WO2018229913A1 - コンクリート用添加剤及びコンクリート用添加剤の製造方法 - Google Patents

コンクリート用添加剤及びコンクリート用添加剤の製造方法 Download PDF

Info

Publication number
WO2018229913A1
WO2018229913A1 PCT/JP2017/022008 JP2017022008W WO2018229913A1 WO 2018229913 A1 WO2018229913 A1 WO 2018229913A1 JP 2017022008 W JP2017022008 W JP 2017022008W WO 2018229913 A1 WO2018229913 A1 WO 2018229913A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
functional material
concrete
additive
resin layer
Prior art date
Application number
PCT/JP2017/022008
Other languages
English (en)
French (fr)
Inventor
裕太 中野
沙織 水之江
武田 信司
和仁 小畑
英治 岸本
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to PCT/JP2017/022008 priority Critical patent/WO2018229913A1/ja
Publication of WO2018229913A1 publication Critical patent/WO2018229913A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers

Definitions

  • the present invention relates to a concrete additive and a method for producing a concrete additive.
  • Concrete is a cured product of a mixture of cement, sand, gravel, water and the like.
  • the hydrated product with a large surface area precipitated by the reaction of water exhibits cohesion and adhesive force due to hydroxyl bond, hydrogen bond, van de Swirl bond and the like.
  • An object of one embodiment of the present invention is to provide an additive for concrete capable of adjusting the time until the function of various functional materials is developed, and a method for producing the additive.
  • One embodiment of the present invention relates to the following.
  • An additive for concrete comprising a functional material and a resin layer covering the functional material.
  • the functional material is a swelling agent, a thickener, a dispersant, an AE agent, a water reducing agent, a setting / curing modifier, a rust inhibitor, a foaming agent, a foaming agent, a fiber reinforcing agent, and a polymer admixture.
  • the additive for concrete according to ⁇ 1> which is at least one selected from siliceous admixture accelerators.
  • the resin layer is a phenol resin, epoxy resin, acrylate resin, polyester resin, polyamide resin, epoxy resin, polyimide resin, polyamideimide resin, fluororesin, nylon resin, styrene resin, acrylonitrile resin, polyethylene resin, polyolefin resin.
  • the resin layer is a plurality of layers
  • the resin contained in at least one of the plurality of layers has a composition different from that of the resin contained in the other layers of the plurality of layers
  • ⁇ 1> to ⁇ 4> The additive for concrete as described in any one of these.
  • ⁇ 6> The concrete additive according to any one of ⁇ 1> to ⁇ 5>, wherein the resin layer includes a network polymer.
  • ⁇ 7> The concrete additive according to any one of ⁇ 1> to ⁇ 6>, wherein the resin layer includes a resin having a number average molecular weight of 1,000 to 1,000,000.
  • ⁇ 8> The additive for concrete according to any one of ⁇ 1> to ⁇ 7>, wherein the resin layer is 50% by mass or less based on the whole.
  • ⁇ 9> The concrete additive according to any one of ⁇ 1> to ⁇ 8>, wherein the resin layer has a thickness of 0.1 ⁇ m to 1000 ⁇ m.
  • ⁇ 10> The additive for concrete according to any one of ⁇ 1> to ⁇ 9>, wherein an angle of repose is 50 ° or less.
  • ⁇ 11> The method for producing an additive for concrete according to any one of ⁇ 1> to ⁇ 10>, wherein the resin used for forming the resin layer is applied to the surface of the functional material, The manufacturing method of the additive for concrete which forms the said resin layer which coat
  • the above-mentioned functional material is added to the functional material that is not less than the softening temperature and less than the curing temperature of the resin used for forming the resin layer, and is not less than the softening temperature and less than the curing temperature. Covering the functional material with a resin, heating the temperature of the functional material that is equal to or higher than the softening temperature and lower than the curing temperature to be equal to or higher than the curing temperature of the resin, thereby forming the resin layer that covers the functional material.
  • the functional material is heated to a temperature equal to or higher than a melting temperature of the resin used for forming the resin layer, the resin is added to the heated functional material, and the functional material is added by the added resin.
  • the method for producing an additive for concrete according to ⁇ 11> wherein the temperature of the heated functional material is set to be lower than the melting temperature of the resin, and the resin layer covering the functional material is formed.
  • the functional material as a granulated product, and after the resin used for forming the resin layer is applied to the surface of the granulated product, the resin layer covering the granulated product is formed.
  • an additive for concrete and a method for producing the additive capable of adjusting the time until the functions of various functional materials are developed.
  • FIG. 2 is an enlarged photograph showing an additive for concrete before the latent evaluation described in Example 1.
  • FIG. 2 is an enlarged photograph showing a concrete additive after function expression in the functional material described in Example 1.
  • each component may contain a plurality of corresponding substances.
  • the content of each component means the total content of the multiple types of materials present in the composition unless otherwise specified.
  • “content ratio” represents mass% of each component when the total amount of the additive for concrete is 100 mass% unless otherwise specified.
  • the concrete additive of the present disclosure includes a functional material and a resin layer that covers the functional material.
  • the concrete additive can adjust the time until the function of the functional material is expressed, for example, the function of the functional material can be delayed.
  • the concrete additive is not limited as long as it includes a functional material and a resin layer covering the functional material.
  • the concrete additive of the present disclosure may lose its potential or easily lose its potential due to external stimulus, i.e., the function of the functional material may be expressed. It may be possible to shorten the time until.
  • external stimuli include mechanical and electrical stimuli such as external pressure and vibration, solvents such as water, and chemical and thermal stimuli such as acid and alkali.
  • the concrete additive of the present disclosure may be one in which the resin layer is broken by the external stimulus and the function of the functional material is expressed, or the resin layer becomes brittle and the function of the functional material is reduced. The time until expression may be shortened.
  • the functional material of the present disclosure may be any material that expresses some function and can be used as an additive for concrete.
  • the functional material contributes to the reaction of concrete.
  • the functional material may exhibit a function by contacting with water, reacting, interacting, and the like.
  • the functional material is a swelling agent, a thickener, a dispersant, an AE agent (air entraining agent), a water reducing agent, a setting / curing modifier, a rust inhibitor, a foaming agent, a foaming agent, and a fiber.
  • a swelling agent, a thickener, and the like are preferable, and a swelling agent is more preferable.
  • the swelling agent prevents cracking due to shrinkage during hardening of the cement, and may expand by contact with water and reacting.
  • Specific examples of the swelling agent include CaO, Al 2 O 3 , MgO, CaCO 3 , and organic materials.
  • the expansion agent can be appropriately selected depending on the expansion coefficient desired to be imparted.
  • the functional material includes, for example, a solid or liquid material at normal temperature (25 ° C.), and a solid material is preferable at normal temperature (25 ° C.) from the viewpoint of resin coverage.
  • the shape of the functional material may be square, needle or round, and is preferably round or square from the viewpoint of resin coverage.
  • the particle diameter of the functional material varies depending on its function, and is preferably 0.1 ⁇ m to 5,000 ⁇ m, more preferably 0.5 ⁇ m to 3,000 ⁇ m, from the viewpoint of resin coverage.
  • the thickness is more preferably 1.0 ⁇ m to 2,000 ⁇ m, and particularly preferably 5.0 ⁇ m to 1,000 ⁇ m.
  • the particle size of the functional material can be measured by a laser diffraction method, sieving or the like.
  • the particle size of the functional material indicates the average particle size of the functional material contained in the concrete additive.
  • the average particle diameter of the functional material is an average particle diameter (D50) corresponding to 50% cumulative from the small particle diameter side of the weight cumulative distribution in the particle diameter distribution measured using the laser diffraction method.
  • the content of the functional material is preferably 50% by mass or more, more preferably 70% by mass to 99% by mass, and 80% by mass to 98% by mass. More preferably.
  • the resin layer of the present disclosure is formed using a resin.
  • the resin layer may cover one functional material, or may cover a plurality of functional materials.
  • the resin layer may cover one type of functional material, or may cover a plurality of types of functional material.
  • the term “coating” means that the surface of the functional material is not exposed in order to adjust the time until the function of the functional material is developed.
  • the resin layer is preferably one that can withstand the friction pressure when mixing cement, sand, gravel, water, or the like.
  • the surface of the functional material may be directly coated with a resin layer, and another layer is disposed between the surface of the functional material and the resin layer, The surface of the functional material may be covered with a resin layer.
  • the concrete additive of the present disclosure can be described with reference to the drawings.
  • a material obtained by coating one functional material 1 with a resin layer 2 can be used.
  • a material in which a plurality of types of functional materials such as a functional material 3 and a functional material 4 are coated with a resin layer 5 is used. You can also
  • the concrete additive of the present disclosure may be a functional material granulated material coated with a resin layer.
  • the resin layer tends to be coated with high uniformity, and the time until the function of the functional material is developed tends to be more suitably adjusted.
  • the granulated product of functional materials may be formed by binding functional materials together using a binder resin or the like, or may be formed by binding using functional materials having binding properties. Good.
  • the binder resin may be the same component as the resin contained in the resin layer, or may be a different component.
  • the concrete additive of the present disclosure is obtained by coating a granulated product of a functional material with a resin layer, a plurality of functional materials 8 are bound by a binder resin 9 as shown in FIG.
  • the granulated product may be coated with the resin layer 10.
  • the layer structure of the resin layer may be a single layer or a plurality of layers, and can be selected according to the purpose.
  • the resin contained in at least one of the plurality of layers may have a composition different from the resin contained in the other layers of the plurality of layers.
  • the time until function expression can be adjusted by a method other than adjusting the film thickness of the resin layer.
  • the thickness of the resin layer is not particularly limited, and can be set in consideration of the required time until the function of the functional material is manifested. Specifically, the thickness is 0.1 ⁇ m to 1,000 ⁇ m. From the viewpoint of expressing the function of the functional material before the completion of the concrete curing reaction, it is more preferably 0.5 ⁇ m to 500 ⁇ m, further preferably 1.0 ⁇ m to 300 ⁇ m. It is particularly preferably 0 ⁇ m to 100 ⁇ m.
  • the thickness of the resin layer can be examined by the FIB method in which a Ga + ion beam is irradiated in the x and y directions of the sample to perform sputtering and focus the secondary electrons to observe the cross section. Further, the thickness of the resin layer means a minimum thickness. The region where the thickness of the resin layer is minimum can be confirmed by observation with an electron microscope, for example.
  • the resin layer is phenol resin, epoxy resin, acrylate resin, polyester resin, polyamide resin, epoxy resin, polyimide resin, polyamideimide resin, fluororesin, nylon resin, styrene resin, acrylonitrile resin, polyethylene resin, polyolefin. It is preferable to include at least one resin selected from a resin, a polycarbonate resin, a vinyl chloride resin, a polysulfone resin, a silicone resin, and a butyl rubber. From the viewpoint of easy resin coating, it includes at least one of a phenol resin and an epoxy resin. Is more preferable, and it is still more preferable that an epoxy resin is included.
  • the hydroxyl equivalent of the phenol resin is preferably 80 g / eq to 200 g / eq, more preferably 90 g / eq to 180 g / eq, and still more preferably 100 g / eq to 160 g / eq.
  • the hydroxyl equivalent of the phenol resin is a value measured by a method according to JIS K 0070 (1992).
  • the epoxy equivalent of the epoxy resin is preferably 150 g / eq to 1000 g / eq, more preferably 170 g / eq to 800 g / eq, and still more preferably 180 g / eq to 600 g / eq.
  • the epoxy equivalent of the epoxy resin is a value measured by a method according to JIS K 7236 (2009).
  • the resin layer may contain an alkali-soluble resin containing at least one functional group selected from an OH group, a COOH group, and a SO 3 H group as a resin.
  • a resin layer contains a network polymer from a viewpoint of controlling the time until function expression.
  • the network polymer include phenol resin and urea resin.
  • the number average molecular weight of the resin contained in the resin layer is preferably 1,000 to 1,000,000 from the viewpoint of easy resin coating. The number average molecular weight can be measured by gel permeation chromatography (GPC).
  • the content of the resin layer is preferably 50% by mass or less, more preferably 0.5% by mass to 30% by mass, and 1.0% by mass to 25% by mass. % Is more preferable.
  • a differential scanning calorimetry method (DSC method), a thermogravimetric analysis method (TGA method), a differential thermal analysis method (DTA method).
  • DSC method differential scanning calorimetry method
  • TGA method thermogravimetric analysis method
  • DTA method differential thermal analysis method
  • SEM observation Scanning electron microscope observation
  • EDX method energy dispersive X-ray spectroscopy
  • FIB method focused ion beam method
  • the coating amount of the resin layer is measured by raising the temperature above the thermal decomposition temperature of the resin by the TGA method and measuring the mass reduction amount. (Content rate) can be estimated.
  • the additive for concrete of this indication can confirm that the functional material surface is coat
  • the water vapor permeability of the resin contained in the resin layer is preferably 200 g / m 2 ⁇ day or less, more preferably 0 g / m 2 ⁇ day to 190 g / m 2 ⁇ day, and 0.05 g / m. More preferably, it is 2 ⁇ day to 180 g / m 2 ⁇ day, particularly preferably 1 g / m 2 ⁇ day to 100 g / m 2 ⁇ day, and 3 g / m 2 ⁇ day to 50 g / m 2 ⁇ day. Is more preferable.
  • the water vapor permeability of the resin contained in the resin layer is a value measured according to the cup method of JIS Z 0208 (1976).
  • the permeability coefficient of the resin contained in the resin layer is preferably 200 g ⁇ mm / m 2 ⁇ day or less, more preferably 0 g ⁇ mm / m 2 ⁇ day to 190 g ⁇ mm / m 2 ⁇ day. 0.1 g ⁇ mm / m 2 ⁇ day to 180 g ⁇ mm / m 2 ⁇ day is more preferable.
  • the permeability coefficient of the resin contained in the resin layer is 200 g ⁇ mm / m 2 ⁇ day or less, when a concrete additive and water are mixed, functional materials (swelling agent, thickener, etc.) It tends to be possible to delay the time until the function is expressed.
  • the additive for concrete according to the present disclosure has an angle of repose of preferably 50 ° or less, more preferably 40 ° or less, and further preferably 30 ° or less, from the viewpoint of excellent uniformity of the resin layer. .
  • an additive for concrete having an angle of repose of 50 ° or less tends to be obtained by granulating the functional material.
  • the lower limit of the angle of repose in the concrete additive is not particularly limited, and may be, for example, 10 ° or more.
  • the method for producing a concrete additive in the present disclosure is the above-described method for producing a concrete additive, and the functional material is coated after the resin used for forming the resin layer is applied to the surface of the functional material. This is a method of forming a resin layer.
  • Specific Example 1 the specific example 1 of the manufacturing method of the additive for concrete in this indication is shown.
  • Specific example 1 of the method for producing an additive for concrete described above is a resin for a functional material having a functional material having a softening temperature not lower than a curing temperature and lower than a curing temperature and used for forming a resin layer.
  • the functional material is coated with the added resin, and the temperature of the functional material that is not lower than the softening temperature and lower than the curing temperature is heated above the curing temperature of the resin to form a resin layer that covers the functional material It may be.
  • the manufacturing method of the concrete additive in the specific example 1 is “(a) the step of setting the functional material to the softening temperature or higher and lower than the curing temperature of the resin used in the step (b).
  • the process of forming the resin layer to be performed is performed including three processes.
  • the thickness of the resin layer can be adjusted by repeating the steps (a) to (c).
  • the resin used in the step (b) preferably has a smaller particle size.
  • the average particle size of the resin used in the step (b) is preferably 10,000 ⁇ m or less, more preferably 5,000 ⁇ m or less, further preferably 1000 ⁇ m or less, and 500 ⁇ m or less. Particularly preferred.
  • the average particle size of the resin used in the step (b) is an average particle size (corresponding to 50% cumulative from the small particle size side of the weight cumulative distribution in the particle size distribution measured using the laser diffraction method). D50).
  • what crushed resin may be sufficient. Examples of the method for crushing the resin include crushing with a jet mill, a mortar, a hammer, and the like, and jet mill crushing is preferable from the viewpoint of improving productivity. Further, the crushed resin may be sieved with a mesh, and the sieved resin may be used in the step (b).
  • the method of kneading the functional material and the resin includes a method of kneading using a planetary mixer, a stirring blade, a Henschel mixer, etc., from the viewpoint of efficiently covering the functional material, It is preferable to knead using a Henschel mixer. Moreover, you may add components other than a functional material and resin, for example, a hardening
  • (C) As a method of heating the functional material in the step, heating by a gas burner, an electric furnace, a drier, etc. can be mentioned, but a drier that can easily hold the resin at a temperature higher than the curing temperature or It is desirable to use an electric furnace.
  • Specific Example 2 Next, the specific example 2 of the manufacturing method of the additive for concrete in this indication is shown.
  • Specific example 2 of the above-described method for producing an additive for concrete is that the functional material is heated to a temperature higher than the melting temperature of the resin used for forming the resin layer, the resin is added to the heated functional material, and the added resin
  • the method may be a method in which the functional material is coated, the temperature of the heated functional material is set to be lower than the melting temperature of the resin, and a resin layer that covers the functional material is formed.
  • the concrete additive manufacturing method in Example 2 is “(a) a step of heating the functional material to a temperature higher than or equal to the melting temperature of the resin used in the step (b). (B) the heated functional material. The step of adding a resin and coating the functional material with the added resin. (C) The step of setting the temperature of the functional material below the melting temperature of the resin and forming a resin layer covering the functional material. It is performed including three steps.
  • the resin used in the step (b) preferably has a smaller particle size from the viewpoint that it is easily dissolved upon contact with the heated functional material.
  • the average particle size of the resin used in the step (b) is preferably 10,000 ⁇ m or less, more preferably 5,000 ⁇ m or less, further preferably 1000 ⁇ m or less, and 500 ⁇ m or less. Particularly preferred.
  • (A) As a method of heating the functional material in the step, heating by a gas burner, an electric furnace, a dryer, etc. can be mentioned. From the viewpoint of heating the functional material in a short time as much as possible without thermal decomposition. An electric furnace is preferred.
  • the heating temperature of the functional material is preferably higher than the melting temperature of the resin and lower than the thermal decomposition temperature of the functional material.
  • the resin layer when a resin layer covering a functional material is formed using a mixture of a resin and a functional material, the resin layer may be formed by a wet method.
  • a resin solution is prepared by dissolving a resin and, if necessary, a curing agent in a solvent, mixed with the prepared resin solution and a functional material, and a resin layer that covers the functional material is formed using the mixture. Also good. After coating the surface of the functional material with resin, if necessary, the coating may be dried to volatilize the solvent, or the coating may be heated to cure the resin to form a resin layer. Good.
  • the solvent a solvent that is highly compatible with the resin and does not react with the functional material may be used, and a solvent that is further excellent in volatility is preferable.
  • the solvent include methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), ketones such as acetone, dichloromethane, ethyl acetate, ethers, and the like.
  • a functional material is used as a granulated product, a resin used for forming a resin layer is provided on the granulated surface, and then a resin layer that covers the granulated product is formed. Also good.
  • the granulated product of functional materials may be formed by binding functional materials together using a binder resin or the like, or may be formed by binding using functional materials having binding properties. Good.
  • a granulated product in which the functional materials are bound by the binder resin may be formed.
  • the granulated product when the granulated product is formed using a mixture of the binder resin and the functional material, the granulated product may be formed by a wet method.
  • a resin solution is prepared by dissolving a binder resin and, if necessary, a curing agent in a solvent, mixing the prepared resin solution and a functional material, and binding the functional materials using the mixture.
  • Granules may be formed.
  • the mixture may be dried to volatilize the solvent, or the mixture may be heated to cure the binder resin to form a granulated product.
  • Example 1 MgO as an expanding agent was used as a functional material, a resin shown in Table 1 below was used as a coating resin, and an imidazole curing agent was used as a curing agent. Then, a resin type (resin, curing agent and solvent) is added to the polybin according to the blending contents shown in items (1) to (9) of Table 1, and the resin and the curing agent are dissolved in MEK as a solvent in a stirrer. I let you. Thus, resin solutions (1) to (9) were prepared.
  • N.V represents a non-volatile component (mass%).
  • NMP represents N-methylpyrrolidone.
  • the resin solutions (1) to (9) and the functional material MgO are mixed so that the total resin amount of the resin and the curing agent is 20% by mass with respect to MgO.
  • the resin was coated on MgO by a wet method using a high speed mixer (Earth Technica Co., Ltd.). As a result, MgO coatings A to I were obtained.
  • the MgO coatings A to I were left in a dryer at 300 ° C. for 3 hours to cure the resin, and concrete additives A to I were produced.
  • the resin solutions (4) to (6) and the functional material MgO are mixed so that the total resin amount of the resin and the curing agent is 50% by mass with respect to MgO.
  • the resin was coated on MgO by a wet method using a speed mixer (Earth Technica Co., Ltd.). As a result, MgO coatings J to L were obtained.
  • the MgO coatings J to L were allowed to stand in a dryer at 300 ° C. for 3 hours to cure the resin, thereby preparing concrete additives J to L, respectively.
  • ⁇ Potential evaluation method 1> The potential was evaluated by immersing the concrete additives A to L in ultrapure water for a certain period of time and measuring the time until the functional material expands (time until the function is manifested).
  • concrete additives A to I 10 g and ultrapure water: 15 mL are separated into a 30 mL beaker, and concrete additives J to L: 12.5 g and ultrapure water: 15 mL are separated into a 30 mL beaker.
  • Each was stirred on a hot stirrer at 60 ° C. using a stirring blade at 200 rpm (rotation / min).
  • the concrete additives A to L are taken out every 30 minutes with stirring, and observed with an electron microscope until the functional material expands by reacting with water (addition for concrete before the potential evaluation shown in FIG. 5) In the agent, the time from the start of stirring to the state of FIG. 6) was recorded.
  • Table 3 The results are shown in Table 3.
  • Example 2 As a functional material, Metroze (water-soluble cellulose ether, registered trademark, Shin-Etsu Chemical Co., Ltd.) which is a thickener was used, and a resin shown in Table 4 below was used as a coating resin. Then, a resin type (resin and curing agent) is added to the polybin according to the blending contents shown in items (1) ′ to (3) ′ of Table 4, and the triethylenetetramine as a curing agent and the resin are mixed in a stirrer. Mixed. Thereby, resin solutions (1) ′ to (3) ′ were prepared.
  • a resin type resin and curing agent
  • the resin solutions (1) ′ to (3) ′ and Metroze which is a thickener, are placed in the polycup so that the total resin amount of the resin and the curing agent with respect to Metroze is 20% by mass. And the mixture was stirred. After stirring, the mixture was dried to obtain coatings MO. Thereafter, the coverings M to O were put in a dryer at 120 ° C. for 30 minutes to cure the resin, and concrete additives M to O were produced.
  • resin solutions (1) ′ to (3) ′ and Metroze which is a thickener, are added to the polycup so that the total amount of resin and curing agent is 40% by mass with respect to Metroze. And the mixture was stirred. After stirring, the mixture was dried to obtain coatings PR. Thereafter, the coatings P to R were put into a dryer at 120 ° C. for 30 minutes to cure the resin, and concrete additives P to R were produced.
  • ⁇ Potential evaluation method 2> The potential was evaluated by immersing the concrete additives M to R in ultrapure water for a certain period of time and measuring the time until the function of the thickener as a functional material was developed.
  • samples 1 to 8 were each divided into 100 mL of polyvins, and stirred at 200 rpm (rotation / min) using a stirring blade at room temperature.
  • Samples 1 to 3 Concrete additives M to O: 2.4 g and ultrapure water: 80 mL
  • Samples 4 to 6 Concrete additives P to R: 2.8 g and ultrapure water: 80 mL
  • Sample 7 80 mL of ultrapure water
  • Sample 8 ... Metroise 2g and ultrapure water 80mL
  • each sample liquid was taken out from the samples 7 and 8 with a 1 mL syringe, and the viscosity of the sample liquid was measured with an E-type viscometer (Toki Sangyo Co., Ltd., TV-22 type). As a result, the viscosity of Sample 8 was higher than that of Sample 7, and it was confirmed that the function of Metroze was manifested immediately after Metroze and ultrapure water were mixed.
  • the sample liquids were taken out from the samples 1 to 6 with a 1 mL syringe every 30 minutes, and the viscosity of the sample liquid was measured with an E-type viscometer (Toki Sangyo Co., Ltd., TV-22 type). The time until the viscosity of the sample solution became substantially the same as that of Sample 8 was defined as the time until the function was developed, and the delay effect was confirmed. The results are shown in Table 5.
  • the functional material is coated with a resin, thereby delaying the time until the function of the functional material is manifested compared to the functional material not coated with the resin (Metroses alone in Table 5). I was able to. Moreover, as shown in Table 5, it was possible to delay the time until the function of the functional material was developed by increasing the coating amount of the resin.
  • Example 3 Next, the resin solutions (1) to (9) shown in Table 1 and the functional material MgO are mixed so that the total amount of the resin and the curing agent with respect to MgO is 5% by mass. And it granulated by the wet system using FS2 type high speed mixer (Earth Technica Co., Ltd.). And each produced granule was thrown into a 180 degreeC dryer for 1 hour, resin was hardened, and the intensity
  • FS2 type high speed mixer Earth Technica Co., Ltd.
  • the granulated products A to I and the resin solutions (1) to (9) are mixed with N.I.
  • coated by a wet method using an FS2 type high speed mixer In this way, coated granulated products A to I were respectively produced.
  • coated granules A to I were left in a dryer at 300 ° C. for 3 hours to prepare concrete additives A ′ to I ′, respectively.
  • Example 4 MgO was used as a functional material used as an expanding agent, HP-850N (an alkali-soluble phenol resin manufactured by Hitachi Chemical Co., Ltd.) was used as a coating resin, and hexamine was used as a curing agent.
  • HP-850N an alkali-soluble phenol resin manufactured by Hitachi Chemical Co., Ltd.
  • the concrete additive in which the periphery of MgO of the functional material 7 used as the expansion agent is covered with a resin layer 6 formed using a phenol resin and a curing agent is as follows. Manufactured.
  • HP-850N was crushed using a mortar and sieved with a 300 ⁇ m mesh to obtain 20 g of a resin of 300 ⁇ m or less.
  • step (a) 1,000 g of MgO was put in an electric furnace heated to 270 ° C. for 30 minutes, and MgO was heated to 200 ° C.
  • step (c) The sample obtained by the above kneading was allowed to stand at 300 ° C. for 1 hour in an electric furnace to cure the resin, thereby obtaining a concrete additive A (step (c)).
  • the latency evaluation samples (sample B to sample D) were prepared in the same manner as sample A, except that the stirring time was changed from 2 hours to 6 hours, 10 hours, and 14 hours.
  • Samples A to D were heated at a rate of 20 ° C./min from 30 ° C. to 1000 ° C. in a nitrogen atmosphere using a differential thermothermal gravimetric measuring apparatus (manufactured by RIKEN), and the thermal mass change rate was measured.
  • RIKEN differential thermothermal gravimetric measuring apparatus
  • Table 6 shows the thermal mass change rates of Sample A, Sample B, Sample C, and Sample D.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)

Abstract

機能性材料と、前記機能性材料を被覆する樹脂層とを備える、コンクリート用添加剤。

Description

コンクリート用添加剤及びコンクリート用添加剤の製造方法
 本発明は、コンクリート用添加剤及びコンクリート用添加剤の製造方法に関する。
 コンクリートは、セメント、砂、砂利、水等の混合物の硬化物である。
 コンクリートの硬化反応では、水が反応して析出した表面積の大きい水和生成物が、水酸基結合、水素結合、ファンデスワールス結合等によって凝集力と接着力を示す。
 また、近年では、コンクリートひび割れの原因となる硬化時の収縮反応を抑制するための膨張材、コンクリートの流出を防ぐための増粘剤等の「機能性材料(添加剤)」が使用されるケースがある(例えば、特許文献1参照)。
特開2015-140272号公報
 しかしながら、機能性材料は、セメント、砂、砂利、水等と混ぜると反応が開始され、その機能が直ちに発現してしまうが、機能発現までの時間を遅くする等の、機能発現のタイミングをコントロールする研究は未だなされていない。
 本発明の一形態は、様々な機能性材料の機能発現までの時間を調整可能な、コンクリート用添加剤、及びこの添加剤の製造方法を提供することを目的とする。
 本発明の一形態は、以下のものに関する。
<1> 機能性材料と、前記機能性材料を被覆する樹脂層とを備える、コンクリート用添加剤。
<2> 前記機能性材料が、膨張剤、増粘剤、分散剤、AE剤、減水剤、凝結・硬化調整剤、防錆剤、発泡剤、起泡剤、繊維質補強剤、ポリマー混和剤及びシリカ質混和剤促進剤から選ばれる少なくとも一種である、<1>に記載のコンクリート用添加剤。
<3> 前記樹脂層が、フェノール樹脂、エポキシ樹脂、アクリレート樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素樹脂、ナイロン樹脂、スチレン樹脂、アクリロニトリル樹脂、ポリエチレン樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、ポリスルホン樹脂、シリコーン樹脂、及びブチルゴムから選ばれる少なくとも一種の樹脂を含む、<1>又は<2>に記載のコンクリート用添加剤。
<4> 前記樹脂層が、単層又は複数層である、<1>~<3>のいずれか1つに記載のコンクリート用添加剤。
<5> 前記樹脂層が複数層である場合、前記複数層の少なくとも1つの層に含まれる樹脂が、前記複数層の他の層に含まれる樹脂と組成が異なる、<1>~<4>のいずれか1つに記載のコンクリート用添加剤。
<6> 前記樹脂層が、網目状高分子を含む、<1>~<5>のいずれか1つに記載のコンクリート用添加剤。
<7> 前記樹脂層が、数平均分子量1,000~1,000,000の樹脂を含む、<1>~<6>のいずれか1つに記載のコンクリート用添加剤。
<8> 前記樹脂層が、全体に対して50質量%以下である、<1>~<7>のいずれか1つに記載のコンクリート用添加剤。
<9> 前記樹脂層の厚さが、0.1μm~1000μmである、<1>~<8>のいずれか1つに記載のコンクリート用添加剤。
<10> 安息角が50°以下である、<1>~<9>のいずれか1つに記載のコンクリート用添加剤。
<11> <1>~<10>のいずれか1つに記載のコンクリート用添加剤の製造方法であって、前記機能性材料の表面に前記樹脂層の形成に用いる樹脂を付与した後、前記機能性材料を被覆する前記樹脂層を形成する、コンクリート用添加剤の製造方法。
<12> 前記機能性材料を前記樹脂層の形成に用いる前記樹脂の軟化温度以上硬化温度未満とし、前記軟化温度以上硬化温度未満とした機能性材料に対して前記樹脂を添加し、添加した前記樹脂により前記機能性材料を被覆し、前記軟化温度以上硬化温度未満とした機能性材料の温度を前記樹脂の硬化温度以上に加熱し、前記機能性材料を被覆する前記樹脂層を形成する、<11>に記載のコンクリート用添加剤の製造方法。
<13> 前記機能性材料を前記樹脂層の形成に用いる前記樹脂の溶解温度以上に加熱し、前記加熱した機能性材料に対して前記樹脂を添加し、添加した前記樹脂により前記機能性材料を被覆し、前記加熱した機能性材料の温度を前記樹脂の溶解温度未満とし、前記機能性材料を被覆する前記樹脂層を形成する、<11>に記載のコンクリート用添加剤の製造方法。
<14> 前記機能性材料を造粒物とし、前記造粒物の表面に前記樹脂層の形成に用いる樹脂を付与した後、前記造粒物を被覆する前記樹脂層を形成する、<11>~<13>のいずれか1つに記載のコンクリート用添加剤の製造方法。
 本発明の一形態によれば、様々な機能性材料の機能発現までの時間を調整可能な、コンクリート用添加剤、及びこの添加剤の製造方法を提供することができる。
本発明の一形態を示す概略断面図を示す。 本発明の別の一形態を示す概略断面図を示す。 本発明の別の一形態を示す概略断面図を示す。 実施例4に記載するコンクリート用添加剤の概略断面図を示す。 実施例1に記載する潜在性評価前のコンクリート用添加剤を示す拡大写真である。 実施例1に記載する機能性材料における機能発現後のコンクリート用添加剤を示す拡大写真である。
 以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。コンクリート用組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率は、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率を意味する。
 また、本開示において、「含有率」とは、特に記載がなければ、コンクリート用添加剤の全量を100質量%としたときの、各成分の質量%を表す。
<コンクリート用添加剤>
 本開示のコンクリート用添加剤は、機能性材料と、機能性材料を被覆する樹脂層とを備える。コンクリート用添加剤は、機能性材料が樹脂層にて被覆されていることにより、機能性材料の機能発現までの時間を調整でき、例えば、機能性材料の機能発現を遅延させることができる。
 尚、コンクリート用添加剤は、機能性材料と、この機能性材料を被覆する樹脂層とを備えていれば、他に限定されるものではない。
 本開示のコンクリート用添加剤は、外部からの刺激により、潜在性を失う又は潜在性を失いやすくなる、すなわち、機能性材料の機能が発現するものであってもよく、機能性材料の機能発現までの時間を短くできるものであってもよい。外部からの刺激としては、外部圧力、振動等の機械的、電気的、水等の溶媒、酸・アルカリ等の化学的、熱的な刺激が挙げられる。例えば、本開示のコンクリート用添加剤は、外部からの刺激により、樹脂層が壊れて機能性材料の機能が発現するものであってもよく、又は、樹脂層が脆くなり機能性材料の機能が発現するまでの時間が短くなるものであってもよい。
(機能性材料)
 本開示の機能性材料は、何らかの機能を発現し、且つコンクリートの添加剤に用いられるものであればよく、例えば、コンクリートの反応に寄与するものであることが好ましい。また、機能性材料は、水と接触して反応、相互作用等することにより、機能を発現するものであってもよい。
 機能性材料は、より具体的には、膨張剤、増粘剤、分散剤、AE剤(Air Entraining剤)、減水剤、凝結・硬化調整剤、防錆剤、発泡剤、起泡剤、繊維質補強剤、ポリマー混和剤及びシリカ質混和剤促進剤から選ばれる少なくとも一種を含むことが好ましい。中でも、機能性材料としては、膨張剤、増粘剤等が好ましく、膨張剤がより好ましい。
[膨張剤]
 膨張剤は、セメント硬化時の収縮によるヒビ割れを防ぐものであり、水と接触して反応することにより膨張するものであってもよい。膨張剤としては、具体的には、CaO、Al、MgO、CaCO、有機材等が挙げられる。膨張剤は、付与させたい膨張率等によって、適宜選択することができる。
 機能性材料としては、例えば、常温(25℃)にて、固体又は液体のものがあり、樹脂の被覆性の観点から常温(25℃)にて固体のものが好ましい。
 機能性材料の形状は、角状、針状又は丸状のいずれでもよく、樹脂の被覆性の観点から、丸状又は角状が好ましい。
 機能性材料の粒径は、その機能によってさまざまであり、樹脂の被覆性の観点から、0.1μm~5,000μmであることが好ましく、0.5μm~3,000μmであることがより好ましく、1.0μm~2,000μmであることが更に好ましく、5.0μm~1,000μmであることが特に好ましい。
 尚、機能性材料の粒径は、レーザー回折法、篩い分け等で測定することができる。
 また、本開示のコンクリート用添加剤において、樹脂層が複数の機能性材料を被覆する場合、機能性材料の粒径は、コンクリート用添加剤に含まれる機能性材料の平均粒径を指す。機能性材料の平均粒径は、レーザー回折法を用いて測定される粒子径分布において、重量累積分布の小粒径側からの累積50%に対応する平均粒径(D50)である。
 本開示のコンクリート用添加剤について、機能性材料の含有率は、50質量%以上であることが好ましく、70質量%~99質量%であることがより好ましく、80質量%~98質量%であることが更に好ましい。
(樹脂層)
 本開示の樹脂層は、樹脂を用いて形成されるものである。樹脂層により機能性材料を被覆することにより、機能性材料の機能発現までの時間を調整でき、例えば、機能性材料の機能発現を遅延させることができる。
 尚、樹脂層は、1個の機能性材料を被覆するものであってもよく、複数個の機能性材料を被覆するものであってもよい。また、樹脂層は、1種の機能性材料を被覆するものであってもよく、複数種類の機能性材料を被覆するものであってもよい。
 また、本開示において「被覆」とは、機能性材料の機能発現までの時間を調整するために、機能性材料の表面を露出させないようにすることを指す。
 また、実使用状態においては、本開示のコンクリート用添加剤と、本開示とは異なる、樹脂層を有さないコンクリート用添加剤とを、併用することもできる。
 尚、樹脂層は、セメント、砂、砂利、水等の混合時の摩擦圧に耐えうるものが好ましい。
 また、本開示のコンクリート用添加剤において、機能性材料の表面は樹脂層により直接被覆されていてもよく、機能性材料の表面と樹脂層の間に別の層が配置され、別の層を介して機能性材料の表面が樹脂層により被覆されていてもよい。
 本開示のコンクリート用添加剤としては、図面を用いて説明すると、図1に示すように、1個の機能性材料1を樹脂層2にて被覆したものを用いることができる。更には、本開示のコンクリート用添加剤としては、図2に示すように、機能性材料3及び機能性材料4といった複数種類の機能性材料を、樹脂層5にて被覆しているものを用いることもできる。
 また、本開示のコンクリート用添加剤は、機能性材料の造粒物を樹脂層により被覆したものであってもよい。機能性材料を造粒物とすることにより、樹脂層により均一性高く被覆できる傾向にあり、機能性材料の機能発現までの時間をより好適に調整できる傾向にある。
 機能性材料の造粒物としては、機能性材料同士をバインダー樹脂等を用い、結着させて形成してもよく、結着性のある機能性材料を用い、結着させて形成してもよい。バインダー樹脂としては、樹脂層に含まれる樹脂と同じ成分であってもよく、違う成分であってもよい。
 本開示のコンクリート用添加剤が、機能性材料の造粒物を樹脂層により被覆したものである場合、図3に示すように、複数個の機能性材料8を、バインダー樹脂9により結着させて造粒物とし、造粒物を樹脂層10にて被覆したものであってもよい。
 樹脂層は、その層構造を、単層としても複数層としてもよく、目的に応じて選択することができる。
 樹脂層が複数層である場合、複数層の少なくとも1つの層に含まれる樹脂が、複数層の他の層に含まれる樹脂と組成が異なっていてもよい。例えば、機能性材料の表面から見て、1層目の樹脂層と2層目の樹脂層について、酸・アルカリ、水、有機溶媒等に対する溶解度が異なるなど、性質の異なる樹脂を用いることで、樹脂層の膜厚調整以外の方法により、機能発現までの時間を調整することができる。
 樹脂層の厚さは、特に限定されるものではなく、機能性材料の機能を発現させるまでの要求時間等を考慮して設定でき、具体的には、0.1μm~1,000μmであることが好ましく、コンクリートの硬化反応が終了する前に機能性材料の機能を発現させるという観点から、0.5μm~500μmであることがより好ましく、1.0μm~300μmであることが更に好ましく、5.0μm~100μmであることが特に好ましい。
 尚、樹脂層の厚さは、Ga+イオンビームを試料のx方向及びy方向に照射してスパッタリングを行ない、2次電子を集束することによって断面を観察するFIB法によって調べることができる。
 また、樹脂層の厚さとは、最小の厚さを意味する。樹脂層の厚さが最小となる領域は、例えば、電子顕微鏡による観察により確認することができる。
 樹脂層は、具体的には、フェノール樹脂、エポキシ樹脂、アクリレート樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素樹脂、ナイロン樹脂、スチレン樹脂、アクリロニトリル樹脂、ポリエチレン樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、ポリスルホン樹脂、シリコーン樹脂、及びブチルゴムから選ばれる少なくとも一種の樹脂を含むことが好ましく、樹脂被覆がし易いという観点から、フェノール樹脂及びエポキシ樹脂の少なくとも一方を含むことがより好ましく、エポキシ樹脂を含むことが更に好ましい。
 フェノール樹脂の水酸基当量は、80g/eq~200g/eqであることが好ましく、90g/eq~180g/eqであることがより好ましく、100g/eq~160g/eqであることが更に好ましい。
 フェノール樹脂の水酸基当量は、JIS K 0070(1992)に準じた方法で測定される値とする。
 エポキシ樹脂のエポキシ当量は、150g/eq~1000g/eqであることが好ましく、170g/eq~800g/eqであることがより好ましく、180g/eq~600g/eqであることが更に好ましい。
 エポキシ樹脂のエポキシ当量は、JIS K 7236(2009)に準じた方法で測定される値とする。
 樹脂層は、樹脂として、OH基、COOH基及びSOH基から選ばれる少なくとも一種の官能基を含むアルカリ可溶性樹脂を含んでいてもよい。
 また、樹脂層は、機能発現までの時間を制御する観点から、網目状高分子を含むことが好ましい。網目状高分子としては、フェノール樹脂、尿素樹脂等が挙げられる。
 樹脂層に含まれる樹脂の数平均分子量は、樹脂被覆がし易いという観点から、1,000~1,000,000であることが好ましい。
 尚、数平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定することができる。
 本開示のコンクリート用添加剤について、樹脂層の含有率は、50質量%以下であることが好ましく、0.5質量%~30質量%であることがより好ましく、1.0質量%~25質量%であることが更に好ましい。
 本開示のコンクリート用添加剤において、機能性材料の機能発現までの時間を確認する手法としては、示差走査熱量法(DSC法)、熱重量分析法(TGA法)、示差熱分析法(DTA法)、走査型電子顕微鏡観察(SEM観察)、エネルギー分散型X線分光法(EDX法)、集束イオンビーム法(FIB法)等が挙げられる。
 樹脂層がアルカリ可溶性樹脂を用いて構成される場合、DSC法により本開示のコンクリート用添加剤とアルカリ水溶液とを接触させながら測定すると、樹脂溶解に起因する吸熱ピークが現れる。樹脂層内部の機能性材料が発熱反応を示す場合、吸熱反応後に機能性材料起因の発熱ピークは発現する。一方、機能性材料(樹脂層を有さない)とアルカリ水溶液とを接触させながら測定した際には、直ちに機能性材料起因の発熱ピークが発現する。上記方法によって、機能性材料の機能の発現タイミングを確認することができる。
 また、本開示のコンクリート用添加剤にて、例えば機能性材料として鉱物を選定した場合、TGA法により樹脂の熱分解温度以上に昇温させ、質量減少量を測定することによって樹脂層の被覆量(含有率)を見積もることができる。
 また、本開示のコンクリート用添加剤について、SEM観察後にEDX分析を行なうことによって機能性材料表面が樹脂により被覆されていることを確認することができる。
 樹脂層に含まれる樹脂の水蒸気透過度は、200g/m・day以下であることが好ましく、0g/m・day~190g/m・dayであることがより好ましく、0.05g/m・day~180g/m・dayであることが更に好ましく、1g/m・day~100g/m・dayであることが特に好ましく、3g/m・day~50g/m・dayであることがより一層好ましい。樹脂層に含まれる樹脂の水蒸気透過度が200g/m・day以下であることにより、コンクリート用添加剤と水とを混合した場合に、機能性材料(膨張剤、増粘剤等)の機能発現までの時間を遅くできる傾向にある。
 本開示において、樹脂層に含まれる樹脂の水蒸気透過度は、JIS Z 0208(1976)のカップ法に準拠して測定した値である。
 樹脂層に含まれる樹脂の透過度係数は、200g・mm/m・day以下であることが好ましく、0g・mm/m・day~190g・mm/m・dayであることがより好ましく、0.1g・mm/m・day~180g・mm/m・dayであることが更に好ましい。樹脂層に含まれる樹脂の透過度係数が200g・mm/m・day以下であることにより、コンクリート用添加剤と水とを混合した場合に、機能性材料(膨張剤、増粘剤等)の機能発現までの時間を遅くできる傾向にある。
 本開示のコンクリート用添加剤は、樹脂層の均一性に優れる点から、安息角が50°以下であることが好ましく、40°以下であることがより好ましく、30°以下であることが更に好ましい。例えば、安息角が50°超の機能性材料を用いた場合であっても、機能性材料を造粒することにより、安息角が50°以下のコンクリート用添加剤が得られる傾向にある。
 なお、コンクリート用添加剤における安息角の下限値は、特に限定されず、例えば10°以上であればよい。
<コンクリート用添加剤の製造方法>
 本開示におけるコンクリート用添加剤の製造方法は、前述のコンクリート用添加剤の製造方法であって、機能性材料の表面に前記樹脂層の形成に用いる樹脂を付与した後、機能性材料を被覆する樹脂層を形成する方法である。
〔具体例1〕
 以下、本開示におけるコンクリート用添加剤の製造方法の具体例1を示す。前述のコンクリート用添加剤の製造方法の具体例1は、機能性材料を樹脂層の形成に用いる樹脂の軟化温度以上硬化温度未満とし、軟化温度以上硬化温度未満とした機能性材料に対して樹脂を添加し、添加した樹脂により機能性材料を被覆し、軟化温度以上硬化温度未満とした機能性材料の温度を樹脂の硬化温度以上に加熱し、機能性材料を被覆する樹脂層を形成する方法であってもよい。
 この具体例1では、樹脂として熱硬化性樹脂を用いることが好ましい。
 例えば、具体例1におけるコンクリート用添加剤の製造方法は、「(a)機能性材料を、(b)工程にて用いる樹脂の軟化温度以上硬化温度未満とする工程。(b)軟化温度以上硬化温度未満とした機能性材料に対して樹脂を添加し、添加した樹脂により機能性材料を被覆する工程。(c)機能性材料の温度を樹脂の硬化温度以上に加熱し、機能性材料を被覆する樹脂層を形成する工程。」の3つの工程を含んで行われる。
 また、樹脂層の厚さは、(a)工程~(c)工程を繰り返すことにより、調整することができる。
 (b)工程にて用いる樹脂は、粒径が小さいほうが好ましい。(b)工程にて用いる樹脂の平均粒径は、10,000μm以下であることが好ましく、5,000μm以下であることがより好ましく、1000μm以下であることが更に好ましく、500μm以下であることが特に好ましい。
 尚、(b)工程にて用いる樹脂の平均粒径は、レーザー回折法を用いて測定される粒子径分布において、重量累積分布の小粒径側からの累積50%に対応する平均粒径(D50)である。
 (b)工程にて用いる樹脂としては、樹脂を破砕したものであってもよい。樹脂を破砕するための方法としては、ジェットミル、すり鉢、ハンマー等での破砕が挙げられるが、生産性向上という観点からジェットミル破砕であることが好ましい。また、破砕した樹脂をメッシュで篩い分けし、篩い分けされた樹脂を(b)工程にて用いてもよい。
 (b)工程の後、機能性材料と樹脂とを混練する方法としては、プラネタリミキサー、撹拌羽、ヘンシェルミキサー等を用いて混練する方法が挙げられ、機能性材料を効率よく被覆する観点から、ヘンシェルミキサーを用いて混練することが好ましい。また、機能性材料及び樹脂以外の成分、例えば、硬化剤を混練物に添加してもよい。
 (c)工程にて機能性材料を加熱する方法としては、ガスバーナー、電気炉、乾燥機等による加熱が挙げられるが、樹脂を硬化温度以上の温度で保持することが容易である乾燥機又は電気炉を使用することが望ましい。
〔具体例2〕
 次に、本開示におけるコンクリート用添加剤の製造方法の具体例2を示す。前述のコンクリート用添加剤の製造方法の具体例2は、機能性材料を樹脂層の形成に用いる樹脂の溶解温度以上に加熱し、加熱した機能性材料に対して樹脂を添加し、添加した樹脂により機能性材料を被覆し、加熱した機能性材料の温度を樹脂の溶解温度未満とし、機能性材料を被覆する樹脂層を形成する方法であってもよい。
 この具体例2では、樹脂として熱可塑性樹脂を用いることが好ましい。
 尚、前述の具体例1と共通する事項については、その説明を省略する。
 例えば、具体例2におけるコンクリート用添加剤の製造方法は、「(a)機能性材料を、(b)工程にて用いる樹脂の溶解温度以上に加熱する工程。(b)加熱した機能性材料に対して樹脂を添加し、添加した樹脂により機能性材料を被覆する工程。(c)機能性材料の温度を樹脂の溶解温度未満とし、機能性材料を被覆する樹脂層を形成する工程。」の3つの工程を含んで行われる。
 (b)工程にて用いる樹脂は、加熱した機能性材料との接触時に溶解し易いという観点から、粒径が小さいほうが好ましい。(b)工程にて用いる樹脂の平均粒径は、10,000μm以下であることが好ましく、5,000μm以下であることがより好ましく、1000μm以下であることが更に好ましく、500μm以下であることが特に好ましい。
 (a)工程にて機能性材料を加熱する方法としては、ガスバーナー、電気炉、乾燥機等による加熱が挙げられるが、機能性材料が熱分解をせず且つ極力短時間で熱する観点から、電気炉であることが好ましい。
 機能性材料の加熱温度は、樹脂の溶解温度以上且つ機能性材料の熱分解温度以下であることが好ましい。
 本開示におけるコンクリート用添加剤の製造方法において、樹脂と機能性材料との混合物を用いて機能性材料を被覆する樹脂層を形成する場合、湿式方式にて樹脂層を形成してもよい。例えば、樹脂及び必要に応じて硬化剤を溶剤に溶解させて樹脂溶液を調製し、調製した樹脂溶液と機能性材料と混合し、混合物を用いて機能性材料を被覆する樹脂層を形成してもよい。機能性材料の表面に樹脂を被覆した後、必要に応じて、被覆物を乾燥させて溶剤を揮発させたり、被覆物を加熱して樹脂を硬化させたりして、樹脂層を形成してもよい。
 このとき、溶剤としては、樹脂と相溶性が高く、且つ機能性材料と反応しないものを用いればよく、更に揮発性に優れるものが好ましい。溶剤としては、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、アセトン等のケトン、ジクロロメタン、酢酸エチル、エーテル類などが挙げられる。
 本開示におけるコンクリート用添加剤の製造方法において、機能性材料を造粒物とし、造粒物表面に樹脂層の形成に用いる樹脂を付与した後、造粒物を被覆する樹脂層を形成してもよい。
 機能性材料の造粒物としては、機能性材料同士をバインダー樹脂等を用い、結着させて形成してもよく、結着性のある機能性材料を用い、結着させて形成してもよい。
 バインダー樹脂を用いて造粒物を製造する場合、機能性材料、及びバインダー樹脂を混合した後、バインダー樹脂により機能性材料同士が結着されてなる造粒物を形成してもよい。
 また、バインダー樹脂と機能性材料との混合物を用いて造粒物を形成する場合、湿式方式にて造粒物を形成してもよい。例えば、バインダー樹脂及び必要に応じて硬化剤を溶剤に溶解させて樹脂溶液を調製し、調製した樹脂溶液と機能性材料と混合し、混合物を用いて機能性材料同士を結着させてなる造粒物を形成してもよい。このとき、必要に応じて、混合物を乾燥させて溶剤を揮発させたり、混合物を加熱してバインダー樹脂を硬化させたりして、造粒物を形成してもよい。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
<実施例1>
 機能性材料として膨張剤であるMgOを用い、被覆樹脂として以下の表1に示す樹脂、硬化剤としてイミダゾール系硬化剤を用いた。そして、表1の項目(1)~(9)に示す配合内容にて樹脂種(樹脂、硬化剤及び溶剤)をポリビンに添加し、撹拌機中で溶剤であるMEKに樹脂及び硬化剤を溶解させた。これにより、樹脂溶液(1)~(9)をそれぞれ調製した。
Figure JPOXMLDOC01-appb-T000001
 表1中、「N.V」は不揮発成分(質量%)を表す。
 表1中、「NMP」はN-メチルピロリドンを表す。
 次に、樹脂溶液(1)~(9)と機能性材料であるMgOとを、MgOに対して樹脂と硬化剤との合計である樹脂量が20質量%となるように混合し、FS2型ハイスピードミキサー(株式会社アーステクニカ)を用いて湿式方式にてMgOに樹脂を被覆させた。これにより、MgO被覆物A~Iを得た。
 MgO被覆物A~Iを300℃の乾燥機で3時間放置して樹脂を硬化させ、コンクリート用添加剤A~Iをそれぞれ作製した。
 また、樹脂溶液(4)~(6)と機能性材料であるMgOとを、MgOに対して樹脂と硬化剤との合計である樹脂量が50質量%となるように混合し、FS2型ハイスピードミキサー(株式会社アーステクニカ)を用いて湿式方式にてMgOに樹脂を被覆させた。これにより、MgO被覆物J~Lを得た。
 MgO被覆物J~Lを300℃の乾燥機で3時間放置して樹脂を硬化させ、コンクリート用添加剤J~Lをそれぞれ作製した。
<水蒸気透過度及び透過度係数の測定>
 樹脂層に含まれる樹脂の水蒸気透過度を、JIS Z 0208(1976)のカップ法に準拠して測定した。水蒸気透過度を測定するための試料は、以下の(a)~(d)のようにして作製した。
(a)まず、樹脂溶液(1)~(9)を持ち手付きアルミカップ(65mL)に6.4gずつ添加した。
(b)上記(a)にて樹脂溶液が添加されたアルミカップをホットプレート上に置き、110℃で1時間、120℃で30分、150℃で30分及び180℃で1時間、この順で樹脂溶液を加熱した。
(c)上記(b)の後、平らな樹脂板を作製するため、加熱を止める前にアルミカップ上にガラス板をのせ、ホットプレート上で樹脂板の温度が25℃になるまで冷却した。
(d)上記(c)の後、アルミカップより樹脂板を剥がし、端部を研磨して平らな樹脂板を作製する。この樹脂板を水蒸気透過度を測定するための試料とした。
 結果を表2に示す。なお、透過度係数は以下の式に基づき算出した。
 透過度係数=水蒸気透過度×樹脂板の厚さ
Figure JPOXMLDOC01-appb-T000002
<潜在性評価方法1>
 潜在性については、超純水に一定時間コンクリート用添加剤A~Lを水没させ、機能性材料が膨張するまでの時間(機能発現までの時間)を測定することにより評価した。
 まず、コンクリート用添加剤A~I:10gと超純水:15mLとを30mLビーカーに取り分け、また、コンクリート用添加剤J~L:12.5gと超純水:15mLとを30mLビーカーに取り分け、それぞれを60℃のホットスターラー上にて、撹拌羽を用い200rpm(回転/分)にて撹拌した。
 撹拌30分ごとにコンクリート用添加剤A~Lをそれぞれ取り出し、電子顕微鏡で観察して、機能性材料が水と反応して膨張するまでの時間(図5に示す潜在性評価前のコンクリート用添加剤において、撹拌開始時の状態から図6の状態になるまでの時間)を記録した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3により、樹脂の種類によって機能性材料の機能発現までの時間を調整できることが示された。また、表3により、樹脂の被覆量を多くすることにより、機能性材料の機能発現までの時間を遅らせることができることが示された。
 また、表2及び表3に示すように、水蒸気透過度の低い樹脂を用いて機能性材料を被覆することにより、機能性材料の機能発現までの時間を調整できることが示された。
<実施例2>
 機能性材料として増粘剤であるメトローズ(水溶性セルロースエーテル、登録商標、信越化学工業株式会社)を用い、被覆樹脂として以下の表4に示す樹脂を用いた。そして、表4の項目(1)'~(3)'に示す配合内容にて樹脂種(樹脂及び硬化剤)をポリビンに添加し、撹拌機中で硬化剤であるトリエチレンテトラミンと樹脂とを混合させた。これにより、樹脂溶液(1)'~(3)'をそれぞれ調製した。
Figure JPOXMLDOC01-appb-T000004
 次に、樹脂溶液(1)'~(3)'と増粘剤であるメトローズとを、メトローズに対して樹脂と硬化剤との合計である樹脂量が20質量%となるようにポリカップ内に添加し、混合物を撹拌した。
 撹拌後、混合物を乾燥させて被覆物M~Oを得た。
 その後、被覆物M~Oを120℃の乾燥機に30分投入し、樹脂を硬化させ、コンクリート用添加剤M~Oをそれぞれ作製した。
 また、樹脂溶液(1)'~(3)'と増粘剤であるメトローズとを、メトローズに対して樹脂と硬化剤との合計である樹脂量が40質量%となるようにポリカップ内に添加し、混合物を撹拌した。
 撹拌後、混合物を乾燥させて被覆物P~Rを得た。
 その後、被覆物P~Rを120℃の乾燥機に30分投入し、樹脂を硬化させ、コンクリート用添加剤P~Rをそれぞれ作製した。
<潜在性評価方法2>
 潜在性については、超純水に一定時間コンクリート用添加剤M~Rを水没させ、機能性材料である増粘剤の機能が発現するまでの時間を測定することにより評価した。
 まず、以下のサンプル1~8を100mLのポリビンにそれぞれ取り分け、室温にて撹拌羽を用い200rpm(回転/分)にて撹拌した。
 サンプル1~3・・・コンクリート用添加剤M~O:2.4g及び超純水:80mL
 サンプル4~6・・・コンクリート用添加剤P~R:2.8g及び超純水:80mL
 サンプル7・・・超純水80mL
 サンプル8・・・メトローズ2g及び超純水80mL
 次に、サンプル7、8から1mLシリンジでサンプル液をそれぞれ取り出し、E型粘度計(東機産業株式会社 TV-22形)にてサンプル液の粘度を測定した。その結果、サンプル8はサンプル7よりも粘度が高く、メトローズと超純水とを混合してすぐにメトローズの機能が発現したことを確認した。
 また、撹拌開始後、30分毎にサンプル1~6から1mLシリンジでサンプル液をそれぞれ取り出し、E型粘度計(東機産業株式会社 TV-22形)にてサンプル液の粘度を測定した。サンプル液の粘度がサンプル8とほぼ同じ粘度になるまでの時間を機能発現までの時間とし、遅延効果を確認した。
 結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、機能性材料を樹脂で被覆することにより、機能性材料の機能発現までの時間を、樹脂で被覆していない機能性材料(表5中のメトローズ単体)よりも遅らせることができた。
 また、表5に示すように、樹脂の被覆量を多くすることにより、機能性材料の機能発現までの時間を遅らせることができた。
<実施例3>
 次に、表1に示す樹脂溶液(1)~(9)と機能性材料であるMgOとを、MgOに対して樹脂と硬化剤との合計である樹脂量が5質量%となるように混合し、FS2型ハイスピードミキサー(株式会社アーステクニカ)を用いて湿式方式にて造粒した。
 そして、各々作製した造粒物を180℃の乾燥機に1時間投入し、樹脂を硬化させて強度を高めた。以上により、樹脂溶液(1)~(9)から造粒物A~Iをそれぞれ作製した。
 次に、造粒物A~Iと樹脂溶液(1)~(9)をN.V=20%に希釈した溶液とを、MgOに対して樹脂と硬化剤との合計である樹脂量(造粒物に対して混合した樹脂と硬化剤との合計量)が20質量%となるように混合し、FS2型ハイスピードミキサーを用いて湿式方式にて被覆した。これにより、被覆造粒物A~Iをそれぞれ作製した。
 被覆造粒物A~Iを300℃の乾燥機で3時間放置し、コンクリート用添加剤A’~I’をそれぞれ作製した。
<樹脂コーティング性の評価>
 造粒物A~Iを樹脂被覆して得られたコンクリート用添加剤A’~I’の樹脂コーティング性を評価した。具体的には、コンクリート用添加剤A’~I’:10gを50mLのポリカップにそれぞれ加え、室温にて撹拌羽を用い500rpm(回転/分)にて30分撹拌した後、コンクリート用添加剤A’~I’の外観を電子顕微鏡にて確認した。
 撹拌後のコンクリート用添加剤A’~I’について、いずれもMgOが剥き出しになっていなかった。そのため、コンクリート用添加剤A’~I’は樹脂コーティング性が良好であった。ここで、機能性材料が樹脂により均一性高く被覆されていれば、樹脂被覆の均一性が低い場合と比較して機能発現までの時間を遅くできることが推測される。
<実施例4>
 膨張剤として用いる機能性材料としてMgO、被覆樹脂としてHP-850N(日立化成株式会社製アルカリ可溶フェノール樹脂)、硬化剤としてヘキサミンを用いた。
 図4に示すように、膨張剤として用いる機能性材料7のMgOの周囲を、フェノール樹脂と硬化剤とを用いて形成された樹脂層6にて覆ったコンクリート用添加剤を以下のようにして製造した。
 まず、すり鉢を用いてHP-850Nを破砕し、300μmメッシュで篩い分けをし、300μm以下の樹脂を20g得た。
 次に、270℃に熱した電気炉の中にMgO:1,000gを30分間投入し、MgOを200℃まで加熱した(工程(a))。
 ミキサー釜(株式会社愛工舎製作所製)に上記200℃に加熱したMgO:1,000gと、300μm以下のHP-850N:20gとを投入し(工程(b))、2分間混練した。そして、100℃まで混合物の温度が下がった後、硬化剤としてヘキサミン:3.3gを添加して、塊が崩れるまで混練した。
 上記混練で得られたサンプルを、電気炉にて300℃で1時間放置して樹脂を硬化させ、コンクリート用添加剤Aとした(工程(c))。
<潜在性評価方法3>
 潜在性については、水酸化カルシウム水溶液内に一定時間コンクリート用添加剤Aを水没させ、樹脂が完全に溶解するまでの時間を、反応遅延時間(機能発現までの時間)として評価した。
 水酸化カルシウム:2gと超純水:1Lとを2Lポリカップに取り分け、撹拌羽を用い400rpm(回転/分)にて1時間撹拌した。その後、上澄み液の収集しPH計を用い、PH=11.7であることを確認した。これにより、水酸化カルシウム水溶液(PH=11.7)を調製した。
 その後、200mL容量のポリビン内にコンクリート用添加剤Aを50g、水酸化カルシウム水溶液100gを投入し、撹拌羽を用いて200rpm(回転/分)にて撹拌した。2時間の撹拌後、ポリビン内から水酸化カルシウム水溶液を抜き取り、湿った状態のコンクリート用添加剤Aを2時間風乾させた。(サンプルA)
 また、撹拌時間を2時間から6時間、10時間及び14時間にそれぞれ変更した以外は、サンプルAと同様にして潜在性評価サンプル(サンプルB~サンプルD)をそれぞれ作製した。
 サンプルA~サンプルDを用い、示差熱熱重量測定装置(理化学研究所製)を用い、窒素雰囲気にて30℃~1000℃まで20℃/分で昇温させ、熱質量変化率を測定した。
 表6にサンプルA、サンプルB、サンプルC及びサンプルDの熱質量変化率を記す。
Figure JPOXMLDOC01-appb-T000006
 表6より、サンプルA(撹拌2時間)では、熱質量変化率が-12.10(%)であった。つまり、被覆樹脂が完全に溶解していないことがわかった。一方、サンプルD(撹拌14時間)では熱質量変化率が-0.02(%)であり、比較例であるMgOの質量変化率-0.03(%)と略同等値となった。つまり、被覆樹脂は完全に溶解したことがわかった。したがって、10時間超14時間以下の間に、被覆樹脂は完全に溶解し、機能性材料は機能を発現可能な状態になっていることが分かった。
 上記結果より、MgOにフェノール樹脂を被覆することで、機能性材料としてのMgOの機能が発現するまでに、10時間超14時間以下の潜在性を有することがわかった。また、機能性材料を被覆する樹脂を変更することにより、機能発現までの時間を調整できることが推測される。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
1.機能性材料、2.樹脂層、3.機能性材料、4.機能性材料、5.樹脂層、6.樹脂層、7.機能性材料、8.機能性材料、9.バインダー樹脂、10.樹脂層

Claims (14)

  1.  機能性材料と、前記機能性材料を被覆する樹脂層とを備える、コンクリート用添加剤。
  2.  前記機能性材料が、膨張剤、増粘剤、分散剤、AE剤、減水剤、凝結・硬化調整剤、防錆剤、発泡剤、起泡剤、繊維質補強剤、ポリマー混和剤及びシリカ質混和剤促進剤から選ばれる少なくとも一種である、請求項1に記載のコンクリート用添加剤。
  3.  前記樹脂層が、フェノール樹脂、エポキシ樹脂、アクリレート樹脂、ポリエステル樹脂、ポリアミド樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、フッ素樹脂、ナイロン樹脂、スチレン樹脂、アクリロニトリル樹脂、ポリエチレン樹脂、ポリオレフィン樹脂、ポリカーボネート樹脂、塩化ビニル樹脂、ポリスルホン樹脂、シリコーン樹脂、及びブチルゴムから選ばれる少なくとも一種の樹脂を含む、請求項1又は請求項2に記載のコンクリート用添加剤。
  4.  前記樹脂層が、単層又は複数層である、請求項1~請求項3のいずれか1項に記載のコンクリート用添加剤。
  5.  前記樹脂層が複数層である場合、前記複数層の少なくとも1つの層に含まれる樹脂が、前記複数層の他の層に含まれる樹脂と組成が異なる、請求項1~請求項4のいずれか1項に記載のコンクリート用添加剤。
  6.  前記樹脂層が、網目状高分子を含む、請求項1~請求項5のいずれか1項に記載のコンクリート用添加剤。
  7.  前記樹脂層が、数平均分子量1,000~1,000,000の樹脂を含む、請求項1~請求項6のいずれか1項に記載のコンクリート用添加剤。
  8.  前記樹脂層が、全体に対して50質量%以下である、請求項1~請求項7のいずれか1項に記載のコンクリート用添加剤。
  9.  前記樹脂層の厚さが、0.1μm~1000μmである、請求項1~請求項8のいずれか1項に記載のコンクリート用添加剤。
  10.  安息角が50°以下である、請求項1~請求項9のいずれか1項に記載のコンクリート用添加剤。
  11.  請求項1~請求項10のいずれか1項に記載のコンクリート用添加剤の製造方法であって、
     前記機能性材料の表面に前記樹脂層の形成に用いる樹脂を付与した後、前記機能性材料を被覆する前記樹脂層を形成する、コンクリート用添加剤の製造方法。
  12.  前記機能性材料を前記樹脂層の形成に用いる前記樹脂の軟化温度以上硬化温度未満とし、
     前記軟化温度以上硬化温度未満とした機能性材料に対して前記樹脂を添加し、添加した前記樹脂により前記機能性材料を被覆し、
     前記軟化温度以上硬化温度未満とした機能性材料の温度を前記樹脂の硬化温度以上に加熱し、前記機能性材料を被覆する前記樹脂層を形成する、請求項11に記載のコンクリート用添加剤の製造方法。
  13.  前記機能性材料を前記樹脂層の形成に用いる前記樹脂の溶解温度以上に加熱し、
     前記加熱した機能性材料に対して前記樹脂を添加し、添加した前記樹脂により前記機能性材料を被覆し、
     前記加熱した機能性材料の温度を前記樹脂の溶解温度未満とし、前記機能性材料を被覆する前記樹脂層を形成する、請求項11に記載のコンクリート用添加剤の製造方法。
  14.  前記機能性材料を造粒物とし、前記造粒物の表面に前記樹脂層の形成に用いる樹脂を付与した後、前記造粒物を被覆する前記樹脂層を形成する、請求項11~請求項13のいずれか1項に記載のコンクリート用添加剤の製造方法。
PCT/JP2017/022008 2017-06-14 2017-06-14 コンクリート用添加剤及びコンクリート用添加剤の製造方法 WO2018229913A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022008 WO2018229913A1 (ja) 2017-06-14 2017-06-14 コンクリート用添加剤及びコンクリート用添加剤の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/022008 WO2018229913A1 (ja) 2017-06-14 2017-06-14 コンクリート用添加剤及びコンクリート用添加剤の製造方法

Publications (1)

Publication Number Publication Date
WO2018229913A1 true WO2018229913A1 (ja) 2018-12-20

Family

ID=64659153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/022008 WO2018229913A1 (ja) 2017-06-14 2017-06-14 コンクリート用添加剤及びコンクリート用添加剤の製造方法

Country Status (1)

Country Link
WO (1) WO2018229913A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531043A (ja) * 2000-04-27 2003-10-21 ダブリュ・アール・グレイス・アンド・カンパニー・コネテイカット 可鋳性セメント系複合物に使用する塩基性媒体に溶解し得る包装材
JP2005289718A (ja) * 2004-03-31 2005-10-20 Hirozo Mihashi セメント用混和剤及びその製造方法
JP2010195613A (ja) * 2009-02-24 2010-09-09 Denki Kagaku Kogyo Kk 蒸気養生用セメント混和材及びセメント組成物
JP2013523590A (ja) * 2010-04-07 2013-06-17 テクニシュ ユニベルシテイト デルフト 自己修復セメント系材料のための修復剤
JP2016521672A (ja) * 2013-06-14 2016-07-25 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH 架橋したシェラックで被覆された促進剤粒子を含有するセメント系
JP2017024919A (ja) * 2015-07-16 2017-02-02 松本油脂製薬株式会社 セメント用粉末収縮低減剤及びその利用
JP2017105670A (ja) * 2015-12-09 2017-06-15 日立化成株式会社 コンクリート用添加剤及びこの添加剤の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531043A (ja) * 2000-04-27 2003-10-21 ダブリュ・アール・グレイス・アンド・カンパニー・コネテイカット 可鋳性セメント系複合物に使用する塩基性媒体に溶解し得る包装材
JP2005289718A (ja) * 2004-03-31 2005-10-20 Hirozo Mihashi セメント用混和剤及びその製造方法
JP2010195613A (ja) * 2009-02-24 2010-09-09 Denki Kagaku Kogyo Kk 蒸気養生用セメント混和材及びセメント組成物
JP2013523590A (ja) * 2010-04-07 2013-06-17 テクニシュ ユニベルシテイト デルフト 自己修復セメント系材料のための修復剤
JP2016521672A (ja) * 2013-06-14 2016-07-25 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハーConstruction Research & Technology GmbH 架橋したシェラックで被覆された促進剤粒子を含有するセメント系
JP2017024919A (ja) * 2015-07-16 2017-02-02 松本油脂製薬株式会社 セメント用粉末収縮低減剤及びその利用
JP2017105670A (ja) * 2015-12-09 2017-06-15 日立化成株式会社 コンクリート用添加剤及びこの添加剤の製造方法

Similar Documents

Publication Publication Date Title
EP3502054A1 (en) Functionalized graphene oxide curable formulations
JP6651242B2 (ja) シアノエチル基含有重合体およびその製造方法
JP2017105670A (ja) コンクリート用添加剤及びこの添加剤の製造方法
JP4662804B2 (ja) 中空樹脂微粒子、中空樹脂微粒子の製造方法、及び、複合材
JPS62292869A (ja) 粉体塗料
Sun et al. Polyphenols induced in situ organic-inorganic crosslinking/mineralization strategy for constructing eco-friendly soy adhesive with high waterproof bonding strength
TW200540137A (en) Method for producing dielectric ceramic powder and method for producing composite dielectric material
JP6785760B2 (ja) 多孔質カルシウム欠損ヒドロキシアパタイト顆粒を製造するための方法
Jaya et al. Effect of solid-to-liquid ratios on metakaolin geopolymers
WO2018229913A1 (ja) コンクリート用添加剤及びコンクリート用添加剤の製造方法
EP2837608B1 (en) Epoxy-multilayer polymer rdp geopolymer compositions and methods of making and using the same
WO2018230574A1 (ja) コンクリート用添加剤及びコンクリート用添加剤の製造方法
JP2019001678A (ja) コンクリート用添加剤及びコンクリート用添加剤の製造方法
JP2019001676A (ja) コンクリート用添加剤及びコンクリート用添加剤の製造方法
JP2019001677A (ja) コンクリート用添加剤及びコンクリート用添加剤の製造方法
WO2003054080A1 (fr) Composition thermoplastique polymerisable a l'eau, objet moule fabrique a partir de cette composition thermoplastique polymerisable a l'eau et processus de production de cet objet
KR101733583B1 (ko) 코팅된 골재를 이용한 고강도 지오폴리머/골재 복합체 제조방법
CN104446073A (zh) 一种水溶性高分子表面接枝改性机制砂的制备方法
JP2010083698A (ja) セメント硬化体の製造方法及びセメント硬化体
JP2013056789A (ja) 粉末状窒化ホウ素組成物、およびそれを含有する複合材組成物
CN104175236A (zh) 一种新型加工水晶抛光的烧结抛光盘及其制备工艺
CN113929337B (zh) 一种离子吸收陶粒及其制备方法
US11939262B2 (en) Method for manufacturing coal-based geopolymer foam including silica fume
KR101423148B1 (ko) 선택적 용해법을 이용한 플라이애시의 알칼리 활성화 반응성 평가방법
JP2003082229A (ja) 炭素質粉末成形材料及びその製造法、炭素質成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17914091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17914091

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP