WO2018230318A1 - スケール、撮像装置、撮像システム、キット、および撮像装置の調整方法 - Google Patents

スケール、撮像装置、撮像システム、キット、および撮像装置の調整方法 Download PDF

Info

Publication number
WO2018230318A1
WO2018230318A1 PCT/JP2018/020331 JP2018020331W WO2018230318A1 WO 2018230318 A1 WO2018230318 A1 WO 2018230318A1 JP 2018020331 W JP2018020331 W JP 2018020331W WO 2018230318 A1 WO2018230318 A1 WO 2018230318A1
Authority
WO
WIPO (PCT)
Prior art keywords
scale
phantom
imaging
light
wavelength
Prior art date
Application number
PCT/JP2018/020331
Other languages
English (en)
French (fr)
Inventor
譲 池原
陽子 飯泉
俊也 岡崎
早苗 池原
宮本 健司
Original Assignee
国立研究開発法人産業技術総合研究所
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所, 株式会社ニコン filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2019525271A priority Critical patent/JP6890348B2/ja
Publication of WO2018230318A1 publication Critical patent/WO2018230318A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light

Definitions

  • the present disclosure relates to a scale, an imaging apparatus, an imaging system, a kit, and an imaging apparatus adjustment method.
  • a carbon nanotube (hereinafter also referred to as “CNT”) is a cylindrical substance having a diameter of about 0.5 to 50 nm and a length of ⁇ m using carbon as a raw material.
  • Multi-walled carbon nanotube (MWNT), double-walled carbon Nanotubes and single-walled carbon nanotubes (SWNT) are known.
  • MWNT Multi-walled carbon nanotube
  • SWNT single-walled carbon nanotubes
  • CNT has a shape in which a graphene sheet (independent carbon hexagonal mesh plane) in which carbon atoms are arranged in a hexagonal shape is wound in a cylindrical shape, the properties greatly change depending on the winding method (chirality).
  • CNT has been proposed to be used as a labeling substance for probes for detecting biological samples such as blood cell components, for example, utilizing its unique optical properties, for example, emitting near infrared light by photoexcitation.
  • Patent Document 1 proposes a labeling substance for probes for detecting biological samples such as blood cell components, for example, utilizing its unique optical properties, for example, emitting near infrared light by photoexcitation.
  • CNT carbon nanotubes
  • CNT can be used as a standard for confirming the device setting state of an imaging device or imaging system that uses infrared light.
  • the scale includes a plurality of phantoms including carbon nanotubes (CNT) and a member on which the phantom is disposed, the carbon nanotubes having light absorption in an infrared region. Is done.
  • an imaging device that images the scale is provided.
  • an imaging system including the display of the above scale is provided.
  • the kit provided with two or more said scales is provided.
  • an adjustment method for an imaging apparatus including adjusting the setting of the imaging unit and / or the setting of the light source using the scale.
  • the absorption spectrum and wavelength ((lambda) 1 to (lambda) 5 ) of CNT from which chirality differs in embodiment are shown. It is explanatory drawing of the scale in embodiment.
  • This figure shows a plurality of different concentrations of phantoms (A1) containing CNTs of different chirality, showing specific absorption for each wavelength of wavelengths ⁇ 1 to ⁇ n (where n is an integer greater than or equal to 2).
  • A9 or B1 to B9) (eg, dilution series concentration) shows a strip-like scale in which spots are arranged on a member.
  • a series of phantoms that can visualize densities other than blackout and overexposure are shown as gray scales.
  • a strip-like scale in which spots of a plurality of phantoms (for example, dilution series concentrations) containing CNTs having different chiralities are arranged on a member, or a kit including a combination of the scales It is an embodiment.
  • a scale in which a plurality of phantoms (eg, dilution series concentration) containing CNTs having different chiralities are arranged on one (eg, one piece) member, or a combination of the scales
  • FIG. 3B is an embodiment showing a state in which scales as shown in FIG. 3B are arranged on the specimen support part (stage) in all directions and a subject (eg, biological tissue) is placed at the center of the specimen support part (stage). is there.
  • L-shaped characters (broken lines) marked at the outer four corners and the inner four corners of the specimen support (stage) indicate the imaging size (eg, A4 size or A7 size). It is one Embodiment of the kit which has arrange
  • FIG. 6 illustrates one embodiment of a kit that can be used in an imaging system or an intraoperative system that includes a combination of scales that include a phantom positioned on the face of an open member (center).
  • FIG. 4 illustrates one embodiment of a kit that can be used in an imaging system or an intraoperative system that includes a combination of scales including a phantom disposed on the surface of an L-shaped member. It is a figure for demonstrating the structural example of the imaging system which concerns on embodiment.
  • DB is a database.
  • FIG. 6A shows the cross section of the imaging system of FIG. 6A.
  • 1 is a functional block diagram illustrating an imaging system according to an embodiment. It is the figure which displayed the scale with the image of the to-be-photographed object (for example, biological tissue) on the display part of the imaging system concerning an embodiment.
  • C1 is a single-walled carbon nanotube SWeNT (R) SG65 (model number 704148, absorption peak 996 nm, manufactured by SIGMA-ALDRICH)
  • C2 is a single-walled carbon nanotube SWeNT (R) SG76 (model number 704121, absorption peak 1153 nm
  • C3 is KH Single-Walled Carbon Nanotubes, ED (absorption peak 1588 nm, manufactured by KH CHEMICALS Co., LTD.)
  • C4 is a single-walled carbon nanotube SO (model number SWNT SO, absorption). The peak is 1821 nm, manufactured by Meijo Nano Carbon Co., Ltd.).
  • a scale manufacturing procedure (step 1 to step 4) in this embodiment will be described. It is an illustration of structure sectional drawing of the completed scale in this embodiment.
  • the substrate 9a and the light reflecting layer 9b constitute a member 9 on which the phantom 5 is disposed.
  • a scale 6 including a CNT phantom 5 designed to switch a scale emphasized by switching (turning on or off) of illumination wavelengths (ad).
  • the scale 6 can be used, for example, for setting / adjusting the illumination wavelength in a medical imaging apparatus.
  • a scale 6 including a CNT phantom 5 having different absorption peak wavelengths (a to d) and a subject P are simultaneously photographed using an imaging device, and the wavelength of near infrared illumination is obtained from the image data.
  • FIG. 10 is an embodiment showing an example of use of a scale in which a phantom grayscale (R) and an absorbance range (absorbance within a frame) in a range suitable for photographing a subject P are determined by selection and intensity adjustment.
  • An example of use of the scale 6 is shown in which the scale 6 including the CNT phantoms 5 having different absorption peak wavelengths (a to d) shown in FIG. 14 is used to select the illumination wavelength and intensity suitable for photographing the subject P.
  • the gray scale of the phantom in the range that can be used for photographing the subject P is displayed as R, and the selection of the phantom that matches the illumination intensity suitable for photographing the subject P and the absorbance thereof is shown.
  • the wavelength and intensity of illumination suitable for photographing the diseased part (P1) in the subject P (P1 to P3) using the scale 6 including the CNT phantoms 5 having different absorption peak wavelengths (a to d) shown in FIG. (In the figure, wavelength (c) 1588 nm and intensity (absorbance) 0.18) are selected, and an example of using scale 6 is determined in the subject P (P1) as a diseased part in the same manner as in phantom 5 It is one Embodiment which shows.
  • the device settings in the present embodiment are imaging conditions (or imaging modes) that match the observation target (eg, biological tissue, scale (or phantom), etc.).
  • the shooting conditions are based on the observation target (eg, the size, type, amount, etc. of the observation target), the amount of light emitted from the light source, the sensitivity of the imaging unit, the exposure time of the imaging unit, the aperture of the imaging unit, and the output of the imaging unit Includes signal gain.
  • a scale comprising a plurality of phantoms including carbon nanotubes (CNT) and a member on which the phantom is disposed, the carbon nanotubes having light absorption in the infrared region .
  • the scale of this embodiment has a known absorbance for light in the infrared region (eg, infrared light such as near infrared light), and evaluates (estimates and estimates) the absorbance of the sample for an arbitrary wavelength. Used for that.
  • a phantom is used to calibrate, examine, and design an imaging device or imaging system (eg, a medical device such as a biological measuring device), and to respond to a living body (eg, a biological tissue or an organ composed of a plurality of such tissues). Simulated substance (simulated body).
  • the phantom in the present embodiment is a phantom including CNTs, and can be used for a method of checking the device setting state of an imaging system or the like that uses light in the infrared region and adjusting the device setting.
  • Optical properties such as light absorption can be changed by changing the CNT chirality and density and / or changing the phantom thickness (eg, film thickness). It can be used as an adjustment scale (or a ruler, an optical imaging scale).
  • the plurality of phantoms may include carbon nanotubes having different concentrations.
  • the plurality of phantoms include a first phantom and a second phantom, and the first phantom and the second phantom have different carbon nanotube spectra in the infrared region.
  • a CNT having a first spectrum including a first light absorption peak in the infrared region a CNT having a second spectrum including a second light absorption peak in the infrared region.
  • the spectrum includes a light spectrum (spectral distribution, spectral spectrum, absorption spectrum, or reflection spectrum) such as a graph of absorption rate (or reflectance) and wavelength.
  • a light spectrum spectral distribution, spectral spectrum, absorption spectrum, or reflection spectrum
  • absorption rate or reflectance
  • the absorption peak of light at the first wavelength ⁇ 1 (for example, the half width is several nm to several hundred nm, the half width is several nm to several tens nm, the half width is 10 nm to 100 nm, etc.
  • a plurality of phantoms (eg with) concentration column consists of a plurality of different phantoms) and one column to each other, the columns of another plurality of phantoms having an absorption peak of the second wavelength lambda 2 to the light and two rows, and three rows of columns of another plurality of phantoms having an absorption peak of light in the third wavelength lambda 3, can be similarly regularly arranged to n columns.
  • the degree of “light absorption” can be represented by absorbance, and the degree of “light reflection” can be represented by reflectance.
  • the degree of light scattering can be expressed by the scattering intensity.
  • the light absorption includes absorption of light with respect to infrared light including the near infrared region.
  • “regularly arranged” means, for example, that the phantoms are arranged in the order of high CNT concentration to low concentration, or vice versa, or the thickness of the phantom is large. It includes a regular arrangement in which the phantoms are arranged in a specific order in the order of decreasing thickness or vice versa.
  • the CNT is a CNT having absorption of light (infrared light) at a specific wavelength in the infrared region, for example, in the near infrared region (e.g., a wavelength band of 700 nm to 3000 nm). It is a single-walled carbon nanotube (SWNT).
  • the chirality of CNT is represented by the chiral index (n, m), and is determined by this chiral index, depending on the winding method of the graphene sheet (carbon hexagonal mesh plane). There is also a difference)), and physical quantities such as CNT band gap, Fermi rank and work function depend on the chiral index.
  • CNT has, for example, a wavelength dependency of an absorptance with respect to infrared light due to a difference in chirality (for example, a difference in absorptance of light due to a difference in wavelength), and a difference in structure such as a geometric structure. Changes the optical characteristics (for example, FIG. 1).
  • the phantom can be a resin film containing CNTs.
  • the CNTs are dispersed, preferably uniformly dispersed in the resin as the solvent.
  • the resin film may contain an appropriate amount of a dispersant in order to make the CNT dispersion uniform.
  • dispersants include, but are not limited to, surfactants (eg, sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfate (SDBS), sodium cholate (SC), sodium deoxycholate (DOC), etc.), Organic compounds such as polybenzimidazole (PBI) and polyimide (PI) derivatives, or inorganic salts (eg, potassium carbonate, ammonium carbonate, tripotassium phosphate, potassium acetate, ammonium acetate, etc.) (JP-A-2015-168610) And so on.
  • surfactants eg, sodium dodecyl sulfate (SDS), sodium dodecyl benzene sulfate (SDBS), sodium cholate (SC), sodium deoxycholate (DOC), etc.
  • Organic compounds such as polybenzimidazole (P
  • dispersion solvent examples include, but are not limited to, acetone, 2-butanone, tetrahydrofuran, N-methylpyrrolidone, isopropanol, and the like (Japanese Patent Laid-Open No. 2015-168610).
  • Resin is a polymer having transmission characteristics for infrared light, and is made of, for example, a material that does not interfere with CNT absorption in the infrared wavelength band to be used.
  • the resin may be a polymer having a property of scattering infrared light.
  • the resin examples include, but are not limited to, a fluorine resin (eg, CYTOP (R) (manufactured by AGC Asahi Glass), an epoxy resin, other polypropylene, polyester, polyethylene, polyethylene terephthalate (PET), polyethylene naphthalate (PEN). ), Polydimethylsiloxane (PDMS), polymethyl methacrylate (PMMA), polystyrene, polyvinyl acetate, and the like, or polymers having equivalent properties thereof (or equivalents).
  • a fluorine resin eg, CYTOP (R) (manufactured by AGC Asahi Glass)
  • an epoxy resin other polypropylene
  • polyester polyethylene, polyethylene terephthalate (PET), polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PDMS Polydimethylsiloxane
  • PMMA polymethyl methacrylate
  • the member (base portion) may be, for example, a light reflecting layer (eg, a reflective substrate such as a white plate) made of a material having a structural white color, and the member may be in the infrared region (eg, near infrared region). ) And a material having a high reflectance, for example, having a reflectance of 90% or more, 95% or more, or 98% or more.
  • the material of the member may be any of metal, ceramics, tile, glass, paper, polymer, wood, and the like according to one embodiment.
  • the member is made of only metal (eg, aluminum, aluminum oxide, silver or silver alloy).
  • a white inorganic substance such as magnesium carbonate, magnesium oxide, or barium sulfate capable of providing a reflectance of 90% or more can be uniformly applied on the surface of any of the materials exemplified above. By doing so, it can be set as the member which has the target reflectance.
  • the member preferably has a smooth planar structure on the surface and exhibits a constant high reflectivity with no unevenness even when measured on any part of the surface.
  • the member may overlap a substrate (eg, glass) having a light transmittance of 90% or more or 95% or more on the light reflection layer (FIG. 12).
  • a substrate eg, glass
  • the plurality of phantoms can include a plurality of CNTs having different concentrations.
  • the plurality of phantoms can be arranged on the member in the order of carbon nanotube concentration (eg, in the order of dilution series).
  • the thickness of the resin film may be constant, or the thickness of the resin film may be changed (preferably regularly at a constant thickness interval).
  • the thickness of the phantom can be changed stepwise.
  • the CNT concentration may be constant, or the CNT concentration may be changed (preferably regularly in a dilution series).
  • the thickness of the phantom is, for example, in the range of 0.1 ⁇ m to 1000 ⁇ m (eg, 0.1 ⁇ m to 10 ⁇ m, 0.1 ⁇ m to 100 ⁇ m), but is not limited to this range.
  • the CNT concentration in the phantom is CNT 10 ⁇ 6 to 10 ⁇ 2 parts by weight (eg, CNT 10 ⁇ 4 to 10 ⁇ 3 parts by weight) per part by weight of the phantom, but is not limited to this range.
  • the phantom made of the resin film is fixed to an upper portion (eg, a fixed region such as an arrangement region or a bonding region) of the member (eg, substrate, light reflecting layer, container) by an attaching means such as coating or bonding.
  • the fixation can be performed by an adhesive method such as uniformly applying an adhesive having no absorption in the infrared region (eg, near infrared region).
  • the plurality of phantoms are regularly arranged on a member such as a light reflection layer, a combination of a substrate and a light reflection layer, for example, in a lattice shape or a matrix shape, or in one row, two rows,. Can be arranged.
  • the scale can be used to adjust settings of the imaging unit (eg, sensitivity, aperture, etc.) and / or settings of the light source (light wavelength, intensity, etc.).
  • settings of the imaging unit eg, sensitivity, aperture, etc.
  • the light source light wavelength, intensity, etc.
  • the shape of the phantom is an arbitrary shape such as a circle, a square, a triangle, or a star, for example, a punch or a spot.
  • phantom spots in which the CNT concentration is gradually changed from a high concentration to a low concentration for each of different wavelengths ( ⁇ 1 ... ⁇ n ) (eg, n ⁇ 2) are arranged in a line at regular intervals.
  • the individual scales are arranged in a matrix in order from a short wavelength to a long wavelength (eg, 800 to 1600 nm) in the infrared wavelength region.
  • the near infrared region is a region that does not absorb blood or water and has high biological permeability. Therefore, CNT having absorption in this region can be used effectively as a material for the scale.
  • the difference in wavelength having light absorption in each CNT depends on the difference in CNT chirality (winding method) (H. Liu et al., Nature Communications, 2: 309, DOI: 10.1038 / ncomms 1313, May 2011). Since FIG. 1 schematically shows each absorption spectrum of purified CNTs having different chiralities, the positions between the absorption peaks, the height of the absorption peaks, the impurity peaks, and the like are different from the actual ones.
  • CNT carbon nanotube
  • SWeNT (R) SG65 model number 704148, the absorption peak 996 nm, manufactured by SIGMA-ALDRICH
  • single-walled carbon nanotubes SWeNT (R) SG76 model number 704121 , Absorption peak 1153 nm, manufactured by SIGMA-ALDRICH
  • KH Single-Walled Carbon Nanotubes ED (absorption peak 1588 nm, manufactured by KH CHEMICALS Co., LTD.)
  • Single-walled carbon nanotube SO model number SWNT SO, absorption peak 1821 nm, strain) Meijo Nano Carbon).
  • each scale 6 shown in FIG. 2 or FIG. 3A has a plurality of phantoms 5 containing CNTs having different chiralities on a strip-shaped member (eg, substrate, sheet, flexible substrate) 9 at regular intervals.
  • the phantoms on each scale are arranged in parallel and are arranged in parallel for each wavelength (for example, ⁇ 1 to ⁇ 5 ) selected based on the absorption wavelength of infrared light in each phantom.
  • the scale set (eg, kit) formed in this way can be used for adjustment or setting of imaging conditions of the imaging apparatus, imaging system, or intraoperative system. At this time, the above adjustment or setting can be performed by placing a scale or scale set on the specimen support stage (stage) of the system.
  • the scale 6 in the present embodiment as shown in FIG. 3B, 1 one of the plurality of phantom 5 wavelengths on the member 9 (e.g., from lambda 1 lambda It is good also as a structure arrange
  • the phantoms having the first wavelength ⁇ 1 and having different CNT concentrations are arranged in a row (eg, the first row) at regular intervals, and the phantoms having the second wavelength ⁇ 2 and having different CNT concentrations are arranged.
  • Each phantom having a third wavelength ⁇ 3 and having a different CNT concentration is arranged in one row (eg, the third row) at a constant interval and arranged in a row (eg, the second row) at a constant interval, and a fourth wavelength ⁇ 4
  • the phantoms having different CNT concentrations are arranged in a row (eg, the fourth row) at regular intervals, and the phantoms having the fifth wavelength ⁇ 5 and having different CNT concentrations are arranged in a row (eg, the fifth row).
  • Embodiments arranged in a column) are shown.
  • the scale 6 of this embodiment includes a plurality of phantoms divided into a plurality of groups based on the absorption spectrum in the infrared region, and each phantom in the group is in the infrared region (absorption peak wavelength). It arrange
  • the number of phantom spots in which the CNT concentration is changed stepwise is, for example, 10 or more, 15 or more, 20 or more, 25 or more, 30 or more, or 40 or more, and usually 10 to 30 or 20 to 30 pieces.
  • the resolution of gradation in the phantom image is adjusted by the CNT density by forming a phantom with the CNT density changed so that the user can visually recognize it on the scale 6 image.
  • a plurality of phantoms using CNTs having an absorption peak at a specific wavelength are provided on the scale 6 in multiple stages (eg, 10 stages, 15 stages, 20 stages or more) so that the CNT concentrations are different. It is done.
  • a scale (scale image) displayed on a display unit (FIGS. 8 and 9), which will be described later, is visible to the user.
  • a gray scale (scale composed of gray shades) or a scale indicating a change in color tone is displayed on the screen.
  • the user can confirm the wavelength selection / intensity adjustment / setting range of the imaging unit and the light source unit of the system to be used via the scale 6.
  • the user can associate the light and shade in each phantom image with the degree of light absorption (absorbance), so the color density at a specific wavelength in the phantom image or It is possible to estimate the wavelength and intensity of illumination at the time of photographing a subject from the shade.
  • a photographed image of a living tissue eg, an observation target that may include a diseased part
  • a photograph of a scale including a phantom having a different CNT concentration eg, a dilution series
  • the user can display the color shade (eg, contrast, brightness, etc.) in the gray scale of the phantom whose absorbance at a specific wavelength is known, and the color shade (eg, contrast, brightness, etc.) of the image data of the living tissue.
  • abnormalities in living tissues eg, sudden changes in moisture and lipid, fibrosis, etc.
  • the user selects the optimum from the spot group in the gray scale range among blackout, grayscale (density can be visualized), and overtone color tone. Absorbance can be selected ( Figure 2).
  • the wavelength or wavelength band is determined based on the biological tissue to be observed (eg, fat, blood vessel, nerve, muscle, organ, diseased tissue, etc.), the scale is adjusted according to the type and size of the tissue. Can be produced.
  • the biological tissue to be observed eg, fat, blood vessel, nerve, muscle, organ, diseased tissue, etc.
  • the scale when the scale is produced, physical property data (for example, phantom wavelength and absorbance) obtained by measuring each scale production lot and biological tissue information related to the physical property data are obtained.
  • physical property data for example, phantom wavelength and absorbance
  • the probability that the range of absorbance of the scale includes the absorbance of the observation target is increased, so that the reliability (or quality) of the scale is improved.
  • design specification eg, design value range
  • kit comprising a plurality of scales having the different peak wavelengths described above.
  • This kit is used for easily adjusting the setting of the imaging unit and / or the setting of the light source of an imaging system including a near-infrared light imaging device (imaging device) or the imaging conditions suitable for the user to easily observe.
  • an imaging kit includes an openable / closable container (accommodating case) for fixing and storing the scale of the present embodiment or a plurality of scales (e.g., a container having a dent into which the scale is fitted, and each scale to be accommodated. And a container having one storage space for one scale).
  • the kit according to the present embodiment is configured such that the set of scales is a subject (biological tissue or tissue). It can take various forms arranged to surround the sample.
  • the kits are merely examples and do not limit the invention, and the arrangement of the scale set, the number of scales, the number of phantoms, the wavelength, etc. can be changed.
  • FIG. 4A shows a state in which the scale set as shown in FIG. 3B (or FIG. 3A) is arranged in four directions on the specimen support part (stage) of the imaging system
  • FIG. 4B shows the specimen support part (stage).
  • a state in which a subject (biological tissue or sample) is placed at the center of is shown.
  • the scale set shown in FIG. 3B or FIG. 3A that can be placed on the specimen support (stage) can be used as a kit for adjusting the imaging unit, the light source, and the like of the imaging system.
  • an imaging size (L-shaped mark) as shown in FIG. 4B in the specimen support part (stage) of the imaging system the subject (biological tissue or sample) and the scale set can be imaged together.
  • the optimum phantom on the scale can be specified and stored on the database.
  • FIG. 4C is an illustration of a kit in a form in which scales as shown in FIG. 3B (or FIG. 3A) are arranged in four directions on a plate-like support.
  • the support may be any material as long as it does not affect the adjustment of the imaging system.
  • a material can be selected from substances such as polymer, paper, glass, wood, metal, and ceramics. Since such a kit can be placed directly on the specimen support (stage) of the imaging system, work efficiency is improved.
  • FIG. 4D is a kit showing a modification of FIG. 4C in which four scales including phantoms arranged on the surface of an L-shaped member are arranged diagonally on a plate-like support.
  • the arrangement of scale sets, the number of scale sets, and the number of phantoms can be changed, and the wavelength can be changed without being limited to, for example, ⁇ 1 to ⁇ 5 and has absorption peaks at other different wavelengths.
  • a scale including a phantom may be arranged.
  • FIG. 4E is a kit showing a modification of FIG. 4D in which eight L-shaped scales are arranged on a plate-like support. Similar to FIG. 4D, the arrangement of scale sets, the number of scale sets, the number of phantoms, and the wavelength can be changed as appropriate.
  • FIG. 5A is an illustration of a kit that can be used in a system that includes an imaging device, such as an imaging system or an intraoperative system, including a combination of scales including a phantom disposed on the face of an open member.
  • an imaging device such as an imaging system or an intraoperative system
  • the same scale set or different scale sets corresponding to different wavelengths may be arranged.
  • the kit when the system to be adjusted is an imaging system, the kit is placed on a specimen support (stage) of the system, and a subject (eg, biological tissue or Sample). Further, when the system to be adjusted is an intraoperative system, the kit can be placed in a flat state so that the tissue to be imaged by the patient is placed in an open part of the kit.
  • FIG. 5B is an example of a kit that can be used in an imaging system or an intraoperative system including a combination of scales including a phantom arranged on the surface of an L-shaped member.
  • the kit can be placed on the specimen support (stage) of the imaging system, and the kit can be placed in the vicinity of the tissue to be imaged by the patient in the intraoperative system. .
  • the kit may further include an instruction manual describing the procedure for adjusting the imaging device using the scale.
  • surface which displayed the light absorbency of each phantom in each wavelength of each scale contained in a kit can be included in this kit.
  • CNT Carbon Nanotubes
  • the purification of single-walled carbon nanotubes can be classified based on the electronic and optical properties of the nanotubes, in particular by the diameter and conformation of single-walled carbon nanotubes, and CNTs can be separated (Japanese Patent Publication No. 2005-527455). ).
  • a carbon nanotube having a desired physical property is separated by a method including irradiating a sample containing the carbon nanotube with light and selecting a carbon nanotube having a desired physical property (including at least one of a diameter and a chiral vector), It can be concentrated or purified (see Table 2005/077782).
  • the single-surfactant multicolumn chromochromatography method (H. Liu et al., Nature Communications, 2: 309, DOI: 10.1038 / ncomms 1313, May 2011 differs depending on the single column) using chromatography using multiple columns packed with agarose gel. CNTs can be separated.
  • single-walled carbon nanotubes with different chiralities can be separated by nonlinear density gradient ultracentrifugation (S. Ghosh et al., Nature Nanotechnology 5: 443-450, 2010).
  • single-walled carbon nanotubes having different chiralities have been proposed to separate individual single-walled carbon nanotubes using the property of recognizing DNA sequences in a structure-specific manner (XM Tu et al. , Nature 2009, 460: 250-253).
  • single-walled carbon nanotubes can be purified using the difference in chirality based on the difference in CNT diameter and conformation (preparation step).
  • various resin films having different film thicknesses can be produced by changing the distance between the member and the blade.
  • various resin films (phantoms) having different CNT concentrations can be produced by changing the CNT concentration of the CNT ink (for example, stepwise by a dilution series).
  • the method for forming the resin film of the CNT ink on the member includes a spin coating method, a dip coating method, a blade coating method, and a casting method.
  • a method for fixing the CNT ink on the member after forming the CNT ink is a mold. And a molding method using.
  • the resin may be selected from polymer materials that do not have significant light absorption in the near infrared region (eg, 700 nm to 3000 nm) and have a refractive index of 1.5 or less.
  • the resin is, for example, a fluorine resin or an epoxy resin.
  • concentration and thickness of the CNT are as illustrated above, and can be appropriately changed according to the model number and type of the imaging device, the type of subject (eg, biological tissue), and the like.
  • the above resin film is processed into an arbitrary shape with a punch or the like, for example, a member having the above structure white (eg, 90% or more in the near infrared region, preferably Is a light reflecting layer having a reflectance of 95% or more, more preferably 98% or more), or resin films having different film thicknesses are arranged in order of thickness, or resin films having different CNT concentrations are from high to low concentration. Place in the order of (or vice versa) and fix. Any arrangement of the phantoms on the member 6 may be used as long as it is regular. For example, the phantoms are arranged in a lattice shape or a matrix shape, or in the form of 1 row, 2 rows, 3 rows,.
  • a member having the above structure white eg, 90% or more in the near infrared region, preferably Is a light reflecting layer having a reflectance of 95% or more, more preferably 98% or more
  • resin films having different film thicknesses are arranged in order of
  • the concentration of CNT used has a high absorption for the specific first wavelength ⁇ 1 , and therefore becomes a scale (scale region) for ⁇ 1 .
  • the nth wavelength ⁇ n is produced.
  • row film thickness (absorbance)
  • column wavelength on the member 6
  • a scale having a plurality of phantoms arranged in a matrix can be manufactured.
  • a method of fixing the phantom 5 to the member 6 a method of directly applying the phantom to the member, a method of forming a recess (dent) in the substrate (member) by injection molding, and applying a phantom to the substrate (member), or dropping the phantom by inkjet
  • an adhesion method such as uniformly applying an adhesive having no absorption in the infrared region (eg, near infrared region).
  • kits can be manufactured by combining a plurality of scales corresponding to different wavelengths produced as described above into various forms as shown in FIGS.
  • Imaging Device and Imaging System According to the embodiment, an imaging device that images the scale described above, or an imaging system including a display of the scale is provided.
  • the scale 6 may be configured to be fixed or attachable to the specimen support part (stage) 2, and the scale 6 may be provided in the specimen support part 2.
  • the imaging system may be any system that uses light in the infrared region.
  • An example of such a system is a medical system such as pathological support or surgical support including a near-infrared light imaging apparatus.
  • imaging system examples include a pathological examination system as described below, and a surgical support imaging system that can acquire an image of a tissue inside a living body and a stereoscopic image during an operation (FIGS. 6 and 7). 8 and 9).
  • FIG. 6 is a diagram for explaining a configuration example of the imaging system 1 according to the embodiment.
  • FIG. 6A is a diagram illustrating a configuration example of the imaging system 1 according to the present embodiment.
  • FIG. 6B is a diagram illustrating a configuration example of the imaging device 10 in the imaging system 1.
  • the X direction and the Y direction are, for example, the horizontal direction
  • the Z direction is, for example, the vertical direction.
  • the direction of the arrow is appropriately referred to as a + side (eg, + X side), and the opposite side is referred to as one side (eg, ⁇ X side).
  • the imaging system 1 is used for medical support such as pathological diagnosis support, clinical diagnosis support, observation support, and surgical support.
  • the imaging system 1 includes an imaging device 10, a control device 101 that controls the entire imaging system 1, and an input device 102 that is used when a user (operator) inputs data, an instruction command, and the like.
  • a display device (display unit) 103 that displays an image captured by a GUI or the imaging device 10 is provided.
  • the imaging apparatus 10 includes a specimen support part (stage) 2, an illumination unit (illumination part) 3, a detection unit (imaging unit) 4, a scale 6 on which a phantom 5 is arranged, and a control.
  • the control part 7 which can communicate with the apparatus 101 is provided with the accommodating part 8 which accommodates the illumination unit 3, the detection unit 4, the scale 6, the control part 7, etc.
  • the control part 7 is from the control apparatus 101, for example.
  • an instruction command input from the input device 102 by a user (operator) is processed by the control device 101 and transmitted to the control unit 7.
  • the control device 101 also relates to an imaging operation.
  • Various programs and a program for executing adjustment processing of the imaging device 10 are read from the memory in the control device 101, and each control unit 7 is moved to each operation according to the program.
  • the target device for example, the infrared light source unit 11 or the visible light source unit 13 of the illumination unit 3, the first imaging unit 21, the second imaging unit 22, or the like
  • the CNT concentration and thickness of each phantom 5 included in the phantom 5 Preliminarily measure the CNT concentration and thickness of each phantom 5 included in the phantom 5 (adjustment phantom), and physical quantity data (optical characteristic values) such as absorbance or reflectance of each phantom 5 for each wavelength on each scale 6.
  • the storage device 32 eg, built-in memory
  • the imaging device 10 is used.
  • the luminance value is obtained from a specific column (eg, the first wavelength ⁇ 1 , the second wavelength ⁇ 2, etc.) designated by the scale, and each spot in the specific column is obtained.
  • the photographing conditions such as the light amount of the light source are changed so as to obtain an appropriate different color tone (gradation), and the operator uses the input device 102 to change the gradation of each spot in a specific column in the scale 6.
  • the phantom 5 to be (or color tone) is designated via the input device 102 or the display device 103.
  • the control device 101 stores the data of the designated phantom 5 used in the adjustment process in the storage device 32 (for example, built-in). From the memory) and transmitted to the control unit 7.
  • the specimen support unit 2 supports a specimen including the subject P (hereinafter also referred to as “biological tissue” or “sample”).
  • the sample support part 2 is a rectangular plate-shaped member, for example.
  • the upper surface (mounting surface) of the sample support unit 2 is disposed substantially parallel to the horizontal direction, and the subject P can be mounted on the upper surface (mounting surface).
  • the scale 6 containing the phantom 5 can be placed on the placement surface of the sample support 2 (FIGS. 4A and 4B).
  • the subject P is, for example, a human tissue, but may be a tissue of a non-human organism (eg, animal, plant).
  • the subject P may be a tissue cut from a living organism or a tissue attached to a living organism.
  • the tissue BT may be a living organism (living body) tissue (living tissue) or a living organism (dead body) after death.
  • the tissue BT may be an object extracted from a living organism.
  • the subject P may include a tissue containing water and / or lipid, may include any organ (organ) of a living organism, may include blood vessels or skin, and internal organs inside the skin. May be included.
  • the subject P may be one in which a substance that receives light and emits light by excitation (for example, a fluorescent substance or a phosphorescent substance) is added to a biological tissue.
  • the subject P may be fixed using a tissue fixing solution such as formalin.
  • the illumination unit 3 is disposed, for example, above the specimen support 2 and irradiates the subject P and the phantom 5 with infrared light (hereinafter, also a concept including “near infrared light”).
  • the illumination unit 3 is attached to the imaging unit 4, for example.
  • the illumination unit 3 includes an infrared light source unit 11, a holding member 12, a visible light source unit 13, and a light source moving unit 14.
  • the infrared light source unit 11 emits (radiates) at least infrared light (eg, infrared light having a first wavelength, infrared light having a second wavelength, etc.).
  • the holding member 12 holds the infrared light source unit 11.
  • the holding member 12 is, for example, a plate-like member, and holds the infrared light source unit 11 on the lower surface side thereof.
  • the light source moving unit 14 changes the irradiation angle of the infrared light with respect to the subject P and the phantom 5 (or the scale 6).
  • the infrared light emitted from the infrared light source unit 11 is, for example, uniform light (for example, the light is diffused by a diffusion member (not shown) and uniformized), and is applied to the scale 6 including the tissue BT and the phantom 5.
  • the illumination unit 3 can irradiate the tissue BT and the scale 6 with a single narrow wavelength band of infrared light or a predetermined wavelength band of infrared light.
  • the illumination unit 3 may be provided with a shadowless illumination such as a shadowless lamp.
  • the illumination unit 3 may include a visible light source unit 13 that emits visible light and irradiates the subject P and the scale 6 with the visible light.
  • the visible light source unit 13 is held on the lower surface side of the holding member 12.
  • the light source moving unit 14 can also change the irradiation angle (eg, irradiation direction) of visible light with respect to the subject P and the scale 6.
  • Visible light from the visible light source unit 13 is, for example, uniform light (irradiated to a scale 6 including a subject P and a phantom 5 that is uniformed by being diffused by a diffusion member (not shown)).
  • the imaging unit 4 as a detection unit includes a first imaging unit 21 and a second imaging unit 22 as a detection unit (light receiving sensor).
  • the first imaging unit 21 is an infrared camera, for example, and images the scale 6 including the subject P and the phantom 5 by irradiation with infrared light.
  • the first imaging unit 21 emits light from the subject P or the phantom 5 by irradiation with infrared light (the emitted light includes, for example, reflected light, scattered light, transmitted light, reflected scattered light, etc.). Is detected.
  • the first imaging unit 21 includes an imaging optical system (detection optical system) 23 and an imaging element (light receiving element) 24.
  • the imaging optical system 23 has, for example, an AF mechanism (autofocus mechanism), and forms an image of the subject P and the phantom 5.
  • the optical axis 21 a of the first imaging unit 21 is coaxial with the optical axis of the imaging optical system 23.
  • the image sensor 24 includes, for example, a two-dimensional image sensor such as a CCD image sensor or a CMOS image sensor.
  • a structure in which a plurality of pixels arranged two-dimensionally and a photodetector such as a photodiode is arranged in each pixel can be adopted as the image sensor 24.
  • the imaging element 24 uses, for example, InGaAs (indium gallium arsenide) as a material of the photodetector, and has sensitivity in the wavelength band of infrared light emitted from the infrared light source unit 11.
  • the detection range A1 of the first imaging unit 21 is an imaging region in which the first imaging unit 21 can image on the sample support unit 2 and a visual field region of the first imaging unit 21 on the sample support unit 2. Then, the first imaging unit 21 generates captured image data as an imaging result (detection result), and supplies the captured image data to the control unit 7.
  • the second imaging unit 22 is, for example, a visible camera, and images the scale 6 including the subject P and the phantom 5 by irradiation with visible light.
  • the second imaging unit 22 detects light reflected and scattered from the surface of the subject P or the phantom 5 in the visible light from the visible light source unit 13.
  • the second imaging unit 22 includes an imaging optical system (not shown) and an imaging element (not shown).
  • the imaging optical system has, for example, an AF mechanism (autofocus mechanism), and forms an image of the subject P and the phantom 5.
  • the imaging element of the second imaging unit 22 is, for example, a two-dimensional image sensor using Si as a material for the photodetector, and has sensitivity in the wavelength band of visible light emitted from the visible light source unit 13.
  • the second imaging unit 22 generates captured image data as an imaging result (detection result), and supplies the captured image data to the control unit 7.
  • the imaging device 10 may not include the second imaging unit 22.
  • the second imaging unit 22 may be included in a device outside the imaging device 10. Further, the imaging device 10 may not include the size changing unit 31.
  • the imaging device 10 may include a zoom mechanism (for example, a zoom lens) as the imaging optical system 23, for example.
  • the imaging system 1 includes an imaging unit 4 (for example, an infrared camera that is sensitive to light having a wavelength in the infrared region and a visible camera that is sensitive to light having a wavelength in the visible region), and an illumination unit 3 (eg, red). And a control device 101 (for example, controlling imaging by an infrared camera and light emission by an illumination unit) and a display device 103 (so-called display). .
  • an imaging unit 4 for example, an infrared camera that is sensitive to light having a wavelength in the infrared region and a visible camera that is sensitive to light having a wavelength in the visible region
  • an illumination unit 3 eg, red
  • a control device 101 for example, controlling imaging by an infrared camera and light emission by an illumination unit
  • a display device 103 so-called display.
  • the illumination unit 3 includes, for example, a wavelength of 700 nm to 3000 nm, a wavelength of 800 nm to 2000 nm, a wavelength of 800 nm to 2500 nm, a wavelength of 800 nm to 3000 nm, a wavelength of 950 nm to 3000 nm, a wavelength of 900 nm to 2000 nm, a wavelength of 1100 nm to 2000 nm, It is preferable to emit light having a predetermined wavelength in a wavelength band of wavelengths of 1050 nm to 1650 nm, 1000 nm to 3000 nm, and 1000 nm to 1800 nm.
  • the illumination unit 3 can also emit infrared light having an infrared wavelength based on the spectral characteristics of water and lipid.
  • the control device 101 includes a light source moving unit 14 and an image processing unit 31 in addition to the arithmetic processing unit and the storage device 32.
  • the control device 101 may have a light source moving unit 14 that irradiates light of different wavelengths from the illumination unit 3 sequentially or simultaneously to the scale.
  • the control device 101 can perform control for synchronizing the switching of the emission wavelength by the light source moving unit 14 and the imaging by the infrared camera.
  • the control device 101 can include an image processing unit 31 (image processing is performed on an infrared image captured by an infrared camera).
  • the scale (scale image) is displayed on the display device 103.
  • the display device 103 that operates in response to a command from the image processing unit 31 can display the scale together with an image (visible image or infrared image) of the subject P (eg, biological tissue), for example.
  • the image processing unit 31 can include an image processing unit that combines a plurality of images captured by an infrared camera.
  • the infrared camera detects an image of reflected light from the subject P illuminated by the illumination unit 3 or an image of light transmitted through the subject P.
  • the imaging system 1 can include a driving device that moves the infrared camera and the illumination unit 3 to regularly irradiate and shoot each phantom of the scale on the sample support unit 2 in order.
  • the display device 103 selects an appropriate scale and grayscale range R (FIG. 8) satisfying the optimum camera setting and / or light source optimum setting of the imaging unit 22 from the database 202 of the server 105 via the control unit 201. Can be displayed.
  • the range R of the gray scale can be used as a scale suitable for the observation target (for example, a scale corresponding to the absorbance of the lesioned part).
  • the server 105 connected from the communication unit 104 via the network includes a control unit 201, a database (DB) 202, and a display 203, and scale image data is stored in the DB.
  • DB database
  • the display device 103 is installed on the floor or ceiling of the operating room, and the angle of the screen can be adjusted to a position where a user (eg, a doctor or an operator) can visually recognize (FIG. 9).
  • the imaging system may further include a display for visible images, and the display is installed on the floor or ceiling of the operating room, and the angle of the screen can be adjusted to a position where a user (eg, a doctor or an operator) can visually recognize the screen. .
  • Imaging System setting of the imaging unit (21, 22) of the imaging device (eg, sensitivity, aperture, etc.) as device settings using the scale 6 and There is provided an adjustment method for an imaging apparatus including adjusting settings (eg, wavelength, intensity, etc.) of a light source (visible light source unit 13, infrared light source unit 11).
  • a light source visible light source unit 13, infrared light source unit 11
  • the imaging device to be inspected satisfies the specifications of the product based on how the scale is captured (the captured image of the scale, the brightness of the image, the luminance value for each pixel, the combination pattern of the luminance values, the field of view of the image, etc.) (E.g., whether the luminance value is the same as the specification value or the assumed value) is judged and evaluated (e.g., FIG. 13, FIG. 15, FIG. 16).
  • the scale (each phantom) can be associated with the subject by photographing a subject such as a tissue or organ sample using an imaging device (eg, FIG. 14). Specifically, when photographing a sample of an organ such as a patient suffering from disease A, the scale is placed near the organ so that both (organ and scale) appear in the same image in a single photographing. Take a picture.
  • the organ sample is taken in advance by a medical device (image diagnostic apparatus) such as MRI (magnetic resonance diagnostic apparatus), PET (positron tomography apparatus) or CT (X-ray computed tomography apparatus).
  • MRI magnetic resonance diagnostic apparatus
  • PET positron tomography apparatus
  • CT X-ray computed tomography apparatus
  • the diseased part is specified from the image data (diagnostic image). Therefore, a user such as a doctor can find conditions (for example, a grayscale range R and an absorbance range) in which a diseased part is emphasized by wavelength selection and intensity adjustment of near-infrared illumination (infrared light). At this time, the user sets a scale for photographing with a contrast close to that of the diseased part as a phantom of the disease A.
  • conditions for example, a grayscale range R and an absorbance range
  • near-infrared illumination infrared light
  • Example 2 When imaging is performed to emphasize a diseased part for a patient, the user places a phantom of the target disease (eg, disease A) near the organ to be observed so that the phantom to be used is emphasized. Next, wavelength selection and intensity adjustment of near-infrared illumination are performed (eg, FIG. 15 and FIG. 16). Then, the user identifies and recognizes, as a diseased part, a place in the organ that is emphasized similarly to the phantom (for example, a place that becomes black due to absorption of infrared light).
  • a target disease eg, disease A
  • wavelength selection and intensity adjustment of near-infrared illumination are performed (eg, FIG. 15 and FIG. 16).
  • the user identifies and recognizes, as a diseased part, a place in the organ that is emphasized similarly to the phantom (for example, a place that becomes black due to absorption of infrared light).
  • Example 3 Simply, when it is difficult to visually observe and it is desired to confirm that it is illuminated by near-infrared light, a plurality of scales that respond only to specific wavelengths are prepared and photographed. By switching the illumination wavelength, the scale to be emphasized on the captured image is switched, so that what wavelength of light is currently illuminated (which wavelength of the infrared light the device emits) is visually observed. This can be confirmed (eg, FIG. 13).
  • the imaging system according to the present embodiment may be configured to include the above-described medical device in addition to the above-described imaging device.
  • Example 1 ⁇ Production of scale> As four types of CNT materials having different chiralities, four types of CNTs (C1, C2, C3 and C4) having absorption characteristics shown in FIG. 10, that is, C1: single-walled carbon nanotube SWeNT (R) SG65 (model number 704148, absorption peak) 966nm, manufactured by SIGMA-ALDRICH), C2: single-walled carbon nanotubes SWeNT (R) SG76 (model number 704121, absorption peak 1153nm, manufactured by SIGMA-ALDRICH), C3: KH single-Walled carbon nanotubes, ED ( absorption peak 1588nm, KH CHEMICALS Co., LTD.) And C4 used single-walled carbon nanotubes SO (model number SWNT SO, absorption peak 1821 nm, Meijo Nanocarbon (Japan)).
  • C1 single-walled carbon nanotube SWeNT (R) SG65 (model number 704148, absorption peak) 966nm
  • the half width of the peak can be further reduced.
  • the illumination unit 3 in this case, the infrared light source unit 11
  • the illumination intensity of the illumination part 3 in this case, the infrared light source part 11
  • FIG. 11 is the figure which showed the flowchart of each process 1 to 4 typically.
  • step 4 The solution of step 3 (eg, a fixed amount of 100 ⁇ l within the range of 50 ⁇ l to 500 ⁇ l) is applied to the glass substrate 9a to form a diameter (eg, a diameter within the range of 5 mm to 10 mm) of 10 mm, and the phantom 5 is formed.
  • the solution of step 3 is dropped onto the glass substrate 9a on which the resist pattern is formed, and the dropped solution is formed with a spin coater so that the film thickness (eg, a constant thickness within the range of 0.1 ⁇ m to 10 ⁇ m) is obtained. Make it uniform. Thereafter, the resist is removed to form a phantom having a desired shape on the glass substrate.
  • the same phantom (resin film) is further applied over the phantom 5 manufactured in step 4 to produce phantoms having different thicknesses. it can.
  • FIG. 12 shows a sectional view of the structure of the scale produced by the above method.
  • the substrate is a material having high light transmittance in the near-infrared region and usually having light transmittance of 90% or more or 95% or more.
  • the light reflecting layer is a material having a high light reflectance in the near infrared region and usually having a light reflectance of 90% or more or 95% or more.
  • Spectralon manufactured by Lassphere was used as the light reflecting layer material.
  • the phantom 5 may be directly applied or adhered to the light reflecting layer without using a glass substrate.
  • FIG. 13 shows a scale 6 including a CNT phantom 5 designed so that the scale emphasized by switching (turning on or off) of illumination wavelengths (ad) is switched.
  • the scale 6 can be used, for example, for setting / adjusting the illumination wavelength in a medical imaging apparatus.
  • Also used in medical settings at the manufacturing site to check if the lighting wavelength and intensity switches as intended by the device designer when changing the lighting settings via the input section Take an image of the scale that covers the wavelength and intensity range of the illumination and inspect the scale (image taken by the scale, brightness of the image, brightness value for each pixel, combination pattern of the brightness values, image field of view, etc.) It is possible to judge and evaluate whether or not the target device satisfies the specifications as a product.
  • an imaging apparatus uses a scale 6 including a CNT phantom 5 having different absorption peak wavelengths (ad) and a subject P (eg, a diseased part of a living tissue) in a model case.
  • the phantom grayscale range R and the absorbance range can be determined by selecting the wavelength of near-infrared illumination and adjusting the intensity from the image data. it can.
  • a scale When using a scale at a medical site, for example, when photographing an organ sample such as a patient suffering from a certain disease, the user places the scale 6 near the organ, and both (organ and The condition (e.g., grayscale range R and absorbance range) in which the diseased part is emphasized can be found by taking a picture so that the scale) is reflected and selecting the wavelength of near-infrared illumination and adjusting the intensity.
  • organ sample such as a patient suffering from a certain disease
  • ⁇ Usage example 3 of scale> illumination suitable for photographing the subject P to be evaluated based on the scale 6 including the CNT phantoms 5 having different absorption peak wavelengths (ad) based on the determined gray scale range R. Wavelength and intensity can be selected. Then, the absorbance of the subject P to be evaluated can be evaluated based on the scale 6.
  • a scale corresponding to the target disease is placed near the organ to be observed, Perform near-infrared illumination wavelength selection and intensity adjustment so that the phantom is emphasized (so that the phantom is shaded on the captured image), and recognize the highlighted area as a diseased part in the same way as the phantom be able to.
  • the wavelength and intensity of the illumination are switched as intended by the designer.
  • a scale that covers the wavelength and intensity range of illumination used in the medical field is photographed, and how the scale is captured (the captured image of the scale, the brightness of the image, the brightness value for each pixel, the brightness From the combination pattern of values, the visual field of the image, etc.), it can be evaluated by judging whether or not the device to be inspected satisfies the specifications as a product.
  • ⁇ Usage example 4 of scale> As shown in FIG. 16, the wavelength and intensity of illumination suitable for photographing the diseased part P1 in the subject P are selected based on the scale 6 including the CNT phantoms 5 having different absorption peak wavelengths (a to d), and the subject A portion emphasized in the same manner as Phantom 5 in P can be determined as a diseased part.
  • the phantom of the target disease is placed near the organ to be observed, and the phantom is emphasized
  • the wavelength selection and intensity adjustment of near-infrared illumination can be performed, and a portion emphasized similarly to the phantom can be recognized as a diseased part.
  • subjects P2 and P3 are observation objects in the living tissue that are not emphasized (locations different from the diseased part).
  • the scale 6 in the present embodiment is not limited to the above-described use example of the scale, and a plurality of phantoms 5 having different absorption peaks can be arranged in parallel. It can be used to determine the grayscale range R and absorbance range for multiple phantoms.
  • the imaging apparatus 10 (imaging system 1) of the present embodiment is configured for each tissue in the sample (eg, for each tumor type (including tumors with different stages), for each tumor and lymph node, each tumor and blood vessel, etc. ) Can be generated by the control unit 101, and a plurality of phantom images based on the observation target can be displayed on the display unit 103 (for example, FIG. 13). ).
  • the scale including the above-described CNT phantom 5 is used to easily adjust the wavelength and intensity settings of the light source of the imaging unit of an imaging device such as a near-infrared light imaging device, or to the imaging unit ( Can be used as a scale for measuring the light source (illumination unit 3) of the imaging unit 4) or for determining and evaluating a diseased part or abnormal part such as a living tissue or organ to be imaged It is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Optics & Photonics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

この出願は、カーボンナノチューブ(CNT)を含む複数のファントムと、該ファントムが配置される部材とを備え、該カーボンナノチューブは、赤外領域における光吸収または光反射を有することを特徴とするスケール、該スケールを複数備えるキット、ならびに該スケールまたは該キットを用いて、撮像部の設定および/または光源の設定を調整することを含む、撮像装置の調整方法を提供する。

Description

スケール、撮像装置、撮像システム、キット、および撮像装置の調整方法
 本開示は、スケール、撮像装置、撮像システム、キット、および撮像装置の調整方法に関する。
 カーボンナノチューブ(以下「CNT」と称することもある。)は、炭素を原料とした直径約0.5~50nm、長さμmオーダーの筒状物質であり、多層カーボンナノチューブ(MWNT)、二層カーボンナノチューブ、単層カーボンナノチューブ(SWNT)が知られている。またCNTは、炭素原子が六角形に配置されたグラフェンシート(独立した炭素六角網平面)を円筒状に巻いた形をしているため、巻き方(カイラリティ)によって性質が大きく変化する。
 CNTは、その特異な光学的性質、例えば光励起により近赤外光を発光することを利用して、例えば血球成分などの生体サンプルを検出するためのプローブの標識物質として利用することが提案されている(特許文献1)。
 しかしながら、カーボンナノチューブ(CNT)を撮像装置または撮像システムの設定を確認するため等に使用することは無かった。
特開2012-247188号公報
 本発明者らは、今回、CNTが、赤外光を利用する撮像装置または撮像システムの機器設定の状態を確認するため等の標準に使用できることを見出した。
 第1の実施形態によれば、カーボンナノチューブ(CNT)を含む複数のファントムと、前記ファントムが配置される部材と、を備え、前記カーボンナノチューブは、赤外領域における光吸収を有する、スケールが提供される。
 第2の実施形態によれば、上記のスケールを撮像する撮像装置が提供される。
 第3の実施形態によれば、上記のスケールの表示を含む撮像システムが提供される。
 第4の実施形態によれば、上記のスケールを複数備えるキットが提供される。
 第5の実施形態によれば、上記のスケールを用いて、撮像部の設定および/または光源の設定を調整することを含む、撮像装置の調整方法が提供される。
 本明細書は本願の優先権の基礎となる日本国特許出願番号2017-118173号の開示内容を包含する。
実施形態における、カイラリティの異なるCNTの吸光スペクトルと波長(λからλ)とを示す。 実施形態におけるスケールの説明図である。この図は、波長λからλ(ここで、nは2以上の整数である。)の各波長に特異的な吸収を示す、カイラリティの異なるCNTを含有する複数の異なる濃度のファントム(A1~A9またはB1~B9)(例、希釈系列濃度)のスポットを部材上に配置したストリップ状のスケールを示す。また図中、黒つぶれや白とび以外の濃度を可視化できる一連のファントムをグレースケールとして示している。 カイラリティの異なるCNTを含有する複数の異なる濃度のファントム(例、希釈系列濃度)のスポットを部材上に配置したストリップ状スケール(波長λからλ)、あるいは該スケールの組み合わせを含むキットの一実施形態である。 カイラリティの異なるCNTを含有する複数の異なる濃度のファントム(例、希釈系列濃度)を一つ(例、一枚)の部材上に配置したスケール(波長λからλ)、あるいは前記スケールの組み合わせを含むキットの一実施形態である。 図3Bに示したようなスケールまたはキットを標本支持部(ステージ)に四方(例、周辺、周縁、端部)に配置した状態を示す一実施形態である。図中、十字は中心を表す。 図3Bに示したようなスケールを標本支持部(ステージ)に四方に配置し、かつ標本支持部(ステージ)の中心部に被写体(例、生体組織)を載置した状態を示す一実施形態である。図中、標本支持部(ステージ)の外側の四隅および内側の四隅にそれぞれマークしたL字(破線)は、撮像サイズ(例、A4サイズまたはA7サイズ)を示す。 図3Bに示したようなスケールを板状の支持体上に四方に配置したキットの一実施形態である。図中、十字は中心を表す。 L字型の部材の面上に配置されたファントムを含む4つのスケールを対角線状に板状の支持体上に配置した図4Cの変形例を示すキットの一実施形態である。 8つのL字型のスケールを板状の支持体上に配置した図4Dの変形例を示すキットの一実施形態である。 中(中央部)が開いた部材の面上に配置されたファントムを含むスケールの組み合わせを含む、撮像システムや術中システムで使用可能なキットの一実施形態を示す。 L字型の部材の面上に配置されたファントムを含むスケールの組み合わせを含む、撮像システムや術中システムで使用可能なキットの一実施形態を示す。 実施形態に係る撮像システムの構成例を説明するための図である。図中、DBはデータベースである。 図6Aの撮像システムの断面を示す図である。 実施形態に係る撮像システムを示す機能ブロック図である。 実施形態に係る撮像システムの表示部に被写体(例、生体組織)の画像と一緒にスケールを表示した図である。 手術中に撮像装置によって撮影され表示部に表示された組織の画像とスケールを示す図である。 本実施形態におけるファントムに使用した4種のCNT材料(C1、C2、C3およびC4)の吸光特性を示す。ここでC1は、単層カーボンナノチューブSWeNT(R)SG65(型番704148、吸収ピーク996nm、SIGMA-ALDRICH製)であり、C2は、単層カーボンナノチューブSWeNT(R)SG76(型番704121、吸収ピーク1153nm、SIGMA-ALDRICH製)であり、C3は、KH Single-Walled Carbon Nanotubes, ED(吸収ピーク1588nm、KH CHEMICALS Co., LTD.製)であり、C4は、単層カーボンナノチューブSO(型番SWNT SO、吸収ピーク1821nm、(株)名城ナノカーボン製)である。また、横軸に波長(nm)、縦軸に吸光度をそれぞれとり、スペクトルとして示している。 本実施形態におけるスケールの作製手順(工程1~工程4)を示す。 本実施形態における完成したスケールの構造断面図の例示である。CNT含有樹脂(例、CNT希釈系列)からなる複数のファントム5、近赤外領域の光透過性が90%以上である基板9a、および光反射層(近赤外領域の光反射率が90%以上である)9bを含むスケール6を示す。基板9aと光反射層9bは、ファントム5が配置される部材9を構成している。 照明波長(a~d)の切り替え(点灯もしくは消灯)によって強調されるスケールが切り替わるように設計されたCNTファントム5を含むスケール6を示す一実施形態である。このスケール6は、例えば医療用撮像装置における照明波長の設定・調整などに使用できる。 吸収ピーク波長(a~d)の異なるCNTファントム5を含むスケール6と、被写体P(例、生体組織の疾患部)とを撮像装置を用いて同時に撮影し、画像データから近赤外照明の波長選択と強度調整とによって、被写体Pの撮影に適した範囲のファントムのグレースケール(R)と吸光度範囲(枠内の吸光度)とを決定する、スケールの使用例を示す一実施形態である。 図14に示した吸収ピーク波長(a~d)の異なるCNTファントム5を含むスケール6を使用して被写体Pの撮影に適した照明の波長と強度とを選択する、スケール6の使用例を示す一実施形態である。ここで、被写体Pの撮影に使用可能な範囲のファントムのグレースケールをRで表示し、また、被写体Pの撮影に適した照明強度と一致するファントムとその吸光度の選択を示す。 図14に示した吸収ピーク波長(a~d)の異なるCNTファントム5を含むスケール6を使用して被写体P(P1~P3)内の疾患部(P1)の撮影に適した照明の波長と強度(図中、波長(c)1588nmおよび強度(吸光度)0.18)を選択し、被写体P(P1)内でファントム5と同様に強調される箇所を疾患部として判定する、スケール6の使用例を示す一実施形態である。
 以下に本実施形態について、撮像装置または撮像システムの機器設定の状態を確認するため等の標準(基準)とすることが可能であるスケールおよびその製造方法、当該スケールを撮像して表示可能とする撮像システム、ならびに当該スケールを使用して撮像装置または撮像システムの機器設定を調整する方法について説明する。また、本実施形態における機器設定は、観察対象(例、生体組織、スケール(又はファントム)など)に合わせた撮影条件(あるいは撮影モード)などである。例えば、撮影条件は、観察対象(例、観察対象の大きさ、種類、量など)に基づく、光源の照射光量、撮像部の感度、撮像部の露光時間、撮像部の絞り、撮像部の出力信号のゲインなどを含む。
1.スケール
 実施形態によれば、カーボンナノチューブ(CNT)を含む複数のファントムと、該ファントムが配置される部材と、を備え、該カーボンナノチューブは、赤外領域における光吸収を有する、スケールが提供される。例えば、本実施形態のスケールは、赤外領域における光(例、近赤外光などの赤外光)に対する既知の吸光度を有し、任意の波長に対するサンプルの吸光度を評価(見積もり、推定)することに用いられる。
 ファントムは、撮像装置や撮像システム(例、生体計測装置などの医療機器)の校正、検査、設計などに用いる、生体(例、生物の組織、複数の該組織で構成される臓器)の応答を模擬した物質(模擬体)である。本実施形態におけるファントムは、CNTを含むファントムであり、赤外領域の光を利用する撮像システム等の機器設定の状態を確認し、機器設定を調整する方法などに使用できる。CNTのカイラリティや濃度を変えたり、および/またはファントムの厚さ(例、膜厚)を変えることにより、光吸収などの光学特性を変化させることができるため、上記ファントムは、撮像システムの機器設定調整用スケール(もしくは物差し、光学的撮像用スケール)として使用することができる。
 上記スケールにおいては、別の実施形態により、上記複数のファントムは、互いに濃度が異なるカーボンナノチューブを含むことができる。
 また、上記スケールにおいては、別の実施形態により、上記複数のファントムは第1ファントムおよび第2ファントムを含み、上記第1ファントムと上記第2ファントムとは、互いに赤外領域におけるスペクトルが異なるカーボンナノチューブ(例、赤外領域における第1の光吸収ピークを含む第1のスペクトルを有するCNT、赤外領域における第2の光吸収ピークを含む第2のスペクトルを有するCNT)を含むことができる。
 ここで、スペクトルは、吸収率(または、反射率)と波長とのグラフのような、光のスペクトル(分光分布、分光スペクトル、吸収スペクトルまたは反射スペクトル)を含む。
 上記スケールでは、例えば、スペクトルにおいて、第1波長λに光の吸収ピーク(例、半値幅が数nm以上数100nm以下、半値幅が数nm以上数10nm以下、半値幅が10nm以上100nm以下など)を有する複数のファントム(例、互いに濃度が異なる複数のファントム)からなる列を1列とし、第2波長λに光の吸収ピークを有する別の複数のファントムからなる列を2列とし、第3波長λに光の吸収ピークを有する別の複数のファントムからなる列を3列とし、同様にn列まで並べて規則的に配置することができる。
 「光吸収」の度合いは吸光度によって表すことができる、「光反射」の度合いは反射率によって表すことができる。また、光散乱の度合いは、散乱強度によって表すことができる。本実施形態では、光吸収は、近赤外領域を含む赤外光に対する光の吸収を含む。
 また、ここで「規則的に配置」とは、例えば、CNT濃度の高い濃度から低い濃度の順番で、またはその逆の順番で、上記ファントムを配置するか、あるいは、ファントムの厚さが大きい厚さから小さい厚さの順番で、またはその逆の順番で、上記ファントムを特定の順番で配置するような規則的な配置を含む。
 CNTは、赤外領域に、例えば近赤外領域(例、700nm以上3000nm以下の波長帯域)の特定波長に光(赤外光)の吸収をもつCNTであり、例えば、カイラリティが異なる種々の単層カーボンナノチューブ(single-walled carbon nanotube,SWNT)である。CNTのカイラリティは、カイラル指数(n,m)によって表され、このカイラル指数によって決定される、グラフェンシート(炭素六角網平面)の巻き方の違いにより種々の幾何構造(CNTの直径や長さの違いも生じる。)が存在し、CNTのバンドギャップ、フェルミ順位、仕事関数などの物理量はカイラル指数に依存する。また、CNTは、例えば、カイラリティの違いにより赤外光に対する吸収率の波長依存性(例えば、波長の違いによって光の吸収率に差が生じること)を有し、幾何構造のような構造の違いによって光学特性が変化する(例、図1)。
 別の実施形態により、上記ファントムは、CNTを含む樹脂膜とすることができる。このとき、CNTは、溶媒としての樹脂中に分散、好ましくは均一に分散される。
 樹脂膜には、CNTの分散を均一化するために分散剤を適量含有させてもよい。分散剤の例としては、非限定的に、界面活性剤(例、ドデシル硫酸ナトリウム(SDS)、ドデシルベンゼン硫酸ナトリウム(SDBS)、コール酸ナトリウム(SC)、デオキシコール酸ナトリウム(DOC)など)、ポリベンズイミダゾール(PBI)、ポリイミド(PI)誘導体などの有機化合物、あるいは無機塩(例、炭酸カリウム、炭酸アンモニウム、リン酸三カリウム、酢酸カリウム、酢酸アンモニウムなど)(特開2015-168610号公報)などを挙げることができる。また、分散溶媒の例としては、非限定的に、アセトン、2-ブタノン、テトラヒドロフラン、N-メチルピロリドン、イソプロパノール、などを挙げることができる(特開2015-168610号公報)。
 樹脂は、赤外光に対し透過特性を有するポリマーであり、例えば、使用する赤外波長帯域でCNTの吸収を妨害しない材質からなる。あるいは、樹脂は、赤外光を散乱する性質を有するポリマーであってもよい。
 樹脂の例としては、非限定的に、フッ素系樹脂(例、CYTOP(R)(AGC旭硝子製)、エポキシ系樹脂、その他、ポリプロピレン、ポリエステル、ポリエチレン、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリジメチルシロキサン(PDMS)、ポリメチルメタクリレート(PMMA)、ポリスチレン、ポリ酢酸ビニルなどのポリマー、あるいは、それらの同等の性質を有するポリマー(もしくは等価物)である。
 上記部材(ベース部)は、例えば構造白色を有する材料からなる光反射層(例、白色板のような反射基板)であってもよく、上記部材は、赤外領域(例、近赤外領域)で光を散乱する材質または高い反射率を有する材質からなり、例えば90%以上、95%以上または98%以上の反射率を有するものである。部材の材質は、一実施形態により、金属、セラミックス、タイル、ガラス、紙、ポリマー、木などのいずれでもよく、例えば金属(例、アルミニウム、酸化アルミニウム、銀もしくは銀合金、等)のみからなっていてもよいし、あるいは上で例示したようないずれかの材料の表面上に90%以上の反射率を付与することが可能な炭酸マグネシウム、酸化マグネシウム、硫酸バリウムなどの白色無機物質を均一に塗布することによって、目的の反射率を有する部材とすることができる。また部材は、その表面がなめらかな平面構造を有しており、面上のどの部分で測定してもムラのない一定の高反射率を示すものがよい。
 場合により、部材は、光反射層の上部に光透過性が90%以上または95%以上の基板(例、ガラス)を重ね合わせてもよい(図12)。
 上記スケールにおいては、上記のとおり、複数のファントムは、互いに濃度が異なる複数のCNTを含むことができる。また、当該複数のファントムは、カーボンナノチューブの濃度順(例、希釈系列の順)に上記部材に配置することができる。このとき、例えば、樹脂膜の厚さを一定にしてもよいし、樹脂膜の厚さを(好ましくは一定の厚さ間隔で規則的に)変えてもよい。
 あるいは、上記スケールにおいては、ファントムの厚さを段階的に異なる厚さにすることができる。このときCNTの濃度を一定にしてもよいし、CNTの濃度を(好ましくは希釈系列で規則的に)変えてもよい。
 ファントムの厚さは、例えば0.1μm~1000μmの範囲(例、0.1μm~10μm、0.1μm~100μm)であるが、この範囲に限定されない。また、ファントム中のCNTの濃度は、ファントム1重量部あたりCNT10-6~10-2重量部(例、CNT10-4~10-3重量部)であるが、この範囲に限定されない。
 上記の樹脂膜からなるファントムは上記部材(例、基板、光反射層、容器)の上部(例、配置領域や接着領域などの固定領域)に、例えば塗布、接着などの付着手段によって固定される。固定は、塗布の他に、例えば、赤外領域(例、近赤外領域)に吸収のない接着剤を均一に塗布するなどの接着方法によって行うことができる。
 複数のファントムは、光反射層、基板と光反射層との組み合わせ等の部材上に、例えば、格子状もしくはマトリクス状に、あるいは1列、2列、・・n列となるように規則的に配置することができる。
 実施形態により、上記スケールは、撮像部の設定(例、感度、絞りなど)および/または光源の設定(光の波長、強度など)を調整するために使用することができる。
 また、上記ファントムの形状は、丸、四角、三角、星形などの任意の形状であり、例えばパンチまたはスポットの形状である。
 次に、図2および図3を用いて、本実施形態によるスケールの例を説明する。
 この図2では、異なる波長(λ・・λ)(例、n≧2)の各々についてCNT濃度を高濃度から低濃度に段階的に変えた各ファントムのスポットを一定間隔で一列に配置した個々のスケールを、赤外波長域の短波長から長波長(例、800から1600nm)に順番にマトリクス状に配置している。赤外領域のうち近赤外領域は、血液や水の吸収がなく生体透過性の高い領域であることから、この領域に吸収を有するCNTは上記スケールの材料として有効に使用できる。
 各CNTにおける光吸収を有する波長の違いは、CNTのカイラリティ(巻き方)の違いに依存する(H. Liuら,Nature Communications,2:309,DOI:10.1038/ncomms1313,May 2011)。図1は、カイラリティの異なる精製CNTの各吸収スペクトルを模式的に示したものであるので、吸収ピーク間の位置、吸収ピークの高さ、不純ピークなどは実際のものと異なっている。カイラリティの異なる、種々のCNT(粉末)が市販されているので、それらを、ゲルクロマトグラフィー法などの手法(上記Liuら,2011)によってほぼ100%まで精製をし、(近赤外)分光光度計により吸収ピークを測定して種々のCNTの正確な光の吸収波長を決定することができる。なお、各CNTにおける光の吸収ピークは数nmから数十nm程度の幅(半値幅)をもつため、各CNTにおける吸収波長も数nmから数十nm程度の幅(半値幅)を有する。このように高精製されたCNTを含むファントムを用いて、種々の形態のスケールを作製することができる。市販されるCNT(粉末)として、例えば、製品名で、単層カーボンナノチューブSWeNT(R)SG65(型番704148、吸収ピーク996nm、SIGMA-ALDRICH製)、単層カーボンナノチューブSWeNT(R)SG76(型番704121、吸収ピーク1153nm、SIGMA-ALDRICH製)、KH Single-Walled Carbon Nanotubes, ED(吸収ピーク1588nm、KH CHEMICALS Co., LTD.製)、単層カーボンナノチューブSO(型番SWNT SO、吸収ピーク1821nm、(株)名城ナノカーボン製)などが挙げられる。
 実施形態において、例えば図2または図3Aに示した各スケール6は、カイラリティの異なるCNTを含む複数のファントム5を一定間隔でストリップ形状の部材(例、基板、シート、フレキシブル基材)9上に配置して作製されたものであり、各スケール上のファントムにおける赤外光の吸収波長に基づき選定された波長(例、λからλ)ごとに並列配置されている。このように形成されたスケールセット(例、キット)は、撮像装置や撮像システム、あるいは術中システム、の撮像条件の調整もしくは設定のために使用することができる。このとき上記システムの標本支持台(ステージ)にスケールまたはスケールセットを置いて上記の調整もしくは設定を行うことができる。
 さらに、図2または図3Aのような配置に限らず、本実施形態におけるスケール6は、図3Bに示すように、1つの部材9上に上記複数のファントム5を波長(例、λからλ)ごとに配置させた構成としてもよい。図3Bには、第1波長λであってCNT濃度が異なる各ファントムが一定間隔で一列(例、第1列)に配置され、第2波長λであってCNT濃度が異なる各ファントムが一定間隔で一列(例、第2列)に配置され、第3波長λであってCNT濃度が異なる各ファントムが一定間隔で一列(例、第3列)に配置され、第4波長λであってCNT濃度が異なる各ファントムが一定間隔で一列(例、第4列)に配置され、ならびに第5波長λであってCNT濃度が異なる各ファントムが一定間隔で一列(例、第5列)に配置された実施形態が示されている。
 このように、本実施形態のスケール6は、赤外領域における吸収スペクトルをもとに複数のグループに分けられた複数のファントムを備え、そのグループにおける各ファントムは赤外領域(吸収ピーク波長)における吸光度に基づき含有するCNTの濃度順に所定方向に部材9上に配置されている。
 また、CNT濃度を段階的に変えたファントムのスポットの数は、例えば10個以上、15個以上、20個以上、25個以上、30個以上または40個以上であり、通常10から30個または20から30個である。このとき、スケール6の撮像画像上でユーザが視認できる程度にCNT濃度を変えたファントムを部材に形成することによって、ファントムの画像における階調の分解能をCNT濃度で調整している。このように、特定の波長において吸収ピークを有するCNTを用いた複数のファントムは、CNT濃度が異なるように多段階的(例、10段階、15段階、20段階以上など)にスケール6上に設けられる。
 後述する表示部(図8、図9)に表示されるスケール(スケールの画像)は、ユーザが視認可能であり、例えばグレースケール(灰色の濃淡からなるスケール)あるいは色調の変化を示すスケールを画面上に表示することによって、ユーザは、使用するシステムの撮像部や光源部の波長選択・強度調整/設定範囲をスケール6を介して確認することができる。表示部に表示されたスケールに基づき、ユーザは、各ファントムの画像における濃淡と光吸収の度合い(吸光度)との関連付けが可能になるため、ファントムの画像における特定の波長での色の濃さもしくは濃淡から被写体の撮影時の照明の波長や強度を推定できる。さらにまた、例えば、CNT濃度の異なる(例、希釈系列の)ファントムを含むスケールの撮影と一緒に撮影された生体組織(例、疾患部を含む可能性のある観察対象)の撮影画像に基づき、ユーザは、特定の波長での吸光度が既知であるファントムのグレースケール内の色の濃淡(例、コントラスト、輝度など)と生体組織の画像データの色の濃淡(例、コントラスト、輝度など)とを目視によって比較することによって、生体組織内の異常(例、水分や脂質の急激な変化、線維化など)を推定できる。
 上記のスポットに所定の波長の光が照射されたとき、ユーザは、黒つぶれ、グレースケール(濃度の可視化が可能である)、白とびの色調のうち、グレースケールの範囲のスポット群から最適の吸光度を選ぶことができる(図2)。
 また、本実施形態では、観察対象の生体組織(例、脂肪、血管、神経、筋肉、臓器、疾患組織など)に基づいて波長もしくは波長帯域が決まるので、組織の種類やサイズに合わせてスケールを作製することができる。
 さらにまた、本実施形態では、スケールを作製したとき、スケールの製造ロットごとに測定して得られた物性データ(例、ファントムの波長や吸光度)と、物性データと関係づけた生体組織情報とを蓄積しデータベース化することによって、スケールが有する吸光度の範囲が観察対象の吸光度を包含する確率を高めるため、スケールの信頼性(もしくは品質)が向上する。これによって、信頼性の高いスケールの設計仕様(例、設計値範囲)を特定することができる。
2.キット
 さらに別の実施形態によれば、上記の異なるピーク波長を有する複数のスケールを備えるキットが提供される。
 このキットは、近赤外光イメージング装置(撮像装置)などを備える撮像システムの撮像部の設定および/または光源の設定を簡易に調整するために、あるいはユーザが簡易に観察対象に適した撮影条件になっていることを確認するために使用することができる。また、このような撮像用キットは、本実施形態のスケールまたは複数のスケールを固定して収納する開閉可能な容器(収容ケース)(例、スケールをはめ込むような窪みがある容器、収容するスケールごとに仕切りがあり、1つのスケールに対して1つの収容空間を有する容器など)を備えてもよい。あるいは、容器に替えて接着剤等の固定手段を介してスケールを部材に固定してもよい。
 本実施形態におけるキットは、上記の図3(A、B)、図4(AからE)および図5(A、B)に例示されるように、上記のスケールのセットが被写体(生体組織もしくはサンプル)を囲むように配置された種々の形態をとることができる。これらのキットはあくまで例示であり、発明を制限するものではなく、スケールセットの配置、スケール数、ファントム数、波長などはいずれも変更可能である。
 図4Aは、図3B(または図3A)に示したようなスケールセットを、撮像システムの標本支持部(ステージ)に四方に配置した状態を示しており、図4Bは、標本支持部(ステージ)の中心部に被写体(生体組織もしくはサンプル)を置いた状態を示す。このように、標本支持部(ステージ)に載置可能な図3Bまたは図3Aに示したスケールセットは、撮像システムの撮像部や光源等の調整のためのキットとして使用することができる。また、図4Bに示すような撮像サイズ(L字マーク)を撮像システムの標本支持部(ステージ)に備えることによって、被写体(生体組織もしくはサンプル)およびスケールセットを一緒に画像化できるようにし、さらにスケール上の最適ファントムを特定し、データベース上に保存することが可能となる。
 図4Cは、図3B(または図3A)に示したようなスケールを板状の支持体上に四方に配置した形態のキットの例示である。ここで、支持体は、撮像システムの調整に影響を及ぼさない材質であればいずれであってもよい。そのような材質は、例えば、ポリマー、紙、ガラス、木、金属、セラミックスなどの物質から選択することができる。このようなキットを撮像システムの標本支持部(ステージ)に直接置くことができるため、作業効率がよくなる。
 図4Dは、L字型の部材の面上に配置されたファントムを含む4つのスケールを対角線状に板状の支持体上に配置した図4Cの変形例を示すキットである。スケールセットの配置、スケールセットの数、ファントム数は変更可能であり、また、波長についても、例えばλからλに制限せずに変更可能であり、それら以外の異なる波長に吸収ピークを有するファントムを含むスケールを配置してもよい。
 図4Eは、8つのL字型のスケールを板状の支持体上に配置した図4Dの変形例を示すキットである。図4Dと同様に、スケールセットの配置、スケールセットの数、ファントム数および波長は、適宜変更可能である。
 図5Aは、中が開いた部材の面上に配置されたファントムを含むスケールの組み合わせを含む、例えば撮像システムや術中システムなどの撮像装置を含むシステムで使用可能なキットの例示である。λからλの波長に対応したスケールセット以外のセットについては、同じスケールセットまたは、異なる波長に対応した異なるスケールセットを配置してもよい。このような形態のキットにおいては、調整すべきシステムが撮像システムである場合、該キットを該システムの標本支持部(ステージ)に載置し、中が開いた部分に被写体(例、生体組織もしくはサンプル)を置くことができる。また、調整すべきシステムが術中システムである場合、該キットの中が開いた部分に患者の撮像すべき組織が配置されるように該キットを平坦な状態で置くことができる。
 図5Bは、L字型の部材の面上に配置されたファントムを含むスケールの組み合わせを含む、撮像システムや術中システムで使用可能なキットの例示である。図5Aの場合と同様に、該キットを撮像システムの標本支持部(ステージ)に載置することができるし、また、術中システムにおいて患者の撮像すべき組織の近傍に該キットを置くことができる。
 キットにはさらに、上記スケールによる撮像装置の調整手順を記載した使用説明書が含まれてもよい。また、キットに含まれる各スケールの各波長における各ファントムの吸光度を表示した表を該キットに含めることができる。
3.スケールの製造方法
(1)カーボンナノチューブ(CNT)の精製
 CNTは、例えば長さ、電気的性質、または、直径とカイラリティの違いに基づいて分離精製される。CNTは、単層カーボンナノチューブおよび多層カーボンナノチューブのいずれかであり、好ましくは単層カーボンナノチューブである。
 単層カーボンナノチューブの精製は、ナノチューブの電子的および光学的性質に基づいて、特に単層カーボンナノチューブの直径および立体配座によって分類し、CNTを分離することができる(特表2005-527455号公報)。
 あるいは、カーボンナノチューブを含む試料に光を照射し、所望の物性(直径およびカイラルベクトルの少なくとも一方を含む)を有するカーボンナノチューブを選択することを含む方法によって、所望の物性を有するカーボンナノチューブを分離、濃縮または精製することができる(再表2005/077827号公報)。
 あるいは、アガロースゲルを充填した多重カラムによるクロマトグラフィーを利用するsingle-surfactant multicolumn gel chromatography法(H. Liuら,Nature Communications,2:309,DOI:10.1038/ncomms1313,May 2011)によってカイラリティの異なるCNTを分離することができる。
 あるいは、非線形密度勾配超遠心分離によりカイラリティの異なる単層カーボンナノチューブを分離することができる(S. Ghosh et al., Nature Nanothechnology 5:443-450, 2010)。
 あるいは、カイラリティの異なる単層カーボンナノチューブは、構造特異的にDNA配列を認識するという性質を利用して個々の単層カーボンナノチューブを分離することが提案されている(X.M. Tu et al., Nature 2009, 460:250-253)。
 このようにして、本実施形態では、CNTの直径や立体配座の違いに基づくカイラリティの違いを利用して単層カーボンナノチューブを精製することができる(準備工程)。
 なお、カイラリティが異なる種々の単層カーボンナノチューブが市販されているので、それを使用することができる(準備工程)。市販の単層カーボンナノチューブは、必要に応じて、上記の方法によって、純度をほぼ100%にするために精製することができる。
(2)ファントムの作製
 次に、上記のファントムを作製するために、例えば、上述のように精製したCNT粉末を、粘性のある液体状の樹脂に練り込み、CNTを均一に分散させてCNTインクを作製する。続いて、CNTインクを部材(例、基板、光反射層、もしくは基板と光反射層の組み合わせ)上に垂らし、もしくは塗布し、ブレードを(例えば、自動装置により)一定速度で動かして膜状のファントム(この場合、樹脂膜)を形成し、硬化させる(ファントムの形成工程)。このとき、部材とブレードとの距離を変えることにより膜厚が異なる種々の樹脂膜を作製することができる。また、CNTインクのCNT濃度を(例えば、希釈系列により段階的に)変えることによりCNT濃度の異なる種々の樹脂膜(ファントム)を作製することができる。なお、CNTインクの樹脂膜を部材上に形成する方法としてはスピンコート法、ディップコート法、ブレードコート法、キャスト法などがあり、CNTインクを形成してから部材上に固定する方法としては型を用いた成形法などが挙げられる。
 樹脂は、近赤外領域(例、700nm~3000nm)で際立った光吸収がなく、また、屈折率が1.5以下であるポリマー材料から選択しうる。樹脂は、例えばフッ素系樹脂、エポキシ系樹脂などである。
 さらにまた、CNTの濃度および厚さは、上記例示のとおりであり、撮像装置の型番や種類、被写体(例、生体組織)の種類などに応じて適宜変更することができる。
(3)部材への樹脂膜(ファントム)の固定
 上記の樹脂膜をパンチ等で任意の形状に加工し、例えば、上記の構造白色を有する部材(例、近赤外領域で90%以上、好ましくは95%以上、さらに好ましくは98%以上の反射率を有する光反射層)6上に、膜厚の異なる樹脂膜を厚み順に配置するか、あるいはCNT濃度の異なる樹脂膜を高濃度から低濃度の順(または、その逆の順)に配置し、固定する。部材6上へのファントムの配置の仕方は規則的であればいずれでもよく、例えば格子状もしくはマトリクス状、あるいは1列、2列、3列・・・n列となるように配置する。
 ファントムをその厚さ順に部材6上に配置するとき、使用する濃度のCNTは特定の第1波長λに対する高い吸収を有するので、λ用のスケール(スケール領域)となる。同様にして、第2波長λ、第3波長λ・・第n波長λ用のスケール(スケール領域)を作製し、例えば、部材6上に行=膜厚(吸光度)、列=波長としてマトリクス状に複数のファントムを配置したスケールを製造することができる。
 あるいは、CNTの濃度順に配置するとき、特定の第1波長λ、第2波長λ、第3波長λ・・第n波長λのそれぞれに対し、ファントムの厚さを一定にし、CNT濃度が異なる(すなわち、吸光度または反射率が異なる)複数のファントムを部材6上に配置することができる。このようにして、部材6上に行=濃度(吸光度)、列=波長としてマトリクス状に複数のファントムを配置したスケールを製造することができる。
 部材6にファントム5を固定する方法として、ファントムを部材に直接塗布する方法、射出成形によって基板(部材)に凹部(窪み)を形成し、そこにファントムを塗布する方法、インクジェットによってファントムを滴下する方法、赤外領域(例、近赤外領域)に吸収のない接着剤を均一に塗布するなどの接着方法、などが挙げられる。
 上記のようにして作製された異なる波長に対応した複数のスケールを、図3~図5に示されるような種々の形態に組み合わせることによって多様なキットを製造することができる。
4.撮像装置および撮像システム
 実施形態によれば、上記のスケールを撮像する撮像装置、あるいは上記のスケールの表示を含む撮像システムが提供される。
 撮像装置において、上記のスケール6が標本支持部(ステージ)2に固定または取付可能に配置された構成であり、スケール6が標本支持部2に備えられていてもよい。
 撮像システムは、赤外領域の光を利用したシステムであればいずれであってもよい。そのようなシステムの例は、近赤外光イメージング装置を含む病理支援または手術支援などの医療用システムである。
 撮像システムとしては、例えば以下に示すような病理検査用システム、術中において生体内部の組織の画像および立体画像を取得可能な手術支援用撮像システムなどを例示することができる(図6、図7、図8、図9)。
 図6は、実施形態に係る撮像システム1の構成例を説明するための図である。図6Aは、本実施形態に係る撮像システム1の構成例を示す図である。図6Bは、撮像システム1における撮像装置10の構成例を示す図である。図中のXYZ直交座標系において、X方向およびY方向は、例えば水平方向であり、Z方向は例えば鉛直方向である。X方向、Y方向、およびZ方向の各方向において、適宜、矢印の向きを+側(例、+X側)と称し、その反対側を一側(例、-X側)と称す。
 撮像システム1は、例えば、病理診断支援、臨床診断支援、観察支援、手術支援などの医療支援に利用される。図6Aに示すように、撮像システム1は、撮像装置10と、撮像システム1の全体を制御する制御装置101と、ユーザ(オペレータ)がデータや指示コマンドなどを入力する際に用いる入力装置102と、例えばGUIや撮像装置10によって撮像された画像などを表示する表示装置(表示部)103と、を備えている。図6Bに示すように、撮像装置10は、標本支持部(ステージ)2と、照明ユニット(照明部〉3と、検出ユニット(撮像ユニット)4と、ファントム5が配置されたスケール6と、制御装置101と通信可能な制御部7と、照明ユニット3、検出ユニット4、スケール6および制御部7などを収容する収容部8と、を備えている。制御部7は、例えば、制御装置101からの指示コマンドによって動作する。例えば、ユーザ(オペレータ)によって入力装置102から入力された指示コマンドは制御装置101で処理され、制御部7に送信される。また、制御装置101は、撮像動作に係る各種プログラムや撮像装置10の調整処理を実行するプログラムを制御装置101内のメモリから読み込み、当該プログラムに従って制御部7に各動作対象(例えば、照明ユニット3の赤外光源部11や可視光源部13、第1撮像部21や第2撮像部22など)を動作させるように指示する。さらに、制御装置101は、上述の各ファントム5(調整用ファントム)に含まれるCNT濃度および各ファントム5の厚さ、ならびに各スケール6における所定波長に対する各ファントム5の吸光度もしくは反射率等の物理量のデータ(光学特性値)を予め測定し記憶装置32(例、内蔵メモリ)に予め格納している。特定の波長(例、第1波長λ、第2波長λなど)を使用してサンプルの撮像を行う場合において撮像装置10を調整する際には、例えば、スケールの指定された特定の列(例、第1波長λ、第2波長λなど)から輝度値を得て、該特定の列における各スポットがそれぞれ適切な異なる色調(階調)となるように光源の光量などの撮影条件を変更する。また、オペレータが、入力装置102を用いて、スケール6内の特定の列で各スポットがそれぞれ異なる階調(または色調)となるファントム5を入力装置102または表示装置103を介して指定する。そして、制御装置101は、調整処理で用いる、指定されたファントム5の上記データを記憶装置32(例、内蔵メモリ)から取得し、制御部7に送信する。
 標本支持部2は、被写体P(以下、「生体組織」または「サンプル」ともいう)を含む標本を支持する。標本支持部2は、例えば、矩形板状の部材である。標本支持部2は、例えば、その上面(載置面)が水平方向とほぼ平行に配置され、この上面(載置面)に被写体Pを載置可能である。また、例えば、撮像装置10の調整を行う場合には、ファントム5を収容したスケール6を標本支持部2の載置面上に載置することができる(図4A,B)。被写体Pは、例えば人間の組織であるが、人間以外の生物(例、動物、植物)の組織でもよい。被写体Pは、生物から切り取った状態の組織でもよいし、生物に付随した状態の組織でもよい。また、組織BTは、生存している生物(生体)の組織(生体組織)でもよいし、死亡後の生物(死体)の組織でもよい。組織BTは、生物から摘出した物体でもよい。被写体Pは、水および/または脂質を含む組織を含んでもよいし、生物のいずれの器官(臓器)を含んでもよく、血管や皮膚を含んでいてもよいし、皮膚よりも内側の内臓などを含んでもよい。また、被写体Pは、光を受けて励起により光を発する物質(例えば、蛍光物質、りん光物質)を生物の組織に付与したものであってもよい。被写体Pは、ホルマリン等の組織固定液を用いて固定されていてもよい。
 照明ユニット3は、例えば、標本支持部2の上方に配置され、赤外光(以下、「近赤外光」をも含む概念である)を被写体Pやファントム5に照射する。照明ユニット3は、例えば撮像ユニット4に取り付けられる。照明ユニット3は、赤外光源部11と、保持部材12と、可視光源部13と、光源移動部14とを備える。赤外光源部11は、少なくとも赤外光(例、第1波長の赤外光、第2波長の赤外光など)を射出(放射)する。保持部材12は、赤外光源部11を保持する。保持部材12は、例えば板状の部材であり、その下面側に赤外光源部11を保持する。光源移動部14は、被写体Pやファントム5(またはスケール6)に対する赤外光の照射角度を変化させる。赤外光源部11から射出された赤外光は、例えば均一な光とされ(例えば、図示しない拡散部材によって拡散光とされて均一化される)組織BTやファントム5を含むスケール6に照射される。このように、照明ユニット3は、組織BTやスケール6に単一の狭波長帯の赤外光または所定の波長帯域の赤外光を照射可能である。また、例えば、照明ユニット3は、無影灯のような無影照明を備えるようにしてもよい。
 本実施形態において、照明ユニット3は、可視光を射出し、被写体Pやスケール6に当該可視光を照射する可視光源部13を備える構成してもよい。この場合、可視光源部13は、保持部材12の下面側に保持される。光源移動部14は、被写体Pやスケール6に対する可視光の照射角度(例、照射方向)を変化させることもできる。可視光源部13からの可視光は、例えば、均一な光とされ(図示しない拡散部材によって拡散光とされて均一化される)被写体Pやファントム5を含むスケール6に照射される。
 また、検出ユニットとしての撮像ユニット4は、検出部(受光センサ)としての第1撮像部21と、第2撮像部22とを備える。第1撮像部21は、例えば赤外カメラであり、赤外光の照射により被写体Pやファントム5を含むスケール6を撮像する。第1撮像部21は、赤外光の照射により被写体Pやファントム5から放射される光(放射される光としては、例えば、反射光、散乱光、透過光、反射散乱光などが挙げられる)を検出する。第1撮像部21は、撮像光学系(検出光学系)23および撮像素子(受光素子)24を備える。撮像光学系23は、例えばAF機構(オートフォーカス機構)を有し、被写体Pやファントム5の像を形成する。第1撮像部21の光軸21aは、撮像光学系23の光軸と同軸である。
 撮像素子24は、例えば、CCDイメージセンサ、CMOSイメージセンサなどの二次元イメージセンサを含む。撮像素子24として、例えば、二次元的に配列された複数の画素を有し、各画素にフォトダイオードなどの光検出器が配置された構造を採用することが可能である。撮像素子24は、例えば、光検出器の材料にInGaAs(インジウムガリウムヒ素)を用いたものであり、赤外光源部11から射出される赤外光の波長帯に感度を有する。第1撮像部21の検出範囲A1は、標本支持部2上で第1撮像部21が撮像可能な撮像領域、標本支持部2上の第1撮像部21の視野領域である。そして、第1撮像部21は、撮像結果(検出結果)として撮像画像のデータを生成し、撮像画像のデータを制御部7に供給する。
 第2撮像部22は、例えば可視カメラであり、可視光の照射により被写体Pやファントム5を含むスケール6を撮像する。第2撮像部22は、例えば、可視光源部13からの可視光のうち被写体Pやファントム5の表面で反射散乱した光を検出する。第2撮像部22は、撮像光学系(図示せず)および撮像素子(図示せず)を備える。撮像光学系は、例えばAF機構(オートフォーカス機構)を有し、被写体Pやファントム5の像を形成する。第2撮像部22の撮像素子は、例えば光検出器の材料にSiを用いた二次元イメージセンサであり、可視光源部13から射出される可視光の波長帯に感度を有する。そして、第2撮像部22は、撮像結果(検出結果)として撮像画像のデータを生成し、撮像画像のデータを制御部7に供給する。なお、撮像装置10は、第2撮像部22を備えなくてもよい。第2撮像部22は、撮像装置10の外部の装置に含まれていてもよい。また、撮像装置10は、サイズ変更部31を備えなくてもよい。撮像装置10は、例えば撮像光学系23としてズーム機構(例えば、ズームレンズ)を備えてもよい。
 撮像システム1は、撮像ユニット4(例、赤外領域の波長の光に感度を有する赤外カメラと可視領域の波長の光に感度を有する可視カメラとを含む)、照明ユニット3(例、赤外領域の複数の波長の光や可視光を発光する)、制御装置101(例、赤外カメラによる撮像と照明ユニットによる発光とを制御する)および表示装置103(いわゆるデスプレイ)を備えることができる。
 上記照明ユニット3は、例えば、波長700nm以上3000nm以下、波長800nm以上2000nm以下、波長800nm以上2500nm以下、波長800nm以上3000nm以下、波長950nm以上3000nm以下、波長900nm以上2000nm以下、波長1100nm以上2000nm以下、波長1050nm以上1650nm以下、1000nm以上3000nm以下、および1000nm以上1800nm以下の波長帯域のうち所定波長の光を発するものがよい。
 上記照明ユニット3はまた、水と脂質との分光特性に基づく赤外領域の波長を有する赤外光を発することができる。
 また、上記制御装置101は、演算処理装置、記憶装置32の他に、光源移動部14および画像処理部31を含む。
 上記制御装置101は、照明ユニット3から異なる波長の光を上記スケールに対して順次または同時に照射させる光源移動部14を有することができる。
 上記制御装置101は、光源移動部14による発光波長の切り替えと、赤外カメラによる撮像とを同期させる制御を行うことができる。
 上記制御装置101は、画像処理部31(赤外カメラによって撮像された赤外画像を画像処理する)を含むことができる。
 上記表示装置103に上記スケール(スケールの画像)が表示される。例えば、上記画像処理部31からの指令で作動する表示装置103は、例えば、被写体P(例、生体組織)の画像(可視画像または赤外画像)と一緒に上記スケールを表示することができる。
 上記画像処理部31は、赤外カメラによって撮像した複数の画像を合成する画像処理部を有することができる。
 上記赤外カメラは、照明ユニット3により照明された被写体Pからの反射光による像または被写体Pを透過した光の像を検出する。
 上記撮像システム1は、上記赤外カメラおよび照明ユニット3を、標本支持部2上のスケールの各ファントムに順番に規則的に照射しかつ撮像するために移動させる駆動装置を備えることができる。
 上記表示装置103は、サーバー105のデータベース202から制御部201を介して撮像部22のカメラの最適設定および/または光源の最適設定を満たす適切なスケールとグレースケールの範囲R(図8)を選択し表示させることができる。グレースケールの範囲Rは、観察対象に適したスケール(例、病変部の吸光度に対応したスケール)として使うことができる。
 通信部104からネットワークを介して接続されるサーバー105は、制御部201、データベース(DB)202およびディスプレイ203を有しており、DBにはスケール画像付データが保存されている。これにより、遠隔での病理診断が可能になる。また、上記表示装置103は、手術室の床または天井に設置され、ユーザ(例、医師やオペレータ)が視認可能な位置に画面の角度を調節可能である(図9)。撮像システムは可視画像用ディスプレイをさらに備えてもよく、該ディスプレイは、手術室の床または天井に設置され、ユーザ(例、医師やオペレータ)が視認可能な位置に画面の角度を調節可能である。
5.撮像装置(撮像システム)の調整方法
 さらに別の実施形態によれば、上記のスケール6を用いて、機器設定として撮像装置の撮像部(21、22)の設定(例、感度、絞りなど)および/または光源(可視光源部13、赤外光源部11)の設定(例、波長、強度など)を調整することを含む、撮像装置の調整方法が提供される。
 <出荷前の調整例>
 医療現場で使用される撮像装置の光源部の照明の波長および強度範囲は、赤外光によって腫瘍などの患部を可視化できる臨床研究の成果として、予め分かっている場合、製造現場では、入力部を介して照明設定(例、光の波長、強度、絞りなど)を変えたときに、設計者が意図した通りに、照明光の波長と強度とが切り替わるかどうかを確認するために、医療現場で使用される照明光の波長と強度範囲とをカバーする上記のスケール6(例、特定の波長に光の吸収ピークを有するファントムと該ファントムの希釈系列とを備えるスケール)を撮影する。スケールの写り方(スケールの撮像画像、該画像の明るさや画素ごとの輝度値、該輝度値の組み合わせパターン、画像の視野など)から、検査対象の撮像装置が、製品としての仕様を満たしているか否か(例、輝度値が仕様値や想定値と同じか否か)を判断して評価する(例、図13、図15、図16)。
<出荷後の調整例>
 医療現場での調整例(設定、選定を含む)を以下に記載する。
(例1)
 組織や臓器のサンプル等の被写体を撮像装置を用いた撮影によって、上記スケール(各ファントム)を被写体と関連づけることができる(例、図14)。具体的には、疾患Aを罹患した患者等の臓器のサンプルの撮影時に、臓器の近くに上記スケールを置いて、一回の撮影で同一画像内に両者(臓器・スケール)が写り込むように撮影を行う。この臓器のサンプルは、事前にMRI(磁気共鳴診断装置)、PET(ポジトロン断層装置)やCT(X線コンピュータ断層撮影装置)等の医療機器(画像診断装置)で撮影されていて、MRI等の画像データ(診断画像)から、疾患部が特定されている。そのため、医師などのユーザは、近赤外照明(赤外光)の波長選択および強度調整によって、疾患部が強調される条件(例、グレースケールの範囲Rと吸光度範囲)を見出すことができる。このとき、ユーザは、疾患部と近いコントラストで撮影されるスケールを、疾患Aのファントムに設定する。
(例2)
 患者を対象として、疾患部を強調するために撮影を行う場合、ユーザは、対象疾患(例、疾患A)のファントムを、観察対象とする臓器の近くに配置し、用いるファントムが強調されるように、近赤外照明の波長選択および強度調整を実施する(例、図15、図16)。そして、ユーザは、臓器内にあって、ファントムと同様に強調される箇所(例、赤外光の吸収によって黒色になる箇所)を、疾患部として特定して認識する。
(例3)
 単純に、目視観察が難しい、近赤外光によって照明されていることを確認したい場合には、特定の波長のみに応答するスケールを、複数用意して、撮影する。照明波長の切り替えによって、撮像画像上で強調されるスケールが切り替わることによって、今、どの波長の光によって照明されているか(装置がどの波長の赤外光を照射しているのか)を目視観察によって確認することができる(例、図13)。
 また、本実施形態における撮像システムは、上記した撮像装置に加えて、上記のMRIなどの医療機器を備える構成でもよい。
  以下の実施例により実施形態をさらに具体的に説明するが、その技術的範囲は、それらの実施例に限定されないものとする。
 [実施例1]
<スケールの作製>
 カイラリティの異なる4種のCNT材料として、図10に示す吸収特性を有する4種のCNT(C1、C2、C3およびC4)すなわち、C1:単層カーボンナノチューブSWeNT(R)SG65(型番704148、吸収ピーク966nm、SIGMA-ALDRICH製)、C2:単層カーボンナノチューブSWeNT(R)SG76(型番704121、吸収ピーク1153nm、SIGMA-ALDRICH製)、C3:KH Single-Walled Carbon Nanotubes, ED(吸収ピーク1588nm、KH CHEMICALS Co., LTD.製)、C4は、単層カーボンナノチューブSO(型番SWNT SO、吸収ピーク1821nm、(株)名城ナノカーボン(日本)製)を使用した。これらの材料を上記の精製工程にかける場合には、さらにピークの半値幅を小さくすることができる。本実施例では、照明部3(この場合、赤外光源部11)の光強度を調整し透過率を上げることによって各材料のピークのみを分別することが可能であった。また、各材料のピーク部分が黒つぶれになるように照明部3(この場合、赤外光源部11)の照明強度を調整した。
 スケールは、次のように作製した(図11)。なお、図11は、各工程1から4のフローチャートを模式的に示した図である。
(工程1)
 フッ素系樹脂(CYTOP(R)(AGC旭硝子(日本)製))10mlに上記の各CNT粉末1mg~10mgを添加した(CNT濃度0.1mg/ml~1mg/ml)。この樹脂は、近赤外領域(800nm~2000nm)で際立った光吸収がなく、かつ屈折率が1.5以下である。
(工程2)
 樹脂にCNT粉末を練りこみ、CNTを一様に分散した。
(工程3)
 樹脂を用いて希釈系列によってCNT含有量の異なる溶液を作製した。
(工程4)
 工程3の溶液(例、50μl~500μlの範囲内の一定量100μl)をガラス基板9aに塗布し、直径(例、5mm~10mmの範囲内の直径)10mmとなるように形成し、ファントム5を作製した。具体的には、工程3の溶液をレジストパターンが形成されたガラス基板9aに滴下し、滴下した溶液をスピンコーターで膜厚(例、0.1μm~10μmの範囲内の一定の厚さ)が均一になるようにする。その後、レジストを剥離することによって、目的の形状のファントムをガラス基板に形成する。
(工程5)
 ファントム5をオーブンを用いた加熱により硬化処理したのち、図12に示すようにガラス基板9aを光反射層9bに重ね合わせ、CNT濃度が異なるファントム5を一定間隔で配置したスケールを得た。
 もしCNT濃度を一定にし、ファントムの厚さを順次増加させるときには、工程4で作製したファントム5の上にさらに同じファントム(樹脂膜)を重ね塗りすることによって、厚みの異なるファントムを作製することができる。
 上記の方法によって作製されたスケールの構造断面図を図12に示した。基板は、近赤外領域の光透過性が高く、通常90%以上または95%以上の光透過性を有する材料である。また、光反射層は、近赤外領域の光反射率が高く、通常90%以上または95%以上の光反射率を有する材料である。本実施例では、光反射層材料として、スペクトラロン(ラズスフェア製)を使用した。
 場合により、ガラス基板を使用しないで、ファントム5を光反射層に直接塗布もしくは接着してもよい。
[実施例2]
<スケールの使用例1>
 単純に、目視観察が難しい、近赤外光によって照明されていることを確認したい場合には、図13に示すような特定の波長のみに応答するスケールを、複数用意して、本実施形態の撮像装置1を用いて撮影する。照明波長の切り替えによって、強調されるスケールが切り替わることによって、今、どの波長の光によって照明されているかを目視観察によって確認することができる。
 図13では、照明波長(a~d)の切り替え(点灯もしくは消灯)によって強調されるスケールが切り替わるように設計されたCNTファントム5を含むスケール6を示す。このスケール6は、例えば医療用撮像装置における照明波長の設定・調整などに使用できる。
 また、製造現場では、入力部を介して照明設定を変えたときに、装置の設計者が意図した通りに、照明の波長と強度が切り替わるかどうかを確認するために、医療現場で使用される照明の波長と強度範囲をカバーするスケールを撮影し、スケールの写り方(スケールの撮像画像、該画像の明るさや画素ごとの輝度値、該輝度値の組み合わせパターン、画像の視野など)から、検査対象の装置が、製品としての仕様を満たしているか否かを判断して評価することができる。
<スケールの使用例2>
 図14に示すように、吸収ピーク波長(a~d)の異なるCNTファントム5を含むスケール6と、モデルケースの被写体P(例、生体組織の疾患部)とを本実施形態の撮像装置を用いて同じ撮像視野内において同時に撮影し、画像データから近赤外照明の波長選択と強度調整とによって、被写体Pの撮影に適した範囲のファントムのグレースケールの範囲Rと吸光度範囲を決定することができる。
 医療現場でスケールを使用する場合、例えば、ある疾患に罹患した患者等の臓器サンプルの撮影時に、ユーザが臓器の近くにスケール6を置いて、一回の撮影で同一画像内に両者(臓器・スケール)が写り込むように撮影を行い、近赤外照明の波長選択、強度調整によって、疾患部が強調される条件(例、グレースケールの範囲Rと吸光度範囲)を見出すことができる。
<スケールの使用例3>
 図15に示すように、決定されたグレースケールの範囲Rに基づく、吸収ピーク波長(a~d)の異なるCNTファントム5を含むスケール6を基準にして評価対象の被写体Pの撮影に適した照明の波長と強度を選択することが可能になる。そして、スケール6に基づいて評価対象の被写体Pの吸光度を評価することができる。
 医療現場でスケールを使用する場合、例えば、患者を対象として、疾患部を強調するために撮影を行うとき、対象疾患に対応するスケール(ファントム)を、観察対象とする臓器の近くに配置し、ファントムが強調されるように(撮像画像上でファントムに濃淡が生じるように)、近赤外照明の波長選択、強度調整を実施し、ファントムと同様に強調される箇所を、疾患部として認識することができる。
 あるいは、上記使用例1と同様に、製造現場でスケールを使用する場合、入力部を介して光源の照明設定を変えたときに、設計者が意図した通りに、照明の波長と強度が切り替わるかどうかを確認するために、医療現場で使用される照明の波長と強度範囲をカバーするスケールを撮影し、スケールの写り方(スケールの撮像画像、該画像の明るさや画素ごとの輝度値、該輝度値の組み合わせパターン、画像の視野など)から、検査対象の装置が、製品としての仕様を満たしているか否かを判断して評価することができる。
<スケールの使用例4>
 図16に示すように、吸収ピーク波長(a~d)の異なるCNTファントム5を含むスケール6を基準にして被写体P内の疾患部P1の撮影に適した照明の波長と強度を選択し、被写体P内でファントム5と同様に強調される箇所を疾患部として判定することができる。
 医療現場でスケールを使用する場合、例えば、患者を対象として、疾患部を強調するために撮影を行う場合、対象疾患のファントムを、観察対象とする臓器の近くに配置し、ファントムが強調されるように、近赤外照明の波長選択、強度調整を実施し、ファントムと同様に強調される箇所を、疾患部として認識することができる。なお、図16において、被写体P2およびP3は、生体組織内の強調されない観察対象(上記疾患部とは異なる箇所)である。
 あるいは、上記使用例1と同様に、製造現場でスケールを使用する場合、入力部を介して照明設定を変えたときに、設計者が意図した通りに、照明の波長と強度が切り替わるかどうかを確認するために、医療現場で使用される照明の波長と強度範囲をカバーするスケールを撮影し、スケールの写り方(スケールの撮像画像、該画像の明るさや画素ごとの輝度値、該輝度値の組み合わせパターン、画像の視野など)から、検査対象の装置が、製品としての仕様を満たしているか否かを判断して評価することができる。
 なお、上記したスケールの使用例に限らず、本実施形態におけるスケール6は、互いに吸収ピークの異なる複数のファントム5を並列に配置させて用いることができるため、一回のスケール6の撮影によって同時に複数のファントムに対するグレースケールの範囲Rと吸光度範囲とを決定することに使える。これを利用して、本実施形態の撮像装置10(撮像システム1)は、サンプル中の組織ごと(例、腫瘍の種類(ステージの異なる腫瘍を含む)ごと、腫瘍とリンパ節、腫瘍と血管など)に異なるファントム(赤外光に対する吸収ピークが異なるファントム)の画像を制御部101によって生成し、観察対象に基づいた複数のファントムの画像を表示部103に表示させることができる(例、図13)。
 上記のCNTファントム5を含むスケールは、近赤外光イメージング装置などの撮像装置の撮像部の光源の波長や強度の設定を簡易に調整するための、あるいは医療現場での撮像装置の撮像部(撮像ユニット4)の光源部(照明ユニット3)の調整のための、または、撮影対象となる生体組織や臓器等の疾患部や異常個所を判定して評価するためのスケール(物差し)として使用可能である。
1 撮像システム
2 標本支持部
3 照明ユニット
4 撮像ユニット(検出ユニット)
5 ファントム
6 スケール
7 制御部
8 収容部
9 部材
9a 基板
9b 光反射層
10 撮像装置
11 赤外光源部
12 保持部材
13 可視光源部
14 光源移動部
16 複数の光源
21 第1撮像部
22 第2撮像部
23 撮像光学系(検出光学系)
24 撮像素子(受光素子)
31 画像処理部
32 記憶装置
A1 検出範囲
P 被写体
C-F LED駆動信号
A トリガー信号
B 一画面(1フレーム)分の画像信号
 本明細書で引用した全ての刊行物、特許および特許出願はそのまま引用により本明細書に組み入れられるものとする。

Claims (26)

  1.  カーボンナノチューブ(CNT)を含む複数のファントムと、
    前記ファントムが配置される部材と、を備え、
    前記カーボンナノチューブは、赤外領域における光吸収を有する、
    スケール。
  2.  前記複数のファントムは、互いに濃度が異なる前記カーボンナノチューブを含む、請求項1に記載のスケール。
  3.  前記複数のファントムは第1ファントムおよび第2ファントムを含み、
    前記第1ファントムと前記第2ファントムとは、互いに前記赤外領域におけるスペクトルが異なる前記カーボンナノチューブを含む、
    請求項1または請求項2に記載のスケール。
  4.  前記ファントムは、前記カーボンナノチューブを含む樹脂膜であり、構造白色を有する部材上に配置されている、請求項1から請求項3のいずれか一項に記載のスケール。
  5.  前記カーボンナノチューブが樹脂中に分散している、請求項1から請求項4のいずれか一項に記載のスケール。
  6.  前記樹脂は前記赤外領域の光に対し透過特性を有する、請求項4または請求項5に記載のスケール。
  7.  前記部材が前記赤外領域で90%以上、95%以上または98%以上の反射率を有する、請求項4から請求項6のいずれか一項に記載のスケール。
  8.  前記カーボンナノチューブが単層カーボンナノチューブを含む、請求項1から請求項7のいずれか一項に記載のスケール。
  9.  前記スケールがグレースケールである、請求項1から請求項8のいずれか一項に記載のスケール。
  10.  前記複数のファントムにそれぞれ含まれる前記カーボンナノチューブは、互いにカイラリティの違いにより前記赤外光に対する吸収率の波長依存性を有する、請求項1から請求項9のいずれか一項に記載のスケール。
  11.  前記複数のファントムは、前記カーボンナノチューブの濃度順に前記部材に配置されている、請求項1から請求項10のいずれか一項に記載のスケール。
  12.  前記複数のファントムは、段階的に異なる厚さを有する、請求項1から請求項11のいずれか一項に記載のスケール。
  13.  前記複数のファントムは、格子状またはマトリクス状に配置される、請求項1から請求項12のいずれか一項に記載のスケール。
  14.  撮像部の設定および/または光源の設定を調整するために使用される、請求項1から請求項13のいずれか一項に記載のスケール。
  15.  前記ファントムがパンチまたはスポットの形状である、請求項1から請求項14のいずれか一項に記載のスケール。
  16.  請求項1から請求項15のいずれか一項に記載のスケールを撮像する撮像装置。
  17.  近赤外光イメージング装置である、請求項16に記載の撮像装置。
  18.  前記スケールが配置される支持部を備える、請求項16または請求項17の撮像装置。
  19.  請求項1から請求項15のいずれか一項に記載のスケールの表示を含む撮像システム。
  20.  撮像ユニット、照明ユニット、制御装置および表示装置を備える、請求項19に記載の撮像システム。
  21.  前記照明ユニットが、波長700nm以上3000nm以下の波長帯域のうち所定波長の光を発する、請求項20に記載の撮像システム。
  22.  前記制御装置が光源移動部および画像処理部を含む、請求項20または請求項21に記載の撮像システム。
  23.  前記表示装置が、被写体の画像と一緒に前記スケールを表示する、請求項20から請求項22のいずれか一項に記載の撮像システム。
  24.  請求項1から請求項15のいずれか一項に記載のスケールを複数備える、キット。
  25.  請求項1から請求項15のいずれか一項に記載のスケールまたは請求項24に記載のキットを用いて、撮像部の設定および/または光源の設定を調整することを含む、撮像装置の調整方法。
  26.  赤外光を前記スケールに照射することを含む、請求項25に記載の調整方法。
PCT/JP2018/020331 2017-06-15 2018-05-28 スケール、撮像装置、撮像システム、キット、および撮像装置の調整方法 WO2018230318A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019525271A JP6890348B2 (ja) 2017-06-15 2018-05-28 スケールおよび、それを備えるキット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017118173 2017-06-15
JP2017-118173 2017-06-15

Publications (1)

Publication Number Publication Date
WO2018230318A1 true WO2018230318A1 (ja) 2018-12-20

Family

ID=64659197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020331 WO2018230318A1 (ja) 2017-06-15 2018-05-28 スケール、撮像装置、撮像システム、キット、および撮像装置の調整方法

Country Status (2)

Country Link
JP (1) JP6890348B2 (ja)
WO (1) WO2018230318A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114055634A (zh) * 2021-11-19 2022-02-18 湖北北新建材有限公司 一种石膏板辅料添加的监测装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265152U (ja) * 1988-11-07 1990-05-16
JPH03146850A (ja) * 1989-10-31 1991-06-21 Shimadzu Corp 光走査装置用ファントム
JP2004529339A (ja) * 2001-03-28 2004-09-24 クロンディアグ チップ テヒノロギーズ ゲーエムベーハー 蛍光信号参照デバイス
JP2006043002A (ja) * 2004-08-02 2006-02-16 Olympus Corp 内視鏡観察装置および内視鏡観察方法
JP2012247188A (ja) * 2011-05-02 2012-12-13 National Institute Of Advanced Industrial & Technology ナノカーボンを用いた臨床検査
JP2013096920A (ja) * 2011-11-02 2013-05-20 Hamamatsu Photonics Kk 蛍光ファントム装置および蛍光イメージング方法
JP2014173997A (ja) * 2013-03-08 2014-09-22 Niigata Univ 近赤外イメージング装置校正用ファントム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154625A1 (ja) * 2017-02-21 2018-08-30 国立研究開発法人産業技術総合研究所 撮像装置、撮像システム、及び撮像方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0265152U (ja) * 1988-11-07 1990-05-16
JPH03146850A (ja) * 1989-10-31 1991-06-21 Shimadzu Corp 光走査装置用ファントム
JP2004529339A (ja) * 2001-03-28 2004-09-24 クロンディアグ チップ テヒノロギーズ ゲーエムベーハー 蛍光信号参照デバイス
JP2006043002A (ja) * 2004-08-02 2006-02-16 Olympus Corp 内視鏡観察装置および内視鏡観察方法
JP2012247188A (ja) * 2011-05-02 2012-12-13 National Institute Of Advanced Industrial & Technology ナノカーボンを用いた臨床検査
JP2013096920A (ja) * 2011-11-02 2013-05-20 Hamamatsu Photonics Kk 蛍光ファントム装置および蛍光イメージング方法
JP2014173997A (ja) * 2013-03-08 2014-09-22 Niigata Univ 近赤外イメージング装置校正用ファントム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN, CHINGWEI ET AL.: "Spectral triangulation: A 3D method for locating single-walled carbon nanotubes in vivo", NANOSCALE, vol. 8, no. 19, 15 April 2016 (2016-04-15), pages 10348 - 10357, XP0556546132, DOI: 10.1039/C6NR01376G *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114055634A (zh) * 2021-11-19 2022-02-18 湖北北新建材有限公司 一种石膏板辅料添加的监测装置
CN114055634B (zh) * 2021-11-19 2023-07-21 湖北北新建材有限公司 一种石膏板辅料添加的监测装置

Also Published As

Publication number Publication date
JP6890348B2 (ja) 2021-06-18
JPWO2018230318A1 (ja) 2020-05-21

Similar Documents

Publication Publication Date Title
JP6321668B2 (ja) 効率的変調撮像
JP7057279B6 (ja) デジタル病理学に関する較正スライド
CN102892348B (zh) 多光谱光子成像的方法和装置
Dubach et al. In vivo imaging of specific drug–target binding at subcellular resolution
JP6490337B2 (ja) 物体の最大解像度カラー撮像
Ruiz et al. Indocyanine green matching phantom for fluorescence-guided surgery imaging system characterization and performance assessment
US8107696B2 (en) Calibration apparatus and method for fluorescent imaging
EP3270120B1 (en) Measurement method, measurement device, and program
US10674916B2 (en) Integrated NIR and visible light scanner for co-registered images of tissues
Venugopal et al. Adaptive wide-field optical tomography
CN106052866A (zh) 生物光子光谱检测系统及检测方法
JP2010181833A (ja) 顕微鏡観察システム
JP7424289B2 (ja) 情報処理装置、情報処理方法、情報処理システム、およびプログラム
WO2018207471A1 (ja) 制御装置、制御システム、制御方法、及びプログラム
Fricke et al. Non-contact dermatoscope with ultra-bright light source and liquid lens-based autofocus function
Tang et al. High-dynamic-range fluorescence laminar optical tomography (HDR-FLOT)
WO2018230318A1 (ja) スケール、撮像装置、撮像システム、キット、および撮像装置の調整方法
US7834989B2 (en) Luminescence imagining installation and method
JP6083801B2 (ja) 近赤外イメージング装置校正用ファントム
JP6457979B2 (ja) 組織試料分析装置及び組織試料分析システム
Månefjord et al. A biophotonic platform for quantitative analysis in the spatial, spectral, polarimetric, and goniometric domains
WO2016203617A1 (ja) 発光観察方法
JP2015175641A (ja) 撮影システム及び撮影方法
Holdsworth Low-intensity calibration source for optical imaging systems
Branning Jr et al. Multifunction fluorescence open source in vivo/in vitro imaging system (openIVIS)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818531

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525271

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18818531

Country of ref document: EP

Kind code of ref document: A1