WO2018230034A1 - レンズ系、カメラシステム及び撮像システム - Google Patents

レンズ系、カメラシステム及び撮像システム Download PDF

Info

Publication number
WO2018230034A1
WO2018230034A1 PCT/JP2018/004775 JP2018004775W WO2018230034A1 WO 2018230034 A1 WO2018230034 A1 WO 2018230034A1 JP 2018004775 W JP2018004775 W JP 2018004775W WO 2018230034 A1 WO2018230034 A1 WO 2018230034A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
image
lens system
optical axis
free
Prior art date
Application number
PCT/JP2018/004775
Other languages
English (en)
French (fr)
Inventor
善夫 松村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP18818135.8A priority Critical patent/EP3640700A4/en
Priority to CN201880037456.1A priority patent/CN110730920B/zh
Priority to JP2019525067A priority patent/JP6607426B2/ja
Priority to KR1020197036342A priority patent/KR20200017404A/ko
Publication of WO2018230034A1 publication Critical patent/WO2018230034A1/ja
Priority to US16/707,997 priority patent/US11327278B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/64Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having more than six components
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/0045Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having five or more lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/04Reversed telephoto objectives
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/08Anamorphotic objectives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture

Definitions

  • the present disclosure relates to a lens system, a camera system, and an imaging system.
  • An image formed by a lens that is not a central projection method is broken from a rectangle, and when a rectangular image sensor is used, the optical image and the image sensor do not overlap with each other, and the area of the photosensitive surface that is not used increases.
  • Patent Document 1 discloses a method of capturing a panoramic image using a rectangular image sensor.
  • Patent Document 1 discloses that a circular image is formed into a rectangular image by using a circular lens as a fisheye objective lens, and is formed on a rectangular imaging device.
  • a lens system capable of enlarging a subject in the center near the optical axis while effectively utilizing the area of the photosensitive surface of a rectangular image sensor, and a camera system and an imaging system including the lens.
  • the lens system of the present disclosure is a lens system that forms an image on a rectangular imaging element disposed on the optical axis, and includes a first free-form surface lens that is asymmetric with respect to the optical axis.
  • the free-form surface of the first free-form surface lens is an intersection of a circle separated from the optical axis by a predetermined ratio to the shortest image height and a first surface passing through the optical axis and parallel to the long side of the image sensor.
  • the camera system according to the present disclosure includes the lens system according to the present disclosure, and a rectangular imaging device disposed at a position where the lens system forms an image on the optical axis.
  • the imaging system according to the present disclosure includes the lens system according to the present disclosure, a rectangular imaging element disposed at a position where the lens system forms an image on the optical axis, and an image processing unit that processes an image generated by the imaging element. Prepare.
  • the present invention it is possible to realize a lens system that enlarges the subject in the center near the optical axis while forming a substantially rectangular image, and a camera system and an imaging system including the lens system.
  • Lens arrangement diagram showing an infinitely focused state of the lens system according to Embodiment 1 Lens arrangement diagram showing infinite focus state of lens system according to Embodiment 2
  • Lens arrangement diagram showing an infinitely focused state of the lens system according to Embodiment 3 Schematic configuration diagram of a camera system according to Embodiment 4
  • Schematic configuration diagram of an imaging system according to Embodiment 5 Aberration diagram showing spherical aberration and field curvature of infinitely focused state of lens system according to Numerical Example 1 The figure which shows the relationship between the field angle of an infinite focus state of a lens system which concerns on Numerical Example 1, and an image point.
  • FIG. 1 is a layout diagram of a lens system according to Embodiment 1, and represents an infinitely focused state.
  • FIG. 1A is a YZ cross section
  • FIG. 1B is an XZ cross section, and includes a lens system 111 having eight lens elements, and a rectangular imaging element 102 having a short side and a long side.
  • the X direction is a direction parallel to the long side of the image sensor 102
  • the Y direction is a direction parallel to the short side direction of the image sensor 102
  • the Z direction is a direction parallel to the optical axis.
  • the YZ cross section is a plane including the optical axis and parallel to the Y direction and the Z direction.
  • the XZ cross section is a plane including the optical axis and parallel to the X direction and the Z direction.
  • the lens system 111 includes five lens elements L1 to L5, an aperture stop A, and three lens elements L6 to L8 in order from the object side to the image plane side. Prepare.
  • the imaging position of the lens system 111 is the image plane of the image sensor 102.
  • the reference numerals are omitted.
  • the lens system 111 includes, in order from the object side to the image plane side, a negative meniscus lens element L1 having a convex surface directed toward the object side, a biconcave lens element L2, a biconcave lens element L3, Convex lens element L4, positive meniscus lens element L5 having both aspherical surfaces with the convex surface facing the object side, aperture stop A, biconvex lens element L6, and image surface side
  • a negative meniscus lens element L7 having a convex surface and a positive meniscus lens element L8 having a convex surface facing the object side.
  • the lens element L6 and the lens element L7 are cemented.
  • the lens element L1 is an example of a first lens element
  • the lens element L2 is an example of a second lens element.
  • the lens element L3 and the lens element L8 are both XY polynomial free-form surfaces on the object side and the image plane side.
  • the free-form surface is marked with *.
  • the lens element L3 is an example of a first free-form surface lens
  • the lens element L8 is an example of a second free-form surface lens.
  • the free-form surface on the image plane side of the lens element L3 includes a circle separated from the optical axis by a predetermined ratio to the shortest image height, and an XZ plane (first surface) passing through the optical axis and parallel to the long side of the image sensor.
  • the free-form surface on the image plane side of the lens element L3 is at all the intersections with the XZ plane and the optical axis. It has a negative refracting power with respect to parallel rays and has a positive refracting power with respect to rays parallel to the optical axis at all intersections with the YZ plane.
  • the surface data of each lens element will be described later.
  • the shape of the surface of the free-form surface lens and the aspherical lens is expressed by the shape in the vicinity (vertex) of the optical axis in the Y direction.
  • FIG. 2 is a layout diagram of lens systems according to the second embodiment.
  • 2A is a YZ cross section
  • FIG. 2B is an XZ cross section, showing a lens system 121 composed of eight lens elements and a rectangular imaging element 102 having short and long sides. Yes.
  • the reference numerals are omitted.
  • the lens system 121 of the second embodiment has the same number of lens elements, types, and arrangement order as the lens system 111 of the first embodiment, but the surface data of the lens system elements L1 to L8 is different. Differences in the plane data will be described later.
  • the lens element L1 is an example of the first lens element
  • the lens element L2 is an example of the second lens element
  • the lens element L3 is an example of the first free-form surface lens
  • the lens element L8 is the first lens element L8. It is an example of a 2 free-form surface lens.
  • the free curved surface on the image plane side of the lens element L3 has negative refractive power with respect to a light ray parallel to the optical axis at all intersections with the XZ plane, and all intersections with the YZ plane. Thus, it has a positive refractive power with respect to light rays parallel to the optical axis.
  • FIG. 3 is a layout diagram of lens systems according to the third embodiment.
  • 3A is a YZ cross section
  • FIG. 3B is an XZ cross section, showing a lens system 131 having eight lens elements and a rectangular imaging element 102 having short and long sides. Yes.
  • the reference numerals are omitted.
  • the lens system 131 of the third embodiment has the same number of lens elements as the lens system 111 of the first embodiment, but the type of the lens element L2 and the surface data of the lens system elements L1 to L8 are different.
  • the lens element L2 has a negative meniscus shape with a convex surface facing the object side. Differences in the plane data will be described later.
  • the lens element L1 is an example of the first lens element
  • the lens element L2 is an example of the second lens element
  • the lens element L3 is an example of the first free-form surface lens
  • the lens element L8 is the first lens element L8. It is an example of a 2 free-form surface lens.
  • the free curved surface on the image plane side of the lens element L3 has negative refractive power with respect to a light ray parallel to the optical axis at all intersections with the XZ plane, and all intersections with the YZ plane. Thus, it has a positive refractive power with respect to light rays parallel to the optical axis.
  • the lens systems according to Embodiments 1 to 3 have a plurality of lens elements and form an image on a rectangular imaging element 102 having a short side and a long side.
  • the lens system includes a free-form surface lens that is rotationally asymmetric with respect to the optical axis as a lens element, and includes a plurality of lens elements, an aperture stop, and a plurality of lens elements in order from the object side to the image plane side. ing. With this configuration, it is possible to form a substantially rectangular image close to a rectangle.
  • the lens systems according to Embodiments 1 to 3 have a configuration having at least three or more lens elements that are rotationally symmetric with respect to the optical axis. With this configuration, it is possible to reduce the number of free-form surface lenses and to reduce the performance bias depending on the direction. Further, the lens systems according to Embodiments 1 to 3 have an advantage that the calculation time can be shortened at the time of design.
  • the lens systems according to Embodiments 1 to 3 are configured to include, in order from the object side, a lens element L1 that is a meniscus having a negative power convex toward the object side, and a lens element L2 that has a negative power. .
  • a lens element L1 that is a meniscus having a negative power convex toward the object side
  • a lens element L2 that has a negative power.
  • the lens systems according to Embodiments 1 to 3 are fisheye lenses having a half angle of view of 80 ° or more, they can cover a wide angle of view. In general, in the case of a fisheye lens, it is difficult to form an image near the diagonal of the image sensor. However, by using the free-form surface lens according to the present disclosure, it is possible to form an image near the diagonal of the image sensor.
  • a lens system that forms an image on a rectangular imaging device arranged on the optical axis includes a first free-form surface lens that is asymmetric with respect to the optical axis.
  • the free-form surface of the first free-form surface lens is an intersection of a circle separated from the optical axis by a predetermined ratio to the shortest image height and an XZ plane passing through the optical axis and parallel to the long side of the image sensor.
  • the predetermined ratio with respect to the shortest image height is preferably 40% to 80%, and more preferably 60%.
  • the shortest image height indicates the shortest of the distance on the image plane from the image point by the light beam perpendicularly incident on the image sensor 102 to the end of the image circle formed by the lens system.
  • the image sensor 102 has the shortest image height in the short side direction.
  • the image at the center of the image circle is enlarged near the optical axis, and a large subject is photographed near the optical axis, leading to a high detection / recognition rate. Is possible. Furthermore, it is possible to enlarge the image circle of the fisheye lens, which is normally circular, particularly in the long side direction.
  • a portion where the refractive power of the free-form surface is reversed between positive and negative a good image enlargement effect can be obtained.
  • the portion where the refractive power is reversed between positive and negative is located at a distance of 40% to 80% (more preferably 60%) of the shortest image height in the radial direction from the optical axis. can get.
  • the first free-form surface lens is configured to detect light rays parallel to the optical axis at the intersection of a circle separated from the optical axis by a predetermined ratio to the shortest image height and the XZ plane.
  • the lens system having the basic configuration of the present embodiment preferably satisfies the following condition (1).
  • ⁇ LONG > 60 ° (1) here, ⁇ LONG : Maximum half field angle in the long side direction of the image sensor Condition (1) is a condition for defining the half field angle of the lens system. If the lower limit of the condition (1) is not reached, the angle of view of the lens system becomes narrow, the image circle can be close to a rectangle without having the basic configuration of the present embodiment, and the area of the photosensitive surface of the rectangular image sensor 102 can be reduced. It becomes easy to use effectively and deviates from the intention of the present application. In addition, it becomes difficult to control spherical aberration.
  • a lens system having the basic configuration of the present embodiment such as the lens systems according to Embodiments 1 to 3, preferably satisfies the following condition (2).
  • D LSHORT Long-side direction between an image point with respect to incident light in the long-side direction of the image sensor and an image point with respect to incident light perpendicular to the image-capturing element having an angle of view equal to the maximum half field angle in the short-side direction of the image-capturing element
  • D SHORT Maximum distance in the short side direction between the image point with respect to incident light having the maximum half angle of view in the short side direction of the image sensor and the image point with respect to incident light perpendicular to the image sensor.
  • the lens system having the basic configuration of the present embodiment satisfies the following condition (3).
  • ⁇ LONG Maximum half angle of view in the long side direction of the image sensor
  • ⁇ SHORT Maximum half angle of view in the short side direction of the image sensor
  • D LLONG Image point and imaging for incident light of the maximum half angle of view in the long side direction of the image sensor
  • D SSHORT The image point with respect to the incident light having the maximum half angle of view in the short side direction of the image sensor and the image point with respect to incident light perpendicular to the image sensor
  • the maximum distance condition (3) in the short side direction is a condition for defining the ratio between the maximum half field angle and the image height in the short side direction and the long side direction of the image sensor.
  • the angle of view in the short side direction becomes too wide compared to the angle of view in the long side direction, making it difficult to control imaging performance, particularly field curvature.
  • the image circle becomes too long in the long side direction, and it becomes difficult to effectively use the area of the photosensitive surface of the rectangular image sensor 102.
  • the upper limit of the condition (3) is exceeded, the angle of view in the long side direction becomes too wide compared to the angle of view in the short side direction, making it difficult to control the imaging performance, particularly the field curvature.
  • the image circle becomes too long in the short side direction, and it becomes difficult to effectively use the region of the photosensitive surface of the rectangular image sensor 102.
  • the lens system having the basic configuration of the present embodiment satisfies the following condition (4).
  • the lens system having the basic configuration of the present embodiment satisfies the following condition (5).
  • L Total optical length of the lens system
  • Fno. F value of the lens system
  • D LLONG Maximum distance in the long side direction between the image point with respect to the incident light having the maximum half angle of view in the long side direction of the image sensor and the image point with respect to the incident light perpendicular to the image sensor
  • the condition (5) is This is a condition that defines the relationship between the total optical length of the lens system, the F value of the lens system, and the image height in the long side direction. If the upper limit of the condition (5) is exceeded, the lens system becomes excessively large with respect to the F value of the lens system and the image circle, so that the size reduction cannot be achieved, and in addition, the control of the field curvature becomes difficult.
  • the lens system having the basic configuration of the present embodiment satisfies the following condition (6).
  • n FREE Refractive index with respect to d-line of free-form surface lens
  • Condition (6) is a condition that defines the refractive index with respect to d-line of a free-form surface lens. If the upper limit of the condition (6) is exceeded, the refractive index of the free-form surface lens becomes too high, and it becomes difficult to control astigmatism because the rays are bent sharply. This condition can be obtained even when one free-form surface lens in the lens system is satisfied, and when a plurality of free-form surface lenses are satisfied, the effect can be further achieved. .
  • the lens system having the basic configuration of the present embodiment has the aperture stop A between the object and the image sensor, and the following condition (7) Is preferably satisfied.
  • N o Number of lens elements on the object side of the aperture stop
  • N i Number of lens elements on the image plane side of the aperture stop
  • Condition (7) is a condition that defines the number of lens elements before and after the aperture stop A. is there. If the lower limit of condition (7) is not reached, the number of lens elements on the image plane side with respect to the aperture stop A will increase too much, leading to an increase in the size of the lens system in the optical axis direction. In addition, the number of lens elements on the object side is smaller than that of the aperture stop A, making it difficult to control field curvature.
  • the lens system having the basic configuration of the present embodiment has an aperture stop A between the object and the image sensor 102, and the object is more than the aperture stop A. It is preferable to have at least one first free-form surface lens on the side and at least one second free-form surface lens on the image plane side from the aperture stop A.
  • the image circle of the lens system is not included in the image sensor 102.
  • the image sensor is prevented from being included in the image sensor 102. It is possible to ensure good imaging performance on 102.
  • Each lens element constituting the lens system according to Embodiments 1 to 3 is a refractive lens element that deflects incident light by refraction (that is, a type in which deflection is performed at an interface between media having different refractive indexes).
  • Lens element a refractive lens element that deflects incident light by diffraction
  • a refractive / diffractive hybrid lens element that deflects incident light by a combination of diffractive action and refractive action
  • a refractive index that deflects incident light according to the refractive index distribution in the medium
  • Each lens system may be composed of a distributed lens element or the like.
  • Each lens constituting the lens system according to Embodiments 1 to 3 has a symmetric surface with respect to the long side or the short side of the image sensor 102, but even when an asymmetric surface is used, If the basic configuration of the present embodiment and each condition are satisfied, sufficient effects can be obtained.
  • FIG. 4 is a schematic configuration diagram of a camera system according to the fourth embodiment.
  • a camera system 100 according to Embodiment 4 includes a lens system 111, an image sensor 102 that receives an optical image formed by the lens system 111 and converts it into an electrical image signal, and a camera body 103.
  • the lens system of Embodiment 4 the lens system according to any of Embodiments 1 to 3 can be used.
  • FIG. 4 illustrates a case where the lens system 111 according to Embodiment 1 is used as the lens system.
  • a substantially rectangular image can be formed on the image sensor 102, and the photosensitive surface area of the rectangular image sensor 102 can be formed. It is possible to realize a camera system 100 that can obtain an image that effectively utilizes the above.
  • FIG. 5 is a schematic configuration diagram of an imaging system according to the fifth embodiment.
  • the imaging optical system 201 used in the imaging system 200 according to the fifth embodiment includes the lens system according to any one of the first to third embodiments, like the camera system 100 according to the fourth embodiment.
  • the image processing unit 202 By processing an image obtained by the imaging optical system 201 by the image processing unit 202, it is possible to transform and process the image into an image applicable to various applications.
  • the image processing unit 202 may be inside or outside the camera body 103 (see FIG. 4).
  • FIG. 6 is a spherical aberration diagram and an astigmatism diagram of the lens system 111 according to Numerical Example 1 in an infinitely focused state.
  • Spherical aberration SA
  • astigmatism AST-V
  • astigmatism AST-H
  • astigmatism in the diagonal direction AST-D
  • the horizontal axis represents spherical aberration
  • the vertical axis represents pupil height.
  • the solid line is the d line
  • the short broken line is the C line
  • the long broken line is the F line characteristic.
  • the horizontal axis represents astigmatism and the vertical axis represents the angle of view.
  • the solid line is the characteristic of the YZ plane (y direction in the figure), and the broken line is the characteristic of the XZ plane (x direction in the figure).
  • Embodiment 1 uses only the even terms of x and y in the XY polynomial, the astigmatism AST-D in the diagonal direction is the same in any direction because it is symmetric with respect to the x axis and the y axis. Become.
  • FIG. 7 is a diagram showing the relationship between the angle of view and the image point in the infinitely focused state of the lens system 111 according to Numerical Example 1.
  • FIG. 7 plots image points every 10 ° of the angle of view in the first quadrant of the image plane with the optical axis as the origin (0, 0).
  • Other quadrants have a relationship with the first quadrant that is symmetric with respect to the vertical and horizontal axes. It can be seen that the shape of the image plane is enlarged compared to a normal rotationally symmetric lens, and the area of the photosensitive surface of the rectangular image sensor 102 can be effectively utilized. Further, it can be seen that the central image near the optical axis can be enlarged more than the peripheral image away from the optical axis, as particularly noticeable in the X image height direction.
  • the lens system 111 of Numerical Example 1 corresponds to Embodiment 1 shown in FIG.
  • Surface data of the lens system 111 of Numerical Example 1 are shown in Table 1, various data are shown in Table 2, and the fifth, sixth, ninth, tenth, fifteenth, and sixteenth surfaces are aspheric.
  • Free surface data is shown in Table 3, Table 4, Table 5, Table 6, Table 7 and Table 8, respectively.
  • FIG. 8 is a spherical aberration diagram and an astigmatism diagram of the lens system 121 according to Numerical Example 2 in an infinitely focused state.
  • FIG. 9 is a diagram showing the relationship between the angle of view and the image point in the infinitely focused state of the lens system 121 according to Numerical Example 2.
  • the shape of the image plane is enlarged and the area of the photosensitive surface of the rectangular image sensor 102 can be effectively used as compared with a normal rotationally symmetric lens.
  • the lens system 121 of Numerical Example 2 corresponds to the second embodiment shown in FIG.
  • Surface data of the lens system 121 of Numerical Example 2 are shown in Table 9, various data are shown in Table 10, and the fifth, sixth, ninth, tenth, fifteenth, and sixteenth surfaces are aspheric. Free surface data is shown in Table 11, Table 12, Table 13, Table 14, Table 15, and Table 16, respectively.
  • FIG. 11 is a diagram showing the relationship between the field angle and the image point in the infinitely focused state of the lens system 131 according to Numerical Example 3.
  • the shape of the image surface is enlarged and the area of the photosensitive surface of the rectangular image sensor 102 can be effectively used as compared with a normal rotationally symmetric lens.
  • the lens system 131 of Numerical Example 3 corresponds to Embodiment 3 shown in FIG.
  • Surface data of the lens system 131 of Numerical Example 3 are shown in Table 17, various data are shown in Table 18, and the fifth, sixth, ninth, tenth, fifteenth and sixteenth surfaces are aspherical.
  • Free surface data is shown in Table 19, Table 20, Table 21, Table 22, Table 23, and Table 24, respectively.
  • Table 25 shows the corresponding values for each condition in the lens system of each numerical example.
  • the lens system according to the present embodiment is applicable to digital still cameras, digital video cameras, mobile phone device cameras, PDA (Personal Digital Assistance) cameras, surveillance cameras in surveillance systems, web cameras, in-vehicle cameras, etc. It is suitable for a photographing optical system that requires high image quality, such as a digital still camera system and a digital video camera system.
  • the lens system according to the present embodiment is also provided in the interchangeable lens apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Lenses (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Studio Devices (AREA)

Abstract

本開示のレンズ系は、光軸に配置された矩形の撮像素子に結像するレンズ系であって、光軸に対して非対称である第1自由曲面レンズを備える。第1自由曲面レンズの自由曲面は、光軸から最短像高に対する所定の比率の長さ離れた円と、光軸を通り撮像素子の長辺に平行な第1面との交点で、光軸と平行な光線に対し負の屈折力を有し、光軸から最短像高に対する所定の比率の長さ離れた円と、光軸を通り撮像素子の短辺に平行な第2面との交点で、光軸と平行な光線に対し正の屈折力を有する。

Description

レンズ系、カメラシステム及び撮像システム
 本開示は、レンズ系、カメラシステム及び撮像システムに関する。
 中心射影方式でないレンズによって結像される像は矩形から崩れ、矩形の撮像素子を用いると、光学像と撮像素子とが重ならず使用されない感光面の領域が多くなってしまう。
 また、被写体検知・認識の観点から光軸付近の中央部の被写体を、大きく拡大して撮像素子上に結像させることが求められているが、困難であった。
 特許文献1は、長方形の画像センサによりパノラマ画像を撮像する方法を開示する。特許文献1は、魚眼対物レンズに円環レンズを用いることにより、円形画像を矩形画像にして矩形の撮像素子に結像させることを開示する。
国際公開第03/101599号
 矩形の撮像素子の感光面の領域を有効に活用しながら、光軸付近の中央部の被写体を拡大できるレンズ系、該レンズを含むカメラシステム及び撮像システムを提供する。
 本開示のレンズ系は、光軸に配置された矩形の撮像素子に結像するレンズ系であって、光軸に対して非対称である第1自由曲面レンズを備える。第1自由曲面レンズの自由曲面は、光軸から最短像高に対する所定の比率の長さ離れた円と、光軸を通り撮像素子の長辺に平行な第1面との交点で、光軸と平行な光線に対し負の屈折力を有し、光軸から最短像高に対する所定の比率の長さ離れた円と、光軸を通り撮像素子の短辺に平行な第2面との交点で、光軸と平行な光線に対し正の屈折力を有する。
 本開示のカメラシステムは、本開示の上記レンズ系と、光軸でレンズ系が結像する位置に配置された矩形の撮像素子と、を備える。
 本開示の撮像システムは、本開示の上記レンズ系と、光軸でレンズ系が結像する位置に配置された矩形の撮像素子と、撮像素子が生成する画像を処理する画像処理部と、を備える。
 本発明では、略矩形の像を結像しながら、光軸付近の中央部の被写体を拡大するレンズ系、該レンズ系を含むカメラシステム及び撮像システムを実現することができる。
実施の形態1に係るレンズ系の無限合焦状態を示すレンズ配置図 実施の形態2に係るレンズ系の無限合焦状態を示すレンズ配置図 実施の形態3に係るレンズ系の無限合焦状態を示すレンズ配置図 実施の形態4に係るカメラシステムの概略構成図 実施の形態5に係る撮像システムの概略構成図 数値実施例1に係るレンズ系の無限合焦状態の球面収差と像面湾曲を示す収差図 数値実施例1に係るレンズ系の無限合焦状態の画角と像点の関係を示す図 数値実施例2に係るレンズ系の無限合焦状態の球面収差と像面湾曲を示す収差図 数値実施例2に係るレンズ系の無限合焦状態の画角と像点の関係を示す図 数値実施例3に係るレンズ系の無限合焦状態の球面収差と像面湾曲を示す収差図 数値実施例3に係るレンズ系の無限合焦状態の画角と像点の関係を示す図
 以下、適宜図面を参照しながら、実施の形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために、提供されるのであって、これらにより請求の範囲に記載の主題を限定することは意図されていない。
 (実施の形態1)
 図1は、実施の形態1に係るレンズ系の配置図であり、無限遠合焦状態を表している。
 なお、図1の(a)はYZ断面で、図1の(b)はXZ断面で、8枚のレンズ素子を有するレンズ系111と、短辺と長辺を有する矩形の撮像素子102とを表している。X方向は撮像素子102の長辺に平行な方向、Y方向は撮像素子102の短辺方向に平行な方向、Z方向は光軸に平行な方向である。また、YZ断面は、光軸を含みY方向とZ方向に平行な平面である。XZ断面は、光軸を含みX方向とZ方向に平行な平面である。
 図1に示すように、実施の形態1に係るレンズ系111は、物体側から像面側へと順に、5枚のレンズ素子L1~L5、開口絞りA、3枚のレンズ素子L6~L8を備える。レンズ系111の結像の位置は、撮像素子102の像面となっている。図1の(b)では符号を省略している。
 さらに、レンズ系111を詳細に説明する。レンズ系111は、物体側から像面側へと順に、物体側に凸面を向けた負メニスカス形状のレンズ素子L1と、両凹形状のレンズ素子L2と、両凹形状のレンズ素子L3と、両凸形状のレンズ素子L4と、両面が非球面で形成されて物体側に凸面を向けた正メニスカス形状のレンズ素子L5と、開口絞りAと、両凸形状のレンズ素子L6と、像面側に凸面を向けた負メニスカス形状のレンズ素子L7と、物体側に凸面を向けた正メニスカス形状のレンズ素子L8とからなる。レンズ素子L6とレンズ素子L7は接合されている。ここで、レンズ素子L1は第1レンズ素子の一例であり、レンズ素子L2は第2レンズ素子の一例である。
 レンズ系111において、レンズ素子L3とレンズ素子L8は、物体側と像面側の両面がXY多項式の自由曲面である。図1において、自由曲面に*印を付している。ここで、レンズ素子L3は第1自由曲面レンズの一例であり、レンズ素子L8は第2自由曲面レンズの一例である。
 レンズ素子L3の像面側の自由曲面は、光軸から最短像高に対する所定の比率の長さ離れた円と、光軸を通り撮像素子の長辺に平行なXZ面(第1面)との交点で、光軸と平行な光線に対し負の屈折力を有し、光軸から最短像高に対する所定の比率の長さ離れた円と、光軸を通り撮像素子の短辺に平行なYZ面(第2面)との交点で、光軸と平行な光線に対し正の屈折力を有している。ここで、本実施の形態においては、最短像高に対する所定の比率は全ての比率が該当するので、レンズ素子L3の像面側の自由曲面は、XZ面との全ての交点で、光軸と平行な光線に対し負の屈折力を有し、YZ面との全ての交点で、光軸と平行な光線に対し正の屈折力を有している。各レンズ素子の面データについては後述する。なお、自由曲面レンズ及び非球面レンズの面の形状はY方向の光軸近傍(頂点)での形状で表現している。
 (実施の形態2)
 図2は、実施の形態2に係るレンズ系の配置図である。図2の(a)はYZ断面で、図2の(b)はXZ断面で、8枚のレンズ素子からなるレンズ系121と、短辺と長辺を有する矩形の撮像素子102とを表している。図2の(b)では符号を省略している。実施の形態2のレンズ系121は、実施の形態1のレンズ系111と比較して、レンズ素子の枚数、種類及び配置順が同じで、各レンズ系素子L1~L8の面データが異なる。面データの相違点については、後述する。レンズ系121において、レンズ素子L1は第1レンズ素子の一例であり、レンズ素子L2は第2レンズ素子の一例であり、レンズ素子L3は第1自由曲面レンズの一例であり、レンズ素子L8は第2自由曲面レンズの一例である。
 レンズ系121においても、レンズ素子L3の像面側の自由曲面は、XZ面との全ての交点で、光軸と平行な光線に対し負の屈折力を有し、YZ面との全ての交点で、光軸と平行な光線に対し正の屈折力を有している。
 (実施の形態3)
 図3は、実施の形態3に係るレンズ系の配置図である。図3の(a)はYZ断面で、図3の(b)はXZ断面で、8枚のレンズ素子を有するレンズ系131と、短辺と長辺を有する矩形の撮像素子102とを表している。図3の(b)では符号を省略している。実施の形態3のレンズ系131は、実施の形態1のレンズ系111と比較して、レンズ素子の枚数が同じで、レンズ素子L2の種類及び各レンズ系素子L1~L8の面データが異なる。レンズ素子L2は、物体側に凸面を向けた負メニスカス形状である。面データの相違点については、後述する。レンズ系131において、レンズ素子L1は第1レンズ素子の一例であり、レンズ素子L2は第2レンズ素子の一例であり、レンズ素子L3は第1自由曲面レンズの一例であり、レンズ素子L8は第2自由曲面レンズの一例である。
 レンズ系131においても、レンズ素子L3の像面側の自由曲面は、XZ面との全ての交点で、光軸と平行な光線に対し負の屈折力を有し、YZ面との全ての交点で、光軸と平行な光線に対し正の屈折力を有している。
 (実施の形態1~3の共通の構成)
 実施の形態1~3に係るレンズ系は、複数枚のレンズ素子を有し、短辺と長辺を有する矩形の撮像素子102に結像させる。そして、レンズ系は、レンズ素子として光軸に対して回転非対称である自由曲面レンズを含み、物体側から像面側へと順に、複数枚のレンズ素子、開口絞り、複数枚のレンズ素子を備えている。この構成により、矩形に近い略矩形の像を結像することが可能となる。
 また、実施の形態1~3に係るレンズ系は、光軸に対して回転対称なレンズ素子を少なくとも3つ以上有する構成をしている。この構成により、自由曲面レンズの枚数を少なくし、方向による性能の偏りを小さくすることができる。さらに、実施の形態1~3に係るレンズ系は、設計時に計算時間を短縮できるという利点もある。
 実施の形態1~3に係るレンズ系を構成する自由曲面レンズの全ての自由曲面は、XZ面及びYZ面に対してそれぞれ対称な形状を有しており、自由曲面の中心を判別できるので、製造時に形状の管理がしやすくできるという利点がある。
 実施の形態1~3に係るレンズ系において、物体側から順に、物体側に凸形状の負のパワーを有するメニスカスであるレンズ素子L1、負のパワーを有するレンズ素子L2を有する構成をしている。この構成により、広い角度で入射する光を集めることができるので、レンズ系を広角化しやすく、負レンズを2枚連続されることでそれぞれのパワーを小さくすることができ、製造しやすい形状にすることができるという利点がある。
 実施の形態1~3に係るレンズ系は、最も像面側にある自由曲面レンズは物体側と像面側の両面が自由曲面の構成をしているので、像高の位置制御と収差低減が行いやすくなるという利点がある。
 実施の形態1~3に係るレンズ系は、半画角が80°以上の魚眼レンズであるので、広い画角をカバーすることができる。また、一般に魚眼レンズの場合には、撮像素子の対角付近において結像することが難しい。しかしながら、本開示に係る自由曲面レンズを用いることで、撮像素子の対角付近においても結像することが可能となる。
 例えば、実施の形態1~3に係るレンズ系のように、光軸に配置された矩形の撮像素子に結像するレンズ系は、光軸に対して非対称である第1自由曲面レンズを備える。そして、第1自由曲面レンズの自由曲面は、光軸から最短像高に対する所定の比率の長さ離れた円と、光軸を通り撮像素子の長辺に平行なXZ面との交点で、光軸と平行な光線に対し負の屈折力を有し、光軸から最短像高に対する所定の比率の長さ離れた円と、光軸を通り撮像素子の短辺に平行なYZ面との交点で、光軸と平行な光線に対し正の屈折力を有することが好ましい(以下、この構成を実施の形態の基本構成という)。ここで、最短像高に対する所定の比率は、40%~80%が好ましく、より好ましくは60%である。
 ここで、最短像高とは、撮像素子102に垂直に入射する光線による像点と、レンズ系が形成するイメージサークルの端までの像面上の距離のうち、最短のものを示す。実施の形態1~3に係るレンズ系においては、撮像素子102の短辺方向に最短像高を有する。
 第1自由曲面レンズのような自由曲面を有することで、光軸付近でイメージサークル中央部の像を拡大し、光軸付近に存在する被写体を大きく撮影することで高い検知・認識率へつなげることが可能となる。さらに、通常円形となる魚眼レンズのイメージサークルを特に長辺方向に拡大することが可能となる。自由曲面の屈折力が正負逆転する箇所を有することで、良好な像の拡大効果が得られる。屈折力が正負逆転する箇所は、光軸から径方向に最短像高の40%~80%(より好ましくは60%)の長さ離れたところにあることで、さらに良好な像の拡大効果が得られる。
 本実施の形態の基本構成とは異なり、第1自由曲面レンズが、光軸から最短像高に対する所定の比率の長さ離れた円とXZ面との交点で、光軸と平行な光線に対し負の屈折力を有し、光軸から最短像高に対する所定の比率の長さ離れた円とYZ面との交点で、光軸と平行な光線に対し正の屈折力を有する自由曲面を備えない場合、矩形の撮像素子の感光面の中央領域で像を十分に拡大できない。あるいは、レンズ素子の枚数が増加し、レンズ系の大型化を招くこととなってしまう。このような自由曲面を有するレンズを作製することは困難であったが、近年の加工・成型技術の進歩に伴い、作製できるようになってきた。
 例えば、実施の形態1~3に係るレンズ系のように、本実施の形態の基本構成を有するレンズ系は、以下の条件(1)を満足することが好ましい。
  ωLONG>60° ・・・(1)
 ここで、
  ωLONG:撮像素子の長辺方向の最大半画角
 条件(1)は、レンズ系の半画角を規定するための条件である。条件(1)の下限を下回ると、レンズ系の画角が狭くなり、本実施の形態の基本構成を有しなくともイメージサークルが矩形に近くでき、矩形の撮像素子102の感光面の領域を有効活用しやすくなり、本願の意図と乖離してくる。また、球面収差の制御が困難となる。
 なお、更に以下の条件(1)’及び(1)’’の少なくとも一つを満足することにより、前記効果をさらに奏功させることができる。
  ωLONG>80° ・・・(1)’
  ωLONG>90° ・・・(1)’’
 例えば、実施の形態1~3に係るレンズ系のように、本実施の形態の基本構成を有するレンズ系は、以下の条件(2)を満足することが好ましい。
  1<DLSHORT/DSSHORT ・・・(2)
 ここで、
  DLSHORT:撮像素子の短辺方向の最大半画角と等しい画角の、撮像素子の長辺方向の入射光に対する像点と、撮像素子に垂直な入射光に対する像点との長辺方向の最大距離
  DSSHORT:撮像素子の短辺方向の最大半画角の入射光に対する像点と撮像素子に垂直な入射光に対する像点との短辺方向の最大距離
 条件(2)は、撮像素子の短辺方向の最大半画角の入射光に対する像点について、撮像素子の短辺方向の像高よりも、長辺方向の像高の方が長くなることを規定するための条件である。条件(2)の下限を下回ると、矩形の撮像素子102の感光面の領域の有効活用が困難になる。または、像面湾曲の制御が困難になる。
 なお、更に以下の条件(2)’及び(2)’’の少なくとも一つを満足することにより、前記効果をさらに奏功させることができる。
  1.2<DLSHORT/DSSHORT ・・・(2)’
  1.6<DLSHORT/DSSHORT ・・・(2)’’
 例えば、実施の形態1~3に係るレンズ系のように、本実施の形態の基本構成を有するレンズ系は、以下の条件(3)を満足することが好ましい。
  0.5<DSSHORT×ωLONG/(DLLONG×ωSHORT)<1 ・・・(3)
 ここで、
  ωLONG:撮像素子の長辺方向の最大半画角
  ωSHORT:撮像素子の短辺方向の最大半画角
  DLLONG:撮像素子の長辺方向の最大半画角の入射光に対する像点と撮像素子に垂直な入射光に対する像点との長辺方向の最大距離
  DSSHORT:撮像素子の短辺方向の最大半画角の入射光に対する像点と撮像素子に垂直な入射光に対する像点との短辺方向の最大距離
 条件(3)は、撮像素子の短辺方向と長辺方向の、最大半画角と像高の比を規定するための条件である。条件(3)の下限を下回ると、短辺方向の画角が長辺方向の画角に比較して広くなりすぎ、結像性能、特に像面湾曲の制御が困難になる。あるいはイメージサークルが長辺方向に長くなりすぎ、矩形の撮像素子102の感光面の領域の有効活用が困難になる。条件(3)の上限を上回ると、長辺方向の画角が短辺方向の画角に比較して広くなりすぎ、結像性能、特に像面湾曲の制御が困難になる。あるいはイメージサークルが短辺方向に長くなりすぎ、矩形の撮像素子102の感光面の領域の有効活用が困難になる。
 なお、更に以下の条件(3)’及び(3)’’の少なくとも一つを満足することにより、前記効果をさらに奏功させることができる。
  0.55<DSSHORT×ωLONG/(DLLONG×ωSHORT)<0.9 ・・・(3)’
  0.6 <DSSHORT×ωLONG/(DLLONG×ωSHORT)<0.8 ・・・(3)’’
 例えば、実施の形態1~3に係るレンズ系のように、本実施の形態の基本構成を有するレンズ系は、以下の条件(4)を満足することが好ましい。
  ωLONG-ωSHORT>0 ・・・(4)
 ここで、
  ωLONG:撮像素子の長辺方向の最大半画角
  ωSHORT:撮像素子の短辺方向の最大半画角
 条件(4)は、最大半画角について、撮像素子の長辺方向と短辺方向の差を規定する条件である。条件(4)の下限を下回ると、短辺方向の画角が長辺方向の画角に比較して等しい、あるいは大きくなってしまい、極めていびつな形状で結像してしまうことになり、画角あたりの解像度が長辺方向と短辺方向で大きく変わってしまう。また、球面収差が長辺方向と短辺方向で大きく変化してしまい、制御が困難になる。
 なお、更に以下の条件(4)’を満足することにより、前記効果をさらに奏功させることができる。
  ωLONG-ωSHORT>8 ・・・(4)’
 例えば、実施の形態1~3に係るレンズ系のように、本実施の形態の基本構成を有するレンズ系は、以下の条件(5)を満足することが好ましい。
  L×Fno./DLLONG<40 ・・・(5)
 ここで、
  L:レンズ系の光学全長
  Fno.:レンズ系のF値
  DLLONG:撮像素子の長辺方向の最大半画角の入射光に対する像点と撮像素子に垂直な入射光に対する像点との長辺方向の最大距離
 条件(5)は、レンズ系の光学全長とレンズ系のF値、長辺方向の像高の関係を規定する条件である。条件(5)の上限を上回ると、レンズ系のF値、イメージサークルに対してレンズ系が肥大化しすぎ、小型化を達成できず、加えて像面湾曲の制御が困難となる。
 なお、更に以下の条件(5)’及び(5)’’の少なくとも一つを満足することにより、前記効果をさらに奏功させることができる。
  L×Fno./DLLONG<30 ・・・(5)’
  L×Fno./DLLONG<25 ・・・(5)’’
 例えば、実施の形態1~3に係るレンズ系のように、本実施の形態の基本構成を有するレンズ系は、以下の条件(6)を満足することが好ましい。
  nFREE<1.7 ・・・(6)
 ここで、
  nFREE:自由曲面レンズのd線に対する屈折率
 条件(6)は、自由曲面レンズのd線に対する屈折率を規定する条件である。条件(6)の上限を上回ると、自由曲面レンズの屈折率が高くなりすぎ、急激に光線を曲げることから非点収差の制御が困難になる。なお、本条件はレンズ系の中の1枚の自由曲面レンズが満足していても効果を得られるし、複数枚の自由曲面レンズが満足している場合は、さらに効果を奏功させることができる。
 なお、更に以下の条件(6)’を満足することにより、前記効果をさらに奏功させることができる。
  nFREE<1.6 ・・・(6)’
 例えば、実施の形態1~3に係るレンズ系のように、本実施の形態の基本構成を有するレンズ系は、物体と撮像素子との間に開口絞りAを有し、以下の条件(7)を満足することが好ましい。
  -3≦N-N≦3 ・・・(7)
 ここで、
  N:開口絞りよりも物体側のレンズ素子の枚数
  N:開口絞りよりも像面側のレンズ素子の枚数
 条件(7)は、開口絞りA前後のレンズ素子の枚数差を規定する条件である。条件(7)の下限を下回ると、開口絞りAよりも像面側のレンズ素子の枚数が増えすぎ、レンズ系の光軸方向の大型化を招いてしまう。また、開口絞りAよりも物体側のレンズ素子の枚数が少なく、像面湾曲の制御が困難となる。条件(7)の上限を上回ると、開口絞りAよりも物体側のレンズ素子の枚数が増えすぎ、レンズ系の径方向への大型化を招いてしまう。また、開口絞りAよりも像面側のレンズ素子の枚数が少なく、球面収差の制御が困難となる。
 なお、更に以下の条件(7)’を満足することにより、前記効果をさらに奏功させることができる。
  -2≦N-N≦2 ・・・(7)’
 例えば、実施の形態1~3に係るレンズ系のように、本実施の形態の基本構成を有するレンズ系は、物体と撮像素子102との間に開口絞りAを有し、開口絞りAより物体側に少なくとも1枚の第1自由曲面レンズを有し、開口絞りAより像面側に少なくとも1枚の第2自由曲面レンズを有することが好ましい。本構成を採ることで、長辺方向、短辺方向、対角方向、いずれの方向でも像面湾曲を小さくすることができるという利点がある。
 例えば、実施の形態1~3に係るレンズ系のように、本実施の形態の基本構成を有するレンズ系は、レンズ系のイメージサークルが撮像素子102で包含されないことが好ましい。特に、自由曲面レンズを使用したレンズ系ではイメージサークルの端付近での解像度を確保することが設計上、ものづくり上困難であるため、イメージサークルが撮像素子102で包含されないようにすることで撮像素子102上で良好な結像性能を確保することが可能となる。
 実施の形態1~3に係るレンズ系を構成している各レンズ素子は、入射光線を屈折により偏向させる屈折型レンズ素子(すなわち、異なる屈折率を有する媒質同士の界面で偏向が行われるタイプのレンズ素子)のみで構成されているが、これに限定されるものではない。例えば、回折により入射光線を偏向させる回折型レンズ素子、回折作用と屈折作用との組み合わせで入射光線を偏向させる屈折・回折ハイブリッド型レンズ素子、入射光線を媒質内の屈折率分布により偏向させる屈折率分布型レンズ素子等で、各レンズ系を構成してもよい。特に、屈折・回折ハイブリッド型レンズ素子において、屈折率の異なる媒質の界面に回折構造を形成すると、回折効率の波長依存性が改善されるので、好ましい。
 実施の形態1~3に係るレンズ系を構成している各レンズは、撮像素子102の長辺あるいは短辺に対して対称な面を有しているが、非対称な面を使用した場合でも、本実施の形態の基本構成や、各条件を満足していれば、十分な効果を得られる。
 (実施の形態4)
 図4は実施の形態4に係るカメラシステムの概略構成図である。実施の形態4に係るカメラシステム100は、レンズ系111と、レンズ系111によって形成される光学像を受光して、電気的な画像信号に変換する撮像素子102と、カメラ本体103を含む。実施の形態4のレンズ系は、実施の形態1~3いずれかに係るレンズ系を用いることができる。図4は、レンズ系として実施の形態1に係るレンズ系111を用いた場合を図示している。
 実施の形態4では、実施の形態1~3いずれかに係るレンズ系を用いているので、撮像素子102に略矩形の像を結像させることができ、矩形の撮像素子102の感光面の領域を有効活用した画像を得ることができるカメラシステム100を実現することができる。
 (実施の形態5)
 図5は実施の形態5に係る撮像システムの概略構成図である。実施の形態5に係る撮像システム200に用いられている撮像光学系201は、実施の形態4のカメラシステム100のように、実施の形態1~3いずれかに係るレンズ系を含んでいる。撮像光学系201で得られた画像を、画像処理部202で処理することで、さまざまなアプリケーションに応用可能な画像に変形、加工することが可能となる。なお、画像処理部202はカメラ本体103(図4参照)の内部または外部のどちらにあっても良い。
 (数値実施例1)
 以下、実施の形態1に係るレンズ系111を具体的に実施した数値実施例1を説明する。なお、数値実施例1において、図や表中の長さの単位は「mm」であり、画角の単位は「°」である。また、数値実施例1において、曲率半径r、面間隔d、d線に対する屈折率nd、d線に対するアッベ数νdを示す。非球面及び自由曲面のZ軸に平行な面のサグ量zはそれぞれ、数式1及び数式2で定義している。
Figure JPOXMLDOC01-appb-M000001
 ここで
  h:径方向の高さ
  k:コーニック定数
  An:n次の非球面係数
Figure JPOXMLDOC01-appb-M000002
 ここで
  c:頂点曲率
  k:コーニック定数
  c:係数
 図6は、数値実施例1に係るレンズ系111の無限遠合焦状態の球面収差図及び非点収差図であり、左側から順に、撮像素子102の短辺方向の球面収差(SA)、非点収差(AST―V)、撮像素子102の長辺方向の非点収差(AST―H)、対角方向の非点収差(AST―D)を示す。球面収差の図において、横軸は球面収差を、縦軸は瞳高さを表している。そして、実線はd線、短破線はC線、長破線はF線の特性である。非点収差の図において、横軸は非点収差を、縦軸は画角を表している。そして、実線はYZ平面(図中、y方向)、破線はXZ平面(図中、x方向)の特性である。
 なお、実施の形態1はXY多項式のx及びyの偶数項のみを使用しているので、x軸とy軸に対して対称なので対角方向の非点収差AST-Dはどの方向でも同じになる。
 図7は、数値実施例1に係るレンズ系111の無限遠合焦状態の画角と像点の関係を示した図である。図7は、光軸を原点(0,0)として像面の第一象限において、画角の10°毎に像点をプロットしている。他の象限については、第一象限との間で、縦軸、横軸に対して線対称となるような関係を有する。通常の回転対称レンズに比較して、像面の形状が拡大され、矩形の撮像素子102の感光面の領域を有効活用できていることが分かる。さらに、特にX像高方向で顕著なように、光軸付近の中央部の像が光軸から離れた周辺部の像よりも拡大できていることが分かる。
 数値実施例1のレンズ系111は、図1に示した実施の形態1に対応する。数値実施例1のレンズ系111の面データを表1に、各種データを表2に、第5面、第6面、第9面、第10面、第15面、および第16面の非球面・自由曲面データをそれぞれ表3、表4、表5、表6、表7および表8に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 (数値実施例2)
 図8は、数値実施例2に係るレンズ系121の無限遠合焦状態の球面収差図及び非点収差図である。また、図9は、数値実施例2に係るレンズ系121の無限遠合焦状態の画角と像点の関係を示した図である。図9に示すレンズ系121の場合も、通常の回転対称レンズに比較して、像面の形状が拡大され、矩形の撮像素子102の感光面の領域を有効活用できていることが分かる。特にX像高方向で顕著なように、光軸付近の中央部の像が光軸から離れた周辺部の像よりも拡大できていることが分かる。数値実施例2のレンズ系121は、図2に示した実施の形態2に対応する。数値実施例2のレンズ系121の面データを表9に、各種データを表10に、第5面、第6面、第9面、第10面、第15面、および第16面の非球面・自由曲面データをそれぞれ表11、表12、表13、表14、表15および表16に示す。
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
 (数値実施例3)
 図10は、数値実施例3に係るレンズ系131の無限遠合焦状態の球面収差図及び非点収差図である。また、図11は、数値実施例3に係るレンズ系131の無限遠合焦状態の画角と像点の関係を示した図である。図11に示すレンズ系131の場合も、通常の回転対称レンズに比較して、像面の形状が拡大され、矩形の撮像素子102の感光面の領域を有効活用できていることが分かる。特にX像高方向で顕著なように、光軸付近の中央部の像が光軸から離れた周辺部の像よりも拡大できていることが分かる。数値実施例3のレンズ系131は、図3に示した実施の形態3に対応する。数値実施例3のレンズ系131の面データを表17に、各種データを表18に、第5面、第6面、第9面、第10面、第15面、および第16面の非球面・自由曲面データをそれぞれ表19、表20、表21、表22、表23、および表24に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
 以下の表25に、各数値実施例のレンズ系における各条件の対応値を示す。
 (条件の対応値)
Figure JPOXMLDOC01-appb-T000027
 本実施に係るレンズ系は、デジタルスチルカメラ、デジタルビデオカメラ、携帯電話機器のカメラ、PDA(Personal Digital Assistance)のカメラ、監視システムにおける監視カメラ、Webカメラ、車載カメラ等に適用可能であり、特にデジタルスチルカメラシステム、デジタルビデオカメラシステムといった高画質が要求される撮影光学系に好適である。
 また、本実施に係るレンズ系は、交換レンズ装置にも備えられる。
 100  カメラシステム
 111,121,131  レンズ系
 102  撮像素子
 103  カメラ本体
 200  撮像システム
 201  撮像光学系
 202  画像処理部
 A  開口絞り
 L1~L8  レンズ素子

Claims (18)

  1.  光軸に配置された矩形の撮像素子に結像するレンズ系であって、
     前記光軸に対して非対称である第1自由曲面レンズを備え、
     前記第1自由曲面レンズの自由曲面は、
     前記光軸から最短像高に対する所定の比率の長さ離れた円と、前記光軸を通り前記撮像素子の長辺に平行な第1面との交点で、前記光軸と平行な光線に対し負の屈折力を有し、
     前記光軸から最短像高に対する所定の比率の長さ離れた円と、前記光軸を通り前記撮像素子の短辺に平行な第2面との交点で、前記光軸と平行な光線に対し正の屈折力を有する、
    レンズ系。
  2.  前記所定の比率は40%~80%である、
    請求項1に記載のレンズ系。
  3.  開口絞りを有し、
     前記第1自由曲面レンズは前記開口絞りより物体側に位置する、
    請求項1又は2に記載のレンズ系。
  4.  前記開口絞りより像面側に第2自由曲面レンズを有する、
    請求項3に記載のレンズ系。
  5.  前記第2自由曲面レンズは最も像面側に配置され、物体側と像面側の両面が自由曲面である、
    請求項4に記載のレンズ系。
  6.  物体側から順に、物体側に凸形状の負のパワーを有するメニスカスである第1レンズ素子と、負のパワーを有する第2レンズ素子を有する、
    請求項1~5のいずれかに記載のレンズ系。
  7.  前記第1自由曲面レンズは前記第2レンズ素子の像面側に配置され、少なくとも物体側が自由曲面である、
    請求項6に記載のレンズ系。
  8.  前記光軸に対して回転対称なレンズ素子を少なくとも3つ以上有する、
    請求項1~7のいずれかに記載のレンズ系。
  9.  以下の条件(1)を満足する、請求項1に記載のレンズ系:
      ωLONG>60° ・・・(1)
     ここで、
      ωLONG:撮像素子の長辺方向の最大半画角
     である。
  10.  以下の条件(2)を満足する、請求項1に記載のレンズ系:
      1<DLSHORT/DSSHORT ・・・(2)
     ここで、
      DLSHORT:撮像素子の短辺方向の最大半画角と等しい画角の、撮像素子の長辺方向の入射光に対する像点と、撮像素子に垂直な入射光に対する像点との長辺方向の最大距離
      DSSHORT:撮像素子の短辺方向の最大半画角の入射光に対する像点と撮像素子に垂直な入射光に対する像点との短辺方向の最大距離
     である。
  11.  以下の条件(3)を満足する、請求項1に記載のレンズ系:
      0.5<DSSHORT×ωLONG/(DLLONG×ωSHORT)<1 ・・・(3)
     ここで、
      ωLONG:撮像素子の長辺方向の最大半画角
      ωSHORT:撮像素子の短辺方向の最大半画角
      DLLONG:撮像素子の長辺方向の最大半画角の入射光に対する像点と撮像素子に垂直な入射光に対する像点との長辺方向の最大距離
      DSSHORT:撮像素子の短辺方向の最大半画角の入射光に対する像点と撮像素子に垂直な入射光に対する像点との短辺方向の最大距離
     である。
  12.  以下の条件(4)を満足する、請求項1に記載のレンズ系:
      ωLONG-ωSHORT>0 ・・・(4)
     ここで、
      ωLONG:撮像素子の長辺方向の最大半画角
      ωSHORT:撮像素子の短辺方向の最大半画角
     である。
  13.  以下の条件(5)を満足する、請求項1に記載のレンズ系:
      L×Fno./DLLONG<40 ・・・(5)
     ここで、
      L:レンズ系の光学全長
      Fno.:レンズ系のF値
      DLLONG:撮像素子の長辺方向の最大半画角の入射光に対する像点と撮像素子に垂直な入射光に対する像点との長辺方向の最大距離
     である。
  14.  以下の条件(6)を満足する、請求項1に記載のレンズ系:
      nFREE<1.7 ・・・(6)
     ここで、
      nFREE:第1又は第2自由曲面レンズのd線に対する屈折率
     である。
  15.  レンズ素子と開口絞りとをさらに有し、以下の条件(7)を満足する、請求項1に記載のレンズ系:
      -3≦N-N≦3 ・・・(7)
     ここで、
      N:開口絞りよりも物体側のレンズ素子(第1自由曲面レンズを含む)の枚数
      N:開口絞りよりも像面側のレンズ素子の枚数
     である。
  16.  前記レンズ系のイメージサークルが、前記撮像素子で包含されない、
    請求項1に記載のレンズ系。
  17.  請求項1に記載のレンズ系と、
     前記光軸で前記レンズ系が結像する位置に配置された矩形の前記撮像素子と、を備える、
    カメラシステム。
  18.  請求項1に記載のレンズ系と、
     前記光軸で前記レンズ系が結像する位置に配置された矩形の前記撮像素子と、
     前記撮像素子が生成する画像を処理する画像処理部と、を備える、
    撮像システム。
PCT/JP2018/004775 2017-06-13 2018-02-13 レンズ系、カメラシステム及び撮像システム WO2018230034A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18818135.8A EP3640700A4 (en) 2017-06-13 2018-02-13 LENS SYSTEM, CAMERA SYSTEM AND IMAGE SYSTEM
CN201880037456.1A CN110730920B (zh) 2017-06-13 2018-02-13 镜头系统、相机系统以及摄像系统
JP2019525067A JP6607426B2 (ja) 2017-06-13 2018-02-13 レンズ系、カメラシステム及び撮像システム
KR1020197036342A KR20200017404A (ko) 2017-06-13 2018-02-13 렌즈계, 카메라 시스템 및 촬상 시스템
US16/707,997 US11327278B2 (en) 2017-06-13 2019-12-09 Lens system, camera system, and imaging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017115547 2017-06-13
JP2017-115547 2017-06-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/707,997 Continuation US11327278B2 (en) 2017-06-13 2019-12-09 Lens system, camera system, and imaging system

Publications (1)

Publication Number Publication Date
WO2018230034A1 true WO2018230034A1 (ja) 2018-12-20

Family

ID=64658622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/004775 WO2018230034A1 (ja) 2017-06-13 2018-02-13 レンズ系、カメラシステム及び撮像システム

Country Status (6)

Country Link
US (1) US11327278B2 (ja)
EP (1) EP3640700A4 (ja)
JP (2) JP6607426B2 (ja)
KR (1) KR20200017404A (ja)
CN (1) CN110730920B (ja)
WO (1) WO2018230034A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505384A (zh) * 2019-08-29 2019-11-26 Oppo广东移动通信有限公司 成像系统、终端和图像获取方法
WO2021065092A1 (ja) 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 レンズ系、撮像装置及び撮像システム
WO2021065091A1 (ja) 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 レンズ系、撮像装置及び撮像システム
US11012621B2 (en) 2019-05-24 2021-05-18 Panasonic Intellectual Property Management Co., Ltd. Imaging device having capability of increasing resolution of a predetermined imaging area using a free-form lens
JP2022023761A (ja) * 2020-07-27 2022-02-08 ジョウシュウシ レイテック オプトロニクス カンパニーリミテッド 撮像光学レンズ

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117605B2 (ja) * 2017-06-13 2022-08-15 パナソニックIpマネジメント株式会社 レンズ系、カメラシステム及び撮像システム
CN114384671B (zh) * 2022-01-27 2023-10-20 杭州电子科技大学 广角变形摄像镜头
KR20240035164A (ko) * 2022-09-08 2024-03-15 엘지이노텍 주식회사 광학계 및 이를 포함하는 카메라 장치
KR20240044749A (ko) * 2022-09-29 2024-04-05 엘지이노텍 주식회사 광학계 및 이를 포함하는 카메라 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003101599A1 (en) 2002-06-03 2003-12-11 Cemvac System Ab Feeding device for a monomer
JP2006011093A (ja) * 2004-06-25 2006-01-12 Konica Minolta Opto Inc 超広角光学系、撮像装置、車載カメラ及びデジタル機器
JP2010276755A (ja) * 2009-05-27 2010-12-09 Konica Minolta Opto Inc 超広角アナモルフィックレンズ
JP2016148725A (ja) * 2015-02-10 2016-08-18 株式会社トヨテック 広角レンズ及び広角レンズユニット

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127722A (en) * 1977-04-13 1978-11-08 Fuji Photo Film Co Ltd Anamorphic lens
FR2827680B1 (fr) * 2001-07-20 2003-10-10 Immervision Internat Pte Ltd Procede de capture d'une image panoramique au moyen d'un capteur d'image de forme rectangulaire
JP4847150B2 (ja) * 2005-02-21 2011-12-28 富士フイルム株式会社 広角撮像レンズ
JP4738845B2 (ja) * 2005-03-01 2011-08-03 株式会社オートネットワーク技術研究所 車両周辺監視装置
JP4790399B2 (ja) * 2005-12-09 2011-10-12 コニカミノルタオプト株式会社 超広角撮像光学系、超広角撮像レンズ装置及び撮像装置
EP2188673A1 (en) * 2007-08-03 2010-05-26 Carl Zeiss SMT AG Projection objective for microlithography, projection exposure apparatus, projection exposure method and optical correction plate
JP4669539B2 (ja) 2008-10-01 2011-04-13 株式会社トプコン 撮像装置、車載カメラ及び監視カメラ
JP7117605B2 (ja) * 2017-06-13 2022-08-15 パナソニックIpマネジメント株式会社 レンズ系、カメラシステム及び撮像システム
CN110730921B (zh) * 2017-06-13 2022-05-10 松下知识产权经营株式会社 镜头系统、相机系统以及摄像系统
JP7155678B2 (ja) * 2018-07-06 2022-10-19 マツダ株式会社 ディーゼルエンジンの燃料噴射制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003101599A1 (en) 2002-06-03 2003-12-11 Cemvac System Ab Feeding device for a monomer
JP2006011093A (ja) * 2004-06-25 2006-01-12 Konica Minolta Opto Inc 超広角光学系、撮像装置、車載カメラ及びデジタル機器
JP2010276755A (ja) * 2009-05-27 2010-12-09 Konica Minolta Opto Inc 超広角アナモルフィックレンズ
JP2016148725A (ja) * 2015-02-10 2016-08-18 株式会社トヨテック 広角レンズ及び広角レンズユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3640700A4

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11012621B2 (en) 2019-05-24 2021-05-18 Panasonic Intellectual Property Management Co., Ltd. Imaging device having capability of increasing resolution of a predetermined imaging area using a free-form lens
CN110505384A (zh) * 2019-08-29 2019-11-26 Oppo广东移动通信有限公司 成像系统、终端和图像获取方法
WO2021065092A1 (ja) 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 レンズ系、撮像装置及び撮像システム
WO2021065091A1 (ja) 2019-09-30 2021-04-08 パナソニックIpマネジメント株式会社 レンズ系、撮像装置及び撮像システム
CN114450615A (zh) * 2019-09-30 2022-05-06 松下知识产权经营株式会社 透镜系统、摄像装置以及摄像系统
JP7442073B2 (ja) 2019-09-30 2024-03-04 パナソニックIpマネジメント株式会社 レンズ系、撮像装置及び撮像システム
JP7442074B2 (ja) 2019-09-30 2024-03-04 パナソニックIpマネジメント株式会社 レンズ系、撮像装置及び撮像システム
CN114450615B (zh) * 2019-09-30 2024-04-12 松下知识产权经营株式会社 透镜系统、摄像装置以及摄像系统
JP2022023761A (ja) * 2020-07-27 2022-02-08 ジョウシュウシ レイテック オプトロニクス カンパニーリミテッド 撮像光学レンズ
JP7026199B2 (ja) 2020-07-27 2022-02-25 ジョウシュウシ レイテック オプトロニクス カンパニーリミテッド 撮像光学レンズ

Also Published As

Publication number Publication date
JP7108934B2 (ja) 2022-07-29
US11327278B2 (en) 2022-05-10
JP2020024439A (ja) 2020-02-13
KR20200017404A (ko) 2020-02-18
EP3640700A4 (en) 2020-06-10
JP6607426B2 (ja) 2019-11-20
CN110730920A (zh) 2020-01-24
US20200116982A1 (en) 2020-04-16
EP3640700A1 (en) 2020-04-22
CN110730920B (zh) 2022-05-10
JPWO2018230034A1 (ja) 2019-11-21

Similar Documents

Publication Publication Date Title
JP6607426B2 (ja) レンズ系、カメラシステム及び撮像システム
JP7117605B2 (ja) レンズ系、カメラシステム及び撮像システム
JP7108935B2 (ja) レンズ系、カメラシステム及び撮像システム
JP6005941B2 (ja) 撮像レンズ
JP6827173B2 (ja) レンズ系および該レンズ系を含むカメラシステム
JP2003322792A (ja) 撮像レンズ
TWM504250U (zh) 攝像透鏡及包括攝像透鏡的攝像裝置
JP2009128654A (ja) 魚眼系撮像レンズ
JP2008281859A (ja) 広角レンズ
JP2009008867A (ja) 撮像レンズ
JP2009276679A (ja) 広角レンズ
CN105759398A (zh) 光学成像系统
JP2011164237A (ja) 撮像レンズ
JPWO2020017201A1 (ja) 撮像光学系、撮像装置及び撮像システム
JP2007003768A (ja) 撮影レンズ
JP4932508B2 (ja) 広角レンズ系
JP2010282174A (ja) レンズシステム
JP2007225804A (ja) レトロフォーカス型超広角レンズ
JP2004252101A (ja) 超広角レンズ
JP2022174227A (ja) 撮像光学系
JP5298878B2 (ja) 結像レンズおよびカメラ装置および携帯情報端末装置
JP2005352471A (ja) 撮像レンズ及び撮像装置
CN117555117A (zh) 一种车载光学系统及其应用的摄像模组
JP2010152172A (ja) 超広角レンズ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019525067

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197036342

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018818135

Country of ref document: EP

Effective date: 20200113