WO2018232860A1 - 一种基于物联网的农作物生长管理方法及系统 - Google Patents

一种基于物联网的农作物生长管理方法及系统 Download PDF

Info

Publication number
WO2018232860A1
WO2018232860A1 PCT/CN2017/096341 CN2017096341W WO2018232860A1 WO 2018232860 A1 WO2018232860 A1 WO 2018232860A1 CN 2017096341 W CN2017096341 W CN 2017096341W WO 2018232860 A1 WO2018232860 A1 WO 2018232860A1
Authority
WO
WIPO (PCT)
Prior art keywords
growth
information
crop
soil moisture
planting area
Prior art date
Application number
PCT/CN2017/096341
Other languages
English (en)
French (fr)
Inventor
杜光东
Original Assignee
深圳市盛路物联通讯技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市盛路物联通讯技术有限公司 filed Critical 深圳市盛路物联通讯技术有限公司
Publication of WO2018232860A1 publication Critical patent/WO2018232860A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01CPLANTING; SOWING; FERTILISING
    • A01C21/00Methods of fertilising, sowing or planting
    • A01C21/005Following a specific plan, e.g. pattern
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G13/00Protecting plants
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G25/00Watering gardens, fields, sports grounds or the like
    • A01G25/16Control of watering
    • A01G25/167Control by humidity of the soil itself or of devices simulating soil or of the atmosphere; Soil humidity sensors
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/02Agriculture; Fishing; Forestry; Mining
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/22Improving land use; Improving water use or availability; Controlling erosion

Definitions

  • the present invention relates to the field of Internet of Things technologies, and in particular, to a method and system for managing crop growth based on the Internet of Things.
  • different planting areas belong to different growers.
  • the growers manage crops in their own planting areas according to their own crop growth management experience. Due to different experience and different growth management methods for the same crops, different growth management methods are embodied in : The length of the watering cycle of the same crop is different; the methods used for pest control in the same crop are different; the fertilization methods of the same crop are different, so even if the same crop is managed in the same planting area, the yield of crops obtained by different growers The difference is great.
  • one grower has rich experience in the growth management of several crops, and lacks experience in the growth management of several other crops; another grower has little experience in the growth management of the several crops, and the growth of the other crops Experienced management.
  • the existing crop growth management methods cannot fully utilize the growth management experience of some crops to manage the growth of some of the crops, thereby reducing the land utilization rate and the economic income of the growers, and the degree of agricultural automation is poor.
  • the present invention provides a crop growth management method and system based on the Internet of Things.
  • an embodiment of the present invention provides a crop growth management method based on the Internet of Things, the method comprising: acquiring image information of the planting area, extracting a crop target feature from the image information; and according to the crop target Identifying a crop variety in the planting area; determining, according to the crop variety, a management plan corresponding to the crop variety from a pre-established crop growth management table; obtaining detection information of the planting area, according to the detecting The information and the management scheme carry out growth management of the crops in the planting area.
  • the invention relates to a crop growth management method based on the Internet of Things, which acquires image target information from the image information by acquiring image information, identifies the crop variety according to the crop target feature, and then proceeds from the pre-established crop growth management table according to the crop variety.
  • Determine the management plan corresponding to the crop variety obtain the detection information, and carry out the growth management of the crops in the planting area according to the detection information and management plan, so as to realize the unified management of the crops of the same variety and reduce the crops planted by different growers. Differences in production, increase land use and economic income of growers, and improve agricultural automation degree.
  • the obtaining the detection information of the planting area, and performing the growth management on the crops in the planting area according to the detecting information and the management plan further includes:
  • Obtain pest information every fourth preset time obtain a pest management plan from the management scheme according to the pest information, and determine a pest species and a pest degree according to the pest information;
  • Control measures are generated according to the species of the pest, the degree of the pest and the pest management plan, and the growth management of the crops in the planting area is carried out according to the control measures.
  • the pest species information and the pest degree are determined by the acquired pest information, and the pest management plan is obtained from the management plan, the pest control plan and the pest information are generated according to the pest control information, and the crops are grown and managed according to the control measures to realize the crops.
  • the unified management of pests is more effective and timely for the control of pests, reducing the extent of damage to crops that has already occurred, increasing land utilization and economic income of growers, and improving the degree of agricultural automation.
  • the prevention measures include:
  • the drug variety and the drug concentration are determined according to the species of the pest, the degree of the pest and the pest management program, and the crop in which the pest occurs is sprayed according to the drug variety and the drug concentration.
  • the drug variety for treating the pest is determined by the pest species and the pest management program, and the drug concentration of the drug required for pest control is determined by the pest degree and the pest management program to realize the crop
  • the unified management of pests is more effective and timely for the control of pests, reducing the extent of damage to crops that has already occurred, increasing land utilization and economic income of growers, and improving the degree of agricultural automation.
  • an embodiment of the present invention provides a crop growth management system based on the Internet of Things, the system comprising: an acquisition module, configured to acquire image information of the planting area, and extract a target feature of the crop from the image information. And a method for identifying detection information of the planting area; an identification module for identifying a crop variety in the planting area according to the crop target feature; and a determining module for growing from the pre-established crop according to the crop variety A management plan corresponding to the crop variety is determined in the management table; and a management module is configured to perform growth management on the crops in the planting area according to the detection information and the management plan.
  • the crop growth management system based on the Internet of Things provided by the embodiment of the invention extracts the target feature of the crop from the image information by acquiring the image information, identifies the crop variety according to the target feature of the crop, and then proceeds from the pre-established crop growth management table according to the crop variety. Determine the management plan corresponding to the crop variety, obtain the detection information, and carry out the growth management of the crops in the planting area according to the detection information and management plan, so as to realize the unified management of the crops of the same variety and reduce the crops planted by different growers. Differences in production, increase land use and growers' economic income, and increase agricultural automation.
  • the acquiring module is further configured to acquire pest information every fourth preset time
  • the management module is specifically configured to acquire pest management from the management solution according to the pest information a plan and determining the pest species and pest level based on the pest information;
  • Control measures are generated according to the species of the pest, the degree of the pest and the pest management plan, and the growth management of the crops in the planting area is carried out according to the control measures.
  • the pest species information and the pest degree are determined by the acquired pest information, and the pest management plan is obtained from the management plan, the pest control plan and the pest information are generated according to the pest control information, and the crops are grown and managed according to the control measures to realize the crops.
  • the unified management of pests is more effective and timely for the control of pests, reducing the extent of damage to crops that has already occurred, increasing land utilization and economic income of growers, and improving the degree of agricultural automation.
  • the prevention measures include:
  • the drug variety and the drug concentration are determined according to the species of the pest, the degree of the pest and the pest management program, and the crop in which the pest occurs is sprayed according to the drug variety and the drug concentration.
  • the drug variety for treating the pest is determined by the pest species and the pest management program, and the drug concentration of the drug required for pest control is determined by the pest degree and the pest management program to realize the crop
  • the unified management of pests is more effective and timely for the control of pests, reducing the extent of damage to crops that has already occurred, increasing land utilization and economic income of growers, and improving the degree of agricultural automation.
  • FIG. 1 is a schematic structural diagram of a crop growth management system based on the Internet of Things according to an embodiment of the present invention
  • FIG. 2 is a schematic flowchart diagram of a crop growth management method based on the Internet of Things according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart diagram of another method for managing crop growth based on the Internet of Things according to an embodiment of the present invention
  • FIG. 4 is a schematic flowchart diagram of another method for managing crop growth based on the Internet of Things according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart diagram of another method for managing crop growth based on the Internet of Things according to an embodiment of the present invention.
  • FIG. 6 is a schematic flowchart diagram of another method for managing crop growth based on the Internet of Things according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a crop growth management system based on the Internet of Things according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of a crop growth management system based on the Internet of Things according to an embodiment of the present invention.
  • the system includes: an acquisition terminal 10, a server 20, an Internet of Things access gateway 30, an Internet of Things service gateway 40, and the like.
  • the collection terminal 10 remotely transmits the collection information to the server 20, and the collection information may include image information, detection information, and the like.
  • the collection terminal 10 needs to be registered through the Internet of Things access gateway 30 first.
  • the IoT access gateway 30 authenticates the authentication information corresponding to the collection terminal 10 through the Internet of Things service gateway 40 and the server 20.
  • the collection terminal 10 establishes a communication connection with the server 20. Then, the data information is transmitted through the communication transmission channel of the "collection terminal 10 - Internet of Things access gateway 30 - Internet of Things service gateway 40 - server 20".
  • the server acquires image information, determines the crop varieties in the planting area according to the image information, determines a management plan corresponding to the crop variety from the pre-established crop growth management table according to the crop variety, and then acquires the detection information, according to the detection information and the management plan.
  • the management of crops in the planting area enables the unified management of the same crop.
  • FIG. 2 is a schematic flowchart diagram of a crop growth management method based on the Internet of Things according to an embodiment of the present invention.
  • the execution body of the method shown in FIG. 2 may be a server, and the method includes:
  • Step 210 Obtain image information of the planting area, and extract a crop target feature from the image information
  • the image information of the planting area is obtained by the image capturing device installed in the planting area, and the image information of the planting area is sent to the server through the Internet of Things.
  • the server receives the image information of the planting area, and the server extracts the crop target feature from the image information, and the crop target feature may include a unique feature of the crop, etc., and the unique feature may be an external shape of the crop, a culture of the crop, and the like.
  • the outer shape of the crop may include the shape of the leaf, the shape of the stem, the shape of the fruit, and the shape of the flower, and the like.
  • the leaves of the corn are in the shape of a strip, and the strip shape is used as the target feature of the crop, that is, the strip shape is extracted from the acquired image information.
  • Step 220 Identify a crop variety in the planting area according to the crop target feature
  • the crop target feature is unique to the crop, so that the crop variety can be identified according to the unique characteristics of the crop.
  • the crop target feature can be compared with all standard crop images pre-stored in the server.
  • the crop variety in the planting area can be determined. The following is a specific example: The obtained image information is extracted into a long strip shape. If the strip shape is the same as the shape of the leaf in the standard corn picture, the crop in the planting area is corn.
  • Step 230 Determine, according to the crop variety, a management plan corresponding to the crop variety from a pre-established crop growth management table;
  • the crop growth management table may include: a crop variety and a management scheme corresponding to the crop variety.
  • the management scheme may include: a soil moisture management scheme, a growth management scheme, and a pest management scheme.
  • the crop growth management table is summarized from the rich experience of crop growth management and pre-stored in the server, and a crop in the crop growth management table has a management scheme corresponding thereto, and the management scheme is adopted A crop is managed for growth, and the yield of crops obtained is higher than that of crops obtained by other management methods.
  • Step 240 Acquire detection information of the planting area, and perform growth management on the crops in the planting area according to the detection information and the management plan.
  • the detection information of the planting area collected in the collection terminal of the planting area is sent to the server through the Internet of Things.
  • the server receives the detection information of the planting area, and performs growth management on the crops in the planting area according to the detection information and the management plan, and the contents of the growth management may include: soil moisture management, crop growth management, and pest management.
  • the collection terminal may include: an imaging device, a soil moisture sensor, a pest collector, and the like.
  • the soil moisture sensor is used to collect the soil moisture information of the planting area
  • the pest collector is used to collect the pest information in the planting area.
  • the invention relates to a crop growth management method based on the Internet of Things, which acquires image target information from the image information by acquiring image information, identifies the crop variety according to the crop target feature, and then proceeds from the pre-established crop growth management table according to the crop variety.
  • Determine the management plan corresponding to the crop variety obtain the detection information, and carry out the growth management of the crops in the planting area according to the detection information and management plan, so as to realize the unified management of the crops of the same variety and reduce the crops planted by different growers. Differences in production, increase land use and growers' economic income, and increase agricultural automation.
  • step 240 may include:
  • Step 341 obtaining an actual soil moisture value of the planting area
  • Step 342 Obtain a soil moisture management scheme from the management scheme according to the actual soil moisture value, and determine a highest soil moisture value from the soil moisture management scheme;
  • Step 343 Determine whether the actual soil moisture value is greater than the highest soil moisture value. When the actual soil moisture value is greater than the highest soil moisture value, generate drainage prompt information, and send the drainage prompt information to the user end. To remove excess water from the planting area.
  • the soil moisture sensor collects soil moisture information in the planting area and sends it to the server through the Internet of Things.
  • the server receives the soil moisture information and obtains the actual soil moisture value based on the soil moisture information.
  • the information type of the detection information may be determined as humidity information
  • the soil moisture management scheme is obtained from the management scheme according to the information type of the detection information
  • the highest soil moisture value is determined from the soil moisture management scheme
  • the server Judging whether the actual soil moisture value is greater than the highest soil moisture value, when the actual soil moisture value is greater than the highest soil moisture value, it indicates that the crop in the planting area is already in a state of excessive moisture, and then the excess water in the planting area is not carried out. If it is discharged, it will affect the normal growth of the crops in the planting area. Therefore, the server generates drainage prompt information according to the difference between the actual soil moisture value and the highest soil moisture value, and sends the drainage prompt information to the user end, and the user passes the user end. After seeing the drainage prompt information, the excess water in the planting area is discharged according to the drainage prompt information, so that the crops in the planting area can grow normally.
  • Each crop has different water requirements. For example, cucumber is more water-loving, while sweet potato is more drought-tolerant. When the soil moisture of the sweet potato is higher, the yield of sweet potato is reduced, so it depends on the specific crop variety. Soil moisture management scheme corresponding to crop varieties.
  • the highest soil moisture value is determined from the soil moisture management scheme according to the actual soil moisture value, and when the actual soil moisture value is greater than the highest soil moisture value, the drainage prompt information is generated, and the grower according to the drainage Prompt information to remove excess water from the planting area, to make full use of the crop growth management experience to grow the soil moisture of the crops, to avoid the death of crops in the planting area due to excessive water, and to ensure the crops in the planting area
  • step 240 may further include:
  • Step 441 Obtain an actual soil moisture value of the planting area
  • Step 442 Obtain a soil moisture management scheme from the management scheme according to the actual soil moisture value, and determine a minimum soil moisture value from the soil moisture management scheme;
  • Step 443 determining whether the actual soil moisture value is less than the minimum soil moisture value, and when the actual soil moisture value is less than the minimum soil moisture value, controlling the electromagnetic water valve to open to irrigate the planting area through the water supply channel Crops within;
  • the electromagnetic water valve is disposed at a communication between the planting area and the water supply channel.
  • the soil moisture sensor collects soil moisture information of the planting area and sends it to the server through the Internet of Things.
  • the server receives the soil moisture information and obtains the actual soil moisture value based on the soil moisture information.
  • the information type of the detection information can be determined to be a humidity letter.
  • Information obtain a soil moisture management plan from the management plan according to the type of information of the detection information, and determine a minimum soil moisture value from the soil moisture management plan;
  • the electromagnetic water valve is disposed at a communication between the planting area and the water supply channel, and the electromagnetic water valve is opened to allow water to flow into the planting area through the electromagnetic water valve and the water supply channel.
  • the minimum soil moisture value is determined from the soil moisture management scheme according to the actual soil moisture value by obtaining the actual soil moisture value, and when the actual soil moisture value is less than the minimum soil moisture value, the crop in the planting area is in water shortage.
  • the electromagnetic water valve is controlled to open to provide the required water for the crops in the planting area, and the growth management of the crops can be fully utilized to manage the soil moisture of the crops, and the crops in the planting area are prevented from dying due to too little water. The situation occurs to ensure the normal growth of crops in the planting area, improve land utilization and the economic income of growers, and improve the degree of agricultural automation.
  • step 240 may further include:
  • the electromagnetic water valve is disposed at a communication place of the water supply canal.
  • the automatic weather station may be disposed in each planting area or in the middle of a plurality of planting areas, and the meteorological information of the planting area is collected by an automatic weather station, and the first pre-determination is determined according to the meteorological information. Whether there is rain in the set time.
  • control solenoid valve When there is no rainfall, there is no other way to replenish the crops in the planting area, so the control solenoid valve is opened to irrigate the crops in the planting area through the water supply channel.
  • the electromagnetic water valve is disposed at a communication between the planting area and the water supply channel, and the electromagnetic water valve is opened to allow water to flow into the planting area through the electromagnetic water valve and the water supply channel.
  • the first preset time is determined according to the variety of crops because the requirements of different varieties of crops for water are different. For example, relatively drought-tolerant crops still survive in the absence of water for one week, and can still grow normally after being replenished with water; while some hi-water crops may die after one or two days of water shortage.
  • the weather information is first acquired, and according to the meteorological information, whether there is rain in the first preset time, When there is no rainfall, it will provide the required water for the crops in the planting area, realize the full use of natural conditions to manage the growth of crops, save resources, avoid the situation of rain after irrigation, ensure the normal growth of crops, and improve the land utilization rate. And the economic income of growers, to improve the degree of agricultural automation.
  • step 240 may further include:
  • the automatic weather station may be disposed in each planting area or in the middle of a plurality of planting areas, and the meteorological information of the planting area is collected by an automatic weather station, and the first pre-determination is determined according to the meteorological information. Whether there is rain in the set time.
  • the actual soil moisture value is obtained after the second preset time from the end of the rainfall, and the actual soil moisture value is less than the minimum soil moisture.
  • the value controls the electromagnetic water valve to open to irrigate the crops in the planting area through the water supply channel to meet the water demand of the crops in the planting area.
  • the electromagnetic water valve is disposed at a communication between the planting area and the water supply channel, and the electromagnetic water valve is opened to allow water to flow into the planting area through the electromagnetic water valve and the water supply channel.
  • the rainfall When the rainfall is relatively large, the rainfall can meet the demand for water in the crops in the plant, so the actual soil moisture value obtained after the second preset time from the end of the rainfall will not be less than the minimum soil moisture value.
  • the crops in the planting area are then irrigated.
  • the second preset time can be one day, one week or one month, etc., which is determined based on rich experience in crop planting.
  • the actual soil moisture value is less than the minimum soil moisture value, that is, the farmer in the planting area
  • the natural crops provide water for the crops in the planting area, and at the end of the rainfall
  • the second preset time is to obtain the actual soil moisture value, determine whether the actual soil moisture value is less than the minimum soil moisture value, and determine that the crops in the planting area are still in a water shortage state, and then provide the required water for the crops in the planting area through irrigation.
  • step 240 may further include:
  • Step 541 acquiring growth parameter information of the crops in the planting area every third preset time;
  • Step 542 Determine growth information of the crop according to the growth parameter information of the crop
  • Step 543 Obtain a growth management plan from the management solution according to the growth information, and determine minimum growth information from the growth management plan;
  • Step 544 When the growth information is smaller than the minimum growth information, generate growth promotion information according to the growth information and pre-stored planting area information of the planting area;
  • Step 545 Send the growth promotion information to the terminal, so that the user fertilizes the crops in the planting area according to the growth promotion information.
  • the third preset time is set according to the specific crop variety, and the reason for this setting is that some crops are growing slowly, and some crops are growing rapidly.
  • the growth parameter information may include: seedling growth parameter information, fruit growth parameter information, and the like. The following is a specific example to illustrate how to determine the growth information of crops: the length of the corn seedlings grown by the growers is 10 cm on the 30th day after planting, and the length of the 40 days after the planting of the corn seedlings is 15 cm, the length of the 30th day. The length of 10 cm and the length of the 40th day is 15 cm, which is the growth parameter information of the crop. According to the growth parameter information, the growth information of the corn seedlings can be determined that the corn seedlings grow 5 cm in height within 5 days. This length is the length of the corn seedling from the ground to the apex of the corn seedling.
  • the growth parameter information can be obtained by manual measurement, and the grower uses the terminal to send the growth parameter information to the server through the Internet of Things.
  • the growth information may be a length.
  • the information type of the detection information may be length information, and the growth management plan is obtained from the management plan according to the length information, and the minimum growth information is determined from the growth management plan;
  • the growth promotion information is generated according to the growth information and the pre-stored planting area information of the planting area: the growth information is that the corn seedlings are long within 5 days. The height is 5 cm, and the minimum growth information is that the corn seedlings should grow 10 cm in height within 5 days. From this, it can be seen that the growth information is smaller than the minimum growth information, according to the growth information and planting area information. And the fertilization ratio information stored in the growth management scheme generates growth-promoting information.
  • the growth information of the crops in each period is determined, and the minimum growth information is determined from the growth management plan according to the growth information.
  • the growth information is lower than the minimum growth information, the growth of the crops is slow, and the growth information and the planting area are generated according to the growth information. Promote growth information, fertilize crops, help crops, manage the growth of the same crop, reduce the yield difference of crops grown by different growers, improve land use and growers' economic income, and improve agricultural automation degree.
  • step 240 may further include:
  • Step 641 Obtain pest information every fourth preset time, obtain a pest management plan from the management plan according to the pest information, and determine a pest species and a pest degree according to the pest information;
  • Step 642 Generate control measures according to the species of the pest, the degree of the pest, and the pest management plan, and perform growth management on the crops in the planting area according to the control measures.
  • the crop growth management table is summarized from the rich crop planting experience and pre-stored in the server, and the crops are more or less encountered in the growing process, and are used after encountering the pests. Different methods of controlling pests can have different effects on crop yields. Therefore, a pest management scheme corresponding to pest information is set in the crop growth management table to prevent the difference in crop yield due to different pest control methods.
  • the pest collector collects pest information of the crops in the planting area and sends it to the server through the Internet of Things.
  • the server receives the pest information, and obtains the pest management plan from the management plan according to the information type of the pest information, and determines the pest type and the pest degree according to the pest information.
  • the fourth preset time can be one day or one week, etc., which is determined based on rich experience in crop planting.
  • the pest species information and the pest degree are determined by the acquired pest information, and the pest management plan is obtained from the management plan, the pest control plan and the pest information are generated according to the pest control information, and the crops are grown and managed according to the control measures to realize the crops.
  • the unified management of pests is more effective and timely for the control of pests, reducing the extent of damage to crops that has already occurred, increasing land utilization and economic income of growers, and improving the degree of agricultural automation.
  • the prevention and control measures include:
  • the drug variety and the drug concentration are determined according to the species of the pest, the degree of the pest and the pest management program, and the crop in which the pest occurs is sprayed according to the drug variety and the drug concentration.
  • the variety of crops is different, and the types of pests are different, and the varieties of drugs to be used for pest control are different.
  • the degree of pests is different, and the concentration of the drug to be used for pest control should be different.
  • determine the drug variety of the drugs needed to control the pests determine the drug concentration of the drugs needed to control the pests according to the pest management plan and the degree of pests.
  • the crops that have been infected with pests Spraying According to the drug variety and drug concentration, the crops that have been infected with pests Spraying.
  • the pests are sprayed, and the spray can be sprayed by the drone to reduce the personal injury to the grower.
  • the drug variety for treating the pest is determined by the pest species and the pest management program, and the drug concentration of the drug required for pest control is determined by the pest degree and the pest management program to realize the crop
  • the unified management of pests is more effective and timely for the control of pests, reducing the extent of damage to crops that has already occurred, increasing land utilization and economic income of growers, and improving the degree of agricultural automation.
  • a method for crop growth management based on the Internet of Things according to an embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 6.
  • an Internet of Things-based crop according to an embodiment of the present invention is described in detail with reference to FIG. Growth management system.
  • an embodiment of the present invention provides a crop growth management system based on the Internet of Things.
  • the system includes:
  • An obtaining module 710 configured to acquire image information of the planting area, extract a crop target feature from the image information, and further acquire the detection information of the planting area;
  • the image information of the planting area is obtained by the image capturing device installed in the planting area, and the image information of the planting area is sent to the server through the Internet of Things.
  • the server receives the image information of the planting area, and the server extracts the crop target feature from the image information, and the crop target feature may include a unique feature of the crop, etc., and the unique feature may be an external shape of the crop, a culture of the crop, and the like.
  • the outer shape of the crop may include the shape of the leaf, the shape of the stem, the shape of the fruit, and the shape of the flower, and the like.
  • the leaves of the corn are in the shape of a strip, and the strip shape is used as the target feature of the crop, that is, the strip shape is extracted from the acquired image information.
  • An identification module 720 configured to identify a crop variety in the planting area according to the crop target feature
  • the crop target feature is unique to the crop, so that the crop variety can be identified according to the unique characteristics of the crop.
  • the crop target feature can be compared with all standard crop images pre-stored in the server.
  • the crop variety in the planting area can be determined.
  • the strip shape is extracted from the acquired image information. If the strip shape is the same as the shape of the leaf in the standard corn picture, the crop in the planting area is corn.
  • a determining module 730 configured to determine, according to the crop variety, a management plan corresponding to the crop variety from a pre-established crop growth management table;
  • the crop growth management table may include: a crop variety and a management scheme corresponding to the crop variety.
  • Place The management plan may include: a soil moisture management plan, a growth management plan, and a pest management plan.
  • the crop growth management table is summarized from the rich experience of crop growth management and pre-stored in the server, and a crop in the crop growth management table has a management scheme corresponding thereto, and the management scheme is adopted A crop is managed for growth, and the yield of crops obtained is higher than that of crops obtained by other management methods.
  • the management module 740 is configured to perform growth management on the crops in the planting area according to the detection information and the management scheme.
  • the detection information of the planting area collected in the collection terminal of the planting area is sent to the server through the Internet of Things.
  • the server receives the detection information of the planting area, and performs growth management on the crops in the planting area according to the detection information and the management plan, and the contents of the growth management may include: soil moisture management, crop growth management, and pest management.
  • the collection terminal may include: an imaging device, a soil moisture sensor, a pest collector, and the like.
  • the soil moisture sensor is used to collect the soil moisture information of the planting area
  • the pest collector is used to collect the pest information in the planting area.
  • the crop growth management system based on the Internet of Things provided by the embodiment of the invention extracts the target feature of the crop from the image information by acquiring the image information, identifies the crop variety according to the target feature of the crop, and then proceeds from the pre-established crop growth management table according to the crop variety. Determine the management plan corresponding to the crop variety, obtain the detection information, and carry out the growth management of the crops in the planting area according to the detection information and management plan, so as to realize the unified management of the crops of the same variety and reduce the crops planted by different growers. Differences in production, increase land use and growers' economic income, and increase agricultural automation.
  • the obtaining module 710 is further configured to acquire an actual soil moisture value of the planting area;
  • the management module 740 is specifically configured to obtain a soil moisture management solution from the management solution according to the actual soil moisture value, and determine a minimum soil moisture value from the soil moisture management solution;
  • the electromagnetic water valve is disposed at a communication between the planting area and the water supply channel.
  • the soil moisture sensor collects soil moisture information of the planting area and sends it to the server through the Internet of Things.
  • the server receives the soil moisture information and obtains the actual soil moisture value based on the soil moisture information.
  • the information type of the detection information may be determined as humidity information
  • the soil moisture management scheme is obtained from the management scheme according to the information type of the detection information
  • the lowest soil moisture value is determined from the soil moisture management scheme
  • the electromagnetic water valve is disposed at a communication between the planting area and the water supply channel, and the electromagnetic water valve is opened to allow water to flow into the planting area through the electromagnetic water valve and the water supply channel.
  • the minimum soil moisture value is determined from the soil moisture management scheme according to the actual soil moisture value by obtaining the actual soil moisture value, and when the actual soil moisture value is less than the minimum soil moisture value, the crop in the planting area is in water shortage.
  • the electromagnetic water valve is controlled to open to provide the required water for the crops in the planting area, and the growth management of the crops can be fully utilized to manage the soil moisture of the crops, and the crops in the planting area are prevented from dying due to too little water. The situation occurs to ensure the normal growth of crops in the planting area, improve land utilization and the economic income of growers, and improve the degree of agricultural automation.
  • the obtaining module 710 is further configured to acquire an actual soil moisture value of the planting area;
  • the management module 740 is specifically configured to obtain a soil moisture management solution from the management solution according to the actual soil moisture value, and determine a minimum soil moisture value from the soil moisture management solution;
  • the electromagnetic water valve is disposed at a communication place of the water supply canal.
  • the automatic weather station may be disposed in each planting area or in the middle of a plurality of planting areas, and the meteorological information of the planting area is collected by an automatic weather station, and the first pre-determination is determined according to the meteorological information. Whether there is rain in the set time.
  • control solenoid valve When there is no rainfall, there is no other way to replenish the crops in the planting area, so the control solenoid valve is opened to irrigate the crops in the planting area through the water supply channel.
  • the electromagnetic water valve is disposed at a communication between the planting area and the water supply channel, and the electromagnetic water valve is opened to allow water to flow into the planting area through the electromagnetic water valve and the water supply channel.
  • the weather information is first acquired, and according to the meteorological information, whether there is rain in the first preset time, When there is no rainfall, it will provide the required water for the crops in the planting area, realize the full use of natural conditions to manage the growth of crops, save resources, avoid the situation of rain after irrigation, ensure the normal growth of crops, and improve the land utilization rate. And the economic income of growers, to improve the degree of agricultural automation.
  • the obtaining module 710 is further configured to acquire an actual soil moisture value of the planting area;
  • the management module 740 is specifically configured to obtain a soil moisture management solution from the management solution according to the actual soil moisture value, and determine a minimum soil moisture value from the soil moisture management solution;
  • the actual soil moisture value is obtained after the second preset time from the end of the rainfall, and the actual soil moisture value is less than the minimum soil moisture.
  • the value controls the electromagnetic water valve to open to irrigate the crops in the planting area through the water supply channel to meet the water demand of the crops in the planting area.
  • the electromagnetic water valve is disposed at a communication between the planting area and the water supply channel, and the electromagnetic water valve is opened to allow water to flow into the planting area through the electromagnetic water valve and the water supply channel.
  • the rainfall When the rainfall is relatively large, the rainfall can meet the demand for water in the crops in the plant, so the actual soil moisture value obtained after the second preset time from the end of the rainfall will not be less than the minimum soil moisture value.
  • the crops in the planting area are then irrigated.
  • the second preset time can be one day, one week or one month, etc., which is determined based on rich experience in crop planting.
  • the weather information is first acquired, and according to the meteorological information, whether there is rain in the first preset time.
  • the natural crops provide water for the crops in the planting area, and the actual soil moisture value is obtained after the second preset time from the end of the rainfall to determine whether the actual soil moisture value is less than the minimum soil moisture value, and the planting area is determined.
  • the irrigation method is used to provide the required water for the crops in the planting area, and the crops in the planting area are determined to be in a state of no water shortage, and no water is provided for the crops in the planting area, so as to fully utilize the natural conditions.
  • the crops are managed for growth, saving resources, avoiding the occurrence of rain after irrigation, ensuring the normal growth of crops, improving the land utilization rate and the economic income of the growers, and improving the degree of agricultural automation.
  • the obtaining module 710 is further configured to acquire growth parameter information of the crops in the planting area every third preset time;
  • the management module 740 is specifically configured to determine growth information of the crop according to the growth parameter information of the crop;
  • the growth promoting information is transmitted to the terminal, so that the user fertilizes the crops in the planting area according to the growth promoting information.
  • the third preset time is set according to the specific crop variety, and the reason for this setting is that some crops are growing slowly, and some crops are growing rapidly.
  • the growth parameter information may include: seedling growth parameter information, fruit growth parameter information, and the like. The following is a specific example to illustrate how to determine the growth information of crops: the length of the corn seedlings grown by the growers is 10 cm on the 30th day after planting, and the length of the 40 days after the planting of the corn seedlings is 15 cm, the length of the 30th day. The length of 10 cm and the length of the 40th day is 15 cm, which is the growth parameter information of the crop. According to the growth parameter information, the growth information of the corn seedlings can be determined that the corn seedlings grow 5 cm in height within 5 days. This length is the length of the corn seedling from the ground to the apex of the corn seedling.
  • the growth parameter information can be obtained by manual measurement, and the grower uses the terminal to send the growth parameter information to the server through the Internet of Things.
  • the growth information may be a length.
  • the information type of the detection information may be length information, and the growth management plan is obtained from the management plan according to the length information, and the minimum growth information is determined from the growth management plan;
  • the growth promotion information is generated according to the growth information and the pre-stored planting area information of the planting area: the growth information is that the corn seedlings are long within 5 days. The height is 5 cm, and the minimum growth information is that the corn seedlings should grow 10 cm in height within 5 days. From this, it can be seen that the growth information is smaller than the minimum growth information, according to the growth information, the planting area information and the proportion of fertilization stored in the growth management plan. Information generates growth-promoting information.
  • the growth information of the crops in each period is determined, and the minimum growth information is determined from the growth management plan according to the growth information.
  • the growth information is lower than the minimum growth information, the growth of the crops is slow, and the growth information and the planting area are generated according to the growth information and the planting area. Promote growth information, fertilize crops, help crops, manage the growth of the same crop, reduce the yield difference of crops grown by different growers, improve land use and growers' economic income, and improve agricultural automation degree.
  • the obtaining module 710 is further configured to acquire pest information every fourth preset time;
  • the management module 740 is specifically configured to obtain a pest management plan from the management solution according to the pest information, and determine a pest species and a pest degree according to the pest information;
  • Control measures are generated according to the species of the pest, the degree of the pest and the pest management plan, and the growth management of the crops in the planting area is carried out according to the control measures.
  • the pest species information and the pest degree are determined by the acquired pest information, and the pest management plan is obtained from the management plan, the pest control plan and the pest information are generated according to the pest control information, and the crops are grown and managed according to the control measures to realize the crops.
  • the unified management of pests is more effective and timely for the control of pests, reducing the extent of damage to crops that has already occurred, increasing land utilization and economic income of growers, and improving the degree of agricultural automation.
  • the prevention and control measures include:
  • the drug variety and the drug concentration are determined according to the species of the pest, the degree of the pest and the pest management program, and the crop in which the pest occurs is sprayed according to the drug variety and the drug concentration.
  • the variety of crops is different, and the types of pests are different, and the varieties of drugs to be used for pest control are different.
  • the degree of pests is different, and the concentration of the drug to be used for pest control should be different.
  • determine the drug variety of the drugs needed to control the pests determine the drug concentration of the drugs needed to control the pests according to the pest management plan and the degree of pests. Spraying crops that have been infected with pests based on drug variety and drug concentration.
  • the pests are sprayed, and the spray can be sprayed by the drone to reduce the personal injury to the grower.
  • the drug variety for treating the pest is determined by the pest species and the pest management program, and the drug concentration of the drug required for pest control is determined by the pest degree and the pest management program to realize the crop
  • the unified management of pests is more effective and timely for the control of pests, reducing the extent of damage to crops that has already occurred, increasing land utilization and economic income of growers, and improving the degree of agricultural automation.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of cells is only a logical function division.
  • multiple units or components may be combined or integrated. Go to another system, or some features can be ignored or not executed.
  • the units described as separate components may or may not be physically separate, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • An integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, can be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental Sciences (AREA)
  • Soil Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Multimedia (AREA)
  • Botany (AREA)
  • Economics (AREA)
  • Agronomy & Crop Science (AREA)
  • Animal Husbandry (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Mining & Mineral Resources (AREA)
  • Water Supply & Treatment (AREA)
  • Toxicology (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种基于物联网的农作物生长管理方法及系统。该方法包括获取种植区的图像信息,从图像信息中提取农作物目标特征;根据农作物目标特征识别种植区内的农作物品种;根据农作物品种从预先建立的农作物生长管理表中确定与农作物品种相对应的管理方案;获取种植区的检测信息,根据检测信息和管理方案对种植区内的农作物进行生长管理。该方法实现了减少不同种植者种植出的农作物的产量差异性,提高土地利用率和种植者的经济收入,提升农业自动化程度。

Description

一种基于物联网的农作物生长管理方法及系统 技术领域
本发明涉及物联网技术领域,尤其涉及一种基于物联网的农作物生长管理方法及系统。
背景技术
目前,不同的种植区属于不同的种植者,种植者根据自身农作物生长管理经验在属于自己的种植区内管理农作物,由于经验不同对同一农作物的生长管理方法不同,生长管理方法的不同具体体现在:同一农作物的浇灌周期长短不一;同一农作物进行虫害防治所采取的方法不同;同一农作物的施肥方式不同等,故而即使在同一种植区内管理同一种农作物,不同种植者获得的农作物的产量的差异性很大。
且一个种植者对于几种农作物的生长管理经验丰富,对于另外几种农作物的生长管理经验匮乏;另一个种植者对于所述几种农作物的生长管理经验匮乏,对于所述另外几种农作物的生长管理经验丰富。现有农作物的生长管理方法不能充分利用对某些农作物的生长管理经验对所述某些农作物进行生长管理,因而降低了土地利用率和种植者的经济收入,农业自动化程度差。
发明内容
为解决上述技术问题,本发明提供了一种基于物联网的农作物生长管理方法及系统。
第一方面,本发明实施例提供了一种基于物联网的农作物生长管理方法,该方法包括:获取所述种植区的图像信息,从所述图像信息中提取农作物目标特征;根据所述农作物目标特征识别所述种植区内的农作物品种;根据所述农作物品种从预先建立的农作物生长管理表中确定与所述农作物品种相对应的管理方案;获取所述种植区的检测信息,根据所述检测信息和所述管理方案对所述种植区内的农作物进行生长管理。
本发明实施例提供的基于物联网的农作物生长管理方法,通过获取图像信息,从图像信息中提取农作物目标特征,根据农作物目标特征识别农作物品种,再根据农作物品种从预先建立的农作物生长管理表中确定与农作物品种相对应的管理方案,获取检测信息,根据检测信息和管理方案对种植区内的农作物进行生长管理,从而实现对同一品种的农作物进行统一管理,减少不同种植者种植出的农作物的产量差异性,提高土地利用率和种植者的经济收入,提升农业自动化 程度。
进一步,所述获取所述种植区的检测信息,根据所述检测信息和所述管理方案对所述种植区内的农作物进行生长管理还包括:
每隔第四预设时间获取虫害信息,根据所述虫害信息从所述管理方案中获取虫害管理方案,并根据所述虫害信息确定虫害种类和虫害程度;
根据所述虫害种类、所述虫害程度和所述虫害管理方案生成防治措施,并根据所述防治措施对所述种植区内的农作物进行生长管理。
上述实施例中,通过获取的虫害信息确定虫害种类和虫害程度,并从管理方案中获取虫害管理方案,根据虫害管理方案和虫害信息生成防治措施,按照防治措施对农作物进行生长管理,实现对农作物虫害的统一管理,对虫害的治理更有效更及时,减少已经发生的虫害对农作物的毁坏程度,提高土地利用率和种植者的经济收入,提升农业自动化程度。
进一步,所述防治措施包括:
根据所述虫害种类、所述虫害程度和所述虫害管理方案确定药物品种和药物浓度,根据所述药物品种和药物浓度对发生虫害的农作物进行喷洒。
上述实施例中,通过所述虫害种类和所述虫害管理方案确定治理虫害所需药物的药物品种,通过所述虫害程度和所述虫害管理方案确定治理虫害所需药物的药物浓度,实现对农作物虫害的统一管理,对虫害的治理更有效更及时,减少已经发生的虫害对农作物的毁坏程度,提高土地利用率和种植者的经济收入,提升农业自动化程度。
第二方面,本发明实施例提供了一种基于物联网的农作物生长管理系统,所述系统包括:获取模块,用于获取所述种植区的图像信息,从所述图像信息中提取农作物目标特征;还用于获取所述种植区的检测信息;识别模块,用于根据所述农作物目标特征识别所述种植区内的农作物品种;确定模块,用于根据所述农作物品种从预先建立的农作物生长管理表中确定与所述农作物品种相对应的管理方案;管理模块,用于根据所述检测信息和所述管理方案对所述种植区内的农作物进行生长管理。
本发明实施例提供的基于物联网的农作物生长管理系统,通过获取图像信息,从图像信息中提取农作物目标特征,根据农作物目标特征识别农作物品种,再根据农作物品种从预先建立的农作物生长管理表中确定与农作物品种相对应的管理方案,获取检测信息,根据检测信息和管理方案对种植区内的农作物进行生长管理,从而实现对同一品种的农作物进行统一管理,减少不同种植者种植出的农作物的产量差异性,提高土地利用率和种植者的经济收入,提升农业自动化程度。
进一步,所述获取模块还用于每隔第四预设时间获取虫害信息;
所述管理模块具体用于根据所述虫害信息从所述管理方案中获取虫害管理 方案,并根据所述虫害信息确定确定虫害种类和虫害程度;
根据所述虫害种类、所述虫害程度和所述虫害管理方案生成防治措施,并根据所述防治措施对所述种植区内的农作物进行生长管理。
上述实施例中,通过获取的虫害信息确定虫害种类和虫害程度,并从管理方案中获取虫害管理方案,根据虫害管理方案和虫害信息生成防治措施,按照防治措施对农作物进行生长管理,实现对农作物虫害的统一管理,对虫害的治理更有效更及时,减少已经发生的虫害对农作物的毁坏程度,提高土地利用率和种植者的经济收入,提升农业自动化程度。
进一步,所述防治措施包括:
根据所述虫害种类、所述虫害程度和所述虫害管理方案确定药物品种和药物浓度,根据所述药物品种和药物浓度对发生虫害的农作物进行喷洒。
上述实施例中,通过所述虫害种类和所述虫害管理方案确定治理虫害所需药物的药物品种,通过所述虫害程度和所述虫害管理方案确定治理虫害所需药物的药物浓度,实现对农作物虫害的统一管理,对虫害的治理更有效更及时,减少已经发生的虫害对农作物的毁坏程度,提高土地利用率和种植者的经济收入,提升农业自动化程度。
本发明附加的方面的优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明实践了解到。
附图说明
图1为本发明实施例提供的一种基于物联网的农作物生长管理系统架构示意图;
图2为本发明实施例提供的一种基于物联网的农作物生长管理方法的流程示意图;
图3为本发明实施例提供的另一种基于物联网的农作物生长管理方法的流程示意图;
图4为本发明实施例提供的另一种基于物联网的农作物生长管理方法的流程示意图;
图5为本发明实施例提供的另一种基于物联网的农作物生长管理方法的流程示意图;
图6为本发明实施例提供的另一种基于物联网的农作物生长管理方法的流程示意图;
图7为本发明一实施例提供的一种基于物联网的农作物生长管理系统的结构示意图。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、接口、技术之类的具体细节,以便透切理解本发明。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本发明。在其它情况中,省略对众所周知的系统、电路以及方法的详细说明,以免不必要的细节妨碍本发明的描述。
如图1为本发明实施例提供的一种基于物联网的农作物生长管理系统架构示意图。
具体如图1所示,该系统包括:采集终端10,服务器20,物联网接入网关30,物联网服务网关40等。
采集终端10远程将采集信息传输至服务器20中,所述采集信息可以包括图像信息和检测信息等。传输之前,首先需要通过物联网接入网关30对采集终端10进行注册。在注册成功后,物联网接入网关30会将与采集终端10对应的鉴权信息通过物联网服务网关40和服务器20中进行鉴权。鉴权成功后,采集终端10与服务器20建立通信连接。然后,通过“采集终端10-物联网接入网关30-物联网服务网关40-服务器20”这条通信传输通道传输数据信息。服务器获取图像信息,根据图像信息确定种植区内的农作物品种,根据农作物品种从预先建立的农作物生长管理表中确定与农作物品种相对应的管理方案,再获取检测信息,根据检测信息和管理方案对种植区内的农作物进行管理,实现对同一农作物的统一管理。
如图2给出了本发明实施例提供的一种基于物联网的农作物生长管理方法的流程示意图。如图2所示方法的执行主体可以是服务器,该方法包括:
步骤210,获取所述种植区的图像信息,从所述图像信息中提取农作物目标特征;
需要说明的是,通过设置在种植区的摄像装置为农作物进行拍摄,得到种植区的图像信息,将所述种植区的图像信息通过物联网发送给服务器。服务器接收所述种植区的图像信息,服务器从所述图像信息中提取农作物目标特征,农作物目标特征可以包括农作物独有的特征等,独有的特征可以是农作物的外部形状、农作物的文理等,农作物的外部形状可以包括叶的形状、茎的形状、果实的形状和花的形状等。下面以一具体例子说明:玉米的叶子是长条形状,将此长条形状作为农作物目标特征,即从获取的图像信息中提取得到长条形状。
步骤220,根据所述农作物目标特征识别所述种植区内的农作物品种;
需要说明的是,农作物目标特征由于是农作物独有的特征,因而能够根据农作物独有的特征识别出农作物品种,具体地,可以将农作物目标特征与预先存储在服务器中的所有标准农作物图片进行对比,当与所有标准农作物图片中的一张图片相同时则可以确定该种植区内的农作物品种。下面以一具体的例子说明:从 获取的图像信息中提取得到长条形状,若长条形状与标准玉米图片中叶的形状相同,则说明该种植区内的农作物是玉米。
步骤230,根据所述农作物品种从预先建立的农作物生长管理表中确定与所述农作物品种相对应的管理方案;
需要说明的是,预先建立的农作物生长管理表存储在服务器中。所述农作物生长管理表可以包括:农作物品种和与所述农作物品种相对应的管理方案等。所述管理方案可以包括:土壤湿度管理方案、长势管理方案和虫害管理方案等。
所述农作物生长管理表是从丰富的农作物生长管理经验中总结出并预先存储在服务器中的,在农作物生长管理表中的一种农作物有与之对应的管理方案,采用所述管理方案对该一种农作物进行生长管理,所得到农作物产量相较于采用其他管理方法而得到的农作物产量会更多。
步骤240,获取所述种植区的检测信息,根据所述检测信息和所述管理方案对所述种植区内的农作物进行生长管理。
设置在种植区的采集终端将采集到的种植区的检测信息,经过物联网发送给服务器。服务器接收种植区的检测信息,根据检测信息和管理方案对种植区内的农作物进行生长管理,所述生长管理的内容可以包括:土壤湿度管理、农作物长势管理和虫害管理等。
采集终端可以包括:摄像装置、土壤湿度传感器和虫害采集器等。土壤湿度传感器用于采集该种植区的土壤湿度信息,虫害采集器用于采集该种植区内的虫害信息。
本发明实施例提供的基于物联网的农作物生长管理方法,通过获取图像信息,从图像信息中提取农作物目标特征,根据农作物目标特征识别农作物品种,再根据农作物品种从预先建立的农作物生长管理表中确定与农作物品种相对应的管理方案,获取检测信息,根据检测信息和管理方案对种植区内的农作物进行生长管理,从而实现对同一品种的农作物进行统一管理,减少不同种植者种植出的农作物的产量差异性,提高土地利用率和种植者的经济收入,提升农业自动化程度。
优选地,作为本发明另外一个实施例,在图2所示实施例的基础上,如图3所示,步骤240可以包括:
步骤341,获取所述种植区的实际土壤湿度值;
步骤342,根据所述实际土壤湿度值从所述管理方案中获取土壤湿度管理方案,从所述土壤湿度管理方案中确定最高土壤湿度值;
步骤343,判断所述实际土壤湿度值是否大于所述最高土壤湿度值,当所述实际土壤湿度值大于所述最高土壤湿度值时,生成排水提示信息,将所述排水提示信息发送给用户端,以将所述种植区内的多余水分排出。
该实施例中,当该种植区内的降雨量特别大时,会在该种植区内积存多余水 分,多余水分会影响该种植区内的农作物的正常生长,因而需要将多余的水分排出。
土壤湿度传感器采集该种植区内的土壤湿度信息,通过物联网发送给服务器。服务器接收土壤湿度信息,并根据土壤湿度信息获取实际土壤湿度值。
根据实际土壤湿度值的湿度单位可以确定检测信息的信息类型是湿度类信息,根据检测信息的信息类型从管理方案中获取土壤湿度管理方案,从土壤湿度管理方案中确定最高土壤湿度值;
判断实际土壤湿度值是否大于所述最高土壤湿度值,当实际土壤湿度值大于最高土壤湿度值时,说明该种植区内的农作物已经处于水分过多状态,再不将该种植区内多余的水分进行排出的话就会影响该种植区内的农作物的正常生长,因而服务器根据实际土壤湿度值与最高土壤湿度值之间的差值生成排水提示信息,将排水提示信息发送给用户端,用户通过用户端看到排水提示信息后则根据排水提示信息将该种植区内的多余水分排出,以使该种植区内的农作物能够正常生长。
每种农作物对水分的要求不同,例如黄瓜是比较喜水的,而地瓜是比较耐旱的,种植地瓜的土壤湿度较高时种植出的地瓜产量会降低,因而要根据具体的农作物品种设置与农作物品种相对应的土壤湿度管理方案。
上述实施例中,通过获取实际土壤湿度值,根据实际土壤湿度值从土壤湿度管理方案中确定最高土壤湿度值,当实际土壤湿度值大于最高土壤湿度值时,生成排水提示信息,种植者根据排水提示信息将种植区内的多余水分排出,实现充分利用农作物的生长管理经验对农作物的土壤湿度进行生长管理,避免种植区内的农作物由于水分过多而死亡的情况发生,保证种植区内的农作物的正常生长,提高土地利用率和种植者的经济收入,提升农业自动化程度。
优选地,作为本发明另外一个实施例,在图2所示实施例的基础上,如图4所示,步骤240还可以包括:
步骤441,获取所述种植区的实际土壤湿度值;
步骤442,根据所述实际土壤湿度值从所述管理方案中获取土壤湿度管理方案,从所述土壤湿度管理方案中确定最低土壤湿度值;
步骤443,判断所述实际土壤湿度值是否小于所述最低土壤湿度值,当所述实际土壤湿度值小于所述最低土壤湿度值时,控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物;
其中,所述种植区与所述供水渠的连通处设置所述电磁水阀。
该实施例中,土壤湿度传感器采集该种植区的土壤湿度信息,通过物联网发送给服务器。服务器接收土壤湿度信息,并根据土壤湿度信息获取实际土壤湿度值。
根据实际土壤湿度值的湿度单位可以确定检测信息的信息类型是湿度类信 息,根据检测信息的信息类型从管理方案中获取土壤湿度管理方案,从土壤湿度管理方案中确定最低土壤湿度值;
判断实际土壤湿度值是否小于最低土壤湿度值,当实际土壤湿度值小于最低土壤湿度值时,说明该种植区内的农作物已经处于缺水状态,再不对该种植区内的农作物进行灌溉的话就会影响该种植区内的农作物的正常生长,因而控制电磁水阀开启,通过供水渠灌溉该种植区内的农作物,提供该种植区内的农作物生长所需水分。
其中,所述种植区与所述供水渠的连通处设置所述电磁水阀,通过开启电磁水阀,使水流经过电磁水阀和供水渠进入该种植区内。
上述实施例中,通过获取实际土壤湿度值,根据实际土壤湿度值从土壤湿度管理方案中确定最低土壤湿度值,当实际土壤湿度值小于最低土壤湿度值时,即种植区内的农作物处于缺水状态时,控制电磁水阀开启而为种植区内的农作物提供所需水分,实现充分利用农作物的生长管理经验对农作物的土壤湿度进行生长管理,避免种植区内的农作物由于水分过少而旱死的情况发生,保证种植区内的农作物的正常生长,提高土地利用率和种植者的经济收入,提升农业自动化程度。
优选地,作为本发明另外一个实施例,在图2所示实施例的基础上,步骤240还可以包括:
获取所述种植区的实际土壤湿度值;
根据所述实际土壤湿度值从所述管理方案中获取土壤湿度管理方案,从所述土壤湿度管理方案中确定最低土壤湿度值;
判断所述实际土壤湿度值是否小于所述最低土壤湿度值,当所述实际土壤湿度值小于所述最低土壤湿度值时,获取自动气象站采集的气象信息;
根据所述气象信息判断在第一预设时间内是否有降雨,当没有降雨时,则控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物;其中,所述种植区与所述供水渠的连通处设置所述电磁水阀。
该实施例中,该自动气象站可设置在每个种植区内,也可设置在多个种植区中间,通过自动气象站采集该种植区的气象信息,根据所述气象信息判断在第一预设时间内是否有降雨。
当没有降雨时,说明没有其他方式可以为该种植区内的农作物补充水分,因而执行控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物。
其中,所述种植区与所述供水渠的连通处设置所述电磁水阀,通过开启电磁水阀,使水流经过电磁水阀和供水渠进入该种植区内。
第一预设时间根据农作物的品种而确定,是因为不同品种的农作物对于水分的要求不同。比如,比较抗旱的农作物在缺水一周时依然存活,得到水分补充后依然能够正常生长;而一些喜水农作物在缺水一两天后就可能出现死亡的情况。
上述实施例中,当实际土壤湿度值小于最低土壤湿度值时,即种植区内的农作物处于缺水状态时,要先获取气象信息,根据气象信息判断在第一预设时间内是否有降雨,当没有降雨时,才为种植区内的农作物提供所需水分,实现充分利用自然条件对农作物进行生长管理,节省资源,避免灌溉后又降雨的情况发生,保证农作物的正常生长,提高土地利用率和种植者的经济收入,提升农业自动化程度。
优选地,作为本发明另外一个实施例,在图2所示实施例的基础上,步骤240还可以包括:
获取所述种植区的实际土壤湿度值;
根据所述实际土壤湿度值从所述管理方案中获取土壤湿度管理方案,从所述土壤湿度管理方案中确定最低土壤湿度值;
判断所述实际土壤湿度值是否小于所述最低土壤湿度值,当所述实际土壤湿度值小于所述最低土壤湿度值时,获取自动气象站采集的气象信息;
根据所述气象信息判断在第一预设时间内是否有降雨,当有降雨时,则自降雨结束时经过第二预设时间获取实际土壤湿度值,判断所述实际土壤湿度值是否小于所述最低土壤湿度值,当所述实际土壤湿度值小于所述最低土壤湿度值时,则控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物;其中,所述种植区与所述供水渠的连通处设置所述电磁水阀。
该实施例中,该自动气象站可设置在每个种植区内,也可设置在多个种植区中间,通过自动气象站采集该种植区的气象信息,根据所述气象信息判断在第一预设时间内是否有降雨。
确定有雨水降落在该种植区内时,不能确定降雨量是否能够满足该种植区内的农作物对于水分的需求。
当降雨量比较小时,降雨量是不足以满足该种植区内的农作物对水分的需求量,因而自降雨结束时经过第二预设时间获取实际土壤湿度值,该实际土壤湿度值小于最低土壤湿度值,此时控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物,满足该种植区内农作物对水分的需求。其中,所述种植区与所述供水渠的连通处设置所述电磁水阀,通过开启电磁水阀,使水流经过电磁水阀和供水渠进入该种植区内。
当降雨量比较大时,降雨量能够满足该种植内的农作物对于水分的需求量,因而自降雨结束时经过第二预设时间获取的实际土壤湿度值不会小于最低土壤湿度值,此时不用再对该种植区内的农作物进行灌溉。
第二预设时间可以是一天、一周或是一个月等,是根据丰富的农作物种植经验而确定。
上述实施例中,当实际土壤湿度值小于最低土壤湿度值时,即种植区内的农 作物处于缺水状态时,要先获取气象信息,根据气象信息判断在第一预设时间内是否有降雨,当有降雨时,通过自然降雨为种植区内农作物提供水分,在自降雨结束时经过第二预设时间获取实际土壤湿度值,判断实际土壤湿度值是否小于最低土壤湿度值,确定种植区内的农作物依然处于缺水状态时,再通过灌溉方式为种植区内农作物提供所需水分,确定种植区内的农作物处于不缺水状态,不再为种植区内农作物提供水分,实现充分利用自然条件对农作物进行生长管理,节省资源,避免灌溉后又降雨的情况发生,保证农作物的正常生长,提高土地利用率和种植者的经济收入,提升农业自动化程度。
优选地,作为本发明另外一个实施例,在图2所示实施例的基础上,如图5所示,步骤240还可以包括:
步骤541,每隔第三预设时间获取所述种植区内的农作物的生长参数信息;
步骤542,根据所述农作物的生长参数信息确定所述农作物的长势信息;
步骤543,根据所述长势信息从所述管理方案中获取长势管理方案,从所述长势管理方案中确定最小长势信息;
步骤544,当所述长势信息小于所述最小长势信息时,根据所述长势信息和预先存储的所述种植区的种植面积信息生成促生长信息;
步骤545,将所述促生长信息发送给终端,以便用户按照所述促生长信息对所述种植区内的农作物进行施肥。
该实施例中,第三预设时间根据具体的农作物品种而设定,之所以如此设定是由于有的农作物长势缓慢,有的农作物长势快速。所述生长参数信息可以包括:幼苗生长参数信息和果实生长参数信息等。下面以一具体例子说明如何确定农作物的长势信息:种植者种植的玉米幼苗在栽种后第30天的长度为10厘米,玉米幼苗在栽种后第40天的长度为15厘米,第30天的长度为10厘米和第40天的长度为15厘米即为农作物的生长参数信息,根据生长参数信息可以确定玉米幼苗的长势信息为玉米幼苗在5天内长高5厘米。该长度为玉米幼苗从地面起到玉米育苗的顶点处的长度。
可以采用人工测量方式得到生长参数信息,种植者利用终端将生长参数信息通过物联网发送给服务器。
长势信息可以为长度,根据长势信息的长度单位可以确定检测信息的信息类型是长度类信息,根据长度类信息从管理方案中获取长势管理方案,从所述长势管理方案中确定最小长势信息;
下面以一具体例子说明当所述长势信息小于所述最小长势信息时,根据所述长势信息和预先存储的所述种植区的种植面积信息生成促生长信息:长势信息为玉米幼苗在5天内长高5厘米,而最小长势信息为玉米幼苗在5天内应长高10厘米,由此看看出,长势信息小于最小长势信息,根据长势信息、种植面积信息 和存储在长势管理方案中的施肥比例信息生成促生长信息。
该实施例中,确定每段时间内农作物的长势信息,根据长势信息从长势管理方案中确定最小长势信息,当长势信息低于最小长势信息时,说明农作物生长缓慢,按照长势信息和种植面积生成促生长信息,对农作物进行施肥,实现帮助农作物生,对同一农作物的长势进行统一管理,减少不同种植者种植出的农作物的产量差异性,提高土地利用率和种植者的经济收入,提升农业自动化程度。
优选地,作为本发明另外一个实施例,在图2所示实施例的基础上,如图6所示,步骤240还可以包括:
步骤641,每隔第四预设时间获取虫害信息,根据所述虫害信息从所述管理方案中获取虫害管理方案,并根据所述虫害信息确定虫害种类和虫害程度;
步骤642,根据所述虫害种类、所述虫害程度和所述虫害管理方案生成防治措施,并根据所述防治措施对所述种植区内的农作物进行生长管理。
该实施例中,所述农作物生长管理表是从丰富的农作物种植经验中总结出并预先存储在服务器中的,农作物在生长过程中,或多或少会遭遇到虫害,而在遭遇虫害后采用不同的防治方式对虫害进行治理能够对农作物的产量产生不同影响。因而在农作物生长管理表中设置与虫害信息相对应的虫害管理方案,以防止因采用虫害防治方式不同造成的农作物产量的差异性。
虫害采集器采集该种植区内的农作物的虫害信息,通过物联网发送给服务器。服务器接收虫害信息,并根据虫害信息的信息类型从管理方案中获取虫害管理方案,根据虫害信息确定虫害种类和虫害程度。
第四预设时间可以是一天或是一周等,是根据丰富的农作物种植经验而确定。
上述实施例中,通过获取的虫害信息确定虫害种类和虫害程度,并从管理方案中获取虫害管理方案,根据虫害管理方案和虫害信息生成防治措施,按照防治措施对农作物进行生长管理,实现对农作物虫害的统一管理,对虫害的治理更有效更及时,减少已经发生的虫害对农作物的毁坏程度,提高土地利用率和种植者的经济收入,提升农业自动化程度。
优选地,作为本发明另外一个实施例,在图6所示实施例的基础上,所述防治措施包括:
根据所述虫害种类、所述虫害程度和所述虫害管理方案确定药物品种和药物浓度,根据所述药物品种和药物浓度对发生虫害的农作物进行喷洒。
该实施例中,农作物品种不同,且虫害种类不同,治理虫害应采用的药物品种不同。虫害程度不同,治理虫害应采用的药物浓度不同。根据虫害种类和虫害管理方案确定治理虫害所需药物的药物品种,根据虫害管理方案和虫害程度确定治理虫害所需药物的药物浓度。根据药物品种和药物浓度对发生虫害的农作物进 行喷洒。
根据药物品种和药物浓度对发生虫害的农作物进行喷洒,喷洒可采用无人机喷洒方式进行喷洒,以减少对种植者的人身伤害。
上述实施例中,通过所述虫害种类和所述虫害管理方案确定治理虫害所需药物的药物品种,通过所述虫害程度和所述虫害管理方案确定治理虫害所需药物的药物浓度,实现对农作物虫害的统一管理,对虫害的治理更有效更及时,减少已经发生的虫害对农作物的毁坏程度,提高土地利用率和种植者的经济收入,提升农业自动化程度。
上文结合图1至图6,详细描述了根据本发明实施例的一种基于物联网的农作物生长管理方法,下面结合图7,详细描述了根据本发明实施例的一种基于物联网的农作物生长管理系统。
如图7所示,本发明实施例提供的一种基于物联网的农作物生长管理系统。该系统包括:
获取模块710,用于获取所述种植区的图像信息,从所述图像信息中提取农作物目标特征;还用于获取所述种植区的检测信息;
需要说明的是,通过设置在种植区的摄像装置为农作物进行拍摄,得到种植区的图像信息,将所述种植区的图像信息通过物联网发送给服务器。服务器接收所述种植区的图像信息,服务器从所述图像信息中提取农作物目标特征,农作物目标特征可以包括农作物独有的特征等,独有的特征可以是农作物的外部形状、农作物的文理等,农作物的外部形状可以包括叶的形状、茎的形状、果实的形状和花的形状等。下面以一具体例子说明:玉米的叶子是长条形状,将此长条形状作为农作物目标特征,即从获取的图像信息中提取得到长条形状。
识别模块720,用于根据所述农作物目标特征识别所述种植区内的农作物品种;
需要说明的是,农作物目标特征由于是农作物独有的特征,因而能够根据农作物独有的特征识别出农作物品种,具体地,可以将农作物目标特征与预先存储在服务器中的所有标准农作物图片进行对比,当与所有标准农作物图片中的一张图片相同时则可以确定该种植区内的农作物品种。下面以一具体的例子说明:从获取的图像信息中提取得到长条形状,若长条形状与标准玉米图片中叶的形状相同,则说明该种植区内的农作物是玉米。
确定模块730,用于根据所述农作物品种从预先建立的农作物生长管理表中确定与所述农作物品种相对应的管理方案;
需要说明的是,预先建立的农作物生长管理表存储在服务器中。所述农作物生长管理表可以包括:农作物品种和与所述农作物品种相对应的管理方案等。所 述管理方案可以包括:土壤湿度管理方案、长势管理方案和虫害管理方案等。
所述农作物生长管理表是从丰富的农作物生长管理经验中总结出并预先存储在服务器中的,在农作物生长管理表中的一种农作物有与之对应的管理方案,采用所述管理方案对该一种农作物进行生长管理,所得到农作物产量相较于采用其他管理方法而得到的农作物产量会更多。
管理模块740,用于根据所述检测信息和所述管理方案对所述种植区内的农作物进行生长管理。
设置在种植区的采集终端将采集到的种植区的检测信息,经过物联网发送给服务器。服务器接收种植区的检测信息,根据检测信息和管理方案对种植区内的农作物进行生长管理,所述生长管理的内容可以包括:土壤湿度管理、农作物长势管理和虫害管理等。
采集终端可以包括:摄像装置、土壤湿度传感器和虫害采集器等。土壤湿度传感器用于采集该种植区的土壤湿度信息,虫害采集器用于采集该种植区内的虫害信息。
本发明实施例提供的基于物联网的农作物生长管理系统,通过获取图像信息,从图像信息中提取农作物目标特征,根据农作物目标特征识别农作物品种,再根据农作物品种从预先建立的农作物生长管理表中确定与农作物品种相对应的管理方案,获取检测信息,根据检测信息和管理方案对种植区内的农作物进行生长管理,从而实现对同一品种的农作物进行统一管理,减少不同种植者种植出的农作物的产量差异性,提高土地利用率和种植者的经济收入,提升农业自动化程度。
优选地,作为本发明另外一个实施例,在上述实施例的基础上,该实施例中,所述获取模块710还用于获取所述种植区的实际土壤湿度值;
所述管理模块740具体用于根据所述实际土壤湿度值从所述管理方案中获取土壤湿度管理方案,从所述土壤湿度管理方案中确定最低土壤湿度值;
判断所述实际土壤湿度值是否小于所述最低土壤湿度值,当所述实际土壤湿度值小于所述最低土壤湿度值时,控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物;
其中,所述种植区与所述供水渠的连通处设置所述电磁水阀。
该实施例中,土壤湿度传感器采集该种植区的土壤湿度信息,通过物联网发送给服务器。服务器接收土壤湿度信息,并根据土壤湿度信息获取实际土壤湿度值。
根据实际土壤湿度值的湿度单位可以确定检测信息的信息类型是湿度类信息,根据检测信息的信息类型从管理方案中获取土壤湿度管理方案,从土壤湿度管理方案中确定最低土壤湿度值;
判断实际土壤湿度值是否小于最低土壤湿度值,当实际土壤湿度值小于最低土壤湿度值时,说明该种植区内的农作物已经处于缺水状态,再不对该种植区内的农作物进行灌溉的话就会影响该种植区内的农作物的正常生长,因而控制电磁水阀开启,通过供水渠灌溉该种植区内的农作物,提供该种植区内的农作物生长所需水分。
其中,所述种植区与所述供水渠的连通处设置所述电磁水阀,通过开启电磁水阀,使水流经过电磁水阀和供水渠进入该种植区内。
上述实施例中,通过获取实际土壤湿度值,根据实际土壤湿度值从土壤湿度管理方案中确定最低土壤湿度值,当实际土壤湿度值小于最低土壤湿度值时,即种植区内的农作物处于缺水状态时,控制电磁水阀开启而为种植区内的农作物提供所需水分,实现充分利用农作物的生长管理经验对农作物的土壤湿度进行生长管理,避免种植区内的农作物由于水分过少而旱死的情况发生,保证种植区内的农作物的正常生长,提高土地利用率和种植者的经济收入,提升农业自动化程度。
优选地,作为本发明另外一个实施例,在上述实施例的基础上,该实施例中,所述获取模块710还用于获取所述种植区的实际土壤湿度值;
所述管理模块740具体用于根据所述实际土壤湿度值从所述管理方案中获取土壤湿度管理方案,从所述土壤湿度管理方案中确定最低土壤湿度值;
判断所述实际土壤湿度值是否小于所述最低土壤湿度值,当所述实际土壤湿度值小于所述最低土壤湿度值时,获取自动气象站采集的气象信息;
根据所述气象信息判断在第一预设时间内是否有降雨,当没有降雨时,则控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物;其中,所述种植区与所述供水渠的连通处设置所述电磁水阀。
该实施例中,该自动气象站可设置在每个种植区内,也可设置在多个种植区中间,通过自动气象站采集该种植区的气象信息,根据所述气象信息判断在第一预设时间内是否有降雨。
当没有降雨时,说明没有其他方式可以为该种植区内的农作物补充水分,因而执行控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物。
其中,所述种植区与所述供水渠的连通处设置所述电磁水阀,通过开启电磁水阀,使水流经过电磁水阀和供水渠进入该种植区内。
上述实施例中,当实际土壤湿度值小于最低土壤湿度值时,即种植区内的农作物处于缺水状态时,要先获取气象信息,根据气象信息判断在第一预设时间内是否有降雨,当没有降雨时,才为种植区内的农作物提供所需水分,实现充分利用自然条件对农作物进行生长管理,节省资源,避免灌溉后又降雨的情况发生,保证农作物的正常生长,提高土地利用率和种植者的经济收入,提升农业自动化程度。
优选地,作为本发明另外一个实施例,在上述实施例的基础上,该实施例中,所述获取模块710还用于获取所述种植区的实际土壤湿度值;
所述管理模块740具体用于根据所述实际土壤湿度值从所述管理方案中获取土壤湿度管理方案,从所述土壤湿度管理方案中确定最低土壤湿度值;
判断所述实际土壤湿度值是否小于所述最低土壤湿度值,当所述实际土壤湿度值小于所述最低土壤湿度值时,获取自动气象站采集的气象信息;
根据所述气象信息判断在第一预设时间内是否有降雨,当有降雨时,则自降雨结束时经过第二预设时间获取实际土壤湿度值,判断所述实际土壤湿度值是否小于所述最低土壤湿度值,当所述实际土壤湿度值小于所述最低土壤湿度值时,则控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物;其中,所述种植区与所述供水渠的连通处设置所述电磁水阀。
该实施例中,确定有雨水降落在该种植区内时,不能确定降雨量是否能够满足该种植区内的农作物对于水分的需求。
当降雨量比较小时,降雨量是不足以满足该种植区内的农作物对水分的需求量,因而自降雨结束时经过第二预设时间获取实际土壤湿度值,该实际土壤湿度值小于最低土壤湿度值,此时控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物,满足该种植区内农作物对水分的需求。其中,所述种植区与所述供水渠的连通处设置所述电磁水阀,通过开启电磁水阀,使水流经过电磁水阀和供水渠进入该种植区内。
当降雨量比较大时,降雨量能够满足该种植内的农作物对于水分的需求量,因而自降雨结束时经过第二预设时间获取的实际土壤湿度值不会小于最低土壤湿度值,此时不用再对该种植区内的农作物进行灌溉。
第二预设时间可以是一天、一周或是一个月等,是根据丰富的农作物种植经验而确定。
上述实施例中,当实际土壤湿度值小于最低土壤湿度值时,即种植区内的农作物处于缺水状态时,要先获取气象信息,根据气象信息判断在第一预设时间内是否有降雨,当有降雨时,通过自然降雨为种植区内农作物提供水分,在自降雨结束时经过第二预设时间获取实际土壤湿度值,判断实际土壤湿度值是否小于最低土壤湿度值,确定种植区内的农作物依然处于缺水状态时,再通过灌溉方式为种植区内农作物提供所需水分,确定种植区内的农作物处于不缺水状态,不再为种植区内农作物提供水分,实现充分利用自然条件对农作物进行生长管理,节省资源,避免灌溉后又降雨的情况发生,保证农作物的正常生长,提高土地利用率和种植者的经济收入,提升农业自动化程度。
优选地,作为本发明另外一个实施例,在上述实施例的基础上,该实施例中, 所述获取模块710还用于每隔第三预设时间获取所述种植区内的农作物的生长参数信息;
所述管理模块740具体用于根据所述农作物的生长参数信息确定所述农作物的长势信息;
根据所述长势信息从所述管理方案中获取长势管理方案,从所述长势管理方案中确定最小长势信息;
当所述长势信息小于所述最小长势信息时,根据所述长势信息和预先存储的所述种植区的种植面积信息生成促生长信息;
将所述促生长信息发送给终端,以便用户按照所述促生长信息对所述种植区内的农作物进行施肥。
该实施例中,第三预设时间根据具体的农作物品种而设定,之所以如此设定是由于有的农作物长势缓慢,有的农作物长势快速。所述生长参数信息可以包括:幼苗生长参数信息和果实生长参数信息等。下面以一具体例子说明如何确定农作物的长势信息:种植者种植的玉米幼苗在栽种后第30天的长度为10厘米,玉米幼苗在栽种后第40天的长度为15厘米,第30天的长度为10厘米和第40天的长度为15厘米即为农作物的生长参数信息,根据生长参数信息可以确定玉米幼苗的长势信息为玉米幼苗在5天内长高5厘米。该长度为玉米幼苗从地面起到玉米育苗的顶点处的长度。
可以采用人工测量方式得到生长参数信息,种植者利用终端将生长参数信息通过物联网发送给服务器。
长势信息可以为长度,根据长势信息的长度单位可以确定检测信息的信息类型是长度类信息,根据长度类信息从管理方案中获取长势管理方案,从所述长势管理方案中确定最小长势信息;
下面以一具体例子说明当所述长势信息小于所述最小长势信息时,根据所述长势信息和预先存储的所述种植区的种植面积信息生成促生长信息:长势信息为玉米幼苗在5天内长高5厘米,而最小长势信息为玉米幼苗在5天内应长高10厘米,由此看看出,长势信息小于最小长势信息,根据长势信息、种植面积信息和存储在长势管理方案中的施肥比例信息生成促生长信息。
上述实施例中,确定每段时间内农作物的长势信息,根据长势信息从长势管理方案中确定最小长势信息,当长势信息低于最小长势信息时,说明农作物生长缓慢,按照长势信息和种植面积生成促生长信息,对农作物进行施肥,实现帮助农作物生,对同一农作物的长势进行统一管理,减少不同种植者种植出的农作物的产量差异性,提高土地利用率和种植者的经济收入,提升农业自动化程度。
优选地,作为本发明另外一个实施例,在上述实施例的基础上,该实施例中,所述获取模块710还用于每隔第四预设时间获取虫害信息;
所述管理模块740具体用于根据所述虫害信息从所述管理方案中获取虫害管理方案,并根据所述虫害信息确定确定虫害种类和虫害程度;
根据所述虫害种类、所述虫害程度和所述虫害管理方案生成防治措施,并根据所述防治措施对所述种植区内的农作物进行生长管理。
上述实施例中,通过获取的虫害信息确定虫害种类和虫害程度,并从管理方案中获取虫害管理方案,根据虫害管理方案和虫害信息生成防治措施,按照防治措施对农作物进行生长管理,实现对农作物虫害的统一管理,对虫害的治理更有效更及时,减少已经发生的虫害对农作物的毁坏程度,提高土地利用率和种植者的经济收入,提升农业自动化程度。
优选地,作为本发明另外一个实施例,在上述实施例的基础上,该实施例中,所述防治措施包括:
根据所述虫害种类、所述虫害程度和所述虫害管理方案确定药物品种和药物浓度,根据所述药物品种和药物浓度对发生虫害的农作物进行喷洒。
该实施例中,农作物品种不同,且虫害种类不同,治理虫害应采用的药物品种不同。虫害程度不同,治理虫害应采用的药物浓度不同。根据虫害种类和虫害管理方案确定治理虫害所需药物的药物品种,根据虫害管理方案和虫害程度确定治理虫害所需药物的药物浓度。根据药物品种和药物浓度对发生虫害的农作物进行喷洒。
根据药物品种和药物浓度对发生虫害的农作物进行喷洒,喷洒可采用无人机喷洒方式进行喷洒,以减少对种植者的人身伤害。
上述实施例中,通过所述虫害种类和所述虫害管理方案确定治理虫害所需药物的药物品种,通过所述虫害程度和所述虫害管理方案确定治理虫害所需药物的药物浓度,实现对农作物虫害的统一管理,对虫害的治理更有效更及时,减少已经发生的虫害对农作物的毁坏程度,提高土地利用率和种植者的经济收入,提升农业自动化程度。
读者应理解,在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程, 在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (10)

  1. 一种基于物联网的农作物生长管理方法,其特征在于,所述方法包括:
    获取所述种植区的图像信息,从所述图像信息中提取农作物目标特征;
    根据所述农作物目标特征识别所述种植区内的农作物品种;
    根据所述农作物品种从预先建立的农作物生长管理表中确定与所述农作物品种相对应的管理方案;
    获取所述种植区的检测信息,根据所述检测信息和所述管理方案对所述种植区内的农作物进行生长管理。
  2. 根据权利要求1所述的基于物联网的农作物生长管理方法,其特征在于,所述获取所述种植区的检测信息,根据所述检测信息和所述管理方案对所述种植区内的农作物进行生长管理包括:
    获取所述种植区的实际土壤湿度值;
    根据所述实际土壤湿度值从所述管理方案中获取土壤湿度管理方案,从所述土壤湿度管理方案中确定最低土壤湿度值;
    判断所述实际土壤湿度值是否小于所述最低土壤湿度值,当所述实际土壤湿度值小于所述最低土壤湿度值时,控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物;
    其中,所述种植区与所述供水渠的连通处设置所述电磁水阀。
  3. 根据权利要求2所述的基于物联网的农作物生长管理方法,其特征在于,当所述实际土壤湿度值小于所述最低土壤湿度值时还包括:
    获取自动气象站采集的气象信息,根据所述气象信息判断在第一预设时间内是否有降雨,当没有降雨时,则执行所述控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物。
  4. 根据权利要求3所述的基于物联网的农作物生长管理方法,其特征在于,当有降雨时,则自降雨结束时经过第二预设时间获取实际土壤湿度值,判断所述实际土壤湿度值是否小于所述最低土壤湿度值,当所述实际土壤湿度值小于所述最低土壤湿度值时,则执行所述控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物。
  5. 根据权利要求1至4任一项所述的基于物联网的农作物生长管理方法,其特征在于,所述获取所述种植区的检测信息,根据所述检测信息和所述管理方案对所述种植区内的农作物进行生长管理还包括:
    每隔第三预设时间获取所述种植区内的农作物的生长参数信息;
    根据所述农作物的生长参数信息确定所述农作物的长势信息;
    根据所述长势信息从所述管理方案中获取长势管理方案,从所述长势管理方案中确定最小长势信息;
    当所述长势信息小于所述最小长势信息时,根据所述长势信息和预先存储的所述种植区的种植面积信息生成促生长信息;
    将所述促生长信息发送给终端,以便用户按照所述促生长信息对所述种植区内的农作物进行施肥。
  6. 一种基于物联网的农作物生长管理系统,其特征在于,所述系统包括:
    获取模块,用于获取所述种植区的图像信息,从所述图像信息中提取农作物目标特征;还用于获取所述种植区的检测信息;
    识别模块,用于根据所述农作物目标特征识别所述种植区内的农作物品种;
    确定模块,用于根据所述农作物品种从预先建立的农作物生长管理表中确定与所述农作物品种相对应的管理方案;
    管理模块,用于根据所述检测信息和所述管理方案对所述种植区内的农作物进行生长管理。
  7. 根据权利要求6所述的基于物联网的农作物生长管理系统,其特征在于,所述获取模块还用于获取所述种植区的实际土壤湿度值;
    所述管理模块具体用于根据所述实际土壤湿度值从所述管理方案中获取土壤湿度管理方案,从所述土壤湿度管理方案中确定最低土壤湿度值;
    判断所述实际土壤湿度值是否小于所述最低土壤湿度值,当所述实际土壤湿度值小于所述最低土壤湿度值时,控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物;
    其中,所述种植区与所述供水渠的连通处设置所述电磁水阀。
  8. 根据权利要求7所述的基于物联网的农作物生长管理系统,其特征在于,当所述实际土壤湿度值小于所述最低土壤湿度值时还包括:
    获取自动气象站采集的气象信息,根据所述气象信息判断在第一预设时间内是否有降雨,当没有降雨时,则执行所述控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物。
  9. 根据权利要求8所述的基于物联网的农作物生长管理系统,其特征在于,当有降雨时,则自降雨结束时经过第二预设时间获取实际土壤湿度值,判断所述实际土壤湿度值是否小于所述最低土壤湿度值,当所述实际土壤湿度值小于所述最低土壤湿度值时,则执行所述控制电磁水阀开启,以通过供水渠灌溉所述种植区内的农作物。
  10. 根据权利要求6至9任一项所述的基于物联网的农作物生长管理系统,其特征在于,所述获取模块还用于每隔第三预设时间获取所述种植区内的农作物的生长参数信息;
    所述管理模块具体用于根据所述农作物的生长参数信息确定所述农作 物的长势信息;
    根据所述长势信息从所述管理方案中获取长势管理方案,从所述长势管理方案中确定最小长势信息;
    当所述长势信息小于所述最小长势信息时,根据所述长势信息和预先存储的所述种植区的种植面积信息生成促生长信息;
    将所述促生长信息发送给终端,以便用户按照所述促生长信息对所述种植区内的农作物进行施肥。
PCT/CN2017/096341 2017-06-23 2017-08-08 一种基于物联网的农作物生长管理方法及系统 WO2018232860A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710485510.6A CN107392104A (zh) 2017-06-23 2017-06-23 一种基于物联网的农作物生长管理方法及系统
CN201710485510.6 2017-06-23

Publications (1)

Publication Number Publication Date
WO2018232860A1 true WO2018232860A1 (zh) 2018-12-27

Family

ID=60333135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096341 WO2018232860A1 (zh) 2017-06-23 2017-08-08 一种基于物联网的农作物生长管理方法及系统

Country Status (2)

Country Link
CN (1) CN107392104A (zh)
WO (1) WO2018232860A1 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111797835A (zh) * 2020-06-01 2020-10-20 深圳市识农智能科技有限公司 一种病症识别方法、病症识别装置及终端设备
CN113367056A (zh) * 2021-07-19 2021-09-10 武汉飞渡星空科技有限公司 基于数据分析的现代化农业种植灌溉智能调控方法
CN113626627A (zh) * 2021-08-11 2021-11-09 河北时代电子有限公司 一种农业大数据特征分析的方法及系统
CN113836188A (zh) * 2021-09-28 2021-12-24 中国联合网络通信集团有限公司 数据处理方法、装置、服务器及存储介质
CN113947495A (zh) * 2020-07-17 2022-01-18 云南天质弘耕科技有限公司 一种作物种植管理方法及系统
CN114568265A (zh) * 2022-03-22 2022-06-03 武汉鸿榛园林绿化工程有限公司 一种基于人工智能的园林绿化维护智能监测管理系统
CN114743100A (zh) * 2022-04-06 2022-07-12 布瑞克(苏州)农业互联网股份有限公司 一种农产品长势监测方法和系统
CN115380806A (zh) * 2022-08-08 2022-11-25 中国电信股份有限公司 一种多级灌溉方法、装置、电子设备及存储介质
CN116127168A (zh) * 2023-01-19 2023-05-16 重庆市农业科学院 一种基于物联网的农作物生长实时监控系统及方法
CN116369177A (zh) * 2023-06-05 2023-07-04 上海华维可控农业科技集团股份有限公司 一种基于大数据的智慧灌溉调控系统及方法
CN116720840A (zh) * 2023-08-09 2023-09-08 湖南惠农科技有限公司 一种数字化农业云平台
CN116777087A (zh) * 2023-08-24 2023-09-19 南京市农业装备推广中心 一种智慧农业布局方法及系统
CN116843493A (zh) * 2023-07-03 2023-10-03 惠州可道科技股份有限公司 一种基于物联网的油茶林种植生态数字监测管理系统
CN117314024A (zh) * 2023-11-29 2023-12-29 杨凌职业技术学院 一种智慧农业病虫害云平台
CN117397447A (zh) * 2023-12-15 2024-01-16 蒲县生态产品研发技术服务中心 农业种植用灌溉装置及其使用方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108133327A (zh) * 2017-12-25 2018-06-08 东风农业装备(襄阳)有限公司 农机设备以及农业管理系统及其方法
CN108549897A (zh) * 2018-01-22 2018-09-18 深圳春沐源控股有限公司 一种农作物种植与分拣联动的方法及智能控制系统
DE102019201988A1 (de) * 2018-02-20 2019-08-22 Osram Gmbh Gesteuertes landwirtschaftssystem, landwirtschaftliche leuchtezur verwendung in einem gesteuerten landwirtschaftssystemund verfahren zur landwirtschaftlichen bewirtschaftung
CN109348807A (zh) * 2018-11-09 2019-02-19 仲恺农业工程学院 果树施肥方法
CN109673439B (zh) * 2019-02-13 2021-01-29 华中农业大学 一种水肥耦合对水稻产量及生长性状的调控方法
CN109937855A (zh) * 2019-03-19 2019-06-28 固安京蓝云科技有限公司 智能灌溉方法及装置、系统
CN111626148B (zh) * 2020-05-09 2023-07-11 浙江数治空间规划设计有限公司 一种无人机农田核查方法、系统、智能终端及存储介质
CN111492959B (zh) * 2020-06-02 2022-04-26 山东深蓝智谱数字科技有限公司 一种基于物联网的灌溉方法及设备
CN112167035B (zh) * 2020-08-28 2022-05-03 北京农业智能装备技术研究中心 一种水培叶菜生产管理方法及系统
CN116795163B (zh) * 2023-08-17 2023-11-14 四川长虹云数信息技术有限公司 基于物联网的农作物无胁迫生长自动化控制系统及方法
CN117172505A (zh) * 2023-09-27 2023-12-05 广东省农业科学院农业经济与信息研究所 一种基于物联网的农作物种植状态监测方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101569281A (zh) * 2009-05-26 2009-11-04 重庆大学 露天植物浇灌控制系统及其控制方法
US7617057B2 (en) * 2005-12-21 2009-11-10 Inst Technology Development Expert system for controlling plant growth in a contained environment
CN102156923A (zh) * 2011-04-22 2011-08-17 华建武 植物综合生产管理系统及方法
CN103761674A (zh) * 2014-01-27 2014-04-30 林兴志 基于遥感与海量气候信息的农作物生长期告警与干预方法
CN106303434A (zh) * 2016-08-23 2017-01-04 深圳前海弘稼科技有限公司 种植设备的控制方法、服务器和种植设备
US20170127622A1 (en) * 2015-11-10 2017-05-11 Xu Hong Smart control/iot system for agriculture environment control
CN106688705A (zh) * 2017-01-13 2017-05-24 湖南理工学院 一种智能种植大棚及其采用的监测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104820947B (zh) * 2015-05-15 2018-01-02 济南大学 一种基于悬挂链输送机的农田智能喷药机器人
CN106060174A (zh) * 2016-07-27 2016-10-26 昆山阳翎机器人科技有限公司 一种基于数据分析的农业指导系统
CN106447170A (zh) * 2016-08-31 2017-02-22 深圳前海弘稼科技有限公司 一种种植箱信息显示方法、服务器、种植箱以及种植系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617057B2 (en) * 2005-12-21 2009-11-10 Inst Technology Development Expert system for controlling plant growth in a contained environment
CN101569281A (zh) * 2009-05-26 2009-11-04 重庆大学 露天植物浇灌控制系统及其控制方法
CN102156923A (zh) * 2011-04-22 2011-08-17 华建武 植物综合生产管理系统及方法
CN103761674A (zh) * 2014-01-27 2014-04-30 林兴志 基于遥感与海量气候信息的农作物生长期告警与干预方法
US20170127622A1 (en) * 2015-11-10 2017-05-11 Xu Hong Smart control/iot system for agriculture environment control
CN106303434A (zh) * 2016-08-23 2017-01-04 深圳前海弘稼科技有限公司 种植设备的控制方法、服务器和种植设备
CN106688705A (zh) * 2017-01-13 2017-05-24 湖南理工学院 一种智能种植大棚及其采用的监测方法

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111797835B (zh) * 2020-06-01 2024-02-09 深圳市识农智能科技有限公司 一种病症识别方法、病症识别装置及终端设备
CN111797835A (zh) * 2020-06-01 2020-10-20 深圳市识农智能科技有限公司 一种病症识别方法、病症识别装置及终端设备
CN113947495A (zh) * 2020-07-17 2022-01-18 云南天质弘耕科技有限公司 一种作物种植管理方法及系统
CN113367056A (zh) * 2021-07-19 2021-09-10 武汉飞渡星空科技有限公司 基于数据分析的现代化农业种植灌溉智能调控方法
CN113626627A (zh) * 2021-08-11 2021-11-09 河北时代电子有限公司 一种农业大数据特征分析的方法及系统
CN113836188B (zh) * 2021-09-28 2023-05-16 中国联合网络通信集团有限公司 数据处理方法、装置、服务器及存储介质
CN113836188A (zh) * 2021-09-28 2021-12-24 中国联合网络通信集团有限公司 数据处理方法、装置、服务器及存储介质
CN114568265A (zh) * 2022-03-22 2022-06-03 武汉鸿榛园林绿化工程有限公司 一种基于人工智能的园林绿化维护智能监测管理系统
CN114568265B (zh) * 2022-03-22 2023-07-18 武汉鸿榛园林绿化工程有限公司 一种基于人工智能的园林绿化维护智能监测管理系统
CN114743100A (zh) * 2022-04-06 2022-07-12 布瑞克(苏州)农业互联网股份有限公司 一种农产品长势监测方法和系统
CN115380806A (zh) * 2022-08-08 2022-11-25 中国电信股份有限公司 一种多级灌溉方法、装置、电子设备及存储介质
CN116127168A (zh) * 2023-01-19 2023-05-16 重庆市农业科学院 一种基于物联网的农作物生长实时监控系统及方法
CN116127168B (zh) * 2023-01-19 2023-09-19 重庆市农业科学院 一种基于物联网的农作物生长实时监控系统及方法
CN116369177B (zh) * 2023-06-05 2023-08-11 上海华维可控农业科技集团股份有限公司 一种基于大数据的智慧灌溉调控系统及方法
CN116369177A (zh) * 2023-06-05 2023-07-04 上海华维可控农业科技集团股份有限公司 一种基于大数据的智慧灌溉调控系统及方法
CN116843493A (zh) * 2023-07-03 2023-10-03 惠州可道科技股份有限公司 一种基于物联网的油茶林种植生态数字监测管理系统
CN116843493B (zh) * 2023-07-03 2024-01-02 惠州可道科技股份有限公司 一种基于物联网的油茶林种植生态数字监测管理系统
CN116720840A (zh) * 2023-08-09 2023-09-08 湖南惠农科技有限公司 一种数字化农业云平台
CN116720840B (zh) * 2023-08-09 2023-12-15 湖南惠农科技有限公司 一种数字化农业云平台
CN116777087A (zh) * 2023-08-24 2023-09-19 南京市农业装备推广中心 一种智慧农业布局方法及系统
CN116777087B (zh) * 2023-08-24 2023-12-15 夏露 一种智慧农业布局方法及系统
CN117314024A (zh) * 2023-11-29 2023-12-29 杨凌职业技术学院 一种智慧农业病虫害云平台
CN117314024B (zh) * 2023-11-29 2024-02-06 杨凌职业技术学院 一种智慧农业病虫害云平台
CN117397447A (zh) * 2023-12-15 2024-01-16 蒲县生态产品研发技术服务中心 农业种植用灌溉装置及其使用方法
CN117397447B (zh) * 2023-12-15 2024-03-12 蒲县生态产品研发技术服务中心 农业种植用灌溉装置及其使用方法

Also Published As

Publication number Publication date
CN107392104A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
WO2018232860A1 (zh) 一种基于物联网的农作物生长管理方法及系统
CN104285628A (zh) 一种有机茶树的种植方法
CN104584836A (zh) 哈密瓜二次座果栽培方法
CN101589675A (zh) 一种花生地膜覆盖栽培新方法及其播种机具
CN104303775A (zh) 一种何首乌种植的田间管理方法
CN104429467B (zh) 一种用于沙漠化土地治理的作物种植方法
Bhattacharya et al. The feasibility of high yielding aus-aman-rabi cropping systems in the polders of the low salinity coastal zone of Bangladesh
CN108184594A (zh) 一种玉米与大豆间套作种植方法
CN114049295A (zh) 一种霜霉病智能化检测处理的方法及系统
CN105379520A (zh) 火龙果的栽培方法
WO2018232893A1 (zh) 一种基于物联网的智能监控大棚的方法及装置
CN106550754B (zh) 长三角地区法国甜瓜的栽培方法
CN104542160A (zh) 一种提高甜樱桃苗木成活率及苗木质量的综合管理方法
CN109744062A (zh) 一种干热河谷葡萄园套种紫花苜蓿的方法
CN103947464A (zh) 一种苦水玫瑰的带木质部芽接繁殖方法
CN109197570B (zh) 一种提高甘蔗野生种资源花粉采集量的方法
CN100441086C (zh) 油用玫瑰的草地式栽培方法
CN106879414A (zh) 一种高山云雾茶的种植方法
CN115349432A (zh) 一种基于光辐射与气象预测的智能灌溉方法和系统
CN103999667A (zh) 旱直播水稻田套种西瓜的栽培方法
CN107969302A (zh) 一种东非高原地区玉米沟垄栽培方法
CN105409554B (zh) 山地茶园植草护坡的方法
CN106376324A (zh) 十字花科叶菜夏季流水有机栽培方法
CN110278830B (zh) 一种羊肚菌的套种栽培方法
CN211210774U (zh) 一种烟草除草、保肥、保水用草帘装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/05/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17914830

Country of ref document: EP

Kind code of ref document: A1