WO2019003895A1 - 排気ガス浄化システム - Google Patents

排気ガス浄化システム Download PDF

Info

Publication number
WO2019003895A1
WO2019003895A1 PCT/JP2018/022398 JP2018022398W WO2019003895A1 WO 2019003895 A1 WO2019003895 A1 WO 2019003895A1 JP 2018022398 W JP2018022398 W JP 2018022398W WO 2019003895 A1 WO2019003895 A1 WO 2019003895A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
exhaust
pipe
exhaust pipe
gas purification
Prior art date
Application number
PCT/JP2018/022398
Other languages
English (en)
French (fr)
Inventor
遊大 景山
悠貴 上田
Original Assignee
いすゞ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by いすゞ自動車株式会社 filed Critical いすゞ自動車株式会社
Priority to CN201880039824.6A priority Critical patent/CN110770420A/zh
Publication of WO2019003895A1 publication Critical patent/WO2019003895A1/ja
Priority to PH12019502795A priority patent/PH12019502795A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present disclosure relates to an exhaust gas purification system.
  • the selective catalytic reduction system supplies the aqueous urea stored in the aqueous urea tank to the exhaust pipe upstream of the selective reduction type catalyst device (SCR device), and the heat of the exhaust gas hydrolyzes urea to generate ammonia.
  • Ammonia is used to reduce NOx with the catalyst in the selective reduction type catalyst device.
  • An appropriate amount of urea water is injected, for example, by a urea water injector provided in an exhaust pipe that constitutes an exhaust passage.
  • An object of the present disclosure is to provide an exhaust gas purification system capable of performing desired exhaust gas purification processing while preventing deposition of white products.
  • An exhaust gas purification system comprising an exhaust pipe constituting an exhaust passage of an internal combustion engine, a selective reduction type catalyst device, and a reducing agent injector for injecting a reducing agent, A bent portion provided with the reducing agent injector is formed on the exhaust pipe upstream of the selective reduction catalyst device in the flow direction of the exhaust gas passing through the exhaust pipe.
  • An inner pipe having an inner diameter smaller than the inner diameter of the exhaust pipe is disposed upstream of the bent portion of the exhaust pipe in the flow direction, and the exhaust is disposed between the exhaust pipe and the inner pipe. There is a gap through which the gas passes.
  • a desired exhaust gas purification process can be performed while preventing the deposition of white products.
  • FIG. 1 is a diagram showing a configuration of a vehicle in the present embodiment.
  • FIG. 2 is a partial enlarged view of the vicinity of the injection hole portion of the urea water injector in the present embodiment.
  • FIG. 1 is a diagram showing the configuration of a vehicle 1 in the present embodiment.
  • an internal combustion engine 10 and an exhaust system 20 are mounted on a vehicle 1 such as a truck or bus.
  • the exhaust system 20 functions as an exhaust gas purification system of the present disclosure.
  • the internal combustion engine 10 is, for example, a diesel engine.
  • the fuel injector 13 injects fuel into the combustion chamber 11.
  • the fuel injector 13 may inject fuel into the intake port of the combustion chamber 11.
  • Fuel injection is controlled by, for example, an ECM (not shown). Further, the fuel in the combustion chamber 11 is compressed by the operation of the piston 19 and burns.
  • the intake valve 15 and the exhaust valve 17 are configured to be able to open and close. By opening the intake valve 15, fresh air from the intake pipe 50 is drawn into the combustion chamber 11. Further, when the exhaust valve 17 is opened, the exhaust gas generated by burning the fuel in the combustion chamber 11 is sent out to the exhaust system 20 (specifically, the exhaust pipe 21).
  • the exhaust system 20 has an exhaust pipe 21 that constitutes an exhaust passage of the internal combustion engine 10.
  • the exhaust pipe 21 is mainly made of metal and is provided, for example, in the lower part of the vehicle 1.
  • the exhaust pipe 21 guides exhaust gas generated by combustion of fuel in the internal combustion engine 10 to the atmosphere (outside the vehicle).
  • DOC oxidation catalyst
  • DPF 23B DPF 23B
  • SCR 23C selective reduction catalyst device of the present disclosure
  • RDOC 23D RDOC 23D
  • the DOC 23A is formed by supporting rhodium, cerium oxide, platinum, aluminum oxide or the like on a metal support.
  • the DOC 23A decomposes and removes hydrocarbons (HC) and carbon monoxide (CO) contained in the exhaust gas.
  • the DOC 23A also has a function of oxidizing nitrogen monoxide (NO) that occupies most of NOx contained in the exhaust 2 gas to generate nitrogen dioxide (NO 2 ). By utilizing this function, it is possible to promote the combustion (PM regeneration) of the PM collected in the DPF 23B and to improve the NOx purification efficiency of the SCR 23C.
  • NO nitrogen monoxide
  • the DPF 23B is formed of a monolith honeycomb type wall flow filter in which the inlet and the outlet of the porous ceramic honeycomb channels (cells) are alternately sealed.
  • the DPF 23B collects and removes particulate matter (PM) contained in the exhaust gas.
  • a urea water injector 25 (dosing for injecting urea water on the downstream side of the DPF 23B (specifically, the downstream side in the flow direction of the exhaust gas) and on the upstream side of the SCR 23C.
  • a bent portion 21a provided with a valve (also referred to as a valve) is formed.
  • the cross-sectional shape of the bent portion 21a is an S-shape or a crank shape.
  • a temperature sensor (not shown) for detecting the temperature of the exhaust gas is provided.
  • This temperature sensor is used to control the injection of urea water and the like.
  • the SCR 23C has, for example, a cylindrical shape and has a honeycomb support made of ceramic.
  • the honeycomb wall surface is supported or coated with a catalyst such as zeolite or vanadium.
  • the above-described SCR 23C is disposed downstream of the DPF 23B in the exhaust pipe 21. Further, urea water as a reducing agent is injected by the urea water injector 25 between the DPF 23B and the SCR 23C in the exhaust pipe 21, and is supplied to the exhaust gas that has passed through the DOC 23A and the DPF 23B. As a result, urea water is hydrolyzed to ammonia. While the exhaust gas containing ammonia passes through the SCR 23C, nitrogen oxides (so-called NOx) react with nitrogen and water by the action of a catalyst (reduction reaction). Thereby, nitrogen oxides in the exhaust gas are purified.
  • NOx nitrogen oxides
  • the hydrolysis occurs when the temperature of the exhaust gas passing through the SCR 23C is equal to or higher than a predetermined temperature. Therefore, it is preferable that the urea water injector 25 supply urea water to the exhaust gas in the exhaust pipe 21 when the temperature of the exhaust gas flowing into the SCR 23C is equal to or higher than a predetermined temperature.
  • the injection of urea water is controlled by a DCU (not shown).
  • the predetermined temperature is appropriately determined appropriately in consideration of the reaction temperature of ammonia and NOx, and the like by experiments, simulations and the like at the design and development stage of the exhaust system 20.
  • the RDOC 23D is a post-stage oxidation catalyst and has the same configuration as the DOC 23A, and is disposed immediately downstream of the SCR 23C in the exhaust pipe 21.
  • the RDOC 23D mainly oxidizes and removes the slipped ammonia so that the slipped ammonia is not released to the atmosphere without being used for the reduction reaction in the SCR 23C. Besides that, the RDOC 23D may have the same function as the SCR 23C.
  • Water, nitrogen and carbon dioxide generated by treating the exhaust gas by the above-described post-treatment devices are discharged to the atmosphere via a muffler (not shown) and the like.
  • FIG. 2 is a partial enlarged view of the vicinity 29 of the injection hole portion of the urea water injector 25 in the present embodiment.
  • the flow of exhaust gas tends to stay, and the urea water injected from the urea water injector 25 also tends to stay.
  • a white product is likely to be deposited around the injection hole portion 29.
  • the flow velocity of the exhaust gas is low, it is difficult to scrape off the white product accumulated around the injection hole portion 29.
  • an inner diameter smaller than the inner diameter of the exhaust pipe 21 on the upstream side of the bending portion 21a in the exhaust pipe 21 in the flow direction of the exhaust gas is disposed to form a double pipe structure.
  • the inner pipe 27 is a straightening pipe.
  • a solid-line arrow A indicates the flow of exhaust gas passing through the inside of the inner pipe 27 and heading to the periphery 29 of the injection hole of the urea water injector 25.
  • the rear end surface of the inner pipe 27 in the flow direction of the exhaust gas is a side view from the viewpoint of making the exhaust gas having passed through the inner side of the inner pipe 27 easier to face toward the injection port periphery 29 of the urea water injector 25.
  • disconnected diagonally by this is formed.
  • the exhaust gas going to the periphery 29 of the injection hole has a uniform flow, and the flow velocity becomes fast.
  • the flow of the exhaust gas hardly stagnates, and the urea water injected from the urea water injector 25 also hardly stagnates. Even if a white product is deposited around the injection nozzle 29 if the hydrolysis of urea water is insufficient, the white product deposited around the injection nozzle 29 is easily obtained because the flow velocity of the exhaust gas is high. It is scraped off.
  • the solid line arrow B indicates the flow of exhaust gas going downstream after passing around the injection port portion 29.
  • the dotted arrow C indicates the flow of the exhaust gas which goes around the outer periphery of the inner pipe 27 and is led to the downstream side of the urea water injector 25 because a gap is provided between the exhaust pipe 21 and the inner pipe 27.
  • An alternate long and short dash line arrow D indicates a flow of the exhaust gas after the exhaust gas corresponding to the solid line arrow B and the exhaust gas corresponding to the dotted line arrow C merge.
  • the exhaust gas purification system includes the selective reduction type catalyst device (SCR 23C) and the urea aqueous solution in the exhaust pipe 21 that constitutes the exhaust passage of the internal combustion engine 10. And the urea water injector 25 which injects. Then, a bent portion 21a provided with a urea water injector 25 is formed on the upstream side of the selective reduction type catalyst device in the exhaust pipe 21 in the flow direction of the exhaust gas passing through the exhaust pipe 21, and the exhaust in the flow direction An inner pipe 27 having an inner diameter smaller than the inner diameter of the exhaust pipe 21 is disposed upstream of the bent portion 21 a of the pipe 21, and a gap through which exhaust gas passes between the exhaust pipe 21 and the inner pipe 27. Have.
  • the exhaust gas traveling toward the periphery 29 of the injection hole has a uniform flow and the flow velocity becomes faster. Therefore, in the periphery 29 of the injection hole of the urea water injector 25, the exhaust gas The flow is less likely to stay, and the urea water injected from the urea water injector 25 is also less likely to stay. Even if a white product is deposited around the injection nozzle 29 if the hydrolysis of urea water is insufficient, the white product deposited around the injection nozzle 29 is easily obtained because the flow velocity of the exhaust gas is high. It is scraped off. As a result, it is possible to prevent the white product from being deposited around the injection hole portion 29 of the urea water injector 25.
  • an inclined surface having a shape that is obliquely cut in a side view is formed on the rear end surface of the inner pipe 27 in the flow direction of the exhaust gas.
  • the present disclosure is useful as an exhaust gas purification system that can prevent white products from depositing around the injection hole of a urea aqueous solution injector.
  • Reference Signs List 1 vehicle 10 internal combustion engine 11 combustion chamber 13 fuel injection injector 15 intake valve 17 exhaust valve 19 piston 20 exhaust system 21 exhaust pipe 21a bent portion 23A DOC 23B DPF 23C SCR 23D RDOC 25 Urea water injector (reductant injector) 27 inner pipe

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)

Abstract

白色生成物の堆積を防止して所望の排気ガス浄化処理を実施することが可能な排気ガス浄化システム。排気ガス浄化システムは、内燃機関の排気通路を構成する排気管に、選択還元型触媒装置と、還元剤を噴射する還元剤インジェクタとを備えて構成される。排気管を通過する排気ガスの流れ方向において排気管のうち選択還元型触媒装置の上流側には、還元剤インジェクタが設けられた屈曲部が形成され、流れ方向において排気管のうち屈曲部の上流側には、当該排気管の内径よりも小さい内径を有する内管が配置されており、当該排気管と当該内管との間に前記排気ガスが通過する隙間を有する。

Description

排気ガス浄化システム
 本開示は、排気ガス浄化システムに関する。
 トラックやバス等の車両に搭載されるディーゼルエンジンの排気ガス中のNOxを浄化するための排気ガス浄化システムとして、尿素水等を還元剤として用いてNOxを窒素と水に還元する選択触媒還元(SCR:Selective Catalytic Reduction)システムが開発されている(例えば、特許文献1を参照)。
 選択触媒還元システムは、尿素水タンクに貯留された尿素水を選択還元型触媒装置(SCR装置)上流の排気管に供給し、排気ガスの熱で尿素を加水分解してアンモニアを生成し、このアンモニアによって選択還元型触媒装置内の触媒でNOxを還元するものである。尿素水は、例えば排気通路を構成する排気管に設けられた尿素水インジェクタによって適量が噴射される。
日本国特開2000-303826号公報
 しかしながら、内燃機関の低負荷運転時など排気ガスの温度が低い場合、尿素水の噴射量が異常に多い場合、排気ガスの流量が少ないのに尿素水の噴射が連続した場合などには、尿素水の加水分解が不十分となり、排気管内、特に尿素水インジェクタの噴口部周辺に、尿素水が加水分解する際に生じる尿素結晶、シアヌル酸などに代表される白色生成物が堆積する。排気管内に白色生成物が堆積すると、例えば排気管内が閉塞し、所望の排気ガス浄化処理が実施できないおそれがあるという問題があった。
 本開示の目的は、白色生成物の堆積を防止して所望の排気ガス浄化処理を実施することが可能な排気ガス浄化システムを提供することである。
 本開示に係る排気ガス浄化システムは、
 内燃機関の排気通路を構成する排気管に、選択還元型触媒装置と、還元剤を噴射する還元剤インジェクタとを備えて構成される排気ガス浄化システムであって、
 前記排気管を通過する排気ガスの流れ方向において前記排気管のうち前記選択還元型触媒装置の上流側には、前記還元剤インジェクタが設けられた屈曲部が形成され、
 前記流れ方向において前記排気管のうち前記屈曲部の上流側には、当該排気管の内径よりも小さい内径を有する内管が配置されており、当該排気管と当該内管との間に前記排気ガスが通過する隙間を有する。
 本開示によれば、白色生成物の堆積を防止して所望の排気ガス浄化処理を実施することができる。
図1は、本実施の形態における車両の構成を示す図である。 図2は、本実施の形態における尿素水インジェクタの噴口部周辺の部分拡大図である。
 以下、本開示の実施形態について図面を参照して説明する。図1は、本実施の形態における車両1の構成を示す図である。図1に示すように、トラックやバス等の車両1には、内燃機関10と、排気系20とが搭載されている。排気系20は、本開示の排気ガス浄化システムとして機能する。
 まず、内燃機関10の構成について説明する。内燃機関10は、例えばディーゼルエンジンである。内燃機関10の燃焼室11において、燃料噴射インジェクタ13は、燃焼室11内に燃料を噴射する。なお、燃料噴射インジェクタ13は、燃焼室11の吸気ポートに燃料を噴射しても良い。燃料の噴射は、例えばECM(図示せず)により制御される。また、燃焼室11内の燃料は、ピストン19の動作により圧縮されて燃焼する。
 吸気バルブ15および排気バルブ17は、開閉可能に構成される。吸気バルブ15が開くことで、吸気用配管50からの新気が燃焼室11に吸入される。また、排気バルブ17が開くことで、燃焼室11で燃料が燃焼して生じた排気ガスが排気系20(具体的には、排気管21)に送り出される。
 次に、排気系20の構成について説明する。排気系20は、内燃機関10の排気通路を構成する排気管21を有する。排気管21は、主に金属製であり、例えば車両1の下部に設けられる。この排気管21は、内燃機関10において燃料の燃焼により生じた排気ガスを大気中(車外)に導く。
 また、排気管21の途中には、排気ガスを浄化(無害化)するために、様々な後処理装置が設けられている。本実施の形態では、後処理装置として、DOC(酸化触媒)23Aと、DPF23Bと、SCR23C(本開示の選択還元型触媒装置に対応)と、RDOC23Dとが設けられている。
 DOC23Aは、金属製の担持体に、ロジウム、酸化セリウム、白金、酸化アルミニウム等を担持して形成される。DOC23Aは、排気ガスに含まれる炭化水素(HC)および一酸化炭素(CO)を分解除去する。また、DOC23Aは、排気2ガスに含まれるNOxの大半を占める一酸化窒素(NO)を酸化して二酸化窒素(NO)を生成する機能も有している。この機能を利用することで、DPF23Bに捕集されたPMの燃焼(PM再生)を促進することや、SCR23CのNOx浄化効率を向上することが可能になる。
 DPF23Bは、多孔質セラミック製のハニカムのチャンネル(セル)の入口と出口を交互に目封じしたモノリスハニカム型のウオールフローフィルタから形成される。DPF23Bは、排気ガスに含まれる粒子状物質(PM)を捕集除去する。
 排気管21において、DPF23Bよりも下流側(具体的には、排気ガスの流れ方向における下流側)であって、SCR23Cよりも上流側には、尿素水を噴射するための尿素水インジェクタ25(ドージングバルブとも言う)が設けられた屈曲部21aが形成されている。屈曲部21aの断面形状は、S字形状またはクランク形状である。
 排気管21において例えばSCR23Cの入口近傍には、排気ガスの温度を検出する温度センサ(図示せず)が設けられている。この温度センサは、尿素水の噴射の制御等に用いられる。
 SCR23Cは、例えば円柱形状を有し、セラミックで作製されたハニカム担体を有する。ハニカム壁面には、例えばゼオライトやバナジウム等の触媒が担持またはコーティングされる。
 上記のようなSCR23Cは、排気管21において、上記DPF23Bの下流側に配置される。また、排気管21においてDPF23BとSCR23Cとの間には、還元剤としての尿素水が、尿素水インジェクタ25により噴射され、DOC23AおよびDPF23Bを通過した排気ガスに供給される。その結果、尿素水がアンモニアに加水分解される。アンモニアを含む排気ガスがSCR23Cを通過中、触媒の作用により窒素酸化物(いわゆるNOx)が窒素と水に反応する(還元反応)。これにより、排気ガス中の窒素酸化物が浄化される。
 ここで、加水分解は、SCR23Cを通過する排気ガスの温度が所定温度以上で起こる。したがって、尿素水インジェクタ25は、SCR23Cに流入する排気ガスの温度が所定温度以上の場合に、尿素水を排気管21内の排気ガスに供給することが好ましい。ここで、尿素水の噴射はDCU(図示せず)により制御される。なお、所定温度は、排気系20の設計開発段階での実験・シミュレーション等により、アンモニアとNOxとの反応温度等を考慮しつつ適宜適切に定められる。
 RDOC23Dは、後段酸化触媒であって、DOC23Aと同様の構成を有しており、排気管21においてSCR23Cの直ぐ下流に配置される。
 RDOC23Dは、主として、SCR23Cにおいて還元反応に使用されずにスリップしてきたアンモニアが大気中に放出されないように、スリップしてきたアンモニアを酸化し除去する。それ以外にも、RDOC23Dは、SCR23Cと同様の機能を有する場合もある。
 以上の各後処理装置で排気ガスを処理して生成される水、窒素、二酸化炭素は、マフラー(図示せず)等を介して、大気中に排出される。
 ところで、内燃機関10の低負荷運転時など排気ガスの温度が低い場合、尿素水の噴射量が異常に多い場合、排気ガスの流量が少ないのに尿素水の噴射が連続した場合などには、尿素水の加水分解が不十分となり、排気管21内、特に尿素水インジェクタ25の噴口部(取り付け部)周辺に、尿素水が加水分解する際に生じるシアヌル酸などに代表される白色生成物が堆積する。排気管21内に白色生成物が堆積すると、例えば排気管21内が閉塞し、所望の排気ガス浄化処理が実施できないおそれがある。
 図2は、本実施の形態における尿素水インジェクタ25の噴口部周辺29の部分拡大図である。尿素水インジェクタ25の噴口部周辺29では、排気ガスの流れが滞留しやすく、尿素水インジェクタ25から噴射された尿素水も滞留しやすい。その結果、噴口部周辺29には、尿素水の加水分解が不十分な場合に、白色生成物が堆積しやすい。また、排気ガスの流速が遅いことから、噴口部周辺29に堆積した白色生成物を掻き取ることは難しい。
 そこで、本実施の形態では、屈曲部21aにおける排気ガスの流れを改善するため、排気ガスの流れ方向において排気管21のうち屈曲部21aの上流側には、排気管21の内径よりも小さい内径を有する内管27が配置されて二重管構造としている。本実施の形態では、内管27は整流パイプである。
 図2において、実線矢印Aは、内管27の内側を通過し、尿素水インジェクタ25の噴口部周辺29に向かう排気ガスの流れを示す。本実施の形態では、内管27の内側を通過した排気ガスが尿素水インジェクタ25の噴口部周辺29により向かいやすくする観点から、排気ガスの流れ方向において内管27の後端面には、側面視で斜めに切断した形状の傾斜面が形成されている。噴口部周辺29に向かう排気ガスは、流れが一様であり、流速が速くなる。そのため、尿素水インジェクタ25の噴口部周辺29では、排気ガスの流れは滞留しにくく、尿素水インジェクタ25から噴射された尿素水も滞留しにくい。仮に、尿素水の加水分解が不十分な場合に、噴口部周辺29に白色生成物が堆積した場合でも、排気ガスの流速が速いことから、噴口部周辺29に堆積した白色生成物は容易に掻き取られる。
 実線矢印Bは、噴口部周辺29を通過した後、下流側に向かう排気ガスの流れを示す。点線矢印Cは、排気管21と内管27との間に隙間が設けられていることにより、内管27の外周を回り込み、尿素水インジェクタ25の下流側に導きられる排気ガスの流れを示す。一点鎖線矢印Dは、実線矢印Bに対応する排気ガスと、点線矢印Cに対応する排気ガスとが合流した後の排気ガスの流れを示す。実線矢印Bおよび一点鎖線矢印Dに対応する排気ガスによって、尿素水インジェクタ25から噴射された尿素水は、SCR23Cに向けてスムーズに送られる。
 以上詳しく説明したように、本実施の形態では、排気ガス浄化システム(排気系20)は、内燃機関10の排気通路を構成する排気管21に、選択還元型触媒装置(SCR23C)と、尿素水を噴射する尿素水インジェクタ25とを備えて構成される。そして、排気管21を通過する排気ガスの流れ方向において排気管21のうち選択還元型触媒装置の上流側には、尿素水インジェクタ25が設けられた屈曲部21aが形成され、当該流れ方向において排気管21のうち屈曲部21aの上流側には、排気管21の内径よりも小さい内径を有する内管27が配置されており、排気管21と内管27との間に排気ガスが通過する隙間を有する。
 このように構成した本実施の形態によれば、噴口部周辺29に向かう排気ガスは、流れが一様であり、流速が速くなるため、尿素水インジェクタ25の噴口部周辺29では、排気ガスの流れは滞留しにくく、尿素水インジェクタ25から噴射された尿素水も滞留しにくい。仮に、尿素水の加水分解が不十分な場合に、噴口部周辺29に白色生成物が堆積した場合でも、排気ガスの流速が速いことから、噴口部周辺29に堆積した白色生成物は容易に掻き取られる。その結果、尿素水インジェクタ25の噴口部周辺29に白色生成物が堆積することを防止することができる。また、排気管21と内管27との間に隙間が設けられていることにより、内管27の外周を回り込み、尿素水インジェクタ25の下流側に直接導きられる排気ガスの流れが生まれ、その流れによって、尿素水インジェクタ25から噴射された尿素水は、SCR23Cに向けてスムーズに送られる。以上より、白色生成物の堆積を防止して所望の排気ガス浄化処理を実施することができる。
 また、本実施の形態では、排気ガスの流れ方向において内管27の後端面には、側面視で斜めに切断した形状の傾斜面が形成されている。この構成により、内管27の内側を通過した排気ガスが尿素水インジェクタ25の噴口部周辺29に向けて、より向かいやすくすることができる。
 なお、上記実施の形態は、何れも本開示を実施するにあたっての具体化の一例を示したものに過ぎず、これらによって本開示の技術的範囲が限定的に解釈されてはならないものである。すなわち、本開示はその要旨、またはその主要な特徴から逸脱することなく、様々な形で実施することができる。例えば、排気ガスの流れ方向において内管27の後端面には、側面視で斜めに切断した形状の傾斜面が形成されている例について説明したが、内管27の後端面の形状にこれに限らない。
 本出願は、2017年6月29日付で出願された日本国特許出願(特願2017-127243)に基づくものであり、その内容はここに参照として取り込まれる。
 本開示は、尿素水インジェクタの噴口部周辺に白色生成物が堆積することを防止することが可能な排気ガス浄化システムとして有用である。
 1 車両
 10 内燃機関
 11 燃焼室
 13 燃料噴射インジェクタ
 15 吸気バルブ
 17 排気バルブ
 19 ピストン
 20 排気系
 21 排気管
 21a 屈曲部
 23A DOC
 23B DPF
 23C SCR
 23D RDOC
 25 尿素水インジェクタ(還元剤インジェクタ)
 27 内管

Claims (3)

  1.  内燃機関の排気通路を構成する排気管に、選択還元型触媒装置と、還元剤を噴射する還元剤インジェクタとを備えて構成される排気ガス浄化システムであって、
     前記排気管を通過する排気ガスの流れ方向において前記排気管のうち前記選択還元型触媒装置の上流側には、前記還元剤インジェクタが設けられた屈曲部が形成され、
     前記流れ方向において前記排気管のうち前記屈曲部の上流側には、当該排気管の内径よりも小さい内径を有する内管が配置されており、当該排気管と当該内管との間に前記排気ガスが通過する隙間を有する、
     排気ガス浄化システム。
  2.  前記流れ方向において前記内管の後端面には、側面視で斜めに切断した形状の傾斜面が形成されている、
     請求項1に記載の排気ガス浄化システム。
  3.  前記屈曲部の断面形状は、S字形状またはクランク形状である、
     請求項1に記載の排気ガス浄化システム。
PCT/JP2018/022398 2017-06-29 2018-06-12 排気ガス浄化システム WO2019003895A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880039824.6A CN110770420A (zh) 2017-06-29 2018-06-12 废气净化系统
PH12019502795A PH12019502795A1 (en) 2017-06-29 2019-12-11 Exhaust gas purification system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017127243A JP2019011684A (ja) 2017-06-29 2017-06-29 排気ガス浄化システム
JP2017-127243 2017-06-29

Publications (1)

Publication Number Publication Date
WO2019003895A1 true WO2019003895A1 (ja) 2019-01-03

Family

ID=64741538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/022398 WO2019003895A1 (ja) 2017-06-29 2018-06-12 排気ガス浄化システム

Country Status (4)

Country Link
JP (1) JP2019011684A (ja)
CN (1) CN110770420A (ja)
PH (1) PH12019502795A1 (ja)
WO (1) WO2019003895A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250327A (ja) * 1996-03-15 1997-09-22 Yanmar Diesel Engine Co Ltd 消音器
JP2010090725A (ja) * 2008-10-03 2010-04-22 Toyota Motor Corp 内燃機関の排気浄化装置
JP2014100628A (ja) * 2012-11-16 2014-06-05 Futaba Industrial Co Ltd 排ガス浄化装置
JP2014109240A (ja) * 2012-12-03 2014-06-12 Volvo Lastvagnar Aktiebolag 内燃機関の排気浄化装置
US20150101313A1 (en) * 2013-10-14 2015-04-16 Cummins Emission Solutions, Inc. Diesel Exhaust Fluid Deposit Mitigation
US20150198073A1 (en) * 2014-01-13 2015-07-16 Caterpillar, Inc. Exhaust aftertreatment system with in-elbow reductant injection

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011016886A1 (de) * 2011-04-13 2012-10-18 Emitec Gesellschaft Für Emissionstechnologie Mbh Vorrichtung mit einem Wärmetauscher für einen thermoelektrischen Generator eines Kraftfahrzeugs
JP5349576B2 (ja) * 2011-12-27 2013-11-20 株式会社小松製作所 還元剤水溶液ミキシング装置及び排気ガス後処理装置
KR20200019781A (ko) * 2013-03-28 2020-02-24 얀마 가부시키가이샤 엔진 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09250327A (ja) * 1996-03-15 1997-09-22 Yanmar Diesel Engine Co Ltd 消音器
JP2010090725A (ja) * 2008-10-03 2010-04-22 Toyota Motor Corp 内燃機関の排気浄化装置
JP2014100628A (ja) * 2012-11-16 2014-06-05 Futaba Industrial Co Ltd 排ガス浄化装置
JP2014109240A (ja) * 2012-12-03 2014-06-12 Volvo Lastvagnar Aktiebolag 内燃機関の排気浄化装置
US20150101313A1 (en) * 2013-10-14 2015-04-16 Cummins Emission Solutions, Inc. Diesel Exhaust Fluid Deposit Mitigation
US20150198073A1 (en) * 2014-01-13 2015-07-16 Caterpillar, Inc. Exhaust aftertreatment system with in-elbow reductant injection

Also Published As

Publication number Publication date
CN110770420A (zh) 2020-02-07
JP2019011684A (ja) 2019-01-24
PH12019502795A1 (en) 2020-09-28

Similar Documents

Publication Publication Date Title
CN102057139B (zh) 排放气体净化装置及排放气体净化系统
US9061245B2 (en) Method for reducing nitrogen oxides in diesel-engine exhaust gases and exhaust gas aftertreatment system for carrying out the method
JP6114305B2 (ja) 排気後処理システム及びそのシステムを操作する方法
EP2530268B1 (en) Exhaust purification device and exhaust purification method for diesel engine
JP4507901B2 (ja) 排気ガス浄化システム及びその排気ガス浄化方法
JP4450257B2 (ja) 排気浄化装置
WO2011045847A1 (ja) エンジンの排気浄化装置
KR20090064008A (ko) 배기 가스 내의 질소산화물 저감 장치
JP5258426B2 (ja) エンジンの排気浄化装置
JP2010242515A (ja) 排気ガス浄化システム及び排気ガス浄化方法
KR100999614B1 (ko) 배기 가스 내의 질소산화물 저감 장치
KR101022018B1 (ko) 엔진의 배기 가스 정화 시스템 및 이를 포함하는 선박용 엔진
US11002170B2 (en) Injection device
JP6020105B2 (ja) ディーゼルエンジンの排気ガス浄化方法及び排気ガス浄化システム
WO2018230521A1 (ja) 排気ガス浄化システムおよび堆積量推定方法
WO2019003895A1 (ja) 排気ガス浄化システム
JP2020041528A (ja) 排気ガス浄化システム
JP2012092746A (ja) 排気浄化装置
JP5470808B2 (ja) 排気ガス浄化システムと排気ガス浄化方法
JP7211174B2 (ja) 排気管構造および車両
JP2019190423A (ja) 排気浄化装置および車両
JP5188477B2 (ja) 排気浄化装置
CN109386364B (zh) 废气净化系统
JP2020041529A (ja) 排気ガス浄化システム
JP2019190424A (ja) 排気浄化装置および車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18823820

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18823820

Country of ref document: EP

Kind code of ref document: A1