WO2018233381A1 - 信息配置方法、功率调整方法、基站及移动终端 - Google Patents

信息配置方法、功率调整方法、基站及移动终端 Download PDF

Info

Publication number
WO2018233381A1
WO2018233381A1 PCT/CN2018/085349 CN2018085349W WO2018233381A1 WO 2018233381 A1 WO2018233381 A1 WO 2018233381A1 CN 2018085349 W CN2018085349 W CN 2018085349W WO 2018233381 A1 WO2018233381 A1 WO 2018233381A1
Authority
WO
WIPO (PCT)
Prior art keywords
power correction
correction parameter
power
uplink transmission
transmission channel
Prior art date
Application number
PCT/CN2018/085349
Other languages
English (en)
French (fr)
Inventor
李娜
沈晓冬
陈晓航
姜大洁
吴凯
孙晓东
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP18819671.1A priority Critical patent/EP3644659A4/en
Priority to EP21218400.6A priority patent/EP3998806A1/en
Priority to US16/624,459 priority patent/US11212749B2/en
Publication of WO2018233381A1 publication Critical patent/WO2018233381A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0806Configuration setting for initial configuration or provisioning, e.g. plug-and-play
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present disclosure relates to the technical field of communication applications, and in particular, to an information configuration method, a power adjustment method, a base station, and a mobile terminal.
  • DFT-S-OFDM Discrete Fourier Transform Spread OFDM
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing
  • PAPR peak-to-average power ratio
  • each orthogonal frequency division multiplexed OFDM symbol is different when different numerologies are used.
  • the duration of each OFDM symbol as at 30 kHz subcarrier spacing is half that of the 15 kHz subcarrier spacing. Therefore, assuming that the PUCCH under different numerologies uses the same number of symbols and the number of physical resource blocks (PRBs), the number of resource elements RE is the same, but the duration of the PUCCH at 30 kHz is only half of that at 15 kHz.
  • PRBs physical resource blocks
  • W power
  • P power
  • t time
  • SCS subcarrier Spacing
  • the number of symbols of the PUCCH in the NR system is variable, but the PUCCH carries the uplink control information (UCI), and the UCI size is the Hybrid Automatic Repeat reQuest (HARQ)/scheduling request (Scheduling Request). , SR) / Channel State Information (CSI) is determined and cannot be scaled with the number of symbols of the PUCCH.
  • the purpose of power control of LTE is to make the signal-to-noise ratio (SNR) of different UEs at the receiving end the same. However, in the case where the SNR is the same, the UE transmits the PUCCH with the same transmit power.
  • bit error ratio BER/Block Error Ratio
  • NR has different service types such as enhanced mobile broadband service (eMBB), ultra-reliable and low Latency Communication (URLLC), and massively connected Internet of Things services. (massive Machine Type Communication, mMTC), etc., different services have different performance requirements, such as network delay, bandwidth, reliability, and so on.
  • eMBB enhanced mobile broadband service
  • URLLC ultra-reliable and low Latency Communication
  • mMTC massively connected Internet of Things services.
  • URLLC has high requirements for low latency and high reliability
  • eMBB requires higher channel bandwidth.
  • different system configurations are required.
  • a new power design scheme is needed to adapt to the different waveform, numerology, symbol number PUCCH design or different waveform, numerology, service type in the NR system.
  • An object of the present disclosure is to provide an information configuration method, a power adjustment method, a base station, and a mobile terminal, which are used to solve the control problem of transmission power for an uplink transmission channel having different transmission parameters.
  • the present disclosure provides an information configuration method, which is applied to a base station, and includes:
  • the present disclosure further provides a power adjustment method, which is applied to a mobile terminal, and includes:
  • the power correction parameter is determined by the mobile terminal according to an OFDM symbol number of an uplink transmission channel
  • the transmit power of the uplink transmission channel is corrected according to the power correction parameter.
  • the present disclosure also provides a base station, including:
  • a configuration module configured to configure, according to a transmission parameter of the uplink transmission channel, a power correction parameter corresponding to the transmission parameter, where the power correction parameter is used by the mobile terminal to modify a transmit power of the uplink transmission channel;
  • a sending module configured to send the power correction parameter to the mobile terminal.
  • the present disclosure also provides a base station including a first memory, a first processor, and a first computer program stored on the first memory and operable on the first processor, the first process The steps in the information configuration method as described above are implemented when the first computer program is executed.
  • the present disclosure also provides a computer readable storage medium having stored thereon a first computer program, the first computer program being executed by a processor to implement the steps in the information configuration method as described above.
  • an embodiment of the present disclosure further provides a mobile terminal, including:
  • An obtaining module configured to obtain a power correction parameter, where the power correction parameter is determined by the mobile terminal according to an OFDM symbol number of an uplink transmission channel;
  • a correction module configured to correct the transmit power of the uplink transmission channel according to the power correction parameter.
  • an embodiment of the present disclosure further provides a mobile terminal, including a second memory, a second processor, and a second computer program stored on the second memory and operable on the second processor.
  • the steps in the power adjustment method as described above are implemented when the second processor executes the second computer program.
  • an embodiment of the present disclosure further provides a computer readable storage medium having stored thereon a second computer program, the second computer program being executed by a processor to implement the steps in the power adjustment method as described above .
  • a power correction parameter corresponding to the transmission parameter is configured according to a transmission parameter of an uplink transmission channel, where the power correction parameter is used by a mobile terminal to modify a transmit power of the uplink transmission channel;
  • the power correction parameter is sent to the mobile terminal, so that the mobile terminal corrects the transmit power of the uplink transport channel according to the power correction parameter, so that the PUCCH that adapts to different waveforms, numerology, and number of symbols in the NR system can be achieved.
  • FIG. 1 is a flowchart of a work of an information configuration method according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a power adjustment method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram showing display of an OFDM symbol that can be used to transmit UCI in a PUCCH according to an embodiment of the present disclosure
  • FIG. 4 is a first structural block diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 5 is a second structural block diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 6 is a first structural block diagram of a mobile terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a second structural block diagram of a mobile terminal according to an embodiment of the present disclosure.
  • FIG. 8 is a third structural block diagram of a mobile terminal according to an embodiment of the present disclosure.
  • FIG. 9 is a block diagram of a fourth structure of a mobile terminal according to an embodiment of the present disclosure.
  • an embodiment of the present disclosure provides an information configuration method, which is applied to a base station, and includes:
  • Step 101 Configure a power correction parameter corresponding to the transmission parameter according to a transmission parameter of the uplink transmission channel, where the power correction parameter is used by the mobile terminal to modify a transmit power of the uplink transmission channel.
  • the uplink transport channel includes a PUCCH and/or a PUSCH.
  • the foregoing transmission parameter includes at least one parameter, and the foregoing step 101 specifically includes: configuring a power correction parameter corresponding to each parameter included in the transmission parameter.
  • the transmission parameter of the uplink channel may specifically include the number of orthogonal frequency division multiplexing OFDM symbols of the uplink transmission channel, the numerical configuration information of the uplink transmission channel, the nullerology, the transmission waveform used by the uplink transmission channel, and the At least one parameter of a service type of a service carried by the uplink transport channel.
  • each parameter may be in one-to-one correspondence with the power correction parameter, or multiple parameters may correspond to one power correction parameter.
  • the value configuration information is A
  • the first power correction parameter is configured for the symbol number 1
  • the second power correction parameter is configured for the symbol number 2.
  • the first power correction parameter corresponds to the symbol number 1 and the value configuration information A
  • the second The power correction parameter corresponds to the symbol number 2 and the value configuration information A
  • the third power correction parameter is configured for the symbol number 1
  • the fourth power correction parameter is configured for the symbol number 2 and the numerical configuration information B.
  • Step 102 Send the power correction parameter to the mobile terminal.
  • the power correction parameter is sent to the mobile terminal, so that the mobile terminal corrects the transmit power of the uplink transmission channel sent by the mobile terminal according to the power correction parameter.
  • the foregoing transmission parameter includes: the number of OFDM symbols of the uplink transmission channel.
  • the foregoing step 101 includes:
  • the base station configures corresponding power correction parameters for PUCCHs having different OFDM symbol numbers, and the longer the number of symbols of the PUCCH, the smaller the power correction parameter.
  • the foregoing transmission parameter includes: the value configuration information of the uplink transmission channel, the value configuration information includes a subcarrier spacing and a cyclic prefix CP length, where the foregoing step 101 includes:
  • the PUCCH of the other numerology introduces a transmission power offset power offset (scs, xCP) with respect to the PUCCH of the basic numerology, where scs represents the subcarrier spacing of the PUCCH, and x represents the CP length of the PUCCH.
  • scs represents the subcarrier spacing of the PUCCH
  • x represents the CP length of the PUCCH.
  • the base station pre-configures the power offset (scs, xCP).
  • the UE When transmitting the PUCCH, the UE corresponds to the power offset (scs, xCP) according to the numerology used by the UE, and introduces a power offset (scs) of the modified parameter in the calculation formula of the calculation power of the terminal. , xCP).
  • the embodiment of the present disclosure introduces a power offset of a modified parameter in a calculation formula of a terminal transmit power according to a numerology of a PUCCH, and configures different power offsets for different numerologies of the PUCCH. This scheme is applicable to PUCCH and PUSCH.
  • the transmission parameter includes a transmission waveform used by the uplink transmission channel.
  • the foregoing step 101 includes:
  • the transmission parameter includes a transmission waveform used by the uplink transmission channel.
  • the foregoing step 101 includes:
  • the correction parameter power offset is introduced in the calculation formula of the terminal transmission power.
  • the power offset value of the PUCCH defining the other waveform relative to the waveform is power offset(w), where w represents the transmission waveform of the PUCCH.
  • P CMAX in the calculation formula of the transmission power is changed to P CMAX + power offset (w).
  • different power correction parameters are configured according to different transmission waveforms, and the uplink transmission using CP-OFDM is smaller than the maximum transmission power of the UE compared to DFT-S-OFDM.
  • This scheme is applicable to PUCCH and PUSCH.
  • the foregoing transmission parameter includes: a service type of a service carried by the uplink transmission channel.
  • the above step 101 includes:
  • the carrier includes a mobile terminal, a transmission resource, or a beam.
  • the corresponding power correction parameters are configured for the mobile terminal, the transmission resource, or the beam that carries the same service type.
  • the power correction parameter is used to correct P o or ⁇ in the power calculation formula of the PUSCH. This scheme is applicable to PUSCH.
  • the power calculation formula of the existing PUSCH is:
  • P PUSCH,c (i) represents the transmission power of the mobile terminal transmitting the PUSCH
  • P CMAX,c (i) represents the maximum transmission power of the mobile terminal.
  • P _O_PUSCH is a parameter configured by higher layers
  • P O_NOMINAL_PUCCH cell represents nominal power
  • P O_UE_PUCCH represents a specific nominal power UE
  • c (i) represents the PUSCH occupied
  • PL c represents the estimated downlink path loss of the UE
  • f c represents the power adjustment value formed by the closed loop power control
  • ⁇ c is the path loss compensation factor, which is configured by the upper layer.
  • ⁇ c 1 indicates complete path loss compensation.
  • the UE increases the transmission power.
  • the transmission power of the cell edge UE is simply increased, and the overall system capacity is decreased due to the increase of inter-cell interference.
  • ⁇ c ⁇ 1 indicates partial path loss compensation, that is, limiting the power boost of the cell edge UE from the perspective of maximizing the total capacity of the entire system.
  • the information configuration method of the embodiment of the present disclosure configures, according to the transmission parameter of the uplink transmission channel, a power correction parameter corresponding to the transmission parameter, where the power correction parameter is used by the mobile terminal to modify the transmit power of the uplink transmission channel;
  • the power correction parameter is sent to the mobile terminal, so that the mobile terminal corrects the transmit power of the uplink transport channel according to the power correction parameter, so that the PUCCH that adapts to different waveforms, numerology, and number of symbols in the NR system can be achieved.
  • an embodiment of the present disclosure further provides a power adjustment method, which is applied to a mobile terminal, and includes:
  • Step 201 Acquire a power correction parameter sent by the base station, where the power correction parameter is configured by the base station according to a transmission parameter of the uplink transmission channel.
  • the transmission parameter in the embodiment of the present disclosure includes: including at least one parameter, and the base station configures a power correction parameter corresponding to each parameter included in the transmission parameter.
  • the transmission parameter of the uplink channel may specifically include the number of orthogonal frequency division multiplexing OFDM symbols of the uplink transmission channel, the numerical configuration information of the uplink transmission channel, the nullerology, the transmission waveform used by the uplink transmission channel, and the At least one parameter of a service type of a service carried by the uplink transport channel.
  • the power correction parameter includes: a power correction parameter corresponding to the OFDM symbol of the transmission channel, a power correction parameter corresponding to the value configuration information of the uplink transmission channel, a power correction parameter corresponding to the transmission waveform used by the uplink transmission channel, and an uplink transmission channel. At least one of the power correction parameters corresponding to the service type of the carried service.
  • power offset represents a power correction parameter
  • L 0 represents a preset reference OFDM symbol number
  • L represents an OFDM symbol number of the uplink transmission channel.
  • the PUCCH of other symbol numbers is introduced with the formula power offset(L) with respect to the PUCCH of the basic symbol number, where L represents the number of symbols of the PUCCH.
  • the UE When transmitting the PUCCH, the UE corresponds to the power offset (L) according to the number of symbols, and introduces a power offset (L) of the modified parameter in a calculation formula for calculating the transmission power of the terminal.
  • the value corresponding to the predetermined parameter in the preset transmission power calculation formula may be calculated according to the number of symbols of the PUCCH, and the predetermined parameter is ⁇ TF,c .
  • the transmitted hybrid automatic request retransmission acknowledgement HARQ-ACK/scheduling request SR or rank indication RI or channel quality indicator CQI or precoding matrix indicating the cyclic redundancy check code CRC indicates the number of bits of the PMI.
  • N RE indicates the number of REs available in the PUCCH, and different PUCCH formats are calculated differently, for example, when the PUCCH DMRS occupies the entire OFDM symbol,
  • M PUCCH,c (i) represents the number of PRBs occupied by the PUCCH, Indicates the number of subcarriers per RB, Indicates the number of symbols occupied by UCI in the PUCCH, and N UE indicates the number of users multiplexed on the same resource.
  • Step 202 Correct the transmit power of the uplink transmission channel according to the power correction parameter.
  • the power correction parameter includes a power correction parameter corresponding to a transmission waveform used by the uplink transmission channel
  • the uplink transmission channel is used according to a power correction parameter corresponding to a transmission waveform used by the uplink transmission channel.
  • the maximum transmit power is corrected.
  • the power correction parameter includes other power correction parameters than the power correction parameter corresponding to the transmission waveform used by the uplink transmission channel, perform the currently calculated transmit power of the mobile terminal according to the other power correction parameters. Corrected.
  • the power correction parameter includes other power correction parameters other than the power correction parameter corresponding to the transmission waveform used by the uplink transmission channel (such as the power correction parameter corresponding to the OFDM symbol of the foregoing transmission channel, and the numerical configuration information of the uplink transmission channel) And when the corresponding power correction parameter or the power correction parameter corresponding to the service type of the service carried by the uplink transmission channel is used, the current calculated power of the mobile terminal is corrected according to the other power correction parameter.
  • the currently calculated transmit power of the mobile terminal is calculated by using a preset transmit power calculation formula.
  • PUCCH is designed to be different formats, and different format power control calculation formulas are different.
  • the calculation formula for the transmission power is:
  • ⁇ F_PUCCH represents the power offset of PUCCH format (F) relative to PUCCH format 1a.
  • P O_PUCCH of P O_NOMINAL_PUCCH and P O_UE_PUCCH sum
  • P O_NOMINAL_PUCCH cell represents nominal power
  • P O_UE_PUCCH denotes a UE-specific nominal power
  • N RE represents the number of REs available in the PUCCH, Indicates the number of subcarriers per RB, Indicates the number of symbols occupied by the PUCCH UCI;
  • the possible calculation formula of the transmission power control of the NR system PUCCH is as follows:
  • O UCI (i) indicates the number of bits of HARQ-ACK/SR/RI/CQI/PMI including CRC transmitted on the PUCCH;
  • N RE (i) represents the number of REs that the PUCCH can use to transmit UCI, and the value is related to the number of symbols of the PUCCH and the DMRS design.
  • DMRS occupies the entire OFDM symbol, And Indicates the number of symbols occupied by UCI in the PUCCH. For PUCCHs with different symbol numbers, the values are different, as shown in Figure 3.
  • the power offsets of the modified parameters introduced for different waveforms, numerology, and symbol numbers may be respectively introduced by power offset (w), power offset (scs, xCP), and power offset (L). It can also be jointly or partially introduced, such as power offset (w, scs, xCP, L), power offset (w, scs, xCP), power offset (scs, xCP, L).
  • the mobile terminal corrects the transmit power of the uplink transport channel according to the power correction parameter configured by the base station, so that the PUCCH design or different for different waveforms, numerology, and symbol numbers in the NR system can be achieved.
  • an embodiment of the present disclosure further provides a base station 400, including:
  • the configuration module 401 is configured to configure, according to a transmission parameter of the uplink transmission channel, a power correction parameter corresponding to the transmission parameter, where the power correction parameter is used by the mobile terminal to modify a transmit power of the uplink transmission channel;
  • the sending module 402 is configured to send the power correction parameter to the mobile terminal.
  • the transmission parameter includes:
  • Orthogonal frequency division multiplexing OFDM symbol number of the uplink transmission channel Numerology of the uplink transmission channel, a transmission waveform used by the uplink transmission channel, and a service type of the service carried by the uplink transmission channel At least one parameter.
  • the transmission parameter includes: an OFDM symbol number of the uplink transmission channel
  • the configuration module 401 is configured to obtain, according to a first correspondence between a preset number of OFDM symbols and a corresponding power correction parameter, a power correction parameter corresponding to the number of OFDM symbols of the uplink transport channel, where the In a correspondence, when the first OFDM symbol number is greater than the second OFDM symbol number, the first power correction parameter corresponding to the first OFDM symbol number is smaller than the second power correction parameter corresponding to the second OFDM symbol number.
  • the transmission parameter includes:
  • Value configuration information of the uplink transport channel where the value configuration information includes a subcarrier spacing and a cyclic prefix CP length;
  • the configuration module 401 includes:
  • a first configuration submodule configured to obtain a third power correction parameter corresponding to a subcarrier spacing of the uplink transmission channel according to a second correspondence between the preset multiple subcarrier spacing and the corresponding power correction parameter, where In the second correspondence, the value of the power correction parameter increases as the subcarrier spacing increases;
  • a second configuration submodule configured to obtain, according to a third correspondence between the preset multiple CP lengths and the corresponding power correction parameters, a fourth power correction parameter corresponding to the uplink transmission channel CP length, where the In the three correspondence relationship, the value of the power correction parameter decreases as the CP length increases;
  • a processing submodule configured to perform weighted summation processing on the third power correction parameter and the fourth power correction parameter according to a first weight of the subcarrier spacing and a second weight of the CP length, to obtain the value configuration
  • the power correction parameter corresponding to the information.
  • the transmission parameter includes: a transmission waveform used by the uplink transmission channel;
  • the configuration module 401 is configured to acquire, according to a fourth correspondence between the preset multiple transmission waveforms and the corresponding power correction parameters, a power correction parameter corresponding to the transmission waveform used by the uplink transmission channel.
  • the transmission parameter includes:
  • the configuration module 401 is configured to obtain a power corresponding to a transmission waveform used by the uplink transmission channel according to a power correction parameter of a predetermined transmission waveform and a power deviation value of a transmission waveform used by the uplink transmission channel and a predetermined transmission waveform. Correct the parameters.
  • the transmission parameter includes: a service type of a service carried by the uplink transmission channel;
  • the configuration module 401 is configured to configure, according to a fifth correspondence between the preset multiple service types and the corresponding power correction parameters, a service type of the service carried by the uplink transmission channel, Corresponding power correction parameters, the carrier comprising a mobile terminal, a transmission resource or a beam.
  • the base station configures a power correction parameter corresponding to the transmission parameter according to a transmission parameter of the uplink transmission channel, where the power correction parameter is used by the mobile terminal to modify a transmit power of the uplink transmission channel; Transmitting a power correction parameter to the mobile terminal, so that the mobile terminal corrects the transmit power of the uplink transport channel according to the power correction parameter, thereby achieving a PUCCH design adapted to different waveforms, numerology, and symbol numbers in the NR system or The purpose of the transmission power control of the physical uplink shared channel PUSCH under different waveforms, numerology, and service types.
  • an embodiment of the present disclosure further provides a base station, including a first memory 520, a first processor 500, a first transceiver 510, a bus interface, and a storage device.
  • a first computer program on a memory 520 and operable on the first processor 500, the first processor 500 is configured to read a program in the first memory 520, and perform the following process:
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the first processor 500 and various circuits of the memory represented by the first memory 520. .
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the first transceiver 510 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the first processor 500 is responsible for managing the bus architecture and the usual processing, and the first memory 520 can store data used by the first processor 500 when performing operations.
  • the transmission parameters include:
  • Orthogonal frequency division multiplexing OFDM symbol number of the uplink transmission channel Numerology of the uplink transmission channel, a transmission waveform used by the uplink transmission channel, and a service type of the service carried by the uplink transmission channel At least one parameter.
  • the transmission parameter includes: an OFDM symbol number of the uplink transmission channel;
  • the first processor 500 is further configured to obtain a power correction parameter corresponding to the number of OFDM symbols of the uplink transmission channel according to a first correspondence between a preset number of OFDM symbols and a corresponding power correction parameter, where In the first correspondence, when the first OFDM symbol number is greater than the second OFDM symbol number, the first power correction parameter corresponding to the first OFDM symbol number is smaller than the second power correction parameter corresponding to the second OFDM symbol number.
  • the transmission parameters include:
  • Value configuration information of the uplink transport channel where the value configuration information includes a subcarrier spacing and a cyclic prefix CP length;
  • the first processor 500 is further configured to: obtain a third power correction parameter corresponding to a subcarrier spacing of the uplink transmission channel, according to a second correspondence between the preset multiple subcarrier spacing and the corresponding power correction parameter, where In the second correspondence, the value of the power correction parameter increases as the subcarrier spacing increases;
  • the transmission parameter includes: a transmission waveform used by the uplink transmission channel;
  • the first processor 500 is further configured to acquire, according to a fourth correspondence between the preset multiple transmission waveforms and the corresponding power correction parameters, a power correction parameter corresponding to the transmission waveform used by the uplink transmission channel.
  • the transmission parameters include:
  • the first processor 500 is further configured to: according to the power correction parameter of the predetermined transmission waveform and the power deviation value of the transmission waveform used by the uplink transmission channel and the predetermined transmission waveform, to obtain a transmission waveform corresponding to the uplink transmission channel. Power correction parameters.
  • the transmission parameter includes: a service type of a service carried by the uplink transmission channel;
  • the first processor 500 is further configured to: configure, according to a fifth corresponding relationship between the preset multiple service types and the corresponding power correction parameters, a bearer for transmitting the uplink transport channel, and a service carried by the uplink transport channel A power correction parameter corresponding to a service type, the bearer comprising a mobile terminal, a transmission resource, or a beam.
  • the base station configures a power correction parameter corresponding to the transmission parameter according to a transmission parameter of the uplink transmission channel, where the power correction parameter is used by the mobile terminal to modify a transmit power of the uplink transmission channel; Transmitting a power correction parameter to the mobile terminal, so that the mobile terminal corrects the transmit power of the uplink transport channel according to the power correction parameter, thereby achieving a PUCCH design adapted to different waveforms, numerology, and symbol numbers in the NR system or The purpose of the transmission power control of the physical uplink shared channel PUSCH under different waveforms, numerology, and service types.
  • a computer readable storage medium having stored thereon a first computer program that, when executed by a processor, implements the following steps:
  • an embodiment of the present disclosure further provides a mobile terminal 600, including:
  • the obtaining module 601 is configured to acquire a power correction parameter sent by the base station, where the power correction parameter is configured by the base station according to a transmission parameter of the uplink transmission channel;
  • the correction module 602 is configured to correct the transmit power of the uplink transmission channel according to the power correction parameter.
  • the transmission parameter includes: an orthogonal frequency division multiplexing OFDM symbol number of the uplink transmission channel, a numerical configuration information of the uplink transmission channel, a nullerology, and a transmission used by the uplink transmission channel. At least one of a waveform and a service type of a service carried by the uplink transport channel.
  • the correction module 602 is configured to: according to the power correction parameter corresponding to the transmission waveform used by the uplink transmission channel, the transmission waveform used according to the uplink transmission channel Corresponding power correction parameters are used to correct the maximum transmit power of the uplink transport channel.
  • the correction module 602 is configured to: if the power correction parameter includes other power correction parameters than the power correction parameter corresponding to the transmission waveform used by the uplink transmission channel, according to the other The power correction parameter corrects the currently calculated transmit power of the mobile terminal.
  • the mobile terminal corrects the transmit power of the uplink transport channel according to the power correction parameter configured by the base station, so as to achieve the PUCCH design or different services adapted to different waveforms, numerology, and symbol numbers in the NR system.
  • the mobile terminal is a terminal corresponding to the foregoing method embodiment. All the implementation manners in the foregoing method embodiments are applicable to the embodiment of the mobile terminal, and the same technical effects can be achieved.
  • an embodiment of the present disclosure further provides a mobile terminal, including a second memory 720, a second processor 700, a second transceiver 710, a user interface 730, and a bus. And a second computer program stored on the second memory 720 and operable on the second processor 700, the second processor 700 is configured to read the program in the second memory 720, and perform the following process:
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the second processor 700 and various circuits of the memory represented by the second memory 720. .
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • the second transceiver 710 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 730 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the second processor 700 is responsible for managing the bus architecture and normal processing, and the second memory 720 can store data used by the second processor 700 when performing operations.
  • the transmission parameter includes: an orthogonal frequency division multiplexing OFDM symbol number of the uplink transmission channel, a numerical configuration information of the uplink transmission channel, a nullerology, a transmission waveform used by the uplink transmission channel, and the At least one parameter of a service type of a service carried by the uplink transport channel.
  • the second processor 700 is further configured to: if the power correction parameter includes a power correction parameter corresponding to a transmission waveform used by the uplink transmission channel, according to a power correction parameter corresponding to a transmission waveform used by the uplink transmission channel, Correcting the maximum transmit power of the uplink transport channel.
  • the second processor 700 is further configured to: if the power correction parameter includes a power correction parameter other than a power correction parameter corresponding to a transmission waveform used by the uplink transmission channel, according to the other power correction parameter The currently calculated transmit power of the mobile terminal is corrected.
  • a computer readable storage medium having stored thereon a second computer program, the second computer program being executed by the processor to implement the following steps:
  • FIG. 8 another structural block diagram of a mobile terminal according to an embodiment of the present disclosure includes: at least one processor 801, a memory 802, at least one network interface 804, and other user interfaces 803.
  • the various components in mobile terminal 800 are coupled together by a bus system 805.
  • the bus system 805 is used to implement connection communication between these components.
  • the bus system 805 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 805 in FIG.
  • the user interface 803 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the memory 802 in an embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • memory 802 stores elements, executable modules or data structures, or a subset thereof, or their extended set: operating system 8021 and application 8022.
  • the operating system 8021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 8022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 8022.
  • the program or the instruction stored in the memory 802 may be a program or an instruction stored in the application 8022, and the processor 801 is configured to acquire a power correction parameter sent by the base station, where the power is The correction parameter is configured by the base station according to the transmission parameter of the uplink transmission channel; and the transmission power of the uplink transmission channel is corrected according to the power correction parameter.
  • the transmission parameter includes: an orthogonal frequency division multiplexing OFDM symbol number of the uplink transmission channel, a numerical configuration information of the uplink transmission channel, a nullerology, a transmission waveform used by the uplink transmission channel, and the At least one parameter of a service type of a service carried by the uplink transport channel.
  • the processor 801 is further configured to: if the power correction parameter includes a power correction parameter corresponding to a transmission waveform used by the uplink transmission channel, according to a power correction parameter corresponding to a transmission waveform used by the uplink transmission channel, The maximum transmit power of the uplink transport channel is corrected.
  • the processor 801 is further configured to: if the power correction parameter includes a power correction parameter other than a power correction parameter corresponding to a transmission waveform used by the uplink transmission channel, to the mobile terminal according to the other power correction parameter The currently calculated transmit power is corrected.
  • the processor 801 is configured to modify, according to the power correction parameter configured by the base station, the transmit power of the uplink transmission channel, so as to be able to adapt to different waveforms, numerology, and symbol numbers in the NR system.
  • the mobile terminal of the present disclosure may be, for example, a mobile phone, a tablet computer, a personal digital assistant (PDA), or a car computer or the like.
  • PDA personal digital assistant
  • the mobile terminal 800 can implement various processes implemented by the terminal in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • Processor 801 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 801 or an instruction in a form of software.
  • the processor 801 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in memory 802, and processor 801 reads the information in memory 802 and, in conjunction with its hardware, performs the steps of the above method.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • FIG. 9 is a block diagram showing still another structure of a mobile terminal according to an embodiment of the present disclosure.
  • the mobile terminal 900 shown in FIG. 9 includes a radio frequency (RF) circuit 910, a memory 920, an input unit 930, a display unit 940, a processor 960, an audio circuit 970, a WiFi (Wireless Fidelity) module 9100, and a power supply 990.
  • RF radio frequency
  • the input unit 930 can be configured to receive numeric or character information input by the user, and generate signal input related to user settings and function control of the mobile terminal 900.
  • the input unit 930 may include a touch panel 931.
  • the touch panel 931 also referred to as a touch screen, can collect touch operations on or near the user (such as the operation of the user using any suitable object or accessory such as a finger or a stylus on the touch panel 931), and according to the preset The programmed program drives the corresponding connection device.
  • the touch panel 931 may include two parts of a touch detection device and a touch controller.
  • the touch detection device detects the touch orientation of the user, and detects a signal brought by the touch operation, and transmits the signal to the touch controller; the touch controller receives the touch information from the touch detection device, converts the touch information into contact coordinates, and sends the touch information.
  • the processor 960 is provided and can receive commands from the processor 960 and execute them.
  • the touch panel 931 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • the input unit 930 may further include other input devices 932, which may include, but are not limited to, physical keyboards, function keys (such as volume control buttons, switch buttons, etc.), trackballs, mice, joysticks, and the like. One or more of them.
  • the display unit 940 can be used to display information input by the user or information provided to the user and various menu interfaces of the mobile terminal 900.
  • the display unit 940 may include a display panel 941.
  • the display panel 941 may be configured in the form of an LCD or an Organic Light-Emitting Diode (OLED).
  • the touch panel 931 can cover the display panel 941 to form a touch display screen, and when the touch display screen detects a touch operation on or near it, it is transmitted to the processor 960 to determine the type of the touch event, and then the processor The 960 provides a corresponding visual output on the touch display depending on the type of touch event.
  • the touch display includes an application interface display area and a common control display area.
  • the arrangement manner of the application interface display area and the display area of the common control is not limited, and the arrangement manner of the two display areas can be distinguished by up-and-down arrangement, left-right arrangement, and the like.
  • the application interface display area can be used to display the interface of the application. Each interface can contain interface elements such as at least one application's icon and/or widget desktop control.
  • the application interface display area can also be an empty interface that does not contain any content.
  • the common control display area is used to display controls with high usage, such as setting buttons, interface numbers, scroll bars, phone book icons, and the like.
  • the processor 960 is a control center of the mobile terminal 900, and connects various parts of the entire mobile phone by using various interfaces and lines, by running or executing software programs and/or modules stored in the first memory 921, and calling the second storage.
  • the data in the memory 922 performs various functions and processing data of the mobile terminal 900, thereby performing overall monitoring of the mobile terminal 900.
  • processor 960 can include one or more processing units.
  • the processor 960 is configured to acquire a power correction parameter sent by the base station by calling a software program and/or a module stored in the first memory 921 and/or data in the second memory 922.
  • the power correction parameter is configured by the base station according to a transmission parameter of the uplink transmission channel, and the transmission power of the uplink transmission channel is corrected according to the power correction parameter.
  • the transmission parameter includes: an orthogonal frequency division multiplexing OFDM symbol number of the uplink transmission channel, a numerical configuration information of the uplink transmission channel, a nullerology, a transmission waveform used by the uplink transmission channel, and the At least one parameter of a service type of a service carried by the uplink transport channel.
  • the processor 960 is further configured to: if the power correction parameter includes a power correction parameter corresponding to a transmission waveform used by the uplink transmission channel, according to a power correction parameter corresponding to a transmission waveform used by the uplink transmission channel, The maximum transmit power of the uplink transport channel is corrected.
  • the processor 960 is further configured to: if the power correction parameter includes a power correction parameter other than a power correction parameter corresponding to a transmission waveform used by the uplink transmission channel, to the mobile terminal according to the other power correction parameter The currently calculated transmit power is corrected.
  • the mobile terminal of the present disclosure may be, for example, a mobile phone, a tablet computer, a personal digital assistant (PDA), or a car computer or the like.
  • PDA personal digital assistant
  • the mobile terminal 900 can implement various processes implemented by the terminal in the foregoing embodiment. To avoid repetition, details are not described herein again.
  • the processor 960 is configured to modify, according to the power correction parameter configured by the base station, the transmit power of the uplink transmission channel, so as to be able to adapt to different waveforms, numerologies, and symbols in the NR system.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, the portion of the technical solution of the present disclosure that contributes in essence or to the prior art or the portion of the technical solution may be embodied in the form of a software product stored in a storage medium, including The instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种信息配置方法、功率调整方法、基站及移动终端。该信息配置方法包括:根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数,所述功率修正参数供移动终端对所述上行传输信道的发射功率进行修正;将所述功率修正参数发送给所述移动终端。

Description

信息配置方法、功率调整方法、基站及移动终端
相关申请的交叉引用
本申请主张在2017年6月21日在中国提交的中国专利申请No.201710475695.2的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及通信应用的技术领域,尤其涉及一种信息配置方法、功率调整方法、基站及移动终端。
背景技术
新空口(New Radio,NR)系统中引入了不同的波形(waveform)、数值配置信息(numerology)和不同符号数的物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)。对于循环前缀正交频分复用(Cyclic Prefix Orthogonal Frequency Division Multiplexing,CP-OFDM)和离散傅里叶变换扩频的正交频分复用(Discrete Fourier Transform Spread OFDM,DFT-S-OFDM)波形,相比之下,DFT-S-OFDM的峰值平均功率比(Peak to Average Power Ratio,PAPR)比CP-OFDM的低1~3dB左右。因此,用户设备(User Equipment,UE)采用CP-OFDM波形传输PUCCH时的最大发射功率会小于采用DFT-S-OFDM波形传输PUCCH的最大发射功率。
当使用不同numerology时,每个正交频分复用OFDM符号的持续时间不同。如30kHz子载波间隔下的每个OFDM符号的持续时间是15kHz子载波间隔下的一半。因此,假设不同numerology下的PUCCH采用相同的符号数和物理资源块(Physical Resource Block,PRB)数,则二者所含资源单元RE数目相同,但30kHz下的PUCCH的持续时间只有15kHz下的一半,若UE在每个符号上采用相同的功率发送PUCCH,则根据公式W=P*t(W代表功,P表示功率,t表示时间),子载波间隔(Subcarrier Spacing,SCS)越大,PUCCH的持续时间越短,接收端接收到的信号能量就越小,传输每比特信息的能量越小,解调性能也就越差。
NR系统中PUCCH的符号数可变,但PUCCH承载内容的是上行控制信息(Uplink Control Information,UCI),UCI大小是由混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)/调度请求(Scheduling Request,SR)/信道状态信息(Channel State Information,CSI)决定的而不能随PUCCH的符号数而进行缩放。LTE的功率控制的目的是使不同UE在接收端的信噪比(Signal-to-Noise Ratio,SNR)相同。但是,在SNR相同的情况下,UE采用相同的发射功率传输PUCCH,对于不同符号数的PUCCH承载相同大小的UCI,就会有PUCCH符号数越少,传输每比特UCI的能量就越小,相应的误码率(Bit Error Ratio,BER)/误块率(Block Error Ratio,BLER)就会越大。也就是说,为了获得相同的BER/BLER,PUCCH越短,接收端所需的SNR越高。
另外,NR中有不同的业务类型如增强型移动宽带业务(enhance Mobile Broadband,eMBB)、超高可靠性与超低时延业务(Ultra Reliable & Low Latency Communication,URLLC)、海量连接的物联网业务(massive Machine Type Communication,mMTC)等,不同业务有不同的性能需求,如网络时延、带宽、可靠性等。URLLC作为NR中的重要业务类型,对低时延、高可靠性有很高的要求,而eMBB则要求较高的信道带宽。为了满足不同业务的业务需求,需要有不同的系统配置。
综上所述,针对NR系统中上行传输信道的传输功率,需要提出一种新的功率设计方案,以适应NR系统中不同waveform、numerology、符号数的PUCCH设计或不同waveform、numerology、业务类型下的物理上行共享信道PUSCH的传输功率控制。
发明内容
本公开的目的在于提供一种信息配置方法、功率调整方法、基站及移动终端,用以解决针对具有不同传输参数的上行传输信道的传输功率的控制问题。
为了实现上述目的,本公开提供了一种信息配置方法,应用于基站,包括:
根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数,所述功率修正参数供移动终端对所述上行传输信道的发射功率进行修正;
将所述功率修正参数发送给所述移动终端。
为了实现上述目的,本公开还提供了一种功率调整方法,应用于移动终端,包括:
获取功率修正参数,所述功率修正参数由所述移动终端根据上行传输信道的OFDM符号数确定;
根据该功率修正参数,对上述上行传输信道的发射功率进行修正。
为了实现上述目的,本公开还提供了一种基站,包括:
配置模块,用于根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数,所述功率修正参数供移动终端对所述上行传输信道的发射功率进行修正;
发送模块,用于将所述功率修正参数发送给所述移动终端。
为了实现上述目的,本公开还提供了一种基站,包括第一存储器、第一处理器及存储在第一存储器上并可在第一处理器上运行的第一计算机程序,所述第一处理器执行所述第一计算机程序时实现如上所述信息配置方法中的步骤。
为了实现上述目的,本公开还提供了一种计算机可读存储介质,其上存储有第一计算机程序,该第一计算机程序被处理器执行时实现如上所述信息配置方法中的步骤。
为了实现上述目的,本公开的实施例还提供了一种移动终端,包括:
获取模块,用于获取功率修正参数,所述功率修正参数由所述移动终端根据上行传输信道的OFDM符号数确定;
修正模块,用于根据该功率修正参数,对上述上行传输信道的发射功率进行修正。
为了实现上述目的,本公开的实施例还提供了一种移动终端,包括第二存储器、第二处理器及存储在第二存储器上并可在第二处理器上运行的第二计算机程序,所述第二处理器执行所述第二计算机程序时实现如上所述功率调整方法中的步骤。
为了实现上述目的,本公开的实施例还提供了一种计算机可读存储介质,其上存储有第二计算机程序,该第二计算机程序被处理器执行时实现如上所述功率调整方法中的步骤。
本公开实施例具有以下有益效果:
本公开实施例的上述技术方案,根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数,所述功率修正参数供移动终端对所述上行传输信道的发射功率进行修正;将所述功率修正参数发送给所述移动终端,使得移动终端根据所述功率修正参数,对所述上行传输信道的发射功率进行修正,从而能够达到适应NR系统中不同waveform、numerology、符号数的PUCCH设计或不同waveform、numerology、业务类型下的物理上行共享信道PUSCH的传输功率控制的目的。
附图说明
为了更清楚地说明本公开文本实施例的技术方案,下面将对本公开文本实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例的信息配置方法的工作流程图;
图2为本公开实施例的功率调整方法的工作流程图;
图3为本公开实施例的PUCCH中可用于传输UCI的OFDM符号的显示示意图;
图4为本公开实施例的基站的第一结构框图;
图5为本公开实施例的基站的第二结构框图;
图6为本公开实施例的移动终端的第一结构框图;
图7为本公开实施例的移动终端的第二结构框图;
图8为本公开实施例的移动终端的第三结构框图;
图9为本公开实施例的移动终端的第四结构框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
如图1所示,本公开的实施例提供了一种信息配置方法,应用于基站,包括:
步骤101:根据上行传输信道的传输参数,配置与该传输参数对应的功率修正参数,该功率修正参数供移动终端对所述上行传输信道的发射功率进行修正。
这里,上行传输信道包括PUCCH和/或PUSCH。上述传输参数包括至少一个参数,上述步骤101具体包括:配置与所述传输参数所包含的每个参数对应的功率修正参数。
具体的,上行信道的传输参数可具体包括所述上行传输信道的正交频分复用OFDM符号数、所述上行传输信道的数值配置信息Numerology、所述上行传输信道所采用的传输波形及所述上行传输信道所承载业务的业务类型中的至少一个参数。
本公开实施例中,每个参数可与功率修正参数一一对应,也可多个参数对应一个功率修正参数。如在数值配置信息为A时,针对符号数1配置第一功率修正参数,针对符号数2配置第二功率修正参数,此时第一功率修正参数对应符号数1和数值配置信息A,第二功率修正参数对应符号数2和数值配置信息A;在数值配置信息为B时,针对符号数1配置第三功率修正参数,针对符号数2配置第四功率修正参数,此时,第三功率修正参数对应符号数1和数值配置信息B,第四功率修正参数对应符号数2和数值配置信息B。
步骤102:将上述功率修正参数发送给上述移动终端。
这里,将上述功率修正参数发送给移动终端,使得移动终端根据该功率修正参数对移动终端发送上述上行传输信道的发射功率进行修正。
若上述传输参数包括:所述上行传输信道的OFDM符号数。作为一种可选的实现方式,上述步骤101包括:
根据预设多个OFDM符号数与相对应的功率修正参数的第一对应关系, 得到与所述上行传输信道的OFDM符号数对应的功率修正参数,其中,所述第一对应关系中,第一OFDM符号数大于第二OFDM符号数时,第一OFDM符号数所对应的第一功率修正参数小于第二OFDM符号数所对应的第二功率修正参数。
这里,基站为具有不同OFDM符号数的PUCCH配置相应的功率修正参数,PUCCH的符号数越长,功率修正参数越小。
若上述传输参数包括:所述上行传输信道的数值配置信息,所述数值配置信息包括子载波间隔和循环前缀CP长度,此时上述步骤101包括:
根据预设多个子载波间隔与相对应的功率修正参数的第二对应关系,得到与所述上行传输信道的子载波间隔对应的第三功率修正参数,其中,所述第二对应关系中,所述功率修正参数的值随子载波间隔的增大而增大;
根据预设多个CP长度与相对应的功率修正参数的第三对应关系,得到与所述上行传输信道CP长度对应的第四功率修正参数,其中,所述第三对应关系中,功率修正参数的值随CP长度的增大而减小;
根据子载波间隔的第一权重及CP长度的第二权重,对所述第三功率修正参数和所述第四功率修正参数进行加权求和处理,得到与所述数值配置信息对应的功率修正参数。
本公开实施例中定义一种numerology的PUCCH为基本numerology,其功率偏差值(power offset)为0。如定义normal CP 15kHZ子载波间隔的PUCCH为基本numerology,则power offset(15,NCP)=0。
其它numerology的PUCCH相对于基本numerology的PUCCH,引入传输功率偏移power offset(scs,xCP),其中scs表示PUCCH的子载波间隔,x表示PUCCH的CP长度。
基站预配置power offset(scs,xCP),UE在发送PUCCH时,根据其使用的numerology对应到power offset(scs,xCP),并在计算终端发送功率的计算公式中引入修正参数的power offset(scs,xCP)。
本公开实施例根据PUCCH的numerology在终端发送功率的计算公式中引入修正参数的power offset,并且针对不同的PUCCH的numerology配置不同的power offset。该方案适用于PUCCH和PUSCH。
若上述传输参数包括所述上行传输信道所采用的传输波形。此时作为一种可选的实现方式,上述步骤101包括:
根据预设多个传输波形与相对应的功率修正参数的第四对应关系,获取与所述上行传输信道所采用的传输波形对应的功率修正参数。
根据不同的waveform配置不同的功率修正参数。如使用CP-OFDM时,其对应的功率修正参数为P1,使用DFT-S-OFDM时,其对应的功率修正参数为P2,且P1<P2,且这里的功率修正参数用于对终端发送功率的计算公式中的最大发送功率P CMAX进行修正。
若上述传输参数包括所述上行传输信道所采用的传输波形。此时作为另一种可选的实现方式,上述步骤101包括:
根据预定传输波形的功率修正参数及所述上行传输信道所采用的传输波形与预定传输波形的功率偏差值,得到与所述上行传输信道所采用的传输波形对应的功率修正参数。
根据不同的waveform,终端发送功率的计算公式中引入修正参数power offset。如定义某种波形的power offset为0,定义其它waveform的PUCCH相对于该waveform的功率偏差值为power offset(w),其中w表示PUCCH的传输波形。例如,上行传输采用DFT-S-OFDM相比上行传输采用CP-OFDM的power offset=-3dB/-2dB/-1dB。在终端计算发送功率时,将发送功率的计算公式中的P CMAX变为P CMAX+power offset(w)。
这里,根据不同的传输波形配置不同的功率修正参数,上行采用CP-OFDM相比DFT-S-OFDM,UE的最大传输功率更小。该方案适用于PUCCH和PUSCH。
若上述传输参数包括:所述上行传输信道所承载业务的业务类型。此时上述步骤101包括:
根据预设多个业务类型与相对应的功率修正参数的第五对应关系,为传输所述上行传输信道的载体,配置与所述上行传输信道所承载业务的业务类型对应的功率修正参数,所述载体包括移动终端、传输资源或波束。
本公开实施例中根据预设多个业务类型与相对应的功率修正参数的第五对应关系,对承载同一种业务类型的移动终端、传输资源或波束,配置相应 的功率修正参数。该功率修正参数用于对PUSCH的功率计算公式中的P o或α进行修正。该方案适用于PUSCH。
现有PUSCH的功率计算公式为:
Figure PCTCN2018085349-appb-000001
P PUSCH,c(i)表示移动终端发送PUSCH的发射功率,P CMAX,c(i)表示移动终端的最大发射功率。其中,P _O_PUSCH是高层配置的参数,P O_PUCCH为P O_NOMINAL_PUCCH和P O_UE_PUCCH之和,P O_NOMINAL_PUCCH表示小区标称功率,P O_UE_PUCCH表示UE特定标称功率,M PUSCH,c(i)表示PUSCH所占的资源块数,PL c表示UE估计的下行链路路径损耗,f c表示由闭环功控所形成的功率调整值,α c为路损补偿因子,由高层配置。α c=1表示完全路损补偿,当一个UE的上行信道质量下降时,UE加大发射功率。但当考虑多个小区的总频谱效率最大化时,简单的提高小区边缘UE的发射功率,反而会由于小区间干扰的增加造成整个系统容量的下降。α c<1表示部分路损补偿,即从整个系统总容量最大化角度考虑,限制小区边缘UE功率提升的幅度。
本公开实施例的信息配置方法,根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数,所述功率修正参数供移动终端对所述上行传输信道的发射功率进行修正;将所述功率修正参数发送给所述移动终端,使得移动终端根据所述功率修正参数,对所述上行传输信道的发射功率进行修正,从而能够达到适应NR系统中不同waveform、numerology、符号数的PUCCH设计或不同waveform、numerology、业务类型下的物理上行共享信道PUSCH的传输功率控制的目的。
如图2所示,本公开的实施例还提供了一种功率调整方法,应用于移动终端,包括:
步骤201:获取基站发送的功率修正参数,该功率修正参数为基站根据上行传输信道的传输参数配置的。
本公开实施例中的传输参数包括:包括至少一个参数,基站配置与所述传输参数所包含的每个参数对应的功率修正参数。具体的,上行信道的传输参数可具体包括所述上行传输信道的正交频分复用OFDM符号数、所述上行 传输信道的数值配置信息Numerology、所述上行传输信道所采用的传输波形及所述上行传输信道所承载业务的业务类型中的至少一个参数。
因此,上述功率修正参数包括:上述传输信道的OFDM符号对应的功率修正参数、上行传输信道的数值配置信息对应的功率修正参数、上行传输信道所采用的传输波形对应的功率修正参数及上行传输信道所承载业务的业务类型对应的功率修正参数中的至少一个。
本公开实施例中,若上述传输参数包括:所述上行传输信道的OFDM符号数。UE可根据通过协议约定的公式,得到对应的功率修正参数,如通过公式power offset=-10log10(L/L 0),得到与所述上行传输信道的OFDM符号数对应的功率修正参数;
其中,power offset表示功率修正参数,L 0表示预设基准OFDM符号数,L表示所述上行传输信道的OFDM符号数。
假设定义一种OFDM符号数为基本符号数,其功率修正参数power offset为0。如定义8个OFDM符号数为基本长度,则power offset(8)=0。其它符号数的PUCCH相对于基本符号数的PUCCH,引入公式power offset(L),其中L表示PUCCH的符号数。UE在发送PUCCH时,根据其符号数对应到power offset(L),并在计算终端发送功率的计算公式中引入修正参数的power offset(L)。
另外,在上述传输参数包括所述上行传输信道的OFDM符号数时,还可根据PUCCH的符号数,计算预设发送功率计算公式中的预定参数对应的数值,该预定参数为Δ TF,c
Δ TF,c(i)=10log 10(2 1.25·BPRE(i)-1),其中,BPRE(i)=O UCI(i)/N RE(i),O UCI(i)表示在PUCCH上传输的包含循环冗余校验码CRC在内的混合自动请求重传应答HARQ-ACK/调度请求SR或秩指示RI或信道质量指示CQI或预编码矩阵指示PMI的bit数。
N RE表示PUCCH中可用的RE数目,不同的PUCCH格式计算方法不同,如PUCCH DMRS占整个OFDM符号时,
Figure PCTCN2018085349-appb-000002
其中,M PUCCH,c(i)表示PUCCH所占PRB数目,
Figure PCTCN2018085349-appb-000003
表示每个RB的子载波个数,
Figure PCTCN2018085349-appb-000004
表示PUCCH中UCI所占的符 号数,N UE表示相同资源上复用的用户数。
本公开实施例中对于不同的PUCCH符号数,参数
Figure PCTCN2018085349-appb-000005
的值不同,PUCCH中可用的RE数目N RE为PUCCH所占RE减去PUCCH DMRS所占RE。
步骤202:根据该功率修正参数,对上述上行传输信道的发射功率进行修正。
具体的,若所述功率修正参数包括所述上行传输信道所采用的传输波形对应的功率修正参数,则根据所述上行传输信道所采用的传输波形对应的功率修正参数,对所述上行传输信道的最大发射功率进行修正。
若所述功率修正参数包括除所述上行传输信道所采用的传输波形对应的功率修正参数外的其他功率修正参数,则根据所述其他功率修正参数对所述移动终端当前计算出的发射功率进行修正。
这里,在功率修正参数包括除所述上行传输信道所采用的传输波形对应的功率修正参数外的其他功率修正参数(如上述传输信道的OFDM符号对应的功率修正参数、上行传输信道的数值配置信息对应的功率修正参数或上行传输信道所承载业务的业务类型对应的功率修正参数)时,则根据所述其他功率修正参数对所述移动终端当前计算出的发射功率进行修正。
本公开实施例中,移动终端当前计算的发射功率是通过预设发送功率计算公式计算得到的。
目前,PUCCH设计为不同的format,不同的format功率控制的计算公式不同。对于PUCCH format 1/1a/1b/2/2a/2b/3,其传输功率的计算公式为:
Figure PCTCN2018085349-appb-000006
PUCCH format 4/5传输功率的计算公式为:
Figure PCTCN2018085349-appb-000007
其中,P CMAX,c表示移动终端的最大发射功率,PL c表示UE估计出的下行链路路径损耗,h(n CQI,n HARQ,n SR)与PUCCH format和PUCCH所承载的上行控制信息UCI有关,Δ F_PUCCH表示PUCCH format(F)相对于PUCCH format 1a的功率偏移,当PUCCH在两个天线端口上传输,Δ TxD(F')由高层配置,否则 =0,g表示由闭环功控形成的功率调整值;
对于PUCCH format 4,M PUCCH,c(i)表示PUCCH所占PRB数目,对于PUCCH format 5,M PUCCH,c(i)=1;
P O_PUCCH为P O_NOMINAL_PUCCH和P O_UE_PUCCH之和,P O_NOMINAL_PUCCH表示小区标称功率,P O_UE_PUCCH表示UE特定标称功率。
Δ TF,c(i)=10log 10(2 1.25·BPRE(i)-1),其中,BPRE(i)=O UCI(i)/N RE(i),O UCI(i)表示在PUCCH格式format 4/5上传输的包含循环冗余校验码CRC在内的混合自动请求重传应答HARQ-ACK/调度请求SR/秩指示RI/信道质量指示CQI/预编码矩阵指示PMI的bit数。
对于PUCCH format 4,
Figure PCTCN2018085349-appb-000008
对于PUCCH format5,
Figure PCTCN2018085349-appb-000009
N RE表示PUCCH中可用的RE数目,
Figure PCTCN2018085349-appb-000010
表示每个RB的子载波个数,
Figure PCTCN2018085349-appb-000011
表示PUCCH UCI所占的符号数;
其中,如果是短shorten PUCCH format 4/5,
Figure PCTCN2018085349-appb-000012
否则,
Figure PCTCN2018085349-appb-000013
表示每个时隙的上行传输的符号数。
根据本公开实施例得到的功率修正参数,NR系统PUCCH的传输功率控制可能的计算公式如下:
基于LTE PUCCH format 1/2/3设计的PUCCH format:
Figure PCTCN2018085349-appb-000014
基于LTE PUCCH format 4/5的PUCCH format:
Figure PCTCN2018085349-appb-000015
其中,
Δ TF,c(i)=10log 10(2 1.25·BPRE(i)-1)其中BPRE(i)=O UCI(i)/N RE(i);
O UCI(i)表示在PUCCH上传输的包含CRC在内的HARQ-ACK/SR/RI/CQI/PMI的bit数;
N RE(i)表示PUCCH可用于传输UCI的RE数目,取值与PUCCH的符号数和DMRS设计有关。当DMRS占整个OFDM符号时,
Figure PCTCN2018085349-appb-000016
Figure PCTCN2018085349-appb-000017
表示PUCCH中UCI所占的 符号数,对于不同符号数的PUCCH,其取值不同,如图3所示。
本公开实施例的功率调整过程中,针对不同waveform、numerology、符号数引入的修正参数的power offset,可以是分别引入power offset(w)、power offset(scs,xCP)、power offset(L),也可以是联合或部分联合引入,如power offset(w,scs,xCP,L),power offset(w,scs,xCP),power offset(scs,xCP,L)等。
本公开实施例的功率调整方法,移动终端根据基站配置的功率修正参数,对所述上行传输信道的发射功率进行修正,从而能够达到适应NR系统中不同waveform、numerology、符号数的PUCCH设计或不同waveform、numerology、业务类型下的物理上行共享信道PUSCH的传输功率控制的目的。
如图4所示,本公开的实施例还提供了一种基站400,包括:
配置模块401,用于根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数,所述功率修正参数供移动终端对所述上行传输信道的发射功率进行修正;
发送模块402,用于将所述功率修正参数发送给所述移动终端。
本公开实施例的基站,所述传输参数包括:
所述上行传输信道的正交频分复用OFDM符号数、所述上行传输信道的数值配置信息Numerology、所述上行传输信道所采用的传输波形及所述上行传输信道所承载业务的业务类型中的至少一个参数。
本公开实施例的基站,所述传输参数包括:所述上行传输信道的OFDM符号数;
所述配置模块401用于根据预设多个OFDM符号数与相对应的功率修正参数的第一对应关系,得到与所述上行传输信道的OFDM符号数对应的功率修正参数,其中,所述第一对应关系中,第一OFDM符号数大于第二OFDM符号数时,第一OFDM符号数所对应的第一功率修正参数小于第二OFDM符号数所对应的第二功率修正参数。
本公开实施例的基站,所述传输参数包括:
所述上行传输信道的数值配置信息,所述数值配置信息包括子载波间隔和循环前缀CP长度;
所述配置模块401包括:
第一配置子模块,用于根据预设多个子载波间隔与相对应的功率修正参数的第二对应关系,得到与所述上行传输信道的子载波间隔对应的第三功率修正参数,其中,所述第二对应关系中,所述功率修正参数的值随子载波间隔的增大而增大;
第二配置子模块,用于根据预设多个CP长度与相对应的功率修正参数的第三对应关系,得到与所述上行传输信道CP长度对应的第四功率修正参数,其中,所述第三对应关系中,功率修正参数的值随CP长度的增大而减小;
处理子模块,用于根据子载波间隔的第一权重及CP长度的第二权重,对所述第三功率修正参数和所述第四功率修正参数进行加权求和处理,得到与所述数值配置信息对应的功率修正参数。
本公开实施例的基站,所述传输参数包括:所述上行传输信道所采用的传输波形;
所述配置模块401用于根据预设多个传输波形与相对应的功率修正参数的第四对应关系,获取与所述上行传输信道所采用的传输波形对应的功率修正参数。
本公开实施例的基站,所述传输参数包括:
所述上行传输信道所采用的传输波形;
所述配置模块401用于根据预定传输波形的功率修正参数及所述上行传输信道所采用的传输波形与预定传输波形的功率偏差值,得到与所述上行传输信道所采用的传输波形对应的功率修正参数。
本公开实施例的基站,所述传输参数包括:所述上行传输信道所承载业务的业务类型;
所述配置模块401用于根据预设多个业务类型与相对应的功率修正参数的第五对应关系,为传输所述上行传输信道的载体,配置与所述上行传输信道所承载业务的业务类型对应的功率修正参数,所述载体包括移动终端、传输资源或波束。
本公开实施例的基站,根据上行传输信道的传输参数,配置与所述传输 参数对应的功率修正参数,所述功率修正参数供移动终端对所述上行传输信道的发射功率进行修正;将所述功率修正参数发送给所述移动终端,使得移动终端根据所述功率修正参数,对所述上行传输信道的发射功率进行修正,从而能够达到适应NR系统中不同waveform、numerology、符号数的PUCCH设计或不同waveform、numerology、业务类型下的物理上行共享信道PUSCH的传输功率控制的目的。
为了更好的实现上述目的,如图5所示,本公开的实施例还提供了一种基站,包括第一存储器520、第一处理器500、第一收发机510、总线接口及存储在第一存储器520上并可在第一处理器500上运行的第一计算机程序,所述第一处理器500用于读取第一存储器520中的程序,执行下列过程:
根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数,所述功率修正参数供移动终端对所述上行传输信道的发射功率进行修正;
将所述功率修正参数发送给所述移动终端。
其中,在图5中,总线架构可以包括任意数量的互联的总线和桥,具体由第一处理器500代表的一个或多个处理器和第一存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。第一收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。第一处理器500负责管理总线架构和通常的处理,第一存储器520可以存储第一处理器500在执行操作时所使用的数据。
可选地,所述传输参数包括:
所述上行传输信道的正交频分复用OFDM符号数、所述上行传输信道的数值配置信息Numerology、所述上行传输信道所采用的传输波形及所述上行传输信道所承载业务的业务类型中的至少一个参数。
可选地,所述传输参数包括:所述上行传输信道的OFDM符号数;
第一处理器500还用于,根据预设多个OFDM符号数与相对应的功率修正参数的第一对应关系,得到与所述上行传输信道的OFDM符号数对应的功率修正参数,其中,所述第一对应关系中,第一OFDM符号数大于第二OFDM 符号数时,第一OFDM符号数所对应的第一功率修正参数小于第二OFDM符号数所对应的第二功率修正参数。
可选地,所述传输参数包括:
所述上行传输信道的数值配置信息,所述数值配置信息包括子载波间隔和循环前缀CP长度;
第一处理器500还用于,根据预设多个子载波间隔与相对应的功率修正参数的第二对应关系,得到与所述上行传输信道的子载波间隔对应的第三功率修正参数,其中,所述第二对应关系中,所述功率修正参数的值随子载波间隔的增大而增大;
根据预设多个CP长度与相对应的功率修正参数的第三对应关系,得到与所述上行传输信道CP长度对应的第四功率修正参数,其中,所述第三对应关系中,功率修正参数的值随CP长度的增大而减小;
根据子载波间隔的第一权重及CP长度的第二权重,对所述第三功率修正参数和所述第四功率修正参数进行加权求和处理,得到与所述数值配置信息对应的功率修正参数。
可选地,所述传输参数包括:所述上行传输信道所采用的传输波形;
第一处理器500还用于,根据预设多个传输波形与相对应的功率修正参数的第四对应关系,获取与所述上行传输信道所采用的传输波形对应的功率修正参数。
可选地,所述传输参数包括:
所述上行传输信道所采用的传输波形;
第一处理器500还用于,根据预定传输波形的功率修正参数及所述上行传输信道所采用的传输波形与预定传输波形的功率偏差值,得到与所述上行传输信道所采用的传输波形对应的功率修正参数。
可选地,所述传输参数包括:所述上行传输信道所承载业务的业务类型;
第一处理器500还用于,根据预设多个业务类型与相对应的功率修正参数的第五对应关系,为传输所述上行传输信道的载体,配置与所述上行传输信道所承载业务的业务类型对应的功率修正参数,所述载体包括移动终端、传输资源或波束。
本公开实施例的基站,根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数,所述功率修正参数供移动终端对所述上行传输信道的发射功率进行修正;将所述功率修正参数发送给所述移动终端,使得移动终端根据所述功率修正参数,对所述上行传输信道的发射功率进行修正,从而能够达到适应NR系统中不同waveform、numerology、符号数的PUCCH设计或不同waveform、numerology、业务类型下的物理上行共享信道PUSCH的传输功率控制的目的。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有第一计算机程序,该程序被处理器执行时实现以下步骤:
根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数,所述功率修正参数供移动终端对所述上行传输信道的发射功率进行修正;
将所述功率修正参数发送给所述移动终端。
另外,该第一计算机程序被处理器执行时,能实现上述方法实施例中的所有实现方式,此处不再赘述。
如图6所示,本公开的实施例还提供了一种移动终端600,包括:
获取模块601,用于获取基站发送的功率修正参数,所述功率修正参数为基站根据上行传输信道的传输参数配置的;
修正模块602,用于根据所述功率修正参数,对所述上行传输信道的发射功率进行修正。
本公开实施例的移动终端,所述传输参数包括:所述上行传输信道的正交频分复用OFDM符号数、所述上行传输信道的数值配置信息Numerology、所述上行传输信道所采用的传输波形及所述上行传输信道所承载业务的业务类型中的至少一个参数。
本公开实施例的移动终端,所述修正模块602用于若所述功率修正参数包括所述上行传输信道所采用的传输波形对应的功率修正参数,则根据所述上行传输信道所采用的传输波形对应的功率修正参数,对所述上行传输信道的最大发射功率进行修正。
本公开实施例的移动终端,所述修正模块602用于若所述功率修正参数包括除所述上行传输信道所采用的传输波形对应的功率修正参数外的其他功 率修正参数,则根据所述其他功率修正参数对所述移动终端当前计算出的发射功率进行修正。
本公开实施例的移动终端,移动终端根据基站配置的功率修正参数,对所述上行传输信道的发射功率进行修正,从而能够达到适应NR系统中不同waveform、numerology、符号数的PUCCH设计或不同业务类型下的物理上行共享信道PUSCH的传输功率控制的目的。
需要说明的是,该移动终端是与上述方法实施例对应的终端,上述方法实施例中所有实现方式均适用于该移动终端的实施例中,也能达到相同的技术效果。
为了更好的实现上述目的,如图7所示,本公开的实施例还提供了一种移动终端,包括第二存储器720、第二处理器700、第二收发机710、用户接口730、总线接口及存储在第二存储器720上并可在第二处理器700上运行的第二计算机程序,所述第二处理器700用于读取第二存储器720中的程序,执行下列过程:
获取基站发送的功率修正参数,所述功率修正参数为基站根据上行传输信道的传输参数配置的;
根据所述功率修正参数,对所述上行传输信道的发射功率进行修正。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由第二处理器700代表的一个或多个处理器和第二存储器720代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。第二收发机710可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口730还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
第二处理器700负责管理总线架构和通常的处理,第二存储器720可以存储第二处理器700在执行操作时所使用的数据。
可选地,所述传输参数包括:所述上行传输信道的正交频分复用OFDM 符号数、所述上行传输信道的数值配置信息Numerology、所述上行传输信道所采用的传输波形及所述上行传输信道所承载业务的业务类型中的至少一个参数。
第二处理器700还用于,若所述功率修正参数包括所述上行传输信道所采用的传输波形对应的功率修正参数,则根据所述上行传输信道所采用的传输波形对应的功率修正参数,对所述上行传输信道的最大发射功率进行修正。
第二处理器700还用于,若所述功率修正参数包括除所述上行传输信道所采用的传输波形对应的功率修正参数外的其他功率修正参数,则根据所述其他功率修正参数对所述移动终端当前计算出的发射功率进行修正。
在本公开的一些实施例中,还提供了一种计算机可读存储介质,其上存储有第二计算机程序,该第二计算机程序被处理器执行时实现以下步骤:
获取基站发送的功率修正参数,所述功率修正参数为基站根据上行传输信道的传输参数配置的;
根据所述功率修正参数,对所述上行传输信道的发射功率进行修正。
需要说明的是,该第二计算机程序被处理器执行时,能实现上述方法实施例中的所有实现方式,此处不再赘述。
如图8所示,为本公开实施例移动终端的又一结构框图,图8所示的移动终端800包括:至少一个处理器801、存储器802、至少一个网络接口804和其他用户接口803。移动终端800中的各个组件通过总线系统805耦合在一起。可理解,总线系统805用于实现这些组件之间的连接通信。总线系统805除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图8中将各种总线都标为总线系统805。
其中,用户接口803可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器802可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或 闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器802旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器802存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统8021和应用程序8022。
其中,操作系统8021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序8022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序8022中。
在本公开的一实施例中,通过调用存储器802存储的程序或指令,具体的可以是在应用程序8022中存储的程序或指令,处理器801用于获取基站发送的功率修正参数,所述功率修正参数为基站根据上行传输信道的传输参数配置的;根据所述功率修正参数,对所述上行传输信道的发射功率进行修正。
可选地,所述传输参数包括:所述上行传输信道的正交频分复用OFDM符号数、所述上行传输信道的数值配置信息Numerology、所述上行传输信道所采用的传输波形及所述上行传输信道所承载业务的业务类型中的至少一个参数。
处理器801还用于,若所述功率修正参数包括所述上行传输信道所采用的传输波形对应的功率修正参数,则根据所述上行传输信道所采用的传输波形对应的功率修正参数,对所述上行传输信道的最大发射功率进行修正。
处理器801还用于,若所述功率修正参数包括除所述上行传输信道所采用的传输波形对应的功率修正参数外的其他功率修正参数,则根据所述其他功率修正参数对所述移动终端当前计算出的发射功率进行修正。
本公开实施例的移动终端800,处理器801用于移动终端根据基站配置的功率修正参数,对所述上行传输信道的发射功率进行修正,从而能够达到适应NR系统中不同waveform、numerology、符号数的PUCCH设计或不同waveform、numerology、业务类型下的物理上行共享信道PUSCH的传输功率控制的目的。
本公开的移动终端如可以是手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或车载电脑等等终端。
移动终端800能够实现前述实施例中终端实现的各个过程,为避免重复,这里不再赘述。
上述本公开实施例揭示的方法均可以应用于处理器801中,或者由处理器801实现。处理器801可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器801中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器801可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器802,处理器801读取存储器802中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个 专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
如图9所示,为本公开实施例的移动终端的再一结构框图。图9所示的移动终端900包括射频(Radio Frequency,RF)电路910、存储器920、输入单元930、显示单元940、处理器960、音频电路970、WiFi(Wireless Fidelity)模块9100和电源990。
其中,输入单元930可用于接收用户输入的数字或字符信息,以及产生与移动终端900的用户设置以及功能控制有关的信号输入。具体地,本公开实施例中,该输入单元930可以包括触控面板931。触控面板931,也称为触摸屏,可收集用户在其上或附近的触摸操作(比如用户使用手指、触笔等任何适合的物体或附件在触控面板931上的操作),并根据预先设定的程式驱动相应的连接装置。可选地,触控面板931可包括触摸检测装置和触摸控制器两个部分。其中,触摸检测装置检测用户的触摸方位,并检测触摸操作带来的信号,将信号传送给触摸控制器;触摸控制器从触摸检测装置上接收触摸信息,并将它转换成触点坐标,再送给该处理器960,并能接收处理器960发来的命令并加以执行。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型实现触控面板931。除了触控面板931,输入单元930还可以包括其他输入设备932,其他输入设备932可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆等中的一种或多种。
其中,显示单元940可用于显示由用户输入的信息或提供给用户的信息以及移动终端900的各种菜单界面。显示单元940可包括显示面板941,可选地,可以采用LCD或有机发光二极管(Organic Light-Emitting Diode,OLED) 等形式来配置显示面板941。
应注意,触控面板931可以覆盖显示面板941,形成触摸显示屏,当该触摸显示屏检测到在其上或附近的触摸操作后,传送给处理器960以确定触摸事件的类型,随后处理器960根据触摸事件的类型在触摸显示屏上提供相应的视觉输出。
触摸显示屏包括应用程序界面显示区及常用控件显示区。该应用程序界面显示区及该常用控件显示区的排列方式并不限定,可以为上下排列、左右排列等可以区分两个显示区的排列方式。该应用程序界面显示区可以用于显示应用程序的界面。每一个界面可以包含至少一个应用程序的图标和/或widget桌面控件等界面元素。该应用程序界面显示区也可以为不包含任何内容的空界面。该常用控件显示区用于显示使用率较高的控件,例如,设置按钮、界面编号、滚动条、电话本图标等应用程序图标等。
其中处理器960是移动终端900的控制中心,利用各种接口和线路连接整个手机的各个部分,通过运行或执行存储在第一存储器921内的软件程序和/或模块,以及调用存储在第二存储器922内的数据,执行移动终端900的各种功能和处理数据,从而对移动终端900进行整体监控。可选地,处理器960可包括一个或多个处理单元。
在本公开的一实施例中,通过调用存储该第一存储器921内的软件程序和/或模块和/或该第二存储器922内的数据,处理器960用于获取基站发送的功率修正参数,所述功率修正参数为基站根据上行传输信道的传输参数配置的;根据所述功率修正参数,对所述上行传输信道的发射功率进行修正。
可选地,所述传输参数包括:所述上行传输信道的正交频分复用OFDM符号数、所述上行传输信道的数值配置信息Numerology、所述上行传输信道所采用的传输波形及所述上行传输信道所承载业务的业务类型中的至少一个参数。
处理器960还用于,若所述功率修正参数包括所述上行传输信道所采用的传输波形对应的功率修正参数,则根据所述上行传输信道所采用的传输波形对应的功率修正参数,对所述上行传输信道的最大发射功率进行修正。
处理器960还用于,若所述功率修正参数包括除所述上行传输信道所采 用的传输波形对应的功率修正参数外的其他功率修正参数,则根据所述其他功率修正参数对所述移动终端当前计算出的发射功率进行修正。
本公开的移动终端如可以是手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)、或车载电脑等等终端。
移动终端900能够实现前述实施例中终端实现的各个过程,为避免重复,这里不再赘述。
本公开实施例的移动终端900,处理器960用于移动终端根据基站配置的功率修正参数,对所述上行传输信道的发射功率进行修正,从而能够达到适应NR系统中不同waveform、numerology、符号数的PUCCH设计或不同waveform、numerology、业务类型下的物理上行共享信道PUSCH的传输功率控制的目的。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或 者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来控制相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储器(Read-Only Memory,ROM)或随机存取存储器(Random Access Memory,RAM)等。
以上所述仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (24)

  1. 一种信息配置方法,应用于基站,其中,所述信息配置方法包括:
    根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数,所述功率修正参数供移动终端对所述上行传输信道的发射功率进行修正;
    将所述功率修正参数发送给所述移动终端。
  2. 根据权利要求1所述的信息配置方法,其中,所述传输参数包括:
    所述上行传输信道的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数、所述上行传输信道的数值配置信息(Numerology)、所述上行传输信道所采用的传输波形及所述上行传输信道所承载业务的业务类型中的至少一个参数。
  3. 根据权利要求1所述的信息配置方法,其中,所述传输参数包括:所述上行传输信道的OFDM符号数;
    所述根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数的步骤包括:
    根据预设多个OFDM符号数与相对应的功率修正参数的第一对应关系,得到与所述上行传输信道的OFDM符号数对应的功率修正参数,其中,所述第一对应关系中,第一OFDM符号数大于第二OFDM符号数时,第一OFDM符号数所对应的第一功率修正参数小于第二OFDM符号数所对应的第二功率修正参数。
  4. 根据权利要求1所述的信息配置方法,其中,所述传输参数包括:
    所述上行传输信道的数值配置信息,所述数值配置信息包括子载波间隔和循环前缀(Cyclic Prefix,CP)长度;
    根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数的步骤包括:
    根据预设多个子载波间隔与相对应的功率修正参数的第二对应关系,得到与所述上行传输信道的子载波间隔对应的第三功率修正参数,其中,所述第二对应关系中,所述功率修正参数的值随子载波间隔的增大而增大;
    根据预设多个CP长度与相对应的功率修正参数的第三对应关系,得到 与所述上行传输信道CP长度对应的第四功率修正参数,其中,所述第三对应关系中,功率修正参数的值随CP长度的增大而减小;
    根据子载波间隔的第一权重及CP长度的第二权重,对所述第三功率修正参数和所述第四功率修正参数进行加权求和处理,得到与所述数值配置信息对应的功率修正参数。
  5. 根据权利要求1所述的信息配置方法,其中,所述传输参数包括:所述上行传输信道所采用的传输波形;
    所述根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数的步骤包括:
    根据预设多个传输波形与相对应的功率修正参数的第四对应关系,获取与所述上行传输信道所采用的传输波形对应的功率修正参数。
  6. 根据权利要求1所述的信息配置方法,其中,所述传输参数包括:
    所述上行传输信道所采用的传输波形;
    所述根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数的步骤包括:
    根据预定传输波形的功率修正参数及所述上行传输信道所采用的传输波形与预定传输波形的功率偏差值,得到与所述上行传输信道所采用的传输波形对应的功率修正参数。
  7. 根据权利要求1所述的信息配置方法,其中,所述传输参数包括:所述上行传输信道所承载业务的业务类型;
    所述根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数的步骤包括:
    根据预设多个业务类型与相对应的功率修正参数的第五对应关系,为传输所述上行传输信道的载体,配置与所述上行传输信道所承载业务的业务类型对应的功率修正参数,所述载体包括移动终端、传输资源或波束。
  8. 一种功率调整方法,应用于移动终端,其中,所述功率调整方法包括:
    获取功率修正参数,所述功率修正参数由所述移动终端根据上行传输信道的OFDM符号数确定;
    根据所述功率修正参数,对所述上行传输信道的发射功率进行修正。
  9. 根据权利要求8所述的功率调整方法,其中,所述功率修正参数由所述终端通过以下公式根据上行传输信道的OFDM符号数确定:
    power offset=-10log10(L/L 0)
    其中,power offset表示功率修正参数,L 0表示预设基准OFDM符号数,L表示所述上行传输信道的OFDM符号数。
  10. 根据权利要求8所述的功率调整方法,其中,所述上行传输信道包括物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)。
  11. 一种基站,包括:
    配置模块,用于根据上行传输信道的传输参数,配置与所述传输参数对应的功率修正参数,所述功率修正参数供移动终端对所述上行传输信道的发射功率进行修正;
    发送模块,用于将所述功率修正参数发送给所述移动终端。
  12. 根据权利要求11所述的基站,其中,所述传输参数包括:
    所述上行传输信道的OFDM符号数、所述上行传输信道的Numerology、所述上行传输信道所采用的传输波形及所述上行传输信道所承载业务的业务类型中的至少一个参数。
  13. 根据权利要求11所述的基站,其中,所述传输参数包括:所述上行传输信道的OFDM符号数;
    所述配置模块用于根据预设多个OFDM符号数与相对应的功率修正参数的第一对应关系,得到与所述上行传输信道的OFDM符号数对应的功率修正参数,其中,所述第一对应关系中,第一OFDM符号数大于第二OFDM符号数时,第一OFDM符号数所对应的第一功率修正参数小于第二OFDM符号数所对应的第二功率修正参数。
  14. 根据权利要求11所述的基站,其中,所述传输参数包括:
    所述上行传输信道的数值配置信息,所述数值配置信息包括子载波间隔和CP长度;
    所述配置模块包括:
    第一配置子模块,用于根据预设多个子载波间隔与相对应的功率修正参数的第二对应关系,得到与所述上行传输信道的子载波间隔对应的第三功率 修正参数,其中,所述第二对应关系中,所述功率修正参数的值随子载波间隔的增大而增大;
    第二配置子模块,用于根据预设多个CP长度与相对应的功率修正参数的第三对应关系,得到与所述上行传输信道CP长度对应的第四功率修正参数,其中,所述第三对应关系中,功率修正参数的值随CP长度的增大而减小;
    处理子模块,用于根据子载波间隔的第一权重及CP长度的第二权重,对所述第三功率修正参数和所述第四功率修正参数进行加权求和处理,得到与所述数值配置信息对应的功率修正参数。
  15. 根据权利要求11所述的基站,其中,所述传输参数包括:所述上行传输信道所采用的传输波形;
    所述配置模块用于根据预设多个传输波形与相对应的功率修正参数的第四对应关系,获取与所述上行传输信道所采用的传输波形对应的功率修正参数。
  16. 根据权利要求11所述的基站,其中,所述传输参数包括:
    所述上行传输信道所采用的传输波形;
    所述配置模块用于根据预定传输波形的功率修正参数及所述上行传输信道所采用的传输波形与预定传输波形的功率偏差值,得到与所述上行传输信道所采用的传输波形对应的功率修正参数。
  17. 根据权利要求11所述的基站,其中,所述传输参数包括:所述上行传输信道所承载业务的业务类型;
    所述配置模块用于根据预设多个业务类型与相对应的功率修正参数的第五对应关系,为传输所述上行传输信道的载体,配置与所述上行传输信道所承载业务的业务类型对应的功率修正参数,所述载体包括移动终端、传输资源或波束。
  18. 一种基站,包括第一存储器、第一处理器及存储在第一存储器上并可在第一处理器上运行的第一计算机程序,其中,所述第一处理器执行所述第一计算机程序时实现如权利要求1-7任一项所述信息配置方法中的步骤。
  19. 一种计算机可读存储介质,其上存储有第一计算机程序,其中,所 述第一计算机程序被处理器执行时实现如权利要求1-7任一项所述信息配置方法中的步骤。
  20. 一种移动终端,包括:
    获取模块,用于获取功率修正参数,所述功率修正参数由所述移动终端根据上行传输信道的OFDM符号数确定;
    修正模块,用于根据所述功率修正参数,对所述上行传输信道的发射功率进行修正。
  21. 根据权利要求20所述的移动终端,还包括:
    确定模块,用于通过以下公式根据上行传输信道的OFDM符号数确定所述功率修正参数:
    power offset=-10log10(L/L 0),
    其中,power offset表示功率修正参数,L 0表示预设基准OFDM符号数,L表示所述上行传输信道的OFDM符号数。
  22. 根据权利要求20所述的移动终端,其中,所述上行传输信道包括PUCCH。
  23. 一种移动终端,包括第二存储器、第二处理器及存储在第二存储器上并可在第二处理器上运行的第二计算机程序,其中,所述第二处理器执行所述第二计算机程序时实现如权利要求8-10任一项所述功率调整方法中的步骤。
  24. 一种计算机可读存储介质,其上存储有第二计算机程序,其中,所述第二计算机程序被处理器执行时实现如权利要求8-10任一项所述功率调整方法中的步骤。
PCT/CN2018/085349 2017-06-21 2018-05-02 信息配置方法、功率调整方法、基站及移动终端 WO2018233381A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18819671.1A EP3644659A4 (en) 2017-06-21 2018-05-02 INFORMATION CONFIGURATION PROCEDURE, POWER SETTING PROCEDURE, BASE STATION AND MOBILE TERMINAL DEVICE
EP21218400.6A EP3998806A1 (en) 2017-06-21 2018-05-02 Information configuration and transmission method and base station
US16/624,459 US11212749B2 (en) 2017-06-21 2018-05-02 Information configuration method, power adjustment method, base station, and mobile terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710475695.2 2017-06-21
CN201710475695.2A CN109104761B (zh) 2017-06-21 2017-06-21 一种信息配置方法、功率调整方法、基站及移动终端

Publications (1)

Publication Number Publication Date
WO2018233381A1 true WO2018233381A1 (zh) 2018-12-27

Family

ID=64735489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/085349 WO2018233381A1 (zh) 2017-06-21 2018-05-02 信息配置方法、功率调整方法、基站及移动终端

Country Status (4)

Country Link
US (1) US11212749B2 (zh)
EP (2) EP3644659A4 (zh)
CN (1) CN109104761B (zh)
WO (1) WO2018233381A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803361B (zh) * 2017-11-16 2021-06-04 华为技术有限公司 一种上行信道的发送方法及设备
US10862613B2 (en) * 2018-02-01 2020-12-08 T-Mobile Usa, Inc. Dynamic numerology based on services
CN110324887B (zh) * 2018-03-30 2021-07-23 大唐移动通信设备有限公司 一种pucch功率控制偏移量的确定方法及装置
US20200374804A1 (en) * 2019-05-25 2020-11-26 Qualcomm Incorporated High efficiency transmission mode support
US11171750B2 (en) * 2019-08-02 2021-11-09 Qualcomm Incorporated Per beam waveform selection
CN110752908B (zh) * 2019-09-30 2022-10-11 中国信息通信研究院 一种确定物理上行共享信道发送功率的方法和设备
US11064442B1 (en) * 2020-01-21 2021-07-13 Sprint Communications Company L.P. Uplink channel power management in dual connectivity devices
CN111478730B (zh) * 2020-05-13 2021-10-22 南京邮电大学 一种动态调整室内无线通信系统功率因子的方法
US11690024B2 (en) * 2021-01-27 2023-06-27 Qualcomm Incorporated Configuring client device regulation modes for sidelink communications
CN113114719B (zh) * 2021-03-12 2023-01-06 广州技象科技有限公司 一种物联网数据传输自适应调节方法及装置
CN116528189A (zh) * 2022-01-21 2023-08-01 西安紫光展锐科技有限公司 通信方法、装置、存储介质及程序产品
CN114900414B (zh) * 2022-05-11 2023-06-30 瑞斯康达科技发展股份有限公司 一种基站侧上行波形选择方法和基站

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527958A (zh) * 2009-04-09 2009-09-09 中兴通讯股份有限公司 发射功率的确定方法、基站及终端
US20150334662A1 (en) * 2010-11-09 2015-11-19 Telefonaktiebolaget L M Ericsson (Publ) Power control for ack/nack formats with carrier aggregation

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010005232A2 (ko) * 2008-07-08 2010-01-14 엘지전자 주식회사 부분 주파수 재사용 방식을 이용하는 단말의 신호 전송 방법
CN101404528B (zh) * 2008-11-11 2013-03-13 普天信息技术研究院有限公司 一种上行功率控制方法
CN101466138B (zh) * 2008-12-31 2011-04-06 华为技术有限公司 功率配置方法、装置和系统
CN101888692B (zh) * 2009-05-13 2012-10-31 电信科学技术研究院 一种下行功率控制方法及装置
WO2011049286A1 (en) * 2009-10-23 2011-04-28 Lg Electronics Inc. Method and apparatus for controlling uplink power in a wireless communication system
WO2012008773A2 (ko) * 2010-07-16 2012-01-19 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송 전력 제어 방법 및 장치
US9295007B2 (en) * 2011-05-10 2016-03-22 Lg Electronics Inc. Method for determining uplink transmission power and user equipment
KR101306404B1 (ko) * 2011-09-29 2013-09-09 엘지전자 주식회사 상향링크 전송 방법 및 이를 이용한 무선기기
CN103945504B (zh) * 2013-01-18 2017-10-17 华为技术有限公司 功率控制方法及设备
CN106161292B (zh) * 2014-11-07 2020-09-08 北京三星通信技术研究有限公司 一种传输数据的方法和设备
US10873911B2 (en) * 2017-03-23 2020-12-22 Ofinno, LCC Uplink transmission power adjustment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527958A (zh) * 2009-04-09 2009-09-09 中兴通讯股份有限公司 发射功率的确定方法、基站及终端
US20150334662A1 (en) * 2010-11-09 2015-11-19 Telefonaktiebolaget L M Ericsson (Publ) Power control for ack/nack formats with carrier aggregation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "Power Control Framework", 3GPP TSG RAN WG 1 NR AD-HOC #2, RL-1710765, 17 June 2017 (2017-06-17), pages 1 - 5, XP051305200 *
See also references of EP3644659A4 *

Also Published As

Publication number Publication date
EP3998806A1 (en) 2022-05-18
CN109104761A (zh) 2018-12-28
CN109104761B (zh) 2020-08-18
EP3644659A1 (en) 2020-04-29
US20200163024A1 (en) 2020-05-21
EP3644659A4 (en) 2020-10-07
US11212749B2 (en) 2021-12-28

Similar Documents

Publication Publication Date Title
WO2018233381A1 (zh) 信息配置方法、功率调整方法、基站及移动终端
JP6526231B2 (ja) 制御情報を送信するための方法、ユーザ機器、及び基地局
WO2020143526A1 (zh) 上行信道的配置方法、传输方法、网络侧设备及终端
US10389487B2 (en) Adaptive downlink control channel structure for 5G or other next generation networks
WO2019019893A1 (zh) Bwp的控制方法、相关设备及系统
CN110167062B (zh) 信道状态信息报告发送和接收方法及装置
TWI703888B (zh) 一種確定dci中資訊域取值的方法及裝置
WO2019192332A1 (zh) 一种信道质量指示的发送方法、数据发送方法及装置
KR20200004356A (ko) 데이터 송신 방법 및 통신 디바이스
EP3264662B1 (en) Method and device for data transmission
US11387934B2 (en) Indicating a number of codewords in 5G wireless communication systems
EP3902176A1 (en) Method and apparatus for sending channel information, and method and apparatus for receiving channel information
KR102057137B1 (ko) 피드백 정보의 전송 및 제어 방법 및 장치
EP3776949A1 (en) Method and apparatus for communicating a scaling factor used in transport block computation in an unlicensed uplink transmission on a wireless network
WO2016119759A1 (zh) 一种实现混合自动重传请求信息发送的方法及数据接收端
EP3515142A1 (en) Data transmission method, related device and system
WO2014208598A1 (ja) 送信装置
CN111164915A (zh) 使用多个基图的tbs确定
WO2019134484A1 (zh) 一种上行控制信息的传输方法及装置
CN110034849A (zh) 一种数据传输方法及设备
US20140192843A1 (en) Method and apparatus for triggering a ranked transmission
US11558096B2 (en) Physical uplink control channel resource determination method and communication device
WO2021196880A1 (zh) 一种harq反馈方法、终端及基站
EP3573254B1 (en) Data transmission method, terminal device and network device
WO2018228409A1 (zh) 控制信息的传输方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18819671

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018819671

Country of ref document: EP

Effective date: 20200121