WO2018228579A1 - 确定传输块大小的方法及装置 - Google Patents

确定传输块大小的方法及装置 Download PDF

Info

Publication number
WO2018228579A1
WO2018228579A1 PCT/CN2018/091692 CN2018091692W WO2018228579A1 WO 2018228579 A1 WO2018228579 A1 WO 2018228579A1 CN 2018091692 W CN2018091692 W CN 2018091692W WO 2018228579 A1 WO2018228579 A1 WO 2018228579A1
Authority
WO
WIPO (PCT)
Prior art keywords
tbs
time
mapping relationship
frequency resources
terminal device
Prior art date
Application number
PCT/CN2018/091692
Other languages
English (en)
French (fr)
Inventor
吕永霞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710686578.0A external-priority patent/CN109152052A/zh
Priority to RU2019143451A priority Critical patent/RU2737614C1/ru
Priority to BR112019026455-8A priority patent/BR112019026455A2/pt
Priority to JP2019566809A priority patent/JP6891979B2/ja
Priority to AU2018284901A priority patent/AU2018284901B2/en
Priority to EP18817587.1A priority patent/EP3468277B1/en
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201880039739.XA priority patent/CN110999464A/zh
Priority to ES18817587T priority patent/ES2814624T3/es
Priority to EP20173784.8A priority patent/EP3780441B1/en
Priority to KR1020197038142A priority patent/KR102276760B1/ko
Priority to US16/172,850 priority patent/US10447425B2/en
Publication of WO2018228579A1 publication Critical patent/WO2018228579A1/zh
Priority to US16/584,958 priority patent/US11575462B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems

Definitions

  • the present application relates to the field of communication data, and in particular, to a method and apparatus for determining a transport block size.
  • 5G wireless communication system also called the new air interface (new radio, NR) wireless communication system
  • 5G communication system will support a variety of business types, a variety of deployment scenarios And a wider spectrum range.
  • the 5G wireless communication system needs to support different requirements of different service types of services, and therefore has greater flexibility in resource scheduling, and the determination of the transport block size (TBS) in resource scheduling also needs to be more flexible.
  • TBS transport block size
  • the TBS determining process adopts the following steps:
  • Step 1 The terminal device determines a modulation order and a TBS index (TBS index, I_TBS) according to a modulation and coding scheme (MCS) index (index, I_MCS) and a protocol-predefined MCS mapping table.
  • TBS index I_TBS
  • MCS index index, I_MCS
  • Step 2 The terminal device determines the number of physical resource blocks (PRBs) allocated in the frequency domain (PRB number, N_PRB) according to the resource allocation information indicated by the network device.
  • PRBs physical resource blocks
  • Step 3 The terminal device searches for a corresponding TBS value in a predefined TBS table according to parameters such as I_TBS and N_PRB to determine a TBS carried by the data channel.
  • the basic assumption for determining the TBS is that the basic time unit of resource scheduling is one subframe (14 orthogonal frequency division multiplexing (OFDM) symbols), and the data channel in each PRB is available.
  • the number of resources is fixed, for example, 120 resource elements (REs).
  • REs resource elements
  • the flexibility of resource scheduling has changed a lot, and the number of available resources of data channels in each PRB varies greatly.
  • the scheduling time and the frequency domain range supported by the 5G wireless communication system are extremely large. Therefore, the determination mode of the TBS along the data channel of the LTE system is inflexible and the scalability is poor.
  • the embodiments of the present application provide a method and an apparatus for determining a transport block size, which can enhance the flexibility of determining a transport block size.
  • the first aspect provides a method of determining the size of a transport block.
  • the terminal device receives control information sent by the network device, where the control information includes resource information indicating the information and the data channel.
  • the terminal device determines a modulation mode and a coding rate according to the first mapping relationship set and the indication information, and determines the number of time-frequency resources according to the resource information of the data channel.
  • the first mapping relationship set includes a correspondence relationship between the indication information and a combination of the modulation mode and the coding rate.
  • the terminal device determines the first transport block size TBS according to the modulation mode, the coding rate, and the number of the time-frequency resources.
  • the terminal device sends the data channel on the time-frequency resource based on the first TBS based on the data channel or the terminal device carried on the first TBS decoding time-frequency resource.
  • the second aspect provides a method of determining a transport block size, which may include:
  • the network device determines a modulation mode and a coding rate, and determines indication information according to the combination of the modulation mode and the coding rate and the first mapping relationship set, where the first mapping relationship includes the indication information and the modulation Correspondence between the mode and the combination of the coding rates;
  • the network device sends control information to the terminal device, where the control information includes the indication information and resource information of the data channel, where the resource information is used to determine the number of time-frequency resources;
  • the network device sends the data channel on the time-frequency resource based on the first TBS based on the first TBS decoding the data channel carried on the time-frequency resource or the network device.
  • the terminal device may determine the modulation mode and the coding rate from the first mapping relationship according to the control information sent by the network device, and determine the number of the time-frequency resources according to the control information, where the time-frequency resource is The time-frequency resource of the data channel is transmitted or received, that is, the time-frequency resource actually occupied by the data channel, and the TBS of the data channel can be determined.
  • the TBS determined according to the time-frequency resource actually occupied by the data channel is more matched with the target coding rate of the data channel, which improves the accuracy of the TBS.
  • the target coding rate here is the coding rate that the network device expects the data channel to reach, and the above coding rate is the coding rate actually used by the data channel.
  • the TBS is determined according to the modulation mode, the coding rate, and the number of time-frequency resources, it can be determined in the same manner regardless of the number of resources scheduled and regardless of other overhead resources in the scheduled resources.
  • the accurate TBS therefore, the TBS determination mode can be applied to various scheduling scenarios, so the TBS determination mode has high flexibility and good scalability.
  • the time-frequency resources allocated to the terminal device are not too small, so that the possibility of retransmission can be reduced when the data channel is received or the data channel is received, and the time-frequency resources allocated to the terminal device are further allocated. Not too much, avoiding the waste of resources.
  • the terminal device or the network device first determines a transport block size TBS according to the modulation mode, the coding rate, and the number of the time-frequency resources, including:
  • the terminal device or the network device determines the first TBS according to the modulation mode, the coding rate, the number of the time-frequency resources, and the number of transmission layers:
  • N is the number of the time-frequency resources
  • v is the number of transmission layers supported by the data channel
  • Q is the modulation order corresponding to the modulation mode
  • R is the coding rate.
  • K is a positive integer
  • the N_TEMP may be the number of time-frequency resources available for the data channel; N is the number of time-frequency resources available for the quantized data channel, and N is used to calculate the first TBS, and/or the second TBS, and details are not described herein.
  • the first TBS may be obtained by looking up the table according to the number N of time-frequency resources available for the data channel, the number of transmission layers v supported by the data channel, and the modulation mode.
  • the table obtains the number of bits L carried on the unit resource, and further the number of bits L carried on the unit resource, and the time-frequency resources available for the data channel.
  • the ratio of the number N to the number of resources included in the unit resource is multiplied to obtain the first TBS.
  • the number of bits L of the single-layer transmission bearer is obtained, and the number of bits L of the single-layer transmission bearer and the transport layer supported by the data channel are further selected.
  • the number v is multiplied to get the first TBS.
  • the number of bits L of the single-layer transmission bearer on the unit resource may be obtained according to the modulation mode, and the number of bits of the single-layer transmission bearer on the unit resource, and the number of time-frequency resources available for the data channel are N.
  • the ratio of the number of resources included in the unit resource to the number of transmission layers v supported by the data channel is multiplied to obtain the first TBS.
  • the embodiment of the present application can determine the TBS by using a formula calculation method, combining the modulation mode, the coding rate, the number of time-frequency resources, and the number of transmission layers supported by the data channel, and the TBS has higher determination efficiency. Further, the rate of the present application can determine the TBS without looking up the table, so there is no need to design the TBS table, which reduces the implementation complexity of the determination of the TBS, and the applicability is higher.
  • the embodiment of the present application may also refer to the corresponding TBS table according to the above formula, but the value obtained by looking up the table satisfies the above formula, so that the accuracy of the TBS can be improved.
  • the terminal device or the network device may determine the second TBS according to the modulation mode, the coding rate, the number of time-frequency resources, and the number of transmission layers, and determine the first TBS according to the second TBS:
  • the first TBS is satisfied: when the second TBS is greater than the first reference threshold, the first TBS is equal to the second TBS.
  • the embodiment of the present application introduces a second TBS before determining the final first TBS.
  • the terminal device or the network device may determine the second TBS according to the modulation mode, the coding rate, the number of time-frequency resources, and the number of transmission layers:
  • N is the number of the time-frequency resources
  • v is the number of transmission layers supported by the data channel
  • Q is the modulation order corresponding to the modulation mode
  • R is the coding rate.
  • the second TBS may be obtained by looking up the table according to the number N of time-frequency resources available for the data channel, the number of transmission layers v supported by the data channel, and the modulation mode.
  • the table obtains the number of bits L carried on the unit resource, and further the number of bits L carried on the unit resource, and the time-frequency resources available for the data channel.
  • the ratio of the number N to the number of resources included in the unit resource is multiplied to obtain the second TBS.
  • the number of bits L of the single-layer transmission bearer is obtained, and the number of bits L of the single-layer transmission bearer and the transport layer supported by the data channel are further selected.
  • the number v is multiplied to get the second TBS.
  • the number of bits L of the single-layer transmission bearer on the unit resource may be obtained according to the modulation mode, and the number of bits of the single-layer transmission bearer on the unit resource, and the number of time-frequency resources available for the data channel are N.
  • the ratio of the number of resources included in the unit resource to the number of transmission layers v supported by the data channel is multiplied to obtain the second TBS.
  • the terminal device or the network device obtains the second TBS according to parameters such as a modulation mode, a coding rate, a number of time-frequency resources, and a number of transmission layers, and then compares the second TBS with the first reference threshold. If the second TBS is greater than the first reference threshold, the second TBS may be used as the final required TBS, that is, the first TBS.
  • an element ie, the first element
  • the terminal device or the network device obtains the second TBS according to parameters such as a modulation mode, a coding rate, a number of time-frequency resources, and a number of transmission layers, and then compares the second TBS with the first reference threshold. If the second TBS is greater than the first reference threshold, the second TBS may be used as the final required TBS, that is, the first TBS.
  • an element ie, the first element
  • the first element may be determined from the first set of values as a final The required TBS, the first TBS.
  • the embodiment of the present application obtains the determining manner of the first TBS by comparing the second TBS with the first reference threshold, so that the transmission of small data packets (or small packets), especially special data packets, is more efficient, and also makes large data.
  • the TBS is determined to be more flexible in packet transmission, more applicable and more scalable.
  • the special data packet may include an internet protocol voice VOIP packet, a media access control MAC element CE packet, and an enhanced voice service codec EVS codec packet.
  • the first reference threshold is greater than or equal to a maximum VOIP packet size, or a maximum MAC CE packet size.
  • the first set of values includes at least a VOIP packet size, and/or a MAC CE packet size.
  • the first set of values includes at least one of 8, 16, 24, 32, 40, 56, 72, 88, 104, 120, 136, 144, 152, 176, 208, 224, 256, 280, 288, 296, 328, 336, 344, 376, 392, 408, 424, 440, 456, 472, 488, 504, 520, 536.
  • the first element is an element that is less than or equal to the second TBS and the absolute value of the difference between the second TBS and the second TBS is the smallest;
  • the first element is an element in the first set of values that is greater than or equal to the second TBS and has a smallest absolute value of a difference from the second TBS;
  • the first element is an element that has the smallest absolute value of the difference between the first value set and the second TBS.
  • An embodiment of the present application defines a value set according to the size of the VOIP packet or the size of the MAC CE packet.
  • the element included in the value set may be the size of the VOIP packet or the size of the MAC CE packet.
  • the embodiment of the present application may also directly provide some values, and represent the values by an array or a set to obtain a set of values.
  • the data may also be the size of the existing VOIP packet or the size of the MAC CE packet, or the size of the extended VOIP packet or the size of the MAC CE packet, or the size of the VOIP packet and the size of the MAC CE packet. Some values inserted outside the value.
  • the first reference threshold is set according to the size of the VOIP packet or the MAC CE packet
  • the first TBS is determined by comparing the first reference threshold with the size of the second TBS, so that the packet, especially the special packet, is determined.
  • the transmission is more efficient, and the TBS is more flexible and more adaptable when transmitting large packets.
  • an element may be selected from the first set of values as the first TBS, so that the transmission of the packet, particularly the special packet, is more efficient.
  • the second TBS is determined to be the first TBS, so that the TBS is determined to be more flexible in the transmission of the large packet, and the applicability is stronger and the scalability is stronger.
  • the terminal device or the network device may determine the second TBS according to the modulation mode, the coding rate, the number of time-frequency resources, and the number of transmission layers, and determine the first TBS according to the second TBS:
  • the first TBS meets:
  • the first TBS is the second element in the first set of values .
  • the first TBS is equal to the second TBS.
  • the second reference threshold is a predefined value, or the second reference threshold is a product of the second reference element and a predefined coefficient.
  • the second TBS is first calculated with the elements included in the first set of values, and the absolute values of the calculated differences are sequentially compared with the second reference. Threshold comparison, determining one element in the first set of values as the first TBS according to the comparison result.
  • the determining manner of the first TBS may include the first mode and the second mode. In the first mode, when the absolute value of the difference between the second TBS and the second element in the first set of values is greater than the element of the second reference threshold, the second TBS may be determined as the first TBS, so that the data is large.
  • the TBS is determined to be more flexible in packet transmission, more applicable and more scalable.
  • Manner 2 determining an element (ie, a second element) whose absolute value of the difference between the first value set and the second TBS is less than or equal to the second reference threshold as the first TBS, so that the small data packet (or the small packet) ), especially the transmission of special data packets is more efficient.
  • the resource information indicates a time-frequency resource allocated by the network device to the terminal device, where the number of the time-frequency resources is removed from the time-frequency resource indicated by the resource information, and the specified time-frequency resource is removed. Remaining time-frequency resources.
  • determining the number of time-frequency resources according to the resource information of the data channel includes:
  • the terminal device Determining, by the terminal device, the number of the time-frequency resources according to the resource information and the specified time-frequency resource, where the time-frequency resource includes a time-frequency resource indicated by the resource information, and removing the remaining time-frequency resource Time-frequency resources.
  • the specified time-frequency resource may include: a time-frequency resource occupied by the demodulation reference signal DMRS corresponding to the data channel, and a channel quality measurement reference signal sent by the network device in the time-frequency resource indicated by the resource information One or more of the time-frequency resources occupied by the CSI-RS and the time-frequency resources reserved by the network device.
  • the time-frequency resource reserved by the network device may include: the time-frequency resource reserved by the network device may include a pre-configured signal of the network device or a time-frequency resource occupied by the channel, for example, a primary synchronization signal (primary synchronization signal) , PSS), secondary synchronization signal (SSS) or physical broadcast channel (PBCH) and other time-frequency resources.
  • a primary synchronization signal primary synchronization signal
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the embodiment of the present application may indicate the resource information of the data channel by using the control information, and the terminal device determines the time-frequency resource available for the data channel according to the time-frequency resource and the fixed overhead time-frequency resource indicated by the resource information, so that the time-frequency resource of the data channel is available.
  • the method of determining the number is more flexible, and the determined number of time-frequency resources is more accurate, thereby improving the accuracy of determining the TBS.
  • the first mapping relationship set is a default mapping relationship set in multiple mapping relationship sets.
  • the method further includes: the terminal device receiving the configuration information sent by the network device.
  • the method further includes: the network device sending the configuration information to the terminal device.
  • the configuration information indicates the first mapping relationship set, and the first mapping relationship set is one of a plurality of mapping relationship sets.
  • a mapping relationship set can correspond to a table.
  • Each mapping relationship set may include a combination of one or more modulation modes and coding rates, and each combination may correspond to one indication information. Further, the indication information may be an index.
  • the embodiment of the present application may configure or define multiple mapping relationship sets, and each mapping relationship set may be applicable to a service of a terminal device, so that the terminal device or the network device may select different mapping table relationships according to different services, and further The service of the terminal device can be better adapted.
  • the multiple mapping relationship sets are not only related to the service, but may also be related to other information, which is not limited in this application. In this way, when using multiple mapping relationship sets, the terminal device or the network device may also determine according to other information, or select a default mapping relationship set.
  • control information further includes mapping relationship set indication information, where the mapping relationship set indication information indicates the first mapping relationship set, and the first mapping relationship set is one of a plurality of mapping relationship sets.
  • the format of the control information indicates the first mapping relationship set, where the first mapping relationship set is one of multiple mapping relationship sets.
  • the type of information carried by the data channel indicated by the control information indicates the first mapping relationship set, where the first mapping relationship set is one of multiple mapping relationship sets.
  • the embodiment of the present application can indicate a mapping relationship set applicable to the terminal device by using control information or configuration information, and can dynamically adapt multiple flexible resource allocation scenarios, and the applicability is higher.
  • control information includes precoding indication information, where the precoding indication information indicates a number of transmission layers supported by the data channel.
  • the method before determining, by the terminal device, the transport block size TBS according to the modulation mode, the coding rate, and the number of the time-frequency resources, the method further includes: the terminal device according to the pre-included in the control information
  • the coding indication information determines the number of transmission layers supported by the data channel.
  • the method before the determining, by the terminal device, the transport block size TBS, according to the modulation mode, the coding rate, and the number of the time-frequency resources, the method further includes:
  • the terminal device determines a number of transmission layers supported by the data channel according to a transmission mode corresponding to the data channel.
  • the method further includes: the network device according to the data channel corresponding to the transmission The mode determines the number of transport layers supported by the data channel.
  • the embodiment of the present application can determine the number of transmission layers supported by the data channel in multiple manners, and the method for determining the number of transmission layers supported by the data channel is more flexible, and can better adapt to various resource allocation scenarios.
  • a third aspect provides a terminal device, which can include: a transceiver unit and a processing unit.
  • the transceiver unit and the processing unit can perform the functions of the terminal device in the above first aspect and the above optional embodiments.
  • a fourth aspect provides a network device, which can include: a transceiver unit and a processing unit.
  • the transceiver unit and the processing unit can perform the functions of the network device in the second aspect and the foregoing optional embodiments.
  • a fifth aspect provides a terminal device, which can include a processor, a memory, and a transceiver.
  • the memory and the transceiver are connected to the processor;
  • the memory is for storing a set of program codes
  • the processor and the transceiver are configured to invoke program code stored in the memory to perform the method provided by the first aspect above.
  • a sixth aspect provides a network device, which can include: a processor, a memory, and a transceiver;
  • the memory and the transceiver are connected to the processor;
  • the memory is for storing a set of program codes
  • the processor and the transceiver are configured to invoke program code stored in the memory to perform the method provided by the second aspect above.
  • a seventh aspect provides a communication system, comprising the terminal device provided by the above third aspect and the network device provided by the above fourth aspect.
  • the eighth aspect provides a computer storage medium for storing a computer software command for use in the above terminal device, comprising a program designed to perform the above aspects.
  • a ninth aspect provides a computer storage medium for storing computer software instructions for use in the network device described above, comprising a program designed to perform the above aspects.
  • the tenth aspect provides a chip, which is coupled to a transceiver in a network device, and is used to implement the technical solution of the second aspect of the embodiment of the present application.
  • "coupled” in the context of the present application means that the two components are combined directly or indirectly with each other. This combination may be fixed or movable, which may allow for the transfer of fluid, electrical, electrical or other types of signals between the two components.
  • the eleventh aspect provides a chip, which is coupled to a transceiver in the terminal device for performing the technical solution of the first aspect of the embodiment of the present application.
  • "coupled” in the context of the present application means that the two components are combined directly or indirectly with each other. This combination may be fixed or movable, which may allow for the transfer of fluid, electrical, electrical or other types of signals between the two components.
  • FIG. 2 is a schematic diagram of an embodiment of a method for determining a transport block size according to an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the method and apparatus for determining the transport block size provided by the embodiments of the present application may be applicable to a 5G communication system, and may also be applicable to an LTE system, or other wireless communication systems using various radio access technologies.
  • code division multiple access CDMA
  • frequency division multiple access FDMA
  • time division multiple access TDMA
  • orthogonal frequency division multiple access orthogonal frequency Division multiple access
  • SC-FDMA single carrier-frequency division multiple access
  • FIG. 1 it is an infrastructure of a communication system provided by an embodiment of the present application.
  • the communication system provided by the embodiment of the present application may include a network device and a terminal device, and the network device and the terminal device may perform data or signaling transmission through the wireless interface, including uplink transmission and downlink transmission.
  • a terminal device is a device with wireless transceiver capability that can be deployed on land, indoors or outdoors, handheld or on-board; it can also be deployed on the water (such as ships); it can also be deployed in the air (such as airplanes, balloons, and Satellite, etc.).
  • the terminal device can be a mobile phone, a tablet, a computer with wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (AR) terminal device, and an industrial control (industrial control).
  • Wireless terminal wireless terminal in self driving, wireless terminal in remote medical, wireless terminal in smart grid, wireless terminal in transport safety Wireless terminals in smart cities, wireless terminals in smart homes, and so on.
  • the network device involved in the embodiment of the present application is a device deployed in a radio access network (RAN) to provide a wireless communication function for a terminal device.
  • the foregoing network device may be a base station, and may include various forms of a macro base station, a micro base station, a relay station, an access point base station controller, a transmission and reception node (TRP), and the like.
  • TRP transmission and reception node
  • the specific name of the base station may be different.
  • an evolved NodeB (eNB) may be used in a subsequent evolved system. It is called new radio node B (gNB).
  • gNB new radio node B
  • the devices mentioned above are collectively referred to as network devices.
  • the 5G communication system is dedicated to supporting higher system performance, which will support multiple service types, different deployment scenarios and a wider spectrum range.
  • the above various service types include enhanced mobile broadband (eMBB), massive machine type communication (mMTC), ultra-reliable and low latency communications (URLLC), multimedia. Broadcast broadcast service (MBMS) and location services.
  • eMBB enhanced mobile broadband
  • mMTC massive machine type communication
  • URLLC ultra-reliable and low latency communications
  • MBMS Broadcast broadcast service
  • the different deployment scenarios mentioned above may include indoor hotspots, dense urban areas, suburbs, urban macros and high-speed rail scenes.
  • the broader spectrum range described above means that the 5G wireless communication system will support a spectrum range of up to 100 GHz, including both low frequency parts below 6 GHz and high frequency parts up to 100 GHz above 6 GHz.
  • a major feature of the 5G communication system compared to the fourth generation mobile communication technology (4th generation, 4G) communication system is the addition of support for URLLC.
  • URLLC services There are many types of URLLC services, including typical industrial applications, industrial production process automation, human-computer interaction and telemedicine.
  • 3GPP 3rd Generation Partnership Project
  • RAN Working Group 3rd Generation Partnership Project
  • RAN1 Working Group for URLLC services Performance indicators (including latency, reliability, and system capacity) are defined as follows:
  • the user application layer data packet arrives at the receiving end wireless protocol stack layer 2 and/or the wireless protocol layer 3 from the service side wireless protocol stack layer 2 and/or the service data unit (SDU) of the wireless protocol layer 3.
  • the user plane delay requirement of the URLLC service is 0.5 ms for both uplink and downlink transmission.
  • the above delay requirement is only applicable to scenarios where the network device and the terminal device are not in a discontinuous reception (DRX) state.
  • the above performance requirement of 0.5 ms refers to the average delay of the data packet, and is not bound to the reliability requirement in the performance index of the URLLC service.
  • ⁇ Reliability Under a given channel quality condition, the probability of successfully transmitting a certain amount (assumed to be X bits) of data within a certain transmission time (assumed to be L seconds) during data transmission from the sender to the receiver .
  • the above transmission time is still defined as the transmission time required by the user application layer data packet from the SDU of the transmitting end wireless protocol stack layer 2 and/or the wireless protocol layer 3 to the SDU of the receiving end wireless protocol stack layer 2 and/or the wireless protocol layer 3. .
  • a typical requirement is to achieve 99.999% reliability in 1ms.
  • the foregoing performance indicators are only typical values.
  • the URLLC service in different application scenarios may have different requirements for reliability. For example, in some extremely demanding industrial control services, the delay from the sender to the receiver needs to be within 0.25 ms and the reliability of data transmission reaches 99.9999999%.
  • ⁇ System capacity The maximum throughput of the system that the system can achieve under the premise of satisfying a certain percentage of interrupted users.
  • the above-mentioned interrupted user refers to a user who cannot satisfy the reliability requirement within a certain time delay range, that is, the reliability within a certain delay range required by some users, and the system cannot be satisfied, and this part of the user can be called Interrupt the user.
  • the 5G communication system needs to support the requirements of different performance indicators of multiple services. Therefore, the resource scheduling of the 5G communication system needs to be more flexible. The flexibility of data transmission in the more flexible resource scheduling mode is also higher. Therefore, the method of determining the TBS of data transmission needs to be more flexible.
  • the embodiment of the present application provides a method and an apparatus for determining a TBS, which can be applied to a more flexible resource scheduling manner, and can meet the requirements of more diverse service performance indicators.
  • FIG. 2 is a schematic diagram of an embodiment of a method for determining a TBS provided by an embodiment of the present application.
  • the method provided by the embodiment of the present application may include the following steps:
  • the network device determines a modulation mode and a coding rate, and determines indication information according to the combination of the modulation mode and the coding rate and the first mapping relationship set.
  • a terminal device can support one or more services, such as one or more of a URLLC service, an eMBB service, and a mMTC service.
  • a URLLC service such as one or more of a URLLC service, an eMBB service, and a mMTC service.
  • a service supported by the terminal device may correspond to a mapping relationship set, and a mapping relationship set may be embodied as a table, as shown in Table 1 or Table 2 below.
  • Table 1 is a schematic table of the mapping relationship set between the modulation mode and the coding rate.
  • Table 2 is another schematic table of the mapping relationship set between the modulation mode and the coding rate.
  • the mapping relationship set shown in Table 2 may be set as the mapping relationship set 2.
  • each mapping relationship set may include a combination of one or more modulation modes and coding rates, and each combination may correspond to one indication information.
  • mapping relationship set may also be represented by other forms than the table, and may be determined according to actual application scenario requirements, and is not limited herein.
  • the modulation scheme and coding rate shown in the mapping relationship set 1 there are eight combinations of the modulation scheme and the coding rate of the data channel, and the modulation scheme includes quadrature phase shift keying (QPSK). And 16-quadrature amplitude modulation (16QAM).
  • QPSK quadrature phase shift keying
  • 16QAM 16-quadrature amplitude modulation
  • one modulation mode corresponds to one modulation order. Therefore, the correspondence between the modulation mode and the coding rate may be embodied as a correspondence between the modulation order and the coding rate.
  • the modulation order QPSK has a modulation order (denoted as Q or Q m ) of 2
  • the modulation mode 16QAM has a modulation order of 4.
  • the modulation mode may also be represented by other data forms, and is not limited herein.
  • the coding rate of the data channel is concentrated in the low code rate region, for example, 0.01 to 0.15.
  • the URLLC service has a high reliability and low latency performance requirement, and the modulation mode of the URLLC service is mainly a low-order modulation mode, and the coding rate is mainly concentrated in a low code rate interval. Therefore, the above mapping relationship set 1 can be applied to a URLLC service or the like supported by the terminal device.
  • the foregoing URLLC service is only an example.
  • the foregoing mapping relationship set 1 can also be applied to more types of services, and can be determined according to actual application scenarios, and is not limited herein.
  • a combination of modulation mode and coding rate may correspond to an index.
  • the index of the foregoing modulation mode and the coding rate may be an MCS index, or may be index information of other representations, and is not limited herein. For convenience of description, the following will be explained by MCS index, and Table 2 will not be described again.
  • MCS index Modulation order Code rate 0 2 0.05 1 2 0.1 2 2 0.15 3 2 0.2 4 2 0.25 5 4 0.3 6 4 0.35 7 4 0.4 8 4 0.45 9 4 0.5 10 4 0.55 11 6 0.6 12 6 0.65 13 6 0.7 14 6 0.75 15 6 0.8
  • the coding rate covers a large interval, for example, 0.05 to 0.8.
  • eMBB services have more modulation modes than eMBB services due to large data transmission capacity and high transmission rate, and the coding rate covers a large interval.
  • mapping relationship set 2 can be applied to eMBB services and the like supported by the terminal device.
  • the above-mentioned eMBB service is only an example, and the foregoing mapping relationship set 2 can also be applied to more types of services, which can be determined according to actual application scenarios, and is not limited herein.
  • the mapping relationship set described in the embodiment of the present application may be configured by a network device.
  • the network device can configure different mapping relationship sets for the terminal device according to the requirements of the performance indicators of the different services supported by the terminal device, so as to meet the requirements of different performance indicators of different services of the terminal device.
  • the network device may also separately configure one mapping relationship set for different terminal devices supporting different services, and multiple terminal devices configure multiple mapping relationship sets.
  • the number of the mapping relationship set may be determined by the network device, or may be determined according to the number of service types supported by the terminal device, and is not limited herein.
  • the network device may configure different mapping relationship sets for different services, and then deliver the indication information of the mapping relationship set corresponding to the service according to the service carried by the terminal device.
  • mapping relationship set described in the embodiment of the present application may also be preset by the terminal device, and does not need to be configured by the network device.
  • the manner in which the mapping relationship set is defined may be determined according to the actual application scenario, and is not limited herein.
  • mapping relationship sets are configured for different services of the terminal device by using a network device configuration or a preset by the terminal device, so that the service of the terminal device can be better adapted.
  • the URLLC service has a high-reliability and low-latency performance requirement
  • the modulation mode of the URLLC service is mainly a low-order modulation mode
  • the coding rate is mainly concentrated in a low code rate interval.
  • mapping relationship set of a modulation mode and a coding rate (for example, mapping relationship set 1) is specifically defined for the URLLC service, and on the one hand, the total combination of the modulation mode and the coding rate can be reduced, thereby reducing the downlink when notifying the modulation mode and the coding rate of the terminal device. Control the overhead of information. On the other hand, the resolution of the low bit rate working area can be improved, thereby better adapting the channel and improving the spectral efficiency of the system.
  • the network device may also configure a default mapping relationship set for the terminal device, or the terminal device may pre-configure a default mapping relationship set (or a default mapping relationship set).
  • the default mapping relationship set described above is applicable to scenarios such as receiving a system broadcast message of a terminal device. For example, system information reception, paging, random access response and other application requirements.
  • a default mapping relationship set is configured for the terminal device, so that the mapping relationship set required by the service requirements of the terminal device is more complete, and the flexibility of configuring the service resources of the terminal device is improved.
  • the network device may determine a modulation mode and a coding rate according to information such as a channel state or a resource to be scheduled.
  • the network device may determine, according to the determined combination of the modulation mode and the coding rate, the indication information corresponding to the combination of the modulation mode and the coding rate from the first mapping relationship set.
  • the first mapping relationship set may be a default mapping relationship set in the plurality of mapping relationship sets.
  • the indication information corresponding to the combination of the modulation mode and the coding rate may be index information such as an MCS index.
  • the foregoing first mapping relationship set may also be a mapping relationship set corresponding to the service supported by the terminal device.
  • the service supported by the terminal device is a URLLC service
  • the network device determines a combination of a modulation mode QPSK (ie, modulation order 2) and a coding rate of 0.01 (set to combination 1)
  • the mapping relationship set 1 ie, Table 1
  • the indication information corresponding to the combination 1 is determined, that is, the MCS index is 0.
  • the terminal device can report the type of service supported by the network device.
  • the network device may select, according to the service type supported by the terminal device, the first mapping relationship set applicable to the service type supported by the terminal device from the plurality of mapping relationship groups. That is, the first mapping relationship set is one of the plurality of mapping relationship sets. For example, if the terminal device reports that the service type supported by the terminal device is the URLLC, the network device can use the mapping relationship set (ie, the mapping relationship set 1) shown in Table 1 as the first mapping relationship set.
  • the network device may determine a combination of a modulation mode and a coding rate from the first mapping relationship according to channel conditions, or resources to be scheduled, and determine indication information corresponding to a combination of the modulation mode and the coding rate.
  • the network device sends control information to the terminal device.
  • control information may be downlink control information (DCI).
  • DCI may include indication information of a modulation mode and a coding rate, resource information of a data channel, and the like.
  • the indication information indicates an index of a modulation mode and a coding rate determined by the network device.
  • the above resource information is used to determine the number of time-frequency resources.
  • the DCI that is sent by the network device to the terminal device may include mapping relationship set indication information, where the mapping relationship set indication information is used to indicate the first mapping relationship set determined by the network device.
  • the DCI may include at least 1 bit for indicating the first mapping relationship set.
  • the DCI indicates the mapping relationship between the modulation scheme and the encoding rate adopted by the data channel by 1 bit.
  • the value of the bit is “0”, which corresponds to the mapping relationship set 1 of the modulation mode and the coding rate of the data channel (such as the mapping relationship set shown in Table 1), and the value of the bit is “1”.
  • the data channel adopts a mapping relationship set 2 of modulation mode and coding rate (as shown in the mapping relationship set shown in Table 2).
  • the terminal device determines the first mapping relationship set according to the value of the bit in the DCI.
  • the network device sends the DCI to the terminal device, where the terminal device determines, by using a DCI format, a mapping relationship between the modulation mode and the coding rate of the data channel corresponding to the DCI.
  • the format of the DCI corresponds to the original information bits included in the DCI.
  • the format 1 of the DCI corresponds to the mapping relationship set 1 of the modulation mode and the coding rate of the data channel
  • the format 2 of the DCI corresponds to the mapping relationship set 2 of the modulation mode and the coding rate of the data channel.
  • the terminal device may determine the first mapping relationship set according to the format of the DCI.
  • the network device sends the DCI to the terminal device, and the terminal device determines, by using the information type carried by the data channel, a mapping relationship between the modulation mode and the coding rate used by the data channel corresponding to the DCI.
  • the terminal device can determine, by using the DCI, that the data channel carries a system message, and further can determine a first mapping relationship set of a modulation mode and a coding rate adopted by the data channel, for example, a default mapping relationship set.
  • the terminal device may determine the default mapping relationship set as the first mapping relationship set.
  • the network device may send configuration information to the terminal device before sending the DCI to the network device, where the configuration information indicates the first mapping relationship set used by the data channel corresponding to the DCI.
  • the terminal device receives the control information, and determines a configuration parameter of the TBS according to the first mapping relationship set and the control information.
  • the configuration parameters of the foregoing TBS may include a modulation mode, a coding rate, and a number of time-frequency resources.
  • the modulation mode and the coding rate may be determined from the first mapping relationship set according to the indication information (MCS index, etc.) of the combination of the modulation mode and the coding rate included in the DCI.
  • the terminal device determines that the first mapping relationship set is the mapping relationship set 1 shown in Table 1, and the MCS index indicated by the indication information is 0, and the terminal device can determine the modulation mode and the coding rate from Table 1, ie, The modulation mode 1 and the coding rate 0.01 corresponding to the combination 1 of the modulation scheme and the coding rate.
  • the resource information of the data channel may be included in the foregoing DCI.
  • the resource information indicates a time-frequency resource allocated by the network device to the terminal device, and the terminal device can determine the time-frequency resource allocated by the network device according to the resource information, and the fixed-time time-frequency resource determines the time-frequency resource occupied by the data channel. number.
  • the time-frequency resource occupied by the data channel may be a time-frequency resource that is available for the data channel, and may include: removing the fixed-time time-frequency resource (that is, specifying the time-frequency resource) in the time-frequency resource allocated by the network device to the terminal device. Remaining time-frequency resources outside.
  • the fixed overhead time-frequency resource may include: a time-frequency resource occupied by a demodulation reference signal (DMRS) corresponding to the data channel, and a channel state information-reference signal sent by the network device.
  • Time-frequency resources occupied by CSI-RS may include a pre-configured signal of the network device or a time-frequency resource occupied by the channel, such as a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). Or a time-frequency resource occupied by a physical broadcast channel (PBCH) or the like.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • PBCH physical broadcast channel
  • the time-frequency resources reserved by the network device may also include reserved time-frequency resources dynamically notified by the network device.
  • the time-frequency resource in the number of time-frequency resources occupied by the data channel may also be an RE unit, in other words, when the data channel is occupied.
  • the size of the time-frequency resource mentioned in the number of frequency resources may be smaller than the size of the physical resource block.
  • the terminal device determines the TBS according to the modulation mode, the coding rate, and the number of the time-frequency resources.
  • the configuration parameter of the foregoing TBS may further include the number of transmission layers supported by the data channel corresponding to the DCI.
  • the terminal device may further determine, according to the precoding indication information included in the DCI, the number of transmission layers supported by the data channel corresponding to the DCI.
  • the terminal device may determine the number of transmission layers supported by the data channel according to the transmission mode corresponding to the data channel corresponding to the DCI.
  • the TBS of the data channel may be determined.
  • the foregoing TBS may be a first TBS.
  • the first TBS above satisfies:
  • the N is the number of time-frequency resources available for the data channel
  • v is the number of transmission layers supported by the data channel
  • Q is the modulation order corresponding to the determined modulation mode
  • R is the determined coding rate.
  • the above N can be quantified by large particles.
  • K is a positive integer
  • the N_TEMP may be the number of time-frequency resources available for the data channel; N is the number of time-frequency resources available for the quantized data channel, and N is used to calculate the first TBS, and/or the second TBS, and details are not described herein.
  • the first TBS may be obtained by looking up the table according to the number N of time-frequency resources available for the data channel, the number of transmission layers v supported by the data channel, and the modulation mode.
  • the table obtains the number of bits L carried on the unit resource, and further the number of bits L carried on the unit resource, and the time-frequency resources available for the data channel.
  • the ratio of the number N to the number of resources included in the unit resource is multiplied to obtain the first TBS.
  • the number of bits L of the single-layer transmission bearer is obtained, and the number of bits L of the single-layer transmission bearer and the transport layer supported by the data channel are further selected.
  • the number v is multiplied to get the first TBS.
  • the number of bits L of the single-layer transmission bearer on the unit resource may be obtained according to the modulation mode, and the number of bits of the single-layer transmission bearer on the unit resource, and the number of time-frequency resources available for the data channel are N.
  • the ratio of the number of resources included in the unit resource to the number of transmission layers v supported by the data channel is multiplied to obtain the first TBS.
  • the terminal device may determine the second TBS according to the foregoing modulation mode, the coding rate, the number of time-frequency resources, and the number of transmission layers supported by the data channel, and then determine according to the second TBS.
  • First TBS may be a temporary TBS determined by the terminal device, and the terminal device determines, according to the temporary TBS and other parameters, the TBS that is finally required, that is, the first TBS.
  • the foregoing other parameters may be a voice over internet protocol (VOIP) packet size and/or a medium access control (MAC) element (CE) packet size.
  • VOIP voice over internet protocol
  • MAC medium access control element
  • the foregoing second TBS can satisfy:
  • the N is the number of time-frequency resources available for the data channel
  • v is the number of transmission layers supported by the data channel
  • Q is the modulation order corresponding to the determined modulation mode
  • R is the determined coding rate.
  • the above N can be quantified by large particles.
  • K is a positive integer
  • the second TBS may be obtained by looking up the table according to the number N of time-frequency resources available for the data channel, the number of transmission layers v supported by the data channel, and the modulation mode.
  • the table obtains the number of bits L carried on the unit resource, and further the number of bits L carried on the unit resource, and the time-frequency resources available for the data channel.
  • the ratio of the number N to the number of resources included in the unit resource is multiplied to obtain the second TBS.
  • the number of bits L of the single-layer transmission bearer is obtained, and the number of bits L of the single-layer transmission bearer and the transport layer supported by the data channel are further selected.
  • the number v is multiplied to get the second TBS.
  • the number of bits L of the single-layer transmission bearer on the unit resource may be obtained according to the modulation mode, and the number of bits of the single-layer transmission bearer on the unit resource, and the number of time-frequency resources available for the data channel are N.
  • the ratio of the number of resources included in the unit resource to the number of transmission layers v supported by the data channel is multiplied to obtain the second TBS.
  • the first TBS may be determined according to any one of the following manners 1 to 4.
  • the first TBS is equal to the second TBS. That is, the foregoing second TBS may be determined as the first TBS, that is, the first TBS finally determined by the terminal device is equal to the second TBS.
  • the first TBS is the first element in the first set of values.
  • the first TBS when the second TBS is less than or equal to the first reference threshold, the first TBS may be an element in the first set of values that is less than or equal to the second TBS and has the smallest absolute value of the difference from the second TBS. .
  • the terminal device may perform the difference calculation between the elements included in the first set of values and the second TBS to obtain the second TBS and the first value.
  • a difference value of each element included in the set, from which an absolute value of the difference value is selected to be the smallest and one element smaller than or equal to the second TBS is determined as the first TBS.
  • the value of the first TBS can preferentially ensure the reliability of data transmission, and the transmission efficiency loss is minimal.
  • the difference between the second TBS and each element in the first set of values is obtained.
  • the first set of values is [8, 16, 24, 32, 40, 56, 72, 104, 120, 144, 152, 176, 208, 224, 256, 296, 328, 344, 392, 440, 488, 536]
  • the first TBS may be an element in the first set of values that is greater than or equal to the second TBS and has the smallest absolute value of the difference from the second TBS.
  • the value of the first TBS can better meet the service quality requirement in the case where the reliability of the data transmission is slightly decreased, and the transmission efficiency is superior.
  • the first TBS is an element that has the smallest absolute value of the difference between the second TBS and the first TBS. If the absolute value of the difference between the 2 elements and the second TBS is the same and is the smallest, the smaller element is selected.
  • the value of the first TBS may minimize the reliability deviation of the data transmission, and although the transmission efficiency is slightly lost, the reliability of the data transmission is improved.
  • the first TBS is an element that has the smallest absolute value of the difference between the second TBS and the first TBS. If the absolute value of the difference between the 2 elements and the second TBS is the same and is the smallest, the larger element is selected.
  • the value of the first TBS may minimize the reliability deviation of the data transmission, and although the reliability is slightly decreased, the transmission efficiency of the transmission data is improved.
  • TBS 72
  • TBS 40
  • the foregoing first value set includes a special packet size, such as a VOIP packet size, and/or a MAC CE packet size.
  • the first set of values may only include a VOIP packet size and/or a MAC CE packet size.
  • the foregoing first value set may also include an enhanced voice service codec (EVS codec) packet size, for example:
  • EVS codec enhanced voice service codec
  • the first set of values may include a VOIP packet size and/or a MAC CE packet size, and include some elements inserted at a location where the special packet size interval is large.
  • the elements 88, 136, 144, 280, 288, 336, 376, 408, 424, 456, 472, 504, and 520 in the set 5 are inserted elements.
  • some elements are inserted at a position where a special packet size (VOIP packet size, MAC CE packet size, and EVS codec size) is relatively large, so that the difference between each element in the first value set is more Uniform, the selection of the first TBS can be a special packet size or an inserted element, so that the value of the first TBS is more accurate and the applicability is stronger.
  • VOIP packet size, MAC CE packet size, and EVS codec size VOIP packet size, MAC CE packet size, and EVS codec size
  • the elements 88, 136, 144, 280, 288, 336, 376, 408, 424, 456, 472, 504, and 520 in the set 6 are inserted elements.
  • the first set of values may include a VOIP packet size, and/or a MAC CE packet size, and/or an EVS codec packet size, and are included in the special packet size interval described above. Some elements inserted in a larger position.
  • the first reference threshold is greater than or equal to a maximum VOIP packet size, or a maximum MAC CE packet size.
  • the value of the first reference threshold may be 536, or 328, and the like.
  • the first reference threshold is greater than or equal to the maximum VOIP packet size, or the maximum MAC CE packet size, or the maximum EVS codes packet size.
  • the value of the first reference threshold may be 536, or 328, or 632.
  • the embodiment of the present application obtains the determining manner of the first TBS by comparing the second TBS with the first reference threshold, so that the transmission of small data packets (or small packets), especially special data packets, is more efficient, and also makes large data.
  • the TBS is determined to be more flexible in packet transmission, more applicable and more scalable.
  • the special data packet may include a VOIP packet, a MACCE packet, and an EVS codec packet, and is not limited herein.
  • the first TBS is the second element in the first set of values.
  • the second TBS may perform a difference calculation with each element included in the first value set, and obtain the second TBS and each element in the first value set. The absolute value of the difference. If the absolute value of the difference between the second TBS and one of the first set of values (set as the second element) is less than or equal to the second reference threshold, the element may be determined as the first TBS.
  • the value of the second reference threshold may be a predefined value.
  • the above predefined value may be 8 or 16 or 32.
  • This predefined value can be configured by protocol convention or network device.
  • the value of the second reference threshold may also be a product of the second element and a predefined coefficient, for example, M times of the second element, where M may be a decimal.
  • M may be a decimal.
  • the above predefined coefficients may be agreed by a protocol or configured by a network device.
  • the above predefined coefficient may be 0.01 or 0.1.
  • the foregoing predefined coefficients may be set to different values corresponding to different second elements, and may be determined according to actual application scenarios. For example, for a second element with a smaller value, the predefined coefficient may take a smaller value, for example, 0.01, and for a second element with a larger value, the predefined coefficient may take a larger value, for example, 0.05 or the like.
  • the second TBS is determined to be the first TBS.
  • the second TBS may perform a difference calculation with each element included in the first value set, and obtain the second TBS and each element in the first value set. The absolute value of the difference. If the absolute value of the difference between the second TBS and one of the first set of values (set as the second element) is greater than the second reference threshold, the second TBS may be determined as the first TBS.
  • the terminal device may determine the first TBS according to different manners.
  • the second TBS may be determined as the first A TBS makes the TBS determination method more flexible when the large data packet is transmitted, and the applicability is stronger and the scalability is stronger.
  • the absolute value of the difference between the second TBS and the second element in the first set of values is less than or equal to the element of the second reference threshold
  • the absolute value of the difference between the first set of values and the second TBS may be An element less than or equal to the second reference threshold (ie, the second element) is determined to be the first TBS, making the transmission of small packets (or packets), particularly special packets, more efficient.
  • the network device determines the TBS according to the modulation mode, the coding rate, and the number of the time-frequency resources.
  • the number of transmission layers supported by the data channel may be determined according to a transmission mode corresponding to the data channel.
  • the network device can determine the TBS according to the modulation mode, the coding rate, the number of time-frequency resources, and the number of transmission layers supported by the data channel.
  • the foregoing TBS may be a first TBS.
  • the first TBS meets:
  • the N is the number of time-frequency resources available for the data channel
  • v is the number of transmission layers supported by the data channel
  • Q is the modulation order corresponding to the determined modulation mode
  • R is the determined coding rate.
  • the foregoing data channel may be a data channel that the network device sends to the terminal device.
  • the above N can be quantified by large particles.
  • K is a positive integer
  • the network device may determine the second TBS according to the foregoing modulation mode, the coding rate, the number of time-frequency resources, and the number of transmission layers supported by the data channel, and then determine according to the second TBS.
  • First TBS may be a temporary TBS determined by the network device, and the network device determines, according to the temporary TBS and other parameters, a TBS that is ultimately required, that is, the first TBS.
  • the other parameters may be the size of the VIPP packet and/or the size of the MAC CE packet.
  • the foregoing second TBS can satisfy:
  • the N is the number of time-frequency resources available for the data channel
  • v is the number of transmission layers supported by the data channel
  • Q is the modulation order corresponding to the determined modulation mode
  • R is the determined coding rate.
  • the first TBS may be determined according to any one of the following manners 1 to 4.
  • the first TBS is equal to the second TBS. That is, the foregoing second TBS may be determined as the first TBS, that is, the first TBS finally determined by the terminal device is equal to the second TBS.
  • the first TBS is the first element in the first set of values.
  • the first TBS when the second TBS is less than or equal to the first reference threshold, the first TBS may be an element in the first set of values that is less than or equal to the second TBS and has the smallest absolute value of the difference from the second TBS. .
  • the terminal device may perform the difference calculation between the elements included in the first set of values and the second TBS to obtain the second TBS and the first value.
  • the difference between each element included in the set, and one element from which the absolute value of the difference is selected is determined as the first TBS.
  • the first set of values is [8, 16, 24, 32, 40, 56, 72, 104, 120, 144, 152, 176, 208, 224, 256, 296, 328, 344, 392, 440, 488, 536]
  • the first set of values is [8, 16, 24, 32, 40, 56, 72, 104, 120, 144, 152, 176, 208, 224, 256, 296, 328, 344, 392, 440, 488, 536]
  • the first TBS may be an element in the first set of values that is greater than or equal to the second TBS and has the smallest absolute value of the difference from the second TBS.
  • the first TBS is an element that has the smallest absolute value of the difference between the second TBS and the first TBS. If the absolute value of the difference between the 2 elements and the second TBS is the same and is the smallest, the smaller element is selected.
  • TBS 72
  • TBS 40
  • the foregoing first value set includes a special packet size, such as a VOIP packet size, and/or a MAC CE packet size.
  • the first set of values may only include a VOIP packet size and/or a MAC CE packet size.
  • the first set of values may also include an EVS codec packet size, for example:
  • the first set of values may include a VOIP packet size and/or a MAC CE packet size, and include some elements inserted at a location where the special packet size interval is large.
  • the elements 88, 136, 144, 280, 288, 336, 376, 408, 424, 456, 472, 504, and 520 in the set 5 are inserted elements.
  • some elements are inserted at a position where a special packet size (VOIP packet size, MAC CE packet size, and EVS codec size) is relatively large, so that the difference between each element in the first value set is more Uniform, the selection of the first TBS can be a special packet size or an inserted element, so that the value of the first TBS is more accurate and the applicability is stronger.
  • VOIP packet size, MAC CE packet size, and EVS codec size VOIP packet size, MAC CE packet size, and EVS codec size
  • the elements 88, 136, 144, 280, 288, 336, 376, 408, 424, 456, 472, 504, and 520 in the set 6 are inserted elements.
  • the first set of values may include a VOIP packet size, and/or a MAC CE packet size, and/or an EVS codec packet size, and are included in the special packet size interval described above. Some elements inserted in a larger position.
  • the first reference threshold is greater than or equal to a maximum VOIP packet size, or a maximum MAC CE packet size.
  • the value of the first reference threshold may be 536, or 328, and the like.
  • the first reference threshold is greater than or equal to the maximum VOIP packet size, or the maximum MAC CE packet size, or the maximum EVS codes packet size.
  • the value of the first reference threshold may be 536, or 328, or 632.
  • the embodiment of the present application obtains the determining manner of the first TBS by comparing the second TBS with the first reference threshold, so that the transmission of small data packets (or small packets), especially special data packets, is more efficient, and also makes large data.
  • the TBS is determined to be more flexible in packet transmission, more applicable and more scalable.
  • the special data packet may include a VOIP packet, a MACCE packet, and an EVS codec packet, and is not limited herein.
  • the first TBS is the second element in the first set of values.
  • the second TBS may perform a difference calculation with each element included in the first value set, and obtain the second TBS and each element in the first value set. The absolute value of the difference. If the absolute value of the difference between the second TBS and one of the first set of values (set as the second element) is less than or equal to the second reference threshold, the element may be determined as the first TBS.
  • the value of the second reference threshold may be a predefined value.
  • the above predefined value may be 8 or 16 or 32.
  • This predefined value can be configured by protocol convention or network device.
  • the value of the second reference threshold may also be a product of the second element and a predefined coefficient, for example, M times of the second element, where M may be a decimal.
  • M may be a decimal.
  • the above predefined coefficients may be agreed by a protocol or configured by a network device.
  • the above predefined coefficient may be 0.01 or 0.1.
  • the foregoing predefined coefficients may be set to different values corresponding to different second elements, and may be determined according to actual application scenarios. For example, for a second element with a smaller value, the predefined coefficient may take a smaller value, for example, 0.01, and for a second element with a larger value, the predefined coefficient may take a larger value, for example, 0.05 or the like.
  • the second TBS is determined to be the first TBS.
  • the second TBS may perform a difference calculation with each element included in the first value set, and obtain the second TBS and each element in the first value set. The absolute value of the difference. If the absolute value of the difference between the second TBS and one of the first set of values (set as the second element) is greater than or equal to the second reference threshold, the second TBS may be determined as the first TBS.
  • the network device may determine the first TBS according to different manners.
  • the second TBS may be determined as The first TBS makes the TBS determination method more flexible when the large data packet is transmitted, and the applicability is stronger and the scalability is stronger.
  • the absolute value of the difference between the second TBS and the second element in the first set of values is less than or equal to the element of the second reference threshold
  • the absolute value of the difference between the first set of values and the second TBS may be An element less than or equal to the second reference threshold (ie, the second element) is determined to be the first TBS, making transmission of small packets (or packets), particularly special packets, more efficient.
  • step S28 may also be performed before step S22. That is, in a specific implementation, after the network device determines the modulation mode and the coding rate, the number of time-frequency resources and the number of transmission layers supported by the data channel may be further determined, and according to the determined modulation mode, coding rate, and number of time-frequency resources. And the number of transmission layers determines the first TBS.
  • the determination of the first TBS and the order of sending the control information are not limited, and may be determined according to actual application scenarios.
  • the network device sends the data channel on the time-frequency resource based on the first TBS.
  • the network device may send the data channel on the time-frequency resource based on the determined first TBS.
  • the time-frequency resource may be a time-frequency resource actually occupied by the data channel.
  • the terminal device decodes the data channel carried on the time-frequency resource based on the determined first TBS.
  • the terminal device may decode the data channel carried on the time-frequency resource based on the determined first TBS.
  • the time-frequency resource may be a time-frequency resource actually occupied by the data channel.
  • steps S30 and S32 may also be replaced by the following steps S30' and S32':
  • the terminal device sends the data channel on the time-frequency resource based on the determined first TBS.
  • the network device decodes the data channel carried on the time-frequency resource based on the first TBS.
  • the network device For uplink data transmission, the network device sends DCI to the terminal device, and the terminal device can perform channel coding and data modulation according to the determined modulation mode and coding rate.
  • the terminal device may transmit the data channel based on the determined first TBS on the time-frequency resource actually occupied by the data channel.
  • the network device may base the data channel carried on the time-frequency resource actually occupied by the determined first TBS decoding data channel.
  • the TBS satisfies:
  • the N PRB indicates the number of physical resource blocks (PRBs) allocated by the network device to the terminal device, and the N PRB is indicated by the DCI received by the terminal device.
  • PRBs physical resource blocks
  • Each of the above PRB The same, and semi-static configuration by the network device through high layer signaling.
  • v denotes the number of transmission layers supported by the data channel
  • Q m denotes a modulation order
  • R denotes a target code rate (ie, a coding rate) of the data channel.
  • I a fixed value (120).
  • a semi-static configuration can be performed by the network device, and the specific value can be configured for different application scenarios.
  • each PRB Different, in the above implementation manner, The configuration of the system is not flexible enough to dynamically adapt to specific application scenarios and thus fail to meet the performance requirements of different services of the terminal device, resulting in a reduction in system spectrum efficiency.
  • all services supported by the terminal device use the same MCS and code rate mapping table, that is, a table that uses the same code rate for all services without distinction.
  • the performance requirements of different services are different. For example, the requirements of URLLC for delay and reliability make the main working interval in the low bit rate region, so the low bit rate region is required to have better granularity.
  • the MCS used by all services is placed in a mapping table of MCS and code rate, which may cause the number of bits of DCI to increase and the applicability is low.
  • the terminal device may determine the modulation mode and the coding rate from the first mapping relationship according to the control information sent by the network device, and determine the number of the time-frequency resources according to the control information.
  • the time-frequency resource is a time-frequency resource for transmitting or receiving a data channel, that is, a time-frequency resource actually occupied by the data channel, and thereby determining a TBS of the data channel.
  • the target coding rate here is the coding rate that the network device expects the data channel to reach, and the above coding rate is the coding rate actually used by the data channel.
  • the network device also determines the TBS according to the same number of time-frequency resources. Therefore, the TBS determined by the network device also has the above effects.
  • the TBS is determined according to the modulation mode, the coding rate, and the number of time-frequency resources, it can be determined in the same manner regardless of the number of resources scheduled and regardless of other overhead resources in the scheduled resources.
  • the accurate TBS therefore, the TBS determination mode can be applied to various scheduling scenarios, so the TBS determination mode has high flexibility and good scalability.
  • the time-frequency resources allocated to the terminal device are not too small, so that the possibility of retransmission can be reduced when the data channel is received or the data channel is received, and the time-frequency resources allocated to the terminal device are further allocated. Not too much, avoiding the waste of resources.
  • a mapping table of different modulation modes and coding rates may be configured for performance requirements of services of different service types of the terminal device, and various flexible resource allocation scenarios in the 5G communication system may be dynamically adapted, and the operation is more Flexible and more adaptable.
  • the implementation manner provided by the embodiment of the present application may directly determine the modulation mode and the coding rate according to the mapping relationship between the configured modulation mode and the coding rate, and further determine the TBS by using a predefined TBS determination formula, without defining a TBS table. There is no need to search through multiple tables such as the MCS mapping table and the TBS table, which effectively reduces the implementation complexity of the TBS, thereby improving the efficiency of data transmission and the spectrum efficiency of the system, and the applicability is stronger.
  • FIG. 3 is a schematic structural diagram of a terminal device according to an embodiment of the present application.
  • the terminal device shown in FIG. 3 may include a transceiver unit 31 and a processing unit 32, wherein a detailed description of each unit is as follows:
  • the transceiver unit 31 is configured to receive control information sent by the network device, where the control information includes resource information indicating the information and the data channel;
  • the processing unit 32 is configured to determine a modulation mode and a coding rate according to the first mapping relationship set and the indication information received by the transceiver unit 31, and determine a time frequency according to the resource information of the data channel received by the transceiver unit 31. a number of resources, where the first mapping relationship set includes a correspondence between the indication information and a combination of the modulation mode and the coding rate;
  • the processing unit 32 is further configured to determine, according to the modulation mode, the coding rate, and the number of the time-frequency resources, a first transport block size TBS;
  • the transceiver unit 31 is further configured to: according to the first TBS determined by the processing unit 32, decode the data channel carried on the time-frequency resource or the terminal device determines, according to the processing unit 32, The first TBS transmits the data channel on the time-frequency resource.
  • the size of the time-frequency resource is smaller than the size of the physical resource block.
  • processing unit 32 is configured to:
  • N is the number of the time-frequency resources
  • v is the number of transmission layers supported by the data channel
  • Q is the modulation order corresponding to the modulation mode
  • R is the coding rate.
  • processing unit 32 is configured to:
  • the first TBS is equal to the second TBS.
  • processing unit 32 is configured to:
  • the first TBS is the first element in the first set of values.
  • processing unit 32 is configured to:
  • the first TBS is the first in the first set of values Two elements.
  • processing unit 32 is configured to:
  • the first TBS is equal to the second TBS.
  • processing unit 32 is configured to:
  • N is the number of the time-frequency resources
  • v is the number of transmission layers supported by the data channel
  • Q is the modulation order corresponding to the modulation mode
  • R is the coding rate.
  • the first reference threshold is greater than or equal to a maximum VOIP packet size, or a maximum MAC CE packet size.
  • the first element is an element that is less than or equal to the second TBS and the absolute value of the difference between the second TBS and the second TBS is the smallest;
  • the first element is an element in the first set of values that is greater than or equal to the second TBS and has a smallest absolute value of a difference from the second TBS;
  • the first element is an element that has the smallest absolute value of the difference between the first value set and the second TBS.
  • the first set of values includes at least a VOIP packet size, and/or a MAC CE packet size.
  • the first set of values includes at least one of 8, 16, 24, 32, 40, 56, 72, 88, 104, 120, 136, 144, 152, 176, 208, 224, 256, 280, 288, 296, 328, 336, 344, 376, 392, 408, 424, 440, 456, 472, 488, 504, 520, 536.
  • the second reference threshold is a predefined value, or the second reference threshold is a product of the second reference element and a predefined coefficient.
  • processing unit 32 is configured to:
  • the specified time-frequency resource includes: a time-frequency resource occupied by the demodulation reference signal DMRS corresponding to the data channel, and the channel quality measurement reference sent by the network device in the time-frequency resource indicated by the resource information One or more of the time-frequency resources occupied by the signal CSI-RS and the time-frequency resources reserved by the network device.
  • the first mapping relationship set is a default mapping relationship set in multiple mapping relationship sets.
  • the transceiver unit 31 is further configured to receive configuration information that is sent by the network device, where the configuration information indicates the first mapping relationship set, and the first mapping relationship set is one of multiple mapping relationship sets.
  • control information further includes mapping relationship set indication information, where the mapping relationship set indication information indicates the first mapping relationship set, and the first mapping relationship set is one of a plurality of mapping relationship sets.
  • the format of the control information indicates the first mapping relationship set, where the first mapping relationship set is one of multiple mapping relationship sets;
  • the information type carried by the data channel indicated by the control information indicates the first mapping relationship set, where the first mapping relationship set is one of a plurality of mapping relationship sets.
  • processing unit 32 is further configured to:
  • processing unit 32 is further configured to:
  • the terminal device may perform the implementation manner performed by the terminal device in the embodiment described in FIG. 2 by using various units built therein.
  • the specific implementation may refer to the corresponding description of the method embodiment shown in FIG. 2, and details are not described herein again.
  • FIG. 4 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • the network device illustrated in FIG. 4 may include a processing unit 41 and a transceiving unit 42, wherein the detailed description of each unit is as follows.
  • the processing unit 41 is configured to determine a modulation mode and a coding rate, and determine indication information according to the combination of the modulation mode and the coding rate and the first mapping relationship set, where the first mapping relationship includes the indication information Corresponding relationship between the modulation mode and the combination of the coding rates;
  • the transceiver unit 42 is configured to send control information to the terminal device, where the control information includes the indication information determined by the processing unit 41 and resource information of a data channel, where the resource information is used to determine the number of time-frequency resources;
  • the processing unit 41 is further configured to determine, according to the modulation mode, the coding rate, and the number of the time-frequency resources, a first transport block size TBS;
  • the transceiver unit 42 is further configured to: according to the first TBS, decode the data channel carried on the time-frequency resource or the network device sends the data on the time-frequency resource based on the first TBS channel.
  • the size of the time-frequency resource is smaller than the size of the physical resource block.
  • processing unit 41 is configured to:
  • N is the number of the time-frequency resources
  • v is the number of transmission layers supported by the data channel
  • Q is the modulation order corresponding to the modulation mode
  • R is the coding rate.
  • processing unit 41 is configured to:
  • the first TBS is equal to the second TBS.
  • processing unit 41 is configured to:
  • the first TBS is the first element in the first set of values.
  • processing unit 41 is configured to:
  • the first TBS is the first in the first set of values Two elements.
  • processing unit 41 is configured to:
  • the first TBS is equal to the second TBS.
  • processing unit 41 is configured to:
  • N is the number of the time-frequency resources
  • v is the number of transmission layers supported by the data channel
  • Q is the modulation order corresponding to the modulation mode
  • R is the coding rate.
  • the first reference threshold is greater than or equal to a maximum VOIP packet size, or a maximum MAC CE packet size.
  • the first element is an element that is less than or equal to the second TBS and the absolute value of the difference between the second TBS and the second TBS is the smallest;
  • the first element is an element in the first set of values that is greater than or equal to the second TBS and has a smallest absolute value of a difference from the second TBS;
  • the first element is an element that has the smallest absolute value of the difference between the first value set and the second TBS.
  • the first set of values includes at least a VOIP packet size, and/or a MAC CE packet size.
  • the first set of values includes at least one of 8, 16, 24, 32, 40, 56, 72, 88, 104, 120, 136, 144, 152, 176, 208, 224, 256, 280, 288, 296, 328, 336, 344, 376, 392, 408, 424, 440, 456, 472, 488, 504, 520, 536.
  • the second reference threshold is a predefined value, or the second reference threshold is a product of the second reference element and a predefined coefficient.
  • the resource information indicates a time-frequency resource allocated by the network device to the terminal device;
  • the number of the time-frequency resources is the remaining time-frequency resources except the specified time-frequency resources in the time-frequency resources indicated by the resource information;
  • the specified time-frequency resource includes: a time-frequency resource occupied by a demodulation reference signal DMRS corresponding to the data channel, a time-frequency resource occupied by a channel quality measurement reference signal CSI-RS sent by the network device, and One or more of the time-frequency resources reserved by the network device.
  • the first mapping relationship set is a default mapping relationship set in multiple mapping relationship sets.
  • the transceiver unit 42 is further configured to send configuration information to the terminal device, where the configuration information indicates the first mapping relationship set, and the first mapping relationship set is one of multiple mapping relationship sets.
  • control information further includes mapping relationship set indication information, where the mapping relationship set indication information indicates the first mapping relationship set, and the first mapping relationship set is one of a plurality of mapping relationship sets.
  • the format of the control information indicates the first mapping relationship set, where the first mapping relationship set is one of multiple mapping relationship sets;
  • the information type carried by the data channel indicated by the control information indicates the first mapping relationship set, where the first mapping relationship set is one of a plurality of mapping relationship sets.
  • control information includes precoding indication information, where the precoding indication information indicates a number of transmission layers supported by the data channel.
  • processing unit 41 is further configured to:
  • the network device may perform the implementation performed by the network device in the embodiment described in FIG. 2 by using various units built therein.
  • the specific implementation may refer to the corresponding description of the method embodiment shown in FIG. 2, and details are not described herein again.
  • FIG. 5 is a schematic structural diagram of a communication device 50 according to an embodiment of the present application.
  • the communication device 50 provided by the embodiment of the present application includes a processor 501, a memory 502, a transceiver 503, and a bus system 504.
  • the processor 501, the memory 502 and the transceiver 503 are connected by a bus system 504.
  • the above memory 502 is used to store programs.
  • the program can include program code, the program code including computer operating instructions.
  • the memory 502 includes, but is not limited to, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read only memory (EPROM), or Portable disc read-only memory (CD-ROM). Only one memory is shown in FIG. 5, and of course, the memory can be set to a plurality as needed.
  • the memory 502 may also be a memory in the processor 501, which is not limited herein.
  • the memory 502 stores the following elements, executable modules or data structures, or a subset thereof, or an extended set thereof:
  • Operation instructions include various operation instructions for implementing various operations.
  • Operating system Includes a variety of system programs for implementing various basic services and handling hardware-based tasks.
  • the processor 501 controls the operation of the communication device 50.
  • the processor 501 may be one or more central processing units (CPUs).
  • CPUs central processing units
  • the CPU may be a single-core CPU. It can also be a multi-core CPU.
  • bus system 504 which may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like.
  • bus system 504 may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like.
  • bus system 504 may include, in addition to the data bus, a power bus, a control bus, a status signal bus, and the like.
  • bus system 504 for clarity of description, various buses are labeled as bus system 504 in FIG. For ease of representation, only the schematic drawing is shown in FIG.
  • the method of the terminal device disclosed in the foregoing embodiment of the present application, or the method of the terminal device disclosed in the foregoing embodiments, or the method of the network device of the foregoing embodiment, which is provided in the foregoing application, may be applied to the processor 501. Or implemented by the processor 501.
  • Processor 501 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 501 or an instruction in a form of software.
  • the processor 501 may be a general-purpose processor, a digital signal processing (DSP), an application specific integrated circuit (ASIC), a field-programmable gate array (FPGA), or Other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processing
  • ASIC application specific integrated circuit
  • FPGA field-programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 502, and the processor 501 reads the information in the memory 502, and performs the method steps of the terminal device described in FIG. 3 or the above various embodiments in combination with the hardware thereof; or executes the hardware in FIG. 4 or the above embodiments in combination with the hardware thereof.
  • the program can be stored in a computer readable storage medium, when the program is executed
  • the flow of the method embodiments as described above may be included.
  • the foregoing storage medium includes various media that can store program codes, such as a ROM or a random access memory RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种确定传输块大小的方法及装置,所述方法包括:终端设备接收网络设备发送的控制信息,所述控制信息包括指示信息和数据信道的资源信息;终端设备根据第一映射关系集和所述指示信息确定调制方式和编码速率,并根据数据信道的资源信息确定时频资源的数目;所述终端设备根据所述调制方式、所述编码速率和所述时频资源的数目确定传输块大小TBS;以及所述终端设备基于所述TBS解码所述时频资源上承载的所述数据信道或所述终端设备基于所述TBS在所述时频资源上发送所述数据信道。采用本申请实施例,具有可提高传输块大小的确定效率,进而可提高数据信道的传输效率的优点。

Description

确定传输块大小的方法及装置 技术领域
本申请涉及通信数据领域,尤其涉及一种确定传输块大小的方法及装置。
背景技术
第五代(5 thgeneration,5G)无线通信系统(也称新空口(new radio,NR)无线通信系统)致力于支持更高系统性能,5G通信系统将支持多种业务类型,多种部署场景和更宽的频谱范围。5G无线通信系统需要支持不同业务类型的业务的不同需求,因此,在资源调度上也具有更大的灵活性,资源调度中传输块大小(transport block size,TBS)的确定也需要更加灵活。
在现有的长期演进(long term evolution,LTE)系统中,以终端设备的数据信道的TBS的确定为例,TBS的确定过程采用以下步骤:
●步骤1:终端设备根据调制和编码方案(modulation and coding scheme,MCS)索引(index,I_MCS)和协议预定义的MCS映射表格确定调制方式(modulation order)和TBS索引(TBS index,I_TBS)。
●步骤2:终端设备根据网络设备所指示的资源分配信息确定频域分配的物理资源块(physical resource block,PRB)数目(PRB number,N_PRB)。
●步骤3:终端设备根据I_TBS和N_PRB等参数,在预定义的TBS表格中查找对应的TBS值,以确定数据信道承载的TBS。
在LTE系统中,确定TBS的基本假设是资源调度的基本时间单位是一个子帧(14个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号),并且每个PRB中数据信道的可用资源的数目固定,例如120个资源单元(resource element,RE)。然而,对于5G无线通信系统,其资源调度的灵活性有了更大的改变,每个PRB中数据信道的可用资源的数目差别较大。此外,5G无线通信系统所支持的调度时间和频域范围跨度极大,因此,沿用LTE系统的数据信道的TBS的确定方式操作不灵活,可扩展性差。
发明内容
本申请实施例提供一种确定传输块大小的方法及装置,可增强传输块大小的确定方式的灵活性。
第一方面提供了一种确定传输块大小的方法。终端设备接收网络设备发送的控制信息,该控制信息包括指示信息和数据信道的资源信息。该终端设备根据第一映射关系集和该指示信息确定调制方式和编码速率,并根据该数据信道的资源信息确定时频资源的数目。第一映射关系集中包括所述指示信息和所述调制方式与所述编码速率的组合的对应关系。终端设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一传输块大小TBS。终端设备基于第一TBS解码时频资源上承载的所述数据信道或终端设备基于所述第一TBS在时频资源上发送所述数据信道。
第二方面提供了一种确定传输块大小的方法,其可包括:
网络设备确定调制方式和编码速率,并根据所述调制方式和所述编码速率的组合以及第一映射关系集确定指示信息,其中,所述第一映射关系集中包括所述指示信息和所述调制方式与所述编码速率的组合的对应关系;
所述网络设备向终端设备发送控制信息,所述控制信息包括所述指示信息和数据信道的资源信息,所述资源信息用于确定时频资源的数目;
所述网络设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一传输块大小TBS;以及
所述网络设备基于所述第一TBS解码所述时频资源上承载的所述数据信道或所述网络设备基于所述第一TBS在所述时频资源上发送所述数据信道。
本申请实施例中,终端设备可根据网络设备下发的控制信息从第一映射关系集中确定出调制方式和编码速率,还可根据控制信息确定时频资源的数目,其中,该时频资源为发送或接收数据信道的时频资源,即数据信道实际占用的时频资源,进而可确定数据信道的TBS。这样,根据数据信道实际占用的时频资源确定的TBS与数据信道的目标编码速率更为匹配,提高了TBS的准确性。这里的目标编码速率是网络设备期望数据信道达到的编码速率,而上文的编码速率则是数据信道实际使用的编码速率。
此外,由于TBS是根据调制方式、编码速率和时频资源的数目确定的,因此,不论调度的资源是多少,也不论调度的资源中的其他开销资源是多少,均能够用同样的方式确定较为准确的TBS,因此,该TBS的确定方式能够适用于各种调度场景,因此该TBS确定方式灵活性高,可扩展性较好。
进一步的,由于确定的TBS更为准确,给终端设备分配的时频资源不会过少,从而发送数据信道或者接收数据信道时能够降低重传的可能性,而且给终端设备分配的时频资源也不会过多,避免了资源的浪费。
可选的,所述终端设备或网络设备根据所述调制方式、所述编码速率和所述时频资源的数目第一确定传输块大小TBS,包括:
所述终端设备或网络设备根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定所述第一TBS:
其中,所述第一TBS满足:
第一
Figure PCTCN2018091692-appb-000001
其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
其中,上述N可以大颗粒度量化,
Figure PCTCN2018091692-appb-000002
K为正整数
其中,N_TEMP可为数据信道可用的时频资源的数目;N为量化后的数据信道可用的时频资源的数目,N用于计算第一TBS,和/或第二TBS,后续不再赘述。
可选的,可以根据数据信道可用的时频资源的数目N,数据信道所支持的传输层数v,和调制方式,查表得到第一TBS。
可选的,可以根据调制方式和数据信道所支持的传输层数v,查表得到单位资源上承载的比特数L,进而将单位资源上承载的比特数L,数据信道可用的时频资源的数目N与单位资源所含资源的数目的比值,做乘,得到第一TBS。
可选的,可以根据数据信道可用的时频资源的数目N和调制方式,查表得到单层传输承载的比特数L,进而将单层传输承载的比特数L与数据信道所支持的传输层数v做乘,得到第一TBS。
可选的,可以根据调制方式,查表得到单位资源上的单层传输承载的比特数L,进而将单位资源上的单层传输承载的比特数L,数据信道可用的时频资源的数目N与单位资源所含资源的数目的比值,数据信道所支持的传输层数v,做乘,得到第一TBS。
本申请实施例可通过公式计算的方式,结合调制方式、编码速率、时频资源的数目和数据信道所支持的传输层数等参数确定TBS,TBS的确定效率更高。进一步地,本申请速率可以不通过查表的方式确定TBS,因此也无需进行TBS表格的设计,降低了TBS的确定的实现复杂度,适用性更高。当然,本申请实施例还可以按照上述公式涉及相应的TBS表格,但是查表得到的值是满足上述公式的,这样也是能够提高TBS的准确性的。
可选的,终端设备或网络设备可以根据调制方式、编码速率、时频资源的数目以及传输层数确定第二TBS,并根据第二TBS确定第一TBS:
其中,第一TBS满足:当第二TBS大于第一参考门限时,第一TBS等于第二TBS。
本申请实施例在确定最终的第一TBS之前,引入了第二TBS。
可选的,终端设备或网络设备可根据调制方式、编码速率、时频资源的数目以及传输层数确定第二TBS:
其中,第二TBS满足:
第二
Figure PCTCN2018091692-appb-000003
其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
可选的,可以根据数据信道可用的时频资源的数目N,数据信道所支持的传输层数v,和调制方式,查表得到第二TBS。
可选的,可以根据调制方式和数据信道所支持的传输层数v,查表得到单位资源上承载的比特数L,进而将单位资源上承载的比特数L,数据信道可用的时频资源的数目N与单位资源所含资源的数目的比值,做乘,得到第二TBS。
可选的,可以根据数据信道可用的时频资源的数目N和调制方式,查表得到单层传输承载的比特数L,进而将单层传输承载的比特数L与数据信道所支持的传输层数v做乘,得到第二TBS。
可选的,可以根据调制方式,查表得到单位资源上的单层传输承载的比特数L,进而将单位资源上的单层传输承载的比特数L,数据信道可用的时频资源的数目N与单位资源所含资源的数目的比值,数据信道所支持的传输层数v,做乘,得到第二TBS。
在本申请实施例中,终端设备或者网络设备根据调制方式、编码速率、时频资源的数目以及传输层数等参数得到第二TBS,再将第二TBS与第一参考门限进行比较。若第二 TBS大于第一参考门限,则可将该第二TBS作为最终所需要的TBS,即第一TBS。可选的,在本申请实施例中,若上述计算得到的第二TBS小于或者等于第一参考门限时,则可从第一取值集合中确定出一个元素(即第一元素)作为最终所需的TBS,即第一TBS。
本申请实施例通过第二TBS与第一参考门限的比较得到第一TBS的确定方式,使得小的数据包(或称小包),特别是特殊的数据包的传输更加高效,也使得大的数据包传输时TBS的确定方式更灵活,适用性更强,扩展性更强。其中,上述特殊的数据包可包括互联网协议语音VOIP包、媒体接入控制MAC元素CE包以及增强语音业务编解码器EVS codec包等。
可选的,上述第一参考门限大于或者等于最大VOIP包大小,或,最大MAC CE包大小。
可选的,所述第一取值集合中至少包含VOIP包大小,和/或,MAC CE包大小。
可选的,所述第一取值集合中包含8,16,24,32,40,56,72,88,104,120,136,144,152,176,208,224,256,280,288,296,328,336,344,376,392,408,424,440,456,472,488,504,520,536中的至少一个值。
可选的,所述第一元素为所述第一取值集合中小于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
所述第一元素为所述第一取值集合中大于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
所述第一元素为所述第一取值集合中与所述第二TBS的差值的绝对值最小的元素。
本申请实施例根据VOIP包的大小或者MAC CE包的大小定义了一个取值集合,该取值集合中包括的元素可为VOIP包的大小,也可为MAC CE包的大小。可选的,本申请实施例也可直接给出一些取值,将这些取值通过数组或者集合的方式表示,得到一个取值集合。这些数据也可为现有的VOIP包的大小或者MAC CE包的大小,也可为扩展的VOIP包的大小或者MAC CE包的大小,也可为在VOIP包的大小以及MAC CE包的大小的取值之外插入的一些数值。本申请实施例根据VOIP包或者MAC CE包的大小来设定第一参考门限,通过第一参考门限与第二TBS的大小比较确定第一TBS的确定方式,使得小包,特别是特殊的数据包的传输更加高效,也使得大包传输时TBS的确定方式更灵活,适用性更强。若第二TBS小于或者等于最大VOIP包的大小或者最大MAC CE的大小,则可从第一取值集合中选择一个元素作为第一TBS,使得小包,特别是特殊的数据包的传输更加高效。若第二TBS大于最大VOIP包的大小或者最大MAC CE的大小,则将第二TBS确定为第一TBS,使得大包传输时TBS的确定方式更灵活,适用性更强,扩展性更强。
可选的,终端设备或网络设备可根据调制方式、编码速率、时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS:
其中,上述第一TBS满足:
当第二TBS与第一取值集合中的第二元素的差值的绝对值小于或者等于第二参考门限时,所述第一TBS为所述第一取值集合中的所述第二元素。
或者,可行的,当第二TBS与第一取值集合中的第二元素的差值的绝对值大于第二参考门限,所述第一TBS等于所述第二TBS。
可选的,所述第二参考门限为预定义数值,或者所述第二参考门限为所述第二参考元素与预定义系数的乘积值。
本申请实施例也可在得到第二TBS之后,首先将第二TBS与上述第一取值集合中包括的元素逐个进行差值计算,并将计算得到的差值的绝对值依次与第二参考门限比较,根据比较结果将第一取值集合中的一个元素确定为第一TBS。可选的,本申请实施例,可定义第一TBS的确定方式包括方式一和方式二。其中,方式一:当第二TBS与第一取值集合中的第二元素的差值的绝对值大于第二参考门限的元素时,可将第二TBS确定为第一TBS,使得大的数据包传输时TBS的确定方式更灵活,适用性更强,扩展性更强。方式二:将第一取值集合中与第二TBS的差值的绝对值小于或者等于第二参考门限的元素(即第二元素)确定为第一TBS,使得小的数据包(或称小包),特别是特殊的数据包的传输更加高效。
可选的,所述资源信息指示所述网络设备分配给所述终端设备的时频资源,所述时频资源的数目为所述资源信息所指示的时频资源中去除指定时频资源之外的剩余时频资源。
相应的,所述根据所述数据信道的资源信息确定时频资源的数目包括:
所述终端设备根据所述资源信息和指定时频资源确定所述时频资源的数目,其中,所述时频资源包括所述资源信息所指示的时频资源去除指定时频资源之外的剩余时频资源。
所述指定时频资源可以包括:所述数据信道对应的解调参考信号DMRS所占用的时频资源,所述网络设备在所述资源信息所指示的时频资源内发送的信道质量测量参考信号CSI-RS所占用的时频资源,以及所述网络设备预留的时频资源中的一种或者多种。
可选的,所述网络设备预留的时频资源可包括:网络设备预留的时频资源可包括网络设备预配置的信号或者信道所占用的时频资源,例如主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)或者物理广播信道(physical broadcast channel,PBCH)等所占用的时频资源。
本申请实施例可通过控制信息指示数据信道的资源信息,终端设备根据资源信息所指示的时频资源和固定开销时频资源确定数据信道可用的时频资源,使得数据信道可用的时频资源的数目的确定方式更加灵活,确定的时频资源的数目更加准确,进而提高了TBS的确定准确性。
可选的,所述第一映射关系集为多个映射关系集中的默认映射关系集;或者,
所述终端设备接收网络设备发送的控制信息之前,所述方法还包括:所述终端设备接收所述网络设备发送的配置信息。相应的,所述网络设备向终端设备发送控制信息之前,所述方法还包括:所述网络设备向所述终端设备发送配置信息。所述配置信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
可选的,一个映射关系集可对应一张表格。每个映射关系集中可包括一个或者多个调制方式和编码速率的组合,并且每个组合可对应一个指示信息。进一步地,该指示信息可以是索引。
本申请实施例可配置或者定义多个映射关系集,每个映射关系集可适用于一种终端设备的业务,这样,终端设备或网络设备可以根据为不同的业务选择不同的映射表关系,进而可更好地适配终端设备的业务。需要说明的是,多个映射关系集并非只能跟业务相关,也可以是跟其他信息相关,本申请对此并不限定。这样,终端设备或者网络设备在使用多 个映射关系集的时候,也可以根据其他信息来确定,或者选择默认的映射关系集。
可选的,所述控制信息还包括映射关系集指示信息,其中,所述映射关系集指示信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
可选的,所述控制信息的格式指示所述第一映射关系集,其中,所述第一映射关系集为多个映射关系集中的一个。
可选的,所述控制信息所指示的所述数据信道承载的信息类型指示所述第一映射关系集,其中,所述第一映射关系集为多个映射关系集中的一个。
本申请实施例可通过控制信息或者配置信息指示终端设备适用的映射关系集,可动态适配多种灵活的资源分配场景,适用性更高。
可选的,所述控制信息中包括预编码指示信息,所述预编码指示信息指示所述数据信道所支持的传输层数。相应的,所述终端设备根据所述调制方式、所述编码速率和所述时频资源的数目确定传输块大小TBS之前,该方法还包括:所述终端设备根据所述控制信息中包括的预编码指示信息确定所述数据信道支持的传输层数。
可选的,所述终端设备根据所述调制方式、所述编码速率和所述时频资源的数目确定传输块大小TBS之前,所述方法还包括:
所述终端设备根据所述数据信道对应的传输模式确定所述数据信道支持的传输层数。
相应的,所述网络设备根据所述调制方式、所述编码速率和所述时频资源的数目确定传输块大小TBS之前,所述方法还包括:所述网络设备根据所述数据信道对应的传输模式确定所述数据信道支持的传输层数。
本申请实施例可通过多种方式确定数据信道支持的传输层数,数据信道支持的传输层数的确定方式更灵活,可更好的适配各种资源分配场景。
第三方面提供了一种终端设备,其可包括:收发单元和处理单元。该收发单元和处理单元可以执行上述第一方面及上述可选实施方式中终端设备的功能。
第四方面提供了一种网络设备,其可包括:收发单元和处理单元。该收发单元和处理单元可以执行上述第二方面及上述可选实施方式中网络设备的功能。
第五方面提供了一种终端设备,其可包括:处理器、存储器和收发器。
所述存储器和所述收发器与所述处理器连接;
所述存储器用于存储一组程序代码;
所述处理器和所述收发器用于调用所述存储器中存储的程序代码执行上述第一方面提供的方法。
第六方面提供了一种网络设备,其可包括:处理器、存储器和收发器;
所述存储器和所述收发器与所述处理器连接;
所述存储器用于存储一组程序代码;
所述处理器和所述收发器用于调用所述存储器中存储的程序代码执行上述第二方面提供的方法。
第七方面提供了一种通信系统,该系统包括上述第三方面提供的终端设备和上述第四方面提供的网络设备。
第八方面提供了一种计算机存储介质,用于储存为上述终端设备所用的计算机软件指 令,其包含用于执行上述方面所设计的程序。
第九方面提供了一种计算机存储介质,用于储存为上述网络设备所用的计算机软件指令,其包含用于执行上述方面所设计的程序。
第十方面提供了一种芯片,该芯片与网络设备中的收发器耦合,用于执行本申请实施例第二方面的技术方案。应理解,在本申请实施例中“耦合”是指两个部件彼此直接或间接地结合。这种结合可以是固定的或可移动性的,这种结合可以允许流动液、电、电信号或其它类型信号在两个部件之间通信。
第十一方面提供了一种芯片,该芯片与终端设备中的收发器耦合,用于执行本申请实施例第一方面的技术方案。应理解,在本申请实施例中“耦合”是指两个部件彼此直接或间接地结合。这种结合可以是固定的或可移动性的,这种结合可以允许流动液、电、电信号或其它类型信号在两个部件之间通信。
附图说明
图1是本申请实施例提供的通信系统的基础架构;
图2是本申请实施例提供的确定传输块大小的方法的实施例示意图;
图3是本申请实施例提供的终端设备的结构示意图;
图4是本申请实施例提供的网络设备的结构示意图;
图5是本申请实施例提供的一种通信设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
本申请实施例提供的确定传输块大小的方法及装置可适用于5G通信系统,也可以适用于LTE系统,或其他采用各种无线接入技术的无线通信系统。例如,采用码分多址(code division multiple access,CDMA),频分多址(frequency division multiple access,FDMA),时分多址(time division multiple access,TDMA),正交频分多址(orthogonal frequency division multiple access,OFDMA),单载波频分多址(single carrier-frequency division multiple access,SC-FDMA)等接入技术的系统。下面将以5G通信系统为例进行说明。
参见图1,是本申请实施例提供的通信系统的基础架构。
本申请实施例提供的通信系统可包括网络设备和终端设备等,网络设备和终端设备通过无线接口可以进行数据或者信令的传输,包括上行传输和下行传输。
终端设备是一种具有无线收发功能的设备,可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上(如轮船等);还可以部署在空中(例如飞机、气球和卫星上等)。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(Virtual Reality,VR)终端设备、增强现实(Augmented Reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等。
为方便描述,本申请实施例后续的描述中,上面提到的设备将以终端设备为例进行说 明。
本申请实施例所涉及到的网络设备是一种部署在无线接入网(radio access network,RAN)中用以为终端设备提供无线通信功能的装置。上述网络设备具体可为基站,可以包括各种形式的宏基站,微基站,中继站,接入点基站控制器,收发节点(transmission reception point,TRP)等等。在采用不同的无线接入技术的系统中,基站的具体名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB,eNB),在后续的演进系统中,还可以称为新无线节点B(new radio nodeB,gNB)。为方便描述,本申请实施例后续的描述中,上面提到的设备统称为网络设备。
5G通信系统致力于支持更高系统性能,其将支持多种业务类型,不同部署场景和更宽的频谱范围。其中,上述多种业务类型包括增强移动宽带(enhanced mobile broadband,eMBB),海量机器类型通信(massive machine type communication,mMTC),超可靠低延迟通信(ultra-reliable and low latency communications,URLLC),多媒体广播多播业务(multimedia broadcast multicast service,MBMS)和定位业务等等。上述不同部署场景可包括室内热点(Indoor hotspot),密集城区(dense urban),郊区(suburbs),城区宏覆盖(Urban Macro)及高铁场景等。上述更宽的频谱范围是指5G无线通信系统将支持高达100吉赫(GHz)的频谱范围,其中既包括6GHz以下的低频部分,也包括6GHz以上最高到100GHz的高频部分。
5G通信系统相比与第四代移动通信技术(4thgeneration,4G)通信系统的一大特征就是增加了对URLLC的支持。URLLC的业务种类包括很多种,其中典型的应用案例包括工业控制、工业生产流程自动化、人机交互和远程医疗等。为更好地量化URLLC业务的性能指标,从而给5G通信系统的设计提供基准输入和评估准则,第三代合作伙伴项目(3rd Generation Partnership Project,3GPP)RAN工作组和RAN1工作组对URLLC业务的性能指标(包括时延、可靠性和系统容量等)做了如下定义:
●时延:用户应用层数据包从发送端无线协议栈层2和/或无线协议层3的服务数据单元(service data unit,SDU)到达接收端无线协议栈层2和/或无线协议层3的SDU所需的传输时间。URLLC业务的用户面时延要求对于上下行传输均为0.5ms。上述时延要求仅适用于网络设备和终端设备都不处于非连续接收(discontinuous reception,DRX)状态的场景中。上述0.5ms的性能要求是指数据包的平均时延,并不与URLLC业务的性能指标中的可靠性要求绑定。
●可靠性:在给定的信道质量条件下,从发送端到接收端的数据传输过程中,在一定传输时间内(假设为L秒)正确传输一定量(假设为X比特)的数据的成功概率。上述传输时间仍定义为用户应用层数据包从发送端无线协议栈层2和/或无线协议层3的SDU到达接收端无线协议栈层2和/或无线协议层3的SDU所需的传输时间。对于URLLC业务,一个典型需求是在1ms内达到99.999%的可靠性。需要指出的上述性能指标仅是个典型值,具体实现中,不同应用场景下的URLLC业务可能对可靠性有不同的需求。比如,某些极端苛刻的工业控制业务中,需要在发送端到接收端的时延在0.25ms内并且数据传输的可靠性达到99.9999999%。
●系统容量:在满足一定比例的中断用户的前提下,系统所能达到的小区最大吞吐量。 其中,上述中断用户是指系统无法满足的在一定时延范围内的可靠性需求的用户,即,部分用户所要求的一定时延范围内的可靠性,系统无法满足,这部分用户可称为中断用户。
5G通信系统需要支持多种业务的不同性能指标的需求,因此,5G通信系统的资源调度也需要更加灵活。更加灵活的资源调度方式中数据传输的灵活性也更高,因此,数据传输的TBS的确定方式也需要更加灵活。本申请实施例提供了一种确定TBS的方法及装置,可适用于更加灵活的资源调度方式,可满足更加多样化的业务性能指标的需求。
下面将结合图2至图5对本申请实施例提供的确定TBS的方法及装置进行说明。
参见图2,是本申请实施例提供的确定TBS的方法的实施例示意图。本申请实施例提供的方法可包括步骤:
S20,网络设备确定调制方式和编码速率,并根据所述调制方式和所述编码速率的组合以及第一映射关系集确定指示信息。
在5G通信系统中,终端设备可支持一种或者多种业务,例如URLLC业务、eMBB业务以及mMTC业务等业务中的一种或者多种。
具体实现中,终端设备所支持的一种业务可对应一个映射关系集,一个映射关系集可体现为一张表格,如下表1或者表2。其中,表1为调制方式和编码速率的映射关系集的一示意表。为了方便描述,本申请实施例后续的描述,表1所示的映射关系集可设为映射关系集1。表2为调制方式和编码速率的映射关系集的另一示意表。为了方便描述,本申请实施例后续的描述,表2所示的映射关系集可设为映射关系集2。
可选的,每个映射关系集中可包括一个或者多个调制方式和编码速率的组合,并且每个组合可对应一个指示信息。例如,表1中的调制方式和编码速率的组合中包括调制方式QPSK(即调制阶数2)与编码速率0.01的组合(设为组合1),组合1对应的指示信息为MCS index=0,等。
可选的,上述映射关系集也可通过表格以外的其他形式表示,具体可根据实际应用场景需求确定,在此不做限制。
表1
Figure PCTCN2018091692-appb-000004
如上表1所示,对于映射关系集1所示的调制方式和编码速率,数据信道的调制方式和 编码速率的组合有8种,调制方式有正交相移键控(quadrature phase shift keying,QPSK)和16正交幅度调制(16-quadrature amplitude modulation,16QAM)。其中,一种调制方式对应一个调制阶数,因此,调制方式与编码速率的对应关系可具体体现为调制阶数与编码速率的对应关系。例如,调制方式QPSK的调制阶数(记为Q或者Q m)为2,调制方式16QAM的调制阶数为4。具体实现中,调制方式也可通过其他数据形式表示,在此不做限制。数据信道的编码速率集中在低码率区域,例如,0.01~0.15。例如,URLLC业务由于高可靠性和低时延的性能要求使得URLLC业务的调制方式主要是低阶调制方式,编码速率主要集中在低码率区间。因此,上述映射关系集1可适用于终端设备所支持的URLLC业务等。上述URLLC业务仅是示例,上述映射关系集1也可适用于更多类型的业务,具体可根据实际应用场景确定,在此不做限制。
如上表1所示,调制方式和编码速率的一种组合可对应一个索引。其中,上述调制方式和编码速率的索引可为MCS index,也可为其他表现形式的索引信息,在此不做限制。为了表述方便,下面将以MCS index进行说明,表2不再赘述。
表2
索引(MCS index) 调制阶数(modulation order) 编码速率(code rate)
0 2 0.05
1 2 0.1
2 2 0.15
3 2 0.2
4 2 0.25
5 4 0.3
6 4 0.35
7 4 0.4
8 4 0.45
9 4 0.5
10 4 0.55
11 6 0.6
12 6 0.65
13 6 0.7
14 6 0.75
15 6 0.8
如上表2所示,对于映射关系集2所示的调制方式和编码速率,数据信道的调制方式和编码速率的组合有16种。其中,调制方式包括QPSK(对应的调制阶数为2,即Q=2或者Q m=2),16QAM(对应的调制阶数为4,即Q=2或者Q m=4)和64QAM(对应的调制阶数为6,即Q=2或者Q m=6)等。编码速率覆盖较大区间,例如,0.05~0.8。例如,eMBB业 务由于传输数据量大、传输速率高等数据传输特点使得eMBB业务的调制方式更多,编码速率覆盖较大区间。因此,上述映射关系集2可适用于终端设备所支持的eMBB业务等。上述eMBB业务仅是示例,上述映射关系集2也可适用于更多类型的业务,具体可根据实际应用场景确定,在此不做限制。
可选的,本申请实施例所描述的映射关系集,包括上述映射关系集1或者映射关系集2可由网络设备配置。网络设备可根据终端设备所支持的不同业务的性能指标需求为终端设备配置不同的映射关系集,以满足终端设备的不同业务的不同性能指标需求。具体实现中,若一个终端设备只支持一种业务,网络设备也可为支持不同业务的不同终端设备分别配置一个映射关系集,多个终端设备则配置多个映射关系集。具体实现中,映射关系集的个数可由网络设备确定,也可根据终端设备所支持的业务类型的数目确定,在此不做限制。网络设备可为不同的业务配置不同的映射关系集,进而可根据终端设备所承载的业务下发该业务对应的映射关系集的指示信息。
可选的,本申请实施例所描述的映射关系集,包括上述映射关系集1或映射关系集2也可由终端设备预先设置,不需要网络设备进行配置。具体的,映射关系集的定义方式可根据实际应用场景确定,在此不做限制。
具体实现中,通过网络设备配置或者由终端设备预先设置等方式为终端设备的不同业务配置不同的映射关系集,可以更好地适配终端设备的业务。例如,URLLC业务由于高可靠性和低时延的性能要求使得URLLC业务的调制方式主要低阶调制方式,编码速率主要集中在低码率区间。为URLLC业务专门定义一个调制方式和编码速率的映射关系集(例如映射关系集1),一方面可以减少调制方式和编码速率的组合总数,从而在通知终端设备调制方式和编码速率时可以减少下行控制信息的开销。另一方面可以提高在低码率工作区域的分辨率,从而更好地适配信道,提高系统的频谱效率。
可选的,网络设备也可为终端设备配置一个默认映射关系集,或者由终端设备预先配置一个默认映射关系集(或称缺省的映射关系集)。上述默认映射关系集适用于终端设备的系统广播消息的接收等场景的需求。例如,系统消息(system information)的接收,寻呼(paging),随机接入响应(random access response)等应用需求。为终端设备配置一个默认映射关系集,使得终端设备的业务需求所需的映射关系集更加完整,提高了终端设备的业务资源配置的灵活性。
可选的,在一些可行的实施方式中,网络设备可根据信道状态或者待调度的资源等信息确定调制方式和编码速率。网络设备可根据确定的调制方式和编码速率的组合,从第一映射关系集中确定出调制方式和编码速率的组合对应的指示信息。其中,上述第一映射关系集可为上述多个映射关系集中的默认映射关系集。上述调制方式和编码速率的组合对应的指示信息可为MCS index等索引信息。可选的,上述第一映射关系集也可为终端设备所支持的业务对应的映射关系集。例如,终端设备支持的业务为URLLC业务,网络设备确定出调制方式QPSK(即调制阶数2)与编码速率0.01的组合(设为组合1)之后,可从映射关系集1(即表1)中确定出组合1对应的指示信息,即MCS index为0。
可选的,终端设备可向网络设备上报其所支持的业务类型。网络设备可根据终端设备所支持的业务类型从上述多个映射关系集中选择适用于终端设备所支持的业务类型的第一 映射关系集。即,上述第一映射关系集为上述多个映射关系集中的一个。例如,若终端设备上报其所支持的业务类型为URLLC,网络设备则可将上述表1所示的映射关系集(即映射关系集1)作为第一映射关系集。网络设备可根据信道状况,或者待调度的资源等信息从第一映射关系集中确定出一个调制方式和编码速率的组合,并确定出调制方式和编码速率的组合对应的指示信息。例如,网络设备根据信道状况和待调度的资源等信息,确定出调制方式QPSK(即调制阶数2)与编码速率0.01,进而可从表1中确定出调制方式和编码速率的组合的指示信息为MCS index=0。
S22,网络设备向终端设备发送控制信息。
可选的,上述控制信息具体可为下行控制信息(downlink control information,DCI)。上述DCI中可包括调制方式和编码速率的指示信息,以及数据信道的资源信息等。其中,上述指示信息指示上述网络设备确定的调制方式和编码速率的索引。上述资源信息用于确定时频资源的数目。
可选的,网络设备发送给终端设备的DCI中可包括映射关系集指示信息,上述映射关系集指示信息用于指示上述网络设备确定的第一映射关系集。
可选的,DCI可以包括至少1比特用于指示第一映射关系集。例如,DCI通过1比特指示数据信道所采用的调制方式和编码速率的映射关系集。其中,该比特的取值为“0”则对应于数据信道采用调制方式和编码速率的映射关系集1(如表1所示的映射关系集),该比特的取值为“1”则对应于数据信道采用调制方式和编码速率的映射关系集2(如表2所示的映射关系集)。终端设备根据DCI中该比特的取值即可确定第一映射关系集。
可选的,网络设备向终端设备下发DCI,终端设备可通过DCI的格式确定与该DCI对应的数据信道采用调制方式和编码速率的映射关系集。其中,DCI的格式对应于DCI所包含的原始信息比特。例如,DCI的格式1对应于数据信道采用调制方式和编码速率的映射关系集1,DCI的格式2对应于数据信道采用调制方式和编码速率的映射关系集2。终端设备可根据DCI的格式确定第一映射关系集。
可选的,网络设备向终端设备下发DCI,终端设备可通过数据信道承载的信息类型确定与该DCI对应的数据信道采用的调制方式和编码速率的映射关系集。例如,终端设备通过DCI可以确定数据信道承载的是系统消息,进而可确定数据信道采用的调制方式和编码速率的第一映射关系集,例如默认映射关系集。
可选的,若网络设备发送的DCI中不包括第一映射关系集的指示信息,终端设备则可将默认映射关系集确定为第一映射关系集。
可选的,网络设备可在向网络设备发送DCI之前,向终端设备发送配置信息,通过上述配置信息指示DCI对应的数据信道所采用的第一映射关系集。
S24,终端设备接收控制信息,并根据第一映射关系集和控制信息确定TBS的配置参数。
可选的,上述TBS的配置参数可包括调制方式、编码速率以及时频资源的数目等。
具体的,终端设备确定了第一映射关系集之后,可根据DCI中包括的调制方式和编码速率的组合的指示信息(MCS index等),从第一映射关系集中确定出调制方式和编码速率。例如,终端设备确定第一映射关系集为表1所示的映射关系集1,上述指示信息所指示的MCS index为0,终端设备则可从表1中确定出调制方式和编码速率,即,调制方式和编码速率的 组合1对应的调制方式1和编码速率0.01。
可选的,上述DCI中可包括数据信道的资源信息。上述资源信息指示网络设备分配给终端设备的时频资源,终端设备可根据资源信息指示的网络设备分配给终端设备的时频资源,以及固定开销时频资源确定数据信道所占用的时频资源的数目。具体的,上述数据信道所占用的时频资源可为数据信道可用的时频资源,具体可包括网络设备分配给终端设备的时频资源中去除固定开销时频资源(即指定时频资源)之外的剩余时频资源。其中,上述固定开销时频资源可包括:数据信道对应的解调参考信道(demodulation reference signal,DMRS)所占用的时频资源,网络设备发送的信道质量测量参考信号(channel state information-reference signal,CSI-RS)所占用的时频资源,以及网络设备预留的时频资源等等。其中,上述网络设备预留的时频资源可包括网络设备预配置的信号或者信道所占用的时频资源,例如主同步信号(primary synchronization signal,PSS)、辅同步信号(secondary synchronization signal,SSS)或者物理广播信道(physical broadcast channel,PBCH)等所占用的时频资源。上述网络设备预留的时频资源也可包括网络设备动态通知的预留时频资源等。由于上述固定开销时频资源可以是以RE为单位的,那么上述数据信道所占用的时频资源的数目中的时频资源也可以是RE为单位的,换句话说,数据信道所占用的时频资源的数目中所说的时频资源的大小可以小于物理资源块的大小。
S26,终端设备根据所述调制方式、所述编码速率和所述时频资源的数目确定TBS。
具体实现中,上述TBS的配置参数还可包括DCI对应的数据信道所支持的传输层数。
可选的,终端设备还可根据DCI中包括的预编码指示信息等确定DCI对应的数据信道支持的传输层数。
可选的,终端设备也可根据DCI对应的数据信道对应的传输模式确定数据信道支持的传输层数。
具体的,终端设备确定了调制方式、编码速率,时频资源的数目以及数据信道支持的传输层数之后,则可确定数据信道的TBS。
其中,上述TBS可为第一TBS。
可选的,上述第一TBS满足:
第一
Figure PCTCN2018091692-appb-000005
其中,上述N为数据信道可用的时频资源的数目,v为数据信道所支持的传输层数,Q为确定的调制方式对应的调制阶数,R为确定的编码速率。
可选的,上述N可以大颗粒度量化,
Figure PCTCN2018091692-appb-000006
K为正整数
其中,N_TEMP可为数据信道可用的时频资源的数目;N为量化后的数据信道可用的时频资源的数目,N用于计算第一TBS,和/或第二TBS,后续不再赘述。
可选的,可以根据数据信道可用的时频资源的数目N,数据信道所支持的传输层数v,和调制方式,查表得到第一TBS。
可选的,可以根据调制方式和数据信道所支持的传输层数v,查表得到单位资源上承载 的比特数L,进而将单位资源上承载的比特数L,数据信道可用的时频资源的数目N与单位资源所含资源的数目的比值,做乘,得到第一TBS。
可选的,可以根据数据信道可用的时频资源的数目N和调制方式,查表得到单层传输承载的比特数L,进而将单层传输承载的比特数L与数据信道所支持的传输层数v做乘,得到第一TBS。
可选的,可以根据调制方式,查表得到单位资源上的单层传输承载的比特数L,进而将单位资源上的单层传输承载的比特数L,数据信道可用的时频资源的数目N与单位资源所含资源的数目的比值,数据信道所支持的传输层数v,做乘,得到第一TBS。
可选的,在一些可行的实施方式中,终端设备也可根据上述调制方式、编码速率,时频资源的数目以及数据信道支持的传输层数等参数确定第二TBS,再根据第二TBS确定第一TBS。其中,上述第二TBS可为终端设备确定的一个临时TBS,终端设备根据该临时TBS以及其他参数确定最终所需的TBS,即第一TBS。
可选的,上述其他参数可为互联网协议语音(voice over internet protocol,VOIP)包的大小和/或媒体接入控制(medium access control,MAC)元素(control element,CE)包的大小等。
可选的,上述第二TBS可满足:
第二
Figure PCTCN2018091692-appb-000007
其中,上述N为数据信道可用的时频资源的数目,v为数据信道所支持的传输层数,Q为确定的调制方式对应的调制阶数,R为确定的编码速率。
可选的,上述N可以大颗粒度量化,
Figure PCTCN2018091692-appb-000008
K为正整数
可选的,可以根据数据信道可用的时频资源的数目N,数据信道所支持的传输层数v,和调制方式,查表得到第二TBS。
可选的,可以根据调制方式和数据信道所支持的传输层数v,查表得到单位资源上承载的比特数L,进而将单位资源上承载的比特数L,数据信道可用的时频资源的数目N与单位资源所含资源的数目的比值,做乘,得到第二TBS。
可选的,可以根据数据信道可用的时频资源的数目N和调制方式,查表得到单层传输承载的比特数L,进而将单层传输承载的比特数L与数据信道所支持的传输层数v做乘,得到第二TBS。
可选的,可以根据调制方式,查表得到单位资源上的单层传输承载的比特数L,进而将单位资源上的单层传输承载的比特数L,数据信道可用的时频资源的数目N与单位资源所含资源的数目的比值,数据信道所支持的传输层数v,做乘,得到第二TBS。
可选的,第一TBS可根据如下方式一至方式四中的任一方式确定。
方式一:
若第二TBS大于第一参考门限,则第一TBS等于第二TBS。即,可将上述第二TBS 确定为第一TBS,即终端设备最终确定的第一TBS等于所述第二TBS。
方式二:
当第二TBS小于或者等于第一参考门限时,所述第一TBS为第一取值集合中的第一元素。
可选的,当第二TBS小于或者等于上述第一参考门限时,上述第一TBS可为第一取值集合中小于或者等于第二TBS且与第二TBS差值的绝对值最小的一个元素。
可选的,若上述第二TBS小于或者等于上述参考门限,终端设备则可将上述第一取值集合中包括的元素依次与第二TBS进行差值计算,得到第二TBS与第一取值集合中包括的各个元素的差值,从中选择差值的绝对值最小且小于或者等于第二TBS的一个元素确定为第一TBS。在该实现方式中,第一TBS的取值可优先保证数据传输的可靠性,传输效率损失最小。
例如,假设上述第二TBS=48,上述第一取值集合为[8,16,24,32,40,56,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536],则通过第二TBS与第一取值集合中各个元素的差值计算,可确定第一取值集合中的元素40小于48,并且与48的差值的绝对值最小,因此可确定第一TBS=40。
例如,假设上述第二TBS=56,上述第一取值集合为[8,16,24,32,40,56,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536],则通过第二TBS与第一取值集合中各个元素的差值计算,可确定第一取值集合中的元素56等于第二TBS(即56),因此可确定第一TBS=56。
可选的,上述第一TBS可为第一取值集合中大于或者等于第二TBS且与第二TBS差值的绝对值最小的一个元素。在该实现方式中,第一TBS的取值可在数据传输的可靠性略微下降的情况下更好地满足业务质量的需求,传输效率较优。
例如,假设第二TBS=48,上述第一取值集合为[8,16,24,32,40,56,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536],则可确定第一TBS=56。
例如,假设第一TBS=56,上述第一取值集合为[8,16,24,32,40,56,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536],则可确定第一TBS=56。
可选的,上述第一TBS是第一取值集合中与第二TBS差值的绝对值最小的一个元素。如果出现2个元素与第二TBS差值的绝对值相同且都是最小的,则选择较小的元素。在该实现方式中,第一TBS的取值可使得数据传输的可靠性偏差最小,虽然传输效率略有损失,但是提高了数据传输的可靠性。
可选的,上述第一TBS是第一取值集合中与第二TBS差值的绝对值最小的一个元素。如果出现2个元素与第二TBS差值的绝对值相同且都是最小的,则选择较大的元素。在该实现方式中,第一TBS的取值可使得数据传输的可靠性偏差最小,虽然可靠性略微下降了,但是提高了传输数据的传输效率。
例如,假设第一TBS=80,第一取值集合为[8,16,24,32,40,56,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536],则可确定TBS=72。
例如,假设第一TBS=48,第一取值集合为[8,16,24,32,40,56,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536],则可确定TBS=40。
可选的,上述第一取值集合中包含特殊的数据包大小,例如VOIP包大小,和/或,MAC CE包大小。
可选的,如下集合1或集合2所示,第一取值集合可仅包含VOIP包大小和/或MAC CE包大小。
集合1:
[8,16,24,32,40,56,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536]。
集合2:
[8,16,24,32,40,48,56,64,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536]。
可选的,上述第一取值集合也可以包含增强语音业务编解码器(enhanced voice services codec,EVS codec)包大小,例如:
集合3:
[8,16,24,32,40,56,72,104,120,128,144,152,176,208,216,224,232,256,264,296,328,336,344,392,416,424,440,488,512,528,536,560,632]。
集合4:
[8,16,24,32,40,48,56,64,72,104,120,128,144,152,176,208,216,224,232,256,264,296,328,336,344,392,416,424,440,488,512,528,536,560,632]。
可选的,如下集合5或集合6所示,第一取值集合可包含VOIP包大小和/或MAC CE包大小,并且包含在上述特殊的数据包大小间隔较大的位置插入的一些元素。
例如:集合5:
[8,16,24,32,40,56,72,88,104,120,136,144,152,176,208,224,256,280,288,296,328,336,344,376,392,408,424,440,456,472,488,504,520,536]。
其中,与集合1相比较,集合5中的元素88、136、144、280、288、336、376、408、424、456、472、504以及520等则为插入的元素。本申请实施例在特殊的数据包大小(VOIP包大小、MAC CE包大小以及EVS codec大小等)间隔较大的位置插入的一些元素,使得第一取值集合中各个元素之间的差值更加均匀,第一TBS的选取可为特殊的数据包大小,也可为插入的元素,使得第一TBS的取值更加准确,适用性更强。
集合6:
[8,16,24,32,40,48,56,64,72,88,104,120,136,144,152,176,208,224,256,280,288,296,328,336,344,376,392,408,424,440,456,472,488,504,520,536]。
其中,与集合2相比较,集合6中的元素88、136、144、280、288、336、376、408、424、456、472、504以及520等则为插入的元素。
可选的,如下集合7或集合8所示,第一取值集合可包含VOIP包大小,和/或MAC CE包大小,和/或EVS codec包大小,并且包含在上述特殊的数据包大小间隔较大的位置插入的一些元素。
集合7:[8,16,24,32,40,56,72,88,104,120,128,136,144,152,176,208,216,224,232,256,264,280,296,328,336,344,392,416,424,440,456,488,512,528,536,560,632]。
集合8:[8,16,24,32,40,48,56,64,72,88,104,120,128,144,152,176,208,216,224,232, 256,264,280,296,328,336,344,392,416,424,440,488,512,528,536,560,632]。
其中,上述第一参考门限大于或者等于最大VOIP包大小,或,最大MAC CE包大小。可选的,上述第一参考门限的取值可以是536,或者328等。
进一步,第一参考门限大于或者等于最大VOIP包大小,或,最大MAC CE包大小,或最大EVS codes包大小。可选的,上述第一参考门限的取值可以是536,或者328,或者632等。
本申请实施例通过第二TBS与第一参考门限的比较得到第一TBS的确定方式,使得小的数据包(或称小包),特别是特殊的数据包的传输更加高效,也使得大的数据包传输时TBS的确定方式更灵活,适用性更强,扩展性更强。其中,上述特殊的数据包可包括VOIP包、MACCE包以及EVS codec包等,在此不做限制。
方式三:
当第二TBS与第一取值集合中的第二元素的差值的绝对值小于或者等于第二参考门限时,第一TBS为第一取值集合中的该第二元素。
可选的,终端设备确定了第二TBS之后,可将第二TBS与上述第一取值集合中包括的各个元素进行差值计算,并得到第二TBS与第一取值集合中各个元素的差值的绝对值。若第二TBS与上述第一取值集合中的某一个元素(设为第二元素)的差值的绝对值小于或者等于第二参考门限,则可将该元素确定为第一TBS。
可选的,上述第二参考门限的取值可为一个预定义数值。其中,上述预定义数值可为8或16或32。该预定义数值可以由协议约定或网络设备配置。
可选的,上述第二参考门限的取值也可为上述第二元素与预定义系数的乘积值,例如上述第二元素的M倍,其中,M可为小数。其中,上述预定义系数可由协议约定或由网络设备配置。
可选的,上述预定义系数可为0.01或者0.1。或者上述预定义系数可对应不同的第二元素设置不同的值,具体可根据实际应用场景确定。例如,对于取值较小的第二元素,该预定义系数可取较小值,例如,0.01,对于取值较大的第二元素,该预定义系数可取较大值,例如,0.05等。
方式四:
当第二TBS与第一取值集合中的第二元素的差值的绝对值大于第二参考门限,将第二TBS确定为第一TBS。
可选的,终端设备确定了第二TBS之后,可将第二TBS与上述第一取值集合中包括的各个元素进行差值计算,并得到第二TBS与第一取值集合中各个元素的差值的绝对值。若第二TBS与上述第一取值集合中的某一个元素(设为第二元素)的差值的绝对值大于第二参考门限,则可将第二TBS确定为第一TBS。
终端设备可根据不同的方式确定第一TBS,当第二TBS与第一取值集合中的第二元素的差值的绝对值大于第二参考门限的元素时,可将第二TBS确定为第一TBS,使得大的数据包传输时TBS的确定方式更灵活,适用性更强,扩展性更强。当第二TBS与第一取值集合中的第二元素的差值的绝对值小于或者等于第二参考门限的元素时,可将第一取值集合中与第二TBS的差值的绝对值小于或者等于第二参考门限的元素(即第二元素)确定为第一TBS, 使得小的数据包(或称小包),特别是特殊的数据包的传输更加高效。
S28,网络设备根据所述调制方式、所述编码速率和所述时频资源的数目确定TBS。
具体实现中,网络设备确定数据信道的TBS之前,可根据数据信道对应的传输模式确定数据信道所支持的传输层数。
网络设备可根据调制方式、编码速率,时频资源的数目以及数据信道所支持的传输层数确定TBS。其中,上述TBS可为第一TBS。
其中,上述第一TBS满足:
第一
Figure PCTCN2018091692-appb-000009
其中,上述N为数据信道可用的时频资源的数目,v为数据信道所支持的传输层数,Q为确定的调制方式对应的调制阶数,R为确定的编码速率。
具体的,上述数据信道可为网络设备向终端设备发送的数据信道。
可选的,上述N可以大颗粒度量化,
Figure PCTCN2018091692-appb-000010
K为正整数
可选的,在一些可行的实施方式中,网络设备也可根据上述调制方式、编码速率,时频资源的数目以及数据信道支持的传输层数等参数确定第二TBS,再根据第二TBS确定第一TBS。其中,上述第二TBS可为网络设备确定的一个临时TBS,网络设备根据该临时TBS以及其他参数确定最终所需的TBS,即第一TBS。
可选的,上述其他参数可为VIOP包的大小和/或MAC CE包的大小等。
可选的,上述第二TBS可满足:
第二
Figure PCTCN2018091692-appb-000011
其中,上述N为数据信道可用的时频资源的数目,v为数据信道所支持的传输层数,Q为确定的调制方式对应的调制阶数,R为确定的编码速率。
可选的,第一TBS可根据如下方式一至方式四中的任一方式确定。
方式一:
若第二TBS大于第一参考门限,则第一TBS等于第二TBS。即,可将上述第二TBS确定为第一TBS,即终端设备最终确定的第一TBS等于所述第二TBS。
方式二:
当第二TBS小于或者等于第一参考门限时,所述第一TBS为第一取值集合中的第一元素。
可选的,当第二TBS小于或者等于上述第一参考门限时,上述第一TBS可为第一取值集合中小于或者等于第二TBS且与第二TBS差值的绝对值最小的一个元素。
可选的,若上述第二TBS小于或者等于上述参考门限,终端设备则可将上述第一取值集合中包括的元素依次与第二TBS进行差值计算,得到第二TBS与第一取值集合中包括的各个元素的差值,从中选择差值的绝对值最小的一个元素确定为第一TBS。
例如,假设上述第二TBS=48,上述第一取值集合为[8,16,24,32,40,56, 72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536],则通过第二TBS与第一取值集合中各个元素的差值计算,可确定第一取值集合中的元素40小于48,并且与48的差值的绝对值最小,因此可确定第一TBS=40。
例如,假设上述第二TBS=56,上述第一取值集合为[8,16,24,32,40,56,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536],则通过第二TBS与第一取值集合中各个元素的差值计算,可确定第一取值集合中的元素56等于第二TBS(即56),因此可确定第一TBS=56。
可选的,上述第一TBS可为第一取值集合中大于或者等于第二TBS且与第二TBS差值的绝对值最小的一个元素。
例如,假设第二TBS=48,上述第一取值集合为[8,16,24,32,40,56,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536],则可确定第一TBS=56。
例如,假设第一TBS=56,上述第一取值集合为[8,16,24,32,40,56,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536],则可确定第一TBS=56。
可选的,上述第一TBS是第一取值集合中与第二TBS差值的绝对值最小的一个元素。如果出现2个元素与第二TBS差值的绝对值相同且都是最小的,则选择较小的元素。
例如,假设第一TBS=80,第一取值集合为[8,16,24,32,40,56,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536],则可确定TBS=72。
例如,假设第一TBS=48,第一取值集合为[8,16,24,32,40,56,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536],则可确定TBS=40。
可选的,上述第一取值集合中包含特殊的数据包大小,例如VOIP包大小,和/或,MAC CE包大小。
可选的,如下集合1或集合2所示,第一取值集合可仅包含VOIP包大小和/或MAC CE包大小。
集合1:
[8,16,24,32,40,56,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536]。
集合2:
[8,16,24,32,40,48,56,64,72,104,120,144,152,176,208,224,256,296,328,344,392,440,488,536]。
可选的,上述第一取值集合也可以包含EVS codec包大小,例如:
集合3:
[8,16,24,32,40,56,72,104,120,128,144,152,176,208,216,224,232,256,264,296,328,336,344,392,416,424,440,488,512,528,536,560,632]。
集合4:
[8,16,24,32,40,48,56,64,72,104,120,128,144,152,176,208,216,224,232,256,264,296,328,336,344,392,416,424,440,488,512,528,536,560,632]。
可选的,如下集合5或集合6所示,第一取值集合可包含VOIP包大小和/或MAC CE包大小,并且包含在上述特殊的数据包大小间隔较大的位置插入的一些元素。
集合5:
[8,16,24,32,40,56,72,88,104,120,136,144,152,176,208,224,256,280,288,296,328,336,344,376,392,408,424,440,456,472,488,504,520,536]。
其中,与集合1相比较,集合5中的元素88、136、144、280、288、336、376、408、424、456、472、504以及520等则为插入的元素。本申请实施例在特殊的数据包大小(VOIP包大小、MAC CE包大小以及EVS codec大小等)间隔较大的位置插入的一些元素,使得第一取值集合中各个元素之间的差值更加均匀,第一TBS的选取可为特殊的数据包大小,也可为插入的元素,使得第一TBS的取值更加准确,适用性更强。
集合6:
[8,16,24,32,40,48,56,64,72,88,104,120,136,144,152,176,208,224,256,280,288,296,328,336,344,376,392,408,424,440,456,472,488,504,520,536]。
其中,与集合2相比较,集合6中的元素88、136、144、280、288、336、376、408、424、456、472、504以及520等则为插入的元素。
可选的,如下集合7或集合8所示,第一取值集合可包含VOIP包大小,和/或MAC CE包大小,和/或EVS codec包大小,并且包含在上述特殊的数据包大小间隔较大的位置插入的一些元素。
集合7:[8,16,24,32,40,56,72,88,104,120,128,136,144,152,176,208,216,224,232,256,264,280,296,328,336,344,392,416,424,440,456,488,512,528,536,560,632]。
集合8:[8,16,24,32,40,48,56,64,72,88,104,120,128,144,152,176,208,216,224,232,256,264,280,296,328,336,344,392,416,424,440,488,512,528,536,560,632]。
其中,上述第一参考门限大于或者等于最大VOIP包大小,或,最大MAC CE包大小。可选的,上述第一参考门限的取值可以是536,或者328等。
进一步,第一参考门限大于或者等于最大VOIP包大小,或,最大MAC CE包大小,或最大EVS codes包大小。可选的,上述第一参考门限的取值可以是536,或者328,或者632等。
本申请实施例通过第二TBS与第一参考门限的比较得到第一TBS的确定方式,使得小的数据包(或称小包),特别是特殊的数据包的传输更加高效,也使得大的数据包传输时TBS的确定方式更灵活,适用性更强,扩展性更强。其中,上述特殊的数据包可包括VOIP包、MACCE包以及EVS codec包等,在此不做限制。
方式三:
当第二TBS与第一取值集合中的第二元素的差值的绝对值小于或者等于第二参考门限时,第一TBS为第一取值集合中的该第二元素。
可选的,网络设备确定了第二TBS之后,可将第二TBS与上述第一取值集合中包括的各个元素进行差值计算,并得到第二TBS与第一取值集合中各个元素的差值的绝对值。若第二TBS与上述第一取值集合中的某一个元素(设为第二元素)的差值的绝对值小于或者等于第二参考门限,则可将该元素确定为第一TBS。
可选的,上述第二参考门限的取值可为一个预定义数值。其中,上述预定义数值可为8或16或32。该预定义数值可以由协议约定或网络设备配置。
可选的,上述第二参考门限的取值也可为上述第二元素与预定义系数的乘积值,例如 上述第二元素的M倍,其中,M可为小数。其中,上述预定义系数可由协议约定或由网络设备配置。
可选的,上述预定义系数可为0.01或者0.1。或者上述预定义系数可对应不同的第二元素设置不同的值,具体可根据实际应用场景确定。例如,对于取值较小的第二元素,该预定义系数可取较小值,例如,0.01,对于取值较大的第二元素,该预定义系数可取较大值,例如,0.05等。
方式四:
当第二TBS与第一取值集合中的第二元素的差值的绝对值大于第二参考门限时,将第二TBS确定为第一TBS。
可选的,网络设备确定了第二TBS之后,可将第二TBS与上述第一取值集合中包括的各个元素进行差值计算,并得到第二TBS与第一取值集合中各个元素的差值的绝对值。若第二TBS与上述第一取值集合中的某一个元素(设为第二元素)的差值的绝对值大于或者等于第二参考门限,则可将第二TBS确定为第一TBS。
网络设备设备可根据不同的方式确定第一TBS,当第二TBS与第一取值集合中的第二元素的差值的绝对值大于第二参考门限的元素时,可将第二TBS确定为第一TBS,使得大的数据包传输时TBS的确定方式更灵活,适用性更强,扩展性更强。当第二TBS与第一取值集合中的第二元素的差值的绝对值小于或者等于第二参考门限的元素时,可将第一取值集合中与第二TBS的差值的绝对值小于或者等于第二参考门限的元素(即第二元素)确定为第一TBS,使得小的数据包(或称小包),特别是特殊的数据包的传输更加高效。
可选的,步骤S28所执行的上述操作也可在步骤S22之前执行。即,具体实现中,网络设备确定了调制方式和编码速率之后,可进一步确定时频资源的数目以及数据信道所支持的传输层数,并根据确定的调制方式、编码速率、时频资源的数目以及传输层数确定第一TBS。第一TBS的确定与控制信息的下发的先后顺序不做限制,具体可根据实际应用场景确定。
S30,网络设备基于所述第一TBS在所述时频资源上发送所述数据信道。
具体实现中,对应下行数据发送,网络设备可基于确定的第一TBS在时频资源上发送数据信道。其中,上述时频资源可为数据信道实际占用的时频资源。
S32,终端设备基于确定的第一TBS解码时频资源上承载的数据信道。
具体实现中,对于下行数据接收,终端设备可基于确定的第一TBS解码时频资源上承载的数据信道。其中,上述时频资源可为数据信道实际占用的时频资源。
可选的,上述步骤S30和S32也可由下述步骤S30’和S32’替代:
S30’,终端设备基于确定的第一TBS在时频资源上发送数据信道。
S32’,网络设备基于所述第一TBS解码所述时频资源上承载的所述数据信道。
对于上行数据发送,网络设备向终端设备发送DCI,终端设备可以根据确定的调制方式和编码速率进行信道编码和数据调制。终端设备可基于确定的第一TBS在数据信道实际占用的时频资源上发送数据信道。
对于上行数据接收,网络设备可基于确定的第一TBS解码数据信道实际占用的时频资 源上承载的数据信道。
对比于一些可行的数据信道的TBS的确定方式,TBS满足:
Figure PCTCN2018091692-appb-000012
其中,N PRB表示网络设备分配给终端设备物理资源块(physical resource block,PRB)的数目,上述N PRB由终端设备接收的DCI指示。
Figure PCTCN2018091692-appb-000013
表示每个PRB中数据信道可用的时频资源的数目,即每个PRB中去除固定开销时频资源之外的剩余时频资源。上述每个PRB的
Figure PCTCN2018091692-appb-000014
相同,并且由网络设备通过高层信令进行半静态配置。v表示数据信道支持的传输层数,Q m表示调制阶数,R表示数据信道的目标码率(即编码速率)。在LTE系统中,
Figure PCTCN2018091692-appb-000015
是一个固定值(120)。上述实现方式中指出
Figure PCTCN2018091692-appb-000016
可以由网络设备进行半静态配置,其具体取值可以对于不同的应用场景配置。
然而,在5G通信系统中,每个PRB的
Figure PCTCN2018091692-appb-000017
不同,上述实现方式中,
Figure PCTCN2018091692-appb-000018
的配置方式不够灵活,无法动态适配具体的应用场景进而无法满足终端设备的不同业务的性能指标需求,造成系统频谱效率的降低。上述实现方式中,终端设备所支持的所有业务均采用同一个MCS和码率的映射表格,即对于所有业务都不加区分的使用同一个码率的表格。实际上,不同的业务的性能指标要求不同,如URLLC对时延和可靠性的需求使得其主要工作区间在低码率区域,所以要求低码率区域有更好的颗粒度,上述实现方式把所有业务所采用的MCS放在一个MCS和码率的映射表格中,可能造成DCI的比特数增加,适用性低。
本申请实施例中,终端设备可根据网络设备下发的控制信息从第一映射关系集中确定出调制方式和编码速率,还可根据控制信息确定时频资源的数目。其中,该时频资源为发送或接收数据信道的时频资源,即数据信道实际占用的时频资源,进而可确定数据信道的TBS。这样,根据数据信道实际占用的时频资源确定的TBS与数据信道的目标编码速率更为匹配,提高了TBS的准确性。这里的目标编码速率是网络设备期望数据信道达到的编码速率,而上文的编码速率则是数据信道实际使用的编码速率。而网络设备也根据同样的时频资源的数目确定TBS,因此,网络设备确定的TBS同样具有上述效果。
此外,由于TBS是根据调制方式、编码速率和时频资源的数目确定的,因此,不论调度的资源是多少,也不论调度的资源中的其他开销资源是多少,均能够用同样的方式确定较为准确的TBS,因此,该TBS的确定方式能够适用于各种调度场景,因此该TBS确定方式灵活性高,可扩展性较好。
进一步的,由于确定的TBS更为准确,给终端设备分配的时频资源不会过少,从而发送数据信道或者接收数据信道时能够降低重传的可能性,而且给终端设备分配的时频资源也不会过多,避免了资源的浪费。
本申请实施例可针对终端设备的不同业务类型的业务的性能指标需求配置不同的调制方式和编码速率的映射关系表格,可动态适配5G通信系统中各种灵活的资源分配的场景,操作更灵活,适用性更高。进一步的,本申请实施例提供的实现方式可直接根据配置的调制方式和编码速率的映射关系表格确定出调制方式和编码速率,进而可通过预定义的TBS确定公式确定出TBS,无需定义TBS表格,也无需通过MCS映射表格和TBS表格等多个 表格的查找操作,有效降低了TBS的确定的实现复杂度,进而可提高数据传输的效率以及系统的频谱效率,适用性更强。
参见图3,图3是本申请实施例提供的一种终端设备的结构示意图。图3所示的终端设备可以包括收发单元31和处理单元32,其中,各个单元的详细描述如下:
收发单元31,用于接收网络设备发送的控制信息,所述控制信息包括指示信息和数据信道的资源信息;
处理单元32,用于根据第一映射关系集和所述收发单元31接收的所述指示信息确定调制方式和编码速率,并根据所述收发单元31接收的所述数据信道的资源信息确定时频资源的数目,其中,所述第一映射关系集中包括所述指示信息和所述调制方式与所述编码速率的组合的对应关系;
所述处理单元32,还用于根据所述调制方式、所述编码速率和所述时频资源的数目确定第一传输块大小TBS;以及
所述收发单元31,还用于基于所述处理单元32确定的所述第一TBS解码所述时频资源上承载的所述数据信道或所述终端设备基于所述处理单元32确定的所述第一TBS在所述时频资源上发送所述数据信道。
可选的,所述时频资源的大小小于物理资源块的大小。
可选的,所述处理单元32用于:
根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定所述第一TBS:
其中,所述第一TBS满足:
第一
Figure PCTCN2018091692-appb-000019
其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
可选的,所述处理单元32用于:
根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS:
其中,所述第一TBS满足:
当所述第二TBS大于第一参考门限时,所述第一TBS等于所述第二TBS。
可选的,所述处理单元32用于:
根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS;
其中,所述第一TBS满足:
当所述第二TBS小于或者等于第一参考门限时,所述第一TBS为第一取值集合中的第一元素。
可选的,所述处理单元32用于:
根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS, 并根据所述第二TBS确定第一TBS:
其中,所述第一TBS满足:
当所述第二TBS与第一取值集合中的第二元素的差值的绝对值小于或者等于第二参考门限时,所述第一TBS为所述第一取值集合中的所述第二元素。
可选的,所述处理单元32用于:
根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS:
其中,所述第一TBS满足:
当所述第二TBS与第一取值集合中的第二元素的差值的绝对值大于第二参考门限时,所述第一TBS等于所述第二TBS。
可选的,所述处理单元32用于:
根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS:
其中,所述第二TBS满足:
第二
Figure PCTCN2018091692-appb-000020
其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
可选的,所述第一参考门限大于或者等于最大VOIP包大小,或,最大MAC CE包大小。
可选的,所述第一元素为所述第一取值集合中小于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
所述第一元素为所述第一取值集合中大于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
所述第一元素为所述第一取值集合中与所述第二TBS的差值的绝对值最小的元素。
可选的,所述第一取值集合中至少包含VOIP包大小,和/或,MAC CE包大小。
可选的,所述第一取值集合中包含8,16,24,32,40,56,72,88,104,120,136,144,152,176,208,224,256,280,288,296,328,336,344,376,392,408,424,440,456,472,488,504,520,536中的至少一个值。
可选的,所述第二参考门限为预定义数值,或者所述第二参考门限为所述第二参考元素与预定义系数的乘积值。
可选的,所述处理单元32用于:
根据所述收发单元31接收到所述资源信息和指定时频资源确定所述时频资源的数目,其中,所述时频资源包括所述资源信息所指示的时频资源去除指定时频资源之外的剩余时频资源;
其中,所述指定时频资源包括:所述数据信道对应的解调参考信号DMRS所占用的时频资源,所述网络设备在所述资源信息所指示的时频资源内发送的信道质量测量参考信号CSI-RS所占用的时频资源,以及所述网络设备预留的时频资源中的一种或者多种。
可选的,所述第一映射关系集为多个映射关系集中的默认映射关系集;或者,
所述收发单元31还用于接收所述网络设备发送的配置信息,其中,所述配置信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
可选的,所述控制信息还包括映射关系集指示信息,其中,所述映射关系集指示信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
可选的,所述控制信息的格式指示所述第一映射关系集,其中,所述第一映射关系集为多个映射关系集中的一个;或者,
所述控制信息所指示的所述数据信道承载的信息类型指示所述第一映射关系集,其中,所述第一映射关系集为多个映射关系集中的一个。
可选的,所述处理单元32还用于:
根据所述控制信息中包括的预编码指示信息确定所述数据信道支持的传输层数。
可选的,所述处理单元32还用于:
根据所述数据信道对应的传输模式确定所述数据信道支持的传输层数。
具体实现中,终端设备可通过其内置的各个单元执行上述图2所述的实施例中终端设备所执行的实现方式。具体实现方式可以对应参照图2所示的方法实施例的相应描述,在此不再赘述。
参见图4,图4是本申请实施例提供的一种网络设备的结构示意图。图4所述的网络设备可以包括处理单元41和收发单元42,其中,各个单元的详细描述如下。
处理单元41,用于确定调制方式和编码速率,并根据所述调制方式和所述编码速率的组合以及第一映射关系集确定指示信息,其中,所述第一映射关系集中包括所述指示信息和所述调制方式与所述编码速率的组合的对应关系;
收发单元42,用于向终端设备发送控制信息,所述控制信息包括所述处理单元41确定的所述指示信息和数据信道的资源信息,所述资源信息用于确定时频资源的数目;
所述处理单元41,还用于根据所述调制方式、所述编码速率和所述时频资源的数目确定第一传输块大小TBS;以及
所述收发单元42,还用于基于所述第一TBS解码所述时频资源上承载的所述数据信道或所述网络设备基于所述第一TBS在所述时频资源上发送所述数据信道。
可选的,所述时频资源的大小小于物理资源块的大小。
可选的,所述处理单元41用于:
根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定所述第一TBS:
其中,所述第一TBS满足:
第一
Figure PCTCN2018091692-appb-000021
其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
可选的,所述处理单元41用于:
根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS, 并根据所述第二TBS确定第一TBS:
其中,所述第一TBS满足:
当所述第二TBS大于第一参考门限时,所述第一TBS等于所述第二TBS。
可选的,所述处理单元41用于:
根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS;
其中,所述第一TBS满足:
当所述第二TBS小于或者等于第一参考门限时,所述第一TBS为第一取值集合中的第一元素。
可选的,所述处理单元41用于:
根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS:
其中,所述第一TBS满足:
当所述第二TBS与第一取值集合中的第二元素的差值的绝对值小于或者等于第二参考门限时,所述第一TBS为所述第一取值集合中的所述第二元素。
可选的,所述处理单元41用于:
根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS:
其中,所述第一TBS满足:
当所述第二TBS与第一取值集合中的第二元素的差值的绝对值大于第二参考门限时,所述第一TBS等于所述第二TBS。
可选的,所述处理单元41用于:
根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS:
其中,所述第二TBS满足:
第二
Figure PCTCN2018091692-appb-000022
其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
可选的,所述第一参考门限大于或者等于最大VOIP包大小,或,最大MAC CE包大小。
可选的,所述第一元素为所述第一取值集合中小于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
所述第一元素为所述第一取值集合中大于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
所述第一元素为所述第一取值集合中与所述第二TBS的差值的绝对值最小的元素。
可选的,所述第一取值集合中至少包含VOIP包大小,和/或,MAC CE包大小。
可选的,所述第一取值集合中包含8,16,24,32,40,56,72,88,104,120,136,144,152,176,208,224,256,280,288,296,328,336,344,376,392,408,424,440,456,472,488,504, 520,536中的至少一个值。
可选的,所述第二参考门限为预定义数值,或者所述第二参考门限为所述第二参考元素与预定义系数的乘积值。
可选的,所述资源信息指示所述网络设备分配给所述终端设备的时频资源;
所述时频资源的数目为所述资源信息所指示的时频资源中去除指定时频资源之外的剩余时频资源;
其中,所述指定时频资源包括:所述数据信道对应的解调参考信号DMRS所占用的时频资源,所述网络设备发送的信道质量测量参考信号CSI-RS所占用的时频资源,以及所述网络设备预留的时频资源中的一种或者多种。
可选的,所述第一映射关系集为多个映射关系集中的默认映射关系集;或者
所述收发单元42,还用于向所述终端设备发送配置信息,其中,所述配置信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
可选的,所述控制信息还包括映射关系集指示信息,其中,所述映射关系集指示信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
可选的,所述控制信息的格式指示所述第一映射关系集,其中,所述第一映射关系集为多个映射关系集中的一个;或者,
所述控制信息所指示的所述数据信道承载的信息类型指示所述第一映射关系集,其中,所述第一映射关系集为多个映射关系集中的一个。
可选的,所述控制信息中包括预编码指示信息,所述预编码指示信息指示所述数据信道所支持的传输层数。
可选的,所述处理单元41还用于:
根据所述数据信道对应的传输模式确定所述数据信道支持的传输层数。
具体实现中,网络设备可通过其内置的各个单元执行上述图2所述的实施例中网络设备所执行的实现方式。具体实现方式可以对应参照图2所示的方法实施例的相应描述,在此不再赘述。
请参见图5,图5是本申请实施例提供的一种通信设备50的结构示意图。如图5所示,本申请实施例提供的通信设备50包括处理器501、存储器502、收发器503和总线系统504。
其中,上述处理器501、存储器502和收发器503通过总线系统504连接。
上述存储器502用于存放程序。具体地,程序可以包括程序代码,程序代码包括计算机操作指令。存储器502包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。图5中仅示出了一个存储器,当然,存储器也可以根据需要设置为多个。存储器502也可以是处理器501中的存储器,在此不做限制。
存储器502存储了如下的元素,可执行模块或者数据结构,或者它们的子集,或者它们的扩展集:
操作指令:包括各种操作指令,用于实现各种操作。
操作系统:包括各种系统程序,用于实现各种基础业务以及处理基于硬件的任务。
上述处理器501控制通信设备50的操作,处理器501可以是一个或多个中央处理器(central processing unit,CPU),在处理器501是一个CPU的情况下,该CPU可以是单核CPU,也可以是多核CPU。
具体的应用中,通信设备50的各个组件通过总线系统504耦合在一起,其中总线系统504除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图5中将各种总线都标为总线系统504。为便于表示,图5中仅是示意性画出。
上述本申请实施例提供的图3,或者上述各个实施例揭示的终端设备的方法;或者上述本申请实施例提供的图4,或者上述各个实施例的网络设备的方法可以应用于处理器501中,或者由处理器501实现。处理器501可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器501中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器501可以是通用处理器、数字信号处理器(digital signal processing,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器502,处理器501读取存储器502中的信息,结合其硬件执行图3或者上述各个实施例所描述的终端设备的方法步骤;或者结合其硬件执行图4或者上述各个实施例所描述的基站的方法步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来指令相关的硬件完成,该程序可存储于计算机可读取存储介质中,该程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储程序代码的介质。

Claims (80)

  1. 一种确定传输块大小的方法,其特征在于,包括:
    终端设备接收网络设备发送的控制信息,所述控制信息包括指示信息和数据信道的资源信息;
    所述终端设备根据第一映射关系集和所述指示信息确定调制方式和编码速率,并根据所述数据信道的资源信息确定时频资源的数目,其中,所述第一映射关系集中包括所述指示信息和所述调制方式与所述编码速率的组合的对应关系;
    所述终端设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一传输块大小TBS;以及
    所述终端设备基于所述第一TBS解码所述时频资源上承载的所述数据信道或所述终端设备基于所述第一TBS在所述时频资源上发送所述数据信道。
  2. 如权利要求1所述的方法,其特征在于,所述时频资源的大小小于物理资源块的大小。
  3. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一TBS,包括:
    所述终端设备根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定所述第一TBS:
    其中,所述第一TBS满足:
    Figure PCTCN2018091692-appb-100001
    其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
  4. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一TBS,包括:
    所述终端设备根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS:
    所述终端设备根据所述第二TBS,确定第一TBS:
    其中,所述第一TBS满足:
    当所述第二TBS大于第一参考门限时,所述第一TBS等于所述第二TBS。
  5. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一TBS,包括:
    所述终端设备根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS:
    所述终端设备根据所述第二TBS,确定第一TBS;
    其中,所述第一TBS满足:
    当所述第二TBS小于或者等于第一参考门限时,所述第一TBS为第一取值集合中的第一元素。
  6. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一TBS,包括:
    所述终端设备根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS:
    所述终端设备根据所述第二TBS,确定第一TBS:
    其中,所述第一TBS满足:
    当所述第二TBS与第一取值集合中的第二元素的差值的绝对值小于或者等于第二参考门限时,所述第一TBS为所述第一取值集合中的所述第二元素。
  7. 如权利要求1或2所述的方法,其特征在于,所述终端设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一TBS,包括:
    所述终端设备根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS:
    所述终端设备根据所述第二TBS,确定第一TBS:
    其中,所述第一TBS满足:
    当所述第二TBS与第一取值集合中的第二元素的差值的绝对值大于第二参考门限时,所述第一TBS等于所述第二TBS。
  8. 如权利要求4至7中任一项所述的方法,其特征在于,所述终端设备根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,包括:
    所述第二TBS满足:
    Figure PCTCN2018091692-appb-100002
    其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
  9. 如权利要求4或5或8中任一项所述的方法,其特征在于,所述第一参考门限大于或者等于最大互联网协议语音VOIP包大小,或,最大媒体接入控制MAC元素CE包大小。
  10. 如权利要求5所述的方法,其特征在于,所述第一元素为所述第一取值集合中小于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
    所述第一元素为所述第一取值集合中大于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
    所述第一元素为所述第一取值集合中与所述第二TBS的差值的绝对值最小的元素。
  11. 如权利要求5至10中任一项所述的方法,其特征在于,所述第一取值集合中至少包含VOIP包大小,和/或,MAC CE包大小。
  12. 如权利要求5至10中任一项所述的方法,其特征在于,所述第一取值集合中包含8,16,24,32,40,56,72,88,104,120,136,144,152,176,208,224,256,280,288,296,328,336,344,376,392,408,424,440,456,472,488,504,520,536中的至少一个值。
  13. 如权利要求6或7所述的方法,其特征在于,所述第二参考门限为预定义数值,或者所述第二参考门限为所述第二参考元素与预定义系数的乘积值。
  14. 如权利要求1至13中任一项所述的方法,其特征在于,所述根据所述数据信道的资源信息确定时频资源的数目包括:
    所述终端设备根据所述资源信息和指定时频资源确定所述时频资源的数目,其中,所述时频资源包括所述资源信息所指示的时频资源去除指定时频资源之外的剩余时频资源;
    其中,所述指定时频资源包括:所述数据信道对应的解调参考信号DMRS所占用的时频资源,所述网络设备在所述资源信息所指示的时频资源内发送的信道质量测量参考信号CSI-RS所占用的时频资源,以及所述网络设备预留的时频资源中的一种或者多种。
  15. 如权利要求1至14中任一项所述的方法,其特征在于,
    所述第一映射关系集为多个映射关系集中的默认映射关系集;或者,
    所述终端设备接收网络设备发送的控制信息之前,所述方法还包括:所述终端设备接收所述网络设备发送的配置信息,其中,所述配置信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
  16. 如权利要求1至14中任一项所述的方法,其特征在于,所述控制信息还包括映射关系集指示信息,其中,所述映射关系集指示信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
  17. 如权利要求1至14中任一项所述的方法,其特征在于,
    所述控制信息的格式指示所述第一映射关系集,其中,所述第一映射关系集为多个映射关系集中的一个;或者,
    所述控制信息所指示的所述数据信道承载的信息类型指示所述第一映射关系集,其中,所述第一映射关系集为多个映射关系集中的一个。
  18. 如权利要求1至17中任一项所述的方法,其特征在于,所述终端设备根据所述调制方式、所述编码速率和所述时频资源的数目确定传输块大小TBS之前,还包括:
    所述终端设备根据所述控制信息中包括的预编码指示信息确定所述数据信道支持的传输层数。
  19. 如权利要求1至17中任一项所述的方法,其特征在于,所述终端设备根据所述调制方式、所述编码速率和所述时频资源的数目确定传输块大小TBS之前,还包括:
    所述终端设备根据所述数据信道对应的传输模式确定所述数据信道支持的传输层数。
  20. 一种确定传输块大小的方法,其特征在于,包括
    网络设备确定调制方式和编码速率,并根据所述调制方式和所述编码速率的组合以及第一映射关系集确定指示信息,其中,所述第一映射关系集中包括所述指示信息和所述调制方式与所述编码速率的组合的对应关系;
    所述网络设备向终端设备发送控制信息,所述控制信息包括所述指示信息和数据信道的资源信息,所述资源信息用于确定时频资源的数目;
    所述网络设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一传输块大小TBS;以及
    所述网络设备基于所述第一TBS解码所述时频资源上承载的所述数据信道或所述网络设备基于所述第一TBS在所述时频资源上发送所述数据信道。
  21. 如权利要求20所述的方法,其特征在于,所述时频资源的大小小于物理资源块的大小。
  22. 如权利要求20或21所述的方法,其特征在于,所述网络设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一TBS包括:
    所述网络设备根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定所述第一TBS:
    其中,所述第一TBS满足:
    Figure PCTCN2018091692-appb-100003
    其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
  23. 如权利要求20或21所述的方法,其特征在于,所述网络设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一TBS包括:
    所述网络设备根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS:
    所述网络设备根据所述第二TBS,确定第一TBS:
    其中,所述第一TBS满足:
    当所述第二TBS大于第一参考门限时,所述第一TBS等于所述第二TBS。
  24. 如权利要求20或21所述的方法,其特征在于,所述网络设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一TBS包括:
    所述网络设备根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS:
    所述网络设备根据所述第二TBS,确定第一TBS;
    其中,所述第一TBS满足:
    当所述第二TBS小于或者等于第一参考门限时,所述第一TBS为第一取值集合中的第一元素。
  25. 如权利要求20或21所述的方法,其特征在于,所述网络设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一TBS包括:
    所述网络设备根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS:
    所述网络设备根据所述第二TBS,确定第一TBS:
    其中,所述第一TBS满足:
    当所述第二TBS与第一取值集合中的第二元素的差值的绝对值小于或者等于第二参考门限时,所述第一TBS为所述第一取值集合中的所述第二元素。
  26. 如权利要求20或21所述的方法,其特征在于,所述网络设备根据所述调制方式、所述编码速率和所述时频资源的数目确定第一TBS包括:
    所述网络设备根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS:
    所述网络设备根据所述第二TBS,确定第一TBS:
    其中,所述第一TBS满足:
    当所述第二TBS与第一取值集合中的第二元素的差值的绝对值大于第二参考门限时,所述第一TBS等于所述第二TBS。
  27. 如权利要求23至26中任一项所述的方法,其特征在于,所述网络设备根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,包括:
    所述第二TBS满足:
    Figure PCTCN2018091692-appb-100004
    其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
  28. 如权利要求23或24或27中任一项所述的方法,其特征在于,所述第一参考门限大于或者等于最大互联网协议语音VOIP包大小,或,最大媒体接入控制MAC元素CE包 大小。
  29. 如权利要求24所述的方法,其特征在于,所述第一元素为所述第一取值集合中小于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
    所述第一元素为所述第一取值集合中大于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
    所述第一元素为所述第一取值集合中与所述第二TBS的差值的绝对值最小的元素。
  30. 如权利要求24至29中任一项所述的方法,其特征在于,所述第一取值集合中至少包含VOIP包大小,和/或,MAC CE包大小。
  31. 如权利要求24至29中任一项所述的方法,其特征在于,所述第一取值集合中包含8,16,24,32,40,56,72,88,104,120,136,144,152,176,208,224,256,280,288,296,328,336,344,376,392,408,424,440,456,472,488,504,520,536中的至少一个值。
  32. 如权利要求25或26所述的方法,其特征在于,所述第二参考门限为预定义数值,或者所述第二参考门限为所述第二参考元素与预定义系数的乘积值。
  33. 如权利要求20至32中任一项所述的方法,其特征在于,所述资源信息指示所述网络设备分配给所述终端设备的时频资源;
    所述时频资源的数目为所述资源信息所指示的时频资源中去除指定时频资源之外的剩余时频资源;
    其中,所述指定时频资源包括:所述数据信道对应的解调参考信号DMRS所占用的时频资源,所述网络设备发送的信道质量测量参考信号CSI-RS所占用的时频资源,以及所述网络设备预留的时频资源中的一种或者多种。
  34. 如权利要求20至33中任一项所述的方法,其特征在于,
    所述第一映射关系集为多个映射关系集中的默认映射关系集;或者
    所述网络设备向终端设备发送控制信息之前,所述方法还包括:所述网络设备向所述终端设备发送配置信息,其中,所述配置信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
  35. 如权利要求20至33中任一项所述的方法,其特征在于,所述控制信息还包括映射关系集指示信息,其中,所述映射关系集指示信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
  36. 如权利要求20至33中任一项所述的方法,其特征在于,
    所述控制信息的格式指示所述第一映射关系集,其中,所述第一映射关系集为多个映 射关系集中的一个;或者,
    所述控制信息所指示的所述数据信道承载的信息类型指示所述第一映射关系集,其中,所述第一映射关系集为多个映射关系集中的一个。
  37. 如权利要求20至36中任一项所述的方法,其特征在于,
    所述控制信息中包括预编码指示信息,所述预编码指示信息指示所述数据信道所支持的传输层数。
  38. 如权利要求20至36中任一项所述的方法,其特征在于,
    所述网络设备根据所述调制方式、所述编码速率和所述时频资源的数目确定传输块大小TBS之前,所述方法还包括:
    所述网络设备根据所述数据信道对应的传输模式确定所述数据信道支持的传输层数。
  39. 一种终端设备,其特征在于,包括:
    收发单元,用于接收网络设备发送的控制信息,所述控制信息包括指示信息和数据信道的资源信息;
    处理单元,用于根据第一映射关系集和所述收发单元接收的所述指示信息确定调制方式和编码速率,并根据所述收发单元接收的所述数据信道的资源信息确定时频资源的数目,其中,所述第一映射关系集中包括所述指示信息和所述调制方式与所述编码速率的组合的对应关系;
    所述处理单元,还用于根据所述调制方式、所述编码速率和所述时频资源的数目确定第一传输块大小TBS;以及
    所述收发单元,还用于基于所述处理单元确定的所述第一TBS解码所述时频资源上承载的所述数据信道或所述终端设备基于所述处理单元确定的所述第一TBS在所述时频资源上发送所述数据信道。
  40. 如权利要求39所述的终端设备,其特征在于,所述时频资源的大小小于物理资源块的大小。
  41. 如权利要求39或40所述的终端设备,其特征在于,所述处理单元用于:
    根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定所述第一TBS:
    其中,所述第一TBS满足:
    Figure PCTCN2018091692-appb-100005
    其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
  42. 如权利要求39或40所述的终端设备,其特征在于,所述处理单元用于:
    根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS:
    其中,所述第一TBS满足:
    当所述第二TBS大于第一参考门限时,所述第一TBS等于所述第二TBS。
  43. 如权利要求39或40所述的终端设备,其特征在于,所述处理单元用于:
    根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS;
    其中,所述第一TBS满足:
    当所述第二TBS小于或者等于第一参考门限时,所述第一TBS为第一取值集合中的第一元素。
  44. 如权利要求39或40所述的终端设备,其特征在于,所述处理单元用于:
    根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS:
    其中,所述第一TBS满足:
    当所述第二TBS与第一取值集合中的第二元素的差值的绝对值小于或者等于第二参考门限时,所述第一TBS为所述第一取值集合中的所述第二元素。
  45. 如权利要求39或40所述的终端设备,其特征在于,所述处理单元用于:
    根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS:
    其中,所述第一TBS满足:
    当所述第二TBS与第一取值集合中的第二元素的差值的绝对值大于第二参考门限时,所述第一TBS等于所述第二TBS。
  46. 如权利要求42至45中任一项所述的终端设备,其特征在于,所述处理单元用于:
    根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS:
    其中,所述第二TBS满足:
    Figure PCTCN2018091692-appb-100006
    其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
  47. 如权利要求42或43或46中任一项所述的终端设备,其特征在于,所述第一参考门限大于或者等于最大互联网协议语音VOIP包大小,或,最大媒体接入控制MAC元素CE包大小。
  48. 如权利要求43所述的终端设备,其特征在于,所述第一元素为所述第一取值集合中小于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
    所述第一元素为所述第一取值集合中大于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
    所述第一元素为所述第一取值集合中与所述第二TBS的差值的绝对值最小的元素。
  49. 如权利要求43至48中任一项所述的终端设备,其特征在于,所述第一取值集合中至少包含VOIP包大小,和/或,MAC CE包大小。
  50. 如权利要求43至48中任一项所述的终端设备,其特征在于,所述第一取值集合中包含8,16,24,32,40,56,72,88,104,120,136,144,152,176,208,224,256,280,288,296,328,336,344,376,392,408,424,440,456,472,488,504,520,536中的至少一个值。
  51. 如权利要求44或45所述的终端设备,其特征在于,所述第二参考门限为预定义数值,或者所述第二参考门限为所述第二参考元素与预定义系数的乘积值。
  52. 如权利要求39至51中任一项所述的终端设备,其特征在于,所述处理单元用于:
    根据所述收发单元接收到所述资源信息和指定时频资源确定所述时频资源的数目,其中,所述时频资源包括所述资源信息所指示的时频资源去除指定时频资源之外的剩余时频资源;
    其中,所述指定时频资源包括:所述数据信道对应的解调参考信号DMRS所占用的时频资源,所述网络设备在所述资源信息所指示的时频资源内发送的信道质量测量参考信号CSI-RS所占用的时频资源,以及所述网络设备预留的时频资源中的一种或者多种。
  53. 如权利要求39至52中任一项所述的终端设备,其特征在于,
    所述第一映射关系集为多个映射关系集中的默认映射关系集;或者,
    所述收发单元,还用于接收所述网络设备发送的配置信息,其中,所述配置信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
  54. 如权利要求39至52中任一项所述的终端设备,其特征在于,
    所述控制信息还包括映射关系集指示信息,其中,所述映射关系集指示信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
  55. 如权利要求39至52中任一项所述的终端设备,其特征在于,
    所述控制信息的格式指示所述第一映射关系集,其中,所述第一映射关系集为多个映射关系集中的一个;或者,
    所述控制信息所指示的所述数据信道承载的信息类型指示所述第一映射关系集,其中, 所述第一映射关系集为多个映射关系集中的一个。
  56. 如权利要求39至55中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    根据所述控制信息中包括的预编码指示信息确定所述数据信道支持的传输层数。
  57. 如权利要求39至55中任一项所述的终端设备,其特征在于,所述处理单元还用于:
    根据所述数据信道对应的传输模式确定所述数据信道支持的传输层数。
  58. 一种网络设备,其特征在于,包括:
    处理单元,用于确定调制方式和编码速率,并根据所述调制方式和所述编码速率的组合以及第一映射关系集确定指示信息,其中,所述第一映射关系集中包括所述指示信息和所述调制方式与所述编码速率的组合的对应关系;
    收发单元,用于向终端设备发送控制信息,所述控制信息包括所述处理单元确定的所述指示信息和数据信道的资源信息,所述资源信息用于确定时频资源的数目;
    所述处理单元,还用于根据所述调制方式、所述编码速率和所述时频资源的数目确定第一传输块大小TBS;以及
    所述收发单元,还用于基于所述第一TBS解码所述时频资源上承载的所述数据信道或基于所述第一TBS在所述时频资源上发送所述数据信道。
  59. 如权利要求58所述的网络设备,其特征在于,所述时频资源的大小小于物理资源块的大小。
  60. 如权利要求58或59所述的网络设备,其特征在于,所述处理单元用于:
    根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定所述第一TBS:
    其中,所述第一TBS满足:
    Figure PCTCN2018091692-appb-100007
    其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
  61. 如权利要求58或59所述的网络设备,其特征在于,所述处理单元用于:
    根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS:
    其中,所述第一TBS满足:
    当所述第二TBS大于第一参考门限时,所述第一TBS等于所述第二TBS。
  62. 如权利要求58或59所述的网络设备,其特征在于,所述处理单元用于:
    根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS;
    其中,所述第一TBS满足:
    当所述第二TBS小于或者等于第一参考门限时,所述第一TBS为第一取值集合中的第一元素。
  63. 如权利要求58或59所述的网络设备,其特征在于,所述处理单元用于:
    根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS:
    其中,所述第一TBS满足:
    当所述第二TBS与第一取值集合中的第二元素的差值的绝对值小于或者等于第二参考门限时,所述第一TBS为所述第一取值集合中的所述第二元素。
  64. 如权利要求58或59所述的网络设备,其特征在于,所述处理单元用于:
    根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS,并根据所述第二TBS确定第一TBS:
    其中,所述第一TBS满足:
    当所述第二TBS与第一取值集合中的第二元素的差值的绝对值大于第二参考门限时,所述第一TBS等于所述第二TBS。
  65. 如权利要求61至64中任一项所述的网络设备,其特征在于,所述处理单元用于:
    根据所述调制方式、所述编码速率、所述时频资源的数目以及传输层数确定第二TBS:
    其中,所述第二TBS满足:
    Figure PCTCN2018091692-appb-100008
    其中,N为所述时频资源的数目,v为所述数据信道所支持的传输层数,Q为所述调制方式对应的调制阶数,R为所述编码速率。
  66. 如权利要求61或62或65中任一项所述的网络设备,其特征在于,所述第一参考门限大于或者等于最大互联网协议语音VOIP包大小,或,最大媒体接入控制MAC元素CE包大小。
  67. 如权利要求62所述的网络设备,其特征在于,所述第一元素为所述第一取值集合中小于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
    所述第一元素为所述第一取值集合中大于或者等于所述第二TBS且与所述第二TBS的差值的绝对值最小的元素;或者
    所述第一元素为所述第一取值集合中与所述第二TBS的差值的绝对值最小的元素。
  68. 如权利要求62至67中任一项所述的网络设备,其特征在于,所述第一取值集合中至少包含VOIP包大小,和/或,MAC CE包大小。
  69. 如权利要求62至67中任一项所述的网络设备,其特征在于,所述第一取值集合中包含8,16,24,32,40,56,72,88,104,120,136,144,152,176,208,224,256,280,288,296,328,336,344,376,392,408,424,440,456,472,488,504,520,536中的至少一个值。
  70. 如权利要求63或64所述的网络设备,其特征在于,所述第二参考门限为预定义数值,或者所述第二参考门限为所述第二参考元素与预定义系数的乘积值。
  71. 如权利要求58至70中任一项所述的网络设备,其特征在于,所述资源信息指示所述网络设备分配给所述终端设备的时频资源;
    所述时频资源的数目为所述资源信息所指示的时频资源中去除指定时频资源之外的剩余时频资源;
    其中,所述指定时频资源包括:所述数据信道对应的解调参考信号DMRS所占用的时频资源,所述网络设备发送的信道质量测量参考信号CSI-RS所占用的时频资源,以及所述网络设备预留的时频资源中的一种或者多种。
  72. 如权利要求58至71中任一项所述的网络设备,其特征在于,
    所述第一映射关系集为多个映射关系集中的默认映射关系集;或者
    所述收发单元,还用于向所述终端设备发送配置信息,其中,所述配置信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
  73. 如权利要求58至71中任一项所述的网络设备,其特征在于,所述控制信息还包括映射关系集指示信息,其中,所述映射关系集指示信息指示所述第一映射关系集,所述第一映射关系集为多个映射关系集中的一个。
  74. 如权利要求58至71中任一项所述的网络设备,其特征在于,
    所述控制信息的格式指示所述第一映射关系集,其中,所述第一映射关系集为多个映射关系集中的一个;或者,
    所述控制信息所指示的所述数据信道承载的信息类型指示所述第一映射关系集,其中,所述第一映射关系集为多个映射关系集中的一个。
  75. 如权利要求58至74中任一项所述的网络设备,其特征在于,
    所述控制信息中包括预编码指示信息,所述预编码指示信息指示所述数据信道所支持的传输层数。
  76. 如权利要求58至74中任一项所述的网络设备,其特征在于,所述处理单元还用于:
    根据所述数据信道对应的传输模式确定所述数据信道支持的传输层数。
  77. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序能够执行权利要求1至19中任一项所述的方法。
  78. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序能够执行权利要求20至38中任一项所述的方法。
  79. 一种计算机程序产品,其特征在于,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被运行时,能够执行权利要求1至19中任一项所述的方法。
  80. 一种计算机程序产品,其特征在于,该计算机程序产品包括:计算机程序代码,当该计算机程序代码被运行时,能够执行权利要求20至38中任一项所述的方法。
PCT/CN2018/091692 2017-06-16 2018-06-15 确定传输块大小的方法及装置 WO2018228579A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020197038142A KR102276760B1 (ko) 2017-06-16 2018-06-15 송신 블록 크기를 결정하기 위한 방법 및 장치
BR112019026455-8A BR112019026455A2 (pt) 2017-06-16 2018-06-15 método para determinar tamanho de bloco de transporte, e aparelho
JP2019566809A JP6891979B2 (ja) 2017-06-16 2018-06-15 トランスポートブロックサイズを決定する方法、装置及びプログラム
AU2018284901A AU2018284901B2 (en) 2017-06-16 2018-06-15 Method and apparatus for determining transport block size
EP18817587.1A EP3468277B1 (en) 2017-06-16 2018-06-15 Method and apparatus for determining transport block size
RU2019143451A RU2737614C1 (ru) 2017-06-16 2018-06-15 Способ и устройство для определения размера транспортного блока
CN201880039739.XA CN110999464A (zh) 2017-06-16 2018-06-15 确定传输块大小的方法及装置
ES18817587T ES2814624T3 (es) 2017-06-16 2018-06-15 Método y aparato para determinar el tamaño de bloque de transporte
EP20173784.8A EP3780441B1 (en) 2017-06-16 2018-06-15 Method for determining transport block size, and apparatus
US16/172,850 US10447425B2 (en) 2017-06-16 2018-10-28 Method and apparatus for determining transport block size
US16/584,958 US11575462B2 (en) 2017-06-16 2019-09-27 Method and apparatus for determining transport block size

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710459621.X 2017-06-16
CN201710459621 2017-06-16
CN201710686578.0 2017-08-11
CN201710686578.0A CN109152052A (zh) 2017-06-16 2017-08-11 确定传输块大小的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/172,850 Continuation US10447425B2 (en) 2017-06-16 2018-10-28 Method and apparatus for determining transport block size

Publications (1)

Publication Number Publication Date
WO2018228579A1 true WO2018228579A1 (zh) 2018-12-20

Family

ID=64660155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091692 WO2018228579A1 (zh) 2017-06-16 2018-06-15 确定传输块大小的方法及装置

Country Status (1)

Country Link
WO (1) WO2018228579A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134821A1 (zh) * 2018-12-25 2020-07-02 华为技术有限公司 一种数据传输方法及通信设备
CN111757485A (zh) * 2019-03-29 2020-10-09 中国信息通信研究院 一种上行控制信息资源分配方法、设备和系统
CN113746775A (zh) * 2020-05-30 2021-12-03 华为技术有限公司 一种信号发送方法、信号接收方法与相关装置
CN114138099A (zh) * 2021-11-15 2022-03-04 Oppo广东移动通信有限公司 用于配置存储器的方法、装置和终端
WO2022056879A1 (zh) * 2020-09-18 2022-03-24 华为技术有限公司 通信方法及装置
RU2791870C1 (ru) * 2019-07-17 2023-03-14 Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. Способ и устройство для индикации и определения информации, устройство связи и носитель информации
WO2023226992A1 (zh) * 2022-05-25 2023-11-30 华为技术有限公司 通信的方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2477537A (en) * 2010-02-05 2011-08-10 Ip Access Ltd Femto cell access point, communication system and method therefor
CN103580788A (zh) * 2012-07-27 2014-02-12 电信科学技术研究院 一种传输mcs指示信息的方法及装置
CN104885543A (zh) * 2012-12-03 2015-09-02 Lg电子株式会社 用于在无线通信系统中确定传输块大小的方法和设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2477537A (en) * 2010-02-05 2011-08-10 Ip Access Ltd Femto cell access point, communication system and method therefor
CN103580788A (zh) * 2012-07-27 2014-02-12 电信科学技术研究院 一种传输mcs指示信息的方法及装置
CN104885543A (zh) * 2012-12-03 2015-09-02 Lg电子株式会社 用于在无线通信系统中确定传输块大小的方法和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3468277A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020134821A1 (zh) * 2018-12-25 2020-07-02 华为技术有限公司 一种数据传输方法及通信设备
US11496238B2 (en) 2018-12-25 2022-11-08 Huawei Technologies Co., Ltd. Data transmission method and communications device
CN111757485A (zh) * 2019-03-29 2020-10-09 中国信息通信研究院 一种上行控制信息资源分配方法、设备和系统
RU2791870C1 (ru) * 2019-07-17 2023-03-14 Бейдзин Сяоми Мобайл Софтвэр Ко., Лтд. Способ и устройство для индикации и определения информации, устройство связи и носитель информации
CN113746775A (zh) * 2020-05-30 2021-12-03 华为技术有限公司 一种信号发送方法、信号接收方法与相关装置
US12034584B2 (en) 2020-05-30 2024-07-09 Huawei Technologies Co., Ltd. Signal sending method, signal receiving method, and related apparatus
WO2022056879A1 (zh) * 2020-09-18 2022-03-24 华为技术有限公司 通信方法及装置
CN114138099A (zh) * 2021-11-15 2022-03-04 Oppo广东移动通信有限公司 用于配置存储器的方法、装置和终端
WO2023226992A1 (zh) * 2022-05-25 2023-11-30 华为技术有限公司 通信的方法和装置

Similar Documents

Publication Publication Date Title
CN109150403B (zh) 确定传输块大小的方法及装置
WO2018228579A1 (zh) 确定传输块大小的方法及装置
WO2021062613A1 (zh) 数据传输的方法和设备
WO2019242776A1 (zh) 无线通信方法及装置
WO2018202163A1 (zh) 一种资源指示方法及装置
EP3264613A1 (en) Encoding method, apparatus, base station and user equipment
CN110830161B (zh) 一种确定传输块大小的方法及装置
WO2020200014A1 (zh) 通信方法及装置
JP2021090209A (ja) アンテナポート指示方法および装置
WO2021000937A1 (zh) 多时间单元传输方法及相关装置
WO2022036529A1 (zh) 一种相位跟踪参考信号的发送方法、接收方法及通信装置
WO2019157897A1 (zh) 一种上行数据的发送方法、接收方法和装置
WO2022110086A1 (zh) 一种通信方法、装置及计算机可读存储介质
WO2022141106A1 (zh) 重复传输数据信道的方法和设备
WO2020114440A1 (zh) 一种通信方法及装置
CN112423313B (zh) 传输块大小确定方法及装置
WO2022056879A1 (zh) 通信方法及装置
WO2024059984A1 (zh) 传输块大小的确定方法、装置、设备及存储介质
CN111757479B (zh) 通信的方法及装置
WO2022206990A1 (zh) 数据传输方法及装置
WO2020029866A1 (zh) 一种确定传输块大小的方法及装置
WO2021092954A1 (zh) 一种侧行数据包的发送、接收方法和通信装置
WO2018228455A1 (zh) 参数配置方法、终端设备、网络侧设备和通信系统
WO2015013872A1 (zh) 资源配置方法、装置和系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018817587

Country of ref document: EP

Effective date: 20190103

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18817587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019566809

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197038142

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019026455

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2018284901

Country of ref document: AU

Date of ref document: 20180615

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2019143451

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 112019026455

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20191212