WO2018230223A1 - 撮像装置 - Google Patents
撮像装置 Download PDFInfo
- Publication number
- WO2018230223A1 WO2018230223A1 PCT/JP2018/018499 JP2018018499W WO2018230223A1 WO 2018230223 A1 WO2018230223 A1 WO 2018230223A1 JP 2018018499 W JP2018018499 W JP 2018018499W WO 2018230223 A1 WO2018230223 A1 WO 2018230223A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- housing
- imaging
- optical system
- focus
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 28
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 238000003384 imaging method Methods 0.000 claims description 49
- 238000012545 processing Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 2
- 230000035945 sensitivity Effects 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 230000007613 environmental effect Effects 0.000 abstract description 8
- 238000010586 diagram Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/02—Mountings, adjusting means, or light-tight connections, for optical elements for lenses
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B15/00—Special procedures for taking photographs; Apparatus therefor
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/55—Details of cameras or camera bodies; Accessories therefor with provision for heating or cooling, e.g. in aircraft
Definitions
- the present invention relates to an imaging device, and more particularly to an imaging device that is preferable when used outdoors.
- the focus shift can be corrected appropriately by adjusting the lens position in the optical axis direction.
- a drive mechanism including an actuator for driving a lens must be mounted, but there is a risk of failure due to long-term use.
- the drive mechanism fails, for example, if a camera is installed in a place where it is difficult for a service person to access, there is a problem that it takes time to return. Therefore, there is a demand for such a camera to have a fixed focus optical system in order to improve reliability by omitting a drive mechanism for autofocus. Further, if the drive mechanism is omitted, it is possible to contribute to cost reduction and size reduction of the camera.
- Patent Document 1 discloses a technique that can maintain focus performance regardless of a fixed focus or zoom lens by using a material having a different linear expansion coefficient for a lens ring. ing. As a result, it can be adapted even when the projector is used for a long time after adjustment.
- the present invention has been made in view of such a problem, and an object thereof is to provide an imaging apparatus that suppresses a focus shift with respect to a change in environmental temperature.
- the imaging apparatus of the present invention A housing, An imaging unit that is detachably disposed in the housing and includes a fixed-focus optical system and an imaging device; A heating device disposed between the imaging unit and the housing; And a controller for operating the heating device by detecting that the temperature in the housing is equal to or lower than a threshold value.
- the present invention it is possible to provide an imaging apparatus that suppresses a focus shift with respect to a change in environmental temperature.
- FIG. 2 is a diagram showing a simplified configuration inside a housing 10.
- 4 is a flowchart showing a temperature control operation by the thermostat 16. It is the graph which plotted the relationship between the difference with the actual temperature with respect to a target value, and the defocus amount.
- FIG. 1 is a perspective view illustrating an appearance of a housing that houses the imaging apparatus according to the present embodiment.
- FIG. 2 is a perspective view showing a state in which the lid is removed from the housing and the imaging unit is accommodated, and the inside is seen through.
- FIG. 3 is a cross-sectional view of the imaging apparatus in the optical axis direction.
- a relatively sturdy housing 10 has a lower part 11 formed in a square tank shape and a lid 12 that covers the upper part of the lower part 11.
- An opening 11a is formed on the side surface of the lower part 11, and a transparent window 13 is attached to the opening 11a. By attaching the lid 12 to the lower part 11, the internal space of the housing 10 is sealed.
- the imaging unit 20 can be inserted and removed from the top with the lid 12 opened.
- the imaging unit 20 is fixed to the lower part 11 with a screw or the like (not shown).
- the optical axis of the optical system of the imaging unit 20 passes through the window 13.
- three panel heaters 14 as heating devices are arranged between both sides of the mounted image pickup unit 20 and the side surface of the lower portion 11 on the rear end side, and are supplied from the power supply circuit 15 (FIG. 3). It is heated by electric power.
- the housing 10 and the imaging unit 20 constitute an imaging device.
- Each part of the imaging unit 20, the panel heater 14, and the power supply circuit 15 may be supplied with power from a built-in battery, or may be supplied with power from an external power supply.
- the imaging unit 20 has a configuration surrounded by an alternate long and short dash line. Specifically, a fixed-focus optical system 21 (indicated by a dotted line), an imaging system 22 (indicated by a dotted line), a fan unit 23, and the like. And the periphery thereof is covered with a sheet metal 24.
- the fan unit 23 agitates the air in the hermetically sealed casing 10 to make the temperature uniform.
- FIG. 4 is a diagram showing the configuration inside the housing 10 in a simplified manner.
- the optical system 21 includes a lens 21a and a lens 21b (here, F number 1.5) made of single crystal silicon, and an aluminum lens barrel 21c that holds them.
- the imaging system 22 includes a filter 22a that transmits infrared light and an imaging element 22b.
- the imaging element 22b is preferably an infrared sensor that receives infrared light and outputs an image signal, but is not limited thereto.
- silicon for the lens 21a and the lens 21b, a change in the refractive index with respect to a temperature change can be suppressed to a small value.
- glass may be used.
- the image pickup device 22b can output an image signal to the processing unit 18, so that an infrared image can be formed by processing by the processing unit 18. It is preferable that the processing unit 18 stores a coefficient for correcting a noise component generated in the output signal of the image sensor 22b due to the radiant heat of the housing 10 in a built-in memory, and performs correction using the coefficient appropriately. Further, the processing unit 18 may be provided inside the housing 10 or may be provided outside the housing 10.
- the power supply circuit 15 switches power supply / cutoff according to the on / off operation of the thermostat 16 disposed in the vicinity of the optical system 21.
- the power supply circuit 15 and the thermostat 16 constitute a controller. Specifically, the thermostat 16 is turned on when the ambient temperature in the housing 10 becomes a threshold value or less, and the power supply circuit 15 supplies power to the panel heater 14.
- the rear pin state is obtained as shown in FIG. 5B.
- the temperature is raised from the best focus state, FIG.
- FIG. As shown in FIG.
- the F number is large, a relatively deep depth of field can be secured, so that a slight focus shift due to a temperature change is allowed, but the optical system 21 having a small F number is used as in the present embodiment. There is a risk that the focus shift will occur remarkably.
- the temperature in the housing 10 is stable in the vicinity of the target value, there is little problem of focus shift. Therefore, temperature adjustment in the housing 10 will be examined.
- both the heating device and the cooling device are required, which increases the cost and leads to an increase in the size of the imaging device. Therefore, only a heating device is provided to adjust the temperature.
- the heating device can have a simpler structure than the cooling device, and the infrared sensor is desirably kept at room temperature or higher for maintaining performance. Therefore, by using the center of the range between the normal temperature and the assumed maximum temperature or less as the target value, a fixed focus performance is maintained even in a use environment even in a fixed focus optical system.
- FIG. 6 is a diagram illustrating an example of the relationship (focus characteristic) between the temperature in the housing and the contrast value of the image signal obtained from the image sensor.
- the imaging device is used within an environmental temperature range of ⁇ 20 ° C. to + 50 ° C.
- the contrast value becomes maximum (best focus state) at 35 ° C., which is the median value in the range from the maximum temperature to + 50 ° C., and at + 20 ° C. and + 50 ° C.
- the optical system 21 is designed so that an image signal having a value equal to or greater than the threshold value TH is obtained. That is, the best focus state exists within a predetermined range (in this case, + 35 ° C.) exceeding + 20 ° C. which is the threshold value and up to + 50 ° C.
- the focus shift can be suppressed by maintaining the temperature in the housing 10 from + 20 ° C. to + 50 ° C. Accordingly, if the thermostat 16 is operated when the temperature in the housing 10 becomes + 20 ° C. or lower, the panel heater 14 is caused to generate heat, so that the temperature in the housing 10 becomes + 20 ° C. Adjustments can be made. On the other hand, if the temperature in the housing 10 is + 20 ° C. or higher, an appropriate contrast value can be obtained, so that the panel heater 14 does not need to generate heat.
- step S1 of FIG. 7 temperature control is started.
- step S2 the power supply circuit 15 is switched according to whether or not the temperature in the housing 10 is equal to or lower than a threshold value (+ 20 ° C. in this case) by the on / off operation of the thermostat 16.
- the threshold here, + 20 ° C.
- the thermostat 16 is turned on, and the power supply circuit 15 supplies power to the panel heater 14 to generate heat in step S3.
- the threshold value (+ 20 ° C.
- the thermostat 16 is turned off, and in step S4, the power supply circuit 15 interrupts the power supply of the panel heater 14 and stops the heat generation. Let Thereafter, unless the temperature control is terminated in step S5, the flow is returned to step S2 and the same operation is performed. On the other hand, when the temperature control is finished, such as turning off the power switch, the power supply from the power supply circuit 15 to the panel heater 14 is interrupted and the operation is finished.
- this embodiment If this embodiment is used, the necessary focusing performance can be ensured only by maintaining a certain temperature (normal temperature in this case) or higher, and means for adjusting the focus in consideration of thermal expansion due to different materials using complicated temperature control.
- the configuration can be simplified.
- general infrared sensors have the characteristic that the accuracy of sensor output is greatly affected by the environmental temperature, so it is desirable to always keep the temperature above room temperature, and the temperature inside the case is always kept above room temperature even in a low temperature environment. Control is effective. Therefore, by applying this embodiment to an imaging device using an infrared camera, it is possible to adjust the focus so as to cover the entire ambient temperature range to be used, and to realize control suitable for the characteristics of the infrared sensor. Can be very effective.
- the optical system 21 as a fixed focus, it is possible to reduce costs and ensure reliability. Also, by causing the panel heater 14 to generate heat at an appropriate timing by turning on the thermostat 16, the inside of the housing 10 can be maintained in a certain temperature range, and the focus shift can be appropriately suppressed. In particular, since temperature control can be realized by a simple combination of the panel heater 14 and the thermostat 16, cost can be suppressed and complicated control is unnecessary, which is preferable. Further, by providing only the heating device in the imaging device, it is possible to reduce the size while reducing the cost.
- Table 1 shows the defocus amount (the amount of focus shift with respect to the best focus) when the temperature difference is given by raising or lowering the temperature from the target value in the optical system of the example.
- FIG. 8 is a graph in which the relationship between the difference ⁇ t between the actual temperature with respect to the target value and the defocus amount is plotted based on the result of Table 1 and connected by a line.
- the defocus amount corresponds to the environmental temperature. In this optical system, it has been found that the defocus amount becomes ⁇ 0.07 mm when the temperature changes at ⁇ 18 ° C. with respect to the target value.
- each part may be adjusted so that the best focus is obtained when the ambient temperature is + 38 ° C. when the room temperature is + 20 ° C.
- the maximum usable temperature of the imaging apparatus can be set to + 56 ° C.
- each part is set so that the environment temperature is + 33 ° C. and the best focus is obtained. Adjustments can be made. In such a case, the maximum temperature that can be used by the imaging apparatus can be set to + 51 ° C., but the panel heater is heated to + 15 ° C. or less.
- the present invention is not limited to the embodiments and examples described in the specification, and includes other embodiments, examples, and modified examples. It will be apparent to those skilled in the art from the technical idea. For example, when multiple panel heaters are provided, multiple panel heaters generate heat when the temperature difference in the housing relative to room temperature is large, and the number of panel heaters that generate heat decreases as the temperature difference in the housing relative to room temperature decreases. good.
- the heating device is not limited to a heater.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Studio Devices (AREA)
- Cameras Adapted For Combination With Other Photographic Or Optical Apparatuses (AREA)
Abstract
環境温度の変化に対してのフォーカスズレを抑制する撮像装置を提供する。撮像装置は、筐体と、取り外し可能に前記筐体内に配置され、固定焦点の光学系と撮像素子とを備えた撮像ユニットと、前記撮像ユニットと前記筐体との間に配置された加熱装置と、前記筐体内の温度が閾値以下となったことを検出して前記加熱装置を動作させる制御機と、を有する。
Description
本発明は、撮像装置に関し、特に屋外で用いられると好ましい撮像装置に関する。
屋外に設置されて被写体を撮像することにより、監視性能を発揮できるカメラが既に実用化されている。しかるに、屋外にカメラを設置する場合、気温変化によって環境温度も大きく変化することがあり、それによりカメラに使用する部品の熱膨張などにより、フォーカスがずれてしまう恐れがある。又、屋内であっても温度変化が激しい場所もあり、そのような場所にカメラを設置することで同様にフォーカスズレが生じることがある。
これに対し、カメラを頑丈な筐体内に収容して密閉することで、カメラ周囲の雰囲気温度の変化を抑制することもできるが、その場合でも時間経過により徐々に雰囲気温度が変化するから、各部の熱膨張等に起因したフォーカスズレを完全に防ぐことはできないといえる。
一方、カメラにオートフォーカス機能を持たせれば、レンズ位置を光軸方向に調整することでフォーカスズレを適宜補正することはできる。しかしながら、オートフォーカス機能を持たせるためには、レンズ駆動用のアクチュエータを含む駆動機構を搭載しなくてはならないが、長期の使用によって故障する等のリスクがある。駆動機構が故障した場合において、例えばサービスマンがアクセス困難な場所にカメラが設置されていると、復帰までに時間がかかるという問題がある。そこで、オートフォーカスのための駆動機構を省略して信頼性を高めるため,かかるカメラに固定焦点の光学系を持たせたいという要請がある。又、駆動機構を省略すれば,カメラの低コスト化や小型化に貢献できる。
かかる問題に対し、特許文献1には、異なる線膨張係数を持った材料をレンズ環に用いる事で、固定焦点、ズームレンズに依らずフォーカス性能を維持することができるとされる技術が開示されている。これによりプロジェクタのような調整後、長時間使うような場合にも適応できるとされる。
しかしながら、異なる線膨張係数に設定したレンズ環を用いたとしても、完全にフォーカスズレをなくすことは困難である。なぜなら実使用上において、雰囲気温度は安定せず、各部の温度は不均一となることが多いから、実際の部品の熱膨張はシミュレーションや実験とは異なることが多く、期待した性能を得ることが困難だからである。特にFナンバーの小さい、いわゆる明るいレンズを使用した場合、被写界深度が浅くなり、温度に対しての感度も高くなるため、温度によるフォーカスズレが顕著に生じてしまうことから、かかる不具合を固定焦点の光学系で有効に解消することが望まれている。
本発明は、このような問題点に鑑みてなされたものであり、環境温度の変化に対してのフォーカスズレを抑制する撮像装置を提供することを目的とする。
上記課題を解消するために、本発明の撮像装置は、
筐体と、
取り外し可能に前記筐体内に配置され、固定焦点の光学系と撮像素子とを備えた撮像ユニットと、
前記撮像ユニットと前記筐体との間に配置された加熱装置と、
前記筐体内の温度が閾値以下となったことを検出して前記加熱装置を動作させる制御機と、を有するものである。
筐体と、
取り外し可能に前記筐体内に配置され、固定焦点の光学系と撮像素子とを備えた撮像ユニットと、
前記撮像ユニットと前記筐体との間に配置された加熱装置と、
前記筐体内の温度が閾値以下となったことを検出して前記加熱装置を動作させる制御機と、を有するものである。
本発明によれば、環境温度の変化に対してのフォーカスズレを抑制する撮像装置を提供することができる。
以下、本発明の実施形態を、図面を参照して説明する。図1は、本実施形態にかかる撮像装置を収容する筐体の外観を示す斜視図である。図2は、筐体から蓋を取り外して、撮像ユニットを収容する状態を示す斜視図であるが、内部を透視した状態で示している。図3は、撮像装置の光軸方向の断面図である。
図1において、比較的頑丈な筐体10は、四角い槽状に形成された下部11と、下部11の上部を覆う蓋12とを有する。下部11の側面には開口11aが形成され、開口11aには透明な窓13が取り付けられている。下部11に蓋12を取り付けることで、筐体10の内部空間は密閉されることとなる。
図2において、蓋12を開放した状態で、上部から撮像ユニット20を挿入でき、又取り外すこともできるようになっている。撮像ユニット20は、不図示のねじ等により下部11に固定される。取り付けられた状態で、撮像ユニット20の光学系の光軸が、窓13を通過するようになっている。更に,取り付けられた撮像ユニット20の両側と後端側における下部11の側面との間には、加熱装置としてのパネルヒーター14が3枚、配置されており、電源回路15(図3)からの電力により加熱されるようになっている。筐体10と撮像ユニット20とで撮像装置を構成する。撮像ユニット20の各部、及びパネルヒーター14、電源回路15は、内蔵された電池から給電されても良いし、外部電源から電力を供給されても良い。
図3において、撮像ユニット20は、一点鎖線で囲んで示す構成であり、具体的には固定焦点の光学系21(点線で示す)と、撮像系22(点線で示す)と、ファンユニット23とを有し、それら周囲を板金24で覆っている。ファンユニット23は、密閉された筐体10内の空気を撹拌して、温度の均一化を図るものである。
図4は、筐体10内の構成を簡略化して示す図である。光学系21は、それぞれ単結晶シリコン製のレンズ21a及びレンズ21b(ここではFナンバー1.5)と、これらを保持するアルミニウム製の鏡胴21cとを有している。一方、撮像系22は、赤外光を透過するフィルター22aと、撮像素子22bとを有する。撮像素子22bは、赤外帯域の光を受光して画像信号を出力する赤外センサであると好ましいが,それに限られない。レンズ21a及びレンズ21bにシリコンを用いることで、温度変化に対する屈折率変化を小さく抑えることができるが、例えばガラスを用いてもよい。筐体10に取り付けられた窓13を介して入射した被写体光は、レンズ21a及びレンズ21bを介して集光され、フィルター22aを通過することで赤外成分以外を除去されて、撮像素子22bの撮像面に入射する。それに応じて撮像素子22bは、処理部18に画像信号を出力することができるから、処理部18により処理することで赤外像を形成することができる。尚、処理部18は、筐体10の輻射熱により撮像素子22bの出力信号において生じるノイズ成分を補正する為の係数を、内蔵メモリに記憶して、これを適宜用いて補正を行うことが好ましい。また処理部18は、筐体10の内部に設けても良いし、筐体10の外部に設けても良い。
電源回路15は、光学系21の近傍に配置されたサーモスタット16のオンオフ動作に応じて電力供給/遮断を切り替える。電源回路15とサーモスタット16により制御機を構成する。具体的には、筐体10内の雰囲気温度が閾値以下になるとサーモスタット16がオン動作して、電源回路15は、パネルヒーター14に給電するようになっている。
ところで、撮像ユニット20を収容した筐体10を屋外等に設置した場合、環境温度の変化に曝されることとなる。それに伴い、光学系21に温度変化が生じると、フォーカスズレが発生するという問題がある。この現象は、温度変化により(a)レンズ21a、21b間隔、及びレンズ21bと撮像素子22b間が変化し、(b)レンズ21a、21bの形状が変化し、(c)レンズ21a、21bの屈折率が変化すること等が要因としてあげられる。
例えば図5(a)に示すベストフォーカスの状態から温度が下がれば、図5(b)に示すように後ピンの状態となり、一方、ベストフォーカスの状態から温度が上がれば、図5(c)に示すように前ピンの状態となる。ここで、Fナンバーが大きければ、比較的深い被写界深度を確保できるので、温度変化による多少のフォーカスズレは許容されるが、本実施形態のようにFナンバーが小さい光学系21を用いる場合、フォーカスズレが顕著に生じる恐れがある。
一方、筐体10内の温度が目標値近傍で安定していれば、フォーカスズレが問題になることは少ない。そこで、筐体10内の温度調整について検討する。ここで、目標値に対して両方向に温度調整を行おうとすると、加熱装置と冷却装置の双方が必要になり、コストが増大し、撮像装置の大型化を招く。そこで加熱装置のみを設けて、温度調整を行うこととする。その理由は、冷却装置に比べて加熱装置の方が簡素な構成にできること、及び赤外線センサは性能維持のために常温以上に保つことが望ましいからである。よって、常温以上、想定される最高温度以下の範囲の中央を目標値として使用することで、固定焦点の光学系であっても使用環境下においてある一定のフォーカス性能を保つようにする。
図6は、筐体内温度と撮像素子から得られる画像信号のコントラスト値との関係(フォーカス特性)の一例を示す図である。図6において、-20℃から+50℃までの環境温度の範囲内で撮像装置を使用することとする。かかる場合、常温を+20℃とした時に、それから最高温度+50℃までの範囲の中央値である35℃の時にコントラスト値が最大(ベストフォーカス状態)となり、且つ+20℃及び+50℃の際に、コントラスト値が閾値TH以上となる画像信号が得られるように、光学系21を設計する。つまり、ベストフォーカス状態は、閾値である+20℃を超えて+50℃までの所定範囲内(ここでは+35℃)に存在する。
光学系21が図6に示すようなフォーカス特性を有する場合、筐体10内の温度は+20℃から+50℃に維持することで、フォーカスズレを抑えることができる。従って、筐体10内の温度が+20℃以下となったときに、サーモスタット16が作動するようにすれば、それによりパネルヒーター14を発熱させて、筐体10内の温度が+20℃となるように調整を行うことができる。一方、筐体10内の温度が+20℃以上となれば、適切なコントラスト値を得ることができるので、パネルヒーター14の発熱は不要となる。
サーモスタット16による温度制御動作を,図7のフローチャートを参照して具体的に説明する。図7のステップS1において、温度制御を開始する。続くステップS2でサーモスタット16のオンオフ動作により、筐体10内の温度が閾値(ここでは+20℃)以下であるか否かに応じて電源回路15の切り替えを行う。筐体10内の温度が閾値(ここでは+20℃)以下である場合、サーモスタット16がオン動作して、ステップS3で電源回路15はパネルヒーター14に給電し発熱させる。これに対し、筐体10内の温度が閾値(ここでは+20℃)を超えている場合、サーモスタット16がオフ動作して、ステップS4で電源回路15はパネルヒーター14の給電を中断し発熱を停止させる。その後、ステップS5で、温度制御を終了しない限り、フローをステップS2へと戻し、同様な動作を行うこととなる。一方、電源スイッチをオフするなど温度制御が終了すれば、電源回路15からパネルヒーター14への給電を中断し動作を終了する。
本実施形態を用いれば、ある温度(ここでは常温)以上を保つのみで、必要なフォーカス性能を担保できるので、複雑な温度制御を用いて異なる素材による熱膨張を加味してフォーカスを調整する手段などを設ける必要がなく、構成を簡素化できる。特に一般的な赤外センサは、環境温度によりセンサ出力の精度に大きく影響するという特性を持つため、常に常温以上を保つことが望ましく、低温環境下においても筐体内の温度を常に常温以上に保つ制御が有効である。よって、赤外カメラを用いた撮像装置に本実施形態を適用することで、使用する環境温度全域をカバーできるようフォーカスの調整が可能となり、赤外センサの特性にも適した制御を実現することができ、非常に効果がある。
更に本実施形態によれば、光学系21を固定焦点とすることで、コストを抑えて信頼性を確保することができる。又、サーモスタット16のオン動作によりパネルヒーター14を適切なタイミングで発熱させることで、筐体10内を一定の温度範囲に維持でき、フォーカスズレを適切に抑えることができる。特に、パネルヒーター14とサーモスタット16との単純な組み合わせにより温度制御を実現できるので、コストを抑制でき、複雑な制御も不要となるので好ましい。又、撮像装置には加熱装置のみ設けることで、コストを抑えて小型化を図ることができる。
(実施例)
以下、本発明者らが検討を行った実施例について説明する。表1は、実施例の光学系において、目標値から温度を上下させて温度差Δtを与えた際のデフォーカス量(ベストフォーカスに対するフォーカスズレの量)を求めたものである。
以下、本発明者らが検討を行った実施例について説明する。表1は、実施例の光学系において、目標値から温度を上下させて温度差Δtを与えた際のデフォーカス量(ベストフォーカスに対するフォーカスズレの量)を求めたものである。
図8は、表1の結果に基づいて、目標値に対する実際の温度との差Δtと、デフォーカス量との関係をプロットし、線でつなげたグラフである。実施例の光学系を用いたとき、デフォーカス量が±0.07mm程度であれば、必要なコントラスト値を得る事ができることが分かっている。一方、上述したようにデフォーカス量は環境温度に対応する。この光学系においては、目標値に対して温度が±18℃で変化したとき、デフォーカス量が±0.07mmになることが分かった。
つまり、実施例の光学系を用いて撮像装置を構成する場合、常温を+20℃としたときに、環境温度が+38℃でベストフォーカスとなるように各部調整を行えば良い。かかる場合、撮像装置の使用可能な最高温度を+56℃とすることができる。
これに対し、同じ実施例の光学系を、平均気温がより低く寒冷地のような、例えば常温が+15℃の環境で使用する場合には、環境温度が+33℃でベストフォーカスとなるように各部調整を行えば良い。かかる場合、撮像装置の使用可能な最高温度を+51℃とすることができるが、パネルヒーターの加熱を+15℃以下で行う制御となる。
本発明は、明細書に記載の実施形態や実施例に限定されるものではなく、他の実施形態・実施例・変形例を含むことは、本明細書に記載された実施形態や実施例や技術思想から本分野の当業者にとって明らかである。例えばパネルヒーターを複数設けた場合、常温に対する筐体内温度差が大きい場合に複数のパネルヒーターを発熱させ、常温に対する筐体内温度差が小さくなるにつれて、発熱させるパネルヒーターの数を減らすようにしても良い。加熱装置はヒーターに限定されない。
10 筐体
11 下部
11a 開口
12 蓋
13 窓
14 パネルヒーター
15 電源回路
16 サーモスタット
18 処理部
20 撮像ユニット
21 光学系
21a レンズ
21b レンズ
21c 鏡胴
22 撮像系
22a フィルター
22b 撮像素子
23 ファンユニット
24 板金
11 下部
11a 開口
12 蓋
13 窓
14 パネルヒーター
15 電源回路
16 サーモスタット
18 処理部
20 撮像ユニット
21 光学系
21a レンズ
21b レンズ
21c 鏡胴
22 撮像系
22a フィルター
22b 撮像素子
23 ファンユニット
24 板金
Claims (6)
- 筐体と、
取り外し可能に前記筐体内に配置され、固定焦点の光学系と撮像素子とを備えた撮像ユニットと、
前記撮像ユニットと前記筐体との間に配置された加熱装置と、
前記筐体内の温度が閾値以下となったことを検出して前記加熱装置を動作させる制御機と、を有する撮像装置。 - 前記加熱装置はヒーターであり、前記制御機はサーモスタットを含む請求項1に記載の撮像装置。
- 前記撮像ユニットの光学系は、前記閾値を超えた所定範囲の温度にて被写体に対してベストフォーカス状態となる請求項1又は2に記載の撮像装置。
- 前記光学系のレンズはシリコン製である請求項1~3のいずれかに記載の撮像装置。
- 前記撮像素子は赤外帯域に感度を持つ請求項1~4のいずれかに記載の撮像装置。
- 更に前記撮像ユニットで取得した信号を処理する処理部を有し、前記処理部は、前記筐体の輻射熱により前記撮像素子の出力信号において生じるノイズ成分を補正する為の係数を記憶する請求項1~5のいずれかに記載の撮像装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017118490 | 2017-06-16 | ||
JP2017-118490 | 2017-06-16 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018230223A1 true WO2018230223A1 (ja) | 2018-12-20 |
Family
ID=64660898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/018499 WO2018230223A1 (ja) | 2017-06-16 | 2018-05-14 | 撮像装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2018230223A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021157167A (ja) * | 2020-02-18 | 2021-10-07 | アクシス アーベー | ヒーターを有するモニタリングカメラ |
CN116887028A (zh) * | 2023-06-20 | 2023-10-13 | 信扬科技(佛山)有限公司 | 摄像模组及电子设备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003232976A (ja) * | 2002-02-08 | 2003-08-22 | Konica Corp | 撮影装置 |
JP2006133617A (ja) * | 2004-11-08 | 2006-05-25 | Matsushita Electric Ind Co Ltd | 反射防止構造体を有する部材およびその製造方法 |
JP2008252906A (ja) * | 2008-04-21 | 2008-10-16 | Olympus Corp | 内視鏡装置 |
JP2014087002A (ja) * | 2012-10-26 | 2014-05-12 | Canon Inc | 撮像装置およびその制御方法 |
-
2018
- 2018-05-14 WO PCT/JP2018/018499 patent/WO2018230223A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003232976A (ja) * | 2002-02-08 | 2003-08-22 | Konica Corp | 撮影装置 |
JP2006133617A (ja) * | 2004-11-08 | 2006-05-25 | Matsushita Electric Ind Co Ltd | 反射防止構造体を有する部材およびその製造方法 |
JP2008252906A (ja) * | 2008-04-21 | 2008-10-16 | Olympus Corp | 内視鏡装置 |
JP2014087002A (ja) * | 2012-10-26 | 2014-05-12 | Canon Inc | 撮像装置およびその制御方法 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021157167A (ja) * | 2020-02-18 | 2021-10-07 | アクシス アーベー | ヒーターを有するモニタリングカメラ |
JP7104820B2 (ja) | 2020-02-18 | 2022-07-21 | アクシス アーベー | ヒーターを有するモニタリングカメラ |
CN116887028A (zh) * | 2023-06-20 | 2023-10-13 | 信扬科技(佛山)有限公司 | 摄像模组及电子设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9028073B2 (en) | Projection apparatus | |
US10197892B2 (en) | Image pickup apparatus resistant to environments, and image monitoring system | |
JP4634752B2 (ja) | 像ぶれ補正機能を備えたカメラ | |
CN101676790B (zh) | 照相机主体及具有其的摄像装置 | |
JP2006322981A (ja) | 投射光学系ユニット及びそれを用いた投射型画像表示装置 | |
SE532353C2 (sv) | Anordning för avbildning inom IR-området | |
WO2018230223A1 (ja) | 撮像装置 | |
CN105319721A (zh) | 显示装置、视场显示系统以及用于驱动这种显示装置的方法和装置 | |
JP2011209394A (ja) | プロジェクター及び焦点調整方法 | |
JP5779910B2 (ja) | 赤外線カメラ及び焦点位置補正方法 | |
JP2019022029A (ja) | 撮像装置 | |
JP5077666B2 (ja) | プロジェクタ | |
JP2007279695A (ja) | 自動合焦点装置 | |
US8873945B2 (en) | Image pickup apparatus | |
JP2010213000A (ja) | 電子カメラ | |
JP6862222B2 (ja) | アダプタおよびカメラシステム | |
JP5379982B2 (ja) | 撮像装置 | |
JP2011209393A (ja) | プロジェクター | |
JP2015023351A (ja) | 撮像装置 | |
JPH05103255A (ja) | レンズ装置のピント補正機構 | |
US5260730A (en) | Optical overhead projector for electronic images | |
KR102170475B1 (ko) | 광학부재 및 이를 포함하는 카메라 모듈 | |
CN111443556B (zh) | 投影机及其焦距调整方法 | |
JP2021047372A (ja) | 撮像装置、及び撮像素子の傾き調整方法 | |
JP2012113015A (ja) | 絞り装置及び光学機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18818851 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18818851 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |