WO2018230521A1 - 排気ガス浄化システムおよび堆積量推定方法 - Google Patents

排気ガス浄化システムおよび堆積量推定方法 Download PDF

Info

Publication number
WO2018230521A1
WO2018230521A1 PCT/JP2018/022292 JP2018022292W WO2018230521A1 WO 2018230521 A1 WO2018230521 A1 WO 2018230521A1 JP 2018022292 W JP2018022292 W JP 2018022292W WO 2018230521 A1 WO2018230521 A1 WO 2018230521A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
amount
flow rate
acquisition unit
temperature
Prior art date
Application number
PCT/JP2018/022292
Other languages
English (en)
French (fr)
Inventor
遊大 景山
和貴 大石
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201880029903.9A priority Critical patent/CN110582622A/zh
Publication of WO2018230521A1 publication Critical patent/WO2018230521A1/ja
Priority to PH12019502600A priority patent/PH12019502600A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an exhaust gas purification system and a deposition amount estimation method.
  • the selective catalyst reduction system supplies urea water stored in a urea water tank to an exhaust pipe upstream of the selective reduction catalyst device (SCR device), and hydrolyzes urea with the heat of exhaust gas to generate ammonia. NOx is reduced by ammonia in the selective reduction catalyst device with ammonia.
  • An appropriate amount of urea water is injected by, for example, a urea water injector provided in an exhaust passage (exhaust pipe).
  • the following problems may occur due to urea water injected into the exhaust pipe. That is, when the temperature of the exhaust gas is low (for example, 200 to 250 ° C.), such as during low-load operation of the internal combustion engine, when the urea water injection amount is abnormally large, the urea water injection is performed even though the exhaust gas flow rate is small.
  • hydrolysis of urea water becomes insufficient, and a white product typified by cyanuric acid or the like generated when urea water is hydrolyzed accumulates particularly in the recessed portion in the exhaust passage. If the white product is accumulated in the exhaust passage, for example, the inside of the exhaust passage is blocked, and there is a problem that a desired exhaust gas purification process may not be performed. If it is known how much white product has accumulated in the exhaust passage, it is possible to take measures to improve the deposition, but the prior art does not take into account such white product deposition.
  • An object of the present disclosure is to provide an exhaust gas purification system and a deposition amount estimation method capable of estimating a deposition amount of a white product in an exhaust passage.
  • An exhaust gas purification system includes: An exhaust gas purification system comprising a selective reduction catalyst device and a reducing agent injector for injecting a reducing agent upstream of the selective reduction catalyst device in an exhaust passage of an internal combustion engine, A temperature acquisition unit for acquiring the temperature of the exhaust gas passing through the exhaust passage; A flow rate acquisition unit for acquiring the flow rate of the exhaust gas; An injection amount acquisition unit for acquiring the injection amount of the reducing agent; The exhaust of white product derived from the reducing agent based on the temperature acquired by the temperature acquisition unit, the flow rate acquired by the flow rate acquisition unit, and the injection amount acquired by the injection amount acquisition unit A deposition amount estimation unit for estimating a deposition amount in the passage; Is provided.
  • the deposition amount estimation method is: A method for estimating a deposit amount in an exhaust gas purification system comprising an exhaust passage of an internal combustion engine including a selective reduction catalyst device and a reducing agent injector that injects a reducing agent upstream of the selective reduction catalyst device. And Obtaining the temperature of the exhaust gas passing through the exhaust passage; Obtaining the flow rate of the exhaust gas, Obtaining the injection amount of the reducing agent; Based on the acquired temperature, the acquired flow rate, and the acquired injection amount, an accumulation amount of the white product derived from the reducing agent in the exhaust passage is estimated.
  • FIG. 1 is a diagram showing a configuration of a vehicle in the present embodiment.
  • FIG. 2 is a diagram showing a temporal change in the amount of white product deposited in the present embodiment.
  • FIG. 3 is a flowchart showing a deposition amount estimation process in the present embodiment.
  • FIG. 1 is a diagram showing a configuration of a vehicle 1 in the present embodiment.
  • an internal combustion engine 10 an exhaust system 20, and a control unit 30 (specifically, an ECU) are mounted on a vehicle 1 such as a truck or a bus.
  • the exhaust system 20 and the control unit 30 function as an exhaust gas purification system of the present disclosure.
  • the internal combustion engine 10 is a diesel engine, for example.
  • the fuel injection injector 13 injects fuel into the combustion chamber 11.
  • the fuel injection injector 13 may inject fuel into the intake port of the combustion chamber 11.
  • the fuel injection is controlled by, for example, an ECM (not shown).
  • the fuel in the combustion chamber 11 is compressed and burned by the operation of the piston 19.
  • Each valve 15, 17 is configured to be openable and closable.
  • the intake valve 15 is opened, fresh air from the intake pipe 50 is drawn into the combustion chamber 11. Further, when the exhaust valve 17 is opened, the exhaust gas generated by the combustion of fuel in the combustion chamber 11 is sent out to the exhaust system 20 (specifically, the exhaust pipe 21, corresponding to the exhaust passage of the present disclosure).
  • the exhaust system 20 has an exhaust pipe 21.
  • the exhaust pipe 21 is mainly made of metal, and is provided, for example, at the lower portion of the vehicle 1.
  • the exhaust pipe 21 guides exhaust gas generated by fuel combustion in the internal combustion engine 10 to the atmosphere (outside the vehicle).
  • DOC oxidation catalyst
  • DPF 23B DPF 23B
  • SCR 23C selective reduction catalyst device of the present disclosure
  • RDOC 23D RDOC 23D
  • DOC23A is formed by supporting rhodium, cerium oxide, platinum, aluminum oxide or the like on a metal carrier.
  • the DOC 23A decomposes and removes hydrocarbons (HC) and carbon monoxide (CO) contained in the exhaust gas.
  • the DOC 23A also has a function of oxidizing nitrogen monoxide (NO) occupying most of NOx contained in the exhaust gas to generate nitrogen dioxide (NO2). By utilizing this function, it becomes possible to promote combustion (PM regeneration) of PM collected by the DPF 23B and to improve the NOx purification efficiency of the SCR 23C.
  • NO nitrogen monoxide
  • a flow sensor 25 is provided in the vicinity of the inlet of the DOC 23A.
  • the flow sensor 25 detects the flow rate of the exhaust gas and outputs a signal indicating the flow rate to the control unit 30.
  • the DPF 23B is formed of a monolith honeycomb wall flow filter in which the inlets and outlets of porous ceramic honeycomb channels (cells) are alternately plugged.
  • the DPF 23B collects and removes particulate matter (PM) contained in the exhaust gas.
  • urea water (corresponding to the reducing agent of the present disclosure) is injected downstream from the DPF 23B (specifically, downstream in the exhaust gas flow direction) and upstream from the SCR 23C.
  • a urea water injector 27 (corresponding to the reducing agent injector of the present disclosure, also referred to as a dosing valve) is provided.
  • the urea water injector 27 is more preferably disposed as close to the DPF 23B as possible even between the DPF 23B and the SCR 23C.
  • a temperature sensor 29 is provided in the vicinity of the inlet of the SCR 23C.
  • the temperature sensor 29 is used for controlling the injection of urea water and the like, detects the temperature of the exhaust gas, and outputs a signal indicating the temperature to the control unit 30.
  • SCR23C has, for example, a cylindrical shape and a honeycomb carrier made of ceramic.
  • the honeycomb wall surface is supported or coated with a catalyst such as zeolite or vanadium.
  • the SCR 23C as described above is disposed in the exhaust pipe 21 on the downstream side of the DPF 23B. Further, urea water as a reducing agent is injected between the DPF 23B and the SCR 23C in the exhaust pipe 21 by the urea water injector 27 and supplied to the exhaust gas that has passed through the DOC 23A and the DPF 23B. As a result, urea water is hydrolyzed to ammonia. While exhaust gas containing ammonia passes through the SCR 23C, nitrogen oxide (so-called NOx) reacts with nitrogen and water (reduction reaction) by the action of the catalyst. Thereby, nitrogen oxides in the exhaust gas are purified.
  • NOx nitrogen oxide
  • the hydrolysis occurs when the temperature of the exhaust gas passing through the SCR 23C is equal to or higher than a predetermined temperature. Therefore, the urea water injector 27 preferably supplies urea water to the exhaust gas in the exhaust pipe 21 when the temperature of the exhaust gas flowing into the SCR 23C is equal to or higher than a predetermined temperature.
  • the injection of urea water is controlled by a DCU (not shown). Note that the predetermined temperature is appropriately determined appropriately in consideration of the reaction temperature between ammonia and NOx by experiments and simulations at the design and development stage of the exhaust system 20.
  • the RDOC 23D is a post-stage oxidation catalyst and has the same configuration as the DOC 23A, and is arranged in the exhaust pipe 21 immediately downstream of the SCR 23C.
  • the RDOC 23D mainly oxidizes and removes the slipped ammonia so that ammonia slipped without being used in the reduction reaction in the SCR 23C is not released into the atmosphere.
  • the RDOC 23D may have the same function as the SCR 23C.
  • the water, nitrogen, and carbon dioxide generated by treating the exhaust gas with each of the above after-treatment devices are discharged into the atmosphere through a muffler (not shown).
  • the control unit 30 includes a CPU (Central Processing Unit), a ROM (Read Only Memory) storing a control program, and a working memory such as a RAM (Random Access Memory).
  • the CPU reads out a control program from the ROM, expands it in the RAM, and controls the execution of various processes in cooperation with the expanded control program.
  • control unit 30 includes a temperature acquisition unit 31, a flow rate acquisition unit 32, an injection amount acquisition unit 33, a deposition amount estimation unit 34, and a notification unit 35.
  • the temperature acquisition unit 31 receives the signal output from the temperature sensor 29 and acquires the temperature of the exhaust gas passing through the exhaust pipe 21.
  • the flow rate acquisition unit 32 receives the signal output from the flow rate sensor 25 and acquires the flow rate of the exhaust gas passing through the exhaust pipe 21.
  • the injection amount acquisition unit 33 acquires the injection amount of urea water injected by the urea water injector 27.
  • the accumulation amount estimation unit 34 is derived from urea water based on the temperature acquired by the temperature acquisition unit 31, the flow rate acquired by the flow rate acquisition unit 32, and the injection amount acquired by the injection amount acquisition unit 33. A current accumulation amount of the white product in the exhaust pipe 21 is estimated.
  • the white product derived from urea water is cyanuric acid produced when urea water is hydrolyzed.
  • the accumulation amount estimation unit 34 refers to the accumulation amount map 36 in which the relationship between the temperature of the exhaust gas, the flow rate of the exhaust gas, the injection amount of urea water, and the accumulation amount of the white product is defined in advance. Thus, the amount of white product deposited per predetermined time is estimated.
  • the accumulation amount map 36 is created in advance by experiments and tests, stored in the RAM of the control unit 30, and read out as appropriate.
  • the higher the exhaust gas temperature the smaller the accumulation amount of the white product.
  • the larger the exhaust gas flow rate the smaller the accumulation amount of the white product.
  • the larger the injection amount of urea water the larger the accumulation amount of the white product.
  • each parameter is weighted in consideration of the degree of influence on the deposition of the white product.
  • the accumulation amount estimation unit 34 estimates the current accumulation amount of the white product by integrating the accumulation amount of the white product per predetermined time.
  • the notification unit 35 notifies the driver to that effect.
  • the case where the current accumulation amount is a predetermined amount or more means that, as a result of accumulation of a large amount of white product in the exhaust pipe 21, for example, the inside of the exhaust pipe 21 is blocked, and a desired exhaust gas purification process cannot be performed. This is the case.
  • FIG. 2 shows the change over time of the current white product deposition amount estimated by the deposition amount estimation unit 34. As shown in FIG. 2, the accumulation amount of the white product at the present time increases and decreases with the passage of time, and becomes a predetermined amount or more after a certain time point.
  • the notification unit 35 turns on an indicator lamp provided in the vicinity of the driver's seat, thereby causing the driver to perform a high-load operation due to an increase in vehicle speed (for example, 80 km or more) or the exhaust pipe 21.
  • the fuel is injected into the exhaust gas from an injector (not shown) provided in the exhaust gas to promote manual regeneration in which PM is forcibly burned.
  • the notification unit 35 performs only high-load operation for the driver. You may encourage.
  • the temperature acquisition unit 31 inputs a signal output from the temperature sensor 29, and acquires the temperature of the exhaust gas passing through the exhaust pipe 21 (step S100).
  • the flow rate acquisition unit 32 receives the signal output from the flow rate sensor 25, and acquires the flow rate of the exhaust gas passing through the exhaust pipe 21 (step S120).
  • the injection amount acquisition unit 33 acquires the injection amount of urea water injected by the urea water injector 27 (step S140).
  • the accumulation amount estimation unit 34 performs urea water based on the temperature acquired by the temperature acquisition unit 31, the flow rate acquired by the flow rate acquisition unit 32, and the injection amount acquired by the injection amount acquisition unit 33.
  • the amount of white product currently deposited in the exhaust pipe 21 is estimated (step S160).
  • the notification unit 35 determines whether or not the current accumulation amount estimated by the accumulation amount estimation unit 34 is larger than a predetermined amount (step S180). As a result of the determination, when the current accumulation amount is not larger than the predetermined amount (step S180, NO), the control unit 30 ends the process in FIG.
  • step S180 when the current accumulation amount is larger than the predetermined amount (step S180, YES), the notification unit 35 notifies the driver that the current accumulation amount estimated by the accumulation amount estimation unit 34 is equal to or greater than the predetermined amount. (Step S200). When the process of step S200 is completed, the process in FIG. 3 ends.
  • the exhaust gas purification system (the exhaust system 20 and the control unit 30) includes the temperature acquisition unit 31 that acquires the temperature of the exhaust gas that passes through the exhaust passage (exhaust pipe 21), and The flow rate acquisition unit 32 that acquires the flow rate of the exhaust gas, the injection amount acquisition unit 33 that acquires the injection amount of urea water, the temperature acquired by the temperature acquisition unit 31, and the flow rate acquired by the flow rate acquisition unit 32 And a deposition amount estimation unit 34 that estimates the deposition amount of the white product derived from the urea water in the exhaust passage based on the injection amount acquired by the injection amount acquisition unit 33.
  • the accumulation amount estimation unit 34 creates the accumulation amount map 36 that predefines the relationship between the exhaust gas temperature, the exhaust gas flow rate, the urea water injection amount, and the white product accumulation amount. Reference is made to estimate the amount of white product deposited. With this configuration, the amount of white product deposited can be estimated accurately in a short time.
  • the notification unit 35 when the accumulation amount estimated by the accumulation amount estimation unit 34 is a predetermined amount or more, the notification unit 35 notifies that fact.
  • the notification unit 35 it is possible to notify the driver at a timing when the amount of accumulated white product is greater than or equal to a predetermined amount, that is, the desired exhaust gas purification process cannot be performed. Can quickly perform high-load operation and manual regeneration to remove accumulated white products.
  • the accumulation amount estimation unit 34 uses the temperature acquired by the temperature acquisition unit 31, the flow rate acquired by the flow rate acquisition unit 32, and the injection amount acquired by the injection amount acquisition unit 33.
  • the accumulation amount estimation unit 34 may include parameters other than the temperature acquired by the temperature acquisition unit 31, the flow rate acquired by the flow rate acquisition unit 32, and the injection amount acquired by the injection amount acquisition unit 33 (for example, travel distance, travel The amount of white product deposited may be estimated based on the time). This is because, as a result of previous experiments and tests, the amount of white product deposited tends to increase as the travel distance and travel time increase.
  • the present disclosure is useful as an exhaust gas purification system and a deposition amount estimation method capable of estimating a deposition amount of a white product in an exhaust passage.

Abstract

排気通路における白色生成物の堆積量を推定することが可能な排気ガス浄化システムおよび堆積量推定方法。排気ガス浄化システムは、内燃機関の排気通路に、選択還元型触媒装置と、選択還元型触媒装置の上流側で還元剤を噴射する還元剤インジェクタとを備えて構成される。排気ガス浄化システムは、排気通路を通過する排気ガスの温度を取得する温度取得部と、排気ガスの流量を取得する流量取得部と、還元剤の噴射量を取得する噴射量取得部と、温度取得部により取得された温度と、流量取得部により取得された流量と、噴射量取得部により取得された噴射量とに基づいて、還元剤に由来する白色生成物の排気通路における堆積量を推定する堆積量推定部とを備える。

Description

排気ガス浄化システムおよび堆積量推定方法
 本開示は、排気ガス浄化システムおよび堆積量推定方法に関する。
 トラックやバス等の車両に搭載されるディーゼルエンジンの排気ガス中のNOxを浄化するための排気ガス浄化システムとして、尿素水等を還元剤として用いてNOxを窒素と水に還元する選択触媒還元(SCR:Selective Catalytic Reduction)システムが開発されている(例えば、特許文献1を参照)。
 選択触媒還元システムは、尿素水タンクに貯留された尿素水を選択還元型触媒装置(SCR装置)上流の排気管に供給し、排気ガスの熱で尿素を加水分解してアンモニアを生成し、このアンモニアによって選択還元型触媒装置内の触媒でNOxを還元するものである。尿素水は、例えば排気通路(排気管)に設けられた尿素水インジェクタによって適量が噴射される。
日本国特開2000-303826号公報
 しかしながら、排気管に噴射された尿素水が原因で以下のような不具合が生じる場合があった。すなわち、内燃機関の低負荷運転時など排気ガスの温度が低い場合(例えば、200~250℃)、尿素水の噴射量が異常に多い場合、排気ガスの流量が少ないのに尿素水の噴射が連続した場合などには、尿素水の加水分解が不十分となり、排気通路内の特に凹み部分に、尿素水が加水分解する際に生じるシアヌル酸などに代表される白色生成物が堆積する。排気通路内に白色生成物が堆積すると、例えば排気通路内が閉塞し、所望の排気ガス浄化処理が実施できないおそれがあるという問題があった。排気通路内に白色生成物がどれくらい堆積したかが分かれば、その堆積に対する改善策を講ずることが可能となるが、従来技術ではそのような白色生成物の堆積に関する考慮がなされていない。
 本開示の目的は、排気通路における白色生成物の堆積量を推定することが可能な排気ガス浄化システムおよび堆積量推定方法を提供することである。
 本開示に係る排気ガス浄化システムは、
 内燃機関の排気通路に、選択還元型触媒装置と、前記選択還元型触媒装置の上流側で還元剤を噴射する還元剤インジェクタとを備えて構成される排気ガス浄化システムであって、
 前記排気通路を通過する排気ガスの温度を取得する温度取得部と、
 前記排気ガスの流量を取得する流量取得部と、
 前記還元剤の噴射量を取得する噴射量取得部と、
 前記温度取得部により取得された温度と、前記流量取得部により取得された流量と、前記噴射量取得部により取得された噴射量とに基づいて、前記還元剤に由来する白色生成物の前記排気通路における堆積量を推定する堆積量推定部と、
 を備える。
 本開示に係る堆積量推定方法は、
 内燃機関の排気通路に、選択還元型触媒装置と、前記選択還元型触媒装置の上流側で還元剤を噴射する還元剤インジェクタとを備えて構成される排気ガス浄化システムにおける堆積量推定方法であって、
 前記排気通路を通過する排気ガスの温度を取得し、
 前記排気ガスの流量を取得し、
 前記還元剤の噴射量を取得し、
 取得された前記温度と、取得された前記流量と、取得された前記噴射量とに基づいて、前記還元剤に由来する白色生成物の前記排気通路における堆積量を推定する。
 本開示によれば、排気通路における白色生成物の堆積量を推定することができる。
図1は、本実施の形態における車両の構成を示す図である。 図2は、本実施の形態における白色生成物の堆積量の時間変化を示す図である。 図3は、本実施の形態における堆積量推定処理を示すフローチャートである。
 以下、本開示の実施形態について図面を参照して説明する。図1は、本実施の形態における車両1の構成を示す図である。図1に示すように、トラックやバス等の車両1には、内燃機関10と、排気系20と、制御部30(具体的には、ECU)とが搭載されている。排気系20および制御部30は、本開示の排気ガス浄化システムとして機能する。
 まず、内燃機関10の構成について説明する。内燃機関10は、例えばディーゼルエンジンである。内燃機関10の燃焼室11において、燃料噴射インジェクタ13は、燃焼室11内に燃料を噴射する。なお、燃料噴射インジェクタ13は、燃焼室11の吸気ポートに燃料を噴射しても良い。燃料の噴射は、例えばECM(図示せず)により制御される。また、燃焼室11内の燃料は、ピストン19の動作により圧縮されて燃焼する。
 各バルブ15,17は開閉可能に構成される。吸気バルブ15が開くことで、吸気用配管50からの新気が燃焼室11に吸入される。また、排気バルブ17が開くことで、燃焼室11で燃料が燃焼して生じた排気ガスが排気系20(具体的には、排気管21、本開示の排気通路に対応)に送り出される。
 次に、排気系20の構成について説明する。排気系20は、排気管21を有する。排気管21は、主に金属製であり、例えば車両1の下部に設けられる。この排気管21は、内燃機関10において燃料の燃焼により生じた排気ガスを大気中(車外)に導く。
 また、排気管21の途中には、排気ガスを浄化(無害化)するために、様々な後処理装置が設けられている。本実施の形態では、後処理装置として、DOC(酸化触媒)23Aと、DPF23Bと、SCR23C(本開示の選択還元型触媒装置に対応)と、RDOC23Dとが設けられている。
 DOC23Aは、金属製の担持体に、ロジウム、酸化セリウム、白金、酸化アルミニウム等を担持して形成される。DOC23Aは、排気ガスに含まれる炭化水素(HC)および一酸化炭素(CO)を分解除去する。また、DOC23Aは、排気ガスに含まれるNOxの大半を占める一酸化窒素(NO)を酸化して二酸化窒素(NO2)を生成する機能も有している。この機能を利用することで、DPF23Bに捕集されたPMの燃焼(PM再生)を促進することや、SCR23CのNOx浄化効率を向上することが可能になる。
 排気管21において、例えばDOC23Aの入口近傍には流量センサ25が設けられている。この流量センサ25は、排気ガスの流量を検出し、当該流量を示す信号を制御部30に出力する。
 DPF23Bは、多孔質セラミック製のハニカムのチャンネル(セル)の入口と出口を交互に目封じしたモノリスハニカム型のウオールフローフィルタから形成される。DPF23Bは、排気ガスに含まれる粒子状物質(PM)を捕集除去する。
 排気管21において、DPF23Bよりも下流側(具体的には、排気ガスの流れ方向における下流側)であって、SCR23Cよりも上流側には、尿素水(本開示の還元剤に対応)を噴射するための尿素水インジェクタ27(本開示の還元剤インジェクタに対応、ドージングバルブとも言う)が設けられている。
 なお、尿素水インジェクタ27は、DPF23BおよびSCR23Cの間であっても、極力DPF23B寄りに配置されることがより好ましい。
 排気管21において、例えばSCR23Cの入口近傍には温度センサ29が設けられている。この温度センサ29は、尿素水の噴射の制御等に用いられ、排気ガスの温度を検出し、当該温度を示す信号を制御部30に出力する。
 SCR23Cは、例えば円柱形状を有し、セラミックで作製されたハニカム担体を有する。ハニカム壁面には、例えばゼオライトやバナジウム等の触媒が担持またはコーティングされる。
 上記のようなSCR23Cは、排気管21において、上記DPF23Bの下流側に配置される。また、排気管21においてDPF23BとSCR23Cとの間には、還元剤としての尿素水が、尿素水インジェクタ27により噴射され、DOC23AおよびDPF23Bを通過した排気ガスに供給される。その結果、尿素水がアンモニアに加水分解される。アンモニアを含む排気ガスがSCR23Cを通過中、触媒の作用により窒素酸化物(いわゆるNOx)が窒素と水に反応する(還元反応)。これにより、排気ガス中の窒素酸化物が浄化される。
 ここで、加水分解は、SCR23Cを通過する排気ガスの温度が所定温度以上で起こる。したがって、尿素水インジェクタ27は、SCR23Cに流入する排気ガスの温度が所定温度以上の場合に、尿素水を排気管21内の排気ガスに供給することが好ましい。ここで、尿素水の噴射はDCU(図示せず)により制御される。なお、所定温度は、排気系20の設計開発段階での実験・シミュレーション等により、アンモニアとNOxとの反応温度等を考慮しつつ適宜適切に定められる。
 RDOC23Dは、後段酸化触媒であって、DOC23Aと同様の構成を有しており、排気管21においてSCR23Cの直ぐ下流に配置される。
 RDOC23Dは、主として、SCR23Cにおいて還元反応に使用されずにスリップしてきたアンモニアが大気中に放出されないように、スリップしてきたアンモニアを酸化し除去する。それ以外にも、RDOC23Dは、SCR23Cと同様の機能を有する場合もある。
 以上の各後処理装置で排気ガスを処理して生成される水、窒素、二酸化炭素は、マフラー(図示せず)等を介して、大気中に排出される。
 制御部30は、CPU(Central Processing Unit)、制御プログラムを格納したROM(Read Only Memory)、および、RAM(Random Access Memory)等の作業用メモリ等を備える。CPUは、ROMから制御プログラムを読み出してRAMに展開し、展開した制御プログラムと協働して各種処理の実行を制御する。
 図1に示すように、制御部30は、温度取得部31、流量取得部32、噴射量取得部33、堆積量推定部34および報知部35を備える。
 温度取得部31は、温度センサ29から出力された信号を入力し、排気管21を通過する排気ガスの温度を取得する。
 流量取得部32は、流量センサ25から出力された信号を入力し、排気管21を通過する排気ガスの流量を取得する。
 噴射量取得部33は、尿素水インジェクタ27により噴射される尿素水の噴射量を取得する。
 堆積量推定部34は、温度取得部31により取得された温度と、流量取得部32により取得された流量と、噴射量取得部33により取得された噴射量とに基づいて、尿素水に由来する白色生成物の排気管21における現時点の堆積量を推定する。尿素水に由来する白色生成物は、尿素水が加水分解する際に生じるシアヌル酸などである。
 本実施の形態では、堆積量推定部34は、排気ガスの温度、排気ガスの流量および尿素水の噴射量と、白色生成物の堆積量との関係を予め規定した堆積量マップ36を参照して、所定時間あたりにおける白色生成物の堆積量を推定する。
 堆積量マップ36は、予め実験や試験により作成され、制御部30のRAMに記憶され、適宜読み出される。堆積量マップ36において、排気ガスの温度が高いほど白色生成物の堆積量は少なくなる。また、堆積量マップ36において、排気ガスの流量が多いほど白色生成物の堆積量は少なくなる。また、堆積量マップ36において、尿素水の噴射量が多いほど白色生成物の堆積量は多くなる。本実施の形態では、各パラメータ(排気ガスの温度、排気ガスの流量および尿素水の噴射量)に対して、白色生成物の堆積への影響度合いを考慮して重み付けが行われている。
 堆積量推定部34は、所定時間あたりにおける白色生成物の堆積量を積算することにより、現時点の白色生成物の堆積量を推定する。
 報知部35は、堆積量推定部34により推定された現時点の堆積量が所定量以上である場合、その旨を運転者に報知する。ここで、現時点の堆積量が所定量以上である場合とは、排気管21に多量の白色生成物が堆積した結果、例えば排気管21内が閉塞し、所望の排気ガス浄化処理が実施できないおそれがある場合である。
 図2は、堆積量推定部34により推定された現時点の白色生成物の堆積量についての時間変化を示す。図2に示すように、現時点の白色生成物の堆積量は、時間の経過に伴って増減し、ある時点以降で所定量以上となっている。
 本実施の形態では、報知部35は、運転席付近に設けられたインジケータ・ランプを点灯させることによって、運転者に対して車両速度の増大(例えば80km以上)による高負荷運転や、排気管21に設けられたインジェクタ(図示せず)から燃料を排ガス中に噴射させてPMを強制的に燃焼させる手動再生を促す。なお、DOC23Aが設けられていないバナジウムシステムの場合(つまり昇温デバイスがなく、定期的に排気ガスの温度が上昇しない場合)には、報知部35は、運転者に対して高負荷運転のみを促しても良い。
 次に、図3のフローチャートを参照し、本実施の形態における制御部30の堆積量推定処理例について説明する。
 まず、温度取得部31は、温度センサ29から出力された信号を入力し、排気管21を通過する排気ガスの温度を取得する(ステップS100)。次に、流量取得部32は、流量センサ25から出力された信号を入力し、排気管21を通過する排気ガスの流量を取得する(ステップS120)。
 次に、噴射量取得部33は、尿素水インジェクタ27により噴射される尿素水の噴射量を取得する(ステップS140)。次に、堆積量推定部34は、温度取得部31により取得された温度と、流量取得部32により取得された流量と、噴射量取得部33により取得された噴射量とに基づいて、尿素水に由来する白色生成物の排気管21における現時点の堆積量を推定する(ステップS160)。
 次に、報知部35は、堆積量推定部34により推定された現時点の堆積量が所定量より多いか否かについて判定する(ステップS180)。判定の結果、現時点の堆積量が所定量より多くない場合(ステップS180、NO)、制御部30は、図3における処理を終了する。
 一方、現時点の堆積量が所定量より多い場合(ステップS180、YES)、報知部35は、堆積量推定部34により推定された現時点の堆積量が所定量以上である旨を運転者に報知する(ステップS200)。ステップS200の処理が完了することによって図3における処理を終了する。
 以上詳しく説明したように、本実施の形態では、排気ガス浄化システム(排気系20および制御部30)は、排気通路(排気管21)を通過する排気ガスの温度を取得する温度取得部31と、排気ガスの流量を取得する流量取得部32と、尿素水の噴射量を取得する噴射量取得部33と、温度取得部31により取得された温度と、流量取得部32により取得された流量と、噴射量取得部33により取得された噴射量とに基づいて、尿素水に由来する白色生成物の排気通路における堆積量を推定する堆積量推定部34とを備える。
 このように構成した本実施の形態によれば、排気通路内に白色生成物がどれくらい堆積したかを推定できるので、その堆積に対する適切な改善策(例えば、高負荷運転や手動再生)を講ずることが可能となる。その結果、排気通路内が閉塞し、所望の排気ガス浄化処理が実施できないおそれを好適に防止することができる。
 また、本実施の形態では、堆積量推定部34は、排気ガスの温度、排気ガスの流量および尿素水の噴射量と、白色生成物の堆積量との関係を予め規定した堆積量マップ36を参照して、白色生成物の堆積量を推定する。この構成により、白色生成物の堆積量を短時間かつ精度良く推定することができる。
 また、本実施の形態では、報知部35は、堆積量推定部34により推定された堆積量が所定量以上である場合、その旨を報知する。この構成により、白色生成物の堆積量が所定量以上、すなわち所望の排気ガス浄化処理が実施できないおそれが生じたタイミングで運転者に報知することが可能となるため、その報知を受けた運転者は、高負荷運転や手動再生を迅速に行って、堆積している白色生成物を除去することができる。
 なお、上記実施の形態では、堆積量推定部34は、温度取得部31により取得された温度と、流量取得部32により取得された流量と、噴射量取得部33により取得された噴射量とに基づいて、白色生成物の堆積量を推定する例について説明したが、本開示はこれに限定されない。例えば、堆積量推定部34は、温度取得部31により取得された温度、流量取得部32により取得された流量、噴射量取得部33により取得された噴射量以外のパラメータ(例えば、走行距離、走行時間など)にも基づいて、白色生成物の堆積量を推定しても良い。予めの実験や試験により、走行距離や走行時間が長くなるほど、白色生成物の堆積量が多くなる傾向があるからである。
 また、上記実施の形態は、何れも本開示を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。
 本出願は、2017年6月16日付で出願された日本国特許出願(特願2017-118604)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示は、排気通路における白色生成物の堆積量を推定することが可能な排気ガス浄化システムおよび堆積量推定方法として有用である。
 1 車両
 10 内燃機関
 11 燃焼室
 13 燃料噴射インジェクタ
 15 吸気バルブ
 17 排気バルブ
 19 ピストン
 20 排気系
 21 排気管
 23A DOC
 23B DPF
 23C SCR
 23D RDOC
 25 流量センサ
 27 尿素水インジェクタ(還元剤インジェクタ)
 29 温度センサ
 30 制御部
 31 温度取得部
 32 流量取得部
 33 噴射量取得部
 34 堆積量推定部
 35 報知部
 36 堆積量マップ
 50 吸気用配管

Claims (4)

  1.  内燃機関の排気通路に、選択還元型触媒装置と、前記選択還元型触媒装置の上流側で還元剤を噴射する還元剤インジェクタとを備えて構成される排気ガス浄化システムであって、
     前記排気通路を通過する排気ガスの温度を取得する温度取得部と、
     前記排気ガスの流量を取得する流量取得部と、
     前記還元剤の噴射量を取得する噴射量取得部と、
     前記温度取得部により取得された温度と、前記流量取得部により取得された流量と、前記噴射量取得部により取得された噴射量とに基づいて、前記還元剤に由来する白色生成物の前記排気通路における堆積量を推定する堆積量推定部と、
     を備える排気ガス浄化システム。
  2.  前記堆積量推定部は、排気ガスの温度、排気ガスの流量および還元剤の噴射量と、白色生成物の堆積量との関係を予め規定した堆積量マップを参照して、前記白色生成物の堆積量を推定する、
     請求項1に記載の排気ガス浄化システム。
  3.  前記堆積量推定部により推定された前記堆積量が所定量以上である場合、その旨を報知する報知部を備える、
     請求項1に記載の排気ガス浄化システム。
  4.  内燃機関の排気通路に、選択還元型触媒装置と、前記選択還元型触媒装置の上流側で還元剤を噴射する還元剤インジェクタとを備えて構成される排気ガス浄化システムにおける堆積量推定方法であって、
     前記排気通路を通過する排気ガスの温度を取得し、
     前記排気ガスの流量を取得し、
     前記還元剤の噴射量を取得し、
     取得された前記温度と、取得された前記流量と、取得された前記噴射量とに基づいて、前記還元剤に由来する白色生成物の前記排気通路における堆積量を推定する、
     堆積量推定方法。
PCT/JP2018/022292 2017-06-16 2018-06-12 排気ガス浄化システムおよび堆積量推定方法 WO2018230521A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880029903.9A CN110582622A (zh) 2017-06-16 2018-06-12 废气净化系统及堆积量估计方法
PH12019502600A PH12019502600A1 (en) 2017-06-16 2019-11-20 Exhaust gas purification system and deposition amount estimation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017118604A JP2019002363A (ja) 2017-06-16 2017-06-16 排気ガス浄化システムおよび堆積量推定方法
JP2017-118604 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018230521A1 true WO2018230521A1 (ja) 2018-12-20

Family

ID=64659236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022292 WO2018230521A1 (ja) 2017-06-16 2018-06-12 排気ガス浄化システムおよび堆積量推定方法

Country Status (4)

Country Link
JP (1) JP2019002363A (ja)
CN (1) CN110582622A (ja)
PH (1) PH12019502600A1 (ja)
WO (1) WO2018230521A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7420035B2 (ja) * 2020-09-28 2024-01-23 いすゞ自動車株式会社 内燃機関システム、内燃機関システムの白色堆積量監視装置および内燃機関システムの白色堆積量監視方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220232A (ja) * 2010-04-09 2011-11-04 Ud Trucks Corp エンジンの排気浄化装置
JP2017025830A (ja) * 2015-07-24 2017-02-02 株式会社豊田自動織機 エンジンの排気浄化装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2383444B1 (en) * 2004-02-02 2012-12-19 Nissan Diesel Motor Co., Ltd. Exhaust emission purifying apparatus for engine
EP2687694A4 (en) * 2011-03-15 2015-04-22 Hino Motors Ltd EMISSION CONTROL DEVICE
FR2989421B1 (fr) * 2012-04-13 2014-05-02 Peugeot Citroen Automobiles Sa Procede de mise en œuvre d'un systeme de post-traitement de gaz d'echappement
DE102014201709B4 (de) * 2013-02-15 2016-12-29 Ford Global Technologies, Llc Abgasturboaufgeladene Brennkraftmaschine mit Abgasnachbehandlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
KR101518941B1 (ko) * 2013-12-23 2015-05-11 현대자동차 주식회사 선택적 환원 촉매의 제어 로직 보정 방법 및 이를 이용한 배기 장치
JP2016205161A (ja) * 2015-04-16 2016-12-08 トヨタ自動車株式会社 車両の制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011220232A (ja) * 2010-04-09 2011-11-04 Ud Trucks Corp エンジンの排気浄化装置
JP2017025830A (ja) * 2015-07-24 2017-02-02 株式会社豊田自動織機 エンジンの排気浄化装置

Also Published As

Publication number Publication date
JP2019002363A (ja) 2019-01-10
PH12019502600A1 (en) 2020-06-08
CN110582622A (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
US8056323B2 (en) Method of controlling exhaust gas purification system and exhaust gas purification system
US9061245B2 (en) Method for reducing nitrogen oxides in diesel-engine exhaust gases and exhaust gas aftertreatment system for carrying out the method
US8161731B2 (en) Selective catalytic reduction using controlled catalytic deactivation
KR101158816B1 (ko) 디젤 차량의 배기 장치
JPWO2010079621A1 (ja) 触媒通過成分判定装置および内燃機関の排気浄化装置
US8327624B2 (en) System for purifying exhaust gas
JP5804544B2 (ja) 内燃機関の排気処理装置
US20190093539A1 (en) Apparatus for purifying exhaust gas
KR20140062899A (ko) 차량의 배기 가스 정화장치
WO2018230521A1 (ja) 排気ガス浄化システムおよび堆積量推定方法
EP2410144B1 (en) Method of Controlling NOx Emissions in an Internal Combustion Engine
US20150308320A1 (en) Exhaust gas purification system for internal combustion engine
JP2010185369A (ja) エンジンの燃料供給装置
JP6809391B2 (ja) 噴射装置
KR101398569B1 (ko) 배기가스 유로의 구조에 따라 aoc촉매를 이용하여 암모니아 슬립을 정화하는 차량의 엔진용 촉매정화장치 및 제어방법
JP5470808B2 (ja) 排気ガス浄化システムと排気ガス浄化方法
CN109386364B (zh) 废气净化系统
JP7354976B2 (ja) 内燃機関の排気浄化システム
JP2019196728A (ja) 正常判定装置および正常判定方法
WO2019003895A1 (ja) 排気ガス浄化システム
KR101474281B1 (ko) Aoc촉매를 이용하여 암모니아 슬립을 정화하는 차량/엔진용 촉매정화장치 및 제어방법
JP2017145755A (ja) 排気浄化システム
JP2019007402A (ja) 排気ガス浄化システムおよび排気ガス浄化システムの昇温制御方法
JP2022054628A (ja) 内燃機関の排気浄化システム
JP2022054626A (ja) 内燃機関の排気浄化システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818229

Country of ref document: EP

Kind code of ref document: A1