WO2018230270A1 - 車輪を有する走行装置を備えた作業車両 - Google Patents

車輪を有する走行装置を備えた作業車両 Download PDF

Info

Publication number
WO2018230270A1
WO2018230270A1 PCT/JP2018/019518 JP2018019518W WO2018230270A1 WO 2018230270 A1 WO2018230270 A1 WO 2018230270A1 JP 2018019518 W JP2018019518 W JP 2018019518W WO 2018230270 A1 WO2018230270 A1 WO 2018230270A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
spline
output shaft
shaft
lubricating oil
Prior art date
Application number
PCT/JP2018/019518
Other languages
English (en)
French (fr)
Inventor
信一郎 萩原
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201880015181.1A priority Critical patent/CN110382918B/zh
Priority to US16/490,992 priority patent/US11279220B2/en
Priority to EP18818064.0A priority patent/EP3578856B1/en
Publication of WO2018230270A1 publication Critical patent/WO2018230270A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K7/0007Disposition of motor in, or adjacent to, traction wheel the motor being electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K17/00Arrangement or mounting of transmissions in vehicles
    • B60K17/04Arrangement or mounting of transmissions in vehicles characterised by arrangement, location, or kind of gearing
    • B60K17/043Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel
    • B60K17/046Transmission unit disposed in on near the vehicle wheel, or between the differential gear unit and the wheel with planetary gearing having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D1/101Quick-acting couplings in which the parts are connected by simply bringing them together axially without axial retaining means rotating with the coupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/043Guidance of lubricant within rotary parts, e.g. axial channels or radial openings in shafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0038Disposition of motor in, or adjacent to, traction wheel the motor moving together with the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • B60K2007/0092Disposition of motor in, or adjacent to, traction wheel the motor axle being coaxial to the wheel axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/10Road Vehicles
    • B60Y2200/14Trucks; Load vehicles, Busses
    • B60Y2200/142Heavy duty trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/415Wheel loaders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/03Lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/05Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/42Clutches or brakes
    • B60Y2400/424Friction clutches
    • B60Y2400/4244Friction clutches of wet type, e.g. using multiple lamellae
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/70Gearings
    • B60Y2400/73Planetary gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D1/00Couplings for rigidly connecting two coaxial shafts or other movable machine elements
    • F16D1/10Quick-acting couplings in which the parts are connected by simply bringing them together axially
    • F16D2001/103Quick-acting couplings in which the parts are connected by simply bringing them together axially the torque is transmitted via splined connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/06Lubrication details not provided for in group F16D13/74
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/02Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions
    • F16D3/06Yielding couplings, i.e. with means permitting movement between the connected parts during the drive adapted to specific functions specially adapted to allow axial displacement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0482Gearings with gears having orbital motion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a work vehicle including a traveling device having wheels such as a dump truck, a wheeled excavator, and a wheel loader.
  • a large transport vehicle As a working vehicle having at least four wheels on the left, right, front, and rear, a large transport vehicle called a dump truck, which is mainly used at a mining site, is known.
  • This dump truck includes a vehicle body having a frame on which wheels are rotatably mounted, and a vessel (loading platform) provided on the frame of the vehicle body so as to be raised and lowered.
  • the dump truck is excavated by a drilling machine such as a hydraulic excavator at a mining site, and travels to transfer a load such as a loaded crushed stone to a desired transportation place in a state of being loaded on a vessel (Patent Document 1). reference).
  • the dump truck traveling device generally includes an electric motor attached to the frame of the vehicle body, and a reduction device that reduces the rotation output from the output shaft of the electric motor and transmits it to the wheels.
  • a bottomed hole spline is provided at the tip of the output shaft in the axial direction, and an input shaft having a shaft spline is splined to the hole spline. To the speed reducer.
  • the generator is driven by the engine disposed on the vehicle body, whereby electric power from the generator is supplied to the electric motor, and the output shaft of the electric motor rotates.
  • the speed reducer decelerates the rotation of the output shaft to rotate the wheel with a large torque.
  • the present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to discharge the wear powder generated at the spline joint portion between the hole spline and the shaft spline to the outside.
  • An object of the present invention is to provide a work vehicle including a traveling device having wheels that can be properly lubricated.
  • the present invention provides an electric motor provided on a vehicle body of a work vehicle having wheels, and an output shaft that outputs a rotation of the electric motor with an axial base end connected to the electric motor.
  • a speed reduction mechanism that is provided in the vehicle body and that reduces the rotation of the output shaft and transmits it to the wheel, a bottomed hole spline formed at the axial tip of the output shaft, and a spline on the hole spline.
  • the present invention is applied to a work vehicle including a traveling device having a wheel having a shaft spline to be coupled and an input shaft for inputting rotation of the output shaft to the speed reduction mechanism.
  • a feature of the present invention is that the output shaft is formed in the axial back of the hole spline and has an oil reservoir space for storing lubricating oil, and is axially spaced from the oil reservoir space toward the base end side.
  • the all-round oil passage formed over the entire circumference on the outer peripheral side of the output shaft, and the lubricating oil supplied to the all-around oil passage through the oil reservoir space and the all-around oil passage
  • An oil passage that supplies oil to the oil reservoir space, and an inner diameter dimension of the oil reservoir space is formed to be larger than a root diameter of the bottom of the hole spline, and the lubricating oil in the oil reservoir space is rotated by the rotation of the output shaft.
  • Is configured to be supplied to a spline coupling portion between the hole spline and the shaft spline.
  • the lubricating oil supplied to the entire circumferential oil passage is introduced into the oil sump space in the back of the hole spline through the oil passage, and from the oil sump space through the gap between the hole spline and the shaft spline. Supplied to the spline joint.
  • the abrasion powder generated at the spline coupling portion can be discharged to the outside by the lubricating oil.
  • the spline coupling portion between the hole spline and the shaft spline can be properly lubricated.
  • FIG. 3 is a cross-sectional view of the rear wheel side traveling device as viewed from the direction of arrows III-III in FIG.
  • FIG. 4 is an enlarged cross-sectional view showing main parts of a hole spline, a shaft spline, an oil sump space, an annular oil groove, a radial oil passage, an axial oil passage, and the like in FIG. 3.
  • FIG. 3 is a cross-sectional view of the rear wheel side traveling device as viewed from the direction of arrows III-III in FIG.
  • FIG. 4 is an enlarged cross-sectional view showing main parts of a hole spline, a shaft spline, an oil sump space, an annular oil groove, a radial oil passage, an axial oil passage, and the like in FIG. 3.
  • FIG. 3 is a cross-sectional view of the rear wheel side traveling device as viewed from the direction of arrows III-III in FIG.
  • FIG. 4 is an enlarged cross-sectional view
  • FIG. 5 is a cross-sectional view of an oil sump space, an annular oil groove, a radial oil passage, an axial oil passage, and the like viewed from the direction of arrows VV in FIG. It is sectional drawing of the same position as FIG. 4 which shows the state by which lubricating oil was supplied in the oil sump space.
  • FIG. 7 is a cross-sectional view of the state in which lubricating oil is supplied to the oil sump space as viewed from the direction of arrows VII-VII in FIG. 6. It is sectional drawing which shows the state which rotated the output shaft in FIG. 7 45 degrees.
  • FIG. 5 is a cross-sectional view at the same position as in FIG.
  • FIG. 10 is a cross-sectional view of the behavior of the lubricating oil in the oil sump space when the output shaft rotates, as viewed from the direction of arrows XX in FIG. 9.
  • FIG. 10 is a cross-sectional view of the state in which the lubricating oil is supplied to the gap between the hole spline and the shaft spline as seen from the direction of arrows XI-XI in FIG. 9. It is sectional drawing of the same position as FIG. 6 which shows the oil sump space by 2nd Embodiment, a radial direction oil path, an axial direction oil path, a cylindrical member, a perimeter groove
  • a dump truck 1 which is a typical example of a work vehicle having a traveling device having wheels has a vehicle body 2 having a sturdy frame structure.
  • Left and right front wheels 3 (only the left side is shown) are rotatably provided on the front side of the vehicle body 2, and left and right rear wheels 4 are rotatably provided on the rear side of the vehicle body 2.
  • the left and right front wheels 3 constitute steering wheels that are steered (steered) by the driver of the dump truck 1.
  • a front wheel side suspension 3A including a hydraulic shock absorber or the like is provided.
  • the left and right rear wheels 4 constitute driving wheels of the dump truck 1 and are driven to rotate by a traveling device 11 described later.
  • the rear wheel 4 includes an axially inner and outer tire 4 ⁇ / b> A made of a multi-wheeled tire, and a rim 4 ⁇ / b> B disposed on the radially inner side of each tire 4 ⁇ / b> A.
  • a rear wheel side suspension 4C made of a hydraulic shock absorber or the like is provided.
  • the vessel (loading platform) 5 is mounted on the vehicle body 2 such that it can be raised and lowered.
  • the vessel 5 is formed as a large container having a total length of 10 to 13 m (meters) in order to load a large amount of heavy loads such as crushed stones.
  • the rear bottom portion of the vessel 5 is connected to the rear end side of the vehicle body 2 via a connecting pin 6 or the like so as to be able to undulate (tilt).
  • a flange portion 5 ⁇ / b> A that covers a cab 7 described later from above is integrally provided.
  • the cab 7 is provided on the front side of the vehicle body 2 so as to be located below the flange 5A provided on the vessel 5.
  • the cab 7 forms a driver's cab in which the driver of the dump truck 1 gets on and off, and has a driver's seat, an activation switch, an accelerator pedal, a brake pedal, a steering handle, and a plurality of operating levers (all not shown). ) Etc. are provided.
  • the collar portion 5A of the vessel 5 covers the cab 7 from the upper side to protect the cab 7 from flying stones such as rocks.
  • the engine 8 is located on the lower side of the cab 7 and is provided on the front side of the vehicle body.
  • the engine 8 is composed of, for example, a large diesel engine or the like, and rotationally drives a generator disposed in the vehicle body 2, a hydraulic pump (not shown) serving as a hydraulic source, and the like. Pressure oil discharged from the hydraulic pump is supplied to a hoist cylinder 9 described later, a steering cylinder (not shown) for power steering, and the like.
  • the hoist cylinder 9 is provided between the vehicle body 2 and the vessel 5 so as to be able to expand and contract in the upward and downward directions.
  • the hoist cylinder 9 is located between the front wheel 3 and the rear wheel 4 and is disposed on both the left and right sides (only the left side is shown) of the vehicle body 2.
  • the hoist cylinder 9 expands and contracts in the upward and downward directions when the pressure oil from the hydraulic pump is supplied and discharged, and causes the vessel 5 to undulate (tilt) around the connecting pin 6.
  • the hydraulic oil tank 10 is located below the vessel 5 and attached to the side surface of the vehicle body 2 or the like.
  • the hydraulic oil stored in the hydraulic oil tank 10 is discharged by the hydraulic pump, and is supplied to and discharged from the hoist cylinder 9 and the steering cylinder for power steering as pressure oil.
  • the traveling device 11 is provided on at least the rear wheel 4 (both left and right) side of the dump truck 1. As shown in FIG. 3, the traveling device 11 includes an axle housing 12, an electric motor 16, a wheel mounting cylinder 18, and a reduction gear mechanism 27 which will be described later. The traveling device 11 decelerates the rotation of the electric motor 16 by the reduction gear mechanism 27 and travels and drives the rear wheel 4 serving as a driving wheel of the dump truck 1 together with the wheel mounting cylinder 18 with a large rotational torque.
  • the axle housing 12 for the rear wheel 4 is provided on the rear side of the vehicle body 2. As shown in FIG. 2, the axle housing 12 is formed as a cylindrical body extending in the axial direction between the left and right rear wheels 4.
  • the axle housing 12 includes an intermediate suspension cylinder 13 attached to the rear side of the vehicle body 2 via the rear wheel suspension 4C, and spindles 14 to be described later provided on the left and right sides of the suspension cylinder 13, respectively. Yes.
  • the spindles 14 are provided on both end sides of the axle housing 12 in the axial direction.
  • the spindle 14 includes a large-diameter cylindrical portion 14A that is positioned on one side in the axial direction and has a tapered shape, and a circular cylindrical portion 14B that is integrally formed on the other axial side of the large-diameter cylindrical portion 14A.
  • the large-diameter cylinder portion 14A is detachably fixed to the suspension cylinder 13 via bolts 15 or the like.
  • the circular cylinder portion 14B is disposed so as to extend in the axial direction in a wheel mounting cylinder 18 which will be described later, and the outer peripheral side of the circular cylinder portion 14B is connected to the wheel mounting cylinder 18 on the rear wheel 4 side via bearings 20 and 21 described later. Is supported rotatably.
  • annular flange portion 14C and an annular step portion 14D are integrally formed on the outer peripheral side of the spindle 14.
  • the annular flange portion 14C protrudes radially outward from the lengthwise (axial) intermediate portion of the large-diameter cylindrical portion 14A, and the stepped portion 14D is provided on one axial side of the circular cylindrical portion 14B.
  • a plurality of motor mounting seats 14E protruding inward in the radial direction are integrally formed on one side in the axial direction of the large diameter cylindrical portion 14A, and an electric motor 16 described later is mounted on the motor mounting seat 14E.
  • the other axial side (front end side) of the circular cylindrical portion 14B is an open end, and a cylindrical projecting portion 41A of a carrier 41 described later is splined to the inside.
  • An annular inner flange portion 14F is integrally formed on the inner peripheral side of the intermediate portion in the axial direction of the circular cylindrical portion 14B.
  • An outer retainer 44 which will be described later, is attached to the inner flange 14F via a bolt or the like.
  • a radial hole 14G extending through upward and downward (in the radial direction of the circular cylindrical portion 14B) is formed, and a suction pipe 49 described later is provided in the radial hole 14G. Is inserted.
  • the electric motor 16 for traveling is detachably mounted in the axle housing 12.
  • a rotor (not shown) rotates in the forward direction or the reverse direction by electric power supplied from a generator (not shown) mounted on the vehicle body 2, and the rotation of the rotor is an output shaft 17 described later. Is output by.
  • the electric motor 16 is mounted on the left side and the right side of the suspension cylinder 13 in the spindle 14, and rotates the left and right rear wheels 4 independently of each other.
  • the casing of the electric motor 16 is provided with a plurality of mounting flanges 16A, and these mounting flanges 16A are detachably mounted on the motor mounting seat 14E of the spindle 14 using bolts or the like.
  • the output shaft 17 has a base end in the axial direction integrally connected to the rotor of the electric motor 16, and outputs the rotation of the electric motor 16 (rotor).
  • the tip of the output shaft 17 in the axial direction protrudes from the casing of the electric motor 16 to the outside, and a hole spline 53 described later is formed at the tip of the output shaft 17 (see FIG. 4).
  • An input shaft 42 (described later) is coaxially connected to the tip of the output shaft 17.
  • the wheel mounting cylinder 18 is detachably mounted on the rim 4B of the rear wheel 4 using means such as press fitting.
  • the wheel mounting cylinder 18 is formed as a stepped cylindrical body having a hollow cylinder portion 18A having a hollow structure and an extended cylinder portion 18B.
  • the hollow cylindrical portion 18A extends in the axial direction across the bearings 20 and 21 described later.
  • the extending cylindrical portion 18B extends integrally in the axial direction from the outer peripheral side end portion of the hollow cylindrical portion 18A toward an internal gear 38 described later.
  • An internal gear 38 and an outer drum 25 are integrally fixed to the extended cylinder portion 18B of the wheel mounting cylinder 18 using a long bolt 26 or the like, and the wheel mounting cylinder 18 rotates integrally with the internal gear 38. It is what is done. In other words, the rotation of the electric motor 16 that has become a large torque by decelerating the rotation of the electric motor 16 by the reduction gear mechanism 27 is transmitted to the wheel mounting cylinder 18 via the internal gear 38. Thereby, the wheel attachment cylinder 18 rotates the rear wheel 4 used as a driving wheel with a large rotational torque.
  • the rim spacer 19 is made of a cylindrical body and is provided on the outer peripheral side of the wheel mounting cylinder 18.
  • the rim spacer 19 is disposed between the rim 4B on the axially inner side and the axially outer side of the rear wheel 4, thereby ensuring a certain distance between the two.
  • the rim spacer 19 sets the axial distance between the tire 4 ⁇ / b> A on the inner side and the outer side in the axial direction of the rear wheel 4.
  • the bearings 20 and 21 are provided between the circular cylinder portion 14B of the spindle 14 and the hollow cylinder portion 18A of the wheel mounting cylinder 18.
  • the bearings 20 and 21 are configured using, for example, the same tapered roller bearing or the like, and rotatably support the wheel mounting cylinder 18 on the outer peripheral side of the spindle 14.
  • the position of one of the bearings 20 is determined by a step retainer 14D of the spindle 14 via a bearing retainer 22 described later.
  • the other bearing 21 is positioned on the outer periphery of the opening end side of the circular cylindrical portion 14B via another bearing retainer 23 described later.
  • the bearing retainer 22 is fitted to the outer peripheral surface of the circular cylindrical portion 14B of the spindle 14.
  • One side of the bearing retainer 22 in the axial direction is in contact with the annular step portion 14 ⁇ / b> D of the spindle 14, and the other side of the bearing retainer 22 in the axial direction is in contact with the inner ring of the bearing 20. Therefore, the position of the bearing 20 is determined in the axial direction on the outer ring side by the hollow cylinder portion 18A of the wheel mounting cylinder 18, and the position on the inner ring side is determined in the axial direction by the bearing retainer 22.
  • the other bearing retainer 23 is attached to the open end of the circular cylindrical portion 14B of the spindle 14 using a plurality of bolts 24.
  • the other bearing retainer 23 is fixed to the circular cylindrical portion 14B and positions the inner ring side of the bearing 21 in the axial direction. That is, the bearing 21 is positioned in the axial direction on the outer ring side by the hollow cylinder portion 18A of the wheel mounting cylinder 18 and positioned in the axial direction on the inner ring side by the other bearing retainer 23.
  • the wheel mounting cylinder 18 is supported by the bearings 20 and 21 and the bearing retainers 22 and 23 so as to be axially positioned with respect to the spindle 14 and rotatably in the circumferential direction.
  • the outer drum 25 constitutes a part of the wheel mounting cylinder 18 together with the inner gear 38.
  • the outer drum 25 is disposed on the outer side in the axial direction of the wheel mounting cylinder 18 with the internal gear 38 interposed therebetween, and is detachably fixed to the wheel mounting cylinder 18 using a plurality of long bolts 26.
  • a reduction gear mechanism 27 as a reduction mechanism is provided between the spindle 14 and the wheel mounting cylinder 18.
  • the reduction gear mechanism 27 includes a first-stage planetary gear reduction mechanism 28 and a second-stage planetary gear reduction mechanism 36 described later.
  • the reduction gear mechanism 27 transmits the rotation of the output shaft 17 to the wheel mounting cylinder 18 by reducing the rotation of the output shaft 17 by transmitting the rotation of the output shaft 17 via an input shaft 42 described later.
  • the wheel mounting cylinder 18 is rotationally driven together with the rear wheel 4 with a large rotational force (torque) obtained by decelerating.
  • the first-stage planetary gear reduction mechanism 28 includes a sun gear 29 spline-coupled to the tip side of the input shaft 42, a plurality (only one shown) of planetary gears 31, and a carrier 33.
  • Each planetary gear 31 meshes with the sun gear 29 and the ring-shaped internal gear 30, and the carrier 33 supports the planetary gear 31 via a support pin 32 so as to be rotatable.
  • the outer peripheral side of the carrier 33 is detachably fixed to the opening end (end surface on the outer side in the axial direction) of the outer drum 25 integrated with the wheel mounting cylinder 18 via a bolt or the like. Accordingly, the carrier 33 rotates integrally with the wheel mounting cylinder 18 and the outer drum 25.
  • a disc-shaped cover plate 34 is detachably attached to the inner peripheral side of the carrier 33. The cover plate 34 is removed from the carrier 33 when maintaining and inspecting the meshing portion of the sun gear 29 and the planetary gear 31, for example.
  • the ring-shaped internal gear 30 is formed using a ring gear that surrounds the sun gear 29 and the planetary gears 31 from the radially outer side.
  • the internal gear 30 is disposed so as to be relatively rotatable between the inner peripheral surface of the outer drum 25 via a small radial gap.
  • the rotation (revolution) of the internal gear 30 is transmitted to the second stage planetary gear reduction mechanism 36 via a coupling 35 described later.
  • the first stage planetary gear speed reduction mechanism 28 converts the rotation of the sun gear 29 into the rotation motion and the revolution motion of each planet gear 31.
  • the rotation (rotation) of each planetary gear 31 is transmitted to the internal gear 30 as a reduced rotation, and the rotation of the internal gear 30 is transmitted to the second-stage planetary gear reduction mechanism 36 via the coupling 35.
  • the revolution of each planetary gear 31 is transmitted to the outer drum 25 on the wheel mounting cylinder 18 side as the rotation of the carrier 33.
  • the wheel mounting cylinder 18 rotates integrally with a second-stage internal gear 38 to be described later, the revolution of each planetary gear 31 is suppressed to the rotation synchronized with the internal gear 38 (wheel mounting cylinder 18).
  • the coupling 35 is provided between the first-stage planetary gear reduction mechanism 28 and the second-stage planetary gear reduction mechanism 36, and rotates together with the first-stage internal gear 30.
  • the outer peripheral side of the coupling 35 is spline-coupled to the first-stage internal gear 30, and the inner peripheral side of the coupling 35 is spline-coupled to a second-stage sun gear 37 described later.
  • the coupling 35 transmits the rotation of the first-stage internal gear 30 to the second-stage sun gear 37 and rotates the sun gear 37 integrally with the first-stage internal gear 30.
  • the planetary gear speed reduction mechanism 36 at the second stage is arranged on the outer peripheral side of the input shaft 42, a cylindrical sun gear 37 that rotates integrally with the coupling 35, a plurality of planetary gears 39 (only one is shown), a carrier 41.
  • Each planetary gear 39 meshes with the sun gear 37 and the ring-shaped internal gear 38, and the carrier 41 supports the planetary gear 39 via a support pin 40 so as to be rotatable.
  • the second-stage internal gear 38 is formed using a ring gear that surrounds the sun gear 37, the planetary gear 39, and the like from the outside in the radial direction.
  • the internal gear 38 is integrally fixed by using a long bolt 26 between the extended cylinder portion 18 ⁇ / b> B constituting a part of the wheel mounting cylinder 18 and the outer drum 25. Internal teeth formed over the entire circumference on the inner circumference side of the internal gear 38 are held in mesh with the plurality of planetary gears 39.
  • a cylindrical protrusion 41A is integrally formed at the center of the second-stage carrier 41, and this cylindrical protrusion 41A is fitted into the circular cylindrical portion 14B of the spindle 14 from the open end side. That is, the outer peripheral side of the cylindrical protruding portion 41A is detachably splined to the inner peripheral side of the circular cylindrical portion 14B.
  • An input shaft 42 is inserted and a supply pipe 51 described later is inserted on the inner peripheral side of the cylindrical protrusion 41A.
  • the planetary gear speed reduction mechanism 36 in the second stage the planetary protrusions 41A of the carrier 41 are splined to the circular cylindrical portion 14B of the spindle 14 so that each planetary gear 39 revolves (rotation of the carrier 41). Is restrained. Therefore, when the sun gear 37 rotates integrally with the coupling 35, the planetary gear speed reduction mechanism 36 at the second stage converts the rotation of the sun gear 37 into the rotation of each planetary gear 39, and The rotation is transmitted to the internal gear 38 at the second stage, and the internal gear 38 is decelerated and rotated. As a result, a large output rotational torque decelerated in two stages of the first stage planetary gear reduction mechanism 28 and the second stage planetary gear reduction mechanism 36 is applied to the wheel mounting cylinder 18 to which the internal gear 38 is fixed. Communicated.
  • the input shaft 42 is provided between the output shaft 17 and the reduction gear mechanism 27, and inputs the rotation of the output shaft 17 to the reduction gear mechanism 27.
  • the input shaft 42 is constituted by a single rod-like body that extends in the axial direction in the circular cylindrical portion 14B of the spindle 14.
  • the base end of the input shaft 42 in the axial direction is connected to the output shaft 17 (spline coupling), and the intermediate portion in the axial direction of the input shaft 42 is rotatably supported by the spindle 14 via a shaft bearing 45 described later.
  • the front end side of the input shaft 42 in the axial direction protrudes from the circular cylindrical portion 14B of the spindle 14, and a first-stage sun gear 29 is attached to the front end (projecting end).
  • a shaft spline 54 which will be described later, is formed at the proximal end of the input shaft 42 in the axial direction, and this shaft spline 54 is splined to the hole spline 53 of the output shaft 17 (see FIG. 4).
  • the inner retainer 43 is provided by being fitted to the intermediate portion in the axial direction of the input shaft 42.
  • the inner retainer 43 rotates integrally with the input shaft 42 by press-fitting an inner peripheral side thereof into an intermediate portion of the input shaft 42.
  • the outer retainer 44 is fixed to the inner flange portion 14F of the spindle 14 using a bolt or the like.
  • a shaft bearing 45 is provided between the outer retainer 44 and the inner retainer 43.
  • the shaft bearing 45 is disposed between the inner retainer 43 on the input shaft 42 side and the outer retainer 44 on the spindle 14 side so that the axial intermediate portion of the input shaft 42 can rotate within the circular cylindrical portion 14B of the spindle 14. I support it. Thereby, the long input shaft 42 can suppress the center runout at the intermediate portion in the axial direction, and can transmit the stable rotation of the output shaft 17 to the first-stage sun gear 29.
  • the wet brake 46 gives a braking force to the rotation of the wheel mounting cylinder 18 (that is, the left and right rear wheels 4), and is constituted by a wet multi-plate hydraulic brake.
  • the wet brake 46 is provided between the spindle 14 of the axle housing 12 and the wheel mounting cylinder 18 via a brake hub 47 described later.
  • the wet brake 46 applies a braking force to the brake hub 47 that rotates integrally with the wheel mounting cylinder 18.
  • the brake hub 47 constitutes a part of the wet brake 46 and rotates integrally with the wheel mounting cylinder 18.
  • the brake hub 47 is formed as a cylindrical body extending in the axial direction between the spindle 14 and the wet brake 46.
  • On the one side in the axial direction of the brake hub 47 each rotating side disk of the wet brake 46 is attached so as to be movable in the axial direction in a non-rotating state.
  • the other side in the axial direction of the brake hub 47 is detachably fixed to the hollow cylinder portion 18A of the wheel mounting cylinder 18 via a plurality of bolts.
  • the lubricating oil 100 is stored inside the wheel mounting cylinder 18, and the planetary gear speed reduction mechanisms 28 and 36 always operate in a state where the lubricating oil 100 is supplied.
  • the liquid level of the lubricating oil 100 is set at a position lower than, for example, the lowermost portion of the circular cylindrical portion 14B that constitutes the spindle 14 and the lower portion of the bearings 20 and 21 is immersed. ing.
  • the traveling device 11 is operated, the lubricating oil 100 can be prevented from being agitated by the planetary gear speed reduction mechanisms 28 and 36 and the temperature thereof can be suppressed, and the resistance due to the agitation of the lubricating oil 100 can be kept small. .
  • the partition wall 48 is provided in the large-diameter cylindrical portion 14A of the spindle 14.
  • the partition wall 48 is formed of an annular plate body, and its outer peripheral side is detachably attached to the inner peripheral side of the large-diameter cylindrical portion 14A of the spindle 14 using a bolt or the like.
  • the partition wall 48 forms a motor housing space portion 48 ⁇ / b> A in which the electric motor 16 is housed in the spindle 14 and a cylindrical space portion 48 ⁇ / b> B that always communicates with the inside of the wheel mounting tube 18.
  • the suction pipe 49 is provided at a position below the input shaft 42 in the spindle 14 and extends between the spindle 14 and the input shaft 42 in the axial direction.
  • the suction pipe 49 collects the lubricating oil 100 stored in the wheel mounting cylinder 18, and one side in the length direction of the suction pipe 49 is connected to the suction side of the lubricating oil pump 50.
  • the other side (front end side) of the suction pipe 49 in the length direction is bent in an L shape downward from the lower side of the input shaft 42 and is inserted into the radial hole 14G of the spindle 14.
  • the supply pipe 51 is provided at a position above the input shaft 42 in the spindle 14 and extends between the spindle 14 and the input shaft 42 in the axial direction.
  • One side in the length direction of the supply pipe 51 is connected to the discharge side of the lubricating oil pump 50 via an oil cooler 52.
  • the other side (front end side) of the supply pipe 51 in the length direction is a free end and is inserted into the cylindrical protruding portion 41 ⁇ / b> A of the second stage carrier 41. Accordingly, the lubricating oil 100 stored in the wheel mounting cylinder 18 is sucked into the lubricating oil pump 50 through the suction pipe 49.
  • the lubricating oil discharged from the lubricating oil pump 50 is supplied into the cylindrical projecting portion 41A of the carrier 41 through the supply pipe 51 while being cooled by the oil cooler 52, and lubricates the reduction gear mechanism 27 and the like.
  • Intermediate portions in the length direction of the suction pipe 49 and the supply pipe 51 extend through the outer retainer 44 in the axial direction, and the positions thereof are determined in the spindle 14 via the outer retainer 44.
  • the lubricating oil 100 stored in the wheel mounting cylinder 18 behaves so as to stick to the inner peripheral surface of the wheel mounting cylinder 18 due to the centrifugal force when the rear wheel 4 rotates when the dump truck 1 travels. Arise.
  • the suction port of the suction pipe 49 is separated from the liquid surface of the lubricating oil 100 and the lubricating oil pump 50 cannot be sucked by the lubricating oil pump 50 and the lubricating oil pump 50 is idling. For this reason, for example, when the dump truck 1 travels, the lubricating oil pump 50 is stopped.
  • the lubricating oil pump 50 is activated, and the suction pipe 49, the supply pipe 51, etc.
  • the lubricating oil 100 is supplied to the reduction gear mechanism 27 and the like.
  • the lubrication mechanism includes a hole spline 53, a shaft spline 54, an oil sump space 55, an annular oil groove 56, an oil passage 57, a nozzle 60, and the like which will be described later.
  • the hole spline 53 is provided on the inner peripheral surface of the bottomed hole formed at the tip of the output shaft 17.
  • the hole spline 53 has an opening end 53 ⁇ / b> A at the front end side of the output shaft 17, and extends in the axial direction from the opening end 53 ⁇ / b> A toward an oil sump space 55 described later.
  • the diameter of the root 53C of the plurality of spline teeth 53B constituting the hole spline 53 is the root diameter D1.
  • the shaft spline 54 is provided on the outer peripheral surface of the proximal end of the input shaft 42 in the axial direction.
  • the shaft spline 54 has a plurality of spline teeth 54 ⁇ / b> A that mesh with the spline teeth 53 ⁇ / b> B of the hole spline 53, and extends in the axial direction with an axial length corresponding to the hole spline 53.
  • the shaft spline 54 is spline-coupled with the hole spline 53, whereby the output shaft 17 and the input shaft 42 are connected coaxially.
  • the oil sump space 55 is provided in the axial back of the hole spline 53 provided on the output shaft 17 (on the electric motor 16 side). That is, the oil sump space 55 is located on the bottom side of the bottomed hole in which the hole spline 53 is formed with respect to the meshing portion between the spline teeth 53B of the hole spline 53 and the spline teeth 54A of the shaft spline 54 (an axial oil passage described later). 59 side).
  • the oil sump space 55 is formed of a cylindrical bottomed hole arranged concentrically with the hole spline 53, and is surrounded by a bottom surface 55A and an inner peripheral surface 55B.
  • the oil reservoir space 55 stores the lubricating oil 100 supplied to the spline coupling portion between the hole spline 53 and the shaft spline 54.
  • the inner diameter D2 of the oil sump space 55 is formed larger than the root diameter D1 of the hole spline 53 (D2> D1).
  • the lubricating oil 100 stored in the oil sump space 55 is supplied to the gaps between the spline teeth 53B of the spline-coupled hole spline 53 and the spline teeth 54A of the shaft spline 54. ing.
  • the annular oil groove 56 as an all-round oil passage is recessed in the outer peripheral surface on the tip side of the output shaft 17.
  • the annular oil groove 56 has an annular recess formed by recessing the outer peripheral surface of the output shaft 17 at a position spaced from the oil reservoir space 55 to the base end side (electric motor 16 side) over the entire circumference. It is formed as a groove.
  • the annular oil groove 56 is disposed at a position directly below the nozzle 60 described later, and the lubricating oil 100 is supplied from the nozzle 60.
  • the oil passage 57 is provided in the output shaft 17 and communicates between the oil reservoir space 55 and the annular oil groove 56.
  • the oil passage 57 includes a plurality of radial oil passages 58 and a plurality of axial oil passages 59.
  • a plurality of (for example, four) radial oil passages 58 are arranged at a constant angular interval (for example, 90 degrees) in the circumferential direction, and are provided to extend in the radial direction of the output shaft 17.
  • the plurality of radial oil passages 58 extend radially around the axis of the output shaft 17, and the radial outer ends 58 ⁇ / b> A of the respective radial oil passages 58 open to the groove bottom of the annular oil groove 56.
  • the radially inner end 58B of each radial oil passage 58 is disposed in the vicinity of the axis of the output shaft 17 and is connected to each axial oil passage 59 described later.
  • a plurality (for example, four) of the axial oil passages 59 are provided so as to extend from the bottom surface 55 ⁇ / b> A of the oil reservoir space 55 in the axial direction of the output shaft 17.
  • the plurality of axial oil passages 59 communicate with the radial inner ends 58 ⁇ / b> B of the radial oil passages 58 at the axial base ends, and open in the oil sump space 55 at the axial ends. That is, each axial oil passage 59 connects between the radial inner end 58 ⁇ / b> B of each radial oil passage 58 and the oil reservoir space 55.
  • the oil reservoir space 55 communicates with the annular oil groove 56 via the oil passage 57 including the radial oil passage 58 and the axial oil passage 59.
  • the nozzle 60 is disposed on the outer peripheral side of the output shaft 17 and supplies the lubricating oil 100 to the annular oil groove 56.
  • the nozzle 60 is provided so as to branch downward from a part in the length direction of the supply pipe 51, that is, a part directly above the annular oil groove 56. Accordingly, a part of the lubricating oil 100 discharged from the lubricating oil pump 50 to the supply pipe 51 when the dump truck 1 is stopped is supplied from the nozzle 60 toward the annular oil groove 56 as shown in FIG.
  • the lubricating oil 100 supplied to the annular oil groove 56 flows along the annular oil groove 56 and is then introduced into the oil reservoir space 55 through the radial oil passage 58 and the axial oil passage 59. Can be stored.
  • the respective radial oil passages 58 are arranged at a constant angular interval (for example, 90 degrees) in the circumferential direction.
  • the outer end 58A of at least one radial oil passage 58 opens upward. Therefore, the lubricating oil 100 supplied from the nozzle 60 to the annular oil groove 56 can be reliably introduced into the oil reservoir space 55 through the radial oil passage 58 and the axial oil passage 59.
  • the lubricating oil 100 stored in the oil sump space 55 is collected by the centrifugal force.
  • the inner peripheral surface 55B is pressed against the inner peripheral surface 55B of the inner peripheral surface 55B so that the entire peripheral surface 55B sticks to the entire periphery.
  • the inner diameter dimension D ⁇ b> 2 of the oil sump space 55 is formed larger than the root diameter D ⁇ b> 1 of the hole spline 53.
  • the lubricating oil 100 pressed against the inner peripheral surface 55B of the oil sump space 55 has a gap between each spline tooth 53B of the hole spline 53 and each spline tooth 54A of the shaft spline 54, as shown in FIG. And flows in the axial direction from the oil sump space 55 toward the opening end 53A of the hole spline 53.
  • the lubricating oil 100 pressed against the inner peripheral surface 55 ⁇ / b> B of the oil sump space 55 is separated from the tip of each axial oil passage 59 opened to the oil sump space 55. Therefore, the lubricating oil 100 in the oil sump space 55 does not flow back into the annular oil groove 56 via the axial oil passages 59 and the radial oil passages 58.
  • the traveling device 11 of the dump truck 1 according to the first embodiment has the above-described configuration, and the operation thereof will be described below.
  • the rotation of the input shaft 42 is decelerated and transmitted from the sun gear 29 of the first stage planetary gear reduction mechanism 28 to each planetary gear 31, and the rotation of each planetary gear 31 is transmitted via the internal gear 30 and the coupling 35. It is decelerated and transmitted to the sun gear 37 of the second stage planetary gear reduction mechanism 36. In the second stage planetary gear reduction mechanism 36, the rotation of the sun gear 37 is reduced and transmitted to each planetary gear 39. At this time, in the carrier 41 supporting each planetary gear 39, the cylindrical protrusion 41A is splined to the circular cylindrical portion 14B of the spindle 14, so that the revolution (rotation of the carrier 41) of each planetary gear 39 is restrained.
  • each planetary gear 39 performs only rotation around the sun gear 37, and the rotation reduced by the rotation of the planetary gear 39 is transmitted to the internal gear 38 fixed to the wheel mounting cylinder 18. Accordingly, the wheel mounting cylinder 18 rotates with a large rotational torque reduced in two stages by the first stage planetary gear reduction mechanism 28 and the second stage planetary gear reduction mechanism 36. As a result, the left and right rear wheels 4 serving as drive wheels rotate integrally with the wheel mounting cylinder 18 and can drive the dump truck 1 to travel.
  • the dump truck 1 travels, for example, between a loading work area where a load is loaded onto the vessel 5 and a discharge work area where a load is discharged from the vessel 5.
  • the dump truck 1 stops in the loading work area and the discharging work area, and the operation of the traveling device 11 is stopped.
  • the lubricating oil 100 stored in the wheel mounting cylinder 18 is rotated by the rotation of the wheel mounting cylinder 18 and the first and second planetary gear reduction mechanisms 28, Each of the planetary gears 31, 39, etc., 36 is sequentially scraped upward.
  • the lubricating oil 100 is supplied to the sun gears 29 and 37, the meshing parts of the planetary gears 31 and 39, the bearings 20 and 21, and the like, and then is stored on the lower side of the wheel mounting cylinder 18.
  • the lubricating oil pump 50 is stopped when the dump truck 1 travels, the lubricating oil 100 is not supplied from the nozzle 60 to the annular oil groove 56.
  • the lubricating oil pump 50 operates. Accordingly, the lubricating oil 100 accommodated on the lower side of the wheel mounting cylinder 18 is sucked into the lubricating oil pump 50 through the suction pipe 49, cooled by the oil cooler 52, and then discharged to the supply pipe 51. As a result, the lubricating oil 100 can be supplied from the tip of the supply pipe 51 into the cylindrical protrusion 41A of the carrier 41 in the second stage, and the periphery of the reduction gear mechanism 27 in the wheel mounting cylinder 18 is covered with the lubricating oil 100. Can be satisfied.
  • part of the lubricating oil 100 discharged from the lubricating oil pump 50 to the supply pipe 51 is supplied to the annular oil groove 56 formed on the outer peripheral surface of the output shaft 17 through the nozzle 60 branched from the supply pipe 51.
  • the lubricating oil 100 supplied to the annular oil groove 56 flows along the annular oil groove 56, and then the oil reservoir space 55 through the radial oil passage 58 and the axial oil passage 59. To be introduced.
  • the dump truck 1 is traveling (when the electric motor 16 is operating)
  • a sufficient amount of the lubricating oil 100 can be stored in the oil reservoir space 55 of the output shaft 17.
  • the lubricating oil 100 stored in the oil sump space 55 is collected by the centrifugal force.
  • the inner peripheral surface 55B is pressed against the inner peripheral surface 55B of the inner peripheral surface 55B so that the entire peripheral surface 55B sticks to the entire periphery.
  • the inner diameter dimension D ⁇ b> 2 of the oil sump space 55 is formed larger than the root diameter D ⁇ b> 1 of the hole spline 53.
  • the lubricating oil 100 pressed against the inner peripheral surface 55B of the oil sump space 55 by centrifugal force is pushed into the gaps between the spline teeth 53B of the hole spline 53 and the spline teeth 54A of the shaft spline 54. (See FIG. 11). Accordingly, the lubricating oil 100 flows through the gaps between the spline teeth 53B of the hole spline 53 and the spline teeth 54A of the shaft spline 54, and flows from the oil reservoir space 55 to the opening end 53A of the hole spline 53. It is discharged from 53A to the outside.
  • the oil storage space 55, the annular oil groove 56, and the oil passage 57 are provided on the output shaft 17 in which the hole spline 53 is formed.
  • the supply pipe 51 that constitutes the circulation path of the lubricating oil 100 in the wheel mounting cylinder 18 together with the suction pipe 49 and the lubricating oil pump 50 employs a simple configuration in which the nozzle 60 is provided.
  • the spline coupling portion between the hole spline 53 and the shaft spline 54 can be properly lubricated without complicating the configuration of the traveling device 11, and the manufacturing cost can be reduced.
  • the traveling device 11 includes the electric motor 16 provided on the vehicle body 2 of the dump truck 1 having the front wheels 3 and the rear wheels 4, and the electric motor 16 having an axial base end connected to the electric motor 16.
  • the output shaft 17 includes an oil sump space 55 formed in the back of the hole spline 53, an annular oil groove 56 that is axially spaced from the oil sump space 55 toward the base end side, and an oil sump space 55 and an annular shape.
  • An oil passage 57 that communicates with the oil groove 56 and supplies the lubricating oil supplied to the annular oil groove 56 to the oil reservoir space 55 is provided.
  • the inner diameter dimension D2 of the oil sump space 55 is formed larger than the root diameter D1 of the hole spline 53, and the lubricating oil in the oil sump space 55 is splined between the hole spline 53 and the shaft spline 54 by the rotation of the output shaft 17. Supplied to the joint.
  • the lubricating oil 100 stored in the oil reservoir space 55 is separated between each spline tooth 53B of the hole spline 53 and each spline tooth 54A of the shaft spline 54 by utilizing the centrifugal force generated by the rotation of the output shaft 17. Can be extruded into the gap.
  • the wear powder generated in the spline coupling portion between the hole spline 53 and the shaft spline 54 can be discharged to the outside by the lubricating oil 100, and the entire circumference of the spline coupling portion can be properly lubricated.
  • the oil passage 57 includes a plurality of radial oil passages 58 whose outer ends 58A in the radial direction open into the annular oil grooves 56 and extend in the radial direction of the output shaft 17, and inner ends in the radial direction of the respective radial oil passages 58.
  • 58B and the oil reservoir space 55 are connected to each other, and a plurality of axial oil passages 59 provided in the axial direction of the output shaft 17 are provided.
  • the all-round oil passage is constituted by an annular oil groove 56 that is annularly recessed on the outer peripheral surface of the output shaft 17, and the lubricating oil 100 passes through the nozzle 60 disposed on the outer peripheral side of the output shaft 17.
  • the nozzle 60 is provided using a supply pipe 51 that constitutes a circulation path of the lubricating oil 100 in the wheel mounting cylinder 18 together with the suction pipe 49 and the lubricating oil pump 50. Therefore, it is not necessary to newly add a device for supplying the lubricating oil 100 to the spline coupling portion between the hole spline 53 and the shaft spline 54, and the configuration of the traveling device 11 can be simplified.
  • FIG. 12 shows a second embodiment of the present invention.
  • a feature of the second embodiment is that a cylindrical member that surrounds the output shaft is provided on the outer peripheral side of the output shaft, and an entire circumferential groove as a circumferential oil passage is formed on the inner circumferential surface of the cylindrical member.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the output shaft 61 is similar to the output shaft 17 according to the first embodiment in that a hole spline 53, an oil reservoir space 55, a plurality of radial oil passages 58, and a plurality of axial oils are provided on the tip end side in the axial direction. A passage 59 is formed. However, the output shaft 61 is different from the output shaft 17 according to the first embodiment in that a pair of O-ring mounting grooves 62 described later is formed on the outer peripheral surface thereof.
  • the pair of O-ring mounting grooves 62 are formed over the entire circumference at two locations on the outer peripheral surface of the output shaft 61 that sandwich each radial oil passage 58 in the axial direction.
  • An O-ring 63 made of an elastic material such as rubber is attached to each O-ring attachment groove 62, and an inner peripheral side of each seal ring 66 described later is inserted.
  • the cylindrical member 64 is fixed to the casing of the electric motor 16 shown in FIG. 3 or the spindle 14 using a bracket or the like (not shown), for example.
  • the inner peripheral side of the cylindrical member 64 is inserted into the outer peripheral surface of the output shaft 61. That is, the output shaft 61 can rotate with respect to the cylindrical member 64.
  • An annular circumferential groove 64 ⁇ / b> A as an entire circumferential oil passage is formed in a portion of the inner circumferential surface of the cylindrical member 64 corresponding to each radial oil passage 58 of the output shaft 61.
  • a radially outer end 58A of each radial oil passage 58 opens into the entire circumferential groove 64A.
  • the cylindrical member 64 is formed with an oil passage 64B communicating with the entire circumferential groove 64A, and this oil passage 64B is connected to, for example, a midway portion of the supply pipe 51 shown in FIG.
  • a part of the lubricating oil 100 discharged from the lubricating oil pump 50 into the supply pipe 51 is supplied to the entire circumferential groove 64A via the connecting pipe 65 and the oil passage 64B.
  • two portions of the inner peripheral surface of the cylindrical member 64 that sandwich the entire circumferential groove 64A in the axial direction are seal sliding contact surfaces 64C, and the outer peripheral surfaces of the seal rings 66 are in sliding contact with these seal sliding contact surfaces 64C.
  • the pair of seal rings 66 are provided between the output shaft 61 and the cylindrical member 64.
  • Each seal ring 66 prevents the lubricating oil supplied to the entire circumferential groove 64 ⁇ / b> A of the cylindrical member 64 from leaking to the outside through the gap between the output shaft 61 and the cylindrical member 64.
  • the inner peripheral side of each seal ring 66 is disposed in the O-ring mounting groove 62 of the output shaft 61, and the outer peripheral surface of each seal ring 66 is in sliding contact with the seal sliding contact surface 64C of the cylindrical member 64 with an appropriate pressing force. Yes.
  • the traveling device has a lubrication mechanism for the spline coupling portion as described above.
  • a part of the lubricating oil 100 discharged from the lubricating oil pump 50 to the supply pipe 51 during traveling of the dump truck 1 is supplied to the entire circumferential groove 64 ⁇ / b> A of the cylindrical member 64 through the connection pipe 65 branched from the supply pipe 51.
  • the lubricating oil 100 supplied to the entire circumferential groove 64 ⁇ / b> A is introduced into the oil reservoir space 55 through the radial oil passage 58 and the axial oil passage 59 provided in the output shaft 61.
  • the lubricating oil 100 stored in the oil reservoir space 55 is pressed against the inner peripheral surface 55B of the oil reservoir space 55 by centrifugal force.
  • the lubricating oil 100 passes through the gaps between the spline teeth 53B of the hole spline 53 and the spline teeth 54A of the shaft spline 54, and from the oil reservoir space 55 to the hole spline 53. To the open end 53A.
  • the abrasion powder generated in the spline joint portion can be discharged to the outside, and the spline joint portion between the hole spline 53 and the shaft spline 54 can be properly lubricated.
  • a configuration in which a part of the lubricating oil 100 discharged from the lubricating oil pump 50 to the supply pipe 51 is supplied to the oil reservoir space 55 is illustrated.
  • the present invention is not limited to this.
  • the lubricating oil 100 may be supplied to the oil reservoir space 55 using a pump separate from the lubricating oil pump 50.
  • a case where four radial oil passages 58 and four axial oil passages 59 are provided on the output shaft 17 (61) is illustrated.
  • the present invention is not limited to this.
  • three or five or more radial oil passages and axial oil passages may be provided.
  • it is good also as a structure which forms the one axial direction oil path in the shaft center of an output shaft, and the radial inner end of each radial direction oil path opens to this one axial direction oil path.
  • the rear wheel drive type dump truck 1 has been described as an example.
  • the present invention is not limited to this, and may be applied to, for example, a front-wheel drive type or a four-wheel drive type dump truck that drives both front and rear wheels.
  • the present invention is not limited to the dump truck, and can be widely applied to work vehicles having wheels such as a wheeled excavator and a wheel loader.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • General Details Of Gearings (AREA)

Abstract

走行装置(11)は、ダンプトラック(1)の車体(2)に設けられた電動モータ(16)と、軸方向の基端が電動モータ(16)に接続され電動モータ(16)の回転を出力する出力軸(17)と、出力軸(17)の軸方向の先端に形成された有底状の穴スプライン(53)と、穴スプライン(53)にスプライン結合される軸スプライン(54)を有し出力軸(17)の回転を減速歯車機構(27)に入力する入力軸(42)とを備えている。出力軸(17)には、穴スプライン(53)の奥所に形成された油溜り空間(55)と、環状油溝(56)と、油溜り空間(55)と環状油溝(56)との間を連通する油通路(57)とが設けられている。環状油溝(56)に供給された潤滑油(100)は、油通路(57)を通じて油溜り空間(55)に供給され、出力軸(17)の回転によって穴スプライン(53)と軸スプライン(54)とのスプライン結合部に供給される。

Description

車輪を有する走行装置を備えた作業車両
 本発明は、例えばダンプトラック、ホイール式ショベル、ホイールローダ等の車輪を有する走行装置を備えた作業車両に関する。
 左,右および前,後に少なくとも4つの車輪を有する作業車両として、ダンプトラックと呼ばれる主に鉱山の採掘現場で用いられる大型の運搬車両が知られている。このダンプトラックは、車輪が回転可能に取付けられたフレームを有する車体と、車体のフレーム上に起伏可能に設けられたベッセル(荷台)とを備えている。ダンプトラックは、採掘現場で油圧ショベルなどの掘削機械で掘削され、積み込まれた砕石物等の積荷をベッセルに積載した状態で所望の運搬場所まで移送するために走行するものである(特許文献1参照)。
 ここで、ダンプトラックの走行装置は、一般に、車体のフレームに取付けられた電動モータと、前記電動モータの出力軸から出力された回転を減速して車輪に伝達する減速装置とを備えている。前記出力軸の軸方向の先端には、有底状の穴スプラインが設けられ、前記穴スプラインには、軸スプラインを有する入力軸がスプライン結合されており、前記出力軸の回転は、入力軸を介して前記減速装置に入力される。
 ダンプトラックの走行時には、前記車体に配置されているエンジンで発電機が駆動されることにより発電機からの電力が電動モータに供給され、電動モータの出力軸が回転する。出力軸の回転が入力軸を介して減速装置に入力されることにより、減速装置は出力軸の回転を減速することにより大きなトルクにして車輪を回転駆動する。これにより、ベッセルに重量物を積載した大型のダンプトラックを所望の運搬場所に向けて走行(移送)させることができる。
特開2013-53711号公報
 ところで、上述した従来技術による車輪を有する走行装置を備えた作業車両の代表例であるダンプトラックの走行装置においては、出力軸の先端に設けられた穴スプラインと入力軸に設けられた軸スプラインとのスプライン結合部に対し、大トルクの回転負荷が作用する。このため、穴スプラインの歯面と軸スプラインの歯面にはグリースが定期的に給脂され、このグリースによって出力軸と入力軸とのスプライン結合部に対する潤滑が行われている。
 しかし、グリースを用いてスプライン結合部に対する潤滑を行う場合には、穴スプラインと軸スプラインとの摩耗によって生じた摩耗粉をスプライン結合部の外部に排出するのが難しい。このため、スプライン結合部にグリースを給脂する方法では、残留した摩耗粉によって穴スプラインと軸スプラインの摩耗が促進されてしまう虞がある。
 これに対し、グリースよりも粘性の低い潤滑油をスプライン結合部に供給する方法(強制潤滑)が考えられる。しかし、潤滑油を用いた強制潤滑を行う場合には、穴スプラインあるいは軸スプラインに軸方向の油孔を設けたり、回転する出力軸あるいは入力軸に対して潤滑油を供給する機構を追加する必要がある。このため、スプライン結合部の周囲の構造が複雑化するという問題がある。一方、穴スプラインの開口側からスプライン結合部に向けて潤滑油を供給した場合には、スプライン結合部のうち穴スプラインの開口周辺には潤滑油が供給される。しかし、穴スプラインと軸スプラインとの摩耗によって生じた摩耗粉を外部に排出することが困難であるという問題がある。
 本発明は上述した従来技術の問題に鑑みなされたもので、本発明の目的は、穴スプラインと軸スプラインとのスプライン結合部で生じた摩耗粉を外部に排出することができ、スプライン結合部を適正に潤滑できるようにした車輪を有する走行装置を備えた作業車両を提供することにある。
 上述した課題を解決するために、本発明は、車輪を有する作業車両の車体に設けられた電動モータと、軸方向の基端が前記電動モータに接続され前記電動モータの回転を出力する出力軸と、前記車体に設けられ前記出力軸の回転を減速して前記車輪に伝達する減速機構と、前記出力軸の軸方向の先端に形成された有底状の穴スプラインと、前記穴スプラインにスプライン結合される軸スプラインを有し前記出力軸の回転を前記減速機構に入力する入力軸とを備えている車輪を有する走行装置を備えた作業車両に適用される。
 本発明の特徴は、前記出力軸には、前記穴スプラインの軸方向の奥所に形成され潤滑油を溜める油溜り空間と、前記油溜り空間から前記基端側に向けて軸方向に離間し前記出力軸の外周側に全周に亘って形成された全周油路と、前記油溜り空間と前記全周油路との間を連通し前記全周油路に供給された潤滑油を前記油溜り空間に供給する油通路とが設けられ、前記油溜り空間の内径寸法は、前記穴スプラインの歯底円径よりも大きく形成され、前記出力軸の回転により前記油溜り空間内の潤滑油が前記穴スプラインと前記軸スプラインとのスプライン結合部に供給されるように構成していることにある。
 本発明によれば、全周油路に供給された潤滑油は、油通路を通じて穴スプラインの奥所の油溜り空間に導入され、この油溜り空間から穴スプラインと軸スプラインとの間の隙間を通じてスプライン結合部に供給される。この結果、スプライン結合部で生じた摩耗粉を潤滑油によって外部に排出できる。また、穴スプラインと軸スプラインとのスプライン結合部を適正に潤滑することができる。
本発明の第1の実施の形態による車輪を有する走行装置を備えた作業車両としてのダンプトラックを示す正面図である。 図1のダンプトラックを後方から見た右側面図である。 後輪側の走行装置を図1中の矢示III-III方向から拡大して見た断面図である。 図3中の穴スプライン、軸スプライン、油溜り空間、環状油溝、径方向油通路、軸方向油通路等の要部を示す拡大断面図である。 油溜り空間、環状油溝、径方向油通路、軸方向油通路等を図4中の矢示V-V方向から見た断面図である。 油溜り空間内に潤滑油が供給された状態を示す図4と同様位置の断面図である。 油溜り空間に潤滑油が供給された状態を図6中の矢示VII-VII方向から見た断面図である。 図7中の出力軸を45°回転させた状態を示す断面図である。 出力軸の回転によって油溜り空間内の潤滑油がスプライン結合部に供給される状態を示す図4と同様位置の断面図である。 出力軸の回転時における油溜り空間内の潤滑油の挙動を図9中の矢示X-X方向から見た断面図である。 穴スプラインと軸スプラインとの隙間に潤滑油が供給された状態を図9中の矢示XI-XI方向から見た断面図である。 第2の実施の形態による油溜り空間、径方向油通路、軸方向油通路、円筒部材、全周溝、シールリング等を示す図6と同様位置の断面図である。
 以下、本発明の実施の形態による車輪を有する走行装置を備えた作業車両を、後輪駆動式のダンプトラックの走行装置を例に挙げ、添付図面に従って詳細に説明する。
 図1ないし図11は本発明の第1の実施の形態を示している。図1および図2において、車輪を有する走行装置を備えた作業車両の代表例であるダンプトラック1は、頑丈なフレーム構造をなす車体2を有している。車体2の前部側には左,右の前輪3(左側のみ図示)が回転可能に設けられ、車体2の後部側には左,右の後輪4が回転可能に設けられている。左,右の前輪3は、ダンプトラック1の運転者によって操舵(ステアリング操作)される操舵輪を構成するものである。車体2と左,右の前輪3との間には、油圧緩衝器等からなる前輪側サスペンション3Aが設けられている。
 左,右の後輪4は、ダンプトラック1の駆動輪を構成するもので、後述の走行装置11によって回転駆動される。図2および図3に示すように、後輪4は、複輪式タイヤからなる軸方向内側と外側のタイヤ4Aと、各タイヤ4Aの径方向内側に配設されるリム4Bとを含んで構成されている。車体2と左,右の後輪4との間には、油圧緩衝器等からなる後輪側サスペンション4Cが設けられている。
 ベッセル(荷台)5は、車体2上に起伏可能に搭載されている。ベッセル5は、例えば砕石物等の重い荷物を多量に積載するため全長が10~13m(メートル)にも及ぶ大型の容器として形成されている。ベッセル5の後側底部は、車体2の後端側に連結ピン6等を介して起伏(傾転)可能に連結されている。ベッセル5の前側上部には、後述のキャブ7を上側から覆う庇部5Aが一体に設けられている。
 キャブ7は、ベッセル5に設けられた庇部5Aの下側に位置して車体2の前部に設けられている。キャブ7は、ダンプトラック1の運転者が乗降する運転室を形成し、その内部には運転席、起動スイッチ、アクセルペダル、ブレーキペダル、操舵用のハンドルおよび複数の操作レバー(いずれも図示せず)等が設けられている。ベッセル5の庇部5Aは、キャブ7を上側から全体を覆うことにより、例えば岩石等の飛び石からキャブ7を保護する。
 エンジン8は、キャブ7の下側に位置して車体の前側に設けられている。エンジン8は、例えば大型のディーゼルエンジン等により構成され、車体2に配置されている発電機、油圧源となる油圧ポンプ(いずれも図示せず)等を回転駆動する。油圧ポンプから吐出される圧油は、後述のホイストシリンダ9、パワーステアリング用の操舵シリンダ(図示せず)等に供給される。
 ホイストシリンダ9は、車体2とベッセル5との間に上,下方向に伸縮可能に設けられている。ホイストシリンダ9は、前輪3と後輪4との間に位置して車体2の左,右両側(左側のみ図示)に配置されている。ホイストシリンダ9は、前記油圧ポンプからの圧油が給排されることにより上,下方向に伸縮し、連結ピン6を中心にしてベッセル5を起伏(傾転)させるものである。
 作動油タンク10は、ベッセル5の下方に位置して車体2の側面等に取付けられている。作動油タンク10内に収容された作動油は、前記油圧ポンプにより吐出され、圧油となってホイストシリンダ9および前記パワーステアリング用の操舵シリンダ等に給排されるものである。
 走行装置11は、ダンプトラック1の少なくとも後輪4(左,右の両方)側に設けられている。図3に示すように、走行装置11は、後述するアクスルハウジング12、電動モータ16、車輪取付筒18、減速歯車機構27を含んで構成されている。走行装置11は、電動モータ16の回転を減速歯車機構27により減速し、ダンプトラック1の駆動輪となる後輪4を車輪取付筒18と一緒に大なる回転トルクで走行駆動するものである。
 後輪4用のアクスルハウジング12は、車体2の後部側に設けられている。図2に示すように、アクスルハウジング12は、左,右の後輪4間を軸方向に延びる筒状体として形成されている。アクスルハウジング12は、後輪側サスペンション4Cを介して車体2の後部側に取付けられる中間の懸架筒13と、懸架筒13の左,右両側にそれぞれ設けられた後述のスピンドル14とにより構成されている。
 スピンドル14は、アクスルハウジング12の軸方向両端側にそれぞれ設けられている。スピンドル14は、軸方向一側に位置してテーパ形状をなす大径筒部14Aと、大径筒部14Aの軸方向他側に一体形成された円形筒部14Bとにより構成されている。大径筒部14Aは、懸架筒13にボルト15等を介して着脱可能に固着されている。円形筒部14Bは、後述の車輪取付筒18内を軸方向に延びるように配置され、円形筒部14Bの外周側は、後述の軸受20,21を介して後輪4側の車輪取付筒18を回転可能に支持している。
 スピンドル14の外周側には、環状フランジ部14Cと、環状の段差部14Dとが一体に形成されている。環状フランジ部14Cは、大径筒部14Aの長さ方向(軸方向)中間部から径方向外向きに突出し、段差部14Dは、円形筒部14Bの軸方向一側に設けられている。大径筒部14Aの軸方向一側には、径方向内向きに突出する複数のモータ取付座14Eが一体に形成され、このモータ取付座14Eには後述の電動モータ16が取付けられている。
 一方、円形筒部14Bの軸方向他側(先端側)は開口端となり、その内側には後述するキャリア41の筒状突出部41Aがスプライン結合されている。円形筒部14Bの軸方向の中間部の内周側には、環状の内側鍔部14Fが一体に形成されている。内側鍔部14Fには、後述の外側リテーナ44がボルト等を介して取付けられている。円形筒部14Bの下部側には、上,下方向(円形筒部14Bの径方向)に貫通して延びる径方向孔14Gが穿設され、この径方向孔14G内には後述の吸込管49が挿通されている。
 走行用の電動モータ16は、アクスルハウジング12内に着脱可能に取付けられている。電動モータ16は、車体2に搭載された発電機(図示せず)から供給される電力によってロータ(図示せず)が正方向または逆方向に回転し、このロータの回転が後述する出力軸17によって出力される。図2に示すように、電動モータ16は、懸架筒13の左,右両側に位置してスピンドル14内にそれぞれ取付けられ、左,右の後輪4を互いに独立して回転駆動するものである。電動モータ16のケーシングには複数の取付フランジ16Aが設けられ、これらの取付フランジ16Aは、スピンドル14のモータ取付座14Eにボルト等を用いて着脱可能に取付けられている。
 出力軸17は、軸方向の基端が電動モータ16のロータに一体に接続され、電動モータ16(ロータ)の回転を出力するものである。出力軸17の軸方向の先端は電動モータ16のケーシングから外部に突出し、出力軸17の先端には後述の穴スプライン53が形成されている(図4参照)。出力軸17の先端には、後述する入力軸42が同軸に接続されている。
 車輪取付筒18は、後輪4のリム4Bが圧入等の手段を用いて着脱可能に取付けられるものである。車輪取付筒18は、中空構造をなした中空筒部18Aと、延設筒部18Bとを有する段付筒状体として形成されている。中空筒部18Aは、後述の軸受20,21間にわたって軸方向に延びている。延設筒部18Bは、中空筒部18Aの外周側端部から後述の内歯車38に向けて軸方向に一体に延びている。
 車輪取付筒18の延設筒部18Bには、後述の内歯車38と外側ドラム25とが長尺ボルト26等を用いて一体的に固着され、車輪取付筒18は内歯車38と一体に回転されるものである。即ち、車輪取付筒18には、電動モータ16の回転を減速歯車機構27で減速することにより大トルクとなった回転が内歯車38を介して伝えられる。これにより、車輪取付筒18は、駆動輪となる後輪4を大なる回転トルクで回転させるものである。
 リムスペーサ19は円筒体からなり、車輪取付筒18の外周側に設けられている。リムスペーサ19は、後輪4の軸方向内側および軸方向外側のリム4B間に配置されることにより、両者間に一定の間隔を確保する。これにより、後輪4の軸方向内側と軸方向外側のタイヤ4Aの軸方向の間隔が、リムスペーサ19によって設定される。
 軸受20,21は、スピンドル14の円形筒部14Bと車輪取付筒18の中空筒部18Aとの間に設けられている。軸受20,21は、例えば同一の円錐ころ軸受等を用いて構成され、スピンドル14の外周側で車輪取付筒18を回転可能に支持している。ここで、一方の軸受20は、スピンドル14の段差部14Dに後述する軸受リテーナ22を介して位置が決められている。他方の軸受21は、円形筒部14Bの開口端側外周に後述する他の軸受リテーナ23を介して位置が決められている。
 軸受リテーナ22は、スピンドル14の円形筒部14Bの外周面に嵌合して設けられている。軸受リテーナ22の軸方向一側はスピンドル14の環状の段差部14Dに当接し、軸受リテーナ22の軸方向他側は軸受20の内輪に当接している。従って、軸受20は、外輪側が車輪取付筒18の中空筒部18Aにより軸方向に位置が決められ、内輪側が軸受リテーナ22により軸方向に位置が決められている。
 他の軸受リテーナ23は、スピンドル14の円形筒部14Bの開口端に複数のボルト24を用いて取付けられている。他の軸受リテーナ23は円形筒部14Bに固定され、軸受21の内輪側を軸方向に位置決めしている。即ち、軸受21は、外輪側が車輪取付筒18の中空筒部18Aにより軸方向に位置が決められ、内輪側が他の軸受リテーナ23により軸方向に位置が決められている。これにより、車輪取付筒18は、軸受20,21と軸受リテーナ22,23とを用いて、スピンドル14に対し軸方向に位置が決められると共に、周方向に回転可能に支持されている。
 外側ドラム25は、内歯車38と共に車輪取付筒18の一部を構成している。外側ドラム25は、車輪取付筒18の軸方向外側となる位置に内歯車38を挟んで配置され、複数の長尺ボルト26を用いて車輪取付筒18に着脱可能に固着されている。
 減速機構としての減速歯車機構27は、スピンドル14と車輪取付筒18との間に設けられている。減速歯車機構27は、後述する1段目の遊星歯車減速機構28と2段目の遊星歯車減速機構36とにより構成されている。減速歯車機構27は、後述する入力軸42を介して出力軸17の回転が伝達されることにより、出力軸17の回転を減速して車輪取付筒18に伝える。これにより、車輪取付筒18は、減速して得られた大きな回転力(トルク)をもって後輪4と一緒に回転駆動される。
 1段目の遊星歯車減速機構28は、入力軸42の先端側にスプライン結合された太陽歯車29と、複数(1個のみ図示)の遊星歯車31と、キャリア33とにより構成されている。各遊星歯車31は、太陽歯車29とリング状の内歯車30とに噛合し、キャリア33は、遊星歯車31を支持ピン32を介して回転可能に支持している。
 キャリア33の外周側は、車輪取付筒18に一体化された外側ドラム25の開口端(軸方向外側の端面)にボルト等を介して着脱可能に固定されている。従って、キャリア33は、車輪取付筒18、外側ドラム25と一体に回転する。キャリア33の内周側には、例えば円板状の蓋板34が着脱可能に取付けられている。蓋板34は、例えば太陽歯車29と遊星歯車31の噛合部を保守、点検する場合にキャリア33から取外されるものである。
 リング状の内歯車30は、太陽歯車29、各遊星歯車31を径方向外側から取囲むリングギヤを用いて形成されている。内歯車30は、外側ドラム25の内周面との間に小さな径方向の隙間を介して相対回転可能に配置されている。内歯車30の回転(公転)は、後述のカップリング35を介して2段目の遊星歯車減速機構36に伝えられる。
 1段目の遊星歯車減速機構28は、電動モータ16によって入力軸42と一体に太陽歯車29が回転すると、この太陽歯車29の回転を各遊星歯車31の自転運動と公転運動とに変換する。各遊星歯車31の自転(回転)は、内歯車30に減速した回転として伝えられ、この内歯車30の回転がカップリング35を介して2段目の遊星歯車減速機構36に伝達される。一方、各遊星歯車31の公転は、キャリア33の回転となって車輪取付筒18側の外側ドラム25に伝達される。しかし、車輪取付筒18は、後述する2段目の内歯車38と一体に回転するため、各遊星歯車31の公転は、内歯車38(車輪取付筒18)に同期した回転に抑えられる。
 カップリング35は、1段目の遊星歯車減速機構28と2段目の遊星歯車減速機構36との間に設けられ、1段目の内歯車30と一体に回転するものである。カップリング35の外周側は1段目の内歯車30にスプライン結合され、カップリング35の内周側は後述する2段目の太陽歯車37にスプライン結合されている。これにより、カップリング35は、1段目の内歯車30の回転を2段目の太陽歯車37に伝達し、この太陽歯車37を1段目の内歯車30と一体に回転させる。
 2段目の遊星歯車減速機構36は、入力軸42の外周側に配置されカップリング35と一体に回転する円筒状の太陽歯車37と、複数の遊星歯車39(1個のみ図示)と、キャリア41とにより構成されている。各遊星歯車39は、太陽歯車37とリング状の内歯車38とに噛合し、キャリア41は、遊星歯車39を支持ピン40を介して回転可能に支持している。
 ここで、2段目の内歯車38は、太陽歯車37、遊星歯車39等を径方向外側から取囲むリングギヤを用いて形成されている。内歯車38は、車輪取付筒18の一部を構成する延設筒部18Bと外側ドラム25との間に長尺ボルト26を用いて一体的に固着されている。内歯車38の内周側に全周に亘って形成された内歯は、複数の遊星歯車39に対して噛合状態に保持される。
 2段目のキャリア41の中心部には筒状突出部41Aが一体形成され、この筒状突出部41Aは、スピンドル14の円形筒部14B内に開口端側から嵌合されている。即ち、筒状突出部41Aの外周側は、円形筒部14Bの内周側に着脱可能にスプライン結合されている。筒状突出部41Aの内周側には、入力軸42が挿通されると共に後述の供給管51が挿入されている。
 ここで、2段目の遊星歯車減速機構36は、キャリア41の筒状突出部41Aがスピンドル14の円形筒部14Bにスプライン結合されることにより、各遊星歯車39の公転(キャリア41の回転)が拘束される。従って、2段目の遊星歯車減速機構36は、太陽歯車37がカップリング35と一体に回転すると、この太陽歯車37の回転を各遊星歯車39の自転に変換しつつ、該各遊星歯車39の自転を2段目の内歯車38に伝達し、この内歯車38を減速して回転させる。これにより、内歯車38が固定された車輪取付筒18に対し、1段目の遊星歯車減速機構28と2段目の遊星歯車減速機構36との2段階で減速された大出力の回転トルクが伝達される。
 入力軸42は、出力軸17と減速歯車機構27との間に設けられ、出力軸17の回転を減速歯車機構27に入力するものである。入力軸42は、スピンドル14の円形筒部14B内を軸方向に延びる1本の棒状体により構成されている。入力軸42の軸方向の基端は出力軸17に接続(スプライン結合)され、入力軸42の軸方向の中間部は後述のシャフトベアリング45を介してスピンドル14に回転可能に支持されている。そして、入力軸42の軸方向の先端側はスピンドル14の円形筒部14Bから突出し、その先端(突出端)には1段目の太陽歯車29が取付けられている。ここで、入力軸42の軸方向の基端には後述する軸スプライン54が形成され、この軸スプライン54は出力軸17の穴スプライン53にスプライン結合されている(図4参照)。
 内側リテーナ43は、入力軸42の軸方向中間部に嵌合して設けられている。内側リテーナ43は、その内周側が入力軸42の中間部に圧入されることにより、入力軸42と一体に回転する。外側リテーナ44は、スピンドル14の内側鍔部14Fにボルト等を用いて固定されている。外側リテーナ44と内側リテーナ43との間にはシャフトベアリング45が設けられている。
 シャフトベアリング45は、入力軸42側の内側リテーナ43とスピンドル14側の外側リテーナ44との間に配設され、入力軸42の軸方向中間部をスピンドル14の円形筒部14B内で回転可能に支持している。これにより、長尺な入力軸42は、軸方向中間部での芯振れが抑制され、1段目の太陽歯車29に対して出力軸17の安定した回転を伝えることができる。
 湿式ブレーキ46は、車輪取付筒18の回転(即ち、左,右の後輪4)に制動力を与えるもので、湿式多板型の油圧ブレーキにより構成されている。この湿式ブレーキ46は、アクスルハウジング12のスピンドル14と車輪取付筒18との間に後述のブレーキハブ47を介して設けられている。湿式ブレーキ46は、車輪取付筒18と一体に回転するブレーキハブ47に対して制動力を付与するものである。
 ブレーキハブ47は湿式ブレーキ46の一部を構成し、車輪取付筒18と一体に回転するものである。このブレーキハブ47は、スピンドル14と湿式ブレーキ46との間を軸方向に延びる筒状体として形成されている。ブレーキハブ47の軸方向一側には、湿式ブレーキ46の各回転側ディスクが廻止め状態で、軸方向に移動可能に取付けられている。ブレーキハブ47の軸方向他側は、車輪取付筒18の中空筒部18Aに複数のボルトを介して着脱可能に固定されている。
 ここで、車輪取付筒18の内部には潤滑油100が貯留され、各遊星歯車減速機構28,36は、常に潤滑油100が供給された状態で作動する。この場合、潤滑油100の液面は、例えばスピンドル14を構成する円形筒部14Bの最下部よりも低い位置にあり、かつ軸受20,21の下側部位が浸漬されるような位置に設定されている。これにより、走行装置11の作動時に、潤滑油100が各遊星歯車減速機構28,36によって攪拌されて温度上昇するのを抑えることができ、かつ潤滑油100の攪拌による抵抗を小さく抑えることができる。
 隔壁48は、スピンドル14の大径筒部14A内に設けられている。隔壁48は環状の板体により形成され、その外周側がスピンドル14の大径筒部14Aの内周側にボルト等を用いて着脱可能に取付けられている。隔壁48は、スピンドル14内で電動モータ16が収容されるモータ収容空間部48Aと、車輪取付筒18の内部と常時連通する筒状空間部48Bとを形成している。
 吸込管49は、スピンドル14内で入力軸42よりも下方となる位置に設けられ、スピンドル14と入力軸42との間を軸方向に延びている。吸込管49は、車輪取付筒18内に貯溜された潤滑油100を回収するもので、吸込管49の長さ方向の一側は、潤滑油ポンプ50の吸込側に接続されている。吸込管49の長さ方向の他側(先端側)は、入力軸42の下側から下向きにL字状に屈曲し、スピンドル14の径方向孔14G内に挿通されている。
 供給管51は、スピンドル14内で入力軸42よりも上方となる位置に設けられ、スピンドル14と入力軸42との間を軸方向に延びている。供給管51の長さ方向の一側は、潤滑油ポンプ50の吐出側にオイルクーラ52を介して接続されている。供給管51の長さ方向の他側(先端側)は、自由端となって2段目のキャリア41の筒状突出部41A内に挿入されている。従って、車輪取付筒18内に貯溜された潤滑油100は、吸込管49を通じて潤滑油ポンプ50に吸込まれる。潤滑油ポンプ50から吐出された潤滑油は、オイルクーラ52によって冷却された状態で供給管51を通じてキャリア41の筒状突出部41A内に供給され、減速歯車機構27等の潤滑を行う。吸込管49および供給管51の長さ方向の途中部位は、外側リテーナ44を軸方向に貫通して延び、スピンドル14内で外側リテーナ44を介して位置が決められている。
 ここで、車輪取付筒18の内部に貯留された潤滑油100は、ダンプトラック1の走行時に後輪4が回転するときの遠心力によって車輪取付筒18の内周面に張付くような挙動を生じる。この場合には、吸込管49の吸込口が潤滑油100の液面から離れ、潤滑油ポンプ50によって潤滑油100を吸込むことができず、潤滑油ポンプ50が空転状態となる不具合がある。このため、例えばダンプトラック1の走行時には、潤滑油ポンプ50は停止される。一方、ベッセル5への積荷の積込み作業やベッセル5からの積荷の排出作業を行うためにダンプトラック1が停車しているときには、潤滑油ポンプ50が作動し、吸込管49、供給管51等を介して潤滑油100が減速歯車機構27等に供給される構成となっている。
 次に、出力軸17と入力軸42とのスプライン結合部を潤滑する潤滑機構について説明する。この潤滑機構は、図4および図5に示すように、後述の穴スプライン53、軸スプライン54、油溜り空間55、環状油溝56、油通路57、ノズル60等を含んで構成されている。
 穴スプライン53は、出力軸17の先端に形成された有底穴の内周面に設けられている。穴スプライン53は、出力軸17の先端側が開口端53Aとなり、この開口端53Aから後述する油溜り空間55に向けて軸方向に延在している。ここで、穴スプライン53を構成する複数のスプライン歯53Bの歯底53Cの直径は、歯底円径D1となっている。
 軸スプライン54は、入力軸42の軸方向の基端の外周面に設けられている。軸スプライン54は、穴スプライン53の各スプライン歯53Bに噛合する複数のスプライン歯54Aを有し、穴スプライン53に対応する軸方向長さをもって軸方向に延在している。軸スプライン54は、穴スプライン53とスプライン結合され、これにより、出力軸17と入力軸42とは同軸上に接続されている。
 油溜り空間55は、出力軸17に設けられた穴スプライン53の軸方向の奥所(電動モータ16側)に設けられている。即ち、油溜り空間55は、穴スプライン53が形成された有底穴のうち穴スプライン53のスプライン歯53Bと軸スプライン54のスプライン歯54Aとの噛合部よりも底部側(後述の軸方向油通路59側)となる範囲に設けられている。油溜り空間55は、穴スプライン53と同心状に配置された円筒状の有底穴からなり、底面55Aと内周面55Bとによって囲まれている。この油溜り空間55は、穴スプライン53と軸スプライン54とのスプライン結合部に供給される潤滑油100を溜めるものである。ここで、油溜り空間55の内径寸法D2は、穴スプライン53の歯底円径D1よりも大きく形成されている(D2>D1)。これにより、油溜り空間55内に溜められた潤滑油100が、スプライン結合された穴スプライン53の各スプライン歯53Bと軸スプライン54の各スプライン歯54Aとの間の隙間に供給される構成となっている。
 全周油路としての環状油溝56は、出力軸17の先端側の外周面に凹設されている。具体的には、環状油溝56は、出力軸17のうち油溜り空間55から基端側(電動モータ16側)に離間した位置の外周面を全周に亘って凹陥させることにより環状の凹陥溝として形成されている。この環状油溝56は、後述するノズル60の真下の位置に配置され、ノズル60から潤滑油100が供給される。
 油通路57は出力軸17に設けられ、油溜り空間55と環状油溝56との間を連通させるものである。油通路57は、複数の径方向油通路58および複数の軸方向油通路59を含んで構成されている。
 複数(例えば4本)の径方向油通路58は、周方向に一定の角度間隔(例えば90度)をもって配置され、出力軸17の径方向に延びて設けられている。これら複数の径方向油通路58は、出力軸17の軸心を中心として放射状に延び、各径方向油通路58の径方向の外端58Aは、環状油溝56の溝底にそれぞれ開口している。一方、各径方向油通路58の径方向の内端58Bは、出力軸17の軸心の近傍に配置され、後述する各軸方向油通路59に接続されている。
 複数(例えば4本)の軸方向油通路59は、油溜り空間55の底面55Aから出力軸17の軸方向に延びて設けられている。これら複数の軸方向油通路59は、軸方向の基端が各径方向油通路58の径方向の内端58Bに連通し、軸方向の先端が油溜り空間55に開口している。即ち、各軸方向油通路59は、各径方向油通路58の径方向の内端58Bと油溜り空間55との間を接続している。これにより、油溜り空間55は、径方向油通路58および軸方向油通路59からなる油通路57を介して環状油溝56に連通している。
 ノズル60は、出力軸17の外周側に配置され、環状油溝56に潤滑油100を供給するものである。ノズル60は、例えば供給管51の長さ方向の途中部位、即ち環状油溝56の真上となる部位から下向きに分岐して設けられている。従って、ダンプトラック1の停車時において潤滑油ポンプ50から供給管51に吐出された潤滑油100の一部は、図6に示すように、ノズル60から環状油溝56に向けて供給される。環状油溝56に供給された潤滑油100は、環状油溝56に沿って流れた後、径方向油通路58、軸方向油通路59を通じて油溜り空間55に導入され、この油溜り空間55内に溜められる。
 この場合、図7および図8に示すように、各径方向油通路58は、周方向に一定の角度間隔(例えば90度)をもって配置されている。これにより、ダンプトラック1が停車した状態で、少なくとも1本の径方向油通路58の外端58Aは上方に向けて開口するようになる。従って、ノズル60から環状油溝56に供給された潤滑油100を、確実に径方向油通路58、軸方向油通路59を通じて油溜り空間55内に導入することができる。
 そして、図9および図10に示すように、ダンプトラック1の走行時に出力軸17が矢示R方向に回転すると、油溜り空間55内に溜められた潤滑油100は、遠心力によって油溜り空間55の内周面55Bに押付けられ、この内周面55Bの全周に張付くような挙動を生じる。この場合、油溜り空間55の内径寸法D2は、穴スプライン53の歯底円径D1よりも大きく形成されている。このため、油溜り空間55の内周面55Bに押付けられた潤滑油100は、図11に示すように、穴スプライン53の各スプライン歯53Bと軸スプライン54の各スプライン歯54Aとの間の隙間に流入し、油溜り空間55から穴スプライン53の開口端53Aに向けて軸方向に流動する構成となっている。なお、油溜り空間55の内周面55Bに押付けられた潤滑油100は、油溜り空間55に開口した各軸方向油通路59の先端から離間する。従って、油溜り空間55内の潤滑油100が、各軸方向油通路59、各径方向油通路58を介して環状油溝56へと逆流することはない。
 第1の実施の形態によるダンプトラック1の走行装置11は上述の如き構成を有するもので、以下、その作動について説明する。
 まず、ダンプトラック1のキャブ7に乗り込んだ運転者が、エンジン8を起動すると、油圧源となる油圧ポンプが回転駆動されると共に、発電機(いずれも図示せず)により発電が行われる。ダンプトラック1の走行時には、前記発電機から電動モータ16に電力が供給されることにより、電動モータ16が作動して出力軸17が回転し、この出力軸17にスプライン結合された入力軸42が回転する。
 入力軸42の回転は、1段目の遊星歯車減速機構28の太陽歯車29から各遊星歯車31に減速されて伝達され、各遊星歯車31の回転は、内歯車30およびカップリング35を介して2段目の遊星歯車減速機構36の太陽歯車37に減速されて伝達される。2段目の遊星歯車減速機構36では、太陽歯車37の回転が各遊星歯車39に減速されて伝達される。このとき、各遊星歯車39を支持するキャリア41は、筒状突出部41Aがスピンドル14の円形筒部14Bにスプライン結合されているため、各遊星歯車39の公転(キャリア41の回転)は拘束される。
 これにより、各遊星歯車39は、太陽歯車37の周囲で自転のみを行い、車輪取付筒18に固定された内歯車38には、遊星歯車39の自転により減速された回転が伝達される。従って、車輪取付筒18は、1段目の遊星歯車減速機構28と2段目の遊星歯車減速機構36とで2段階に減速された大きな回転トルクをもって回転する。この結果、駆動輪となる左,右の後輪4は、車輪取付筒18と一体に回転し、ダンプトラック1を走行駆動することができる。
 そして、ダンプトラック1は、例えばベッセル5に対する積荷の積込み作業を行う積込み作業エリアと、ベッセル5からの積荷の排出作業を行う排出作業エリアとの間を走行する。ダンプトラック1は、積込み作業エリアおよび排出作業エリアでは停車し、走行装置11の作動は停止される。
 ダンプトラック1の走行時(電動モータ16の作動時)においては、車輪取付筒18内に貯溜された潤滑油100が、車輪取付筒18の回転と第1,第2の遊星歯車減速機構28,36の各遊星歯車31,39等によって順次上方へと掻き上げられる。この潤滑油100は、各太陽歯車29,37、各遊星歯車31,39の噛合部位、各軸受20,21等に供給された後、車輪取付筒18の下部側へと溜められる。ここで、ダンプトラック1の走行時には潤滑油ポンプ50が停止されるので、環状油溝56に対するノズル60からの潤滑油100の供給は行われない。
 一方、ダンプトラック1の停車時(電動モータ16の停止時)においては、潤滑油ポンプ50が作動する。従って、車輪取付筒18の下部側に収容された潤滑油100は、吸込管49を通じて潤滑油ポンプ50に吸込まれ、オイルクーラ52で冷却された後に供給管51に吐出される。これにより、供給管51の先端から2段目のキャリア41の筒状突出部41A内に潤滑油100を供給することができ、車輪取付筒18内の減速歯車機構27の周囲を潤滑油100で満たしておくことができる。
 このとき、潤滑油ポンプ50から供給管51に吐出された潤滑油100の一部は、供給管51から分岐したノズル60を通じて、出力軸17の外周面に形成された環状油溝56に供給される。図6ないし図8に示すように、環状油溝56に供給された潤滑油100は、環状油溝56に沿って流れた後、径方向油通路58、軸方向油通路59を通じて油溜り空間55に導入される。このように、ダンプトラック1の走行時(電動モータ16の作動時)には、出力軸17の油溜り空間55内に十分な量の潤滑油100を溜めることができる。
 そして、図9および図10に示すように、ダンプトラック1の走行時に出力軸17が矢示R方向に回転すると、油溜り空間55内に溜められた潤滑油100は、遠心力によって油溜り空間55の内周面55Bに押付けられ、この内周面55Bの全周に張付くような挙動を生じる。ここで、油溜り空間55の内径寸法D2は、穴スプライン53の歯底円径D1よりも大きく形成されている。このため、遠心力によって油溜り空間55の内周面55Bに押付けられた潤滑油100は、穴スプライン53の各スプライン歯53Bと軸スプライン54の各スプライン歯54Aとの間の隙間に押出される(図11参照)。従って、潤滑油100は、穴スプライン53の各スプライン歯53Bと軸スプライン54の各スプライン歯54Aとの間の隙間を通り、油溜り空間55から穴スプライン53の開口端53Aへと流れ、開口端53Aから外部に排出される。
 このように、ダンプトラック1の走行時には、穴スプライン53と軸スプライン54とのスプライン結合部の全域に亘って清浄な潤滑油100を十分に供給することができる。ダンプトラック1の走行時には、穴スプライン53と軸スプライン54とのスプライン結合部に対して大トルクの回転負荷が作用することにより、このスプライン結合部に摩耗粉が生じることがある。しかし、この摩耗粉は、穴スプライン53の各スプライン歯53Bと軸スプライン54の各スプライン歯54Aとの間の隙間を流れる潤滑油100によってスプライン結合部の外部に排出される。これにより、残留した摩耗粉によって穴スプライン53、軸スプライン54の摩耗が促進されるのを抑えると共に、スプライン結合部の全周に潤滑油100を供給することができる。この結果、穴スプライン53、軸スプライン54の寿命を延ばすことができるので、走行装置11の信頼性を高めることができる。
 しかも、第1の実施の形態によれば、穴スプライン53が形成された出力軸17には、油溜り空間55、環状油溝56、油通路57が設けられている。一方、吸込管49、潤滑油ポンプ50と共に車輪取付筒18内での潤滑油100の循環系路を構成する供給管51には、ノズル60が設けられるだけの簡単な構成を採用している。この結果、走行装置11の構成を複雑化させることなく、穴スプライン53と軸スプライン54とのスプライン結合部を適正に潤滑することができ、製造コストも抑えることができる。
 かくして、本実施の形態による走行装置11は、前輪3および後輪4を有するダンプトラック1の車体2に設けられた電動モータ16と、軸方向の基端が電動モータ16に接続され電動モータ16の回転を出力する出力軸17と、出力軸17の軸方向の先端に形成された有底状の穴スプライン53と、穴スプライン53にスプライン結合される軸スプライン54を有し出力軸17の回転を減速歯車機構27に入力する入力軸42とを備えている。出力軸17には、穴スプライン53の奥所に形成された油溜り空間55と、油溜り空間55から基端側に向けて軸方向に離間した環状油溝56と、油溜り空間55と環状油溝56との間を連通し環状油溝56に供給された潤滑油を油溜り空間55に供給する油通路57とが設けられている。油溜り空間55の内径寸法D2は、穴スプライン53の歯底円径D1よりも大きく形成され、出力軸17の回転により油溜り空間55内の潤滑油が穴スプライン53と軸スプライン54とのスプライン結合部に供給される。
 これにより、油溜り空間55内に溜められた潤滑油100を、出力軸17の回転による遠心力を利用して、穴スプライン53の各スプライン歯53Bと軸スプライン54の各スプライン歯54Aとの間の隙間に押出すことができる。この結果、穴スプライン53と軸スプライン54とのスプライン結合部に生じた摩耗粉を、潤滑油100によって外部に排出することができ、スプライン結合部の全周を適正に潤滑することができる。
 しかも、油通路57は、径方向の外端58Aが環状油溝56に開口し出力軸17の径方向に延びる複数の径方向油通路58と、各径方向油通路58の径方向の内端58Bと油溜り空間55との間を接続し出力軸17の軸方向に延びて設けられた複数の軸方向油通路59とにより構成されている。これにより、油通路57を構成する径方向油通路58と軸方向油通路59とを、出力軸17に容易に形成することができる。
 さらに、全周油路は出力軸17の外周面に環状に凹設された環状油溝56により構成され、潤滑油100は出力軸17の外周側に配置されたノズル60を通じて環状油溝56内に供給される。この場合、ノズル60は、吸込管49、潤滑油ポンプ50と共に車輪取付筒18内での潤滑油100の循環系路を構成する供給管51を利用して設けられている。従って、穴スプライン53と軸スプライン54とのスプライン結合部に潤滑油100を供給するための装置を新たに追加する必要がなく、走行装置11の構成を簡素化することができる。
 次に、図12は本発明の第2の実施の形態を示している。第2の実施の形態の特徴は、出力軸の外周側に出力軸を取囲む円筒部材を設け、この円筒部材の内周面に全周油路としての全周溝を形成したことにある。なお、第2の実施の形態では、第1の実施の形態と同一の構成要素に同一符号を付し、その説明を省略する。
 図中、出力軸61は、第1の実施の形態による出力軸17と同様に、軸方向の先端側に穴スプライン53、油溜り空間55、複数の径方向油通路58、複数の軸方向油通路59が形成されている。しかし、出力軸61は、その外周面に後述する一対のOリング取付溝62が形成されている点で第1の実施の形態による出力軸17とは異なるものである。
 一対のOリング取付溝62は、出力軸61の外周面のうち各径方向油通路58を軸方向で挟む2箇所に全周に亘って形成されている。各Oリング取付溝62には、それぞれゴム等の弾性材からなるOリング63が取付けられると共に、後述する各シールリング66の内周側が挿入されている。
 円筒部材64は、例えば図3に示す電動モータ16のケーシング、あるいはスピンドル14にブラケット等(図示せず)を用いて固定されている。円筒部材64の内周側は出力軸61の外周面に挿嵌されている。即ち、出力軸61は円筒部材64に対して回転可能となっている。円筒部材64の内周面のうち出力軸61の各径方向油通路58に対応する部位には、全周油路としての環状の全周溝64Aが形成されている。各径方向油通路58の径方向の外端58Aは全周溝64Aに開口している。円筒部材64には全周溝64Aに連通する油路64Bが形成され、この油路64Bは、例えば図3に示す供給管51の途中部位に接続管65を介して接続されている。これにより、潤滑油ポンプ50から供給管51内に吐出された潤滑油100の一部は、接続管65、油路64Bを介して全周溝64Aに供給される構成となっている。また、円筒部材64の内周面のうち全周溝64Aを軸方向で挟む2箇所はシール摺接面64Cとなり、これら各シール摺接面64Cは各シールリング66の外周面が摺接する。
 一対のシールリング66は、出力軸61と円筒部材64との間に設けられている。各シールリング66は、円筒部材64の全周溝64Aに供給された潤滑油が、出力軸61と円筒部材64との間の隙間を通じて外部に漏れるのを抑えるものである。各シールリング66の内周側は出力軸61のOリング取付溝62内に配置され、各シールリング66の外周面は、円筒部材64のシール摺接面64Cに適度な押付力をもって摺接している。
 第2の実施の形態による走行装置は、上述の如きスプライン結合部の潤滑機構を有している。ダンプトラック1の走行時に潤滑油ポンプ50から供給管51に吐出された潤滑油100の一部は、供給管51から分岐した接続管65を通じて円筒部材64の全周溝64Aに供給される。全周溝64Aに供給された潤滑油100は、出力軸61に設けられた径方向油通路58、軸方向油通路59を通じて油溜り空間55に導入される。
 そして、ダンプトラック1の走行時に出力軸61が回転すると、油溜り空間55内に溜められた潤滑油100は、遠心力によって油溜り空間55の内周面55Bに押付けられる。これにより、第2の実施の形態においても、潤滑油100が、穴スプライン53の各スプライン歯53Bと軸スプライン54の各スプライン歯54Aとの間の隙間を通り、油溜り空間55から穴スプライン53の開口端53Aへと流れる。この結果、スプライン結合部に生じた摩耗粉を外部に排出することができ、穴スプライン53と軸スプライン54とのスプライン結合部を適正に潤滑することができる。
 なお、実施の形態では、潤滑油ポンプ50から供給管51に吐出された潤滑油100の一部を油溜り空間55に供給する構成を例示している。しかし、本発明はこれに限るものではなく、例えば潤滑油ポンプ50とは別個のポンプを用いて油溜り空間55に潤滑油100を供給する構成としてもよい。
 実施の形態では、出力軸17(61)に4本の径方向油通路58と4本の軸方向油通路59とを設けた場合を例示している。しかし、本発明はこれに限らず、例えば3本、または5本以上の径方向油通路および軸方向油通路を設ける構成としてもよい。さらに、出力軸の軸心に1本の軸方向油通路を形成し、この1本の軸方向油通路に各径方向油通路の径方向の内端が開口する構成としてもよい。
 実施の形態では、後輪駆動式のダンプトラック1を例に挙げて説明した。しかし、本発明はこれに限るものではなく、例えば前輪駆動式または前,後輪を共に駆動する4輪駆動式のダンプトラックに適用してもよい。さらに、本発明はダンプトラックに限らず、ホイール式ショベル、ホイールローダ等の車輪を有する作業車両に広く適用することができるものである。
 1 ダンプトラック(作業車両)
 2 車体
 3 前輪(車輪)
 4 後輪(車輪)
 16 電動モータ
 17,61 出力軸
 27 減速歯車機構(減速機構)
 42 入力軸
 53 穴スプライン
 54 軸スプライン
 55 油溜り空間
 56 環状油溝(全周油路)
 57 油通路
 58 径方向油通路
 58A 外端
 58B 内端
 59 軸方向油通路
 60 ノズル
 64A 全周溝(全周油路)

Claims (3)

  1.  車輪を有する作業車両の車体に設けられた電動モータと、軸方向の基端が前記電動モータに接続され前記電動モータの回転を出力する出力軸と、前記車体に設けられ前記出力軸の回転を減速して前記車輪に伝達する減速機構と、前記出力軸の軸方向の先端に形成された有底状の穴スプラインと、前記穴スプラインにスプライン結合される軸スプラインを有し前記出力軸の回転を前記減速機構に入力する入力軸とを備えている車輪を有する走行装置を備えた作業車両において、
     前記出力軸には、前記穴スプラインの軸方向の奥所に形成され潤滑油を溜める油溜り空間と、前記油溜り空間から前記基端側に向けて軸方向に離間し前記出力軸の外周側に全周に亘って形成された全周油路と、前記油溜り空間と前記全周油路との間を連通し前記全周油路に供給された潤滑油を前記油溜り空間に供給する油通路とが設けられ、
     前記油溜り空間の内径寸法は、前記穴スプラインの歯底円径よりも大きく形成され、前記出力軸の回転により前記油溜り空間内の潤滑油が前記穴スプラインと前記軸スプラインとのスプライン結合部に供給されるように構成していることを特徴とする車輪を有する走行装置を備えた作業車両。
  2.  前記油通路は、径方向の外端が前記全周油路に開口し前記出力軸の径方向に延びる複数の径方向油通路と、前記各径方向油通路の径方向の内端と前記油溜り空間との間を接続し前記出力軸の軸方向に延びて設けられた複数の軸方向油通路とにより構成していることを特徴とする請求項1に記載の車輪を有する走行装置を備えた作業車両。
  3.  前記全周油路は前記出力軸の外周面に環状に凹設された環状油溝であり、前記潤滑油は前記出力軸の外周側に配置されたノズルを通じて前記環状油溝内に供給されるように構成していることを特徴とする請求項1に記載の車輪を有する走行装置を備えた作業車両。
PCT/JP2018/019518 2017-06-12 2018-05-21 車輪を有する走行装置を備えた作業車両 WO2018230270A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880015181.1A CN110382918B (zh) 2017-06-12 2018-05-21 具备具有车轮的行驶装置的作业车辆
US16/490,992 US11279220B2 (en) 2017-06-12 2018-05-21 Working vehicle with traveling device having wheels
EP18818064.0A EP3578856B1 (en) 2017-06-12 2018-05-21 Working vehicle with traveling device having wheels

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-115254 2017-06-12
JP2017115254A JP6695305B2 (ja) 2017-06-12 2017-06-12 作業車両の走行装置

Publications (1)

Publication Number Publication Date
WO2018230270A1 true WO2018230270A1 (ja) 2018-12-20

Family

ID=64660246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019518 WO2018230270A1 (ja) 2017-06-12 2018-05-21 車輪を有する走行装置を備えた作業車両

Country Status (5)

Country Link
US (1) US11279220B2 (ja)
EP (1) EP3578856B1 (ja)
JP (1) JP6695305B2 (ja)
CN (1) CN110382918B (ja)
WO (1) WO2018230270A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11479108B2 (en) * 2018-11-08 2022-10-25 Hitachi Construction Machinery Co., Ltd. Dump truck

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107539192B (zh) * 2016-06-29 2019-08-13 比亚迪股份有限公司 一种电动矿山自卸车
JP6695305B2 (ja) * 2017-06-12 2020-05-20 日立建機株式会社 作業車両の走行装置
DE102019205567A1 (de) * 2019-04-17 2020-10-22 Robert Bosch Gmbh Steckverzahnung mit kreis- oder ringförmigen Federelementen
US11498410B2 (en) * 2019-10-23 2022-11-15 Deere & Company Powered axle for dual wheel work vehicle
US11827092B2 (en) * 2020-03-02 2023-11-28 Komatsu America Corp. Vehicle with front-wheel-assist system
DE102021201766A1 (de) * 2021-02-25 2022-08-25 Zf Friedrichshafen Ag Passverzahnung mit Ölfangnut
CN117881551A (zh) * 2022-03-30 2024-04-12 日立建机株式会社 轮式车辆的行驶装置
DE102022208109A1 (de) * 2022-08-04 2024-02-15 Robert Bosch Gesellschaft mit beschränkter Haftung Antriebsanordnung und Fahrzeug mit einer solchen Antriebsanordnung
CN115614397B (zh) * 2022-09-27 2023-09-26 昆山安控发展装备有限公司 花键静音装置
WO2024070242A1 (ja) * 2022-09-29 2024-04-04 日立建機株式会社 作業車両の走行装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120219351A1 (en) * 2011-02-25 2012-08-30 Besler Mark J Coupler For Promoting Lubrication Of Shaft Splines
JP2013053711A (ja) 2011-09-06 2013-03-21 Hitachi Constr Mach Co Ltd ダンプトラックの走行駆動装置
JP2014073730A (ja) * 2012-10-03 2014-04-24 Ntn Corp インホイールモータ駆動装置

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4330045A (en) * 1979-09-14 1982-05-18 Reliance Electric Company Vehicle wheel mechanism
DE19945345A1 (de) * 1999-09-22 2001-04-05 Zahnradfabrik Friedrichshafen Radantrieb zum Antrieb eines Fahrzeugrades
JP4701587B2 (ja) * 2003-06-02 2011-06-15 トヨタ自動車株式会社 電動式駆動装置
US7585244B2 (en) * 2004-05-05 2009-09-08 General Electric Company Sun pinion cover
US7416504B2 (en) * 2004-05-05 2008-08-26 Augusto Xavier Jurado Lubrication plug
WO2009016884A1 (ja) * 2007-07-30 2009-02-05 Hitachi Construction Machinery Co., Ltd. 作業車両の走行駆動装置
JP4667478B2 (ja) * 2008-02-26 2011-04-13 日立建機株式会社 走行装置
US8544579B2 (en) * 2008-05-13 2013-10-01 Caterpillar Inc. Axle assembly for electric drive machine
US8096910B2 (en) * 2008-06-12 2012-01-17 Hitachi Construction Machinery Co., Ltd. Travel assembly for dump truck
JP5241652B2 (ja) * 2009-08-24 2013-07-17 日立建機株式会社 ダンプトラックの走行装置
WO2011102252A1 (ja) * 2010-02-22 2011-08-25 日立建機株式会社 建設機械の旋回装置
RU2532039C1 (ru) * 2010-08-24 2014-10-27 Хонда Мотор Ко., Лтд. Гидравлический регулятор для системы привода транспортного средства
US9205737B2 (en) * 2011-02-08 2015-12-08 General Electric Company Seal body, apparatus and method
US8727052B2 (en) * 2011-02-24 2014-05-20 Deere & Company Dry axle center section
US8783393B2 (en) * 2011-02-25 2014-07-22 Deere & Company Interface for a motor and drive assembly
US8714661B2 (en) * 2011-02-25 2014-05-06 General Electric Company Wheel frame, assembly and method
US8747271B2 (en) * 2011-03-12 2014-06-10 General Electric Company Wheel rim assembly and method
CN103477123B (zh) * 2011-04-15 2016-10-12 洋马株式会社 联合收割机
JP5450542B2 (ja) * 2011-09-12 2014-03-26 日立建機株式会社 ダンプトラックの走行駆動装置
JP5529091B2 (ja) * 2011-09-12 2014-06-25 日立建機株式会社 ダンプトラックの走行駆動装置
JP2013194895A (ja) * 2012-03-22 2013-09-30 Hitachi Automotive Systems Kyushu Ltd プロペラシャフト及びこのプロペラシャフトに用いられる等速ジョイント
JP5113949B1 (ja) * 2012-05-09 2013-01-09 株式会社小松製作所 ホイールローダ
JP5829998B2 (ja) * 2012-06-29 2015-12-09 日立建機株式会社 ダンプトラックの走行駆動装置
US9770981B2 (en) * 2013-10-18 2017-09-26 General Electric Company System and method for unified torque transmission and rotary sealing
CA2938940C (en) * 2014-02-27 2017-12-19 Komatsu Ltd. Dump truck
CN108026991B (zh) * 2016-03-16 2020-04-17 株式会社小松制作所 作业车辆
US10486656B2 (en) * 2016-03-16 2019-11-26 Komatsu Ltd. Parking brake system for a work vehicle
JP6695305B2 (ja) * 2017-06-12 2020-05-20 日立建機株式会社 作業車両の走行装置
NL2019306B1 (en) * 2017-07-20 2019-02-12 E Traction Europe Bv Cooling jacket and in-wheel motor with a cooling jacket
US11525504B2 (en) * 2018-01-26 2022-12-13 Borgwarner Inc. Drive train design for electric driven vehicles
CN108638839B (zh) * 2018-05-14 2019-09-27 清华大学 一种低地板电动桥总成
EP3817941B1 (en) * 2018-07-03 2022-06-08 KA Group AG Electrical vehicle axle
CN109130839B (zh) * 2018-10-09 2020-06-30 清华大学 一种适用于双胎并装车轮的电动轮总成、车桥及车辆
JP7111585B2 (ja) * 2018-11-08 2022-08-02 日立建機株式会社 ダンプトラック
KR102588326B1 (ko) * 2018-12-27 2023-10-11 현대트랜시스 주식회사 인휠모터 파워트레인의 윤활시스템
KR102626712B1 (ko) * 2018-12-27 2024-01-17 현대트랜시스 주식회사 인휠 모터 파워트레인
US11498410B2 (en) * 2019-10-23 2022-11-15 Deere & Company Powered axle for dual wheel work vehicle
US11529864B2 (en) * 2019-11-29 2022-12-20 Mitsubishi Heavy Industries, Ltd. Drive device for electric vehicle and electric vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120219351A1 (en) * 2011-02-25 2012-08-30 Besler Mark J Coupler For Promoting Lubrication Of Shaft Splines
JP2013053711A (ja) 2011-09-06 2013-03-21 Hitachi Constr Mach Co Ltd ダンプトラックの走行駆動装置
JP2014073730A (ja) * 2012-10-03 2014-04-24 Ntn Corp インホイールモータ駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3578856A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11479108B2 (en) * 2018-11-08 2022-10-25 Hitachi Construction Machinery Co., Ltd. Dump truck

Also Published As

Publication number Publication date
CN110382918B (zh) 2022-07-12
CN110382918A (zh) 2019-10-25
JP2019002419A (ja) 2019-01-10
EP3578856A4 (en) 2020-11-18
JP6695305B2 (ja) 2020-05-20
EP3578856A1 (en) 2019-12-11
US20200016973A1 (en) 2020-01-16
EP3578856B1 (en) 2022-03-23
US11279220B2 (en) 2022-03-22

Similar Documents

Publication Publication Date Title
WO2018230270A1 (ja) 車輪を有する走行装置を備えた作業車両
US8562472B2 (en) Travel drive device for dump truck
JP5496973B2 (ja) ダンプトラックの走行駆動装置
JP5829998B2 (ja) ダンプトラックの走行駆動装置
JP4690180B2 (ja) 遊星歯車減速装置
JP4490316B2 (ja) ダンプトラックの走行駆動装置
JP4699817B2 (ja) ダンプトラックの走行駆動装置
JP2011184040A (ja) ダンプトラック用走行装置
JP4490317B2 (ja) ダンプトラックの走行駆動装置
JP5529091B2 (ja) ダンプトラックの走行駆動装置
JP4745813B2 (ja) 遊星歯車減速装置
JP4728057B2 (ja) ダンプトラックの走行駆動装置
JP4477527B2 (ja) ダンプトラックの走行駆動装置
JP6691520B2 (ja) ダンプトラックの走行装置
WO2024070242A1 (ja) 作業車両の走行装置
WO2023190036A1 (ja) ホイール式車両の走行装置
WO2023182403A1 (ja) ホイール式車両の走行装置
JP2024140368A (ja) ダンプトラックの走行装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018818064

Country of ref document: EP

Effective date: 20190902

NENP Non-entry into the national phase

Ref country code: DE