WO2018230266A1 - Vehicular air-conditioning device - Google Patents

Vehicular air-conditioning device Download PDF

Info

Publication number
WO2018230266A1
WO2018230266A1 PCT/JP2018/019422 JP2018019422W WO2018230266A1 WO 2018230266 A1 WO2018230266 A1 WO 2018230266A1 JP 2018019422 W JP2018019422 W JP 2018019422W WO 2018230266 A1 WO2018230266 A1 WO 2018230266A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
compressor
refrigerant
vehicle
upper limit
Prior art date
Application number
PCT/JP2018/019422
Other languages
French (fr)
Japanese (ja)
Inventor
竜 宮腰
耕平 山下
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Priority to CN202310372215.5A priority Critical patent/CN116141920A/en
Priority to CN201880039062.XA priority patent/CN110740889B/en
Publication of WO2018230266A1 publication Critical patent/WO2018230266A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/0075Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being solar radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/00764Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being a vehicle driving condition, e.g. speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00878Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being temperature regulating devices
    • B60H1/00899Controlling the flow of liquid in a heat pump system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • B60H1/2215Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant the heat being derived from electric heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3205Control means therefor

Definitions

  • the present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and particularly to a vehicle air conditioner that uses an electric compressor.
  • Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years.
  • an electric compressor electric compressor
  • the refrigerant circuit is composed of an indoor condenser), a heat absorber (indoor evaporator) that is provided on the vehicle interior side to absorb the refrigerant, an outdoor heat exchanger that is provided outside the vehicle cabin to dissipate or absorb the refrigerant, and the like.
  • Heating mode in which the refrigerant discharged from the compressor dissipates heat in the radiator and the refrigerant dissipated in this radiator absorbs heat in the outdoor heat exchanger, or the refrigerant discharged from the compressor dissipates heat in the radiator
  • Each operation mode such as a dehumidifying mode in which the heat dissipated in the heat absorber absorbs heat in the heat sink, and a cooling mode in which the refrigerant discharged from the compressor dissipates heat in the outdoor heat exchanger and heat is absorbed in the heat absorber.
  • the electric compressor since the electric compressor generates a relatively large driving sound at a high rotation speed, the sound level in the passenger compartment becomes low, and this driving sound becomes annoying to the passenger when quiet. Therefore, considering the effect of noise generated by the compressor on passengers in the passenger compartment, the sound level in the passenger compartment becomes low (becomes quiet), that is, when the shift position is other than the forward position, When the outside air temperature, the set temperature, and the passenger compartment temperature are not high or low, control is performed so as to reduce the upper limit rotation number (upper limit value) of the compressor (see, for example, Patent Document 1).
  • An object of the present invention is to provide a vehicle air conditioner that can be used.
  • An air conditioner for a vehicle includes an air flow passage through which air to be supplied to the vehicle interior flows, an electric compressor for compressing refrigerant, and air to be supplied from the air flow passage to the vehicle interior.
  • a refrigerant circuit having a heat exchanger for exchanging heat directly or indirectly with the refrigerant, an indoor fan for circulating air in the air flow passage, and a control device are provided.
  • the air conditioner is controlled by controlling the air blower and the indoor blower, and the control device is configured to lower the upper limit rotational speed for controlling the compressor as the air flow becomes lower based on the air flow of the indoor blower. It is characterized by changing.
  • An air conditioner for a vehicle includes an air flow passage through which air to be supplied to the vehicle interior flows, an electric compressor that compresses the refrigerant, and air supplied from the air flow passage to the vehicle interior.
  • a refrigerant circuit having a heat exchanger for directly or indirectly exchanging heat with the refrigerant, an indoor fan for circulating air through the air flow passage, and VENT for blowing air from the air flow passage into the vehicle interior
  • a blower outlet, a FOOT blower outlet, and a control device are provided. By this control device, the compressor and the indoor blower are controlled to air-condition the vehicle interior, and at least a vent mode for blowing air into the vehicle interior is provided.
  • An air conditioning apparatus for a vehicle includes an air flow passage through which air to be supplied to the vehicle interior flows, an electric compressor that compresses the refrigerant, and air that is supplied from the air flow passage to the vehicle interior.
  • a refrigerant circuit having a heat exchanger for exchanging heat directly or indirectly with the refrigerant, an indoor fan for circulating air in the air flow passage, and a control device are provided.
  • An air conditioner for a vehicle includes an air flow passage through which air to be supplied to the vehicle interior flows, an electric compressor that compresses the refrigerant, and air that is supplied from the air flow passage to the vehicle interior.
  • a refrigerant circuit having a heat exchanger for exchanging heat directly or indirectly with the refrigerant, an indoor fan for circulating air in the air flow passage, and a control device are provided.
  • the air conditioner is controlled in the vehicle interior by controlling the air blower and the indoor blower, and the control device is configured to rotate the upper limit for controlling the compressor as the sound volume decreases based on the sound volume of the audio equipment provided in the vehicle. It is characterized by changing in the direction of decreasing the number.
  • the control device changes the lower limit of the upper limit rotational speed for controlling the compressor than when traveling.
  • a vehicle air conditioner according to a sixth aspect of the present invention is characterized in that, in each of the above-described inventions, the control device changes the lower limit of the upper limit rotational speed for control of the compressor as the outside air temperature decreases.
  • An air conditioner for a vehicle according to a seventh aspect of the invention includes an air flow passage through which air to be supplied to the vehicle interior flows, an electric compressor that compresses the refrigerant, and air that is supplied from the air flow passage to the vehicle interior.
  • a refrigerant circuit having a heat exchanger for exchanging heat directly or indirectly with the refrigerant, an indoor fan for circulating air in the air flow passage, and a control device are provided.
  • the vehicle interior is controlled by controlling the air blower and the interior blower, and the control device is based on a plurality of factors that affect the sound level in the vehicle interior, and the sound level in the vehicle interior decreases.
  • the upper limit rotational speed change value that is changed in the direction of lowering the upper limit rotational speed in control of the compressor is calculated for each factor, and the highest value among the calculated upper limit rotational speed change values for each factor is calculated by the compressor.
  • the factors affecting the sound level in the vehicle interior in the invention described above are the air volume of the indoor blower, the blowing mode for blowing air into the vehicle interior, and the amount of air flowing into the air flow passage.
  • a vehicle air conditioner includes the auxiliary heating device provided in the air flow passage in each of the above-described inventions, and the control device causes the refrigerant discharged from the compressor to dissipate heat by the heat exchanger.
  • the control device causes the refrigerant discharged from the compressor to dissipate heat by the heat exchanger.
  • an air conditioning apparatus for a vehicle wherein the refrigerant circuit heats the air directly or indirectly for heat dissipating the refrigerant and supplying air from the air flow passage to the vehicle interior.
  • the controller has an exchanger, and the control device radiates the refrigerant discharged from the compressor with a radiator, depressurizes the radiated refrigerant and then absorbs heat with an outdoor heat exchanger, and discharges from the compressor.
  • the refrigerant is radiated by the outdoor heat exchanger, the radiated refrigerant is depressurized, and at least a cooling mode in which the heat is absorbed by the heat absorber is executed, and an upper limit rotational speed TGNCcLimH for controlling the compressor in the cooling mode And and changes in the decreasing direction than the upper limit rotational speed TGNChLimHi on control of the compressor in the heating mode.
  • the vehicle air conditioner according to an eleventh aspect of the present invention is the above-described invention, wherein the compressor discharge volume is set to a discharge volume DV1 required in the heating mode, and the compressor discharge required in the cooling mode with respect to the discharge volume DV1.
  • the upper limit rotational speed TGNCcLimHi for controlling the compressor in the cooling mode is set. To do.
  • the air flow passage through which the air supplied to the passenger compartment flows, the electric compressor that compresses the refrigerant, and the air and refrigerant supplied from the air flow passage to the passenger compartment are directly or indirectly heat-exchanged.
  • a refrigerant circuit having a heat exchanger, an indoor blower for circulating air in the air flow passage, and a control device.
  • the control device controls the compressor and the indoor blower to air-condition the vehicle interior.
  • the vehicle air conditioner when the air volume of the indoor fan decreases, the sound level in the vehicle interior becomes lower and quieter than when the air volume is large. Therefore, the driving sound of the compressor becomes conspicuous, which is annoying to the passenger.
  • the control device is configured to change the direction of lowering the upper limit number of revolutions for control of the compressor based on the air volume of the indoor fan, so that the air volume of the indoor fan is reduced. In a situation where the pressure drops, the driving sound of the compressor can be reduced.
  • a reduction in the air volume of the indoor blower means that the necessary air conditioning capability is also low, so that it is possible to achieve vehicle interior air conditioning that is generally comfortable for passengers.
  • a VENT air outlet and a FOOT air outlet are provided to blow air from the air flow passage into the vehicle interior, and a blow mode in which air is blown into the vehicle interior is controlled by the control device.
  • the FOOT mode that blows air from the FOOT air outlet far from the passenger's ear is compared with the VENT mode that blows out from the VENT air outlet.
  • the level of sound in the passenger compartment that reaches the passenger's ear is lowered, and the driving sound of the compressor becomes conspicuous, which is annoying to the passenger. Therefore, in the invention of claim 2, since the control device is changed in the direction of lowering the upper limit number of revolutions in the control of the compressor in the FOOT mode than in the VENT mode, the control device is compressed in the FOOT mode. The driving noise of the aircraft can be reduced, and the passenger compartment air conditioning can be realized.
  • the control device since the control device is changed in the direction of lowering the upper limit number of rotations in the control of the compressor in the outside air introduction mode compared to the inside air circulation mode, the outside air introduction mode In this case, it is possible to reduce the driving noise of the compressor and realize air conditioning in the passenger compartment that is comfortable for the passenger.
  • the control device is configured to change the direction in which the upper limit number of rotations for controlling the compressor is lowered as the volume decreases, based on the volume of the audio equipment provided in the vehicle. In the situation where the volume of the acoustic device is low, the driving sound of the compressor can be reduced, and the passenger compartment can be comfortably air-conditioned.
  • control device as in the invention of claim 5 when the control device as in the invention of claim 5 is stopped, by changing the upper limit number of rotations in the control of the compressor in the direction of lowering than when traveling, The driving sound of the compressor can be reduced even when the vehicle is stopped when the sound level in the passenger compartment becomes low, and the comfort can be further improved.
  • the control device as in the invention of claim 6 changes the direction of lowering the upper limit rotational speed on the control of the compressor as the outside air temperature becomes lower. Even under a situation where it hardens under a low outside temperature and noise due to vibration increases, the upper limit number of rotations of the compressor can be lowered, and generation of noise due to vibration can be reduced.
  • the factors affecting the sound level in the passenger compartment that is, the air volume of the indoor fan as in the invention of claim 8, the blow-out mode for blowing air into the passenger compartment, and the introduction of air flowing into the air flow passage
  • the control device lowers the upper limit rotational speed for controlling the compressor as the sound level in the vehicle interior decreases based on a plurality of factors affecting the sound level in the vehicle interior.
  • the upper limit rotation speed change value that changes in the direction is calculated for each factor, and the highest value among the calculated upper limit rotation speed change values for each factor is set as the upper limit rotation speed for compressor control. Therefore, in any situation where the sound level in the passenger compartment is high due to any of the factors and the driving sound of the compressor does not easily disturb the passenger, the upper limit rotation speed of the compressor can be increased as much as possible. The adverse effect on the air conditioning performance due to the decrease in the number can be reduced. On the other hand, when heating the vehicle interior by dissipating the refrigerant discharged from the compressor with a heat exchanger, if the upper limit number of rotations of the compressor is lowered as in the above inventions, the heating capacity will be reduced.
  • a comfortable heating in the vehicle interior can be maintained by providing an auxiliary heating device in the air flow passage as in the invention of claim 9 and executing the heating by the auxiliary heating device.
  • the radiator as a heat exchanger for directly or indirectly heating the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant, and absorbing the refrigerant
  • a heat absorber as a heat exchanger for cooling the air supplied from the air flow passage to the vehicle interior and an outdoor heat exchanger provided outside the vehicle cabin to dissipate or absorb the refrigerant are provided in the refrigerant circuit and discharged from the compressor.
  • the radiator Heat is dissipated by the radiator, and after the decompressed refrigerant is depressurized, the heating mode in which heat is absorbed by the outdoor heat exchanger, and the refrigerant discharged from the compressor is dissipated by the outdoor heat exchanger to dissipate heat.
  • the compressor that constitutes the refrigerant circuit usually has a discharge volume that is necessary in the heating mode. Selected , The discharge volume is the excess is in the cooling mode.
  • the control device changes the upper limit rotational speed TGNCcLimHi for controlling the compressor in the cooling mode in a direction lower than the upper limit rotational speed TGNChLimHi for controlling the compressor in the heating mode.
  • the control device changes the upper limit rotational speed TGNCcLimHi for controlling the compressor in the cooling mode in a direction lower than the upper limit rotational speed TGNChLimHi for controlling the compressor in the heating mode.
  • the discharge volume of the compressor is set to the discharge volume DV1 required in the heating mode, and the ratio D2 / D1 of the discharge volume DV2 of the compressor required in the cooling mode with respect to the discharge volume DV1
  • the upper limit rotational speed TGNCcLimHi in the cooling mode is appropriately set. Can be set.
  • FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention.
  • a vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery.
  • EV electric vehicle
  • the vehicle air conditioner 1 (compressor 2 or the like) of the present invention is also driven by the power of a battery mounted on the vehicle.
  • the vehicle air conditioner 1 of the embodiment performs heating by heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further performs each of dehumidification heating, internal cycle, cooling dehumidification, and cooling.
  • the operation mode is selectively executed.
  • the present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
  • the vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a passenger compartment of an electric vehicle, and an electric compressor (electric compressor) 2 that compresses refrigerant.
  • a radiator 4 as a heat exchanger for dissipating heat
  • an outdoor expansion valve 6 comprising an electric valve for decompressing and expanding the refrigerant during heating, a function as a radiator during cooling, and a refrigerant and outside air to function as an evaporator during heating
  • An outdoor heat exchanger 7 that exchanges heat between them
  • an indoor expansion valve 8 that is an electric valve that decompresses and expands the refrigerant
  • an air flow passage 3 that absorbs heat from outside and inside the vehicle during cooling and dehumidification.
  • Heat absorption as a heat exchanger 9, the evaporation capacity control valve 11 for adjusting the evaporating ability in the heat sink 9, an accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
  • the compressor 2 various types of compressors such as a scroll type and a rotary type can be adopted, but at least a compressor having a discharge volume DV1 required in a heating mode described later is used.
  • the outdoor heat exchanger 7 is provided with an outdoor fan 15.
  • the outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7.
  • FIG. The outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is an electromagnetic valve (cooling electromagnetic solenoid) that is opened during cooling.
  • the outlet of the supercooling unit 16 is connected to the indoor expansion valve 8 via a check valve 18.
  • the receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
  • the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both.
  • the exchanger 19 is configured.
  • the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
  • the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and the branched refrigerant pipe 13D is connected to the internal heat exchanger 19 via an electromagnetic valve (heating electromagnetic valve) 21 that is opened during heating.
  • the refrigerant pipe 13 ⁇ / b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
  • the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and the branched refrigerant pipe 13F is connected via an electromagnetic valve (dehumidifying electromagnetic valve) 22 that is opened during dehumidification.
  • the refrigerant pipe 13B on the downstream side of the check valve 18 is connected in communication. That is, the dehumidifying electromagnetic valve 22 is connected in parallel to the outdoor heat exchanger 7 (and the outdoor expansion valve 6 and the like).
  • a bypass pipe 13J is connected to the outdoor expansion valve 6 in parallel.
  • the bypass pipe 13J is opened in a cooling mode, and is an electromagnetic valve (bypass for bypassing the outdoor expansion valve 6 and allowing the refrigerant to flow).
  • the electromagnetic valve) 20 is interposed.
  • the piping between the outdoor expansion valve 6 and the electromagnetic valve 20 and the outdoor heat exchanger 7 is 131.
  • the air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1).
  • a suction switching damper 26 for switching the introduction mode of the air flowing into the air flow passage 3 between the inside air circulation mode and the outside air introduction mode.
  • the inside air circulation mode the inside air that is the air in the vehicle interior flows into the air flow passage 3 by the suction switching damper 26, and in the outside air introduction mode, the outside air that is the air outside the vehicle interior flows into the air flow passage 3.
  • an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • FIG. 1, 23 has shown the heat-medium circulation circuit provided in the air conditioning apparatus 1 for vehicles of the Example.
  • the heat medium circulation circuit 23 includes a circulation pump 30 that constitutes a circulation means, a heat medium heating electric heater 35, and an air flow passage 3 on the upstream side of the radiator 4 with respect to the air flow in the air flow passage 3.
  • a heat medium-air heat exchanger 40 (auxiliary heating device in the present invention) provided in the inside is provided, and these are sequentially connected in an annular shape by a heat medium pipe 23A.
  • the heat medium circulated in the heat medium circuit 23 for example, water, a refrigerant such as HFO-1234yf, a coolant, or the like is employed.
  • the heat medium-air heat exchanger 40 (auxiliary heating device) of the heat medium circulation circuit 23 serves as a so-called heater core, and complements heating in the passenger compartment.
  • the heat medium circulation circuit 23 it is possible to improve the electrical safety of the passenger.
  • a damper 28 is provided.
  • FOOT, VENT, and DEF air outlets are formed in the air flow passage 3 on the air downstream side of the radiator 4.
  • the FOOT air outlet is an air outlet that blows out air in the air flow passage 3 from the ears of the passenger (driver or the like) to the feet
  • the VENT air outlet is an air outlet that blows out to the chest or face of the passenger.
  • a DEF blower outlet is a blower outlet which blows air inside the windshield of a vehicle.
  • the air outlet 29 is provided with an air outlet switching damper 31 for switching and controlling the air blowing mode from the air outlets.
  • the outlet switching damper 31 has a blowing mode in which a FOOT mode for blowing air from the FOOT outlet, a VENT mode for blowing from the VENT outlet, a B / L mode for blowing from both the FOOT outlet and the VENT outlet, It is possible to switch to the DEF mode that blows out from the DEF outlet.
  • reference numeral 32 denotes a controller (ECU) as a control means constituted by a microcomputer.
  • An input to the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature Tam of the vehicle, and an outside air humidity is detected.
  • An outdoor air humidity sensor 34 an HVAC intake temperature sensor 36 for detecting the temperature of air sucked into the air flow passage 3 from the intake port 25, an inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the passenger compartment, and the vehicle
  • An indoor air humidity sensor 38 that detects the humidity of the indoor air, and an indoor CO that detects the carbon dioxide concentration in the passenger compartment 2
  • Concentration sensor 39 blowout temperature sensor 41 that detects the temperature of air blown into the vehicle interior from the blowout port 29, discharge pressure sensor 42 that detects the discharge refrigerant pressure of the compressor 2, and discharge refrigerant temperature of the compressor 2
  • a heat absorber temperature sensor 48 for detecting the temperature of the air passing through the heat absorber 9 or the temperature of the heat absorber 9 itself) and the refrigerant pressure of the heat absorber 9 (inside the heat absorber 9 or immediately after leaving the heat absorber 9).
  • An endothermic pressure sensor 49 for detecting the pressure of the refrigerant For example, a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation into the passenger compartment, a vehicle speed sensor 52 for detecting the moving speed of the vehicle (vehicle speed VSP), and setting of the set temperature and operation mode.
  • the input of the controller 32 further includes the temperature of the heating medium heating electric heater 35 of the heating medium circulation circuit 23 (the temperature of the heating medium immediately after being heated by the heating medium heating electric heater 35 or the heating medium heating electric heater 35.
  • AUD audio level in FIG. 2
  • the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion.
  • the electric heater 35 and the evaporation capacity control valve 11 are connected.
  • the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53.
  • the controller 32 switches between the operation modes of the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, and the cooling mode. Moreover, it also has a defrosting mode in which the high-temperature refrigerant gas discharged from the compressor 2 is allowed to flow into the outdoor heat exchanger 7 to defrost as necessary.
  • Heating mode each operation mode will be described.
  • the controller 32 opens the electromagnetic valve 21 (for heating) and closes the electromagnetic valve 17, the electromagnetic valve 22, and the electromagnetic valve 20. .
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 40 and the radiator 4. .
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
  • the refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E.
  • the refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump.
  • the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled.
  • the air heated by the radiator 4 is blown out from the air outlet 29 via the heat medium-air heat exchanger 40, thereby heating the passenger compartment.
  • the controller 32 controls the rotational speed NC of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47 as will be described later, and the radiator detected by the radiator temperature sensor 46. 4 and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47, the valve opening degree of the outdoor expansion valve 6 is controlled, and the degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
  • (2) Dehumidification heating mode Next, in the dehumidifying heating mode, the controller 32 opens the electromagnetic valve 22 (for dehumidification) in the heating mode.
  • the refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above.
  • the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the high pressure. Further, the controller 32 switches the valve opening degree of the outdoor expansion valve 6 between a large diameter and a small diameter based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48. (3) Internal cycle mode Next, in the internal cycle mode, the controller 32 fully closes the outdoor expansion valve 6 (fully closed position) and closes the electromagnetic valve 21 (for heating) in the dehumidifying and heating mode.
  • the electromagnetic valve 20 By closing the outdoor expansion valve 6 and the electromagnetic valve 21 (the electromagnetic valve 20 is also closed), the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are prevented. Therefore, the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 flows through the electromagnetic valve 22 to the refrigerant pipe 13F. And the refrigerant
  • the air Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
  • the controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above.
  • the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the high pressure.
  • the controller 32 opens the electromagnetic valve 17 (for cooling), and closes the electromagnetic valve 21, the electromagnetic valve 22, and the electromagnetic valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 40 and the radiator 4. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
  • the refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. .
  • the controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48, and the valve opening degree of the outdoor expansion valve 6 based on the high pressure of the refrigerant circuit R described above. And the refrigerant pressure of the radiator 4 (radiator pressure PCI) is controlled.
  • the controller 32 opens the solenoid valve 20 (bypass) in the dehumidifying and cooling mode state (in this case, the outdoor expansion valve 6 is fully opened (the valve opening is the upper limit of control)).
  • the air mix damper 28 is in a state where air is not passed through the heat medium-air heat exchanger 40 and the radiator 4. However, it may be allowed to ventilate somewhat.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, the air only passes therethrough, and the refrigerant exiting the radiator 4 reaches the electromagnetic valve 20 and the outdoor expansion valve 6 through the refrigerant pipe 13 ⁇ / b> E. At this time, since the solenoid valve 20 is opened, the refrigerant bypasses the outdoor expansion valve 6 and passes through the bypass pipe 13J, and flows into the outdoor heat exchanger 7 as it is, where it travels or is ventilated by the outdoor fan 15. It is air-cooled by the outside air and is condensed and liquefied.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 ⁇ / b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 ⁇ / b> C.
  • the air cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the air outlet 29 without passing through the radiator 4 (it may be allowed to pass a little), so that the vehicle interior is cooled. Will be.
  • the controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 as described later.
  • the controller 32 calculates the target blowing temperature TAO described above from the following formula (I).
  • This target blowing temperature TAO is a target value of the temperature of the air blown into the passenger compartment.
  • TAO (Tset ⁇ Tin) ⁇ K + Tbal (f (Tset, SUN, Tam)) ..
  • Tset is a set temperature in the vehicle interior set by the air conditioning operation unit 53
  • Tin is the temperature of the air in the vehicle interior (inside air temperature) detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • This is a balance value calculated from the solar radiation amount SUN detected by the solar radiation sensor 51 and the outdoor air temperature Tam detected by the outdoor air temperature sensor 33.
  • this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
  • the controller 32 selects one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) and the target blowing temperature TAO.
  • the controller 32 after startup, the outside air temperature Tam, the humidity in the passenger compartment, the target blowing temperature TAO, the heating temperature TH (the temperature of the air on the leeward side of the radiator 4), the target heater temperature TCO, the heat absorption, which will be described later.
  • the heating mode By switching each operation mode based on parameters such as the unit temperature Te, the target heat absorber temperature TEO, whether there is a dehumidification request in the passenger compartment, the heating mode, dehumidification can be accurately performed according to the environmental conditions and the necessity of dehumidification Switching between the heating mode, the internal cycle mode, the dehumidifying and cooling mode, and the cooling mode controls the temperature of the air blown into the vehicle interior to the target blowing temperature TAO, thereby realizing comfortable and efficient vehicle interior air conditioning.
  • FIG. 3 is a control block diagram of the controller 32 for calculating the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 based on the radiator pressure PCI, which is executed in the heating mode, and is in the dehumidifying heating mode and the internal cycle mode. Selected.
  • the F / F manipulated variable TGNChff of the compressor target rotational speed is calculated.
  • the above TH for calculating the air volume ratio SW is the temperature of the leeward air of the radiator 4 (hereinafter referred to as the heating temperature), and is estimated by the controller 32 from the first-order lag calculation formula (II) shown below.
  • TH (INTL ⁇ TH0 + Tau ⁇ THz) / (Tau + INTL) (II)
  • INTL is the calculation cycle (constant)
  • Tau is the time constant of the primary delay
  • TH0 is the steady value of the heating temperature TH in the steady state before the primary delay calculation
  • THz is the previous value of the heating temperature TH.
  • the controller 32 changes the time constant Tau and the steady value TH0 according to the above-described operation mode, thereby changing the above-described estimation formula (II) depending on the operation mode, and estimates the heating temperature TH.
  • the target radiator pressure PCO is calculated by the target value calculator 59 based on the target subcooling degree TGSC and the target heater temperature TCO.
  • the F / B (feedback) manipulated variable calculator 60 calculates the F / B manipulated variable TGNChfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI that is the refrigerant pressure of the radiator 4. To do.
  • the F / F manipulated variable TGNCnff calculated by the F / F manipulated variable calculator 58 and the TGNChfb calculated by the F / B manipulated variable calculator 60 are added by the adder 61, and the limit setting unit 62 controls the upper limit rotation on the control. After the number TGNChLimHi and the lower limit rotational speed TGNChLIMLo are added, it is determined as the compressor target rotational speed TGNCh.
  • the controller 32 uses the compressor target rotational speed TGNCh in the heating mode, and if selected as described above in the dehumidifying heating mode and the internal cycle mode, uses the compressor target rotational speed TGNCh to set the upper limit rotational speed TGNChLimHi and the lower limit rotational speed.
  • the rotational speed NC of the compressor 2 is controlled between TGNChLIMLo.
  • the upper limit rotational speed TGNChLimHi is changed by the controller 32 as described later.
  • (9) Control of the compressor 2 by the controller 32 in the cooling mode, the dehumidifying cooling mode, the dehumidifying heating mode, and the internal cycle mode
  • FIG. 4 is a control block diagram of the controller 32 for calculating the target rotational speed (compressor target rotational speed) TGNCc of the compressor 2 based on the heat absorber temperature Te, which is executed in the cooling mode and the dehumidifying cooling mode, and is in the dehumidifying heating mode. And selected in internal cycle mode.
  • the F / F manipulated variable calculation unit 63 of the controller 32 compresses based on the outside air temperature Tam, the blower voltage BLV of the indoor blower 27, and the heat absorber temperature Te (the target heat absorber temperature TEO which is the target value of the heat absorber 9).
  • the F / F manipulated variable TGNCcff of the machine target rotational speed is calculated.
  • the F / B manipulated variable calculating unit 64 calculates the F / B manipulated variable TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO and the heat absorber temperature Te.
  • the F / F manipulated variable TGNCcff calculated by the F / F manipulated variable calculator 63 and the F / B manipulated variable TGNCcfb calculated by the F / B manipulated variable calculator 64 are added by the adder 66, and the limit setting unit 67 After the control upper limit rotational speed TGNCcLimHi and the lower limit rotational speed TGNCcLimLo are added, the compressor target rotational speed TGNCc is determined.
  • the controller 32 uses the compressor target rotational speed TGNCc in the cooling mode and the dehumidifying cooling mode, and, if selected as described above in the dehumidifying heating mode and the internal cycle mode, based on the compressor target rotational speed TGNCc, the upper limit rotational speed TGNCcLimHi. And the rotation speed NC of the compressor 2 is controlled between the lower limit rotation speed TGNCcLimLo. The upper limit rotational speed TGNCcLimHi is also changed by the controller 32 as will be described later. (10) Change control of the upper limit rotation speed of the compressor 2 by the controller 32 Next, change control of the upper limit rotational speeds TGNChLimHi and TGNCcLimHi of the compressor 2 by the controller 32 will be described with reference to FIGS.
  • the compressor 2 is an electric compressor driven by a vehicle battery, a relatively loud driving sound is generated at a high speed. Therefore, the sound level in the passenger compartment is low, and in a quiet situation, the driving sound of the compressor 2 can be heard by the passengers, which is annoying. On the other hand, in a situation where the sound level in the passenger compartment is high, the driving sound is not harsh even if the compressor 2 is driven at a high speed.
  • Factors other than the driving sound of the compressor 2 as factors affecting the sound level in the passenger compartment, in the embodiment, the air volume of the indoor blower 27, the blowing modes from the respective outlets described above, and the air to the air flow passage 3 , The volume AUD (audio level) of the audio equipment provided in the vehicle, the vehicle speed VSP, and the outside air temperature Tam are employed. Based on these factors, the controller 32 determines the upper limit rotational speed TGNChLimHi of the compressor target rotational speed TGNCh used in the heating mode described above using the formulas (III) and (IV) in the embodiment, The upper limit rotational speed TGNCcLimHi of the compressor target rotational speed TGNCc used in the mode or the like is changed.
  • TGNChLimREC and TGNCcLimREC are upper limit rotational speed change values based on the above-described air introduction mode (inside air circulation mode, outside air introduction mode) to the air flow passage 3, and TGNChLimAUD and TGNCcLimAUD are the volume levels of the above-described audio equipment. It is an upper limit rotation speed change value based on. Further, TGNChLimVSP and TGNCcLimVSP are upper limit speed change values based on the vehicle speed, and TGNChLimTam and TGNCcLimTam are upper limit speed change values based on the outside air temperature Tam.
  • the controller 32 of the embodiment includes the upper limit rotation speed change values TGNChLimBLV and TGNChcLimBLV based on the air volume of the indoor blower 27, the upper limit rotation speed change values TGNChLIMMOD and TGNCcLIMMOD based on the blowing mode, and the upper limit rotation speed change values TGNChLimREC and TGNCcLimREC based on the introduction mode.
  • the upper limit rotational speed change values TGNChLimAUD and TGNChcLimAUD based on the volume of the audio equipment
  • the upper limit rotational speed change values TGNChLimVSP and TGNChclimVSP based on the vehicle speed
  • the upper limit rotational speed change values TGNChLimTam and TGNCcLimTam based on the outside air temperature Tam (MAX )
  • the upper limit speed TGNChLimHi (heating mode etc.) and the upper limit speed TGNCcLi respectively It is determined as the Hi (cooling mode, and the like).
  • the controller 32 uses the blower voltage BLV of the indoor blower 27 as an index indicating the air volume of the indoor blower 27, and calculates the upper limit rotational speed change values TGNChLimBLV and TGNCcLimBLV according to the blower voltage BLV. In this case, the controller 32 changes the upper limit rotational speed change values TGNChLimBLV and TGNCcLimBLV in the decreasing direction as the blower voltage BLV is lowered, that is, as the air volume of the indoor blower 27 is lowered.
  • the controller 32 changes the upper limit rotational speed change values TGNChLimBLV and TGNCcLimBLV in the decreasing direction as the blower voltage BLV is lowered, that is, as the air volume of the indoor blower 27 is lowered.
  • the horizontal axis is the blower voltage BLV
  • the predetermined values BLV1 to BLV4 have a relationship of BLV4 ⁇ BLV3 ⁇ BLV2 ⁇ BLV1
  • the air volume of the indoor blower 27 and the sound level in the vehicle interior It is set as a value obtained in advance by experiments from the relationship.
  • the vertical axis represents the upper limit rotational speed change value TGNChLimBLV
  • the predetermined values NC1 and NC2 have a relationship of NC2 ⁇ NC1.
  • This predetermined value NC1 is the maximum number of revolutions allowed when the compressor 2 is operated in the embodiment.
  • the upper limit speed change value TGNChLimBLV for the upper limit speed TGNChLimHi (heating mode or the like) is set to NC1 when the blower voltage BLV is a predetermined value BLV1. Then, the blower voltage BLV decreases (the air volume of the indoor blower 27 decreases) and is maintained until it becomes BLV2, and when it falls below BLV2, TGNChLimBLV starts to decrease, and TGNChLimBLV is set at a constant rate until NC2 at BLV4. Decreasing.
  • blower voltage BLV rises from the state where TGNChLimBLV is set to NC2 (the air volume of the indoor blower 27 rises), it is maintained until it reaches BLV3, and if it rises above BLV3, TGNChLimBLV starts to rise and becomes NC1 at BLV1 Until then, TGNChLimBLV is raised at a constant rate.
  • the difference between BLV1 and BLV2, and the difference between BLV3 and BLV4 are hysteresis. In the graph on the right side of FIG.
  • the vertical axis represents the upper limit rotational speed change value TGNCcLimBLV
  • the predetermined values NC3 and NC4 have a relationship of NC4 ⁇ NC3 and a relationship of NC3 ⁇ NC1 and NC4 ⁇ NC2.
  • the upper limit rotational speed change value TGNCcLimBLV for the upper limit rotational speed TGNCcLimHi (cooling mode or the like) is set to NC3 when the blower voltage BLV is BLV1. Then, the blower voltage BLV is lowered and maintained until it becomes BLV2, and when it falls below BLV2, TGNCcLimBLV starts to be lowered, and TGNCcLimBLV is lowered at a constant rate until NC4 becomes BLV4.
  • the controller 32 changes the upper limit rotational speeds TGNChLimHi (heating mode, etc.) and TGNCcLimHi (cooling mode, etc.) under control of the compressor 2 in accordance with the air volume of the indoor blower 27.
  • TGNChLimHi heating mode, etc.
  • TGNCcLimHi cooling mode, etc.
  • the controller 32 has been described above.
  • the heating medium heating electric heater 35 is energized to generate heat, and the circulation pump 30 is operated to perform heating by the heating medium-air heat exchanger 40 of the heating medium circulation circuit 23. Is supplemented by the heat medium circulation circuit 23, so that comfortable heating in the vehicle interior is maintained.
  • the compressor 2 has a discharge volume DV1 required in the heating mode. However, in the cooling mode, the discharge volume becomes excessive, and 50% to 70% of the discharge volume DV1 is required in the cooling mode. Discharge volume.
  • the relationship between NC1 and NC3 and the relationship between NC2 and NC4 are represented by the following equations (V) and (VI).
  • NC3 NC1 ⁇ (DV2 / DV1) (V)
  • NC4 NC2 ⁇ (DV2 / DV1) (VI)
  • the calculated upper limit rotational speed change value TGNCcLimBLV is a value obtained by multiplying the upper limit rotational speed change value TGNChLimBLV by (DV2 / DV1). Therefore, the upper limit rotational speed TGNCcLimHi (cooling mode or the like) is also the upper limit rotational speed TGNChLimHi (heating).
  • the value is obtained by multiplying (DV2 / DV1) by (mode etc.), and the upper limit rotational speed TGNCcLimHi becomes lower than TGNChLimHi (the same applies hereinafter).
  • TGNChLimHi the same applies hereinafter.
  • the discharge volume of the compressor 2 is set to the discharge volume DV1 required in the heating mode, the ratio D2 / D1 of the discharge volume DV2 of the compressor 2 required in the cooling mode with respect to the discharge volume DV1, and the heating mode, etc.
  • the upper limit rotational speed TGNCcLimHi for control of the compressor 2 in the cooling mode or the like is appropriately set. Will be able to.
  • the controller 32 sets the blowing mode flag fMOD (“1”) when the air blowing mode from the blowing port 29 is the FOOT mode blowing from the FOOT blowing port, and the blowing mode when it is the VENT mode blowing from the VENT blowing port.
  • the flag fMOD is reset (“0”).
  • the controller 32 sets the upper limit rotational speed change value TGNChLIMMOD for the upper limit rotational speed TGNChLimHi (heating mode or the like) to NC2, and to NC1 when reset. Further, when the blowing mode flag fMOD is set, the upper limit rotational speed change value TGNCcLimmod for the upper limit rotational speed TGNCcLimHi (cooling mode or the like) is set to NC4, and when reset, it is set to NC3. Since the relationship between the NC1 to NC4 is the same as in the case of FIG.
  • the controller 32 is compared with the case where the blowing mode is the FOOT mode (fMOD is set) and the case of the VENT mode (fMOD reset).
  • the upper limit rotational speed change values TGNChLIMMOD and TGNCcLimmod are changed in the decreasing direction.
  • these upper limit rotation speed change values TGNChLIMMOD and TGNCcLimMOD are the highest in the above formulas (III) and (IV) (MAX)
  • these upper limit rotation speed change values TGNChLimMOD and TGNCcLimMOD are the upper limit rotation speeds TGNChLimHi (heating mode, etc.)
  • the rotational speed TGNCcLimHi (cooling mode or the like) is determined, and the rotational speed NC of the compressor 2 is no longer controlled.
  • the sound level in the passenger compartment reaching the passenger's ear is lower and the compression is lower than in the VENT mode in which air is blown out from the VENT air outlet.
  • the driving sound of the machine 2 becomes conspicuous, which is annoying to the passenger. Therefore, when the controller 32 is in the FOOT mode, by changing the upper limit rotational speed TGNChLimHi (heating mode, etc.) and TGNCcLimHi (cooling mode, etc.) in the control of the compressor 2 as compared with the VENT mode, In the FOOT mode, the driving sound of the compressor 2 can be reduced, and the passenger compartment can be comfortably air-conditioned.
  • TGNChLimHi heating mode, etc.
  • TGNCcLimHi cooling mode, etc.
  • the controller 32 sets the introduction mode flag fREC (“1”) when the air introduction mode to the air flow passage 3 is the outside air introduction mode, and resets the introduction mode flag fREC (“0” when the mode is the inside air circulation mode. )).
  • the controller 32 sets the upper limit rotational speed change value TGNChLimREC for the upper limit rotational speed TGNChLimHi (heating mode etc.) to NC2, and to NC1 when it is reset.
  • the upper limit rotational speed change value TGNCcLimREC for the upper limit rotational speed TGNCcLimHi (cooling mode or the like) is set to NC4. Since the relationship between NC1 to NC4 is the same as in the case of FIG. 5 described above, the controller 32 has a case where the air introduction mode to the air flow passage 3 is the outside air introduction mode, compared to the inside air circulation mode.
  • the upper limit rotational speed change values TGNChLimREC and TGNCcLimREC are changed in the downward direction.
  • these upper limit rotational speed change values TGNChLimREC and TGNCcLimREC are the upper limit rotational speeds TGNChLimHi (heating mode, etc.)
  • the rotational speed TGNCcLimHi (cooling mode or the like) is determined, and the rotational speed NC of the compressor 2 is no longer controlled.
  • the controller 32 In the outside air introduction mode in which outside air is introduced into the air flow passage 3, the amount of air blown into the vehicle interior is lower than in the inside air circulation mode in which inside air is introduced. The driving sound is also noticeable, which can be annoying to the passengers. Therefore, when the controller 32 is in the outside air introduction mode, the upper limit rotational speeds TGNChLimHi (heating mode, etc.) and TGNCcLimHi (cooling mode, etc.) on the control of the compressor 2 are changed in a direction to lower than in the case of the inside air circulation mode. As a result, in the outside air introduction mode, the driving sound of the compressor 2 can be reduced, and the passenger compartment can be comfortably air-conditioned.
  • TGNChLimHi heating mode, etc.
  • TGNCcLimHi cooling mode, etc.
  • the controller 32 calculates the upper limit rotational speed change values TGNChLimAUD and TGNCcLimAUD in accordance with the volume AUD of the audio equipment that is information input from the vehicle side. In this case, the controller 32 changes the upper limit rotational speed change values TGNChLimAUD and TGNCcLimAUD in the decreasing direction as the sound volume AUD becomes lower.
  • the controller 32 changes the upper limit rotational speed change values TGNChLimAUD and TGNCcLimAUD in the decreasing direction as the sound volume AUD becomes lower.
  • the horizontal axis is the volume AUD of the acoustic device, and the predetermined values AUD1 to AUD4 have a relationship of AUD4 ⁇ AUD3 ⁇ AUD2 ⁇ AUD1, and the volume AUD of the acoustic device and the sound in the vehicle interior A value obtained by an experiment in advance from the level relationship.
  • the vertical axis represents the upper limit rotational speed change value TGNChLimAUD, and the predetermined values NC1 and NC2 similar to those in FIG. 5 have a relationship of NC2 ⁇ NC1.
  • the upper limit rotational speed change value TGNChLimAUD for the upper limit rotational speed TGNChLimHi (heating mode or the like) is set to NC1 when the sound volume AUD is a predetermined value AUD1. Then, the volume AUD is maintained until it decreases to AUD2, and when it falls below AUD2, TGNChLimAUD starts to decrease, and TGNChLimAUD is decreased at a constant rate until NC2 becomes AUD4.
  • the volume AUD is increased from the state where TGNChLimAUD is set to NC2, it is maintained until AUD3 is reached, and when it is higher than AUD3, TGNChLimAUD is started to increase, and TGNChLimAUD is increased at a constant rate until NC1 becomes AUD1. Go.
  • the difference between AUD1 and AUD2 and the difference between AUD3 and AUD4 are hysteresis.
  • the vertical axis represents the upper limit rotational speed change value TGNCcLimAUD
  • the predetermined values NC3 and NC4 similar to those in FIG. 5 have a relationship of NC4 ⁇ NC3, and NC3 ⁇ NC1 and NC4 ⁇ NC2. It is related. Also, the relationship between NC3 and NC1 and the relationship between NC4 and NC2 are the same as in the case of FIG.
  • the upper limit speed change value TGNCcLimAUD for the upper limit speed TGNCcLimHi is set to NC3 when the volume AUD is AUD1.
  • the sound volume AUD is maintained until it decreases to AUD2, and when it falls below AUD2, TGNCcLimAUD starts to decrease, and TGNCcLimAUD is decreased at a constant rate until NC4 becomes AUD4.
  • the volume AUD is increased from the state where TGNCcLimAUD is set to NC4, it is maintained until AUD3 is reached, and when it is higher than AUD3, TGNCcLimAUD starts to be increased and TGNCcLimAUD is increased at a constant rate until NC3 becomes AUD1.
  • the lower the volume AUD the higher the upper limit rotational speed TGNChLimHi (heating mode, etc.) and TGNCcLimHi (cooling mode, etc.)
  • TGNChLimHi heating mode, etc.
  • TGNCcLimHi cooling mode, etc.
  • the controller 32 sets the upper limit rotational speed change value TGNChLimVSP for the upper limit rotational speed TGNChLimHi (heating mode or the like) to NC2, and to NC1 when it is reset. Further, when the vehicle speed flag fVSP is set, the upper limit speed change value TGNCcLimVSP for the upper limit speed TGNCcLimHi (cooling mode or the like) is set to NC4, and when reset, it is set to NC3. Since the relationship between NC1 to NC4 is the same as in the case of FIG.
  • the controller 32 changes the upper limit rotational speed change values TGNChLimVSP, TGNCcLimVSP in a direction lower than when traveling. Will be changed.
  • TGNChLimVSP and TGNCcLimVSP are the highest in the formulas (III) and (IV) (MAX)
  • these upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP are the upper limit rotational speeds TGNChLimHi (heating mode, etc.)
  • the rotational speed TGNCcLimHi (cooling mode or the like) is determined, and the rotational speed NC of the compressor 2 is no longer controlled.
  • the controller 32 calculates upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP according to the vehicle speed VSP detected by the vehicle speed sensor 52. In this case, the controller 32 changes the upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP in the decreasing direction as the vehicle speed VSP decreases.
  • the horizontal axis is the vehicle speed VSP
  • the predetermined values VSP1 to VSP4 have a relationship of VSP4 ⁇ VSP3 ⁇ VSP2 ⁇ VSP1, and experimented in advance from the relationship between the vehicle speed VSP and the sound level in the vehicle interior.
  • VSP4 is, for example, 0 to 3 km / h or the like when stopped or substantially stopped
  • VSP1 is, for example, 45 km / h or more.
  • the vertical axis represents the upper limit rotational speed change value TGNChLimVSP
  • the predetermined values NC1 and NC2 similar to those in FIG. 5 have a relationship of NC2 ⁇ NC1.
  • the upper limit rotational speed change value TGNChLimVSP for the upper limit rotational speed TGNChLimHi is set to NC1 when the vehicle speed VSP is a predetermined value VSP1.
  • the vertical axis represents the upper limit rotational speed change value TGNCcLimVSP
  • the predetermined values NC3 and NC4 similar to those in FIG. 5 have a relationship of NC4 ⁇ NC3, and NC3 ⁇ NC1 and NC4 ⁇ NC2. It is related. Also, the relationship between NC3 and NC1 and the relationship between NC4 and NC2 are the same as in the case of FIG.
  • the upper limit speed change value TGNCcLimVSP for the upper limit speed TGNCcLimHi is set to NC3 when the vehicle speed VSP is VSP1.
  • these upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP are the highest in the formulas (III) and (IV) (MAX)
  • these upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP are the upper limit rotational speeds TGNChLimHi (heating mode, etc.)
  • the rotational speed TGNCcLimHi (cooling mode or the like) is determined, and the rotational speed NC of the compressor 2 is no longer controlled.
  • the controller 32 lowers the upper limit rotational speeds TGNChLimHi (heating mode, etc.) and TGNCcLimHi (cooling mode, etc.) on the control of the compressor 2 as the vehicle speed VSP becomes lower (including stopping) based on the change in the vehicle speed VSP. Even by continuously changing the direction, the driving sound of the compressor 2 can be reduced when the vehicle is stopped, etc., and the passenger compartment can be comfortably air-conditioned. (10-7) Calculation of upper limit rotational speed change value based on outside air temperature Tam Next, an example of a procedure for calculating the upper limit rotational speed change values TGNChLimTam and TGNCcLimTam based on the outside air temperature Tam will be described with reference to FIG.
  • the controller 32 calculates upper limit rotational speed change values TGNChLimTam and TGNCcLimTam according to the outside air temperature Tam detected by the outside air temperature sensor 33. In this case, the controller 32 changes the upper limit rotational speed change values TGNChLimTam and TGNCcLimTam in a decreasing direction as the outside air temperature Tam decreases.
  • the horizontal axis is the outside air temperature Tam
  • the predetermined values Tam1 to Tam4 have a relationship of Tam4 ⁇ Tam3 ⁇ Tam2 ⁇ Tam1, and from the relationship between the outside air temperature Tam and the sound level in the passenger compartment. The value is obtained in advance by experiment.
  • the vertical axis represents the upper limit rotational speed change value TGNChLimTam, and the predetermined values NC1 and NC2 similar to those in FIG. 5 have a relationship of NC2 ⁇ NC1.
  • the upper limit rotational speed change value TGNChLimTam for the upper limit rotational speed TGNChLimHi (heating mode or the like) is set to NC1 when the outside air temperature Tam is a predetermined value Tam1. Then, the outside air temperature Tam is maintained until it decreases to Tam2, and when it falls below Tam2, TGNChLimTam starts to decrease, and TGNChLimTam is decreased at a constant rate until NC2 is reached at a low predetermined value Tam4.
  • the upper limit speed change value TGNCcLimTam for the upper limit speed TGNCcLimHi (cooling mode or the like) is set to NC3 when the outside air temperature Tam is Tam1. Then, it is maintained until the outside air temperature Tam decreases to Tam2, and when it falls below Tam2, TGNCcLimTam starts to decrease, and TGNCcLimTam is decreased at a constant rate until NC4 becomes Tam4.
  • these upper limit rotational speed change values TGNChLimTam and TGNCcLimTam are the highest in the above formulas (III) and (IV) (MAX)
  • these upper limit rotational speed change values TGNChLimTam and TGNChcLimTam are the upper limit rotational speeds TGNChLimHi (heating mode, etc.)
  • the rotational speed TGNCcLimHi (cooling mode or the like) is determined, and the rotational speed NC of the compressor 2 is no longer controlled.
  • the controller 32 changes the upper limit rotational speed TGNChLimHi (heating mode, etc.) and TGNCcLimHi (cooling mode, etc.) in the control of the compressor 2 so as to decrease as the outside air temperature Tam decreases.
  • FIG. 12 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 is provided on the air downstream side of the radiator 4. Others are the same as the example of FIG.
  • the present invention is also effective in the vehicle air conditioner 1 in which the heat medium-air heat exchanger 40 is arranged on the downstream side of the radiator 4.
  • FIG. 13 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the outdoor heat exchanger 7 is not provided with the receiver dryer section 14 and the supercooling section 16, and the refrigerant pipe 13 ⁇ / b> A exiting from the outdoor heat exchanger 7 is connected via the electromagnetic valve 17 and the check valve 18. It is connected to the refrigerant pipe 13B.
  • the refrigerant pipe 13D branched from the refrigerant pipe 13A is connected to the refrigerant pipe 13C on the downstream side of the internal heat exchanger 19 via the electromagnetic valve 21. Others are the same as the example of FIG.
  • FIG. 14 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the heat medium circulation circuit 23 of FIG. In the case of the above-described heat medium circulation circuit 23, the heat medium heating electric heater 35 is provided outside the passenger compartment outside the air flow passage 3, so that electrical safety is ensured, but the configuration is complicated.
  • the electric heater 73 is provided in the air flow passage 3 as shown in FIG. 14, the configuration is remarkably simplified. In this case, the electric heater 73 serves as an auxiliary heating device.
  • FIG. 15 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the outdoor heat exchanger 7 is not provided with the receiver dryer section 14 and the supercooling section 16 as compared with FIG. 1, and the refrigerant pipe 13 ⁇ / b> A exiting from the outdoor heat exchanger 7 is not connected to the electromagnetic valve 17.
  • the valve 18 is connected to the refrigerant pipe 13B.
  • the refrigerant pipe 13D branched from the refrigerant pipe 13A is connected to the refrigerant pipe 13C on the downstream side of the internal heat exchanger 19 via the electromagnetic valve 21.
  • FIG. 16 shows another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the heat medium circulation circuit 23 of FIG. The present invention is also effective in the vehicle air conditioner 1 of the refrigerant circuit R employing such an electric heater 73.
  • FIG. 17 shows still another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the piping configuration of the refrigerant circuit R and the heat medium circulation circuit 23 in this embodiment is basically the same as that in FIG.
  • the radiator 4 is not provided in the air flow passage 3 and is arranged outside thereof. Has been. Instead, this heat radiator 4 is provided with a heat medium-refrigerant heat exchanger 74 in this case in a heat exchange relationship.
  • the heat medium-refrigerant heat exchanger 74 is connected to the heat medium pipe 23A between the circulation pump 30 of the heat medium circulation circuit 23 and the heat medium heating electric heater 35, and the heat medium of the heat medium circulation circuit 23-
  • the air heat exchanger 40 (auxiliary heating device) is provided in the air flow passage 3.
  • FIG. 18 shows still another configuration diagram of the vehicle air conditioner 1 of the present invention.
  • the same reference numerals as those in FIG. 1 indicate the same or similar functions.
  • the refrigerant pipe 13F and the electromagnetic valve 22 do not exist
  • the refrigerant pipe 13E is connected to the refrigerant pipe 13J
  • the outdoor expansion valve 6 is connected to the refrigerant pipe 13J.
  • the check valve 18 does not exist at the outlet of the supercooling section 16 and is connected to the refrigerant pipe 13B as it is.
  • the refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with an electromagnetic valve 76 (which constitutes a flow path switching device) that is closed during dehumidification heating and MAX cooling described later. Yes.
  • the refrigerant pipe 13G branches to a bypass pipe 77 on the upstream side of the electromagnetic valve 76, and this bypass pipe 77 is an electromagnetic valve 78 that is opened during dehumidifying heating and MAX cooling (this also constitutes a flow path switching device). ) Through the refrigerant pipe 13J on the downstream side of the outdoor expansion valve 6.
  • the bypass pipe 77, the electromagnetic valve 76, and the electromagnetic valve 78 constitute a bypass device 79. It is assumed that the solenoid valve 76 and the solenoid valve 78 are also connected to the controller 32.
  • the bypass device 79 is configured by the bypass pipe 77, the electromagnetic valve 76, and the electromagnetic valve 78, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly.
  • the auxiliary heater 70 (PTC heater) constituting the auxiliary heating device is located in the air flow passage 3 that is on the upstream side (air upstream side) of the radiator 4 with respect to the air flow in the air flow passage 3. This is also connected to the controller 32.
  • the auxiliary heater 70 is provided with an auxiliary heater temperature sensor 75 that detects the temperature of the auxiliary heater 70 and is connected to the controller 32. Further, in this embodiment, the aforementioned evaporation capacity adjusting valve 11 is not provided. With the above configuration, the operation of the vehicle air conditioner 1 of this embodiment will be described. In this embodiment, the controller 32 performs switching between the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, the MAX cooling mode (maximum cooling mode), and the auxiliary heater single mode (the internal cycle mode is this mode). Not present in the examples).
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 76 is closed, the electromagnetic valve 78 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated.
  • the controller 32 operates each of the blowers 15 and 27, and the air mix damper 28 basically blows all the air in the air flow passage 3 blown out from the indoor blower 27 through the heat absorber 9 and the auxiliary heater 70 and the radiator 4. However, the air volume is also adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 77 without going to the radiator 4, passes through the electromagnetic valve 78, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13J will be reached.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes.
  • the controller 32 energizes the auxiliary heater 70 to generate heat.
  • the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 70, and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
  • the controller 32 is based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target value of the heat absorber temperature Te.
  • the auxiliary heater 70 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 70 passes through the radiator 4.
  • the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 70 is also eliminated. That is, the temperature of the air blown out into the vehicle compartment by the radiator 4 is suppressed, and the COP is improved.
  • the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 76 is closed, the electromagnetic valve 78 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 70 is not energized.
  • the controller 32 operates each of the blowers 15 and 27, and the air mix damper 28 blows the air in the air flow passage 3 blown out from the indoor blower 27 and passed through the heat absorber 9 to the auxiliary heater 70 and the radiator 4.
  • the ratio is adjusted.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 77 without going to the radiator 4, passes through the electromagnetic valve 78, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13J will be reached.
  • the outdoor expansion valve 6 since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7.
  • the refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15.
  • the refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 ⁇ / b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
  • the refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 ⁇ / b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates.
  • the air blown out from the indoor blower 27 by the heat absorption action at this time is cooled.
  • the air in the air flow passage 3 is dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
  • the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. .
  • the controller 32 detects the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature described above, which is the target value, as in the case of FIG.
  • the rotational speed NC of the compressor 2 is controlled based on TEO.
  • the controller 32 has the air volume (blower voltage BLV) of the indoor blower 27 as factors that influence the sound level in the passenger compartment, the blowing mode from each outlet, and the air flow path. 3 based on the air introduction mode, the volume AUD (audio level) of the audio equipment provided in the vehicle, the vehicle speed VSP, and the outside air temperature Tam using the above-described formulas (III) and (IV).
  • the calculation of the upper limit rotational speed change values TGNChLIMMOD and TGNCcLIMMOD based on the blowout mode is switched between the FOOT mode and the VENT mode.
  • the ratio of the blowout amount from the FOOT blowout port and the VENT blowout port Can be continuously changed, the upper limit rotational speed change values TGNChLIMMOD and TGNCcLimmod are changed in the lowering direction as the ratio of the blowout amount from the FOOT blowout port increases as in the case of the blower voltage BLV of FIG. You may do it.
  • the calculation of the upper limit speed change values TGNChLimREC and TGNCcLimREC based on the introduction mode is switched between the outside air introduction mode and the inside air circulation mode. However, the ratio between the outside air introduction and the inside air circulation is continuously changed.
  • the upper limit rotational speed change values TGNChLimREC and TGNCcLimREC may be changed in a decreasing direction as the ratio of outside air introduction increases as in the case of the blower voltage BLV of FIG.
  • the controller 32 has the upper limit speed change values TGNChLimBLV and TGNChcLimBLV based on the air volume of the indoor blower 27, the upper limit speed change values TGNChLIMMOD and TGNChcLIMMOD based on the blowing mode, and the upper limit speed change value TGNChLimREC based on the introduction mode.
  • TGNCcLimREC upper limit rotation speed change values TGNChLimAUD and TGNChcLimAUD based on the volume of the sound equipment, upper limit rotation speed change values TGNChLimVSP and TGNChcLimVSP based on vehicle speed, and upper limit rotation speed change values TGNChLimTamTamCamTam
  • the higher values are the upper limit rotation speed TGNChLimHi (heating mode etc.) and the upper limit rotation speed TGNCcLimH respectively. It was determined as the (Cooling mode, etc.).
  • the higher value of the upper limit rotational speed change values TGNChLimTam and TGNCcLimTam based on the outside air temperature Tam is set to the upper limit rotational speed TGN.
  • hLimHi may be a (heating mode), and the upper limit rotational speed TGNCcLimHi (cooling mode).
  • the upper limit rotational speed change values TGNChLimBLV and TGNCcLimBLV based on the air volume of the indoor blower 27 the upper limit rotational speed change values TGNChLimMOD and TGNCcLimMOD based on the blowing mode, and the introduction mode
  • TmNCGmTm two or more of TGNCcLimTam
  • Hi it may be the (heating mode), and the upper limit rotational speed TGNCcLimHi (cooling mode).
  • the numerical values and components shown in the embodiments are not limited thereto, and various changes can be made without departing from the spirit of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Provided is a vehicular air-conditioning device capable of achieving comfortable and efficient in-cabin air-conditioning by appropriately controlling the upper-limit rotation speed of an electric compressor. The air-conditioning device is provided with: a refrigerant circuit R having an air flow path 3, an electric compressor 2, and a radiator 4 for directly or indirectly exchanging heat between a refrigerant and air supplied via the air flow path into a vehicle cabin; an in-cabin blower 27 for circulating air in the air flow path; and a control device. The control device performs air-conditioning of the vehicle cabin by controlling the compressor and the in-cabin blower. The control device changes, on the basis of the air volume of the in-cabin blower, the upper-limit rotation speed to be used when controlling the compressor such that the upper-limit rotation speed is reduced with any decrease in the air volume.

Description

車両用空気調和装置Air conditioner for vehicles
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置、特に電動式の圧縮機を使用した車両用空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner that air-conditions the interior of a vehicle, and particularly to a vehicle air conditioner that uses an electric compressor.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する電動式の圧縮機(電動圧縮機)と、車室内側に設けられて冷媒を放熱させる放熱器(室内凝縮器)と、車室内側に設けられて冷媒を吸熱させる吸熱器(室内蒸発器)と、車室外側に設けられて冷媒を放熱又は吸熱させる室外熱交換器等から冷媒回路を構成し、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外熱交換器において吸熱させる暖房モードや、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を吸熱器において吸熱させる除湿モード、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、吸熱器において吸熱させる冷房モード等の各運転モードを切り換えて実行するものが開発されている。
 また、電動式の圧縮機は高回転時に比較的大きな駆動音を発生するため、車室内の音のレベルが低くなり、静かになるとこの駆動音が搭乗者にとって耳障りとなる。そこで、係る圧縮機が発生する騒音が車室内の搭乗者に及ぼす影響を考慮し、車室内の音のレベルが低くなる(静かになる)状況、即ち、シフト位置が前進位置以外の場合や、外気温度、設定温度、車室内温度が高い、或いは、低い状況以外の場合には、圧縮機の上限回転数(上限値)を低下させるように制御していた(例えば、特許文献1参照)。
Hybrid vehicles and electric vehicles have come into widespread use due to the emergence of environmental problems in recent years. As an air conditioner that can be applied to such a vehicle, an electric compressor (electric compressor) that compresses and discharges the refrigerant, and a radiator that is provided on the vehicle interior side to dissipate the refrigerant ( The refrigerant circuit is composed of an indoor condenser), a heat absorber (indoor evaporator) that is provided on the vehicle interior side to absorb the refrigerant, an outdoor heat exchanger that is provided outside the vehicle cabin to dissipate or absorb the refrigerant, and the like. Heating mode in which the refrigerant discharged from the compressor dissipates heat in the radiator and the refrigerant dissipated in this radiator absorbs heat in the outdoor heat exchanger, or the refrigerant discharged from the compressor dissipates heat in the radiator Each operation mode such as a dehumidifying mode in which the heat dissipated in the heat absorber absorbs heat in the heat sink, and a cooling mode in which the refrigerant discharged from the compressor dissipates heat in the outdoor heat exchanger and heat is absorbed in the heat absorber. Those to be executed Te Rikae have been developed.
In addition, since the electric compressor generates a relatively large driving sound at a high rotation speed, the sound level in the passenger compartment becomes low, and this driving sound becomes annoying to the passenger when quiet. Therefore, considering the effect of noise generated by the compressor on passengers in the passenger compartment, the sound level in the passenger compartment becomes low (becomes quiet), that is, when the shift position is other than the forward position, When the outside air temperature, the set temperature, and the passenger compartment temperature are not high or low, control is performed so as to reduce the upper limit rotation number (upper limit value) of the compressor (see, for example, Patent Document 1).
特開2013−63711号公報JP 2013-63711 A
 しかしながら、圧縮機の回転数の上限値を低下させれば、当然に車室内の空調性能は低下する。従って、空調性能を考慮すれば出来るだけ上記のような上限回転数の低下は行いたくない。また、車室内の音のレベルが高ければ、圧縮機が発生する駆動音が搭乗者に耳障りとなることも無くなるが、従来の制御では未だこれを的確に把握して適切な圧縮機の上限回転数の変更を行えなかった。
 また、暖房モードでは圧縮機に吸い込まれる冷媒の密度が低下するため、冷房モードの場合よりも大きな圧縮機の吐出容積が必要となる。そのため、冷媒回路を構成する圧縮機としては、通常は暖房モードの場合に必要な吐出容積のものを選定する必要があるが、この吐出容積は冷房モードでは過剰となるものであった。
 本発明は、係る従来の技術的課題を解決するために成されたものであり、電動式の圧縮機の上限回転数を適切に制御して快適で効率的な車室内空調を実現することができる車両用空気調和装置を提供することを目的とする。
However, if the upper limit value of the rotation speed of the compressor is lowered, naturally the air conditioning performance in the passenger compartment is lowered. Therefore, if the air conditioning performance is taken into consideration, it is not desirable to reduce the upper limit rotational speed as much as possible. In addition, if the sound level in the passenger compartment is high, the drive sound generated by the compressor will not disturb the occupant, but the conventional control still accurately grasps this and the appropriate upper limit rotation of the compressor. The number could not be changed.
Moreover, since the density of the refrigerant sucked into the compressor is lowered in the heating mode, a larger discharge volume of the compressor is required than in the cooling mode. Therefore, as the compressor constituting the refrigerant circuit, it is usually necessary to select a compressor having a discharge volume necessary in the heating mode, but this discharge volume is excessive in the cooling mode.
The present invention has been made to solve the conventional technical problem, and it is possible to appropriately control the upper limit rotation speed of an electric compressor to realize comfortable and efficient vehicle interior air conditioning. An object of the present invention is to provide a vehicle air conditioner that can be used.
 請求項1の発明の車両用空気調和装置は、車室内に供給する空気が流通する空気流通路と、冷媒を圧縮する電動式の圧縮機、及び、空気流通路から車室内に供給する空気と冷媒とを直接、若しくは、間接的に熱交換させるための熱交換器を有する冷媒回路と、空気流通路に空気を流通させるための室内送風機と、制御装置とを備え、この制御装置により、圧縮機及び室内送風機を制御することで車室内を空調するものであって、制御装置は、室内送風機の風量に基づき、当該風量が低くなる程、圧縮機の制御上の上限回転数を下げる方向で変更することを特徴とする。
 請求項2の発明の車両用空気調和装置は、車室内に供給する空気が流通する空気流通路と、冷媒を圧縮する電動式の圧縮機、及び、空気流通路から車室内に供給する空気と冷媒とを直接、若しくは、間接的に熱交換させるための熱交換器を有する冷媒回路と、空気流通路に空気を流通させるための室内送風機と、空気流通路から車室内に空気を吹き出すためVENT吹出口、及び、FOOT吹出口と、制御装置とを備え、この制御装置により、圧縮機及び室内送風機を制御することで車室内を空調すると共に、車室内に空気を吹き出す吹出モードを、少なくともVENT吹出口から吹き出すVENTモードと、FOOT吹出口から吹き出すFOOTモードに切り換え可能とされたものであって、制御装置は、FOOTモードの場合、VENTモードの場合に比して圧縮機の制御上の上限回転数を下げる方向で変更することを特徴とする。
 請求項3の発明の車両用空気調和装置は、車室内に供給する空気が流通する空気流通路と、冷媒を圧縮する電動式の圧縮機、及び、空気流通路から車室内に供給する空気と冷媒とを直接、若しくは、間接的に熱交換させるための熱交換器を有する冷媒回路と、空気流通路に空気を流通させるための室内送風機と、制御装置とを備え、この制御装置により、圧縮機及び室内送風機を制御することで車室内を空調すると共に、空気流通路に流入する空気を、少なくとも外気導入モードと内気循環モードに切り換え可能とされたものであって、制御装置は、外気導入モードの場合、内気循環モードの場合に比して圧縮機の制御上の上限回転数を下げる方向で変更することを特徴とする。
 請求項4の発明の車両用空気調和装置は、車室内に供給する空気が流通する空気流通路と、冷媒を圧縮する電動式の圧縮機、及び、空気流通路から車室内に供給する空気と冷媒とを直接、若しくは、間接的に熱交換させるための熱交換器を有する冷媒回路と、空気流通路に空気を流通させるための室内送風機と、制御装置とを備え、この制御装置により、圧縮機及び室内送風機を制御することで車室内を空調するものであって、制御装置は、車両に設けられた音響機器の音量に基づき、当該音量が小さくなる程、圧縮機の制御上の上限回転数を下げる方向で変更することを特徴とする。
 請求項5の発明の車両用空気調和装置は、上記各発明において制御装置は、車両が停車している場合、走行時よりも圧縮機の制御上の上限回転数を下げる方向で変更することを特徴とする。
 請求項6の発明の車両用空気調和装置は、上記各発明において制御装置は、外気温度が低くなる程、圧縮機の制御上の上限回転数を下げる方向で変更することを特徴とする。
 請求項7の発明の車両用空気調和装置は、車室内に供給する空気が流通する空気流通路と、冷媒を圧縮する電動式の圧縮機、及び、空気流通路から車室内に供給する空気と冷媒とを直接、若しくは、間接的に熱交換させるための熱交換器を有する冷媒回路と、空気流通路に空気を流通させるための室内送風機と、制御装置とを備え、この制御装置により、圧縮機及び室内送風機を制御することで車室内を空調するものであって、制御装置は、車室内の音のレベルに影響する複数の要因に基づき、当該車室内の音のレベルが低くなる程、圧縮機の制御上の上限回転数を下げる方向で変更する上限回転数変更値を各要因毎に算出すると共に、算出された各要因毎の上限回転数変更値のうち、最も高い値を圧縮機の制御上の上限回転数とすることを特徴とする。
 請求項8の発明の車両用空気調和装置は、上記発明において車室内の音のレベルに影響する要因は、室内送風機の風量、車室内に空気を吹き出す吹出モード、空気流通路に流入する空気の導入モード、車両に設けられた音響機器の音量、車速、及び、外気温度のうちの二以上の組み合わせ、若しくは、それらの全てであることを特徴とする。
 請求項9の発明の車両用空気調和装置は、上記各発明において空気流通路に設けられた補助加熱装置を備え、制御装置は、圧縮機から吐出された冷媒を熱交換器にて放熱させることで車室内を暖房すると共に、圧縮機の制御上の上限回転数を下げたことで熱交換器による暖房能力が不足する場合、補助加熱装置による加熱を実行することを特徴とする。
 請求項10の発明の車両用空気調和装置は、上記各発明において冷媒回路は、冷媒を放熱させて空気流通路から車室内に供給する空気を直接、若しくは、間接的に加熱するための熱交換器としての放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための熱交換器としての吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器を有し、制御装置は、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードを少なくとも実行すると共に、冷房モードでの圧縮機の制御上の上限回転数TGNCcLimHiを、暖房モードでの圧縮機の制御上の上限回転数TGNChLimHiよりも下げる方向で変更することを特徴とする。
 請求項11の発明の車両用空気調和装置は、上記発明において圧縮機の吐出容積は、暖房モードにおいて必要な吐出容積DV1に設定されており、吐出容積DV1に対する冷房モードにおいて必要な圧縮機の吐出容積DV2の比率D2/D1と、暖房モードでの圧縮機の制御上の上限回転数TGNChLimHiに基づいて、冷房モードでの圧縮機の制御上の上限回転数TGNCcLimHiが設定されていることを特徴とする。
An air conditioner for a vehicle according to a first aspect of the present invention includes an air flow passage through which air to be supplied to the vehicle interior flows, an electric compressor for compressing refrigerant, and air to be supplied from the air flow passage to the vehicle interior. A refrigerant circuit having a heat exchanger for exchanging heat directly or indirectly with the refrigerant, an indoor fan for circulating air in the air flow passage, and a control device are provided. The air conditioner is controlled by controlling the air blower and the indoor blower, and the control device is configured to lower the upper limit rotational speed for controlling the compressor as the air flow becomes lower based on the air flow of the indoor blower. It is characterized by changing.
An air conditioner for a vehicle according to a second aspect of the present invention includes an air flow passage through which air to be supplied to the vehicle interior flows, an electric compressor that compresses the refrigerant, and air supplied from the air flow passage to the vehicle interior. A refrigerant circuit having a heat exchanger for directly or indirectly exchanging heat with the refrigerant, an indoor fan for circulating air through the air flow passage, and VENT for blowing air from the air flow passage into the vehicle interior A blower outlet, a FOOT blower outlet, and a control device are provided. By this control device, the compressor and the indoor blower are controlled to air-condition the vehicle interior, and at least a vent mode for blowing air into the vehicle interior is provided. It is possible to switch between a VENT mode that blows out from the blowout port and a FOOT mode that blows out from the FOOT blowout port. And changes in the direction to decrease the upper limit rotation speed in control of the compressor in comparison with the case of over-de.
An air conditioning apparatus for a vehicle according to a third aspect of the present invention includes an air flow passage through which air to be supplied to the vehicle interior flows, an electric compressor that compresses the refrigerant, and air that is supplied from the air flow passage to the vehicle interior. A refrigerant circuit having a heat exchanger for exchanging heat directly or indirectly with the refrigerant, an indoor fan for circulating air in the air flow passage, and a control device are provided. The air conditioning of the vehicle interior is controlled by controlling the air blower and the indoor blower, and the air flowing into the air flow passage can be switched at least between the outside air introduction mode and the inside air circulation mode. In the case of the mode, it is characterized in that the upper limit number of rotations in the control of the compressor is lowered in comparison with the case of the inside air circulation mode.
An air conditioner for a vehicle according to a fourth aspect of the invention includes an air flow passage through which air to be supplied to the vehicle interior flows, an electric compressor that compresses the refrigerant, and air that is supplied from the air flow passage to the vehicle interior. A refrigerant circuit having a heat exchanger for exchanging heat directly or indirectly with the refrigerant, an indoor fan for circulating air in the air flow passage, and a control device are provided. The air conditioner is controlled in the vehicle interior by controlling the air blower and the indoor blower, and the control device is configured to rotate the upper limit for controlling the compressor as the sound volume decreases based on the sound volume of the audio equipment provided in the vehicle. It is characterized by changing in the direction of decreasing the number.
According to a fifth aspect of the present invention, in the vehicle air conditioner according to the fifth aspect, when the vehicle is stopped, the control device changes the lower limit of the upper limit rotational speed for controlling the compressor than when traveling. Features.
A vehicle air conditioner according to a sixth aspect of the present invention is characterized in that, in each of the above-described inventions, the control device changes the lower limit of the upper limit rotational speed for control of the compressor as the outside air temperature decreases.
An air conditioner for a vehicle according to a seventh aspect of the invention includes an air flow passage through which air to be supplied to the vehicle interior flows, an electric compressor that compresses the refrigerant, and air that is supplied from the air flow passage to the vehicle interior. A refrigerant circuit having a heat exchanger for exchanging heat directly or indirectly with the refrigerant, an indoor fan for circulating air in the air flow passage, and a control device are provided. The vehicle interior is controlled by controlling the air blower and the interior blower, and the control device is based on a plurality of factors that affect the sound level in the vehicle interior, and the sound level in the vehicle interior decreases. The upper limit rotational speed change value that is changed in the direction of lowering the upper limit rotational speed in control of the compressor is calculated for each factor, and the highest value among the calculated upper limit rotational speed change values for each factor is calculated by the compressor. To set the upper limit rotation speed in the control of And butterflies.
In the vehicle air conditioner according to the eighth aspect of the present invention, the factors affecting the sound level in the vehicle interior in the invention described above are the air volume of the indoor blower, the blowing mode for blowing air into the vehicle interior, and the amount of air flowing into the air flow passage. It is a combination of two or more of the introduction mode, the volume of the audio equipment provided in the vehicle, the vehicle speed, and the outside air temperature, or all of them.
A vehicle air conditioner according to a ninth aspect of the present invention includes the auxiliary heating device provided in the air flow passage in each of the above-described inventions, and the control device causes the refrigerant discharged from the compressor to dissipate heat by the heat exchanger. When the vehicle interior is heated and the heating capacity of the heat exchanger is insufficient due to the lowering of the upper limit number of revolutions in the control of the compressor, heating by the auxiliary heating device is executed.
According to a tenth aspect of the present invention, there is provided an air conditioning apparatus for a vehicle according to the present invention, wherein the refrigerant circuit heats the air directly or indirectly for heat dissipating the refrigerant and supplying air from the air flow passage to the vehicle interior. A heat sink as a heat sink, a heat absorber as a heat exchanger for cooling the air supplied to the vehicle interior from the air flow path by absorbing the heat of the refrigerant, and an outdoor heat provided outside the vehicle room to dissipate or absorb heat from the refrigerant The controller has an exchanger, and the control device radiates the refrigerant discharged from the compressor with a radiator, depressurizes the radiated refrigerant and then absorbs heat with an outdoor heat exchanger, and discharges from the compressor. The refrigerant is radiated by the outdoor heat exchanger, the radiated refrigerant is depressurized, and at least a cooling mode in which the heat is absorbed by the heat absorber is executed, and an upper limit rotational speed TGNCcLimH for controlling the compressor in the cooling mode And and changes in the decreasing direction than the upper limit rotational speed TGNChLimHi on control of the compressor in the heating mode.
The vehicle air conditioner according to an eleventh aspect of the present invention is the above-described invention, wherein the compressor discharge volume is set to a discharge volume DV1 required in the heating mode, and the compressor discharge required in the cooling mode with respect to the discharge volume DV1. Based on the ratio D2 / D1 of the volume DV2 and the upper limit rotational speed TGNChLimHi for controlling the compressor in the heating mode, the upper limit rotational speed TGNCcLimHi for controlling the compressor in the cooling mode is set. To do.
 車室内に供給する空気が流通する空気流通路と、冷媒を圧縮する電動式の圧縮機、及び、空気流通路から車室内に供給する空気と冷媒とを直接、若しくは、間接的に熱交換させるための熱交換器を有する冷媒回路と、空気流通路に空気を流通させるための室内送風機と、制御装置とを備え、この制御装置により、圧縮機及び室内送風機を制御することで車室内を空調する車両用空気調和装置では、室内送風機の風量が低下すると、風量が多い場合に比して車室内は音のレベルは低くなり、静かになる。そのため、圧縮機の駆動音も目立つようになって、搭乗者に耳障りとなる。
 そこで、請求項1の発明では制御装置が、室内送風機の風量に基づき、当該風量が低くなる程、圧縮機の制御上の上限回転数を下げる方向で変更するようにしたので、室内送風機の風量が低下した状況においては圧縮機の駆動音を低減することができるようになる。また、室内送風機の風量が低下することは必要な空調能力も低いことを意味するので、総じて搭乗者に快適な車室内空調を実現することができるようになる。
 また、空気流通路から車室内に空気を吹き出すためVENT吹出口、及び、FOOT吹出口を備え、制御装置により、車室内に空気を吹き出す吹出モードを、少なくともVENT吹出口から吹き出すVENTモードと、FOOT吹出口から吹き出すFOOTモードに切り換え可能とされた車両用空気調和装置では、搭乗者の耳から遠いFOOT吹出口から空気を吹き出すFOOTモードの場合は、VENT吹出口から吹き出すVENTモードの場合に比して、搭乗者の耳に届く車室内の音のレベルは低くなり、圧縮機の駆動音も目立つようになって、搭乗者に耳障りとなる。
 そこで、請求項2の発明では制御装置が、FOOTモードの場合、VENTモードの場合に比して圧縮機の制御上の上限回転数を下げる方向で変更するようにしたので、FOOTモードにおいては圧縮機の駆動音を低減し、搭乗者に快適な車室内空調を実現することができるようになる。
 また、空気流通路に流入する空気を、少なくとも外気導入モードと内気循環モードに切り換え可能とされた車両用空気調和装置では、外気導入モードでは内気循環モードに比して車室内に吹き出される風量が低下するため、車室内は音のレベルは低くなり、圧縮機の駆動音も目立つようになって、搭乗者に耳障りとなる。
 そこで、請求項3の発明では制御装置が、外気導入モードの場合、内気循環モードの場合に比して圧縮機の制御上の上限回転数を下げる方向で変更するようにしたので、外気導入モードにおいては圧縮機の駆動音を低減し、搭乗者に快適な車室内空調を実現することができるようになる。
 また、車両に設けられた音響機器の音量が小さい場合、車室内は音のレベルは低くなり、圧縮機の駆動音も目立つようになって、搭乗者に耳障りとなる。そこで、請求項4の発明では制御装置が、車両に設けられた音響機器の音量に基づき、当該音量が小さくなる程、圧縮機の制御上の上限回転数を下げる方向で変更するようにしたので、音響機器の音量が低い状況では圧縮機の駆動音を低減し、搭乗者に快適な車室内空調を実現することができるようになる。
 ここで、上記各発明に加えて請求項5の発明の如く制御装置が、車両が停車している場合、走行時よりも圧縮機の制御上の上限回転数を下げる方向で変更することで、車室内の音のレベルが低くなる停車時にも圧縮機の駆動音を低減することができるようになり、快適性を更に向上させることができるようになる。
 また、上記各発明に加えて請求項6の発明の如く制御装置が、外気温度が低くなる程、圧縮機の制御上の上限回転数を下げる方向で変更することで、車両を構成する機器が低外気温下で硬化し、振動による騒音が大きくなる状況下においても圧縮機の上限回転数を下げ、振動に伴う騒音の発生を低減することができるようになる。
 また、上記のように車室内の音のレベルに影響する要因、即ち、請求項8の発明のような室内送風機の風量、車室内に空気を吹き出す吹出モード、空気流通路に流入する空気の導入モード、音響機器の音量、車速、外気温度のうち、何れかの要因で車室内の音のレベルが高い状況では、圧縮機を高回転で駆動させても駆動音は耳障りにならない。そこで、請求項7の発明では制御装置が、車室内の音のレベルに影響する複数の要因に基づき、当該車室内の音のレベルが低くなる程、圧縮機の制御上の上限回転数を下げる方向で変更する上限回転数変更値を各要因毎に算出し、算出された各要因毎の上限回転数変更値のうち、最も高い値を圧縮機の制御上の上限回転数とするようにしたので、何れかの要因で車室内の音のレベルが高く、圧縮機の駆動音が搭乗者の耳障りとなり難い状況では、圧縮機の上限回転数をできるだけ高くすることができるようになり、上限回転数の低下が空調性能に与える悪影響を低減することができるようになる。
 一方、圧縮機から吐出された冷媒を熱交換器にて放熱させることで車室内を暖房する場合に、上記各発明の如く圧縮機の上限回転数を下げると暖房能力が低下することになるが、その場合には請求項9の発明の如く補助加熱装置を空気流通路に設け、補助加熱装置による加熱を実行することにより、快適な車室内暖房を維持することが可能となる。
 他方、上記各発明に加えて、冷媒を放熱させて空気流通路から車室内に供給する空気を直接、若しくは、間接的に加熱するための熱交換器としての放熱器と、冷媒を吸熱させて空気流通路から車室内に供給する空気を冷却するための熱交換器としての吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器を冷媒回路に設け、圧縮機から吐出された冷媒を放熱器にて放熱させ、放熱した当該冷媒を減圧した後、室外熱交換器にて吸熱させる暖房モードと、圧縮機から吐出された冷媒を室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、吸熱器にて吸熱させる冷房モードを少なくとも実行する車両用空気調和装置では、冷媒回路を構成する圧縮機として、通常は暖房モードの場合に必要な吐出容積のものが選定されるが、この吐出容積は冷房モードでは過剰となる。
 そこで、請求項10の発明の如く制御装置が、冷房モードでの圧縮機の制御上の上限回転数TGNCcLimHiを、暖房モードでの圧縮機の制御上の上限回転数TGNChLimHiよりも下げる方向で変更するようにすれば、暖房モードで要求される能力を実現しながら、冷房モードでの過剰な能力での運転を回避し、消費電力の削減や騒音の低減を実現し、制御性の向上も図ることができるようになる。
 この場合、請求項11の発明の如く圧縮機の吐出容積を、暖房モードにおいて必要な吐出容積DV1に設定し、吐出容積DV1に対する冷房モードにおいて必要な圧縮機の吐出容積DV2の比率D2/D1と、暖房モードでの圧縮機の制御上の上限回転数TGNChLimHiに基づいて、冷房モードでの圧縮機の制御上の上限回転数TGNCcLimHiを設定することで、冷房モードでの上限回転数TGNCcLimHiを適切に設定することができるようになる。
The air flow passage through which the air supplied to the passenger compartment flows, the electric compressor that compresses the refrigerant, and the air and refrigerant supplied from the air flow passage to the passenger compartment are directly or indirectly heat-exchanged. A refrigerant circuit having a heat exchanger, an indoor blower for circulating air in the air flow passage, and a control device. The control device controls the compressor and the indoor blower to air-condition the vehicle interior. In the vehicle air conditioner, when the air volume of the indoor fan decreases, the sound level in the vehicle interior becomes lower and quieter than when the air volume is large. Therefore, the driving sound of the compressor becomes conspicuous, which is annoying to the passenger.
Therefore, in the first aspect of the invention, the control device is configured to change the direction of lowering the upper limit number of revolutions for control of the compressor based on the air volume of the indoor fan, so that the air volume of the indoor fan is reduced. In a situation where the pressure drops, the driving sound of the compressor can be reduced. In addition, a reduction in the air volume of the indoor blower means that the necessary air conditioning capability is also low, so that it is possible to achieve vehicle interior air conditioning that is generally comfortable for passengers.
In addition, a VENT air outlet and a FOOT air outlet are provided to blow air from the air flow passage into the vehicle interior, and a blow mode in which air is blown into the vehicle interior is controlled by the control device. In the vehicular air conditioner that can be switched to the FOOT mode that blows out from the air outlet, the FOOT mode that blows air from the FOOT air outlet far from the passenger's ear is compared with the VENT mode that blows out from the VENT air outlet. As a result, the level of sound in the passenger compartment that reaches the passenger's ear is lowered, and the driving sound of the compressor becomes conspicuous, which is annoying to the passenger.
Therefore, in the invention of claim 2, since the control device is changed in the direction of lowering the upper limit number of revolutions in the control of the compressor in the FOOT mode than in the VENT mode, the control device is compressed in the FOOT mode. The driving noise of the aircraft can be reduced, and the passenger compartment air conditioning can be realized.
Further, in a vehicle air conditioner in which the air flowing into the air flow passage can be switched at least between the outside air introduction mode and the inside air circulation mode, the amount of air blown into the vehicle compartment in the outside air introduction mode as compared with the inside air circulation mode Therefore, the sound level in the passenger compartment is lowered, and the driving sound of the compressor becomes conspicuous, which is annoying to the passenger.
Therefore, in the third aspect of the invention, since the control device is changed in the direction of lowering the upper limit number of rotations in the control of the compressor in the outside air introduction mode compared to the inside air circulation mode, the outside air introduction mode In this case, it is possible to reduce the driving noise of the compressor and realize air conditioning in the passenger compartment that is comfortable for the passenger.
Further, when the volume of the acoustic device provided in the vehicle is low, the sound level is low in the passenger compartment, and the driving sound of the compressor becomes conspicuous, which is annoying to the passenger. Therefore, in the invention of claim 4, the control device is configured to change the direction in which the upper limit number of rotations for controlling the compressor is lowered as the volume decreases, based on the volume of the audio equipment provided in the vehicle. In the situation where the volume of the acoustic device is low, the driving sound of the compressor can be reduced, and the passenger compartment can be comfortably air-conditioned.
Here, in addition to each of the above inventions, when the control device as in the invention of claim 5 is stopped, by changing the upper limit number of rotations in the control of the compressor in the direction of lowering than when traveling, The driving sound of the compressor can be reduced even when the vehicle is stopped when the sound level in the passenger compartment becomes low, and the comfort can be further improved.
Further, in addition to the above-described inventions, the control device as in the invention of claim 6 changes the direction of lowering the upper limit rotational speed on the control of the compressor as the outside air temperature becomes lower. Even under a situation where it hardens under a low outside temperature and noise due to vibration increases, the upper limit number of rotations of the compressor can be lowered, and generation of noise due to vibration can be reduced.
Further, as described above, the factors affecting the sound level in the passenger compartment, that is, the air volume of the indoor fan as in the invention of claim 8, the blow-out mode for blowing air into the passenger compartment, and the introduction of air flowing into the air flow passage In a situation where the sound level in the passenger compartment is high due to any factor among the mode, the volume of the acoustic device, the vehicle speed, and the outside air temperature, the driving sound is not harsh even if the compressor is driven at a high speed. Accordingly, in the seventh aspect of the invention, the control device lowers the upper limit rotational speed for controlling the compressor as the sound level in the vehicle interior decreases based on a plurality of factors affecting the sound level in the vehicle interior. The upper limit rotation speed change value that changes in the direction is calculated for each factor, and the highest value among the calculated upper limit rotation speed change values for each factor is set as the upper limit rotation speed for compressor control. Therefore, in any situation where the sound level in the passenger compartment is high due to any of the factors and the driving sound of the compressor does not easily disturb the passenger, the upper limit rotation speed of the compressor can be increased as much as possible. The adverse effect on the air conditioning performance due to the decrease in the number can be reduced.
On the other hand, when heating the vehicle interior by dissipating the refrigerant discharged from the compressor with a heat exchanger, if the upper limit number of rotations of the compressor is lowered as in the above inventions, the heating capacity will be reduced. In that case, a comfortable heating in the vehicle interior can be maintained by providing an auxiliary heating device in the air flow passage as in the invention of claim 9 and executing the heating by the auxiliary heating device.
On the other hand, in addition to the above inventions, in addition to the radiator as a heat exchanger for directly or indirectly heating the air supplied to the vehicle interior from the air flow passage by radiating the refrigerant, and absorbing the refrigerant A heat absorber as a heat exchanger for cooling the air supplied from the air flow passage to the vehicle interior and an outdoor heat exchanger provided outside the vehicle cabin to dissipate or absorb the refrigerant are provided in the refrigerant circuit and discharged from the compressor. Heat is dissipated by the radiator, and after the decompressed refrigerant is depressurized, the heating mode in which heat is absorbed by the outdoor heat exchanger, and the refrigerant discharged from the compressor is dissipated by the outdoor heat exchanger to dissipate heat. In the vehicle air conditioner that executes at least the cooling mode in which the refrigerant is depressurized and absorbs heat by the heat absorber, the compressor that constitutes the refrigerant circuit usually has a discharge volume that is necessary in the heating mode. Selected , The discharge volume is the excess is in the cooling mode.
Therefore, as in the invention of claim 10, the control device changes the upper limit rotational speed TGNCcLimHi for controlling the compressor in the cooling mode in a direction lower than the upper limit rotational speed TGNChLimHi for controlling the compressor in the heating mode. In this way, while achieving the capacity required in the heating mode, avoiding excessive operation in the cooling mode, reducing power consumption and noise, and improving controllability. Will be able to.
In this case, as in the invention of claim 11, the discharge volume of the compressor is set to the discharge volume DV1 required in the heating mode, and the ratio D2 / D1 of the discharge volume DV2 of the compressor required in the cooling mode with respect to the discharge volume DV1 By setting the upper limit rotational speed TGNCcLimHi for controlling the compressor in the cooling mode based on the upper limit rotational speed TGNChLimHi for controlling the compressor in the heating mode, the upper limit rotational speed TGNCcLimHi in the cooling mode is appropriately set. Can be set.
本発明を適用した一実施形態の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of one Embodiment to which this invention is applied. 図1の車両用空気調和装置のコントローラの電気回路のブロック図である。It is a block diagram of the electric circuit of the controller of the vehicle air conditioner of FIG. 図2のコントローラの圧縮機制御に関する制御ブロック図である。It is a control block diagram regarding the compressor control of the controller of FIG. 図2のコントローラの圧縮機制御に関するもう一つの制御ブロック図である。It is another control block diagram regarding the compressor control of the controller of FIG. 図2のコントローラによる室内送風機の風量に基づく圧縮機の上限回転数変更値の算出の一例を説明する図である。It is a figure explaining an example of the calculation of the upper limit rotation speed change value of a compressor based on the air volume of the indoor air blower by the controller of FIG. 図2のコントローラによる吹出モードに基づく圧縮機の上限回転数変更値の算出の一例を説明する図である。It is a figure explaining an example of the calculation of the upper limit rotation speed change value of the compressor based on the blowing mode by the controller of FIG. 図2のコントローラによる内外気モードに基づく圧縮機の上限回転数変更値の算出の一例を説明する図である。It is a figure explaining an example of the calculation of the upper limit rotation speed change value of the compressor based on the inside / outside air mode by the controller of FIG. 図2のコントローラによる音響機器の音量(オーディオレベル)に基づく圧縮機の上限回転数変更値の算出の一例を説明する図である。It is a figure explaining an example of the calculation of the upper limit rotation speed change value of a compressor based on the volume (audio level) of the audio equipment by the controller of FIG. 図2のコントローラによる車速に基づく圧縮機の上限回転数変更値の算出の一例を説明する図である。It is a figure explaining an example of the calculation of the upper limit rotation speed change value of the compressor based on the vehicle speed by the controller of FIG. 図2のコントローラによる車速に基づく圧縮機の上限回転数変更値の算出の他の例を説明する図である。It is a figure explaining the other example of calculation of the upper limit rotation speed change value of the compressor based on the vehicle speed by the controller of FIG. 図2のコントローラによる外気温度に基づく圧縮機の上限回転数変更値の算出の一例を説明する図である。It is a figure explaining an example of the calculation of the upper limit rotation speed change value of the compressor based on the outside temperature by the controller of FIG. 本発明を適用した他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of the other Example to which this invention is applied. 本発明を適用したもう一つの他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of another another Example to which this invention is applied. 本発明を適用した更にもう一つの他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of another another Example to which this invention is applied. 本発明を適用した更にもう一つの他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of another another Example to which this invention is applied. 本発明を適用した更にもう一つの他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of another another Example to which this invention is applied. 本発明を適用した更にもう一つの他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of another another Example to which this invention is applied. 本発明を適用した更にもう一つの他の実施例の車両用空気調和装置の構成図である。It is a block diagram of the air conditioning apparatus for vehicles of another another Example to which this invention is applied.
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。
 図1は本発明の一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、バッテリに充電された電力で走行用の電動モータを駆動して走行するものであり(何れも図示せず)、本発明の車両用空気調和装置1(圧縮機2等)も、車両に搭載されたバッテリの電力で駆動されるものとする。即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路を用いたヒートポンプ運転により暖房を行い、更に、除湿暖房や内部サイクル、冷房除湿、冷房の各運転モードを選択的に実行するものである。
 尚、車両として電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明は有効であり、更には、エンジンで走行する通常の自動車にも適用可能であることは云うまでもない。
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、冷媒を圧縮する電動式の圧縮機(電動圧縮機)2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13Gを介して流入し、この冷媒を車室内に放熱させる熱交換器としての放熱器4と、暖房時に冷媒を減圧膨張させる電動弁から成る室外膨張弁6と、冷房時には放熱器として機能し、暖房時には蒸発器として機能すべく冷媒と外気との間で熱交換を行わせる室外熱交換器7と、冷媒を減圧膨張させる電動弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時及び除湿時に車室内外から冷媒に吸熱させる熱交換器としての吸熱器9と、吸熱器9における蒸発能力を調整する蒸発能力制御弁11と、アキュムレータ12等が冷媒配管13により順次接続され、冷媒回路Rが構成されている。
 尚、上記圧縮機2としては、スクロール型、ロータリ型等の種々の形式の圧縮機が採用可能であるが、少なくとも後述する暖房モードで必要な吐出容積DV1のものが使用される。また、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。
 また、室外熱交換器7は冷媒下流側にレシーバドライヤ部14と過冷却部16を順次有し、室外熱交換器7から出た冷媒配管13Aは冷房時に開放される電磁弁(冷房用の電磁弁)17を介してレシーバドライヤ部14に接続され、過冷却部16の出口が逆止弁18を介して室内膨張弁8に接続されている。尚、レシーバドライヤ部14及び過冷却部16は構造的に室外熱交換器7の一部を構成しており、逆止弁18は室内膨張弁8側が順方向とされている。
 また、逆止弁18と室内膨張弁8間の冷媒配管13Bは、吸熱器9の出口側に位置する蒸発能力制御弁11を出た冷媒配管13Cと熱交換関係に設けられ、両者で内部熱交換器19を構成している。これにより、冷媒配管13Bを経て室内膨張弁8に流入する冷媒は、吸熱器9を出て蒸発能力制御弁11を経た低温の冷媒により冷却(過冷却)される構成とされている。
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁(暖房用の電磁弁)21を介して内部熱交換器19の下流側における冷媒配管13Cに連通接続されている。この冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。
 更に、放熱器4の出口側の冷媒配管13Eは室外膨張弁6の手前で分岐しており、この分岐した冷媒配管13Fは除湿時に開放される電磁弁(除湿用の電磁弁)22を介して逆止弁18の下流側の冷媒配管13Bに連通接続されている。即ち、この除湿用の電磁弁22は室外熱交換器7(及び室外膨張弁6等)に対して並列に接続されたかたちとなる。
 また、室外膨張弁6には並列にバイパス配管13Jが接続されており、このバイパス配管13Jには、冷房モードにおいて開放され、室外膨張弁6をバイパスして冷媒を流すための電磁弁(バイパス用の電磁弁)20が介設されている。尚、これら室外膨張弁6及び電磁弁20と室外熱交換器7との間の配管は131とする。
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に流入する空気の導入モードを、内気循環モードと外気導入モードとに切り換えるための吸込切換ダンパ26が設けられている。内気循環モードでは、吸込切換ダンパ26によって車室内の空気である内気が空気流通路3内に流入し、外気導入モードでは、車室外の空気である外気が空気流通路3内に流入するように切り換えられる。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。
 また、図1において23は実施例の車両用空気調和装置1に設けられた熱媒体循環回路を示している。この熱媒体循環回路23は循環手段を構成する循環ポンプ30と、熱媒体加熱電気ヒータ35と、空気流通路3の空気の流れに対して、放熱器4の空気上流側となる空気流通路3内に設けられた熱媒体−空気熱交換器40(本発明における補助加熱装置)とを備え、これらが熱媒体配管23Aにより順次環状に接続されている。尚、この熱媒体循環回路23内で循環される熱媒体としては、例えば水、HFO−1234yfのような冷媒、クーラント等が採用される。
 そして、循環ポンプ30が運転され、熱媒体加熱電気ヒータ35に通電されて発熱すると、この熱媒体加熱電気ヒータ35により加熱された熱媒体が熱媒体−空気熱交換器40に循環されるよう構成されている。即ち、この熱媒体循環回路23の熱媒体−空気熱交換器40(補助加熱装置)が所謂ヒータコアとなり、車室内の暖房を補完する。係る熱媒体循環回路23を採用することで、搭乗者の電気的な安全性を向上することができるようになる。
 また、熱媒体−空気熱交換器40の空気上流側における空気流通路3内には、内気や外気が熱媒体−空気熱交換器40及び放熱器4に流通する度合いを調整するためのエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT、VENT、DEFの各吹出口(図1では代表して吹出口29で示す)が形成されている。この場合、FOOT吹出口は空気流通路3内の空気を、搭乗者(運転手他)の耳から通り足下に吹き出す吹出口であり、VENT吹出口は搭乗者の胸や顔に吹き出す吹出口、DEF吹出口は車両のフロントガラスの内側に空気を吹き出す吹出口である。
 そして、この吹出口29には上記各吹出口からの空気の吹出モードを切換制御するための吹出口切換ダンパ31が設けられている。実施例では吹出口切換ダンパ31は、吹出モードをFOOT吹出口から空気を吹き出すFOOTモードと、VENT吹出口から吹き出すVENTモードと、FOOT吹出口及びVENT吹出口の両方から吹き出すB/Lモードと、DEF吹出口から吹き出すDEFモードに切り換え可能とされている。
 次に、図2において32はマイクロコンピュータから構成された制御手段としてのコントローラ(ECU)であり、このコントローラ32の入力には車両の外気温度Tamを検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2の吸込冷媒圧力を検出する吸込圧力センサ44と、放熱器4の温度(放熱器4を経た空気の温度、又は、放熱器4自体の温度)を検出する放熱器温度センサ46と、放熱器4の冷媒圧力(放熱器4内、又は、放熱器4を出た直後の冷媒の圧力)を検出する放熱器圧力センサ47と、吸熱器9の温度(吸熱器9を経た空気の温度、又は、吸熱器9自体の温度)を検出する吸熱器温度センサ48と、吸熱器9の冷媒圧力(吸熱器9内、又は、吸熱器9を出た直後の冷媒の圧力)を検出する吸熱器圧力センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速VSP)を検出するための車速センサ52と、設定温度や運転モードの切り換えを設定するための空調(エアコン)操作部53と、室外熱交換器7の温度(室外熱交換器7から出た直後の冷媒の温度、又は、室外熱交換器7自体の温度)を検出する室外熱交換器温度センサ54と、室外熱交換器7の冷媒圧力(室外熱交換器7内、又は、室外熱交換器7から出た直後の冷媒の圧力)を検出する室外熱交換器圧力センサ56の各出力が接続されている。
 また、コントローラ32の入力には更に、熱媒体循環回路23の熱媒体加熱電気ヒータ35の温度(熱媒体加熱電気ヒータ35で加熱された直後の熱媒体の温度、又は、熱媒体加熱電気ヒータ35に内蔵された図示しない電気ヒータ自体の温度)を検出する熱媒体加熱電気ヒータ温度センサ50と、熱媒体−空気熱交換器40の温度(熱媒体−空気熱交換器40を経た空気の温度、又は、熱媒体−空気熱交換器40自体の温度)を検出する熱媒体−空気熱交換器温度センサ55の各出力も接続されている。また、コントローラ32の入力には、車両に搭載された音響機器(オーディオ)の音量AUD(図2中のオーディオレベル)に関する情報が車両側から入力される。
 一方、コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、電磁弁22(除湿)、電磁弁17(冷房)、電磁弁21(暖房)、電磁弁20(バイパス)の各電磁弁と、循環ポンプ30と、熱媒体加熱電気ヒータ35と、蒸発能力制御弁11が接続されている。そして、コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御する。
 以上の構成で、次に実施例の車両用空気調和装置1の動作を説明する。コントローラ32は実施例では暖房モードと、除湿暖房モードと、内部サイクルモードと、除湿冷房モードと、冷房モードの各運転モードを切り換えて実行する。また、必要に応じて圧縮機2から吐出された高温の冷媒ガスを室外熱交換器7に流入させて除霜する除霜モードも有している。
 (1)暖房モード
 次に、各運転モードについて説明する。コントローラ32により或いは空調操作部53へのマニュアル操作により暖房モードが選択されると、コントローラ32は電磁弁21(暖房用)を開放し、電磁弁17、電磁弁22、及び、電磁弁20を閉じる。
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が熱媒体−空気熱交換器40及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6に至る。尚、熱媒体循環回路23の動作及び作用については後述する。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる。即ち、冷媒回路Rがヒートポンプとなる。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び電磁弁21及び冷媒配管13Dを経て冷媒配管13Cからアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は熱媒体−空気熱交換器40を経て吹出口29から吹き出されるので、これにより車室内の暖房が行われることになる。
 コントローラ32は吐出圧力センサ42又は放熱器圧力センサ47が検出する冷媒回路Rの高圧圧力に基づいて後述する如く圧縮機2の回転数NCを制御すると共に、放熱器温度センサ46が検出する放熱器4の温度及び放熱器圧力センサ47が検出する放熱器4の冷媒圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度を制御する。
 (2)除湿暖房モード
 次に、除湿暖房モードでは、コントローラ32は上記暖房モードの状態において電磁弁22(除湿用)を開放する。これにより、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒の一部が分流され、電磁弁22を経て冷媒配管13F及び13Bより内部熱交換器19を経て室内膨張弁8に至るようになる。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cにて冷媒配管13Dからの冷媒と合流した後、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。
 コントローラ32は吸熱器9の温度、又は、前述した冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数NCを制御する。このとき、コントローラ32は吸熱器9の温度によるか高圧圧力によるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。また、コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて室外膨張弁6の弁開度を大口径と小口径に切り換えて制御する。
 (3)内部サイクルモード
 次に、内部サイクルモードでは、コントローラ32は上記除湿暖房モードの状態において室外膨張弁6を全閉とする(全閉位置)と共に、電磁弁21(暖房用)を閉じる。この室外膨張弁6と電磁弁21が閉じられることにより(電磁弁20も閉じられている)、室外熱交換器7への冷媒の流入、及び、室外熱交換器7からの冷媒の流出は阻止されることになるので、放熱器4を経て冷媒配管13Eを流れる凝縮冷媒は電磁弁22を経て冷媒配管13Fに全て流れるようになる。そして、冷媒配管13Fを流れる冷媒は冷媒配管13Bより内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを流れ、アキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより、車室内の除湿暖房が行われることになるが、この内部サイクルモードでは室内側の空気流通路3内にある放熱器4(放熱)と吸熱器9(吸熱)の間で冷媒が循環されることになるので、外気からの熱の汲み上げは行われず、圧縮機2の消費動力分の暖房能力が発揮される。除湿作用を発揮する吸熱器9には冷媒の全量が流れるので、上記除湿暖房モードに比較すると除湿能力は高いが、暖房能力は低くなる。
 コントローラ32はこの場合も吸熱器9の温度、又は、前述した冷媒回路Rの高圧圧力に基づいて圧縮機2の回転数NCを制御する。このとき、コントローラ32は吸熱器9の温度によるか高圧圧力によるか、何れかの演算から得られる圧縮機目標回転数の低い方を選択して圧縮機2を制御する。
 (4)除湿冷房モード
 次に、除湿冷房モードでは、コントローラ32は電磁弁17(冷房用)を開放し、電磁弁21、電磁弁22、及び、電磁弁20を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が熱媒体−空気熱交換器40及び放熱器4に通風される状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。
 放熱器4を出た冷媒は冷媒配管13Eを経て室外膨張弁6に至り、開き気味で制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱(暖房時よりも放熱能力は低い)されるので、これにより車室内の除湿冷房が行われることになる。コントローラ32は吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数NCを制御すると共に、前述した冷媒回路Rの高圧圧力に基づいて室外膨張弁6の弁開度を制御し、放熱器4の冷媒圧力(放熱器圧力PCI)を制御する。
 (5)冷房モード
 次に、冷房モードでは、コントローラ32は上記除湿冷房モードの状態において電磁弁20(バイパス)を開き(この場合、室外膨張弁6は全開(弁開度を制御上限)を含む何れの弁開度でもよい)、エアミックスダンパ28は熱媒体−空気熱交換器40及び放熱器4に空気が通風されない状態とする。但し、多少通風するようにしても差し支えない。
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気は通風されないので、ここは通過するのみとなり、放熱器4を出た冷媒は冷媒配管13Eを経て電磁弁20及び室外膨張弁6に至る。このとき電磁弁20は開放されているので冷媒は室外膨張弁6を迂回してバイパス配管13Jを通過し、そのまま室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮液化する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は逆止弁18を経て冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却される。
 吸熱器9で蒸発した冷媒は蒸発能力制御弁11、内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過すること無く吹出口29から車室内に吹き出されるので(多少通過しても差し支えない)、これにより車室内の冷房が行われることになる。この冷房モードにおいては、コントローラ32は後述する如く吸熱器温度センサ48が検出する吸熱器9の温度に基づいて圧縮機2の回転数NCを制御する。
 (6)運転モードの切換
 コントローラ32は、下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset−Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内の空気の温度(内気温度)、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
 コントローラ32は、起動時には外気温度Tam(外気温度センサ33が検出する)と目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択する。また、コントローラ32は、起動後は外気温度Tam、車室内の湿度、目標吹出温度TAO、後述する加熱温度TH(放熱器4の風下側の空気の温度。推定値)、目標ヒータ温度TCO、吸熱器温度Te、目標吸熱器温度TEO、車室内の除湿要求の有無、等のパラメータに基づいて各運転モードの切り換えを行うことで、環境条件や除湿の要否に応じて的確に暖房モード、除湿暖房モード、内部サイクルモード、除湿冷房モード、及び、冷房モードを切り換えて車室内に吹き出される空気の温度を目標吹出温度TAOに制御し、快適、且つ、効率的な車室内空調を実現する。
 (7)暖房モードでの熱媒体循環回路による補助加熱
 また、コントローラ32は、前記暖房モードにおいて放熱器4による暖房能力が不足すると判断した場合、熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体循環回路23の熱媒体−空気熱交換器40による加熱を実行する。
 熱媒体循環回路23の循環ポンプ30が運転され、熱媒体加熱電気ヒータ35に通電されると、前述したように熱媒体加熱電気ヒータ35により加熱された熱媒体(高温の熱媒体)が熱媒体−空気熱交換器40に循環されるので、空気流通路3の放熱器4に流入する空気を加熱することになる。これにより、暖房モードで要求される暖房能力に対して、放熱器4が発生可能な暖房能力が不足する場合、特に後述する圧縮機2の上限回転数制限制御において不足する場合、この不足する分の暖房能力を熱媒体循環回路23にて補完することになる。
 (8)暖房モード、除湿暖房モード、内部サイクルモードでのコントローラ32による圧縮機2の制御
 図3を用いて放熱器圧力PCIに基づく圧縮機2の制御について詳述する。図3は放熱器圧力PCIに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNChを算出するコントローラ32の制御ブロック図であり、暖房モードで実行され、除湿暖房モード及び内部サイクルモードで選択される。コントローラ32のF/F(フィードフォワード)操作量演算部58は外気温度センサ33から得られる外気温度Tamと、室内送風機27のブロワ電圧BLVと、SW=(TAO−Te)/(TH−Te)で得られるエアミックスダンパ28による風量割合SWと、放熱器4の出口における過冷却度SCの目標値である目標過冷却度TGSCと、放熱器4の温度の目標値である前述した目標ヒータ温度TCOと、放熱器4の圧力の目標値である目標放熱器圧力PCOに基づいて圧縮機目標回転数のF/F操作量TGNChffを算出する。
 ここで、風量割合SWを算出する上記THは、放熱器4の風下側の空気の温度(以下、加熱温度と云う)であり、コントローラ32が下記に示す一次遅れ演算の式(II)から推定する。
 TH=(INTL×TH0+Tau×THz)/(Tau+INTL) ・・(II)
 ここで、INTLは演算周期(定数)、Tauは一次遅れの時定数、TH0は一次遅れ演算前の定常状態における加熱温度THの定常値、THzは加熱温度THの前回値である。このように加熱温度THを推定することで、格別な温度センサを設ける必要がなくなる。尚、コントローラ32は前述した運転モードによって上記時定数Tau及び定常値TH0を変更することにより、上述した推定式(II)を運転モードによって異なるものとし、加熱温度THを推定する。
 前記目標放熱器圧力PCOは上記目標過冷却度TGSCと目標ヒータ温度TCOに基づいて目標値演算部59が算出する。更に、F/B(フィードバック)操作量演算部60はこの目標放熱器圧力PCOと放熱器4の冷媒圧力である放熱器圧力PCIに基づいて圧縮機目標回転数のF/B操作量TGNChfbを算出する。そして、F/F操作量演算部58が算出したF/F操作量TGNCnffとF/B操作量演算部60が算出したTGNChfbは加算器61で加算され、リミット設定部62で制御上の上限回転数TGNChLimHiと下限回転数TGNChLimLoが付けられた後、圧縮機目標回転数TGNChとして決定される。コントローラ32は暖房モードではこの圧縮機目標回転数TGNChにより、また、除湿暖房モード及び内部サイクルモードで前述した如く選択された場合はこの圧縮機目標回転数TGNChにより、上限回転数TGNChLimHiと下限回転数TGNChLimLoの間で圧縮機2の回転数NCを制御する。尚、この上限回転数TGNChLimHiについては後述する如くコントローラ32により変更される。
 (9)冷房モード、除湿冷房モード、除湿暖房モード、内部サイクルモードでのコントローラ32による圧縮機2の制御
 次に、図4を用いて吸熱器温度Teに基づく圧縮機2の制御について詳述する。図4は吸熱器温度Teに基づいて圧縮機2の目標回転数(圧縮機目標回転数)TGNCcを算出するコントローラ32の制御ブロック図であり、冷房モード及び除湿冷房モードで実行され、除湿暖房モード及び内部サイクルモードで選択される。コントローラ32のF/F操作量演算部63は外気温度Tamと、室内送風機27のブロワ電圧BLVと、吸熱器温度Te(吸熱器9の温度の目標値である目標吸熱器温度TEOに基づいて圧縮機目標回転数のF/F操作量TGNCcffを算出する。
 また、F/B操作量演算部64は目標吸熱器温度TEOと吸熱器温度Teに基づいて圧縮機目標回転数のF/B操作量TGNCcfbを算出する。そして、F/F操作量演算部63が算出したF/F操作量TGNCcffとF/B操作量演算部64が算出したF/B操作量TGNCcfbは加算器66で加算され、リミット設定部67で制御上の上限回転数TGNCcLimHiと下限回転数TGNCcLimLoが付けられた後、圧縮機目標回転数TGNCcとして決定される。コントローラ32は冷房モード及び除湿冷房モードではこの圧縮機目標回転数TGNCcにより、また、除湿暖房モード及び内部サイクルモードで前述した如く選択された場合はこの圧縮機目標回転数TGNCcにより、上限回転数TGNCcLimHiと下限回転数TGNCcLimLoの間で圧縮機2の回転数NCを制御する。尚、この上限回転数TGNCcLimHiについても後述する如くコントローラ32により変更される。
 (10)コントローラ32による圧縮機2の上限回転数の変更制御
 次に、図5~図14を参照しながらコントローラ32による圧縮機2の上限回転数TGNChLimHi及びTGNCcLimHiの変更制御について説明する。前述した如く圧縮機2は車両のバッテリで駆動される電動式の圧縮機であるため、高回転では比較的大きな駆動音を発生する。そのため、車室内の音のレベルが低く、静かな状況ではこの圧縮機2の駆動音が搭乗者に聞こえて耳障りとなる。一方、車室内の音のレベルが高い状況では、圧縮機2を高回転で駆動させても駆動音は耳障りにならない。
 この車室内の音のレベルに影響する要因として、圧縮機2の駆動音以外の要因、実施例では、室内送風機27の風量、前述した各吹出口からの吹出モード、空気流通路3への空気の導入モード、車両に設けられた音響機器の音量AUD(オーディオレベル)、車速VSP、及び、外気温度Tamを採用する。そして、コントローラ32はこれらの要因に基づき、実施例では式(III)、(IV)を用いて前述した暖房モード等の際に使用される圧縮機目標回転数TGNChの上限回転数TGNChLimHiと、冷房モード等の際に使用される圧縮機目標回転数TGNCcの上限回転数TGNCcLimHiを変更する。
 TGNChLimHi=MAX(TGNChLimBLV、TGNChLimMOD、TGNChLimREC、TGNChLimAUD、TGNChLimVSP、TGNChLimTam)  ・・(III)
 TGNCcLimHi=MAX(TGNCcLimBLV、TGNCcLimMOD、TGNCcLimREC、TGNCcLimAUD、TGNCcLimVSP、TGNCcLimTam)  ・・(IV)
 尚、上記TGNChLimBLV及びTGNCcLimBLVは、室内送風機27の風量に基づく上限回転数変更値であり、TGNChLimMOD及びTGNCcLimMODは、前述したFOOT吹出口、VENT吹出口等の吹出口29からの吹出モードに基づく上限回転数変更値である。また、上記TGNChLimREC及びTGNCcLimRECは、前述した空気流通路3への空気の導入モード(内気循環モード、外気導入モード)に基づく上限回転数変更値であり、TGNChLimAUD及びTGNCcLimAUDは、前述した音響機器の音量に基づく上限回転数変更値である。更に、上記TGNChLimVSP及びTGNCcLimVSPは、車速に基づく上限回転数変更値であり、TGNChLimTam及びTGNCcLimTamは、外気温度Tamに基づく上限回転数変更値である。
 即ち、実施例のコントローラ32は、室内送風機27の風量に基づく上限回転数変更値TGNChLimBLV及びTGNCcLimBLV、吹出モードに基づく上限回転数変更値TGNChLimMOD及びTGNCcLimMOD、導入モードに基づく上限回転数変更値TGNChLimREC及びTGNCcLimREC、音響機器の音量に基づく上限回転数変更値TGNChLimAUD及びTGNCcLimAUD、車速に基づく上限回転数変更値TGNChLimVSP及びTGNCcLimVSP、及び、外気温度Tamに基づく上限回転数変更値TGNChLimTam及びTGNCcLimTamのうち、最も高い(MAX)値をそれぞれ上限回転数TGNChLimHi(暖房モード等)及び上限回転数TGNCcLimHi(冷房モード等)として決定する。
 その理由としては、上記何れかの要因で車室内の音のレベルが高く、圧縮機2の駆動音が搭乗者の耳障りとなり難い状況では、圧縮機2の上限回転数は高い方が良く、その分、空調性能に与える悪影響を低減することができるようになるからである。次に、各要因に基づく上限回転数変更値の算出手順について説明する。
 (10−1)室内送風機27の風量に基づく上限回転数変更値の算出
 先ず、図5を用いて室内送風機27の風量に基づく上限回転数変更値TGNChLimBLV、TGNCcLimBLVの算出手順の一例について説明する。コントローラ32は、室内送風機27のブロワ電圧BLVを当該室内送風機27の風量を示す指標とし、このブロワ電圧BLVに応じて上限回転数変更値TGNChLimBLV、TGNCcLimBLVを算出する。この場合、コントローラ32はブロワ電圧BLVが低くなる程、即ち、室内送風機27の風量が低くなる程、下げる方向で上限回転数変更値TGNChLimBLV、TGNCcLimBLVを変更する。
 ここで、図5の左側のグラフにおいて横軸はブロワ電圧BLVであり、所定値BLV1~BLV4は、BLV4<BLV3<BLV2<BLV1の関係とし、室内送風機27の風量と車室内の音のレベルの関係から予め実験により求められた値とする。また、縦軸は上限回転数変更値TGNChLimBLVであり、所定値NC1、NC2は、NC2<NC1の関係とする。この所定値NC1は実施例では圧縮機2を運転する際に許容される最高の回転数である。実施例では、上限回転数TGNChLimHi(暖房モード等)用の上限回転数変更値TGNChLimBLVを、ブロワ電圧BLVが所定値BLV1のときはNC1とする。そして、ブロワ電圧BLVが低下(室内送風機27の風量が低下)してBLV2になるまでそれを維持し、BLV2より下がった場合、TGNChLimBLVを下げ始め、BLV4でNC2になるまで一定の率でTGNChLimBLVを低下させていく。
 TGNChLimBLVをNC2とした状態からブロワ電圧BLVが上昇(室内送風機27の風量が上昇)した場合、BLV3になるまではそれを維持し、BLV3より上がった場合、TGNChLimBLVを上げ始め、BLV1でNC1になるまで一定の率でTGNChLimBLVを上昇させていく。尚、BLV1とBLV2の差、及び、BLV3とBLV4の差はヒステリシスである。
 また、図5の右側のグラフにおいて縦軸は上限回転数変更値TGNCcLimBLVであり、所定値NC3、NC4は、NC4<NC3の関係とし、NC3<NC1、NC4<NC2の関係とする。そして、実施例では上限回転数TGNCcLimHi(冷房モード等)用の上限回転数変更値TGNCcLimBLVを、ブロワ電圧BLVがBLV1のときはNC3とする。そして、ブロワ電圧BLVが低下してBLV2になるまでそれを維持し、BLV2より下がった場合、TGNCcLimBLVを下げ始め、BLV4でNC4になるまで一定の率でTGNCcLimBLVを低下させていく。
 TGNCcLimBLVをNC4とした状態からブロワ電圧BLVが上昇した場合、BLV3になるまではそれを維持し、BLV3より上がった場合、TGNCcLimBLVを上げ始め、BLV1でNC3になるまで一定の率でTGNCcLimBLVを上昇させていく。そして、前記式(III)、式(IV)で上限回転数変更値TGNChLimBLV、TGNCcLimBLVが最も高い場合(MAX)、これら上限回転数変更値TGNChLimBLV、TGNCcLimBLVが上限回転数TGNChLimHi(暖房モード等)、上限回転数TGNCcLimHi(冷房モード等)として決定され、圧縮機2の回転数NCはこれ以上に制御されなくなる。
 室内送風機27の風量(ブロワ電圧BLV)が低下すると、風量が多い場合に比して車室内は音のレベルは低くなり、静かになる。そのため、圧縮機2の駆動音も目立つようになって、搭乗者に耳障りとなる。従って、コントローラ32により室内送風機27の風量に基づき、当該風量が低くなる程、圧縮機2の制御上の上限回転数TGNChLimHi(暖房モード等)、TGNCcLimHi(冷房モード等)を下げる方向で変更することで、室内送風機27の風量が低下した状況においては圧縮機2の駆動音を低減することができるようになる。また、室内送風機27の風量が低下することは必要な空調能力も低いことを意味するので、総じて搭乗者に快適な車室内空調を実現することができるようになる。
 一方、上記のように圧縮機2の上限回転数TGNChLimHiを下げると暖房モードにおける暖房能力が低下することになるが、放熱器4が発生可能な暖房能力が不足する場合は、コントローラ32が前述した如く熱媒体加熱電気ヒータ35に通電して発熱させ、循環ポンプ30を運転することにより、熱媒体循環回路23の熱媒体−空気熱交換器40による加熱を実行し、この不足する分の暖房能力を熱媒体循環回路23にて補完するので、快適な車室内暖房が維持されることになる。
 尚、実施例では圧縮機2として暖房モードで必要な吐出容積DV1のものを使用しているが、冷房モードではこの吐出容積は過剰となり、吐出容積DV1の50%~70%が冷房モードで必要な吐出容積となる。そこで、実施例では冷房モードで必要な吐出容積をDV2とした場合、上記NC1とNC3の関係、及び、NC2とNC4の関係は下記式(V)、(VI)で示す関係としている。
 NC3=NC1×(DV2/DV1)   ・・・(V)
 NC4=NC2×(DV2/DV1)   ・・・(VI)
 従って、算出される上限回転数変更値TGNCcLimBLVは、上限回転数変更値TGNChLimBLVに(DV2/DV1)を乗じた値となるので、上限回転数TGNCcLimHi(冷房モード等)も、上限回転数TGNChLimHi(暖房モード等)に(DV2/DV1)を乗じた値になって、上限回転数TGNCcLimHiがTGNChLimHiに対して低くなる(以下、同様)。
 このように、コントローラ32冷房モード等での圧縮機2の制御上の上限回転数TGNCcLimHiを、暖房モード等での圧縮機2の制御上の上限回転数TGNChLimHiよりも下げる方向で変更することで、暖房モードで要求される能力を実現しながら、冷房モードでの過剰な能力での運転を回避し、消費電力の削減や騒音の低減を実現し、制御性の向上も図ることができるようになる。
 特に、圧縮機2の吐出容積を、暖房モードにおいて必要な吐出容積DV1に設定し、吐出容積DV1に対する冷房モードにおいて必要な圧縮機2の吐出容積DV2の比率D2/D1と、暖房モード等での圧縮機2の制御上の上限回転数TGNChLimHiに基づいて、冷房モード等での圧縮機2の制御上の上限回転数TGNCcLimHiを設定することで、冷房モードでの上限回転数TGNCcLimHiを適切に設定することができるようになる。
 (10−2)吹出モードに基づく上限回転数変更値の算出
 次に、図6を用いて吹出口29からの吹出モードに基づく上限回転数変更値TGNChLimMOD、TGNCcLimMODの算出手順の一例について説明する。コントローラ32は吹出口29からの空気の吹出モードがFOOT吹出口から吹き出すFOOTモードである場合、吹出モードフラグfMODをセット(「1」)し、VENT吹出口から吹き出すVENTモードである場合は吹出モードフラグfMODをリセット(「0」)する。
 そして、吹出モードフラグfMODがセットされている場合、コントローラ32は上限回転数TGNChLimHi(暖房モード等)用の上限回転数変更値TGNChLimMODをNC2とし、リセットされている場合にはNC1とする。また、吹出モードフラグfMODがセットされている場合、上限回転数TGNCcLimHi(冷房モード等)用の上限回転数変更値TGNCcLimMODをNC4とし、リセットされている場合にはNC3とする。
 上記NC1~NC4の関係は前述の図5の場合と同様であるので、即ち、コントローラ32は吹出モードがFOOTモード(fMODがセット)である場合、VENTモードの場合(fMODリセット)に比して下げる方向で上限回転数変更値TGNChLimMOD、TGNCcLimMODを変更することになる。そして、前記式(III)、式(IV)で上限回転数変更値TGNChLimMOD、TGNCcLimMODが最も高い場合(MAX)、これら上限回転数変更値TGNChLimMOD、TGNCcLimMODが上限回転数TGNChLimHi(暖房モード等)、上限回転数TGNCcLimHi(冷房モード等)として決定され、圧縮機2の回転数NCはこれ以上に制御されなくなる。
 搭乗者の耳から遠いFOOT吹出口から空気を吹き出すFOOTモードの場合は、VENT吹出口から吹き出すVENTモードの場合に比して、搭乗者の耳に届く車室内の音のレベルは低くなり、圧縮機2の駆動音も目立つようになって、搭乗者に耳障りとなる。従って、コントローラ32がFOOTモードの場合、VENTモードの場合に比して圧縮機2の制御上の上限回転数TGNChLimHi(暖房モード等)、TGNCcLimHi(冷房モード等)を下げる方向で変更することで、FOOTモードにおいては圧縮機2の駆動音を低減し、搭乗者に快適な車室内空調を実現することができるようになる。
 (10−3)空気流通路3への空気の導入モードに基づく上限回転数変更値の算出
 次に、図7を用いて空気流通路3への空気の導入モード(内気循環モード、外気導入モード)に基づく上限回転数変更値TGNChLimREC、TGNCcLimRECの算出手順について説明する。コントローラ32は空気流通路3への空気の導入モードが外気導入モードである場合、導入モードフラグfRECをセット(「1」)し、内気循環モードである場合は導入モードフラグfRECをリセット(「0」)する。
 そして、導入モードフラグfRECがセットされている場合、コントローラ32は上限回転数TGNChLimHi(暖房モード等)用の上限回転数変更値TGNChLimRECをNC2とし、リセットされている場合にはNC1とする。また、導入モードフラグfRECがセットされている場合、上限回転数TGNCcLimHi(冷房モード等)用の上限回転数変更値TGNCcLimRECをNC4とし、リセットされている場合にはNC3とする。
 上記NC1~NC4の関係は前述の図5の場合と同様であるので、即ち、コントローラ32は空気流通路3への空気の導入モードが外気導入モードである場合、内気循環モードの場合に比して下げる方向で上限回転数変更値TGNChLimREC、TGNCcLimRECを変更することになる。そして、前記式(III)、式(IV)で上限回転数変更値TGNChLimREC、TGNCcLimRECが最も高い場合(MAX)、これら上限回転数変更値TGNChLimREC、TGNCcLimRECが上限回転数TGNChLimHi(暖房モード等)、上限回転数TGNCcLimHi(冷房モード等)として決定され、圧縮機2の回転数NCはこれ以上に制御されなくなる。
 空気流通路3に外気を導入する外気導入モードでは内気を導入する内気循環モードに比して車室内に吹き出される風量が低下するため、車室内は音のレベルは低くなり、圧縮機2の駆動音も目立つようになって、搭乗者に耳障りとなる。従って、コントローラ32が、外気導入モードの場合、内気循環モードの場合に比して圧縮機2の制御上の上限回転数TGNChLimHi(暖房モード等)、TGNCcLimHi(冷房モード等)を下げる方向で変更することで、外気導入モードにおいては圧縮機2の駆動音を低減し、搭乗者に快適な車室内空調を実現することができるようになる。
 (10−4)音響機器の音量AUD(オーディオレベル)に基づく上限回転数変更値の算出
 次に、図8を用いて音響機器の音量に基づく上限回転数変更値TGNChLimAUD、TGNCcLimAUDの算出手順の一例について説明する。コントローラ32は、車両側から入力される情報である音響機器の音量AUDに応じて上限回転数変更値TGNChLimAUD、TGNCcLimAUDを算出する。この場合、コントローラ32は音量AUDが低くなる程、下げる方向で上限回転数変更値TGNChLimAUD、TGNCcLimAUDを変更する。
 ここで、図8の左側のグラフにおいて横軸は音響機器の音量AUDであり、所定値AUD1~AUD4は、AUD4<AUD3<AUD2<AUD1の関係とし、音響機器の音量AUDと車室内の音のレベルの関係から予め実験により求められた値とする。また、縦軸は上限回転数変更値TGNChLimAUDであり、図5の場合と同様の所定値NC1、NC2は、NC2<NC1の関係とする。実施例では、上限回転数TGNChLimHi(暖房モード等)用の上限回転数変更値TGNChLimAUDを、音量AUDが所定値AUD1のときはNC1とする。そして、音量AUDが低下してAUD2になるまでそれを維持し、AUD2より下がった場合、TGNChLimAUDを下げ始め、AUD4でNC2になるまで一定の率でTGNChLimAUDを低下させていく。
 TGNChLimAUDをNC2とした状態から音量AUDが上昇した場合、AUD3になるまではそれを維持し、AUD3より上がった場合、TGNChLimAUDを上げ始め、AUD1でNC1になるまで一定の率でTGNChLimAUDを上昇させていく。尚、AUD1とAUD2の差、及び、AUD3とAUD4の差はヒステリシスである。
 また、図8の右側のグラフにおいて縦軸は上限回転数変更値TGNCcLimAUDであり、図5の場合と同様の所定値NC3、NC4は、NC4<NC3の関係とし、NC3<NC1、NC4<NC2の関係とする。また、NC3とNC1の関係、NC4とNC2の関係も前述した図5の場合と同様とする。そして、実施例では上限回転数TGNCcLimHi(冷房モード等)用の上限回転数変更値TGNCcLimAUDを、音量AUDがAUD1のときはNC3とする。そして、音量AUDが低下してAUD2になるまでそれを維持し、AUD2より下がった場合、TGNCcLimAUDを下げ始め、AUD4でNC4になるまで一定の率でTGNCcLimAUDを低下させていく。
 TGNCcLimAUDをNC4とした状態から音量AUDが上昇した場合、AUD3になるまではそれを維持し、AUD3より上がった場合、TGNCcLimAUDを上げ始め、AUD1でNC3になるまで一定の率でTGNCcLimAUDを上昇させていく。そして、前記式(III)、式(IV)で上限回転数変更値TGNChLimAUD、TGNCcLimAUDが最も高い場合(MAX)、これら上限回転数変更値TGNChLimAUD、TGNCcLimAUDが上限回転数TGNChLimHi(暖房モード等)、上限回転数TGNCcLimHi(冷房モード等)として決定され、圧縮機2の回転数NCはこれ以上に制御されなくなる。
 車両に設けられた音響機器の音量AUDが小さい場合、車室内は音のレベルは低くなり、圧縮機2の駆動音も目立つようになって、搭乗者に耳障りとなる。従って、コントローラ32により、車両に設けられた音響機器の音量AUDに基づき、当該音量AUDが小さくなる程、圧縮機2の制御上の上限回転数TGNChLimHi(暖房モード等)、TGNCcLimHi(冷房モード等)を下げる方向で変更することで、音響機器の音量AUDが低い状況では圧縮機2の駆動音を低減し、搭乗者に快適な車室内空調を実現することができるようになる。
 (10−5)車速VSPに基づく上限回転数変更値の算出(その1)
 次に、図9を用いて車速VSPに基づく上限回転数変更値TGNChLimVSP、TGNCcLimVSPの算出手順の一例について説明する。コントローラ32は車速センサ52が検出する車速VSPが所定の低い値VSP1(例えば、0~3km/h等)以下まで低下して停車又は略停車した場合、車速フラグfVSPをセット(「1」)し、走行により車速VSPが上昇してVSP1より高いVSP2(例えば、8km/h等)以上となった場合は車速フラグfVSPをリセット(「0」)する。
 そして、車速フラグfVSPがセットされている場合、コントローラ32は上限回転数TGNChLimHi(暖房モード等)用の上限回転数変更値TGNChLimVSPをNC2とし、リセットされている場合にはNC1とする。また、車速フラグfVSPがセットされている場合、上限回転数TGNCcLimHi(冷房モード等)用の上限回転数変更値TGNCcLimVSPをNC4とし、リセットされている場合にはNC3とする。
 上記NC1~NC4の関係は前述の図5の場合と同様であるので、即ち、コントローラ32は車両が停車又は略停車している場合、走行時よりも下げる方向で上限回転数変更値TGNChLimVSP、TGNCcLimVSPを変更することになる。そして、前記式(III)、式(IV)で上限回転数変更値TGNChLimVSP、TGNCcLimVSPが最も高い場合(MAX)、これら上限回転数変更値TGNChLimVSP、TGNCcLimVSPが上限回転数TGNChLimHi(暖房モード等)、上限回転数TGNCcLimHi(冷房モード等)として決定され、圧縮機2の回転数NCはこれ以上に制御されなくなる。
 車両が停止しているときは、走行時に比べて車室内の音のレベルは低くなる。従って、コントローラ32が、車両が停車している場合、走行時よりも圧縮機2の制御上の上限回転数TGNChLimHi(暖房モード等)、TGNCcLimHi(冷房モード等)を下げる方向で変更することで、車室内の音のレベルが低くなる停車時にも圧縮機2の駆動音を低減することができるようになり、快適性を更に向上させることができるようになる。
 (10−6)車速VSPに基づく上限回転数変更値の算出(その2)
 次に、図10を用いて車速VSPに基づく上限回転数変更値TGNChLimVSP、TGNCcLimVSPの算出手順の他の例について説明する。コントローラ32は車速センサ52が検出する車速VSPに応じて上限回転数変更値TGNChLimVSP、TGNCcLimVSPを算出する。この場合、コントローラ32は車速VSPが低くなる程、下げる方向で上限回転数変更値TGNChLimVSP、TGNCcLimVSPを変更する。
 ここで、図10の左側のグラフにおいて横軸は車速VSPであり、所定値VSP1~VSP4は、VSP4<VSP3<VSP2<VSP1の関係とし、車速VSPと車室内の音のレベルの関係から予め実験により求められた値とする。尚、実施例ではVSP4は例えば、0~3km/h等の停車又は略停車した状態の速度とし、VSP1は例えば45km/h以上の速度とする。また、縦軸は上限回転数変更値TGNChLimVSPであり、図5の場合と同様の所定値NC1、NC2は、NC2<NC1の関係とする。実施例では、上限回転数TGNChLimHi(暖房モード等)用の上限回転数変更値TGNChLimVSPを、車速VSPが所定値VSP1のときはNC1とする。そして、車速VSPが低下してVSP2になるまでそれを維持し、VSP2より下がった場合、TGNChLimVSPを下げ始め、VSP4でNC2になるまで一定の率でTGNChLimVSPを低下させていく。
 TGNChLimVSPをNC2とした状態から車速VSPが上昇した場合、VSP3になるまではそれを維持し、VSP3より上がった場合、TGNChLimVSPを上げ始め、VSP1でNC1になるまで一定の率でTGNChLimVSPを上昇させていく。尚、VSP1とVSP2の差、及び、VSP3とVSP4の差はヒステリシスである。
 また、図10の右側のグラフにおいて縦軸は上限回転数変更値TGNCcLimVSPであり、図5の場合と同様の所定値NC3、NC4は、NC4<NC3の関係とし、NC3<NC1、NC4<NC2の関係とする。また、NC3とNC1の関係、NC4とNC2の関係も前述した図5の場合と同様とする。そして、実施例では上限回転数TGNCcLimHi(冷房モード等)用の上限回転数変更値TGNCcLimVSPを、車速VSPがVSP1のときはNC3とする。そして、車速VSPが低下してVSP2になるまでそれを維持し、VSP2より下がった場合、TGNCcLimVSPを下げ始め、VSP4でNC4になるまで一定の率でTGNCcLimVSPを低下させていく。
 TGNCcLimVSPをNC4とした状態から車速VSPが上昇した場合、VSP3になるまではそれを維持し、VSP3より上がった場合、TGNCcLimVSPを上げ始め、VSP1でNC3になるまで一定の率でTGNCcLimVSPを上昇させていく。そして、前記式(III)、式(IV)で上限回転数変更値TGNChLimVSP、TGNCcLimVSPが最も高い場合(MAX)、これら上限回転数変更値TGNChLimVSP、TGNCcLimVSPが上限回転数TGNChLimHi(暖房モード等)、上限回転数TGNCcLimHi(冷房モード等)として決定され、圧縮機2の回転数NCはこれ以上に制御されなくなる。
 このようにコントローラ32によって車速VSPの変化に基づき、車速VSPが低くなる程(停車を含む)、圧縮機2の制御上の上限回転数TGNChLimHi(暖房モード等)、TGNCcLimHi(冷房モード等)を下げる方向で連続して変更することでも、停車時等に圧縮機2の駆動音を低減し、搭乗者に快適な車室内空調を実現することができるようになる。
 (10−7)外気温度Tamに基づく上限回転数変更値の算出
 次に、図11を用いて外気温度Tamに基づく上限回転数変更値TGNChLimTam、TGNCcLimTamの算出手順の一例について説明する。コントローラ32は外気温度センサ33が検出する外気温度Tamに応じて上限回転数変更値TGNChLimTam、TGNCcLimTamを算出する。この場合、コントローラ32は外気温度Tamが低くなる程、下げる方向で上限回転数変更値TGNChLimTam、TGNCcLimTamを変更する。
 ここで、図11の左側のグラフにおいて横軸は外気温度Tamであり、所定値Tam1~Tam4は、Tam4<Tam3<Tam2<Tam1の関係とし、外気温度Tamと車室内の音のレベルの関係から予め実験により求められた値とする。また、縦軸は上限回転数変更値TGNChLimTamであり、図5の場合と同様の所定値NC1、NC2は、NC2<NC1の関係とする。実施例では、上限回転数TGNChLimHi(暖房モード等)用の上限回転数変更値TGNChLimTamを、外気温度Tamが高い所定値Tam1のときはNC1とする。そして、外気温度Tamが低下してTam2になるまでそれを維持し、Tam2より下がった場合、TGNChLimTamを下げ始め、低い所定値Tam4でNC2になるまで一定の率でTGNChLimTamを低下させていく。
 TGNChLimTamをNC2とした状態から外気温度Tamが上昇した場合、Tam3になるまではそれを維持し、Tam3より上がった場合、TGNChLimTamを上げ始め、Tam1でNC1になるまで一定の率でTGNChLimTamを上昇させていく。尚、Tam1とTam2の差、及び、Tam3とTam4の差はヒステリシスである。
 また、図11の右側のグラフにおいて縦軸は上限回転数変更値TGNCcLimTamであり、図5の場合と同様の所定値NC3、NC4は、NC4<NC3の関係とし、NC3<NC1、NC4<NC2の関係とする。また、NC3とNC1の関係、NC4とNC2の関係も前述した図5の場合と同様とする。そして、実施例では上限回転数TGNCcLimHi(冷房モード等)用の上限回転数変更値TGNCcLimTamを、外気温度TamがTam1のときはNC3とする。そして、外気温度Tamが低下してTam2になるまでそれを維持し、Tam2より下がった場合、TGNCcLimTamを下げ始め、Tam4でNC4になるまで一定の率でTGNCcLimTamを低下させていく。
 TGNCcLimTamをNC4とした状態から外気温度Tamが上昇した場合、Tam3になるまではそれを維持し、Tam3より上がった場合、TGNCcLimTamを上げ始め、Tam1でNC3になるまで一定の率でTGNCcLimTamを上昇させていく。そして、前記式(III)、式(IV)で上限回転数変更値TGNChLimTam、TGNCcLimTamが最も高い場合(MAX)、これら上限回転数変更値TGNChLimTam、TGNCcLimTamが上限回転数TGNChLimHi(暖房モード等)、上限回転数TGNCcLimHi(冷房モード等)として決定され、圧縮機2の回転数NCはこれ以上に制御されなくなる。
 このようにコントローラ32により、外気温度Tamが低くなる程、圧縮機2の制御上の上限回転数TGNChLimHi(暖房モード等)、TGNCcLimHi(冷房モード等)を下げる方向で変更することで、車両を構成する機器(圧縮機2のマウントやゴムホース等)が低外気温下で硬化し、振動による騒音が大きくなる状況下においても圧縮機2の上限回転数TGNChLimHi(暖房モード等)、TGNCcLimHi(冷房モード等)を下げ、振動に伴う騒音の発生を低減することができるようになる。
 (11)他の構成例1
 次に、図12は本発明の車両用空気調和装置1の他の構成図を示している。この実施例では、熱媒体循環回路23の熱媒体−空気熱交換器40を放熱器4の空気下流側に設けている。その他は、図1の例と同様である。このように熱媒体−空気熱交換器40を放熱器4の下流側に配置した車両用空気調和装置1においても本発明は有効である。
 (12)他の構成例2
 次に、図13は本発明の車両用空気調和装置1のもう一つの他の構成図を示している。この実施例では、室外熱交換器7にレシーバドライヤ部14と過冷却部16が設けられておらず、室外熱交換器7から出た冷媒配管13Aは電磁弁17と逆止弁18を介して冷媒配管13Bに接続されている。また、冷媒配管13Aから分岐した冷媒配管13Dは、同様に電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに接続されている。その他は、図12の例と同様である。このようにレシーバドライヤ部14と過冷却部16を有しない室外熱交換器7を採用した冷媒回路Rの車両用空気調和装置1においても本発明は有効である。
 (13)他の構成例3
 次に、図14は本発明の車両用空気調和装置1のもう一つの他の構成図を示している。この場合、図13の熱媒体循環回路23が電気ヒータ73に置換されている。前述した熱媒体循環回路23の場合には、熱媒体加熱電気ヒータ35を空気流通路3の外の車室外に設けられるため、電気的な安全性が確保されるが、構成が複雑化する。一方、この図14の如く電気ヒータ73を空気流通路3に設けるようにすれば、構成が著しく簡素化されることになる。この場合は、電気ヒータ73が補助加熱装置となる。そして、このような電気ヒータ73を採用した冷媒回路Rの車両用空気調和装置1においても本発明は有効である。
 (14)他の構成例4
 次に、図15は本発明の車両用空気調和装置1のもう一つの他の構成図を示している。この実施例では、図1と比べて室外熱交換器7にレシーバドライヤ部14と過冷却部16が設けられておらず、室外熱交換器7から出た冷媒配管13Aは電磁弁17と逆止弁18を介して冷媒配管13Bに接続されている。また、冷媒配管13Aから分岐した冷媒配管13Dは、同様に電磁弁21を介して内部熱交換器19の下流側における冷媒配管13Cに接続されている。その他は、図1の例と同様である。このようにレシーバドライヤ部14と過冷却部16を有しない室外熱交換器7を採用した冷媒回路Rの車両用空気調和装置1においても本発明は有効である。
 (15)他の構成例5
 次に、図16は本発明の車両用空気調和装置1のもう一つの他の構成図を示している。この場合、図15の熱媒体循環回路23が電気ヒータ73に置換されている。このような電気ヒータ73を採用した冷媒回路Rの車両用空気調和装置1においても本発明は有効である。
 (16)他の構成例6
 次に、図17は本発明の車両用空気調和装置1の更にもう一つの他の構成図を示している。この実施例の冷媒回路R及び熱媒体循環回路23の配管構成は図1の場合と基本的に同様であるが、放熱器4は空気流通路3には設けられておらず、その外側に配置されている。その代わりに、この放熱器4にはこの場合の熱媒体−冷媒熱交換器74が熱交換関係に配設されている。この熱媒体−冷媒熱交換器74は、熱媒体循環回路23の循環ポンプ30と熱媒体加熱電気ヒータ35の間の熱媒体配管23Aに接続されたもので、熱媒体循環回路23の熱媒体−空気熱交換器40(補助加熱装置)は空気流通路3に設けられている。
 係る構成で、循環ポンプ30から吐出された熱媒体は放熱器4を流れる冷媒と熱交換し、当該冷媒により加熱され、次に、熱媒体加熱電気ヒータ35(通電されて発熱している場合)で加熱された後、熱媒体−空気熱交換器40で放熱することにより、空気流通路3から車室内に供給される空気を加熱する。即ち、空気流通路3内の空気は放熱器4により間接的に加熱されることになる。このような構成の車両用空気調和装置1においても、本発明は有効である。また、前述したような電気ヒータを空気流通路3に配設する場合に比して、電気的により安全な車室内暖房を実現することができるようになる。
 (17)他の構成例7
 次に、図18は本発明の車両用空気調和装置1の更にもう一つの他の構成図を示している。尚、この図において図1と同一符号で示すものは同一若しくは同様の機能を奏するものである。この実施例の場合、冷媒配管13F及び電磁弁22は存在せず、冷媒配管13Eが冷媒配管13Jに繋がり、この冷媒配管13Jに室外膨張弁6が接続されている。また、過冷却部16の出口には逆止弁18は存在せず、そのまま冷媒配管13Bに接続されている。
 また、圧縮機2の吐出側と放熱器4の入口側の間の冷媒配管13Gには後述する除湿暖房とMAX冷房時に閉じられる電磁弁76(流路切換装置を構成する)が介設されている。この場合、冷媒配管13Gは電磁弁76の上流側でバイパス配管77に分岐しており、このバイパス配管77は除湿暖房とMAX冷房時に開放される電磁弁78(これも流路切換装置を構成する)を介して室外膨張弁6の下流側の冷媒配管13Jに連通接続されている。これらバイパス配管77、電磁弁76及び電磁弁78によりバイパス装置79が構成されている。尚、電磁弁76及び電磁弁78もコントローラ32に接続されているものとする。
 このようなバイパス配管77、電磁弁76及び電磁弁78によりバイパス装置79を構成したことで、後述する如く圧縮機2から吐出された冷媒を室外熱交換器7に直接流入させる除湿暖房モードやMAX冷房モードと、圧縮機2から吐出された冷媒を放熱器4に流入させる暖房モードや除湿冷房モード、冷房モードとの切り換えを円滑に行うことができるようになる。また、この実施例では補助加熱装置を構成する補助ヒータ70(PTCヒータ)が空気流通路3の空気の流れに対して、放熱器4の風上側(空気上流側)となる空気流通路3内に設けられ、これもコントローラ32に接続されている。尚、この補助ヒータ70には当該補助ヒータ70の温度を検出する補助ヒータ温度センサ75が設けられ、コントローラ32に接続されているものとする。更に、この実施例では前述した蒸発能力調整弁11は設けられていない。
 以上の構成で、この実施例の車両用空気調和装置1の動作を説明する。コントローラ32はこの実施例では、暖房モード、除湿暖房モード、除湿冷房モード、冷房モード、MAX冷房モード(最大冷房モード)及び補助ヒータ単独モードの各運転モードを切り換えて実行する(内部サイクルモードはこの実施例では存在しない)。尚、暖房モード、除湿冷房モード及び冷房モードが選択されたときの動作及び冷媒の流れと、補助ヒータ単独モードは前述の実施例(図1)の場合と同様であるので説明を省略する。但し、この実施例(図18)ではこれら暖房モード、除湿冷房モード及び冷房モードにおいては電磁弁76を開き、電磁弁78を閉じるものとする。また、前述した各吹出モード、導入モードも同様であるので説明を省略する。
 (17−1)図18の車両用空気調和装置1の除湿暖房モード
 他方、除湿暖房モードが選択された場合、この実施例(図18)ではコントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁76を閉じ、電磁弁78を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転する。コントローラ32は各送風機15、27を運転し、エアミックスダンパ28は、基本的には室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の全て空気を補助ヒータ70及び放熱器4に通風する状態とするが、風量の調整も行う。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管77に流入し、電磁弁78を経て室外膨張弁6の下流側の冷媒配管13Jに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却され、且つ、当該空気中の水分が吸熱器9に凝結して付着するので、空気流通路3内の空気は冷却され、且つ、除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。
 このとき、室外膨張弁6の弁開度は全閉とされているので、圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。更に、この除湿暖房モードにおいてコントローラ32は、補助ヒータ70に通電して発熱させる。これにより、吸熱器9にて冷却され、且つ、除湿された空気は補助ヒータ70を通過する過程で更に加熱され、温度が上昇するので車室内の除湿暖房が行われることになる。
 コントローラ32は図4の場合と同様に吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)と、吸熱器温度Teの目標値である目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御すると共に、補助ヒータ温度センサ75が検出する補助ヒータ温度Tptcと目標放熱器温度TCOに基づいて補助ヒータ70の通電(発熱による加熱)を制御することで、吸熱器9での空気の冷却と除湿を適切に行いながら、補助ヒータ70による加熱で吹出口29から車室内に吹き出される空気温度の低下を的確に防止する。これにより、車室内に吹き出される空気を除湿しながら、その温度を適切な暖房温度に制御することが可能となり、車室内の快適且つ効率的な除湿暖房を実現することができるようになる。
 尚、補助ヒータ70は放熱器4の空気上流側に配置されているので、補助ヒータ70で加熱された空気は放熱器4を通過することになるが、この除湿暖房モードでは放熱器4に冷媒は流されないので、補助ヒータ70にて加熱された空気から放熱器4が吸熱してしまう不都合も解消される。即ち、放熱器4によって車室内に吹き出される空気の温度が低下してしまうことが抑制され、COPも向上することになる。
 (17−2)図18の車両用空気調和装置1のMAX冷房モード(最大冷房モード)
 また、MAX冷房モードでは、コントローラ32は電磁弁17を開放し、電磁弁21を閉じる。また、電磁弁76を閉じ、電磁弁78を開放すると共に、室外膨張弁6の弁開度は全閉とする。そして、圧縮機2を運転し、補助ヒータ70には通電しない。コントローラ32は、各送風機15、27を運転し、エアミックスダンパ28は、室内送風機27から吹き出されて吸熱器9を経た空気流通路3内の空気が、補助ヒータ70及び放熱器4に通風される割合を調整する状態とする。
 これにより、圧縮機2から冷媒配管13Gに吐出された高温高圧のガス冷媒は、放熱器4に向かうこと無くバイパス配管77に流入し、電磁弁78を経て室外膨張弁6の下流側の冷媒配管13Jに至るようになる。このとき、室外膨張弁6は全閉とされているので、冷媒は室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、凝縮する。室外熱交換器7を出た冷媒は冷媒配管13Aから電磁弁17を経てレシーバドライヤ部14、過冷却部16と順次流入する。ここで冷媒は過冷却される。
 室外熱交換器7の過冷却部16を出た冷媒は冷媒配管13Bに入り、内部熱交換器19を経て室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気は冷却される。また、空気中の水分は吸熱器9に凝結して付着するので、空気流通路3内の空気は除湿される。吸熱器9で蒸発した冷媒は内部熱交換器19を経て冷媒配管13Cを介し、アキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。このとき、室外膨張弁6は全閉とされているので、同様に圧縮機2から吐出された冷媒が室外膨張弁6から放熱器4に逆流入する不都合を抑制若しくは防止することが可能となる。これにより、冷媒循環量の低下を抑制若しくは解消して空調能力を確保することができるようになる。
 ここで、前述した冷房モードでは放熱器4に高温の冷媒が流れているため、放熱器4からHVACユニット10への直接の熱伝導が少なからず生じるが、このMAX冷房モードでは放熱器4に冷媒が流れないため、放熱器4からHVACユニット10に伝達される熱で吸熱器9からの空気流通路3内の空気が加熱されることも無くなる。そのため、車室内の強力な冷房が行われ、特に外気温度Tamが高いような環境下では、迅速に車室内を冷房して快適な車室内空調を実現することができるようになる。また、このMAX冷房モードにおいても、コントローラ32は図4の場合と同様に吸熱器温度センサ48が検出する吸熱器9の温度(吸熱器温度Te)とその目標値である前述した目標吸熱器温度TEOに基づいて圧縮機2の回転数NCを制御する。
 この実施例の車両用空気調和装置1においても、コントローラ32は車室内の音のレベルに影響する要因としての室内送風機27の風量(ブロワ電圧BLV)、各吹出口からの吹出モード、空気流通路3への空気の導入モード、車両に設けられた音響機器の音量AUD(オーディオレベル)、車速VSP、及び、外気温度Tamに基づき、前述した式(III)、(IV)を用いて暖房モードの際に使用される圧縮機目標回転数TGNChの上限回転数TGNChLimHiと、除湿暖房モード、除湿冷房モード、冷房モード及びMAX冷房モードの際に使用される圧縮機目標回転数TGNCcの上限回転数TGNCcLimHiを前述同様に変更する。それにより、この実施例においても車室内の音のレベルが低くなる状況において圧縮機2の駆動音を低減することができるようになり、搭乗者に快適な車室内空調を実現することができるようになる。
 尚、図6の実施例では吹出モードに基づく上限回転数変更値TGNChLimMOD、TGNCcLimMODの算出を、FOOTモードとVENTモードとで切り換える方式としたが、FOOT吹出口とVENT吹出口からの吹出量の割合を連続して変更できる場合には、図5のブロワ電圧BLV等の場合と同様にFOOT吹出口からの吹出量の割合が多くなる程、下げる方向で上限回転数変更値TGNChLimMOD、TGNCcLimMODを変更するようにしてもよい。
 また、図7の実施例では導入モードに基づく上限回転数変更値TGNChLimREC、TGNCcLimRECの算出を、外気導入モードと内気循環モードとで切り換える方式としたが、外気導入と内気循環の割合を連続して変更できる場合には、図5のブロワ電圧BLV等の場合と同様に外気導入の割合が多くなる程、下げる方向で上限回転数変更値TGNChLimREC、TGNCcLimRECを変更するようにしてもよい。
 また、実施例ではコントローラ32が、室内送風機27の風量に基づく上限回転数変更値TGNChLimBLV及びTGNCcLimBLVと、吹出モードに基づく上限回転数変更値TGNChLimMOD及びTGNCcLimMODと、導入モードに基づく上限回転数変更値TGNChLimREC及びTGNCcLimRECと、音響機器の音量に基づく上限回転数変更値TGNChLimAUD及びTGNCcLimAUDと、車速に基づく上限回転数変更値TGNChLimVSP及びTGNCcLimVSPと、外気温度Tamに基づく上限回転数変更値TGNChLimTam及びTGNCcLimTamのうち、最も高い値をそれぞれ上限回転数TGNChLimHi(暖房モード等)及び上限回転数TGNCcLimHi(冷房モード等)として決定するようにした。
 しかしながら、請求項1乃至請求項6、及び、それに関連する発明では、室内送風機27の風量に基づく上限回転数変更値TGNChLimBLV及びTGNCcLimBLV、吹出モードに基づく上限回転数変更値TGNChLimMOD及びTGNCcLimMOD、導入モードに基づく上限回転数変更値TGNChLimREC及びTGNCcLimREC、及び、音響機器の音量に基づく上限回転数変更値TGNChLimAUD及びTGNCcLimAUDのうちの何れかの値、或いは、それらと車速に基づく上限回転数変更値TGNChLimVSP及びTGNCcLimVSPや、外気温度Tamに基づく上限回転数変更値TGNChLimTam及びTGNCcLimTamのうちで高い方の値をそれぞれ上限回転数TGNChLimHi(暖房モード等)及び上限回転数TGNCcLimHi(冷房モード等)とするようにしてもよい。
 また、請求項7、請求項8、及び、それに関連する発明でも、室内送風機27の風量に基づく上限回転数変更値TGNChLimBLV及びTGNCcLimBLV、吹出モードに基づく上限回転数変更値TGNChLimMOD及びTGNCcLimMOD、導入モードに基づく上限回転数変更値TGNChLimREC及びTGNCcLimREC、音響機器の音量に基づく上限回転数変更値TGNChLimAUD及びTGNCcLimAUD、車速に基づく上限回転数変更値TGNChLimVSP及びTGNCcLimVSP、及び、外気温度Tamに基づく上限回転数変更値TGNChLimTam及びTGNCcLimTamのうちの二以上を組み合わせ、組み合わせたうちの高い方の値をそれぞれ上限回転数TGNChLimHi(暖房モード等)及び上限回転数TGNCcLimHi(冷房モード等)とするようにしてもよい。
 その他、実施例で示した各数値や構成部材はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で種々変更可能である。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 shows a configuration diagram of a vehicle air conditioner 1 according to an embodiment of the present invention. A vehicle according to an embodiment to which the present invention is applied is an electric vehicle (EV) in which an engine (internal combustion engine) is not mounted, and travels by driving an electric motor for traveling with electric power charged in a battery. Provided (none is shown), and the vehicle air conditioner 1 (compressor 2 or the like) of the present invention is also driven by the power of a battery mounted on the vehicle. That is, the vehicle air conditioner 1 of the embodiment performs heating by heat pump operation using a refrigerant circuit in an electric vehicle that cannot be heated by engine waste heat, and further performs each of dehumidification heating, internal cycle, cooling dehumidification, and cooling. The operation mode is selectively executed.
The present invention is effective not only for electric vehicles but also for so-called hybrid vehicles that use an engine and an electric motor for traveling, and is also applicable to ordinary vehicles that run on an engine. Needless to say.
The vehicle air conditioner 1 according to the embodiment performs air conditioning (heating, cooling, dehumidification, and ventilation) in a passenger compartment of an electric vehicle, and an electric compressor (electric compressor) 2 that compresses refrigerant. The high-temperature and high-pressure refrigerant discharged from the compressor 2 flows in through the refrigerant pipe 13G and is provided in the vehicle interior. A radiator 4 as a heat exchanger for dissipating heat, an outdoor expansion valve 6 comprising an electric valve for decompressing and expanding the refrigerant during heating, a function as a radiator during cooling, and a refrigerant and outside air to function as an evaporator during heating An outdoor heat exchanger 7 that exchanges heat between them, an indoor expansion valve 8 that is an electric valve that decompresses and expands the refrigerant, and an air flow passage 3 that absorbs heat from outside and inside the vehicle during cooling and dehumidification. Heat absorption as a heat exchanger 9, the evaporation capacity control valve 11 for adjusting the evaporating ability in the heat sink 9, an accumulator 12 and the like are sequentially connected by a refrigerant pipe 13, the refrigerant circuit R is formed.
As the compressor 2, various types of compressors such as a scroll type and a rotary type can be adopted, but at least a compressor having a discharge volume DV1 required in a heating mode described later is used. The outdoor heat exchanger 7 is provided with an outdoor fan 15. The outdoor blower 15 exchanges heat between the outside air and the refrigerant by forcibly passing outside air through the outdoor heat exchanger 7, so that the outdoor air blower 15 can also be used outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). It is comprised so that external air may be ventilated by the heat exchanger 7. FIG.
The outdoor heat exchanger 7 has a receiver dryer section 14 and a supercooling section 16 in order on the downstream side of the refrigerant, and the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is an electromagnetic valve (cooling electromagnetic solenoid) that is opened during cooling. The outlet of the supercooling unit 16 is connected to the indoor expansion valve 8 via a check valve 18. The receiver dryer section 14 and the supercooling section 16 structurally constitute a part of the outdoor heat exchanger 7, and the check valve 18 has a forward direction on the indoor expansion valve 8 side.
Further, the refrigerant pipe 13B between the check valve 18 and the indoor expansion valve 8 is provided in a heat exchange relationship with the refrigerant pipe 13C exiting the evaporation capacity control valve 11 located on the outlet side of the heat absorber 9, and internal heat is generated by both. The exchanger 19 is configured. Thus, the refrigerant flowing into the indoor expansion valve 8 through the refrigerant pipe 13B is cooled (supercooled) by the low-temperature refrigerant that has exited the heat absorber 9 and passed through the evaporation capacity control valve 11.
Further, the refrigerant pipe 13A exiting from the outdoor heat exchanger 7 is branched, and the branched refrigerant pipe 13D is connected to the internal heat exchanger 19 via an electromagnetic valve (heating electromagnetic valve) 21 that is opened during heating. Is connected to the refrigerant pipe 13C on the downstream side. The refrigerant pipe 13 </ b> C is connected to the accumulator 12, and the accumulator 12 is connected to the refrigerant suction side of the compressor 2.
Further, the refrigerant pipe 13E on the outlet side of the radiator 4 is branched in front of the outdoor expansion valve 6, and the branched refrigerant pipe 13F is connected via an electromagnetic valve (dehumidifying electromagnetic valve) 22 that is opened during dehumidification. The refrigerant pipe 13B on the downstream side of the check valve 18 is connected in communication. That is, the dehumidifying electromagnetic valve 22 is connected in parallel to the outdoor heat exchanger 7 (and the outdoor expansion valve 6 and the like).
A bypass pipe 13J is connected to the outdoor expansion valve 6 in parallel. The bypass pipe 13J is opened in a cooling mode, and is an electromagnetic valve (bypass for bypassing the outdoor expansion valve 6 and allowing the refrigerant to flow). The electromagnetic valve) 20 is interposed. The piping between the outdoor expansion valve 6 and the electromagnetic valve 20 and the outdoor heat exchanger 7 is 131.
The air flow passage 3 on the air upstream side of the heat absorber 9 is formed with each of an outside air inlet and an inside air inlet (represented by the inlet 25 in FIG. 1). 25 is provided with a suction switching damper 26 for switching the introduction mode of the air flowing into the air flow passage 3 between the inside air circulation mode and the outside air introduction mode. In the inside air circulation mode, the inside air that is the air in the vehicle interior flows into the air flow passage 3 by the suction switching damper 26, and in the outside air introduction mode, the outside air that is the air outside the vehicle interior flows into the air flow passage 3. Can be switched. Furthermore, an indoor blower (blower fan) 27 for supplying the introduced inside air or outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
Moreover, in FIG. 1, 23 has shown the heat-medium circulation circuit provided in the air conditioning apparatus 1 for vehicles of the Example. The heat medium circulation circuit 23 includes a circulation pump 30 that constitutes a circulation means, a heat medium heating electric heater 35, and an air flow passage 3 on the upstream side of the radiator 4 with respect to the air flow in the air flow passage 3. A heat medium-air heat exchanger 40 (auxiliary heating device in the present invention) provided in the inside is provided, and these are sequentially connected in an annular shape by a heat medium pipe 23A. As the heat medium circulated in the heat medium circuit 23, for example, water, a refrigerant such as HFO-1234yf, a coolant, or the like is employed.
When the circulation pump 30 is operated and the heat medium heating electric heater 35 is energized to generate heat, the heat medium heated by the heat medium heating electric heater 35 is circulated to the heat medium-air heat exchanger 40. Has been. That is, the heat medium-air heat exchanger 40 (auxiliary heating device) of the heat medium circulation circuit 23 serves as a so-called heater core, and complements heating in the passenger compartment. By employing such a heat medium circulation circuit 23, it is possible to improve the electrical safety of the passenger.
In addition, an air mix for adjusting the degree to which the inside air and the outside air circulate in the heat medium-air heat exchanger 40 and the radiator 4 in the air flow passage 3 on the air upstream side of the heat medium-air heat exchanger 40. A damper 28 is provided. Further, FOOT, VENT, and DEF air outlets (represented by air outlets 29 in FIG. 1) are formed in the air flow passage 3 on the air downstream side of the radiator 4. In this case, the FOOT air outlet is an air outlet that blows out air in the air flow passage 3 from the ears of the passenger (driver or the like) to the feet, and the VENT air outlet is an air outlet that blows out to the chest or face of the passenger. A DEF blower outlet is a blower outlet which blows air inside the windshield of a vehicle.
The air outlet 29 is provided with an air outlet switching damper 31 for switching and controlling the air blowing mode from the air outlets. In the embodiment, the outlet switching damper 31 has a blowing mode in which a FOOT mode for blowing air from the FOOT outlet, a VENT mode for blowing from the VENT outlet, a B / L mode for blowing from both the FOOT outlet and the VENT outlet, It is possible to switch to the DEF mode that blows out from the DEF outlet.
Next, in FIG. 2, reference numeral 32 denotes a controller (ECU) as a control means constituted by a microcomputer. An input to the controller 32 is an outside air temperature sensor 33 for detecting the outside air temperature Tam of the vehicle, and an outside air humidity is detected. An outdoor air humidity sensor 34, an HVAC intake temperature sensor 36 for detecting the temperature of air sucked into the air flow passage 3 from the intake port 25, an inside air temperature sensor 37 for detecting the temperature of the air (inside air) in the passenger compartment, and the vehicle An indoor air humidity sensor 38 that detects the humidity of the indoor air, and an indoor CO that detects the carbon dioxide concentration in the passenger compartment 2 Concentration sensor 39, blowout temperature sensor 41 that detects the temperature of air blown into the vehicle interior from the blowout port 29, discharge pressure sensor 42 that detects the discharge refrigerant pressure of the compressor 2, and discharge refrigerant temperature of the compressor 2 The discharge temperature sensor 43 for detecting the suction pressure, the suction pressure sensor 44 for detecting the suction refrigerant pressure of the compressor 2, and the temperature of the radiator 4 (the temperature of the air that has passed through the radiator 4 or the temperature of the radiator 4 itself). A radiator temperature sensor 46 to detect, a radiator pressure sensor 47 to detect the refrigerant pressure of the radiator 4 (the refrigerant pressure in the radiator 4 or immediately after leaving the radiator 4), and the temperature of the heat absorber 9 A heat absorber temperature sensor 48 for detecting (the temperature of the air passing through the heat absorber 9 or the temperature of the heat absorber 9 itself) and the refrigerant pressure of the heat absorber 9 (inside the heat absorber 9 or immediately after leaving the heat absorber 9). An endothermic pressure sensor 49 for detecting the pressure of the refrigerant) For example, a photosensor-type solar radiation sensor 51 for detecting the amount of solar radiation into the passenger compartment, a vehicle speed sensor 52 for detecting the moving speed of the vehicle (vehicle speed VSP), and setting of the set temperature and operation mode. Air conditioner (air conditioner) operation unit 53 and the outdoor heat exchanger 7 for detecting the temperature of the outdoor heat exchanger 7 (the temperature of the refrigerant immediately after coming out of the outdoor heat exchanger 7 or the temperature of the outdoor heat exchanger 7 itself) Each output of the temperature sensor 54 and the outdoor heat exchanger pressure sensor 56 that detects the refrigerant pressure of the outdoor heat exchanger 7 (the pressure of the refrigerant in the outdoor heat exchanger 7 or immediately after coming out of the outdoor heat exchanger 7). Is connected.
Further, the input of the controller 32 further includes the temperature of the heating medium heating electric heater 35 of the heating medium circulation circuit 23 (the temperature of the heating medium immediately after being heated by the heating medium heating electric heater 35 or the heating medium heating electric heater 35. The temperature of the heating medium heating electric heater temperature sensor 50 that detects the temperature of the electric heater itself (not shown) incorporated in the heating medium and the temperature of the heating medium-air heat exchanger 40 (the temperature of the air that has passed through the heating medium-air heat exchanger 40, Alternatively, each output of the heat medium-air heat exchanger temperature sensor 55 that detects the temperature of the heat medium-air heat exchanger 40 itself is also connected. Moreover, the information regarding the volume AUD (audio level in FIG. 2) of the audio equipment (audio) mounted in the vehicle is input to the controller 32 from the vehicle side.
On the other hand, the output of the controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the outlet switching damper 31, and the outdoor expansion. Valve 6, indoor expansion valve 8, solenoid valve 22 (dehumidification), solenoid valve 17 (cooling), solenoid valve 21 (heating), solenoid valve 20 (bypass) solenoid valve, circulation pump 30, and heating medium heating The electric heater 35 and the evaporation capacity control valve 11 are connected. And the controller 32 controls these based on the output of each sensor, and the setting input in the air-conditioning operation part 53. FIG.
Next, the operation of the vehicle air conditioner 1 having the above-described configuration will be described. In the embodiment, the controller 32 switches between the operation modes of the heating mode, the dehumidifying heating mode, the internal cycle mode, the dehumidifying cooling mode, and the cooling mode. Moreover, it also has a defrosting mode in which the high-temperature refrigerant gas discharged from the compressor 2 is allowed to flow into the outdoor heat exchanger 7 to defrost as necessary.
(1) Heating mode
Next, each operation mode will be described. When the heating mode is selected by the controller 32 or by manual operation to the air conditioning operation unit 53, the controller 32 opens the electromagnetic valve 21 (for heating) and closes the electromagnetic valve 17, the electromagnetic valve 22, and the electromagnetic valve 20. .
Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 40 and the radiator 4. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. Deprived, cooled, and condensed into liquid.
The refrigerant liquefied in the radiator 4 exits the radiator 4 and then reaches the outdoor expansion valve 6 through the refrigerant pipe 13E. The operation and action of the heat medium circulation circuit 23 will be described later. The refrigerant flowing into the outdoor expansion valve 6 is decompressed there and then flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 evaporates, and pumps up heat from the outside air that is ventilated by traveling or by the outdoor blower 15. That is, the refrigerant circuit R becomes a heat pump. Then, the low-temperature refrigerant exiting the outdoor heat exchanger 7 enters the accumulator 12 from the refrigerant pipe 13C through the refrigerant pipe 13A, the electromagnetic valve 21 and the refrigerant pipe 13D, and is separated into gas and liquid there. Repeated circulation inhaled. The air heated by the radiator 4 is blown out from the air outlet 29 via the heat medium-air heat exchanger 40, thereby heating the passenger compartment.
The controller 32 controls the rotational speed NC of the compressor 2 based on the high pressure of the refrigerant circuit R detected by the discharge pressure sensor 42 or the radiator pressure sensor 47 as will be described later, and the radiator detected by the radiator temperature sensor 46. 4 and the refrigerant pressure of the radiator 4 detected by the radiator pressure sensor 47, the valve opening degree of the outdoor expansion valve 6 is controlled, and the degree of supercooling of the refrigerant at the outlet of the radiator 4 is controlled.
(2) Dehumidification heating mode
Next, in the dehumidifying heating mode, the controller 32 opens the electromagnetic valve 22 (for dehumidification) in the heating mode. As a result, a part of the condensed refrigerant flowing through the refrigerant pipe 13E via the radiator 4 is diverted to reach the indoor expansion valve 8 via the electromagnetic valve 22 and the refrigerant pipes 13F and 13B via the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 merges with the refrigerant from the refrigerant pipe 13D in the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and then repeats circulation sucked into the compressor 2 through the accumulator 12. . Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed.
The controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the high pressure. Further, the controller 32 switches the valve opening degree of the outdoor expansion valve 6 between a large diameter and a small diameter based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48.
(3) Internal cycle mode
Next, in the internal cycle mode, the controller 32 fully closes the outdoor expansion valve 6 (fully closed position) and closes the electromagnetic valve 21 (for heating) in the dehumidifying and heating mode. By closing the outdoor expansion valve 6 and the electromagnetic valve 21 (the electromagnetic valve 20 is also closed), the inflow of refrigerant to the outdoor heat exchanger 7 and the outflow of refrigerant from the outdoor heat exchanger 7 are prevented. Therefore, the condensed refrigerant flowing through the refrigerant pipe 13E through the radiator 4 flows through the electromagnetic valve 22 to the refrigerant pipe 13F. And the refrigerant | coolant which flows through the refrigerant | coolant piping 13F reaches the indoor expansion valve 8 through the internal heat exchanger 19 from the refrigerant | coolant piping 13B. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 flows through the refrigerant pipe 13C through the evaporation capacity control valve 11 and the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 through the accumulator 12. Since the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, dehumidifying heating in the passenger compartment is thereby performed. Since the refrigerant is circulated between the radiator 4 (radiation) and the heat absorber 9 (heat absorption) in the passage 3, heat from the outside air is not pumped up, and heating for the consumed power of the compressor 2 is performed. Ability is demonstrated. Since the entire amount of the refrigerant flows through the heat absorber 9 that exhibits the dehumidifying action, the dehumidifying capacity is higher than that in the dehumidifying and heating mode, but the heating capacity is lowered.
In this case as well, the controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 or the high pressure of the refrigerant circuit R described above. At this time, the controller 32 controls the compressor 2 by selecting the lower one of the compressor target rotational speeds obtained from either calculation, depending on the temperature of the heat absorber 9 or the high pressure.
(4) Dehumidifying and cooling mode
Next, in the dehumidifying and cooling mode, the controller 32 opens the electromagnetic valve 17 (for cooling), and closes the electromagnetic valve 21, the electromagnetic valve 22, and the electromagnetic valve 20. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state where the air blown out from the indoor blower 27 is passed through the heat medium-air heat exchanger 40 and the radiator 4. . Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is passed through the radiator 4, the air in the air flow passage 3 is heated by the high-temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived and cooled, and condensates.
The refrigerant that has exited the radiator 4 reaches the outdoor expansion valve 6 through the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 through the outdoor expansion valve 6 that is controlled to open. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled and dehumidified.
The refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 </ b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 </ b> C. The air cooled and dehumidified by the heat absorber 9 is reheated (having a lower heat dissipation capacity than that during heating) in the process of passing through the radiator 4, thereby dehumidifying and cooling the vehicle interior. . The controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48, and the valve opening degree of the outdoor expansion valve 6 based on the high pressure of the refrigerant circuit R described above. And the refrigerant pressure of the radiator 4 (radiator pressure PCI) is controlled.
(5) Cooling mode
Next, in the cooling mode, the controller 32 opens the solenoid valve 20 (bypass) in the dehumidifying and cooling mode state (in this case, the outdoor expansion valve 6 is fully opened (the valve opening is the upper limit of control)). However, the air mix damper 28 is in a state where air is not passed through the heat medium-air heat exchanger 40 and the radiator 4. However, it may be allowed to ventilate somewhat.
Thereby, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is not ventilated to the radiator 4, the air only passes therethrough, and the refrigerant exiting the radiator 4 reaches the electromagnetic valve 20 and the outdoor expansion valve 6 through the refrigerant pipe 13 </ b> E. At this time, since the solenoid valve 20 is opened, the refrigerant bypasses the outdoor expansion valve 6 and passes through the bypass pipe 13J, and flows into the outdoor heat exchanger 7 as it is, where it travels or is ventilated by the outdoor fan 15. It is air-cooled by the outside air and is condensed and liquefied. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B through the check valve 18, and reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Since the moisture in the air blown out from the indoor blower 27 by the heat absorption action at this time condenses and adheres to the heat absorber 9, the air is cooled.
The refrigerant evaporated in the heat absorber 9 passes through the evaporation capacity control valve 11 and the internal heat exchanger 19, reaches the accumulator 12 through the refrigerant pipe 13 </ b> C, and repeats circulation sucked into the compressor 2 through the refrigerant pipe 13 </ b> C. The air cooled and dehumidified by the heat absorber 9 is blown into the vehicle interior from the air outlet 29 without passing through the radiator 4 (it may be allowed to pass a little), so that the vehicle interior is cooled. Will be. In this cooling mode, the controller 32 controls the rotational speed NC of the compressor 2 based on the temperature of the heat absorber 9 detected by the heat absorber temperature sensor 48 as described later.
(6) Switching operation mode
The controller 32 calculates the target blowing temperature TAO described above from the following formula (I). This target blowing temperature TAO is a target value of the temperature of the air blown into the passenger compartment.
TAO = (Tset−Tin) × K + Tbal (f (Tset, SUN, Tam))
.. (I)
Here, Tset is a set temperature in the vehicle interior set by the air conditioning operation unit 53, Tin is the temperature of the air in the vehicle interior (inside air temperature) detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, This is a balance value calculated from the solar radiation amount SUN detected by the solar radiation sensor 51 and the outdoor air temperature Tam detected by the outdoor air temperature sensor 33. And generally this target blowing temperature TAO is so high that the outside temperature Tam is low, and it falls as the outside temperature Tam rises.
At the time of startup, the controller 32 selects one of the above operation modes based on the outside air temperature Tam (detected by the outside air temperature sensor 33) and the target blowing temperature TAO. In addition, the controller 32, after startup, the outside air temperature Tam, the humidity in the passenger compartment, the target blowing temperature TAO, the heating temperature TH (the temperature of the air on the leeward side of the radiator 4), the target heater temperature TCO, the heat absorption, which will be described later. By switching each operation mode based on parameters such as the unit temperature Te, the target heat absorber temperature TEO, whether there is a dehumidification request in the passenger compartment, the heating mode, dehumidification can be accurately performed according to the environmental conditions and the necessity of dehumidification Switching between the heating mode, the internal cycle mode, the dehumidifying and cooling mode, and the cooling mode controls the temperature of the air blown into the vehicle interior to the target blowing temperature TAO, thereby realizing comfortable and efficient vehicle interior air conditioning.
(7) Auxiliary heating by heating medium circulation circuit in heating mode
Further, when the controller 32 determines that the heating capacity of the radiator 4 is insufficient in the heating mode, the heat medium heating electric heater 35 is energized to generate heat, and the circulation pump 30 is operated, whereby the heat medium circulation circuit 23. The heating by the heat medium-air heat exchanger 40 is executed.
When the circulation pump 30 of the heat medium circulation circuit 23 is operated and the heat medium heating electric heater 35 is energized, as described above, the heat medium (high temperature heat medium) heated by the heat medium heating electric heater 35 is the heat medium. -Since it is circulated through the air heat exchanger 40, the air flowing into the radiator 4 in the air flow passage 3 is heated. As a result, when the heating capacity that can be generated by the radiator 4 is insufficient with respect to the heating capacity required in the heating mode, especially when the upper limit rotation speed limit control of the compressor 2 described later is insufficient, Is supplemented by the heat medium circulation circuit 23.
(8) Control of compressor 2 by controller 32 in heating mode, dehumidifying heating mode, and internal cycle mode
The control of the compressor 2 based on the radiator pressure PCI will be described in detail with reference to FIG. FIG. 3 is a control block diagram of the controller 32 for calculating the target rotational speed (compressor target rotational speed) TGNCh of the compressor 2 based on the radiator pressure PCI, which is executed in the heating mode, and is in the dehumidifying heating mode and the internal cycle mode. Selected. The F / F (feed forward) manipulated variable calculation unit 58 of the controller 32 has an outside air temperature Tam obtained from the outside air temperature sensor 33, a blower voltage BLV of the indoor blower 27, and SW = (TAO−Te) / (TH−Te). The air volume ratio SW obtained by the air mix damper 28, the target supercooling degree TGSC that is the target value of the subcooling degree SC at the outlet of the radiator 4, and the target heater temperature described above that is the target value of the temperature of the radiator 4 Based on the TCO and the target radiator pressure PCO which is the target value of the pressure of the radiator 4, the F / F manipulated variable TGNChff of the compressor target rotational speed is calculated.
Here, the above TH for calculating the air volume ratio SW is the temperature of the leeward air of the radiator 4 (hereinafter referred to as the heating temperature), and is estimated by the controller 32 from the first-order lag calculation formula (II) shown below. To do.
TH = (INTL × TH0 + Tau × THz) / (Tau + INTL) (II)
Here, INTL is the calculation cycle (constant), Tau is the time constant of the primary delay, TH0 is the steady value of the heating temperature TH in the steady state before the primary delay calculation, and THz is the previous value of the heating temperature TH. By estimating the heating temperature TH in this way, there is no need to provide a special temperature sensor. Note that the controller 32 changes the time constant Tau and the steady value TH0 according to the above-described operation mode, thereby changing the above-described estimation formula (II) depending on the operation mode, and estimates the heating temperature TH.
The target radiator pressure PCO is calculated by the target value calculator 59 based on the target subcooling degree TGSC and the target heater temperature TCO. Further, the F / B (feedback) manipulated variable calculator 60 calculates the F / B manipulated variable TGNChfb of the compressor target rotational speed based on the target radiator pressure PCO and the radiator pressure PCI that is the refrigerant pressure of the radiator 4. To do. The F / F manipulated variable TGNCnff calculated by the F / F manipulated variable calculator 58 and the TGNChfb calculated by the F / B manipulated variable calculator 60 are added by the adder 61, and the limit setting unit 62 controls the upper limit rotation on the control. After the number TGNChLimHi and the lower limit rotational speed TGNChLIMLo are added, it is determined as the compressor target rotational speed TGNCh. The controller 32 uses the compressor target rotational speed TGNCh in the heating mode, and if selected as described above in the dehumidifying heating mode and the internal cycle mode, uses the compressor target rotational speed TGNCh to set the upper limit rotational speed TGNChLimHi and the lower limit rotational speed. The rotational speed NC of the compressor 2 is controlled between TGNChLIMLo. The upper limit rotational speed TGNChLimHi is changed by the controller 32 as described later.
(9) Control of the compressor 2 by the controller 32 in the cooling mode, the dehumidifying cooling mode, the dehumidifying heating mode, and the internal cycle mode
Next, the control of the compressor 2 based on the heat absorber temperature Te will be described in detail with reference to FIG. FIG. 4 is a control block diagram of the controller 32 for calculating the target rotational speed (compressor target rotational speed) TGNCc of the compressor 2 based on the heat absorber temperature Te, which is executed in the cooling mode and the dehumidifying cooling mode, and is in the dehumidifying heating mode. And selected in internal cycle mode. The F / F manipulated variable calculation unit 63 of the controller 32 compresses based on the outside air temperature Tam, the blower voltage BLV of the indoor blower 27, and the heat absorber temperature Te (the target heat absorber temperature TEO which is the target value of the heat absorber 9). The F / F manipulated variable TGNCcff of the machine target rotational speed is calculated.
Further, the F / B manipulated variable calculating unit 64 calculates the F / B manipulated variable TGNCcfb of the compressor target rotational speed based on the target heat absorber temperature TEO and the heat absorber temperature Te. Then, the F / F manipulated variable TGNCcff calculated by the F / F manipulated variable calculator 63 and the F / B manipulated variable TGNCcfb calculated by the F / B manipulated variable calculator 64 are added by the adder 66, and the limit setting unit 67 After the control upper limit rotational speed TGNCcLimHi and the lower limit rotational speed TGNCcLimLo are added, the compressor target rotational speed TGNCc is determined. The controller 32 uses the compressor target rotational speed TGNCc in the cooling mode and the dehumidifying cooling mode, and, if selected as described above in the dehumidifying heating mode and the internal cycle mode, based on the compressor target rotational speed TGNCc, the upper limit rotational speed TGNCcLimHi. And the rotation speed NC of the compressor 2 is controlled between the lower limit rotation speed TGNCcLimLo. The upper limit rotational speed TGNCcLimHi is also changed by the controller 32 as will be described later.
(10) Change control of the upper limit rotation speed of the compressor 2 by the controller 32
Next, change control of the upper limit rotational speeds TGNChLimHi and TGNCcLimHi of the compressor 2 by the controller 32 will be described with reference to FIGS. As described above, since the compressor 2 is an electric compressor driven by a vehicle battery, a relatively loud driving sound is generated at a high speed. Therefore, the sound level in the passenger compartment is low, and in a quiet situation, the driving sound of the compressor 2 can be heard by the passengers, which is annoying. On the other hand, in a situation where the sound level in the passenger compartment is high, the driving sound is not harsh even if the compressor 2 is driven at a high speed.
Factors other than the driving sound of the compressor 2 as factors affecting the sound level in the passenger compartment, in the embodiment, the air volume of the indoor blower 27, the blowing modes from the respective outlets described above, and the air to the air flow passage 3 , The volume AUD (audio level) of the audio equipment provided in the vehicle, the vehicle speed VSP, and the outside air temperature Tam are employed. Based on these factors, the controller 32 determines the upper limit rotational speed TGNChLimHi of the compressor target rotational speed TGNCh used in the heating mode described above using the formulas (III) and (IV) in the embodiment, The upper limit rotational speed TGNCcLimHi of the compressor target rotational speed TGNCc used in the mode or the like is changed.
TGNChLimHi = MAX (TGNChLimBLV, TGNChLimMOD, TGNChLimREC, TGNChLimAUD, TGNChLimVSP, TGNChLimTam) (III)
TGNCcLimHi = MAX (TGNCcLimBLV, TGNCcLimMOD, TGNCcLimREC, TGNCcLimAUD, TGNCcLimVSP, TGNCcLimTam) (IV)
The above TGNChLimBLV and TGNCcLimBLV are upper limit rotational speed change values based on the air volume of the indoor blower 27, and TGNChLimMOD and TGNCcLimMOD are upper limit rotations based on the blowout mode from the blowout port 29 such as the FOOT blowout port and the VENT blowout port described above. Number change value. Further, the above TGNChLimREC and TGNCcLimREC are upper limit rotational speed change values based on the above-described air introduction mode (inside air circulation mode, outside air introduction mode) to the air flow passage 3, and TGNChLimAUD and TGNCcLimAUD are the volume levels of the above-described audio equipment. It is an upper limit rotation speed change value based on. Further, TGNChLimVSP and TGNCcLimVSP are upper limit speed change values based on the vehicle speed, and TGNChLimTam and TGNCcLimTam are upper limit speed change values based on the outside air temperature Tam.
That is, the controller 32 of the embodiment includes the upper limit rotation speed change values TGNChLimBLV and TGNChcLimBLV based on the air volume of the indoor blower 27, the upper limit rotation speed change values TGNChLIMMOD and TGNCcLIMMOD based on the blowing mode, and the upper limit rotation speed change values TGNChLimREC and TGNCcLimREC based on the introduction mode. Among the upper limit rotational speed change values TGNChLimAUD and TGNChcLimAUD based on the volume of the audio equipment, the upper limit rotational speed change values TGNChLimVSP and TGNChclimVSP based on the vehicle speed, and the upper limit rotational speed change values TGNChLimTam and TGNCcLimTam based on the outside air temperature Tam (MAX ) The upper limit speed TGNChLimHi (heating mode etc.) and the upper limit speed TGNCcLi respectively It is determined as the Hi (cooling mode, and the like).
The reason for this is that, in any situation where the sound level in the passenger compartment is high due to any of the above factors and the driving sound of the compressor 2 is less likely to disturb the passenger, the upper limit number of rotations of the compressor 2 is better. This is because adverse effects on air conditioning performance can be reduced. Next, the calculation procedure of the upper limit rotational speed change value based on each factor will be described.
(10-1) Calculation of the upper limit rotational speed change value based on the air volume of the indoor fan 27
First, an example of a procedure for calculating the upper limit rotational speed change values TGNChLimBLV and TGNCcLimBLV based on the air volume of the indoor fan 27 will be described with reference to FIG. The controller 32 uses the blower voltage BLV of the indoor blower 27 as an index indicating the air volume of the indoor blower 27, and calculates the upper limit rotational speed change values TGNChLimBLV and TGNCcLimBLV according to the blower voltage BLV. In this case, the controller 32 changes the upper limit rotational speed change values TGNChLimBLV and TGNCcLimBLV in the decreasing direction as the blower voltage BLV is lowered, that is, as the air volume of the indoor blower 27 is lowered.
Here, in the graph on the left side of FIG. 5, the horizontal axis is the blower voltage BLV, and the predetermined values BLV1 to BLV4 have a relationship of BLV4 <BLV3 <BLV2 <BLV1, and the air volume of the indoor blower 27 and the sound level in the vehicle interior It is set as a value obtained in advance by experiments from the relationship. The vertical axis represents the upper limit rotational speed change value TGNChLimBLV, and the predetermined values NC1 and NC2 have a relationship of NC2 <NC1. This predetermined value NC1 is the maximum number of revolutions allowed when the compressor 2 is operated in the embodiment. In the embodiment, the upper limit speed change value TGNChLimBLV for the upper limit speed TGNChLimHi (heating mode or the like) is set to NC1 when the blower voltage BLV is a predetermined value BLV1. Then, the blower voltage BLV decreases (the air volume of the indoor blower 27 decreases) and is maintained until it becomes BLV2, and when it falls below BLV2, TGNChLimBLV starts to decrease, and TGNChLimBLV is set at a constant rate until NC2 at BLV4. Decreasing.
If the blower voltage BLV rises from the state where TGNChLimBLV is set to NC2 (the air volume of the indoor blower 27 rises), it is maintained until it reaches BLV3, and if it rises above BLV3, TGNChLimBLV starts to rise and becomes NC1 at BLV1 Until then, TGNChLimBLV is raised at a constant rate. The difference between BLV1 and BLV2, and the difference between BLV3 and BLV4 are hysteresis.
In the graph on the right side of FIG. 5, the vertical axis represents the upper limit rotational speed change value TGNCcLimBLV, and the predetermined values NC3 and NC4 have a relationship of NC4 <NC3 and a relationship of NC3 <NC1 and NC4 <NC2. In the embodiment, the upper limit rotational speed change value TGNCcLimBLV for the upper limit rotational speed TGNCcLimHi (cooling mode or the like) is set to NC3 when the blower voltage BLV is BLV1. Then, the blower voltage BLV is lowered and maintained until it becomes BLV2, and when it falls below BLV2, TGNCcLimBLV starts to be lowered, and TGNCcLimBLV is lowered at a constant rate until NC4 becomes BLV4.
When the blower voltage BLV rises from the state where TGNCcLimBLV is set to NC4, it is maintained until it becomes BLV3, and when it rises above BLV3, TGNCcLimBLV starts to be raised and TGNCcLimBLV is raised at a constant rate until it becomes NC3 at BLV1. To go. When the upper limit rotational speed change values TGNChLimBLV and TGNCcLimBLV are the highest in the above formulas (III) and (IV) (MAX), these upper limit rotational speed change values TGNChLimBLV and TGNCcLimBLV are the upper limit rotational speeds TGNChLimHi (heating mode, etc.) The rotational speed TGNCcLimHi (cooling mode or the like) is determined, and the rotational speed NC of the compressor 2 is no longer controlled.
When the air volume (blower voltage BLV) of the indoor blower 27 is reduced, the sound level in the passenger compartment is lower and quieter than when the air volume is large. For this reason, the driving sound of the compressor 2 becomes conspicuous, which is annoying to the passenger. Therefore, the controller 32 changes the upper limit rotational speeds TGNChLimHi (heating mode, etc.) and TGNCcLimHi (cooling mode, etc.) under control of the compressor 2 in accordance with the air volume of the indoor blower 27. Thus, in the situation where the air volume of the indoor blower 27 is reduced, the driving sound of the compressor 2 can be reduced. In addition, a reduction in the air volume of the indoor blower 27 means that the necessary air conditioning capability is also low, so that it is possible to achieve vehicle interior air conditioning that is generally comfortable for passengers.
On the other hand, when the upper limit rotational speed TGNChLimHi of the compressor 2 is lowered as described above, the heating capacity in the heating mode is lowered. However, when the heating capacity that can be generated by the radiator 4 is insufficient, the controller 32 has been described above. As described above, the heating medium heating electric heater 35 is energized to generate heat, and the circulation pump 30 is operated to perform heating by the heating medium-air heat exchanger 40 of the heating medium circulation circuit 23. Is supplemented by the heat medium circulation circuit 23, so that comfortable heating in the vehicle interior is maintained.
In the embodiment, the compressor 2 has a discharge volume DV1 required in the heating mode. However, in the cooling mode, the discharge volume becomes excessive, and 50% to 70% of the discharge volume DV1 is required in the cooling mode. Discharge volume. Therefore, in the embodiment, when the discharge volume required in the cooling mode is DV2, the relationship between NC1 and NC3 and the relationship between NC2 and NC4 are represented by the following equations (V) and (VI).
NC3 = NC1 × (DV2 / DV1) (V)
NC4 = NC2 × (DV2 / DV1) (VI)
Accordingly, the calculated upper limit rotational speed change value TGNCcLimBLV is a value obtained by multiplying the upper limit rotational speed change value TGNChLimBLV by (DV2 / DV1). Therefore, the upper limit rotational speed TGNCcLimHi (cooling mode or the like) is also the upper limit rotational speed TGNChLimHi (heating). The value is obtained by multiplying (DV2 / DV1) by (mode etc.), and the upper limit rotational speed TGNCcLimHi becomes lower than TGNChLimHi (the same applies hereinafter).
Thus, by changing the upper limit rotational speed TGNCcLimHi on the control of the compressor 2 in the controller 32 cooling mode or the like in a direction lower than the upper limit rotational speed TGNChLimHi on the control of the compressor 2 in the heating mode or the like, While realizing the capacity required in the heating mode, it is possible to avoid operation with excessive capacity in the cooling mode, reduce power consumption and noise, and improve controllability. .
In particular, the discharge volume of the compressor 2 is set to the discharge volume DV1 required in the heating mode, the ratio D2 / D1 of the discharge volume DV2 of the compressor 2 required in the cooling mode with respect to the discharge volume DV1, and the heating mode, etc. By setting the upper limit rotational speed TGNCcLimHi for control of the compressor 2 in the cooling mode or the like based on the upper limit rotational speed TGNChLimHi for the control of the compressor 2, the upper limit rotational speed TGNCcLimHi for the cooling mode is appropriately set. Will be able to.
(10-2) Calculation of upper limit rotational speed change value based on blowing mode
Next, an example of a procedure for calculating the upper limit rotation speed change values TGNChLIMMOD and TGNCcLIMMOD based on the blowing mode from the blower outlet 29 will be described with reference to FIG. The controller 32 sets the blowing mode flag fMOD (“1”) when the air blowing mode from the blowing port 29 is the FOOT mode blowing from the FOOT blowing port, and the blowing mode when it is the VENT mode blowing from the VENT blowing port. The flag fMOD is reset (“0”).
When the blowing mode flag fMOD is set, the controller 32 sets the upper limit rotational speed change value TGNChLIMMOD for the upper limit rotational speed TGNChLimHi (heating mode or the like) to NC2, and to NC1 when reset. Further, when the blowing mode flag fMOD is set, the upper limit rotational speed change value TGNCcLimmod for the upper limit rotational speed TGNCcLimHi (cooling mode or the like) is set to NC4, and when reset, it is set to NC3.
Since the relationship between the NC1 to NC4 is the same as in the case of FIG. 5 described above, the controller 32 is compared with the case where the blowing mode is the FOOT mode (fMOD is set) and the case of the VENT mode (fMOD reset). The upper limit rotational speed change values TGNChLIMMOD and TGNCcLimmod are changed in the decreasing direction. When the upper limit rotation speed change values TGNChLIMMOD and TGNCcLimMOD are the highest in the above formulas (III) and (IV) (MAX), these upper limit rotation speed change values TGNChLimMOD and TGNCcLimMOD are the upper limit rotation speeds TGNChLimHi (heating mode, etc.) The rotational speed TGNCcLimHi (cooling mode or the like) is determined, and the rotational speed NC of the compressor 2 is no longer controlled.
In the FOOT mode in which air is blown out from the FOOT air outlet far from the passenger's ear, the sound level in the passenger compartment reaching the passenger's ear is lower and the compression is lower than in the VENT mode in which air is blown out from the VENT air outlet. The driving sound of the machine 2 becomes conspicuous, which is annoying to the passenger. Therefore, when the controller 32 is in the FOOT mode, by changing the upper limit rotational speed TGNChLimHi (heating mode, etc.) and TGNCcLimHi (cooling mode, etc.) in the control of the compressor 2 as compared with the VENT mode, In the FOOT mode, the driving sound of the compressor 2 can be reduced, and the passenger compartment can be comfortably air-conditioned.
(10-3) Calculation of the upper limit rotational speed change value based on the air introduction mode to the air flow passage 3
Next, the calculation procedure of the upper limit rotational speed change values TGNChLimREC and TGNCcLimREC based on the air introduction mode (inside air circulation mode, outside air introduction mode) to the air flow passage 3 will be described with reference to FIG. The controller 32 sets the introduction mode flag fREC (“1”) when the air introduction mode to the air flow passage 3 is the outside air introduction mode, and resets the introduction mode flag fREC (“0” when the mode is the inside air circulation mode. )).
When the introduction mode flag fREC is set, the controller 32 sets the upper limit rotational speed change value TGNChLimREC for the upper limit rotational speed TGNChLimHi (heating mode etc.) to NC2, and to NC1 when it is reset. In addition, when the introduction mode flag fREC is set, the upper limit rotational speed change value TGNCcLimREC for the upper limit rotational speed TGNCcLimHi (cooling mode or the like) is set to NC4.
Since the relationship between NC1 to NC4 is the same as in the case of FIG. 5 described above, the controller 32 has a case where the air introduction mode to the air flow passage 3 is the outside air introduction mode, compared to the inside air circulation mode. The upper limit rotational speed change values TGNChLimREC and TGNCcLimREC are changed in the downward direction. When the upper limit rotational speed change values TGNChLimREC and TGNCcLimREC are the highest in the above formulas (III) and (IV) (MAX), these upper limit rotational speed change values TGNChLimREC and TGNCcLimREC are the upper limit rotational speeds TGNChLimHi (heating mode, etc.) The rotational speed TGNCcLimHi (cooling mode or the like) is determined, and the rotational speed NC of the compressor 2 is no longer controlled.
In the outside air introduction mode in which outside air is introduced into the air flow passage 3, the amount of air blown into the vehicle interior is lower than in the inside air circulation mode in which inside air is introduced. The driving sound is also noticeable, which can be annoying to the passengers. Therefore, when the controller 32 is in the outside air introduction mode, the upper limit rotational speeds TGNChLimHi (heating mode, etc.) and TGNCcLimHi (cooling mode, etc.) on the control of the compressor 2 are changed in a direction to lower than in the case of the inside air circulation mode. As a result, in the outside air introduction mode, the driving sound of the compressor 2 can be reduced, and the passenger compartment can be comfortably air-conditioned.
(10-4) Calculation of the upper limit rotational speed change value based on the volume AUD (audio level) of the audio equipment
Next, an example of a procedure for calculating the upper limit rotation speed change values TGNChLimAUD and TGNCcLimAUD based on the volume of the audio equipment will be described with reference to FIG. The controller 32 calculates the upper limit rotational speed change values TGNChLimAUD and TGNCcLimAUD in accordance with the volume AUD of the audio equipment that is information input from the vehicle side. In this case, the controller 32 changes the upper limit rotational speed change values TGNChLimAUD and TGNCcLimAUD in the decreasing direction as the sound volume AUD becomes lower.
Here, in the graph on the left side of FIG. 8, the horizontal axis is the volume AUD of the acoustic device, and the predetermined values AUD1 to AUD4 have a relationship of AUD4 <AUD3 <AUD2 <AUD1, and the volume AUD of the acoustic device and the sound in the vehicle interior A value obtained by an experiment in advance from the level relationship. The vertical axis represents the upper limit rotational speed change value TGNChLimAUD, and the predetermined values NC1 and NC2 similar to those in FIG. 5 have a relationship of NC2 <NC1. In the embodiment, the upper limit rotational speed change value TGNChLimAUD for the upper limit rotational speed TGNChLimHi (heating mode or the like) is set to NC1 when the sound volume AUD is a predetermined value AUD1. Then, the volume AUD is maintained until it decreases to AUD2, and when it falls below AUD2, TGNChLimAUD starts to decrease, and TGNChLimAUD is decreased at a constant rate until NC2 becomes AUD4.
When the volume AUD is increased from the state where TGNChLimAUD is set to NC2, it is maintained until AUD3 is reached, and when it is higher than AUD3, TGNChLimAUD is started to increase, and TGNChLimAUD is increased at a constant rate until NC1 becomes AUD1. Go. The difference between AUD1 and AUD2 and the difference between AUD3 and AUD4 are hysteresis.
In the graph on the right side of FIG. 8, the vertical axis represents the upper limit rotational speed change value TGNCcLimAUD, and the predetermined values NC3 and NC4 similar to those in FIG. 5 have a relationship of NC4 <NC3, and NC3 <NC1 and NC4 <NC2. It is related. Also, the relationship between NC3 and NC1 and the relationship between NC4 and NC2 are the same as in the case of FIG. In the embodiment, the upper limit speed change value TGNCcLimAUD for the upper limit speed TGNCcLimHi (cooling mode or the like) is set to NC3 when the volume AUD is AUD1. Then, the sound volume AUD is maintained until it decreases to AUD2, and when it falls below AUD2, TGNCcLimAUD starts to decrease, and TGNCcLimAUD is decreased at a constant rate until NC4 becomes AUD4.
When the volume AUD is increased from the state where TGNCcLimAUD is set to NC4, it is maintained until AUD3 is reached, and when it is higher than AUD3, TGNCcLimAUD starts to be increased and TGNCcLimAUD is increased at a constant rate until NC3 becomes AUD1. Go. When the upper limit rotational speed change values TGNChLimAUD and TGNCcLimAUD are the highest in the formulas (III) and (IV) (MAX), these upper limit rotational speed change values TGNChLimAUD and TGNCcLimAUD are the upper limit rotational speeds TGNChLimHi (heating mode, etc.) The rotational speed TGNCcLimHi (cooling mode or the like) is determined, and the rotational speed NC of the compressor 2 is no longer controlled.
When the volume AUD of the audio equipment provided in the vehicle is low, the sound level is low in the passenger compartment, and the driving sound of the compressor 2 becomes conspicuous, which is annoying to the passenger. Therefore, based on the volume AUD of the acoustic device provided in the vehicle by the controller 32, the lower the volume AUD, the higher the upper limit rotational speed TGNChLimHi (heating mode, etc.) and TGNCcLimHi (cooling mode, etc.) By changing in the direction of lowering the sound volume, the driving sound of the compressor 2 can be reduced in a situation where the volume AUD of the acoustic device is low, and the passenger compartment can be comfortably air-conditioned.
(10-5) Calculation of upper limit rotational speed change value based on vehicle speed VSP (part 1)
Next, an example of a procedure for calculating the upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP based on the vehicle speed VSP will be described with reference to FIG. When the vehicle speed VSP detected by the vehicle speed sensor 52 decreases to a predetermined low value VSP1 (for example, 0 to 3 km / h) or less and stops or substantially stops, the controller 32 sets the vehicle speed flag fVSP (“1”). When the vehicle speed VSP increases due to traveling and becomes higher than VSP2 (for example, 8 km / h) higher than VSP1, the vehicle speed flag fVSP is reset (“0”).
When the vehicle speed flag fVSP is set, the controller 32 sets the upper limit rotational speed change value TGNChLimVSP for the upper limit rotational speed TGNChLimHi (heating mode or the like) to NC2, and to NC1 when it is reset. Further, when the vehicle speed flag fVSP is set, the upper limit speed change value TGNCcLimVSP for the upper limit speed TGNCcLimHi (cooling mode or the like) is set to NC4, and when reset, it is set to NC3.
Since the relationship between NC1 to NC4 is the same as in the case of FIG. 5 described above, that is, when the vehicle is stopped or substantially stopped, the controller 32 changes the upper limit rotational speed change values TGNChLimVSP, TGNCcLimVSP in a direction lower than when traveling. Will be changed. When the upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP are the highest in the formulas (III) and (IV) (MAX), these upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP are the upper limit rotational speeds TGNChLimHi (heating mode, etc.) The rotational speed TGNCcLimHi (cooling mode or the like) is determined, and the rotational speed NC of the compressor 2 is no longer controlled.
When the vehicle is stopped, the sound level in the passenger compartment is lower than when traveling. Therefore, when the vehicle is stopped, the controller 32 changes the lower limit upper rotational speeds TGNChLimHi (heating mode, etc.) and TGNCcLimHi (cooling mode, etc.) on the control of the compressor 2 than when traveling. The driving sound of the compressor 2 can be reduced even when the vehicle is stopped when the sound level in the passenger compartment becomes low, and the comfort can be further improved.
(10-6) Calculation of upper limit rotational speed change value based on vehicle speed VSP (part 2)
Next, another example of the procedure for calculating the upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP based on the vehicle speed VSP will be described with reference to FIG. The controller 32 calculates upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP according to the vehicle speed VSP detected by the vehicle speed sensor 52. In this case, the controller 32 changes the upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP in the decreasing direction as the vehicle speed VSP decreases.
Here, in the graph on the left side of FIG. 10, the horizontal axis is the vehicle speed VSP, and the predetermined values VSP1 to VSP4 have a relationship of VSP4 <VSP3 <VSP2 <VSP1, and experimented in advance from the relationship between the vehicle speed VSP and the sound level in the vehicle interior. The value obtained by In the embodiment, VSP4 is, for example, 0 to 3 km / h or the like when stopped or substantially stopped, and VSP1 is, for example, 45 km / h or more. The vertical axis represents the upper limit rotational speed change value TGNChLimVSP, and the predetermined values NC1 and NC2 similar to those in FIG. 5 have a relationship of NC2 <NC1. In the embodiment, the upper limit rotational speed change value TGNChLimVSP for the upper limit rotational speed TGNChLimHi (heating mode or the like) is set to NC1 when the vehicle speed VSP is a predetermined value VSP1. Then, it is maintained until the vehicle speed VSP decreases to VSP2, and when it falls below VSP2, TGNChLimVSP starts to decrease, and TGNChLimVSP is decreased at a constant rate until NC2 at VSP4.
When the vehicle speed VSP rises from the state where TGNChLimVSP is set to NC2, it is maintained until VSP3 is reached, and when it rises above VSP3, TGNChLimVSP starts to be raised, and TGNChLimVSP is raised at a constant rate until it reaches NC1 at VSP1. Go. The difference between VSP1 and VSP2 and the difference between VSP3 and VSP4 are hysteresis.
In the graph on the right side of FIG. 10, the vertical axis represents the upper limit rotational speed change value TGNCcLimVSP, and the predetermined values NC3 and NC4 similar to those in FIG. 5 have a relationship of NC4 <NC3, and NC3 <NC1 and NC4 <NC2. It is related. Also, the relationship between NC3 and NC1 and the relationship between NC4 and NC2 are the same as in the case of FIG. In the embodiment, the upper limit speed change value TGNCcLimVSP for the upper limit speed TGNCcLimHi (cooling mode or the like) is set to NC3 when the vehicle speed VSP is VSP1. Then, it is maintained until the vehicle speed VSP decreases to VSP2, and when it falls below VSP2, TGNCcLimVSP is started to decrease, and TGNCcLimVSP is decreased at a constant rate until it reaches NC4 at VSP4.
When the vehicle speed VSP increases from the state where the TGNCcLimVSP is set to NC4, it is maintained until the VSP3 is reached. When the vehicle speed VSP3 is increased, the TGNCcLimVSP starts to be increased, and the TGNCcLimVSP is increased at a constant rate until reaching the NC3 at the VSP1. Go. When the upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP are the highest in the formulas (III) and (IV) (MAX), these upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP are the upper limit rotational speeds TGNChLimHi (heating mode, etc.) The rotational speed TGNCcLimHi (cooling mode or the like) is determined, and the rotational speed NC of the compressor 2 is no longer controlled.
As described above, the controller 32 lowers the upper limit rotational speeds TGNChLimHi (heating mode, etc.) and TGNCcLimHi (cooling mode, etc.) on the control of the compressor 2 as the vehicle speed VSP becomes lower (including stopping) based on the change in the vehicle speed VSP. Even by continuously changing the direction, the driving sound of the compressor 2 can be reduced when the vehicle is stopped, etc., and the passenger compartment can be comfortably air-conditioned.
(10-7) Calculation of upper limit rotational speed change value based on outside air temperature Tam
Next, an example of a procedure for calculating the upper limit rotational speed change values TGNChLimTam and TGNCcLimTam based on the outside air temperature Tam will be described with reference to FIG. The controller 32 calculates upper limit rotational speed change values TGNChLimTam and TGNCcLimTam according to the outside air temperature Tam detected by the outside air temperature sensor 33. In this case, the controller 32 changes the upper limit rotational speed change values TGNChLimTam and TGNCcLimTam in a decreasing direction as the outside air temperature Tam decreases.
Here, in the graph on the left side of FIG. 11, the horizontal axis is the outside air temperature Tam, and the predetermined values Tam1 to Tam4 have a relationship of Tam4 <Tam3 <Tam2 <Tam1, and from the relationship between the outside air temperature Tam and the sound level in the passenger compartment. The value is obtained in advance by experiment. The vertical axis represents the upper limit rotational speed change value TGNChLimTam, and the predetermined values NC1 and NC2 similar to those in FIG. 5 have a relationship of NC2 <NC1. In the embodiment, the upper limit rotational speed change value TGNChLimTam for the upper limit rotational speed TGNChLimHi (heating mode or the like) is set to NC1 when the outside air temperature Tam is a predetermined value Tam1. Then, the outside air temperature Tam is maintained until it decreases to Tam2, and when it falls below Tam2, TGNChLimTam starts to decrease, and TGNChLimTam is decreased at a constant rate until NC2 is reached at a low predetermined value Tam4.
When the outside air temperature Tam rises from the state where TGNChLimTam is set to NC2, it is maintained until Tam3 is reached, and when it rises above Tam3, TGNChLimTam is started to rise and TGNChLimTam is raised at a constant rate until Tam1 becomes NC1. To go. The difference between Tam1 and Tam2, and the difference between Tam3 and Tam4 are hysteresis.
In the graph on the right side of FIG. 11, the vertical axis represents the upper limit rotational speed change value TGNCcLimTam. The predetermined values NC3 and NC4 similar to those in FIG. 5 have a relationship of NC4 <NC3, and NC3 <NC1 and NC4 <NC2. It is related. Also, the relationship between NC3 and NC1 and the relationship between NC4 and NC2 are the same as in the case of FIG. In the embodiment, the upper limit speed change value TGNCcLimTam for the upper limit speed TGNCcLimHi (cooling mode or the like) is set to NC3 when the outside air temperature Tam is Tam1. Then, it is maintained until the outside air temperature Tam decreases to Tam2, and when it falls below Tam2, TGNCcLimTam starts to decrease, and TGNCcLimTam is decreased at a constant rate until NC4 becomes Tam4.
When the outside air temperature Tam rises from the state where TGNCcLimTam is set to NC4, it is maintained until Tam3 is reached, and when it rises above Tam3, TGNCcLimTam starts to be raised, and TGNCcLimTam is raised at a constant rate until NC3 at Tam1. To go. When the upper limit rotational speed change values TGNChLimTam and TGNCcLimTam are the highest in the above formulas (III) and (IV) (MAX), these upper limit rotational speed change values TGNChLimTam and TGNChcLimTam are the upper limit rotational speeds TGNChLimHi (heating mode, etc.) The rotational speed TGNCcLimHi (cooling mode or the like) is determined, and the rotational speed NC of the compressor 2 is no longer controlled.
As described above, the controller 32 changes the upper limit rotational speed TGNChLimHi (heating mode, etc.) and TGNCcLimHi (cooling mode, etc.) in the control of the compressor 2 so as to decrease as the outside air temperature Tam decreases. Devices (such as compressor 2 mounts and rubber hoses) harden under low outside air temperature, and even under conditions where noise due to vibration increases, the maximum rotation speed TGNChLimHi (heating mode, etc.), TGNCcLimHi (cooling mode, etc.) ) Can be reduced, and the generation of noise due to vibration can be reduced.
(11) Other configuration example 1
Next, FIG. 12 shows another configuration diagram of the vehicle air conditioner 1 of the present invention. In this embodiment, the heat medium-air heat exchanger 40 of the heat medium circulation circuit 23 is provided on the air downstream side of the radiator 4. Others are the same as the example of FIG. Thus, the present invention is also effective in the vehicle air conditioner 1 in which the heat medium-air heat exchanger 40 is arranged on the downstream side of the radiator 4.
(12) Other configuration example 2
Next, FIG. 13 shows another configuration diagram of the vehicle air conditioner 1 of the present invention. In this embodiment, the outdoor heat exchanger 7 is not provided with the receiver dryer section 14 and the supercooling section 16, and the refrigerant pipe 13 </ b> A exiting from the outdoor heat exchanger 7 is connected via the electromagnetic valve 17 and the check valve 18. It is connected to the refrigerant pipe 13B. Similarly, the refrigerant pipe 13D branched from the refrigerant pipe 13A is connected to the refrigerant pipe 13C on the downstream side of the internal heat exchanger 19 via the electromagnetic valve 21. Others are the same as the example of FIG. Thus, the present invention is also effective in the vehicle air conditioner 1 of the refrigerant circuit R that employs the outdoor heat exchanger 7 that does not include the receiver dryer section 14 and the supercooling section 16.
(13) Other configuration example 3
Next, FIG. 14 shows another configuration diagram of the vehicle air conditioner 1 of the present invention. In this case, the heat medium circulation circuit 23 of FIG. In the case of the above-described heat medium circulation circuit 23, the heat medium heating electric heater 35 is provided outside the passenger compartment outside the air flow passage 3, so that electrical safety is ensured, but the configuration is complicated. On the other hand, if the electric heater 73 is provided in the air flow passage 3 as shown in FIG. 14, the configuration is remarkably simplified. In this case, the electric heater 73 serves as an auxiliary heating device. And this invention is effective also in the air conditioning apparatus 1 for vehicles of the refrigerant circuit R which employ | adopted such an electric heater 73. FIG.
(14) Other configuration example 4
Next, FIG. 15 shows another configuration diagram of the vehicle air conditioner 1 of the present invention. In this embodiment, the outdoor heat exchanger 7 is not provided with the receiver dryer section 14 and the supercooling section 16 as compared with FIG. 1, and the refrigerant pipe 13 </ b> A exiting from the outdoor heat exchanger 7 is not connected to the electromagnetic valve 17. The valve 18 is connected to the refrigerant pipe 13B. Similarly, the refrigerant pipe 13D branched from the refrigerant pipe 13A is connected to the refrigerant pipe 13C on the downstream side of the internal heat exchanger 19 via the electromagnetic valve 21. Others are the same as the example of FIG. Thus, the present invention is also effective in the vehicle air conditioner 1 of the refrigerant circuit R that employs the outdoor heat exchanger 7 that does not include the receiver dryer section 14 and the supercooling section 16.
(15) Other configuration example 5
Next, FIG. 16 shows another configuration diagram of the vehicle air conditioner 1 of the present invention. In this case, the heat medium circulation circuit 23 of FIG. The present invention is also effective in the vehicle air conditioner 1 of the refrigerant circuit R employing such an electric heater 73.
(16) Other configuration example 6
Next, FIG. 17 shows still another configuration diagram of the vehicle air conditioner 1 of the present invention. The piping configuration of the refrigerant circuit R and the heat medium circulation circuit 23 in this embodiment is basically the same as that in FIG. 1, but the radiator 4 is not provided in the air flow passage 3 and is arranged outside thereof. Has been. Instead, this heat radiator 4 is provided with a heat medium-refrigerant heat exchanger 74 in this case in a heat exchange relationship. The heat medium-refrigerant heat exchanger 74 is connected to the heat medium pipe 23A between the circulation pump 30 of the heat medium circulation circuit 23 and the heat medium heating electric heater 35, and the heat medium of the heat medium circulation circuit 23- The air heat exchanger 40 (auxiliary heating device) is provided in the air flow passage 3.
With such a configuration, the heat medium discharged from the circulation pump 30 exchanges heat with the refrigerant flowing through the radiator 4, is heated by the refrigerant, and then the heat medium heating electric heater 35 (when energized to generate heat). After being heated, the heat supplied to the vehicle interior from the air flow passage 3 is heated by radiating heat with the heat medium-air heat exchanger 40. That is, the air in the air flow passage 3 is indirectly heated by the radiator 4. The present invention is also effective in the vehicle air conditioner 1 having such a configuration. In addition, as compared with the case where the electric heater as described above is disposed in the air flow passage 3, it is possible to realize an electrically safer vehicle interior heating.
(17) Other configuration example 7
Next, FIG. 18 shows still another configuration diagram of the vehicle air conditioner 1 of the present invention. In this figure, the same reference numerals as those in FIG. 1 indicate the same or similar functions. In this embodiment, the refrigerant pipe 13F and the electromagnetic valve 22 do not exist, the refrigerant pipe 13E is connected to the refrigerant pipe 13J, and the outdoor expansion valve 6 is connected to the refrigerant pipe 13J. Further, the check valve 18 does not exist at the outlet of the supercooling section 16 and is connected to the refrigerant pipe 13B as it is.
The refrigerant pipe 13G between the discharge side of the compressor 2 and the inlet side of the radiator 4 is provided with an electromagnetic valve 76 (which constitutes a flow path switching device) that is closed during dehumidification heating and MAX cooling described later. Yes. In this case, the refrigerant pipe 13G branches to a bypass pipe 77 on the upstream side of the electromagnetic valve 76, and this bypass pipe 77 is an electromagnetic valve 78 that is opened during dehumidifying heating and MAX cooling (this also constitutes a flow path switching device). ) Through the refrigerant pipe 13J on the downstream side of the outdoor expansion valve 6. The bypass pipe 77, the electromagnetic valve 76, and the electromagnetic valve 78 constitute a bypass device 79. It is assumed that the solenoid valve 76 and the solenoid valve 78 are also connected to the controller 32.
Since the bypass device 79 is configured by the bypass pipe 77, the electromagnetic valve 76, and the electromagnetic valve 78, the dehumidifying heating mode or the MAX for allowing the refrigerant discharged from the compressor 2 to directly flow into the outdoor heat exchanger 7 as will be described later. Switching between the cooling mode and the heating mode in which the refrigerant discharged from the compressor 2 flows into the radiator 4, the dehumidifying cooling mode, and the cooling mode can be performed smoothly. Further, in this embodiment, the auxiliary heater 70 (PTC heater) constituting the auxiliary heating device is located in the air flow passage 3 that is on the upstream side (air upstream side) of the radiator 4 with respect to the air flow in the air flow passage 3. This is also connected to the controller 32. The auxiliary heater 70 is provided with an auxiliary heater temperature sensor 75 that detects the temperature of the auxiliary heater 70 and is connected to the controller 32. Further, in this embodiment, the aforementioned evaporation capacity adjusting valve 11 is not provided.
With the above configuration, the operation of the vehicle air conditioner 1 of this embodiment will be described. In this embodiment, the controller 32 performs switching between the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode, the MAX cooling mode (maximum cooling mode), and the auxiliary heater single mode (the internal cycle mode is this mode). Not present in the examples). The operation when the heating mode, the dehumidifying and cooling mode, and the cooling mode are selected, the refrigerant flow, and the auxiliary heater single mode are the same as those in the above-described embodiment (FIG. 1), and thus the description thereof is omitted. However, in this embodiment (FIG. 18), the solenoid valve 76 is opened and the solenoid valve 78 is closed in these heating mode, dehumidifying cooling mode, and cooling mode. Moreover, since each blowing mode and introduction mode mentioned above are the same, description is abbreviate | omitted.
(17-1) Dehumidification heating mode of the vehicle air conditioner 1 of FIG.
On the other hand, when the dehumidifying and heating mode is selected, in this embodiment (FIG. 18), the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 76 is closed, the electromagnetic valve 78 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated. The controller 32 operates each of the blowers 15 and 27, and the air mix damper 28 basically blows all the air in the air flow passage 3 blown out from the indoor blower 27 through the heat absorber 9 and the auxiliary heater 70 and the radiator 4. However, the air volume is also adjusted.
Thus, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 77 without going to the radiator 4, passes through the electromagnetic valve 78, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13J will be reached. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled, and moisture in the air condenses and adheres to the heat absorber 9, so that the air in the air flow passage 3 is cooled, and Dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through.
At this time, since the valve opening degree of the outdoor expansion valve 6 is fully closed, it is possible to suppress or prevent inconvenience that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. It becomes. Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now. Further, in this dehumidifying and heating mode, the controller 32 energizes the auxiliary heater 70 to generate heat. As a result, the air cooled and dehumidified by the heat absorber 9 is further heated in the process of passing through the auxiliary heater 70, and the temperature rises, so that the dehumidifying heating in the passenger compartment is performed.
As in the case of FIG. 4, the controller 32 is based on the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature TEO which is the target value of the heat absorber temperature Te. 2 and the energization (heating by heat generation) of the auxiliary heater 70 based on the auxiliary heater temperature Tptc detected by the auxiliary heater temperature sensor 75 and the target radiator temperature TCO. While the air is properly cooled and dehumidified, the temperature of the air blown from the outlet 29 into the vehicle compartment by heating by the auxiliary heater 70 is accurately prevented. As a result, it is possible to control the temperature to an appropriate heating temperature while dehumidifying the air blown into the vehicle interior, and it is possible to realize comfortable and efficient dehumidification heating in the vehicle interior.
In addition, since the auxiliary heater 70 is disposed on the air upstream side of the radiator 4, the air heated by the auxiliary heater 70 passes through the radiator 4. In this dehumidifying and heating mode, the refrigerant is supplied to the radiator 4. Therefore, the disadvantage that the radiator 4 absorbs heat from the air heated by the auxiliary heater 70 is also eliminated. That is, the temperature of the air blown out into the vehicle compartment by the radiator 4 is suppressed, and the COP is improved.
(17-2) MAX cooling mode (maximum cooling mode) of the vehicle air conditioner 1 of FIG.
In the MAX cooling mode, the controller 32 opens the electromagnetic valve 17 and closes the electromagnetic valve 21. Further, the electromagnetic valve 76 is closed, the electromagnetic valve 78 is opened, and the valve opening degree of the outdoor expansion valve 6 is fully closed. Then, the compressor 2 is operated and the auxiliary heater 70 is not energized. The controller 32 operates each of the blowers 15 and 27, and the air mix damper 28 blows the air in the air flow passage 3 blown out from the indoor blower 27 and passed through the heat absorber 9 to the auxiliary heater 70 and the radiator 4. The ratio is adjusted.
Thus, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 to the refrigerant pipe 13G flows into the bypass pipe 77 without going to the radiator 4, passes through the electromagnetic valve 78, and is connected to the refrigerant pipe on the downstream side of the outdoor expansion valve 6. 13J will be reached. At this time, since the outdoor expansion valve 6 is fully closed, the refrigerant flows into the outdoor heat exchanger 7. The refrigerant flowing into the outdoor heat exchanger 7 is cooled and condensed by running there or by the outside air ventilated by the outdoor blower 15. The refrigerant that has exited the outdoor heat exchanger 7 sequentially flows from the refrigerant pipe 13 </ b> A through the electromagnetic valve 17 into the receiver dryer unit 14 and the supercooling unit 16. Here, the refrigerant is supercooled.
The refrigerant that has exited the supercooling section 16 of the outdoor heat exchanger 7 enters the refrigerant pipe 13 </ b> B, reaches the indoor expansion valve 8 through the internal heat exchanger 19. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. The air blown out from the indoor blower 27 by the heat absorption action at this time is cooled. In addition, since moisture in the air condenses and adheres to the heat absorber 9, the air in the air flow passage 3 is dehumidified. The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 through the refrigerant pipe 13C through the internal heat exchanger 19, and repeats circulation that is sucked into the compressor 2 there through. At this time, since the outdoor expansion valve 6 is fully closed, similarly, it is possible to suppress or prevent the disadvantage that the refrigerant discharged from the compressor 2 flows backward from the outdoor expansion valve 6 into the radiator 4. . Thereby, the fall of a refrigerant | coolant circulation amount can be suppressed or eliminated and air-conditioning capability can be ensured now.
Here, since the high-temperature refrigerant flows through the radiator 4 in the cooling mode described above, direct heat conduction from the radiator 4 to the HVAC unit 10 occurs not a little, but in this MAX cooling mode, the refrigerant flows into the radiator 4. Therefore, the air in the air flow passage 3 from the heat absorber 9 is not heated by the heat transmitted from the radiator 4 to the HVAC unit 10. Therefore, powerful cooling of the passenger compartment is performed, and particularly in an environment where the outside air temperature Tam is high, the passenger compartment can be quickly cooled to realize comfortable air conditioning in the passenger compartment. Also in this MAX cooling mode, the controller 32 detects the temperature of the heat absorber 9 (heat absorber temperature Te) detected by the heat absorber temperature sensor 48 and the target heat absorber temperature described above, which is the target value, as in the case of FIG. The rotational speed NC of the compressor 2 is controlled based on TEO.
Also in the vehicle air conditioner 1 of this embodiment, the controller 32 has the air volume (blower voltage BLV) of the indoor blower 27 as factors that influence the sound level in the passenger compartment, the blowing mode from each outlet, and the air flow path. 3 based on the air introduction mode, the volume AUD (audio level) of the audio equipment provided in the vehicle, the vehicle speed VSP, and the outside air temperature Tam using the above-described formulas (III) and (IV). The upper limit rotational speed TGNChLimHi of the compressor target rotational speed TGNCh used at the time and the upper limit rotational speed TGNCcLimHi of the compressor target rotational speed TGNCc used in the dehumidifying heating mode, the dehumidifying cooling mode, the cooling mode and the MAX cooling mode. Change as before. Thereby, also in this embodiment, it becomes possible to reduce the driving sound of the compressor 2 in a situation where the sound level in the passenger compartment becomes low, and to realize a passenger compartment comfortable air conditioning. become.
In the embodiment of FIG. 6, the calculation of the upper limit rotational speed change values TGNChLIMMOD and TGNCcLIMMOD based on the blowout mode is switched between the FOOT mode and the VENT mode. However, the ratio of the blowout amount from the FOOT blowout port and the VENT blowout port Can be continuously changed, the upper limit rotational speed change values TGNChLIMMOD and TGNCcLimmod are changed in the lowering direction as the ratio of the blowout amount from the FOOT blowout port increases as in the case of the blower voltage BLV of FIG. You may do it.
In the embodiment of FIG. 7, the calculation of the upper limit speed change values TGNChLimREC and TGNCcLimREC based on the introduction mode is switched between the outside air introduction mode and the inside air circulation mode. However, the ratio between the outside air introduction and the inside air circulation is continuously changed. If it can be changed, the upper limit rotational speed change values TGNChLimREC and TGNCcLimREC may be changed in a decreasing direction as the ratio of outside air introduction increases as in the case of the blower voltage BLV of FIG.
Further, in the embodiment, the controller 32 has the upper limit speed change values TGNChLimBLV and TGNChcLimBLV based on the air volume of the indoor blower 27, the upper limit speed change values TGNChLIMMOD and TGNChcLIMMOD based on the blowing mode, and the upper limit speed change value TGNChLimREC based on the introduction mode. And TGNCcLimREC, upper limit rotation speed change values TGNChLimAUD and TGNChcLimAUD based on the volume of the sound equipment, upper limit rotation speed change values TGNChLimVSP and TGNChcLimVSP based on vehicle speed, and upper limit rotation speed change values TGNChLimTamTamCamTam The higher values are the upper limit rotation speed TGNChLimHi (heating mode etc.) and the upper limit rotation speed TGNCcLimH respectively. It was determined as the (Cooling mode, etc.).
However, in claims 1 to 6 and the related invention, the upper limit rotational speed change values TGNChLimBLV and TGNCcLimBLV based on the air volume of the indoor blower 27, the upper limit rotational speed change values TGNChLimMOD and TGNCcLimMOD based on the blowing mode, and the introduction mode Upper limit rotation speed change values TGNChLimREC and TGNCcLimREC based on the volume of the sound equipment, and upper limit rotation speed change values TGNChLimAUD and TGNCcLimAUD based on the volume of the audio equipment, or upper limit rotation speed change values TGNChLimVSP and TGNCcLimVSP based on the vehicle speed The higher value of the upper limit rotational speed change values TGNChLimTam and TGNCcLimTam based on the outside air temperature Tam is set to the upper limit rotational speed TGN. hLimHi may be a (heating mode), and the upper limit rotational speed TGNCcLimHi (cooling mode).
Further, in the seventh, eighth, and related inventions, the upper limit rotational speed change values TGNChLimBLV and TGNCcLimBLV based on the air volume of the indoor blower 27, the upper limit rotational speed change values TGNChLimMOD and TGNCcLimMOD based on the blowing mode, and the introduction mode Upper limit rotational speed change values TGNChLimREC and TGNCcLimREC, upper limit rotational speed change values TGNChLimAUD and TGNCcLimAUD based on the volume of the audio equipment, upper limit rotational speed change values TGNChLimVSP and TGNCcLimVSP based on the vehicle speed, and upper limit rotational speed change value TmNCGmTm And two or more of TGNCcLimTam, and the higher value of the combination is set to the upper limit rotational speed TGNChLi. Hi it may be the (heating mode), and the upper limit rotational speed TGNCcLimHi (cooling mode).
In addition, the numerical values and components shown in the embodiments are not limited thereto, and various changes can be made without departing from the spirit of the present invention.
 1 車両用空気調和装置
 2 圧縮機
 3 空気流通路
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 23 熱媒体循環回路
 26 吸込切換ダンパ
 27 室内送風機(ブロワファン)
 29 吹出口
 30 循環ポンプ
 31 吹出口切換ダンパ
 32 コントローラ(制御装置)
 40 熱媒体−空気熱交換器(補助加熱装置)
 70 補助ヒータ(補助加熱装置)
 R 冷媒回路
DESCRIPTION OF SYMBOLS 1 Vehicle air conditioner 2 Compressor 3 Air flow path 4 Radiator 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 23 Heat-medium circulation circuit 26 Suction switching damper 27 Indoor blower (blower fan)
29 Outlet 30 Circulation pump 31 Outlet switching damper 32 Controller (control device)
40 Heat medium-air heat exchanger (auxiliary heating device)
70 Auxiliary heater (auxiliary heating device)
R refrigerant circuit

Claims (11)

  1.  車室内に供給する空気が流通する空気流通路と、
     冷媒を圧縮する電動式の圧縮機、及び、前記空気流通路から前記車室内に供給する空気と冷媒とを直接、若しくは、間接的に熱交換させるための熱交換器を有する冷媒回路と、
     前記空気流通路に空気を流通させるための室内送風機と、
     制御装置とを備え、
     該制御装置により、前記圧縮機及び前記室内送風機を制御することで前記車室内を空調する車両用空気調和装置において、
     前記制御装置は、前記室内送風機の風量に基づき、当該風量が低くなる程、前記圧縮機の制御上の上限回転数を下げる方向で変更することを特徴とする車両用空気調和装置。
    An air flow passage through which air to be supplied into the passenger compartment flows;
    An electric compressor for compressing the refrigerant, and a refrigerant circuit having a heat exchanger for exchanging heat directly or indirectly between the air supplied from the air flow passage and the refrigerant to the vehicle interior; and
    An indoor blower for circulating air in the air flow passage;
    A control device,
    In the vehicle air conditioner for controlling the compressor and the indoor blower by the control device to air-condition the vehicle interior,
    The air conditioner for a vehicle is characterized in that the controller changes in a direction to lower the upper limit number of rotations in the control of the compressor as the air volume decreases based on the air volume of the indoor blower.
  2.  車室内に供給する空気が流通する空気流通路と、
     冷媒を圧縮する電動式の圧縮機、及び、前記空気流通路から前記車室内に供給する空気と冷媒とを直接、若しくは、間接的に熱交換させるための熱交換器を有する冷媒回路と、
     前記空気流通路に空気を流通させるための室内送風機と、
     前記空気流通路から前記車室内に空気を吹き出すためVENT吹出口、及び、FOOT吹出口と、
     制御装置とを備え、
     該制御装置により、前記圧縮機及び前記室内送風機を制御することで前記車室内を空調すると共に、前記車室内に空気を吹き出す吹出モードを、少なくとも前記VENT吹出口から吹き出すVENTモードと、前記FOOT吹出口から吹き出すFOOTモードに切り換え可能とされた車両用空気調和装置において、
     前記制御装置は、前記FOOTモードの場合、前記VENTモードの場合に比して前記圧縮機の制御上の上限回転数を下げる方向で変更することを特徴とする車両用空気調和装置。
    An air flow passage through which air to be supplied into the passenger compartment flows;
    An electric compressor for compressing the refrigerant, and a refrigerant circuit having a heat exchanger for exchanging heat directly or indirectly between the air supplied from the air flow passage and the refrigerant to the vehicle interior; and
    An indoor blower for circulating air in the air flow passage;
    A VENT outlet and FOOT outlet for blowing air from the air flow passage into the vehicle compartment;
    A control device,
    The control device controls the compressor and the indoor blower to air-condition the interior of the vehicle and blows air into the vehicle interior. At least a VENT mode of blowing from the VENT outlet and the FOOT blower. In a vehicle air conditioner that can be switched to a FOOT mode that blows out from an outlet,
    In the FOOT mode, the control device changes the direction in which the upper limit number of rotations for controlling the compressor is lowered as compared with the case of the VENT mode.
  3.  車室内に供給する空気が流通する空気流通路と、
     冷媒を圧縮する電動式の圧縮機、及び、前記空気流通路から前記車室内に供給する空気と冷媒とを直接、若しくは、間接的に熱交換させるための熱交換器を有する冷媒回路と、
     前記空気流通路に空気を流通させるための室内送風機と、
     制御装置とを備え、
     該制御装置により、前記圧縮機及び前記室内送風機を制御することで前記車室内を空調すると共に、前記空気流通路に流入する空気を、少なくとも外気導入モードと内気循環モードに切り換え可能とされた車両用空気調和装置において、
     前記制御装置は、前記外気導入モードの場合、前記内気循環モードの場合に比して前記圧縮機の制御上の上限回転数を下げる方向で変更することを特徴とする車両用空気調和装置。
    An air flow passage through which air to be supplied into the passenger compartment flows;
    An electric compressor for compressing the refrigerant, and a refrigerant circuit having a heat exchanger for exchanging heat directly or indirectly between the air supplied from the air flow passage and the refrigerant to the vehicle interior; and
    An indoor blower for circulating air in the air flow passage;
    A control device,
    The control device controls the compressor and the indoor blower to air-condition the vehicle interior and switch the air flowing into the air flow passage between at least an outside air introduction mode and an inside air circulation mode. In the air conditioner for
    The air conditioner for a vehicle is characterized in that the controller changes in the direction of lowering the upper limit number of rotations in the control of the compressor in the outside air introduction mode as compared to the case of the inside air circulation mode.
  4.  車室内に供給する空気が流通する空気流通路と、
     冷媒を圧縮する電動式の圧縮機、及び、前記空気流通路から前記車室内に供給する空気と冷媒とを直接、若しくは、間接的に熱交換させるための熱交換器を有する冷媒回路と、
     前記空気流通路に空気を流通させるための室内送風機と、
     制御装置とを備え、
     該制御装置により、前記圧縮機及び前記室内送風機を制御することで前記車室内を空調する車両用空気調和装置において、
     前記制御装置は、車両に設けられた音響機器の音量に基づき、当該音量が小さくなる程、前記圧縮機の制御上の上限回転数を下げる方向で変更することを特徴とする車両用空気調和装置。
    An air flow passage through which air to be supplied into the passenger compartment flows;
    An electric compressor for compressing the refrigerant, and a refrigerant circuit having a heat exchanger for exchanging heat directly or indirectly between the air supplied from the air flow passage and the refrigerant to the vehicle interior; and
    An indoor blower for circulating air in the air flow passage;
    A control device,
    In the vehicle air conditioner for controlling the compressor and the indoor blower by the control device to air-condition the vehicle interior,
    The air conditioner for a vehicle is characterized in that the control device changes the lower limit of the upper limit rotational speed on the control of the compressor as the sound volume decreases based on the sound volume of an acoustic device provided in the vehicle. .
  5.  前記制御装置は、車両が停車している場合、走行時よりも前記圧縮機の制御上の上限回転数を下げる方向で変更することを特徴とする請求項1乃至請求項4のうちの何れかに記載の車両用空気調和装置。 5. The control device according to claim 1, wherein when the vehicle is stopped, the control device changes the upper limit rotational speed in the control of the compressor to be lower than that during travel. The air conditioning apparatus for vehicles described in 2.
  6.  前記制御装置は、外気温度が低くなる程、前記圧縮機の制御上の上限回転数を下げる方向で変更することを特徴とする請求項1乃至請求項5のうちの何れかに記載の車両用空気調和装置。 The vehicle control device according to any one of claims 1 to 5, wherein the control device changes the lower limit of the upper limit rotational speed for control of the compressor as the outside air temperature decreases. Air conditioner.
  7.  車室内に供給する空気が流通する空気流通路と、
     冷媒を圧縮する電動式の圧縮機、及び、前記空気流通路から前記車室内に供給する空気と冷媒とを直接、若しくは、間接的に熱交換させるための熱交換器を有する冷媒回路と、
     前記空気流通路に空気を流通させるための室内送風機と、
     制御装置とを備え、
     該制御装置により、前記圧縮機及び前記室内送風機を制御することで前記車室内を空調する車両用空気調和装置において、
     前記制御装置は、前記車室内の音のレベルに影響する複数の要因に基づき、当該車室内の音のレベルが低くなる程、前記圧縮機の制御上の上限回転数を下げる方向で変更する上限回転数変更値を前記各要因毎に算出すると共に、
     算出された各要因毎の上限回転数変更値のうち、最も高い値を前記圧縮機の制御上の上限回転数とすることを特徴とする車両用空気調和装置。
    An air flow passage through which air to be supplied into the passenger compartment flows;
    An electric compressor for compressing the refrigerant, and a refrigerant circuit having a heat exchanger for exchanging heat directly or indirectly between the air supplied from the air flow passage and the refrigerant to the vehicle interior; and
    An indoor blower for circulating air in the air flow passage;
    A control device,
    In the vehicle air conditioner for controlling the compressor and the indoor blower by the control device to air-condition the vehicle interior,
    The control device is based on a plurality of factors that affect the sound level in the vehicle interior, and the upper limit for changing the upper limit rotational speed for controlling the compressor as the sound level in the vehicle interior decreases. While calculating the rotation speed change value for each factor,
    The vehicle air conditioner characterized in that the highest value among the calculated upper limit rotation speed change values for each factor is set as the upper limit rotation speed for controlling the compressor.
  8.  前記車室内の音のレベルに影響する要因は、前記室内送風機の風量、前記車室内に空気を吹き出す吹出モード、前記空気流通路に流入する空気の導入モード、車両に設けられた音響機器の音量、車速、及び、外気温度のうちの二以上の組み合わせ、若しくは、それらの全てであることを特徴とする請求項7に記載の車両用空気調和装置。 Factors affecting the sound level in the vehicle interior are the air volume of the indoor blower, the blowing mode for blowing air into the vehicle interior, the mode for introducing air flowing into the air flow passage, and the volume of the acoustic equipment provided in the vehicle. The vehicle air conditioner according to claim 7, wherein the vehicle air conditioner is a combination of two or more of vehicle speed and outside air temperature, or all of them.
  9.  前記空気流通路に設けられた補助加熱装置を備え、
     前記制御装置は、前記圧縮機から吐出された冷媒を前記熱交換器にて放熱させることで前記車室内を暖房すると共に、前記圧縮機の制御上の上限回転数を下げたことで前記熱交換器による暖房能力が不足する場合、前記補助加熱装置による加熱を実行することを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。
    An auxiliary heating device provided in the air flow passage,
    The control device heats the vehicle interior by radiating the refrigerant discharged from the compressor with the heat exchanger, and reduces the upper limit number of rotations in the control of the compressor, thereby exchanging the heat. The vehicle air conditioner according to any one of claims 1 to 8, wherein heating by the auxiliary heating device is performed when the heating capacity of the heater is insufficient.
  10.  前記冷媒回路は、冷媒を放熱させて前記空気流通路から前記車室内に供給する空気を直接、若しくは、間接的に加熱するための前記熱交換器としての放熱器と、冷媒を吸熱させて前記空気流通路から前記車室内に供給する空気を冷却するための前記熱交換器としての吸熱器と、車室外に設けられて冷媒を放熱又は吸熱させる室外熱交換器を有し、
     前記制御装置は、前記圧縮機から吐出された冷媒を前記放熱器にて放熱させ、放熱した当該冷媒を減圧した後、前記室外熱交換器にて吸熱させる暖房モードと、前記圧縮機から吐出された冷媒を前記室外熱交換器にて放熱させ、放熱した当該冷媒を減圧した後、前記吸熱器にて吸熱させる冷房モードを少なくとも実行すると共に、
     前記冷房モードでの前記圧縮機の制御上の上限回転数TGNCcLimHiを、前記暖房モードでの前記圧縮機の制御上の上限回転数TGNChLimHiよりも下げる方向で変更することを特徴とする請求項1乃至請求項9のうちの何れかに記載の車両用空気調和装置。
    The refrigerant circuit includes a radiator as the heat exchanger for directly or indirectly heating the air supplied to the vehicle interior from the air flow path by dissipating the refrigerant, and absorbing the refrigerant to absorb the heat. A heat absorber as the heat exchanger for cooling the air supplied to the vehicle interior from the air flow passage, and an outdoor heat exchanger that is provided outside the vehicle cabin to dissipate or absorb heat from the refrigerant,
    The control device radiates the refrigerant discharged from the compressor with the radiator, depressurizes the radiated refrigerant, and then absorbs heat with the outdoor heat exchanger, and is discharged from the compressor. At least a cooling mode in which the refrigerant is radiated by the outdoor heat exchanger, and the radiated refrigerant is depressurized and then absorbed by the heat absorber.
    The upper limit number of rotations TGNCcLimHi in control of the compressor in the cooling mode is changed in a direction lower than the upper limit number of rotations in control of the compressor in the heating mode TGNChLimHi. The vehicle air conditioner according to claim 9.
  11.  前記圧縮機の吐出容積は、前記暖房モードにおいて必要な吐出容積DV1に設定されており、
     前記吐出容積DV1に対する前記冷房モードにおいて必要な前記圧縮機の吐出容積DV2の比率D2/D1と、前記暖房モードでの前記圧縮機の制御上の上限回転数TGNChLimHiに基づいて、前記冷房モードでの前記圧縮機の制御上の上限回転数TGNCcLimHiが設定されていることを特徴とする請求項10に記載の車両用空気調和装置。
    The discharge volume of the compressor is set to the discharge volume DV1 required in the heating mode,
    Based on the ratio D2 / D1 of the discharge volume DV2 of the compressor required in the cooling mode with respect to the discharge volume DV1 and the upper limit rotational speed TGNChLimHi in the control of the compressor in the heating mode, the cooling mode 11. The vehicle air conditioner according to claim 10, wherein an upper limit number of rotations TGNCcLimHi for controlling the compressor is set.
PCT/JP2018/019422 2017-06-14 2018-05-15 Vehicular air-conditioning device WO2018230266A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310372215.5A CN116141920A (en) 2017-06-14 2018-05-15 Air conditioner for vehicle
CN201880039062.XA CN110740889B (en) 2017-06-14 2018-05-15 Air conditioner for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017116678 2017-06-14
JP2017116678A JP6917794B2 (en) 2017-06-14 2017-06-14 Vehicle air conditioner

Publications (1)

Publication Number Publication Date
WO2018230266A1 true WO2018230266A1 (en) 2018-12-20

Family

ID=64660015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/019422 WO2018230266A1 (en) 2017-06-14 2018-05-15 Vehicular air-conditioning device

Country Status (3)

Country Link
JP (1) JP6917794B2 (en)
CN (2) CN116141920A (en)
WO (1) WO2018230266A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020131937A (en) * 2019-02-20 2020-08-31 株式会社デンソー Vehicular air conditioner
CN114103595B (en) * 2021-12-28 2024-02-27 东风汽车有限公司东风日产乘用车公司 Air conditioner control method, device, equipment and storage medium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205647A (en) * 1994-01-14 1995-08-08 Nippondenso Co Ltd Air conditioner for electric vehicle
JP2000301934A (en) * 1999-04-21 2000-10-31 Calsonic Kansei Corp Compressor controller for air conditioner
JP2002301921A (en) * 2001-04-09 2002-10-15 Japan Climate Systems Corp Air conditioner for vehicle
JP2003326961A (en) * 2002-05-15 2003-11-19 Alpine Electronics Inc Cooling fan control device for on-board electronic instrument
JP2010100264A (en) * 2008-10-27 2010-05-06 Denso Corp Air-conditioning device for vehicle
WO2011148736A1 (en) * 2010-05-24 2011-12-01 スズキ株式会社 Automotive air conditioning device
JP2014153028A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Air conditioner
JP2015174473A (en) * 2014-03-13 2015-10-05 スズキ株式会社 Air conditioner for vehicle
JP2017007623A (en) * 2015-06-26 2017-01-12 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
JP2017013652A (en) * 2015-07-01 2017-01-19 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4048968B2 (en) * 2003-02-12 2008-02-20 株式会社デンソー Air conditioner for vehicles
JP6207958B2 (en) * 2013-10-07 2017-10-04 サンデンホールディングス株式会社 Air conditioner for vehicles
CN105667250B (en) * 2016-02-16 2018-04-20 创驱(上海)新能源科技有限公司 A kind of automatic air condition control system used for electric vehicle

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07205647A (en) * 1994-01-14 1995-08-08 Nippondenso Co Ltd Air conditioner for electric vehicle
JP2000301934A (en) * 1999-04-21 2000-10-31 Calsonic Kansei Corp Compressor controller for air conditioner
JP2002301921A (en) * 2001-04-09 2002-10-15 Japan Climate Systems Corp Air conditioner for vehicle
JP2003326961A (en) * 2002-05-15 2003-11-19 Alpine Electronics Inc Cooling fan control device for on-board electronic instrument
JP2010100264A (en) * 2008-10-27 2010-05-06 Denso Corp Air-conditioning device for vehicle
WO2011148736A1 (en) * 2010-05-24 2011-12-01 スズキ株式会社 Automotive air conditioning device
JP2014153028A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Air conditioner
JP2015174473A (en) * 2014-03-13 2015-10-05 スズキ株式会社 Air conditioner for vehicle
JP2017007623A (en) * 2015-06-26 2017-01-12 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioner for vehicle
JP2017013652A (en) * 2015-07-01 2017-01-19 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner

Also Published As

Publication number Publication date
CN110740889B (en) 2023-04-28
JP2019001269A (en) 2019-01-10
CN116141920A (en) 2023-05-23
JP6917794B2 (en) 2021-08-11
CN110740889A (en) 2020-01-31

Similar Documents

Publication Publication Date Title
JP6496958B2 (en) Air conditioner for vehicles
JP6607638B2 (en) Air conditioner for vehicles
JP6590558B2 (en) Air conditioner for vehicles
JP2014213765A (en) Vehicle air conditioner
WO2016047590A1 (en) Air-conditioning apparatus for vehicle
WO2018211958A1 (en) Vehicle air-conditioning device
WO2018147039A1 (en) Vehicle air-conditioning device
JP2017024511A (en) Air conditioner for vehicle
WO2017146266A1 (en) Air-conditioning device for vehicle
JP2019031227A (en) Air conditioning apparatus for vehicle
WO2018116962A1 (en) Air conditioning device for vehicle
WO2018123634A1 (en) Vehicular air conditioning device
WO2018230266A1 (en) Vehicular air-conditioning device
WO2018079121A1 (en) Vehicle air-conditioning device
WO2018110212A1 (en) Vehicle air-conditioning apparatus
WO2018110211A1 (en) Vehicle air-conditioning device
WO2018043152A1 (en) Vehicle air-conditioning apparatus
WO2017146267A1 (en) Air-conditioning device for vehicle
JP2018058575A (en) Air conditioner for vehicle
WO2018225486A1 (en) Air-conditioning device for vehicles
WO2018061785A1 (en) Air-conditioning device for vehicle
WO2017146269A1 (en) Vehicular air-conditioning device
WO2018225485A1 (en) Vehicle air conditioner
WO2018074111A1 (en) Vehicular air conditioning device
WO2021020161A1 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18816804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18816804

Country of ref document: EP

Kind code of ref document: A1