reset signal resets a potential of the detecting electrode by the first transistor; in the fingerprint collecting phase, the first transistor is turned off, and the second transistor is according to the detecting capacitor The capacitance value generates a corresponding leakage current, and the leakage current is output through the third transistor.
  • the drive transistor, and the first to ninth transistors are all P-type transistors.
  • the operation of the pixel driving subcircuit includes a display reset phase, a display charging phase, a compensation hopping phase, and an illuminating phase.
  • the display reset phase the second scan signal is at a low level, and the first scan signal, the third scan signal, and the light emission control signal are at a high level
  • the fourth transistor is to the The eighth transistor is turned off, the ninth transistor is turned on to reset the storage capacitor; in the display charging phase, the light emission control signal and the third scan signal are at a low level and the first scan signal And the second scan signal is at a high level, the seventh transistor, the eighth transistor, and the ninth transistor are turned off, and the fourth transistor, the fifth transistor, the sixth transistor, and the driving transistor are turned on,
  • the supply voltage charges the storage capacitor through the fourth transistor, the drive transistor, and the sixth transistor; in the compensatory transition phase, the first scan signal is at a low level, and the illuminating
  • the fourth transistor is to the The eighth transistor is turned off, the ninth transistor is turned on to reset the storage capacitor
  • a first read end of the fingerprint identification sub-circuit is connected to the third scan line, and a reset end of the fingerprint identification sub-circuit is connected to the second scan line, the fingerprint recognition
  • the fingerprint recognition reset phase of the sub-circuit coincides with the display reset phase of the pixel driving sub-circuit
  • the fingerprint acquisition phase of the fingerprint recognition sub-circuit coincides with the display charging phase of the pixel driving sub-circuit
  • the fingerprint The identification sub-circuit stops operating during the compensation hopping phase and the illuminating phase of the pixel driving sub-circuit.
  • the first read end of the fingerprint identification sub-circuit is connected to the first scan line, and when the reset end of the fingerprint identification sub-circuit is connected to the second scan line, the fingerprint
  • the fingerprint recognition reset phase of the identification sub-circuit coincides with the display reset phase of the pixel driving sub-circuit
  • the fingerprint acquisition phase of the fingerprint recognition sub-circuit includes a compensation transition phase and an illumination phase of the pixel driving sub-circuit
  • the fingerprint identification sub-circuit stops operating during a display charging phase of the pixel driving sub-circuit.
  • a first read end of the fingerprint identification sub-circuit is connected to the first scan line, and when the reset end of the fingerprint identification sub-circuit is connected to the third scan line, the fingerprint
  • the fingerprint recognition reset phase of the identification sub-circuit coincides with the display charging phase of the pixel driving sub-circuit
  • the fingerprint acquisition phase of the fingerprint recognition sub-circuit includes a compensation hopping phase and an illuminating phase of the pixel driving sub-circuit
  • the fingerprint recognition sub-circuit stops operating during a display reset phase of the pixel drive sub-circuit.
  • Another embodiment of the present disclosure provides a display device including the fingerprint recognition and pixel driving circuit of any of the foregoing embodiments.
  • two adjacent fingerprint recognition and pixel drive circuits of the plurality of fingerprint recognition and pixel drive circuits are separated by at least one pixel.
  • FIG. 1 is a block schematic diagram of a fingerprint recognition and pixel driving circuit in accordance with an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of fingerprint recognition and fingerprint recognition of a pixel driving circuit according to an embodiment of the present disclosure
  • FIG. 3 is a circuit schematic diagram of a fingerprint recognition and pixel driving circuit in accordance with one embodiment of the present disclosure
  • FIG. 4 is a timing chart showing the operation of a fingerprint recognition and pixel driving circuit according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of an operation state of a fingerprint recognition and pixel driving circuit in a fingerprint recognition reset phase and a display reset phase according to an embodiment of the present disclosure
  • FIG. 6 is a timing diagram of operations for fingerprint recognition and pixel driving circuits in a fingerprint recognition reset phase and a display reset phase, in accordance with an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of an operation state of a fingerprint recognition and pixel driving circuit in a fingerprint collecting phase and a display charging phase according to an embodiment of the present disclosure
  • FIG. 8 is a timing diagram of operation of a fingerprint recognition and pixel driving circuit in a fingerprint acquisition phase and a display charging phase, according to an embodiment of the present disclosure
  • FIG. 9 is a schematic diagram showing the operation of a fingerprint recognition sub-circuit in a fingerprint recognition and pixel driving circuit according to an embodiment of the present disclosure
  • FIG. 10 is a schematic diagram showing the operation of a fingerprint recognition sub-circuit identifying a fingerprint recess in a fingerprint recognition and pixel driving circuit according to an embodiment of the present disclosure
  • FIG. 11 is a schematic diagram showing the operation of a fingerprint recognition sub-circuit identifying a fingerprint convex portion in a fingerprint recognition and pixel driving circuit according to an embodiment of the present disclosure
  • FIG. 12 is a schematic diagram of an operation state of a fingerprint recognition and pixel driving circuit in a fingerprint stagnation phase and a compensation hopping phase according to an embodiment of the present disclosure
  • FIG. 13 is a timing diagram of operation of a fingerprint recognition and pixel driving circuit in a fingerprint stagnation phase and a compensation hopping phase, according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of an operation state of a fingerprint recognition and pixel driving circuit in a fingerprint recognition reset phase and a display reset phase according to an embodiment of the present disclosure
  • 15 is a timing chart of operation of a fingerprint recognition and pixel driving circuit in a fingerprint stagnation phase and an illuminating phase, according to an embodiment of the present disclosure
  • 16 is a circuit schematic diagram of a fingerprint recognition and pixel driving circuit according to another embodiment of the present disclosure.
  • 17 is a timing chart showing the operation of a fingerprint recognition and pixel driving circuit according to another embodiment of the present disclosure.
  • FIG. 18 is a circuit schematic diagram of a fingerprint recognition and pixel driving circuit according to still another embodiment of the present disclosure.
  • FIG. 19 is an operational timing diagram of a fingerprint recognition and pixel driving circuit according to still another embodiment of the present disclosure.
  • FIG. 20 is a schematic diagram showing the arrangement of fingerprint recognition and pixel driving circuits in a display device according to an embodiment of the present disclosure.
  • the fingerprint recognition and pixel driving circuit includes: a first scan line Scan1, a second scan line Scan2, a third scan line Scan3, an emission control line Em, a data write line Vdata, a pixel drive sub-circuit 10, and a fingerprint.
  • the sub-circuit 20 is identified.
  • the pixel driving sub-circuit 10 has a first scanning end, a second scanning end, a third scanning end, an illumination control end and a data writing end.
  • the first scanning end of the pixel driving sub-circuit 10 is connected to the first scanning line Scan1 to receive the first a scan signal
  • the second scan end of the pixel drive sub-circuit 10 is connected to the second scan line Scan2 to receive the second scan signal
  • the third scan end of the pixel drive sub-circuit 10 is connected to the third scan line Scan3 to receive the third scan.
  • the signal, the light-emitting control end of the pixel driving sub-circuit 10 is connected to the light-emitting control line Em to receive the light-emitting control signal, and the data writing end of the pixel driving sub-circuit 10 is connected to the data writing line Vdata to receive the data signal, and the pixel driving sub-circuit 10
  • the fingerprint recognition sub-circuit 20 has a first read end and a reset end.
  • the first read end and the reset end of the fingerprint recognition sub-circuit 20 share the first scan line Scan1 and the second scan line Scan2 with the pixel drive sub-circuit 10.
  • Any two of the third scan lines Scan3, the fingerprint recognition sub-circuit 20 receives any two of the first scan signal, the second scan signal, and the third scan signal through the first read end and the reset end, according to the first Any two of a scan signal, a second scan signal, and a third scan signal identify the fingerprint of the finger to generate fingerprint data of the finger.
  • the fingerprint recognition and pixel driving circuit further includes a read line Y-Read
  • the fingerprint identification sub-circuit 20 further has a second read end, and the second read end of the fingerprint identification sub-circuit 20 and the read The take-up line Y-Read is connected, and the fingerprint recognition sub-circuit 20 outputs the fingerprint data of the finger to the read line Y-Read through the second read end.
  • the fingerprint identification sub-circuit 20 can also be connected to the terminal through the read line Y-Read to output the fingerprint data of the finger to the terminal, and the terminal can determine the fingerprint concave and convex information of the finger by collecting the fingerprint data of the finger.
  • the fingerprint recognition sub-circuit can generate fingerprint data of the finger according to the uneven stripe of the finger surface, and the fingerprint data of the finger is collected by the terminal to determine the fingerprint information.
  • the pixel driving sub-circuit 10 generates an illuminating current according to the first scan signal, the second scan signal, the third scan signal, the illuminating control signal, and the data signal to drive the illuminating element to emit light, thereby implementing display.
  • the fingerprint recognition sub-circuit 20 generates fingerprint data of the finger according to any two of the first scan signal, the second scan signal and the third scan signal, thereby implementing the fingerprint recognition function.
  • the scanning lines of the pixel driving sub-circuit 10 and the data signal lines for fingerprint recognition and the like are compatible, and efficient integration of multiple functions is realized.
  • the substrate of the display device is formed while the pixel driving sub-circuit 10 having the display driving function is formed, and the fingerprint recognition sub-circuit 20 is also implanted in the pixel region to realize integration of display and fingerprint recognition functions.
  • the fingerprint recognition sub-circuit 20 includes a reset signal supply terminal Vcom for providing a reset signal, and a detection electrode d for forming a detection capacitance with a finger.
  • the fingerprint recognition sub-circuit 20 resets the potential of the detection electrode with a reset signal of the reset signal supply terminal in response to receiving a valid level signal from the reset terminal.
  • the fingerprint recognition sub-circuit 20 further includes a reference capacitance Cs, a first transistor M1, a second transistor M2, and a third transistor M3.
  • the reset signal providing terminal Vcom is configured to provide a reset signal; the detecting electrode d is configured to form a detecting capacitance with the finger; one end of the reference capacitor Cs is connected to the detecting electrode d and has a first node; and the control end of the first transistor M1 is fingerprint identification
  • the reset end of the sub-circuit 20 the first end of the first transistor M1 is connected to the reset signal supply terminal Vcom, the second end of the first transistor M1 is connected to the first node; and the control end of the second transistor is connected to the first node a first terminal of the second transistor is connected to the reset signal supply terminal Vcom; a control terminal of the third transistor M3 is connected to the other end of the reference capacitor Cs and forms a second node, and the first terminal and the second transistor of the third transistor M3
  • the second end of the third transistor M3 is connected to the second read end of the fingerprint identification sub-circuit 20, and the second node is used as the first read end of the fingerprint identification sub-circuit 20.
  • the fingerprint identification sub-circuit implements a fingerprint recognition function
  • the fingerprint identification sub-circuit includes a first transistor M1, a second transistor M2, and a third transistor M3, and the first transistor M1 is a signal reset transistor for implementing signal reset.
  • the second transistor is a signal amplifying transistor for realizing signal amplification
  • the third transistor M3 is a switching transistor for controlling fingerprint output of the finger to the reading line Y-Read.
  • the fingerprint identification sub-circuit further includes a detecting electrode d and a reference capacitor Cs, wherein the detecting electrode d is configured to form a detecting capacitance with the finger, so that the fingerprint identifying sub-circuit determines the concave-convex information of the fingerprint according to the capacitance value of the detecting capacitance, thereby acquiring the fingerprint data of the finger.
  • the fingerprint recognition sub-circuit further includes a reset signal supply terminal Vcom connected to the first terminals of the first transistor M1 and the second transistor M2 to provide a reset voltage signal.
  • the first read end and the reset end of the fingerprint recognition sub-circuit 20 share the second scan line Scan2 and the third scan line Scan3 with the pixel drive sub-circuit 10.
  • the first read end (ie, the second node) of the fingerprint identification sub-circuit 20 is connected to the third scan line Scan3, and the reset end of the fingerprint recognition sub-circuit 20 (ie, the control end of the first transistor M1) and the second scan. Line Scan2 is connected.
  • FIGS. 3 and 4 when the first read end and the reset end of the fingerprint recognition sub-circuit 20 share the second scan line Scan2 and the third scan line Scan3 with the pixel drive sub-circuit 10.
  • the first read end (ie, the second node) of the fingerprint identification sub-circuit 20 is connected to the third scan line Scan3, and the reset end of the fingerprint recognition sub-circuit 20 (ie, the control end of the first transistor M1) and the second scan.
  • Line Scan2 is connected.
  • the first read end (ie, the second node) of the fingerprint identification sub-circuit 20 is connected to the first scan line Scan1, and the reset end of the fingerprint recognition sub-circuit 20 (ie, the control end of the first transistor M1) and the third scan line Scan3 Connected.
  • the pixel driving sub-circuit 10 includes: a driving transistor DTFT and a threshold voltage compensation circuit connected to the driving transistor, and the threshold voltage compensation circuit is configured to perform voltage on the control terminal of the driving transistor. Compensation is performed to eliminate the influence of the threshold voltage of the driving transistor on the light-emitting current when the light-emitting element emits light.
  • the threshold voltage compensation circuit includes a storage capacitor Cm, a fifth transistor T5, a sixth transistor T6, an eighth transistor T8, and a ninth transistor T9. In the following, the operation of the threshold voltage compensation circuit will be described.
  • the pixel driving sub-circuit further includes a fourth transistor T4 and a seventh transistor T7 to implement light emission control of the light emitting element.
  • the control terminal of the fourth transistor T4 is an illumination control terminal of the pixel driving sub-circuit 10, which is connected to the illumination control line Em.
  • the first end of the fourth transistor T4 is for receiving the power supply voltage Vdd, and the second end of the fourth transistor T4 is The first end of the driving transistor DTFT is connected; one end of the storage capacitor Cm is connected to the control end of the driving transistor DTFT and forms a third node b; the first end of the fifth transistor T5 is grounded, and the second end of the fifth transistor T5 is connected with the storage capacitor
  • the other end of the Cm is connected to form a fourth node a;
  • the control end of the sixth transistor T6 is connected to the control end of the fifth transistor T5, as the third scanning end of the pixel driving sub-circuit 10, connected to the third scanning line Scan3,
  • the first end of the sixth transistor T6 is connected to the third node b, the second end of the sixth transistor T6 is connected to the second end of the driving transistor DTFT, and the first
  • the second end of the seventh transistor T7 is connected to the light emitting element 30; the control end of the eighth transistor T8 is connected to the control end of the seventh transistor T7 as the first scanning end of the pixel driving sub-circuit 10 and the first scanning line Scan1
  • the first end of the eighth transistor T8 is a data write end of the pixel drive sub-circuit 10, which is connected to the data write line Vdata, and the second end of the eighth transistor T8 is connected to the fourth node a;
  • the ninth transistor T9 The second scanning end of the pixel driving sub-circuit 10 is connected to the second scanning line Scan2.
  • the first end of the ninth transistor T9 is grounded, and the second end of the ninth transistor T9 is connected to the third node b.
  • the pixel driving sub-circuit 10 includes a storage capacitor Cm, a driving transistor DTFT, and four transistors T4 to ninth transistor T9, the fourth to ninth transistors T4 to T9 are switching transistors, and the pixel driving sub-circuit 10 controls the fourth transistor.
  • the T4 to ninth transistor T9 is turned on and off to drive the driving transistor DTFT to generate an emission current to drive the light emitting element 30 to emit light.
  • the pixel driving sub-circuit 10 can also compensate the threshold voltage Vth of the driving transistor DTFT by controlling the fourth transistor T4 to the ninth transistor T9 to be turned on and off, thereby solving the adverse effect caused by the variation of the threshold voltage Vth by the compensation method. .
  • the first scan line Scan1, the second scan line Scan2, the third scan line Scan3, and the light emission control line Em are input signal lines, and the input signal line is used to control pixel driving.
  • the sub-circuit 10 and the switching transistors in the fingerprint recognition sub-circuit 20, that is, the third transistor M3, the fourth transistor T4 to the ninth transistor T9 are turned on and off.
  • the input signal line is in addition to the pixel drive sub-circuit 10
  • the switch signal is input, and the third scan line Scan3 is also used as a line for confirming the X-scan direction of fingerprint recognition, and the second scan line Scan2 serves as a reset line for fingerprint recognition.
  • the plurality of fingerprint recognition and pixel driving circuits correspond to the plurality of pixels, and each of the fingerprint recognition and pixel driving circuits is configured to drive the light-emitting elements 30 of the corresponding pixels to emit light, and identify the fingerprint pressed on the corresponding pixel area. . Since the fingerprint of the finger is determined by the capacitance value of the detecting electrode d corresponding to N (N is an integer greater than 0) pixels, the fingerprint recognition and pixel driving circuit can pass the third scanning line Scan3 and the third when used for fingerprint recognition.
  • the second scan line Scan2 determines the position of the current pixel, that is, the position of the recognized fingerprint, wherein the X-direction coordinate of the fingerprint recognition can be determined by the third scan line Scan3, and the Y-direction coordinate of the fingerprint recognition can be determined by the read line Y-Read.
  • the common third scan line Scan3 and the aforementioned The embodiment of the second scan line Scan2 is similar, except that the X-direction coordinate of the fingerprint recognition can be determined by the first scan line Scan1, and the first read end and the reset end of the fingerprint recognition sub-circuit 20 are shared with the pixel drive sub-circuit 10.
  • the first scan line Scan1 and the third scan line Scan3 are similar to the above-described embodiment in which the third scan line Scan3 and the second scan line Scan2 are shared, except that the X-direction coordinates of the fingerprint recognition can be determined by the first scan line Scan1.
  • the fingerprint recognition and the pixel driving circuit can realize the function integration of the fingerprint recognition and the display driving by means of signal multiplexing, so that the fingerprint recognition function is implanted on the substrate of the display device, and the fingerprint and the fingerprint can be realized by the finger touch screen. To increase the added value of the product.
  • the display substrate can be fabricated by a LTPS (Low Temperature Poly-silicon) process, and a pixel driving sub-circuit 10 satisfying the display driving function is formed on the substrate, and a fingerprint identification sub-circuit can be integrated in the pixel region. 20, thereby achieving integration of display driving and fingerprint recognition functions.
  • LTPS Low Temperature Poly-silicon
  • a "P" type TFT Thin Film Transistor
  • the ninth transistor T9 that is, the transistors in the pixel driving sub-circuit 10 and the fingerprint recognition sub-circuit 20 can all adopt "P" type TFTs, thereby simplifying the process. Process.
  • the working process of the fingerprint identification sub-circuit 20 includes a fingerprint recognition reset phase and a fingerprint acquisition phase in sequence.
  • the fingerprint recognition reset phase the second transistor M2 and the third transistor M3 are turned off, the first transistor M1 is turned on, and the reset signal resets the potential of the detecting electrode d through the first transistor M1;
  • the fingerprint collecting phase the first transistor M1 is turned off, the second transistor M2 and the third transistor M3 are turned on, the second transistor generates a corresponding leak current according to the capacitance value of the detecting capacitor, and outputs a leak current through the third transistor M3.
  • the operation process of the pixel driving sub-circuit 10 includes a display reset phase 1, a display charging phase 2, a compensation hopping phase 3, and an illuminating phase 4, wherein, in the display In the reset phase 1, the first scan signal is at a low level and the second scan signal, the third scan signal, and the light emission control signal are at a high level, the fourth transistor T4 to the eighth transistor T8 are turned off, and the ninth transistor T9 is turned on to enable The storage capacitor Cm is grounded; in the display charging phase 2, the light emission control signal and the third scan signal are at a low level and the first scan signal and the second scan signal are at a high level, and the seventh transistor T7 to the ninth transistor T9 are turned off, The four transistors T4 to the sixth transistor T6 are turned on, and the power source supplies the storage capacitor Cm through the fourth transistor T4, the driving transistor DTFT, and the sixth transistor T6; in the compensation jump phase 3, the first scan signal is at a low level
  • the potential of the control terminal of the transistor DTFT jumps according to the data signal; in the light-emitting phase 4, the first scan signal and the light-emission control signal are at a low level and the second scan signal and the third scan signal are at a high level, and the fifth transistor T5, The sixth transistor T6 and the ninth transistor T9 are turned off, the fourth transistor T4, the seventh transistor T7 and the eighth transistor T8 are turned on, the driving transistor DTFT generates an illuminating current according to the potential of the control terminal of the driving transistor DTFT, and outputs the illuminating light through the seventh transistor T7. A current is supplied to the light emitting element 30 to cause the light emitting element 30 to emit light.
  • the fingerprint recognition sub-circuit 20 when the first read end of the fingerprint recognition sub-circuit 20 is connected to the third scan line Scan3, and the reset end of the fingerprint recognition sub-circuit 20 is connected to the second scan line Scan2, the fingerprint recognition sub-circuit
  • the fingerprint recognition reset phase of 20 is performed simultaneously with the display reset phase 1 of the pixel drive sub-circuit 10
  • the fingerprint acquisition phase of the fingerprint recognition sub-circuit 20 is simultaneously performed with the display charging phase 2 of the pixel drive sub-circuit 10
  • the fingerprint identifier is
  • the circuit 20 stops operating in the compensated transition phase 3 and the illumination phase 4 of the pixel drive sub-circuit 10.
  • the fingerprint recognition sub-circuit 20 When the first read end of the fingerprint recognition sub-circuit 20 is connected to the first scan line Scan1, and the reset end of the fingerprint recognition sub-circuit 20 is connected to the second scan line Scan2, the fingerprint recognition sub-circuit 20 resets the fingerprint identification stage and The display reset phase 1 of the pixel drive sub-circuit 10 is simultaneously performed, and the fingerprint acquisition phase of the fingerprint recognition sub-circuit 20 includes the compensated transition phase 3 and the illumination phase 4 of the pixel drive sub-circuit 10 and the fingerprint recognition sub-circuit 20 is in the pixel driver. The display charging phase 2 of the circuit 10 is stopped.
  • the fingerprint recognition sub-circuit 20 When the first read end of the fingerprint recognition sub-circuit 20 is connected to the first scan line Scan1, and the reset end of the fingerprint recognition sub-circuit 20 is connected to the third scan line Scan3, the fingerprint recognition sub-circuit 20 resets the fingerprint identification stage and The display charging phase 2 of the pixel driving sub-circuit 10 is simultaneously performed, and the fingerprint capturing phase of the fingerprint recognition sub-circuit 20 includes the compensation hopping phase 3 of the pixel driving sub-circuit 10 and the illuminating phase 4, and the fingerprint recognition sub-circuit 20 is in the pixel driving sub-circuit The display reset phase 1 of 10 stops working.
  • the first reading end of the fingerprint identification sub-circuit 20 is connected to the third scanning line Scan3, and the reset end of the fingerprint identification sub-circuit 20 is connected to the second scanning line Scan2.
  • the embodiment of the present disclosure is combined with FIG. 3-15. The entire process of fingerprint identification and pixel drive circuit is explained one by one.
  • the second scan line Scan2 serves as both the scan signal input line of the pixel drive circuit and the reset signal input line for fingerprint recognition
  • the third scan line Scan3 serves as the scan signal input line of the pixel drive circuit.
  • FIG. 5 is a schematic diagram of a conduction path, the conduction path is shown by an arrow in the figure, and FIG. 6 is a signal timing diagram.
  • the second scan signal outputted by the second scan line Scan2 is at a low level, and the low level is supplied to the control terminal of the first transistor M1.
  • the first transistor M1 is turned on, and the reset signal supply terminal Vcom provides an initial reset signal such that the potential of the detecting electrode d is the voltage of the reset signal, and at this time, the second transistor does not satisfy the conduction condition and is in an off state.
  • the third scan signal output from the third scan line Scan3 is at a high level, and the third transistor M3 is also in an off state.
  • the fingerprint recognition reset phase can prepare for the next fingerprint acquisition phase.
  • the operation process of the pixel driving sub-circuit 10 as shown in FIGS. 5 and 6, at this stage, the light emission control signal output from the light emission control line Em is at a high level, and the first scan signal outputted by the first scan line Scan1 is at a high level.
  • the second scan signal outputted by the second scan line Scan2 is at a low level, and the third scan signal outputted by the third scan line Scan3 is at a high level, so that the ninth transistor T9 is turned on, and the fourth transistor T4 to the eighth transistor are turned on. T8 is turned off.
  • one end of the storage capacitor Cm that is, the third node b, can be grounded, and the potential at point b is 0V.
  • FIG. 7 is a schematic diagram of the conduction path, the conduction path is shown by the arrow in the figure, and FIG. 8 is the signal timing diagram.
  • the working process of the fingerprint identification sub-circuit 20 as shown in FIGS. 7 and 8, at this stage, the second scan signal outputted by the second scan line Scan2 is at a high level, and the third scan signal outputted by the third scan line Scan3 is low. At the level, the first transistor M1 is turned off, and the third transistor M3 is turned on.
  • the fingerprint recognition sub-circuit 20 includes, in addition to the reference capacitance Cs, a detection capacitance Cf formed by the finger and the detection electrode d, and the second transistor itself also has a parasitic capacitance Ct.
  • the detecting electrode d of the current pixel forms a detecting capacitance Cf with the finger above the current pixel, and the potential of the control terminal, that is, the gate of the second transistor, varies depending on the magnitude of the detecting capacitance Cf. The larger the detection capacitance Cf is, the smaller the gate potential of the second transistor is.
  • the gate of the second transistor flows through the third transistor M3 and is transmitted to the receiving part of the terminal through the read line Y-Read.
  • the detecting capacitance Cf formed by the concave portion and the detecting electrode d is C1 (the capacitance is small), and C1 is sufficiently small with respect to the reference capacitance Cs and the parasitic capacitance Ct.
  • the gate potential of the second transistor is increased, so that the second transistor is in an approximately off state, and the read line Y-Read collects an initial drain current signal, and the terminal determines that the upper side of the current pixel is a concave portion of the finger.
  • the detecting capacitance Cf formed by the convex portion and the detecting electrode d is C2 (capacitance is large, C2 is greater than C1), and C2 is relative to the reference.
  • the capacitor Cs and the parasitic capacitance Ct are sufficiently large, at which time the gate potential of the second transistor is lowered, so that the second transistor is in an amplified on state, and the read line Y-Read is collecting an amplified drain current signal, thereby terminating the terminal It is judged that the top of the current pixel is the convex portion of the finger.
  • the operation process of the pixel driving sub-circuit 10 as shown in FIGS. 7 and 8, at this stage, the light emission control signal outputted by the light emission control line Em is at a low level, and the first scan signal outputted by the first scan line Scan1 is at a high level.
  • the second scan signal outputted by the second scan line Scan2 is at a high level, and the third scan signal outputted by the third scan line Scan3 is at a low level, so that the fourth transistor T4, the fifth transistor T5, and the sixth transistor T6 are led.
  • the seventh transistor T7, the eighth transistor T8, and the ninth transistor T9 are turned off.
  • the first node b of the storage capacitor Cm is grounded, so the driving transistor DTFT is turned on, and the voltage signal Vdd supplied from the power source Vdd passes through the T4.
  • ⁇ DTFT ⁇ T6 starts charging point b until charging point b to (Vdd+Vth) (Vth is the threshold voltage of the driving transistor DTFT, and Vth is a negative value for the P-type transistor).
  • Vdd+Vth the voltage signal supplied from the power source Vdd
  • FIG. 12 is a schematic diagram of the conduction path, the conduction path is as shown by the arrow in the figure, and FIG. 13 is a signal timing diagram.
  • the working process of the fingerprint identification sub-circuit 20 as shown in FIGS. 12 and 13, at this stage, the fingerprint recognition sub-circuit 20 is in a stagnation phase, the first transistor M1 and the third transistor M3 are turned off, and all devices of the fingerprint recognition sub-circuit 20 are Does not work, thus minimizing the impact on the pixel drive process.
  • the operation process of the pixel driving sub-circuit 10 the light emission control signal outputted by the light emission control line Em is at a high level, the first scan signal outputted by the first scan line Scan1 is a low level, and the second scan signal output by the second scan line Scan2 is a second scan signal
  • the level is high
  • the third scan signal outputted by the third scan line Scan3 is at a high level, so that the seventh transistor T7 and the eighth transistor T8 are turned on, and the fourth transistor T4, the fifth transistor T5, and the sixth transistor T6 are The ninth transistor T9 is turned off.
  • the eighth transistor T8 since the eighth transistor T8 is turned on, the data signal Vdata supplied from the data write line Vdata is supplied to the point a through the eighth transistor T8, the potential of the point a is from the original 0V ⁇ Vdata, and the point b is the floating state. Therefore, to maintain the original differential pressure between the two points a and b (Vdd + Vth), the potential at point b will undergo an isobaric jump, and the potential at point b will jump to Vdd + Vth + Vdata, and remain unchanged for the next Prepare for the stage.
  • FIG. 14 is a schematic diagram of the conduction path, the conduction path is shown by the arrow in the figure, and FIG. 15 is the signal timing diagram.
  • the working process of the fingerprint identification sub-circuit 20 as shown in FIGS. 14 and 15, at this stage, the fingerprint recognition sub-circuit 20 is in a stagnation phase, the first transistor M1 and the third transistor M3 are turned off, and all devices of the fingerprint recognition sub-circuit 20 are Does not work, thus minimizing the impact on the image display.
  • the operation process of the pixel driving sub-circuit 10 at this stage, the light emission control signal outputted by the light emission control line Em is at a low level, the first scan signal outputted by the first scan line Scan1 is a low level, and the second scan line Scan2 outputs a first The second scan signal is at a high level, and the third scan signal outputted by the third scan line Scan3 is at a high level, so that the fourth transistor T4, the seventh transistor T7, and the eighth transistor T8 are turned on, and the fifth transistor T5, the sixth transistor The transistor T6 and the ninth transistor T9 are turned off.
  • the potential of the source of the driving transistor DTFT is connected to the power source Vdd, and the current passes through T4 ⁇ DTFT ⁇ T7 so that the OLED starts to emit light.
  • the saturation current formula of the driving transistor DTFT can be obtained:
  • I OLED is the illuminating current generated by the driving transistor DTFT
  • K is a constant related to the process and design
  • V GS is the voltage between the gate and the source of the driving transistor DTFT
  • Vth is the threshold voltage of the driving transistor DTFT
  • Vdd For the supply voltage
  • Vdata is the voltage of the data signal.
  • the illuminating current I OLED is not affected by the threshold voltage Vth, and is only related to Vdata, thereby solving the problem that the threshold voltage (Vth) of the driving transistor DTFT is drifted due to the process and long-term operation.
  • the influence of the illuminating current I OLED is eliminated, and the normal operation of the illuminating element 30 is ensured.
  • the fingerprint identification sub-circuit in the case of ensuring that the pixel driving sub-circuit 10 normally performs display driving, can be used to borrow other scanning lines of other pixel driving sub-circuits to complete the fingerprint recognition function.
  • the embodiment according to Figures 16 and 17 is substantially identical to the embodiment of Figures 3 and 4, except that in the embodiment of Figures 16 and 17, the first read end of the fingerprint recognition sub-circuit 20 and the first scan line Scan1 is connected, and the reset end of the fingerprint recognition sub-circuit 20 is connected to the second scan line Scan2.
  • the second scan line Scan2 serves as both a control signal input line of the pixel drive circuit and a reset line for fingerprint recognition
  • the line Scan1 serves as both a control signal input line of the pixel drive circuit and a line for the X-scan direction of fingerprint recognition.
  • the fingerprint recognition reset phase of the fingerprint recognition sub-circuit 20 is simultaneously performed with the display reset phase 1 of the pixel driving sub-circuit 10, and the fingerprint recognition sub-circuit 20
  • the fingerprint acquisition phase is performed simultaneously with the compensated transition phase 3 of the pixel drive sub-circuit 10.
  • the embodiment according to Figures 18 and 19 is substantially identical to the embodiment of Figures 3 and 4, except that in the embodiment of Figures 18 and 19, the first read end of the fingerprint recognition sub-circuit 20 and the first scan line Scan1 is connected, and the reset end of the fingerprint recognition sub-circuit 20 is connected to the third scan line Scan3.
  • the third scan line Scan3 serves as both a control signal input line of the pixel drive circuit and a reset line for fingerprint recognition
  • the first scan The line Scan1 serves as both a control signal input line of the pixel drive circuit and a line for the X-scan direction of fingerprint recognition.
  • the fingerprint recognition reset phase of the fingerprint recognition sub-circuit 20 is simultaneously performed with the display charging phase 2 of the pixel driving sub-circuit 10, and the fingerprint recognition sub-circuit 20
  • the fingerprint acquisition phase is performed simultaneously with the compensation hopping phase 3 of the pixel drive sub-circuit 10.
  • the first read end and the reset end of the fingerprint identification sub-circuit share the first scan line, the second scan line, and the third scan with the pixel drive sub-circuit. Any two of the lines, the pixel driving sub-circuit drives the light-emitting elements of the pixels to emit light according to the first scan signal, the second scan signal, the third scan signal, the light-emitting control signal and the data signal, and the fingerprint recognition sub-circuit is based on the first scan signal, Any two of the second scan signal and the third scan signal identify the fingerprint of the finger to generate fingerprint data of the finger.
  • the circuit of the embodiments of the present disclosure implements the functional integration of fingerprint recognition and pixel driving.
  • a pixel driving sub-circuit having a display driving function on the substrate of the display device and simultaneously implanting a fingerprint identification sub-circuit in the pixel to realize integration of display and fingerprint recognition functions, so that the fingerprint recognition function is implanted inside the screen of the display device, thereby realizing Efficient integration of multiple functions to increase the added value of the product.
  • the fingerprint identification sub-circuits in the above-described embodiments and the respective drawings show the reference capacitance Cs, but in other embodiments, the reference capacitance Cs may also be omitted.
  • the disclosure does not limit the specific circuit components of the fingerprint recognition subcircuit.
  • the embodiment of the present disclosure further provides a display device, including the fingerprint recognition and pixel driving circuit of the above embodiment, and the fingerprint recognition and pixel driving circuit includes a pixel driving sub-circuit and a fingerprint identification sub-circuit. It should be understood that applying the above fingerprint recognition and pixel driving circuit to the display device can cause the display device to have a fingerprint recognition function.
  • the fingerprint recognition and pixel driving circuits are spaced apart from each other on the display device. More specifically, the fingerprint recognition and pixel driving circuits may be periodically spaced apart from the display device, that is, the substrate may be periodically implanted with the fingerprint recognition sub-circuit while forming the pixel driving sub-circuit having the display driving function.
  • the fingerprint recognition sub-circuit may be implanted according to design parameters such as size or PPI (Pixels Per Inch) of the screen of the display device to select an appropriate pixel period distribution.
  • design parameters such as size or PPI (Pixels Per Inch) of the screen of the display device to select an appropriate pixel period distribution.
  • PPI Pixel Per Inch
  • a pixel arrangement of 3 ⁇ 2 may be employed, that is, each of the three pixels is a group to constitute the pixel unit 11, and each of the pixel units 11 may include two pixel driving circuits 12 and One fingerprint recognition and pixel driving circuit 13, the pixel driving circuit 12 can only realize the display driving function, and the fingerprint recognition function cannot be realized, and the fingerprint recognition and pixel driving circuit 13 can realize the function integration of the fingerprint recognition and the display driving.
  • other arrangements are not limited here.
  • the display device may be an organic light emitting display such as an AMOLED.
  • the display device implements the function integration of fingerprint recognition and pixel driving, so that the fingerprint recognition function is implanted inside the screen of the display device, and the combination of functions between the device and the device in the related technology is subverted. Efficient integration of multiple functions to increase the added value of the product.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • plurality means at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms "installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless expressly stated otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
  • a first feature "on” or “under” a second feature may be a direct contact of the first and second features, or the first and second features are indirectly contacted by an intermediate medium, unless otherwise explicitly stated and defined.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of El Displays (AREA)
  • Image Input (AREA)

Abstract

提供了一种指纹识别及像素驱动电路以及具有该电路的显示装置,电路包括:第一扫描线、第二扫描线、第三扫描线、发光控制线、数据写入线;像素驱动子电路,用于根据第一扫描信号、第二扫描信号、第三扫描信号、发光控制信号和数据信号驱动像素的发光元件发光;指纹识别子电路,指纹识别子电路的第一读取端和重置端与像素驱动子电路共用第一扫描线、第二扫描线和第三扫描线中的任意两个,指纹识别子电路通过第一读取端和重置端接收第一扫描信号、第二扫描信号和第三扫描信号中的任意两个,以根据第一扫描信号、第二扫描信号和第三扫描信号中的任意两个以生成手指的指纹数据,从而能够实现指纹识别与像素驱动的功能整合。

Description

指纹识别及像素驱动电路以及具有该电路的显示装置
相关申请的交叉引用
本申请要求于2017年6月23日向中国专利局提交的专利申请201710486499.5的优先权利益,并且在此通过引用的方式将该在先申请的内容并入本文。
技术领域
本公开涉及显示技术领域,特别涉及一种指纹识别及像素驱动电路以及一种具有该电路的显示装置。
背景技术
像素驱动电路设计是诸如AMOLED(Active-matrix organic light emitting diode,有源矩阵有机发光二极管)显示器之类的有机发光显示器的核心技术。有机发光二极管OLED属于电流驱动,需要稳定的电流来控制发光。但是,由于工艺制程和器件老化等原因,在像素驱动电路中,各像素点的驱动晶体管的阈值电压存在不均匀性,这样就导致了流过每个像素点OLED的电流发生变化,从而影响整个图像的显示效果。
另外,可基于半导体硅电容效应来实现电容指纹识别技术,利用该指纹识别技术,指纹识别的图像质量较好、一般无畸变、尺寸较小,安全性高。但是,像素驱动电路与指纹识别电路通常是分别独立设置,因而仅仅是简单地将功能累加组合。
发明内容
本公开的实施例提出一种指纹识别及像素驱动电路和包括这样的电路的显示装置。
本公开实施例提供的指纹识别及像素驱动电路,包括:第一扫描线、第二扫描线、第三扫描线、发光控制线、数据写入线、像素驱动子电路和指纹识别子电路。像素驱动子电路具有第一扫描端、第二扫描端、第三扫描端、发光控制端和数据写入端,所述像素驱动子电路的第一扫描端与所述第一扫描线相连以接收第一扫描信号,所述像素 驱动子电路的第二扫描端与所述第二扫描线相连以接收第二扫描信号,所述像素驱动子电路的第三扫描端与所述第三扫描线相连以接收第三扫描信号,所述像素驱动子电路的发光控制端与所述发光控制线相连以接收发光控制信号,所述像素驱动子电路的数据写入端与所述数据写入线相连以接收数据信号,所述像素驱动子电路根据所述第一扫描信号、所述第二扫描信号、所述第三扫描信号、发光控制信号和数据信号驱动像素的发光元件发光。所述指纹识别子电路具有第一读取端和重置端,所述第一读取端和所述重置端分别电连接至所述第一扫描线、第二扫描线、第三扫描线中的任意两个,以根据所述第一扫描信号、所述第二扫描信号和所述第三扫描信号中的任意两个生成指纹数据。
在一些实施例中,指纹识别及像素驱动电路还包括读取线,所述指纹识别子电路还具有第二读取端,所述指纹识别子电路的第二读取端与所述读取线相连,所述指纹识别子电路通过所述第二读取端向所述读取线输出所述指纹数据。
在一些实施例中,所述指纹识别子电路包括:重置信号提供端,所述重置信号提供端用于提供重置信号;探测电极,所述探测电极用以与手指形成探测电容;所述指纹识别子电路响应于从所述重置端接收到有效的电平信号,利用所述重置信号提供端的重置信号对探测电极的电势进行重置。
在一些实施例中,所述指纹识别子电路还包括:基准电容,所述基准电容的一端与所述探测电极相连并形成第一节点;第一晶体管,所述第一晶体管的控制端为所述指纹识别子电路的重置端,所述第一晶体管的第一端与所述重置信号提供端相连,所述第一晶体管的第二端与所述第一节点相连;第二晶体管,所述第二晶体管的控制端与所述第一节点相连,所述第二晶体管的第一端与所述重置信号提供端相连;第三晶体管,所述第三晶体管的控制端与所述基准电容的另一端相连并形成第二节点,所述第三晶体管的第一端与所述第二晶体管的第二端相连,所述第三晶体管的第二端为所述指纹识别子电路的第二读取端,所述第二节点作为所述指纹识别子电路的第一读取端。
在一些实施例中,所述指纹识别子电路的第一读取端与所述第三扫描线相连,所述指纹识别子电路的重置端与所述第二扫描线相连。
在一些实施例中,所述指纹识别子电路的第一读取端与所述第一扫描线相连,所述指纹识别子电路的重置端与所述第二扫描线相连。
在一些实施例中,所述指纹识别子电路的第一读取端与所述第一扫描线相连,所述指纹识别子电路的重置端与所述第三扫描线相连。
在一些实施例中,所述像素驱动子电路包括:驱动晶体管,用于驱动像素的发光元件发光;与驱动晶体管连接的阈值电压补偿电路,其用于对所述驱动晶体管的控制端的电压进行补偿,以消除所述驱动晶体管的阈值电压对所述发光元件发光时的发光电流的影响。
在一些实施例中,所述像素驱动子电路还包括:第四晶体管,所述第四晶体管的控制端为所述像素驱动子电路的发光控制端,所述第四晶体管的第一端用于接收电源电压,所述第四晶体管的第二端与所述驱动晶体管的第一端相连,所述驱动晶体管的第二端和控制端连接至所述阈值电压补偿电路,第七晶体管,所述第七晶体管的第一端与所述驱动晶体管的第二端相连,所述第七晶体管的第二端与所述发光元件相连,第七晶体管的控制端连接至所述阈值电压补偿电路。
在一些实施例中,阈值电压补偿电路包括:存储电容,所述存储电容的一端与所述驱动晶体管的控制端相连并形成第三节点;
第五晶体管,所述第五晶体管的第一端接地,所述第五晶体管的第二端与所述存储电容的另一端相连并形成第四节点;第六晶体管,所述第六晶体管的控制端与所述第五晶体管的控制端,并作为所述像素驱动子电路的第三扫描端,所述第六晶体管的第一端与所述第三节点相连,所述第六晶体管的第二端与所述驱动晶体管的第二端相连;第八晶体管,所述第八晶体管的控制端与所述第七晶体管的控制端相连,并作为所述像素驱动子电路的第一扫描端,所述第八晶体管的第一端为所述像素驱动子电路的数据写入端,所述第八晶体管的第二端与所述第四节点相连;第九晶体管,所述第九晶体管的控制端为所述像素驱动子电路的第二扫描端,所述第九晶体管的第一端接地,所述第九晶体管的第二端与所述第三节点相连。
在一些实施例中,指纹识别子电路的工作过程依次包括指纹识别重置阶段和指纹采集阶段,在所述指纹识别重置阶段,所述第二晶体管和所述第三晶体管截止,所述第一晶体管开启,所述重置信号通过所述第一晶体管对所述探测电极的电势进行重置;在所述指纹采集阶 段,所述第一晶体管截止,所述第二晶体管根据所述探测电容的电容值生成相应的漏电流,并通过所述第三晶体管输出所述漏电流。
在一些实施例中,所述驱动晶体管、以及第一晶体管至第九晶体管全部是P型晶体管。
在一些实施例中,像素驱动子电路的工作过程依次包括显示重置阶段、显示充电阶段、补偿跳变阶段和发光阶段。在显示重置阶段,所述第二扫描信号为低电平,且所述第一扫描信号、所述第三扫描信号和所述发光控制信号为高电平,所述第四晶体管至所述第八晶体管截止,所述第九晶体管开启以使所述存储电容重置;在所述显示充电阶段,所述发光控制信号和所述第三扫描信号为低电平且所述第一扫描信号和所述第二扫描信号为高电平,所述第七晶体管、第八晶体管和所述第九晶体管截止,所述第四晶体管、第五晶体管、所述第六晶体管以及驱动晶体管开启,所述电源电压通过所述第四晶体管、所述驱动晶体管和所述第六晶体管对所述存储电容充电;在所述补偿跳变阶段,所述第一扫描信号为低电平,且所述发光控制信号、所述第二扫描信号和所述第三扫描信号为高电平,所述第四晶体管、第五晶体管和所述第六晶体管以及所述第九晶体管截止,所述第七晶体管和所述第八晶体管开启,所述驱动晶体管的控制端的电势根据所述数据信号跳变;在所述发光阶段,所述第一扫描信号和所述发光控制信号为低电平,且所述第二扫描信号和所述第三扫描信号为高电平,所述第五晶体管、所述第六晶体管以及所述第九晶体管截止,所述第四晶体管、所述第七晶体管和所述第八晶体管开启,所述驱动晶体管根据所述驱动晶体管的控制端的电势生成发光电流,并通过所述第七晶体管输出所述发光电流至所述发光元件以使所述发光元件发光。
在一些实施例中,所述指纹识别子电路的第一读取端与所述第三扫描线相连,所述指纹识别子电路的重置端与所述第二扫描线相连,所述指纹识别子电路的指纹识别重置阶段与所述像素驱动子电路的显示重置阶段重合,且所述指纹识别子电路的指纹采集阶段与所述像素驱动子电路的显示充电阶段重合,且所述指纹识别子电路在所述像素驱动子电路的补偿跳变阶段和发光阶段停止工作。
在一些实施例中,所述指纹识别子电路的第一读取端与所述第一扫描线相连,所述指纹识别子电路的重置端与所述第二扫描线相连时, 所述指纹识别子电路的指纹识别重置阶段与所述像素驱动子电路的显示重置阶段重合,且所述指纹识别子电路的指纹采集阶段包括所述像素驱动子电路的补偿跳变阶段和发光阶段,所述指纹识别子电路在所述像素驱动子电路的显示充电阶段停止工作。
在一些实施例中,所述指纹识别子电路的第一读取端与所述第一扫描线相连,所述指纹识别子电路的重置端与所述第三扫描线相连时,所述指纹识别子电路的指纹识别重置阶段与所述像素驱动子电路的显示充电阶段重合,且所述指纹识别子电路的指纹采集阶段包括所述像素驱动子电路的补偿跳变阶段和发光阶段,且所述指纹识别子电路在所述像素驱动子电路的显示重置阶段停止工作。
本公开的另一实施例提供了一种显示装置,包括多个前述实施例中任一实施例所述的指纹识别及像素驱动电路。
在一些实施例中,所述多个指纹识别及像素驱动电路中相邻的两个指纹识别及像素驱动电路由至少一个像素隔开。
附图说明
图1是根据本公开实施例的指纹识别及像素驱动电路的方框示意图;
图2是根据本公开一个实施例的指纹识别及像素驱动电路的指纹识别的示意图;
图3是根据本公开一个实施例的指纹识别及像素驱动电路的电路原理图;
图4是根据本公开一个实施例的指纹识别及像素驱动电路的工作时序图;
图5是根据本公开一个实施例的指纹识别及像素驱动电路在指纹识别重置阶段和显示重置阶段的工作状态示意图;
图6是根据本公开一个实施例的用于指纹识别及像素驱动电路在指纹识别重置阶段和显示重置阶段的工作时序图;
图7是根据本公开一个实施例的指纹识别及像素驱动电路在指纹采集阶段和显示充电阶段的工作状态示意图;
图8是根据本公开一个实施例的指纹识别及像素驱动电路在指纹采集阶段和显示充电阶段的工作时序图;
图9是根据本公开一个实施例的指纹识别及像素驱动电路中指纹识别子电路的工作原理图;
图10是根据本公开一个实施例的指纹识别及像素驱动电路中指纹识别子电路识别指纹凹部的工作原理图;
图11是根据本公开一个实施例的指纹识别及像素驱动电路中指纹识别子电路识别指纹凸部的工作原理图;
图12是根据本公开一个实施例的指纹识别及像素驱动电路在指纹停滞阶段和补偿跳变阶段的工作状态示意图;
图13是根据本公开一个实施例的指纹识别及像素驱动电路在指纹停滞阶段和补偿跳变阶段的工作时序图;
图14是根据本公开一个实施例的指纹识别及像素驱动电路在指纹识别重置阶段和显示重置阶段的工作状态示意图;
图15是根据本公开一个实施例的指纹识别及像素驱动电路在指纹停滞阶段和发光阶段的工作时序图;
图16是根据本公开另一个实施例的指纹识别及像素驱动电路的电路原理图;
图17是根据本公开另一个实施例的指纹识别及像素驱动电路的工作时序图;
图18是根据本公开又一个实施例的指纹识别及像素驱动电路的电路原理图;
图19是根据本公开又一个实施例的指纹识别及像素驱动电路的工作时序图;以及
图20是根据本公开一个实施例的显示装置中指纹识别及像素驱动电路的排布示意图。
附图标记:
第一扫描线Scan1、第二扫描线Scan2、第三扫描线Scan3、发光控制线Em、数据写入线Vdata、像素驱动子电路10、指纹识别子电路20和读取线Y-Read;
重置信号提供端Vcom、探测电极d、基准电容Cs、第一晶体管M1、第二晶体管M2和第三晶体管M3;
驱动晶体管DTFT、第四晶体管T4、存储电容Cm、第五晶体管T5、第六晶体管T6、第七晶体管T7、第八晶体管T8和第九晶体管T9。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图来描述本公开实施例提出的指纹识别及像素驱动电路以及具有该电路的显示装置。
图1是根据本公开实施例的指纹识别及像素驱动电路的方框示意图。如图1所示,指纹识别及像素驱动电路包括:第一扫描线Scan1、第二扫描线Scan2、第三扫描线Scan3、发光控制线Em、数据写入线Vdata、像素驱动子电路10和指纹识别子电路20。
像素驱动子电路10具有第一扫描端、第二扫描端、第三扫描端、发光控制端和数据写入端,像素驱动子电路10的第一扫描端与第一扫描线Scan1相连以接收第一扫描信号,像素驱动子电路10的第二扫描端与第二扫描线Scan2相连以接收第二扫描信号,像素驱动子电路10的第三扫描端与第三扫描线Scan3相连以接收第三扫描信号,像素驱动子电路10的发光控制端与发光控制线Em相连以接收发光控制信号,像素驱动子电路10的数据写入端与数据写入线Vdata相连以接收数据信号,像素驱动子电路10根据第一扫描信号、第二扫描信号、第三扫描信号、发光控制信号和数据信号驱动像素的发光元件30例如有机发光二极管发光。
指纹识别子电路20具有第一读取端和重置端,指纹识别子电路20的第一读取端和重置端与像素驱动子电路10共用第一扫描线Scan1、第二扫描线Scan2和第三扫描线Scan3中的任意两个,指纹识别子电路20通过第一读取端和重置端接收第一扫描信号、第二扫描信号和第三扫描信号中的任意两个,以根据第一扫描信号、第二扫描信号和第三扫描信号中的任意两个对手指的指纹进行识别以生成手指的指纹数据。
需要说明的是,图1中仅示出指纹识别子电路20的第一读取端和重置端与像素驱动子电路10共用第二扫描线Scan2和第三扫描线Scan3的实施例,其他情况基本相同,区别仅在于,指纹识别子电路 20的第一读取端和重置端与第一扫描线Scan1、第二扫描线Scan2和第三扫描线Scan3之间的连接关系不同。
进一步地,如图1所示,指纹识别及像素驱动电路还包括读取线Y-Read,指纹识别子电路20还具有第二读取端,指纹识别子电路20的第二读取端与读取线Y-Read相连,指纹识别子电路20通过第二读取端向读取线Y-Read输出手指的指纹数据。
并且,指纹识别子电路20还可通过读取线Y-Read与终端相连,以将手指的指纹数据输出至终端,终端通过采集手指的指纹数据可确定手指的指纹凹凸信息。
例如,如图2所示,当用户通过手指触摸显示装置的屏幕100时,指纹识别子电路可根据手指面的凹凸条纹生成手指的指纹数据,并且由终端采集手指的指纹数据以确定指纹信息。
也就是说,在本公开实施例中,像素驱动子电路10根据第一扫描信号、第二扫描信号、第三扫描信号、发光控制信号和数据信号生成发光电流以驱动发光元件发光,从而实现显示功能。同时,指纹识别子电路20根据第一扫描信号、第二扫描信号和第三扫描信号中的任意两个生成手指的指纹数据,从而实现指纹识别功能。
由此,将像素驱动子电路10的扫描线和用于指纹识别的数据信号线等兼容到一起,实现了多重功能的高效整合。显示装置的基板在形成满足具有显示驱动功能的像素驱动子电路10同时,还在像素区域内植入指纹识别子电路20,实现显示与指纹识别功能整合。
根据本公开的一个具体实施例,如图3所示,指纹识别子电路20包括重置信号提供端Vcom,用于提供重置信号;探测电极d,用以与手指形成探测电容。指纹识别子电路20响应于从重置端接收到有效的电平信号,利用所述重置信号提供端的重置信号对探测电极的电势进行重置。
在一个实施例中,指纹识别子电路20还包括基准电容Cs、第一晶体管M1、第二晶体管M2和第三晶体管M3。
重置信号提供端Vcom用于提供重置信号;探测电极d用以与手指形成探测电容;基准电容Cs的一端与探测电极d相连并具有第一节点;第一晶体管M1的控制端为指纹识别子电路20的重置端,第一晶体管M1的第一端与重置信号提供端Vcom相连,第一晶体管M1的第二端 与第一节点相连;第二晶体管的控制端与第一节点相连,第二晶体管的第一端与重置信号提供端Vcom相连;第三晶体管M3的控制端与基准电容Cs的另一端相连并形成第二节点,第三晶体管M3的第一端与第二晶体管的第二端相连,第三晶体管M3的第二端为指纹识别子电路20的第二读取端,第二节点作为指纹识别子电路20的第一读取端。在本文中,重置信号可以是具有任何适当电压水平的电压信号,例如,其可以具有接地电压,或者其可以是电路中的公共电压信号等。
也就是说,指纹识别子电路实现指纹识别功能,指纹识别子电路包括第一晶体管M1、第二晶体管M2和第三晶体管M3,第一晶体管M1为信号重置晶体管,用于实现信号重置,第二晶体管是信号放大晶体管,用于实现信号放大的作用,第三晶体管M3为开关晶体管,用于控制手指的指纹数据输出至读取线Y-Read。指纹识别子电路包括还包括探测电极d和基准电容Cs,探测电极d用于与手指形成探测电容,以使指纹识别子电路根据探测电容的电容值确定指纹的凹凸信息,从而获取手指的指纹数据。此外,指纹识别子电路还包括重置信号提供端Vcom,重置信号提供端Vcom与第一晶体管M1和第二晶体管M2的第一端相连以提供重置电压信号。
根据本公开的一个实施例,如图3和4所示,当指纹识别子电路20的第一读取端和重置端与像素驱动子电路10共用第二扫描线Scan2和第三扫描线Scan3时,指纹识别子电路20的第一读取端(即第二节点)与第三扫描线Scan3相连,指纹识别子电路20的重置端(即第一晶体管M1的控制端)与第二扫描线Scan2相连。在另一示例中,如图16和17所示,当指纹识别子电路20的第一读取端和重置端与像素驱动子电路10共用第一扫描线Scan1和第二扫描线Scan2时,指纹识别子电路20的第一读取端(即第二节点)与第一扫描线Scan1相连,指纹识别子电路20的重置端(即第一晶体管M1的控制端)与第二扫描线Scan2相连。在又一示例中,如图18和19所示,当指纹识别子电路20的第一读取端和重置端与像素驱动子电路10共用第一扫描线Scan1和第三扫描线Scan3时,指纹识别子电路20的第一读取端(即第二节点)与第一扫描线Scan1相连,指纹识别子电路20的重置端(即第一晶体管M1的控制端)与第三扫描线Scan3相连。
根据本公开的一个具体实施例,如图3所示,像素驱动子电路10 包括:驱动晶体管DTFT和与驱动晶体管连接的阈值电压补偿电路,阈值电压补偿电路用于对驱动晶体管的控制端的电压进行补偿,以消除驱动晶体管的阈值电压对发光元件发光时的发光电流的影响。
在本公开的一个实施例中,阈值电压补偿电路包括存储电容Cm、第五晶体管T5、第六晶体管T6、第八晶体管T8和第九晶体管T9。在下文中,将对阈值电压补偿电路的工作过程进行描述。在本公开的实施例中,像素驱动子电路还包括第四晶体管T4和第七晶体管T7,以实现对发光元件的发光控制。
第四晶体管T4的控制端为像素驱动子电路10的发光控制端,其与发光控制线Em相连,第四晶体管T4的第一端用于接收电源电压Vdd,第四晶体管T4的第二端与驱动晶体管DTFT的第一端相连;存储电容Cm的一端与驱动晶体管DTFT的控制端相连并形成第三节点b;第五晶体管T5的第一端接地,第五晶体管T5的第二端与存储电容Cm的另一端相连并形成第四节点a;第六晶体管T6的控制端与第五晶体管T5的控制端相连,作为像素驱动子电路10的第三扫描端,与第三扫描线Scan3相连,第六晶体管T6的第一端与第三节点b相连,第六晶体管T6的第二端与驱动晶体管DTFT的第二端相连;第七晶体管T7的第一端与驱动晶体管DTFT的第二端相连,第七晶体管T7的第二端与发光元件30相连;第八晶体管T8的控制端与第七晶体管T7的控制端相连,作为像素驱动子电路10的第一扫描端与第一扫描线Scan1相连,第八晶体管T8的第一端为像素驱动子电路10的数据写入端,其与数据写入线Vdata相连,第八晶体管T8的第二端与第四节点a相连;第九晶体管T9的控制端为像素驱动子电路10的第二扫描端与第二扫描线Scan2相连,第九晶体管T9的第一端接地,第九晶体管T9的第二端与第三节点b相连。
也就是说,像素驱动子电路10包括存储电容Cm、驱动晶体管DTFT以及四晶体管T4至第九晶体管T9,第四晶体管T4至第九晶体管T9为开关晶体管,像素驱动子电路10通过控制第四晶体管T4至第九晶体管T9导通和关断来驱动驱动晶体管DTFT生成发光电流,以驱动发光元件30发光。并且,像素驱动子电路10通过控制第四晶体管T4至第九晶体管T9导通和关断还可对驱动晶体管DTFT的阈值电压Vth进行补偿,从而通过补偿方式解决阈值电压Vth变化带来的不利影响。
如上所述,对于整个指纹识别及像素驱动电路,第一扫描线Scan1、第二扫描线Scan2、第三扫描线Scan3和发光控制线Em均为输入信号线路,前述输入信号线路用于控制像素驱动子电路10和指纹识别子电路20中开关晶体管,即第三晶体管M3、第四晶体管T4至第九晶体管T9的导通和关断。另外,以指纹识别子电路20的第一读取端和重置端与像素驱动子电路10共用第二扫描线Scan2和第三扫描线Scan3为例,前述输入信号线路除了向像素驱动子电路10输入开关信号,其中的第三扫描线Scan3也作为确认指纹识别的X扫描方向的线路,其中的第二扫描线Scan2作为指纹识别的重置线路。
应当理解的是,多个指纹识别及像素驱动电路与多个像素对应,每个指纹识别及像素驱动电路用于驱动对应像素的发光元件30发光,并对按压在对应像素区域上的指纹进行识别。由于手指的指纹是通过N(N为大于0的整数)个像素对应的探测电极d的电容值确定,所以指纹识别及像素驱动电路在用于指纹识别时,可通过第三扫描线Scan3和第二扫描线Scan2确定当前像素的位置,即识别到的指纹的位置,其中,可由第三扫描线Scan3确定指纹识别的X方向坐标,可由读取线Y-Read确定指纹识别的Y方向坐标。
需要说明的是,当指纹识别子电路20的第一读取端和重置端与像素驱动子电路10共用第一扫描线Scan1和第二扫描线Scan2时,与前述共用第三扫描线Scan3和第二扫描线Scan2的实施例类似,区别在于,可由第一扫描线Scan1确定指纹识别的X方向坐标,当指纹识别子电路20的第一读取端和重置端与像素驱动子电路10共用第一扫描线Scan1和第三扫描线Scan3时,与前述共用第三扫描线Scan3和第二扫描线Scan2的实施例类似,区别在于,可由第一扫描线Scan1确定指纹识别的X方向坐标。
由此,指纹识别及像素驱动电路可采用信号复用方式实现指纹识别和显示驱动的功能整合,使得指纹识别功能植入显示装置的基板上,通过手指触控屏幕就能实现便捷高效的指纹识别,提高产品的附加值。
显示基板可采用LTPS(Low Temperature Poly-silicon,低温多晶硅技术)工艺制程来制作,在基板上形成有满足显示驱动功能的像素驱动子电路10的同时,还可在像素区域内集成指纹识别子电路20,从而实现显示驱动与指纹识别功能整合。
根据本公开的一个实施例,第一晶体管M1、第二晶体管和第三晶体管M3、驱动晶体管DTFT以及第四晶体管T4、第五晶体管T5、第六晶体管T6、第七晶体管T7、第八晶体管T8和第九晶体管T9均可采用“P”型TFT(Thin Film Transistor,薄膜晶体管),即,像素驱动子电路10和指纹识别子电路20中的晶体管可全部采用“P”型TFT,从而简化工艺制程。
根据本公开的实施例,如图3-19所示,指纹识别子电路20的工作过程依次包括指纹识别重置阶段和指纹采集阶段。在指纹识别重置阶段,第二晶体管M2和第三晶体管M3截止,第一晶体管M1开启,重置信号通过第一晶体管M1对探测电极d的电势进行重置;在指纹采集阶段,第一晶体管M1截止,第二晶体管M2和第三晶体管M3开启,第二晶体管根据探测电容的电容值生成相应的漏电流,并通过第三晶体管M3输出漏电流。
根据本公开的实施例,如图3-19所示,像素驱动子电路10的工作过程依次包括显示重置阶段1、显示充电阶段2、补偿跳变阶段3和发光阶段4,其中,在显示重置阶段1,第一扫描信号为低电平且第二扫描信号、第三扫描信号和发光控制信号为高电平,第四晶体管T4至第八晶体管T8截止,第九晶体管T9开启以使存储电容Cm接地;在显示充电阶段2,发光控制信号和第三扫描信号为低电平且第一扫描信号和第二扫描信号为高电平,第七晶体管T7至第九晶体管T9截止,第四晶体管T4至第六晶体管T6开启,电源电源通过第四晶体管T4、驱动晶体管DTFT和第六晶体管T6对存储电容Cm充电;在补偿跳变阶段3,第一扫描信号为低电平且发光控制信号、第二扫描信号和第三扫描信号为高电平,第四晶体管T4至第六晶体管T6以及第九晶体管T9截止,第七晶体管T7和第八晶体管T8开启,驱动晶体管DTFT的控制端的电势根据数据信号跳变;在发光阶段4,第一扫描信号和发光控制信号为低电平且第二扫描信号和第三扫描信号为高电平,第五晶体管T5、第六晶体管T6以及第九晶体管T9截止,第四晶体管T4、第七晶体管T7和第八晶体管T8开启,驱动晶体管DTFT根据驱动晶体管DTFT的控制端的电势生成发光电流,并通过第七晶体管T7输出发光电流至发光元件30以使发光元件30发光。
根据本公开的一个实施例,当指纹识别子电路20的第一读取端与 第三扫描线Scan3相连,指纹识别子电路20的重置端与第二扫描线Scan2相连时,指纹识别子电路20的指纹识别重置阶段与像素驱动子电路10的显示重置阶段1同时进行,且指纹识别子电路20的指纹采集阶段与像素驱动子电路10的显示充电阶段2同时进行,且指纹识别子电路20在像素驱动子电路10的补偿跳变阶段3和发光阶段4停止工作。当指纹识别子电路20的第一读取端与第一扫描线Scan1相连,指纹识别子电路20的重置端与第二扫描线Scan2相连时,指纹识别子电路20的指纹识别重置阶段与像素驱动子电路10的显示重置阶段1同时进行,且指纹识别子电路20的指纹采集阶段包括像素驱动子电路10的补偿跳变阶段3和发光阶段4且指纹识别子电路20在像素驱动子电路10的显示充电阶段2停止工作。当指纹识别子电路20的第一读取端与第一扫描线Scan1相连,指纹识别子电路20的重置端与第三扫描线Scan3相连时,指纹识别子电路20的指纹识别重置阶段与像素驱动子电路10的显示充电阶段2同时进行,且指纹识别子电路20的指纹采集阶段包括像素驱动子电路10的补偿跳变阶段3和发光阶段4,指纹识别子电路20在像素驱动子电路10的显示重置阶段1停止工作。
下面以指纹识别子电路20的第一读取端与第三扫描线Scan3相连、且指纹识别子电路20的重置端与第二扫描线Scan2相连为例,结合图3-15对本公开实施例的整个指纹识别及像素驱动电路的各个过程进行逐一说明。
为方便理解,下面将将指纹识别子电路20和像素驱动子电路10的工作原理分开说明,但实际前述两个子电路的工作过程同时进行。并且,在本实施例中,第二扫描线Scan2既作为像素驱动电路的扫描信号输入线路又作为指纹识别的重置信号输入线路,第三扫描线Scan3既作为像素驱动电路的扫描信号输入线路又作为指纹识别的X扫描方向的线路。
1)指纹识别重置阶段和显示重置阶段1的工作原理如下,其中,图5为导通路径示意图,导通路径如图中箭头所示,图6为信号时序图。
指纹识别子电路20的工作过程:如图5和6所示,在此阶段,第二扫描线Scan2输出的第二扫描信号为低电平,低电平提供至第一晶体管M1的控制端可使第一晶体管M1导通,重置信号提供端Vcom提 供初始的重置信号,使得探测电极d的电势为重置信号的电压,此时第二晶体管不满足导通条件,处于截止状态。并且,第三扫描线Scan3输出的第三扫描信号为高电平,第三晶体管M3也处于截止状态。由此,指纹识别重置阶段可为下一个指纹采集阶段作准备。
像素驱动子电路10的工作过程:如图5和6所示,在此阶段,发光控制线Em输出的发光控制信号为高电平,第一扫描线Scan1输出的第一扫描信号为高电平,第二扫描线Scan2输出的第二扫描信号为低电平,第三扫描线Scan3输出的第三扫描信号为高电平,从而使得第九晶体管T9导通,第四晶体管T4至第八晶体管T8截止,此时可将存储电容Cm的一端即第三节点b接地,b点的电势为0V。
2)指纹采集阶段和显示充电阶段2的工作原理如下,其中,图7为导通路径示意图,导通路径如图中箭头所示,图8为信号时序图。
指纹识别子电路20的工作过程:如图7和8所示,在此阶段,第二扫描线Scan2输出的第二扫描信号为高电平,第三扫描线Scan3输出的第三扫描信号为低电平,第一晶体管M1截止,第三晶体管M3导通。
如图9所示,指纹识别子电路20除了包括基准电容Cs之外,还包含手指与探测电极d形成的探测电容Cf,同时第二晶体管本身也有寄生电容Ct。当手指触控到屏幕时,当前像素的探测电极d与当前像素上方的手指形成探测电容Cf,第二晶体管的控制端即栅极的电势会因探测电容Cf大小的不同而变化。探测电容Cf越大,则第二晶体管的栅极电势越小,反之,探测电容Cf越小,则第二晶体管的栅极电势越大,从而导致第二晶体管的漏极电流发生变化,这样根据第二晶体管的漏极电流可确定指纹的凹凸信息。此时,第二晶体管的栅极流经第三晶体管M3,并通过经过读取线Y-Read传输到终端的接收部件。
如图10所示,当当前像素的探测电极d上方的手指为凹部时,凹部与探测电极d形成的探测电容Cf为C1(电容较小),C1相对基准电容Cs和寄生电容Ct足够小,此时第二晶体管的栅极电势增加,从而第二晶体管处于近似截止状态,读取线Y-Read采集的是初始的漏极电流信号,此时终端判断当前像素的上方是手指的凹部。
同理,如图11所示,当当前像素的探测电极d上方的手指为凸部时,凸部与探测电极d形成的探测电容Cf为C2(电容较大,C2大于C1),C2相对基准电容Cs和寄生电容Ct足够大,此时第二晶体管的 栅极电势降低,从而第二晶体管处于放大开启状态,读取线Y-Read采集的是经过放大的漏极电流信号,由此时终端判断当前像素的上方是手指的凸部。
像素驱动子电路10的工作过程:如图7和8所示,在此阶段,发光控制线Em输出的发光控制信号为低电平,第一扫描线Scan1输出的第一扫描信号为高电平,第二扫描线Scan2输出的第二扫描信号为高电平,第三扫描线Scan3输出的第三扫描信号为低电平,从而使得第四晶体管T4、第五晶体管T5和第六晶体管T6导通,第七晶体管T7、第八晶体管T8和第九晶体管T9截止,此时之前存储电容Cm的一端即第三节点b接地,所以驱动晶体管DTFT导通,电源电源Vdd提供的电压信号Vdd通过T4→DTFT→T6开始对b点进行充电,直至将b点充电到(Vdd+Vth)为止,(Vth是驱动晶体管DTFT的阈值电压,对于P型晶体管而言,Vth为负值。)。在该过程中,由于存储电容Cm的另一端即第四节点a接地,a点电势始终为0,所以当充电完毕以后,b点的电势会一直维持在Vdd+Vth。另外由于第七晶体管T7截止使得电流不会通过发光元件30例如有机发光二极管OLED,从而间接降低了OLED的寿命损耗。
3)指纹停滞阶段和补偿跳变阶段3的工作过程如下,其中,图12为导通路径示意图,导通路径如图中箭头所示,图13为信号时序图。
指纹识别子电路20的工作过程:如图12和13所示,在此阶段,指纹识别子电路20处于停滞阶段,第一晶体管M1和第三晶体管M3截止,指纹识别子电路20的所有器件均不工作,从而可尽量减少对像素驱动过程的影响。
像素驱动子电路10的工作过程:发光控制线Em输出的发光控制信号为高电平,第一扫描线Scan1输出的第一扫描信号为低电平,第二扫描线Scan2输出的第二扫描信号为高电平,第三扫描线Scan3输出的第三扫描信号为高电平,从而使得第七晶体管T7和第八晶体管T8导通,第四晶体管T4、第五晶体管T5、第六晶体管T6和第九晶体管T9截止。此时,由于第八晶体管T8导通,数据写入线Vdata提供的数据信号Vdata通过第八晶体管T8提供至a点,a点的电势由原来的0V→Vdata,而b点为浮接状态,因此要维持a、b两点原来的压差(Vdd+Vth),b点的电势会发生等压跳变,b点的电势跳变为 Vdd+Vth+Vdata,并保持不变,为下一阶段作准备。
4)指纹停滞阶段和发光阶段4的工作过程如下,其中,图14为导通路径示意图,导通路径如图中箭头所示,图15为信号时序图。
指纹识别子电路20的工作过程:如图14和15所示,在此阶段,指纹识别子电路20处于停滞阶段,第一晶体管M1和第三晶体管M3截止,指纹识别子电路20的所有器件均不工作,从而可尽量减少对图像显示的影响。
像素驱动子电路10的工作过程:此阶段,发光控制线Em输出的发光控制信号为低电平,第一扫描线Scan1输出的第一扫描信号为低电平,第二扫描线Scan2输出的第二扫描信号为高电平,第三扫描线Scan3输出的第三扫描信号为高电平,从而使得第四晶体管T4、第七晶体管T7和第八晶体管T8导通,第五晶体管T5、第六晶体管T6和第九晶体管T9截止。此时驱动晶体管DTFT的源极的电势接入电源电源Vdd,电流通过T4→DTFT→T7使得OLED开始发光。
由驱动晶体管DTFT的饱和电流公式可以得到:
I OLED=K(V GS-Vth) 2=K[Vdd-(Vdd-Vth+Vdata)-Vth] 2=K(Vdata) 2
I OLED=K(V GS-Vth) 2=K[(Vdd+Vth+Vdata)-Vdd-Vth] 2=K(Vdata) 2
其中,I OLED为驱动晶体管DTFT产生的发光电流,K为与工艺和设计有关的常数,V GS为驱动晶体管DTFT的栅极和源极之间的电压,Vth为驱动晶体管DTFT的阈值电压,Vdd为电源电压,Vdata为数据信号的电压。
由上式可以看到,此时发光电流I OLED已经不受阈值电压Vth的影响,只与Vdata有关,从而解决了驱动晶体管DTFT由于工艺制程及长时间的操作造成阈值电压(Vth)漂移的问题,消除其对发光电流I OLED的影响,保证发光元件30的正常工作。
在上述实施例中,可保证除发光阶段外,无电流通过发光元件30,从而提高了发光元件30的使用寿命。
另外,在本公开的其他实施例中,在保证像素驱动子电路10正常进行显示驱动的情况下,可以让指纹识别子电路借用其它像素驱动子电路的其它扫描线,来完成指纹识别功能。
根据图16和17的实施例,与图3和图4的实施例基本相同,区别在于,在图16和17的实施例中,指纹识别子电路20的第一读取端 与第一扫描线Scan1相连,指纹识别子电路20的重置端与第二扫描线Scan2相连,此时第二扫描线Scan2既作为像素驱动电路的控制信号输入线路,又作为指纹识别的重置线路,第一扫描线Scan1既作为像素驱动电路的控制信号输入线路,又作为指纹识别的X扫描方向的线路。由此,在保证像素驱动子电路10正常进行显示驱动的情况下,指纹识别子电路20的指纹识别重置阶段与像素驱动子电路10的显示重置阶段1同时进行,且指纹识别子电路20的指纹采集阶段与像素驱动子电路10的补偿跳变阶段3同时进行。
根据图18和19的实施例,与图3和图4的实施例基本相同,区别在于,在图18和19的实施例中,指纹识别子电路20的第一读取端与第一扫描线Scan1相连,指纹识别子电路20的重置端与第三扫描线Scan3相连,此时第三扫描线Scan3既作为像素驱动电路的控制信号输入线路,又作为指纹识别的重置线路,第一扫描线Scan1既作为像素驱动电路的控制信号输入线路,又作为指纹识别的X扫描方向的线路。由此,在保证像素驱动子电路10正常进行显示驱动的情况下,指纹识别子电路20的指纹识别重置阶段与像素驱动子电路10的显示充电阶段2同时进行,且指纹识别子电路20的指纹采集阶段与像素驱动子电路10的补偿跳变阶段3同时进行。
综上,根据本公开实施例提出的指纹识别及像素驱动电路,指纹识别子电路的第一读取端和重置端与像素驱动子电路共用第一扫描线、第二扫描线和第三扫描线中的任意两个,像素驱动子电路根据第一扫描信号、第二扫描信号、第三扫描信号、发光控制信号和数据信号驱动像素的发光元件发光,指纹识别子电路根据第一扫描信号、所述第二扫描信号和第三扫描信号中的任意两个对手指的指纹进行识别以生成手指的指纹数据。由此,本公开实施例的电路实现指纹识别与像素驱动的功能整合。在显示装置的基板上形成具有显示驱动功能的像素驱动子电路同时,还在像素内植入指纹识别子电路,实现显示与指纹识别功能整合,使得指纹识别功能植入显示装置的屏幕内部,实现多重功能的高效整合,提高产品的附加值。
此外,上述的实施例以及各个附图中的指纹识别子电路示出了基准电容Cs,但是,在其它实施例中,基准电容Cs也是可以省略的。关于本公开不对指纹识别子电路的具体电路组成构成限制。
本公开实施例还提出了一种显示装置,包括上述实施例的指纹识别及像素驱动电路,指纹识别及像素驱动电路包括像素驱动子电路和指纹识别子电路。应当理解的是,将上述指纹识别及像素驱动电路应用于显示装置,可使显示装置具有指纹识别功能。
根据本公开的一个实施例,指纹识别及像素驱动电路间隔地分布于显示装置。更具体地,指纹识别及像素驱动电路可周期性间隔地分布于显示装置,也就是说,基板在形成满足具有显示驱动功能的像素驱动子电路同时,还可周期性植入指纹识别子电路。
根据本公开的一个实施例,可以根据显示装置的屏幕本身的设计参数例如尺寸大小或PPI(Pixels Per Inch,每英寸所拥有的像素数目)选择合适的像素周期分布来植入指纹识别子电路。例如,如图20所示,可采用是3×2的像素排布方式,即,每个3个像素为一组以构成像素单元11,每个像素单元11可包括2个像素驱动电路12和1个指纹识别及像素驱动电路13,像素驱动电路12仅能实现显示驱动功能,无法实现指纹识别功能,指纹识别及像素驱动电路13能够实现指纹识别与显示驱动的功能整合。此外,其他排布这里不做限定。
其中,根据本公开的一个具体实施例,显示装置可为有机发光显示器,例如AMOLED。
综上,根据本公开实施例提出的显示装置,实现指纹识别与像素驱动的功能整合,使得指纹识别功能植入显示装置的屏幕内部,颠覆相关技术中器件与器件之间功能累加的组合方式,实现多重功能的高效整合,提高产品的附加值。
在本公中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此, 限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本文中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本文中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (18)

  1. 一种指纹识别及像素驱动电路,包括:
    第一扫描线、第二扫描线、第三扫描线、发光控制线、数据写入线;
    像素驱动子电路,所述像素驱动子电路具有第一扫描端、第二扫描端、第三扫描端、发光控制端和数据写入端,所述像素驱动子电路的第一扫描端与所述第一扫描线相连以接收第一扫描信号,所述像素驱动子电路的第二扫描端与所述第二扫描线相连以接收第二扫描信号,所述像素驱动子电路的第三扫描端与所述第三扫描线相连以接收第三扫描信号,所述像素驱动子电路的发光控制端与所述发光控制线相连以接收发光控制信号,所述像素驱动子电路的数据写入端与所述数据写入线相连以接收数据信号,所述像素驱动子电路根据所述第一扫描信号、所述第二扫描信号、所述第三扫描信号、发光控制信号和数据信号驱动像素的发光元件发光;
    指纹识别子电路,所述指纹识别子电路具有第一读取端和重置端,所述第一读取端和所述重置端分别电连接至所述第一扫描线、第二扫描线、第三扫描线中的任意两个,以根据所述第一扫描信号、所述第二扫描信号和所述第三扫描信号中的任意两个生成指纹数据。
  2. 根据权利要求1所述的指纹识别及像素驱动电路,还包括读取线,所述指纹识别子电路还具有第二读取端,所述指纹识别子电路的第二读取端与所述读取线相连,所述指纹识别子电路通过所述第二读取端向所述读取线输出所述指纹数据。
  3. 根据权利要求2所述的指纹识别及像素驱动电路,其中所述指纹识别子电路包括:
    重置信号提供端,所述重置信号提供端用于提供重置信号;
    探测电极,所述探测电极用以与手指形成探测电容;
    其中,所述指纹识别子电路响应于从所述重置端接收到有效的电平信号,利用所述重置信号提供端的重置信号对探测电极的电势进行重置。
  4. 根据权利要求3所述的指纹识别及像素驱动电路,其中所述指纹识别子电路还包括:
    基准电容,所述基准电容的一端与所述探测电极相连并形成第一节点;
    第一晶体管,所述第一晶体管的控制端为所述指纹识别子电路的重置端,所述第一晶体管的第一端与所述重置信号提供端相连,所述第一晶体管的第二端与所述第一节点相连;
    第二晶体管,所述第二晶体管的控制端与所述第一节点相连,所述第二晶体管的第一端与所述重置信号提供端相连;
    第三晶体管,所述第三晶体管的控制端与所述基准电容的另一端相连并形成第二节点,所述第三晶体管的第一端与所述第二晶体管的第二端相连,所述第三晶体管的第二端为所述指纹识别子电路的第二读取端,所述第二节点作为所述指纹识别子电路的第一读取端。
  5. 根据权利要求1-4中任一项所述的指纹识别及像素驱动电路,其中,
    所述指纹识别子电路的第一读取端与所述第三扫描线相连,所述指纹识别子电路的重置端与所述第二扫描线相连。
  6. 根据权利要求1-4中任一项所述的指纹识别及像素驱动电路,其中所述指纹识别子电路的第一读取端与所述第一扫描线相连,所述指纹识别子电路的重置端与所述第二扫描线相连。
  7. 根据权利要求1-4中任一项所述的指纹识别及像素驱动电路,其中所述指纹识别子电路的第一读取端与所述第一扫描线相连,所述指纹识别子电路的重置端与所述第三扫描线相连。
  8. 根据权利要求1-4中任一项所述的指纹识别及像素驱动电路,其中所述像素驱动子电路包括:
    驱动晶体管,用于驱动像素的发光元件发光;
    与驱动晶体管连接的阈值电压补偿电路,其用于对所述驱动晶体管的控制端的电压进行补偿,以消除所述驱动晶体管的阈值电压对所述发光元件发光时的发光电流的影响。
  9. 根据权利要求8所述的指纹识别及像素驱动电路,其中所述像素驱动子电路还包括:
    第四晶体管,所述第四晶体管的控制端为所述像素驱动子电路的发光控制端,所述第四晶体管的第一端用于接收电源电压,所述第四晶体管的第二端与所述驱动晶体管的第一端相连,所述驱动晶体管的 第二端和控制端连接至所述阈值电压补偿电路,
    第七晶体管,所述第七晶体管的第一端与所述驱动晶体管的第二端相连,所述第七晶体管的第二端与所述发光元件相连,第七晶体管的控制端连接至所述阈值电压补偿电路。
  10. 根据权利要求9所述的指纹识别及像素驱动电路,其中所述阈值电压补偿电路包括:
    存储电容,所述存储电容的一端与所述驱动晶体管的控制端相连并形成第三节点;
    第五晶体管,所述第五晶体管的第一端接地,所述第五晶体管的第二端与所述存储电容的另一端相连并形成第四节点;
    第六晶体管,所述第六晶体管的控制端与所述第五晶体管的控制端,并作为所述像素驱动子电路的第三扫描端,所述第六晶体管的第一端与所述第三节点相连,所述第六晶体管的第二端与所述驱动晶体管的第二端相连;
    第八晶体管,所述第八晶体管的控制端与所述第七晶体管的控制端相连,并作为所述像素驱动子电路的第一扫描端,所述第八晶体管的第一端为所述像素驱动子电路的数据写入端,所述第八晶体管的第二端与所述第四节点相连;
    第九晶体管,所述第九晶体管的控制端为所述像素驱动子电路的第二扫描端,所述第九晶体管的第一端接地,所述第九晶体管的第二端与所述第三节点相连。
  11. 根据权利要求8所述的指纹识别及像素驱动电路,其中所述指纹识别子电路的工作过程依次包括指纹识别重置阶段和指纹采集阶段,其中,
    在所述指纹识别重置阶段,所述第二晶体管和所述第三晶体管截止,所述第一晶体管开启,所述重置信号通过所述第一晶体管对所述探测电极的电势进行重置;
    在所述指纹采集阶段,所述第一晶体管截止,所述第二晶体管根据所述探测电容的电容值生成相应的漏电流,并通过所述第三晶体管输出所述漏电流。
  12. 根据权利要求11所述的指纹识别及像素驱动电路,其中所述驱动晶体管、以及第一晶体管至第九晶体管全部是P型晶体管。
  13. 根据权利要求12所述的指纹识别及像素驱动电路,其中所述像素驱动子电路的工作过程依次包括显示重置阶段、显示充电阶段、补偿跳变阶段和发光阶段,其中,
    在所述显示重置阶段,所述第二扫描信号为低电平,且所述第一扫描信号、所述第三扫描信号和所述发光控制信号为高电平,所述第四晶体管至所述第八晶体管截止,所述第九晶体管开启以使所述存储电容重置;
    在所述显示充电阶段,所述发光控制信号和所述第三扫描信号为低电平且所述第一扫描信号和所述第二扫描信号为高电平,所述第七晶体管、第八晶体管和所述第九晶体管截止,所述第四晶体管、第五晶体管、所述第六晶体管以及驱动晶体管开启,所述电源电压通过所述第四晶体管、所述驱动晶体管和所述第六晶体管对所述存储电容充电;
    在所述补偿跳变阶段,所述第一扫描信号为低电平,且所述发光控制信号、所述第二扫描信号和所述第三扫描信号为高电平,所述第四晶体管、第五晶体管和所述第六晶体管以及所述第九晶体管截止,所述第七晶体管和所述第八晶体管开启,所述驱动晶体管的控制端的电势根据所述数据信号跳变;
    在所述发光阶段,所述第一扫描信号和所述发光控制信号为低电平,且所述第二扫描信号和所述第三扫描信号为高电平,所述第五晶体管、所述第六晶体管以及所述第九晶体管截止,所述第四晶体管、所述第七晶体管和所述第八晶体管开启,所述驱动晶体管根据所述驱动晶体管的控制端的电势生成发光电流,并通过所述第七晶体管输出所述发光电流至所述发光元件以使所述发光元件发光。
  14. 根据权利要求13所述的指纹识别及像素驱动电路,其中,
    所述指纹识别子电路的第一读取端与所述第三扫描线相连,所述指纹识别子电路的重置端与所述第二扫描线相连,所述指纹识别子电路的指纹识别重置阶段与所述像素驱动子电路的显示重置阶段重合,且所述指纹识别子电路的指纹采集阶段与所述像素驱动子电路的显示充电阶段重合,且所述指纹识别子电路在所述像素驱动子电路的补偿跳变阶段和发光阶段停止工作。
  15. 根据权利要求13所述的指纹识别及像素驱动电路,其中,所 述指纹识别子电路的第一读取端与所述第一扫描线相连,所述指纹识别子电路的重置端与所述第二扫描线相连时,所述指纹识别子电路的指纹识别重置阶段与所述像素驱动子电路的显示重置阶段重合,且所述指纹识别子电路的指纹采集阶段包括所述像素驱动子电路的补偿跳变阶段和发光阶段,所述指纹识别子电路在所述像素驱动子电路的显示充电阶段停止工作。
  16. 根据权利要求13所述的指纹识别及像素驱动电路,其中,所述指纹识别子电路的第一读取端与所述第一扫描线相连,所述指纹识别子电路的重置端与所述第三扫描线相连时,所述指纹识别子电路的指纹识别重置阶段与所述像素驱动子电路的显示充电阶段重合,且所述指纹识别子电路的指纹采集阶段包括所述像素驱动子电路的补偿跳变阶段和发光阶段,且所述指纹识别子电路在所述像素驱动子电路的显示重置阶段停止工作。
  17. 一种显示装置,包括多个根据权利要求1-16中任一项所述的指纹识别及像素驱动电路。
  18. 根据权利要求17所述的显示装置,其中所述多个指纹识别及像素驱动电路中相邻的两个指纹识别及像素驱动电路由至少一个像素隔开。
PCT/CN2018/087447 2017-06-23 2018-05-18 指纹识别及像素驱动电路以及具有该电路的显示装置 WO2018233416A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/322,027 US10789442B2 (en) 2017-06-23 2018-05-18 Fingerprint recognition and pixel driving circuit, and display device comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710486499.5 2017-06-23
CN201710486499.5A CN107180611A (zh) 2017-06-23 2017-06-23 指纹识别及像素驱动电路以及具有该电路的显示装置

Publications (1)

Publication Number Publication Date
WO2018233416A1 true WO2018233416A1 (zh) 2018-12-27

Family

ID=59844255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087447 WO2018233416A1 (zh) 2017-06-23 2018-05-18 指纹识别及像素驱动电路以及具有该电路的显示装置

Country Status (3)

Country Link
US (1) US10789442B2 (zh)
CN (1) CN107180611A (zh)
WO (1) WO2018233416A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI704479B (zh) * 2018-09-14 2020-09-11 友達光電股份有限公司 觸控顯示面板

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107180611A (zh) * 2017-06-23 2017-09-19 京东方科技集团股份有限公司 指纹识别及像素驱动电路以及具有该电路的显示装置
CN108376696B (zh) * 2017-09-30 2020-08-25 云谷(固安)科技有限公司 终端及显示屏
CN108171179A (zh) * 2017-12-30 2018-06-15 深圳信炜科技有限公司 感光电路、感光装置及电子设备
CN108682386B (zh) 2018-05-14 2020-03-10 京东方科技集团股份有限公司 一种像素电路及显示面板
CN108878488B (zh) * 2018-06-26 2020-12-04 上海天马有机发光显示技术有限公司 一种显示面板和显示装置及显示面板的制作方法
CN109091153B (zh) * 2018-07-09 2022-07-08 京东方科技集团股份有限公司 一种显示面板、体征数据检测电路及方法
CN109410836A (zh) * 2018-12-05 2019-03-01 武汉华星光电半导体显示技术有限公司 Oled像素驱动电路及显示面板
CN109389933B (zh) * 2018-12-20 2021-09-17 厦门天马微电子有限公司 指纹识别模组的驱动方法和显示装置
US11151937B2 (en) * 2019-04-25 2021-10-19 Chengdu Boe Optoelectronics Technology Co., Ltd. Driving circuit, array substrate, display device and driving method
CN110008939B (zh) * 2019-05-17 2021-04-13 京东方科技集团股份有限公司 指纹识别像素驱动电路及其驱动方法、显示面板
CN110427910B (zh) * 2019-08-09 2022-04-05 Oppo广东移动通信有限公司 电子设备及电子设备的控制方法
CN211698994U (zh) * 2019-08-16 2020-10-16 神盾股份有限公司 指纹感测装置
CN110929667B (zh) * 2019-11-29 2022-11-04 厦门天马微电子有限公司 显示面板和显示装置
CN112883763B (zh) * 2019-11-29 2023-11-24 北京小米移动软件有限公司 信号检测方法及电子设备
CN110867165B (zh) * 2019-11-29 2021-10-15 厦门天马微电子有限公司 一种显示面板及显示装置
CN111144346B (zh) * 2019-12-30 2022-08-16 厦门天马微电子有限公司 一种指纹识别检测电路、指纹扫描电路及显示装置
CN111598050B (zh) * 2020-06-11 2023-11-24 京东方科技集团股份有限公司 一种指纹识别电路、其驱动方法及触控面板、显示装置
CN111967423B (zh) * 2020-08-27 2024-05-07 京东方科技集团股份有限公司 像素电路及其驱动方法、阵列基板、显示装置
CN112133258B (zh) * 2020-09-28 2022-06-17 厦门天马微电子有限公司 一种显示面板和显示面板的驱动方法
CN112289256B (zh) * 2020-10-26 2022-07-12 武汉华星光电半导体显示技术有限公司 一种像素电路、显示面板及其光学式触控识别方法
CN112418047B (zh) * 2020-11-18 2023-07-28 武汉华星光电半导体显示技术有限公司 显示面板、指纹识别的驱动方法及显示装置
CN113610022A (zh) * 2021-08-12 2021-11-05 合肥维信诺科技有限公司 指纹识别电路、显示面板及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050037840A (ko) * 2003-10-20 2005-04-25 삼성전자주식회사 패턴 인식 장치 및 이의 구동 방법
CN104103239A (zh) * 2014-06-23 2014-10-15 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法
CN104112120A (zh) * 2014-06-26 2014-10-22 京东方科技集团股份有限公司 指纹识别显示驱动电路和显示装置
CN104778923A (zh) * 2015-04-28 2015-07-15 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
US20160140380A1 (en) * 2011-05-17 2016-05-19 Cross Match Technologies, Inc. Fingerprint sensors
CN107180611A (zh) * 2017-06-23 2017-09-19 京东方科技集团股份有限公司 指纹识别及像素驱动电路以及具有该电路的显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8144115B2 (en) * 2006-03-17 2012-03-27 Konicek Jeffrey C Flat panel display screen operable for touch position determination system and methods
US20140292666A1 (en) * 2013-03-26 2014-10-02 Mobile Identity Management and Biometrics consortium Method and Apparatuses of User Interaction Control with Touch Display Device Integrated with Fingerprint Imager
CN103996377B (zh) * 2014-05-30 2016-07-06 京东方科技集团股份有限公司 像素电路和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050037840A (ko) * 2003-10-20 2005-04-25 삼성전자주식회사 패턴 인식 장치 및 이의 구동 방법
US20160140380A1 (en) * 2011-05-17 2016-05-19 Cross Match Technologies, Inc. Fingerprint sensors
CN104103239A (zh) * 2014-06-23 2014-10-15 京东方科技集团股份有限公司 有机发光二极管像素电路及其驱动方法
CN104112120A (zh) * 2014-06-26 2014-10-22 京东方科技集团股份有限公司 指纹识别显示驱动电路和显示装置
CN104778923A (zh) * 2015-04-28 2015-07-15 京东方科技集团股份有限公司 一种像素电路及其驱动方法、显示装置
CN107180611A (zh) * 2017-06-23 2017-09-19 京东方科技集团股份有限公司 指纹识别及像素驱动电路以及具有该电路的显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI704479B (zh) * 2018-09-14 2020-09-11 友達光電股份有限公司 觸控顯示面板

Also Published As

Publication number Publication date
US20190188444A1 (en) 2019-06-20
CN107180611A (zh) 2017-09-19
US10789442B2 (en) 2020-09-29

Similar Documents

Publication Publication Date Title
WO2018233416A1 (zh) 指纹识别及像素驱动电路以及具有该电路的显示装置
US10181291B2 (en) Organic light emitting display device having compensation pixel structure
US9934728B2 (en) Five-transistor-one-capacitor AMOLED pixel driving circuit and pixel driving method based on the circuit
US20170294163A1 (en) Amoled pixel driving circuit and pixel driving method
US9721507B2 (en) AMOLED pixel driving circuit and pixel driving method with compensation of threshold voltage changes
US9761173B2 (en) AMOLED pixel driving circuit and pixel driving method
WO2018076707A1 (zh) 像素驱动电路及其驱动方法、显示基板和显示装置
US20170110053A1 (en) Pixel circuit and display device
KR102293982B1 (ko) 표시 회로 및 표시 장치
WO2015196700A1 (zh) 有机发光二极管像素电路及其驱动方法
US20170140704A1 (en) Amoled pixel driving circuit and pixel driving method
WO2015180344A1 (zh) 像素电路及其驱动方法、有机发光显示面板及显示装置
WO2018032767A1 (zh) 显示基板、显示设备及区域补偿方法
KR101495359B1 (ko) 유기전계발광표시장치와 이의 구동방법
WO2019033487A1 (zh) 用于oled显示设备的像素驱动电路及oled显示设备
KR20130026338A (ko) 유기 발광 다이오드 표시 장치의 화소 회로
US9875688B2 (en) AMOLED pixel driving circuit and method for compensating nonuniform brightness
KR20130108631A (ko) 픽셀 회로 및 그 구동 방법
WO2014190614A1 (zh) 发光二极管像素单元电路和显示面板
CN110706654B (zh) 一种oled像素补偿电路及oled像素补偿方法
WO2014190617A1 (zh) 发光二极管像素单元电路和显示面板
WO2020062811A1 (zh) 像素电路及其驱动方法、显示面板、显示装置
JP2016062076A (ja) 画素回路、その駆動方法及び表示装置
JPWO2015198597A1 (ja) 表示装置及びその駆動方法
WO2018223799A1 (zh) 像素电路及其驱动方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.05.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18819611

Country of ref document: EP

Kind code of ref document: A1