WO2018228366A1 - 波束测量处理方法及装置 - Google Patents

波束测量处理方法及装置 Download PDF

Info

Publication number
WO2018228366A1
WO2018228366A1 PCT/CN2018/090799 CN2018090799W WO2018228366A1 WO 2018228366 A1 WO2018228366 A1 WO 2018228366A1 CN 2018090799 W CN2018090799 W CN 2018090799W WO 2018228366 A1 WO2018228366 A1 WO 2018228366A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
beams
link quality
transmit
time
Prior art date
Application number
PCT/CN2018/090799
Other languages
English (en)
French (fr)
Inventor
杨宇
宋扬
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP18818416.2A priority Critical patent/EP3641376A4/en
Priority to US16/623,237 priority patent/US11184262B2/en
Publication of WO2018228366A1 publication Critical patent/WO2018228366A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems

Definitions

  • the embodiments of the present disclosure relate to the field of communications technologies, and in particular, to a beam measurement processing method and apparatus.
  • Massive MIMO technology uses large-scale antenna arrays to greatly increase system band utilization efficiency and support a larger number of access users. Therefore, major research organizations regard massive MIMO technology as one of the most promising physical layer technologies in the next generation of mobile communication systems.
  • massive MIMO technology all digital shaping technology and digital-analog hybrid beamforming technology are included.
  • the digital-analog hybrid beamforming technology adds a first-order beamforming to the radio frequency signal near the front end of the antenna system based on the traditional digital domain beamforming.
  • the analog shaping can make the transmission signal and the channel achieve a rough matching in a relatively simple manner, and can compromise the performance and complexity in a high frequency band or a large bandwidth. There is a high practical prospect in systems with a large number of antennas.
  • the analog beamforming is transmitted at full bandwidth, and each polarization direction array element on the panel of each high frequency antenna array can only transmit analog beams in a time division multiplexed manner.
  • the shaping weight of the analog beam is achieved by adjusting the parameters of the device such as the RF front-end phase shifter.
  • the training of the beamforming vector is usually performed by means of polling, that is, the configuration information of the beam measurement is first sent by the network side, and then the array elements of each polarization direction of each antenna panel are sequentially arranged in a time division multiplexing manner.
  • the time sends the training signal (ie, the transmit beam) in turn, and the terminal, after measuring the transmit beam and the receive beam owned by the terminal, feeds back the optimal transmit beam identifier and the measured beam-to-link quality of the optimal transmit beam (eg, Receive power), for the network side to use the optimal analog transmit beam to achieve data transmission in the next transmission service.
  • the optimal transmit beam identifier e.g, Receive power
  • Tx beam sweeping and Rx beam sweeping may be used to measure an optimal transmit pair beam pair link (BPL).
  • BPL transmit pair beam pair link
  • a time unit is also defined, corresponding to one or more Orthogonal Frequency Division Multiplexing (OFDM) symbols, that is, integer multiples of OFDM symbols, each The time unit can be divided into multiple sub-time units.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the transmit beam is unchanged in each time unit, and the transmit beam is changed in different time units; (for convenience of description, the option mode is expressed as Rx beam scan mode later);
  • Option 2 change the transmit beam in different sub-time units in each time unit, and transmit the same beam in different time units; (for convenience of description, the option mode is expressed as Tx beam scanning mode later);
  • Option 3 The transmit beam is unchanged in one time unit, and the transmit beam is changed in different sub-time units in another time unit.
  • the measurement method in the related art is that the UE completes a beam pair link quality measurement or a Rx beam formed by one Tx beam and all Rx beams in one time unit.
  • the beam-to-link quality measurement formed by all Tx beams does not take into account the measurement capability of the UE in this measurement process, that is, user equipment (UE, also referred to as mobile terminal) in one OFDM symbol.
  • UE user equipment
  • the maximum number of measurements that can be supported which may result in wasted time resources for beam measurements.
  • Embodiments of the present disclosure provide a beam measurement processing method and apparatus.
  • an embodiment of the present disclosure provides a beam measurement processing method, including:
  • an embodiment of the present disclosure provides another beam measurement processing method, including:
  • an embodiment of the present disclosure provides a beam measurement processing apparatus, including: a first time determination unit and a transmit beam control unit;
  • the first time determining unit is configured to determine, when performing link quality measurement of the beam pair of the first mode, a first completion time that the mobile terminal completes one round of receiving beam rotation for the current transmit beam;
  • the transmit beam control unit is configured to transmit a next transmit beam from the first completion time
  • the first time determining unit is configured to determine, when performing link quality measurement of the beam pair in the second mode, a second completion time that the network side device completes one round of transmitting beam rotation for the current receiving beam;
  • the transmit beam control unit is configured to perform a next round of transmit beam rotation from the second completion time.
  • an embodiment of the present disclosure provides another beam measurement processing apparatus, including: a second time determination unit and a receive beam control unit;
  • the second time determining unit is configured to determine, when performing link quality measurement of the beam pair of the first mode, a first completion time of the mobile terminal completing one round of receiving beam rotation for the current transmit beam;
  • the receiving beam control unit is configured to perform a next round of receiving beam rotation from the first completion time
  • the second time determining unit is configured to determine, when performing link quality measurement of the beam pair in the second mode, a second completion time that the network side device completes one round of transmitting beam rotation for the current receiving beam;
  • the receiving beam control unit is configured to switch to the next receiving beam for measurement from the second completion time.
  • an embodiment of the present disclosure provides a network side device, including a processor, a memory, and a computer program stored on the memory and executable on the processor, where the computer program is used by the processor.
  • the steps of the beam measurement processing method as described in the first aspect are implemented when executed.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implementing the method as described in the first aspect The steps of the beam measurement processing method.
  • an embodiment of the present disclosure provides a terminal device, including a processor, a memory, and a computer program stored on the memory and executable on the processor, where the computer program is executed by the processor.
  • an embodiment of the present disclosure provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implementing the second aspect The steps of the beam measurement processing method.
  • FIG. 1 is a schematic diagram of beam training of an Rx beam scanning method in the related art
  • FIG. 2 is a schematic diagram of beam training in a Tx beam scanning mode in the related art
  • FIG. 3 is a second schematic diagram of beam training in the Rx beam scanning mode in the related art
  • FIG. 4 is a second schematic diagram of beam training in a Tx beam scanning mode in the related art
  • FIG. 5 is a flowchart of a beam measurement processing method according to an embodiment of the present disclosure.
  • FIG. 6 is a second flowchart of a beam measurement processing method according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a beam management method according to an embodiment of the present disclosure.
  • FIG. 8 is a third schematic diagram of beam training in the Rx beam scanning mode in the related art.
  • FIG. 9 is a fourth schematic diagram of beam training in the Rx beam scanning mode in the related art.
  • FIG. 10 is a schematic diagram of beam training in an Rx beam scanning manner according to an embodiment of the present disclosure.
  • FIG. 11 is a fifth schematic diagram of beam training in the Rx beam scanning mode in the related art.
  • FIG. 12 is a fifth schematic diagram of beam training in an Rx beam scanning manner according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of beam training in a Tx beam scanning manner according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram of a multi-panel situation according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of simultaneous multi-beam training according to an embodiment of the present disclosure.
  • FIG. 16 is a third flowchart of a beam measurement processing method according to an embodiment of the present disclosure.
  • FIG. 17 is a fourth flowchart of a beam measurement processing method according to an embodiment of the present disclosure.
  • FIG. 18 is a schematic structural diagram of a beam measurement processing apparatus according to an embodiment of the present disclosure.
  • FIG. 19 is a second schematic structural diagram of a beam measurement processing apparatus according to an embodiment of the present disclosure.
  • FIG. 20 is a structural block diagram of a network side device according to an embodiment of the present disclosure.
  • FIG. 21 is a structural block diagram of a terminal device according to an embodiment of the present disclosure.
  • each Tx beam will occupy one time unit, and a total of four time units are required. Each time unit is divided into two sub-time units, corresponding to two Rx beams.
  • the UE performs BPL quality measurement of one Tx beam and all Rx beams (Rx beam 1 and Rxbeam 2) in one time unit, and completes all Tx beams in four time units (Tx beam 1, Tx beam 2, Tx beam 3) And Bx quality measurement of Tx beam 4) and all Rx beams.
  • each Rx beam occupies one time unit, and a total of two time units are required. Each time unit is divided into four sub-time units, corresponding to four Tx beams.
  • the UE performs BPL quality measurement of all Tx beams and one Rx beam in one time unit, and performs BPL quality measurement of all Tx beams and all Rx beams in two time units.
  • each time unit in each measurement mode may be different. For example, if the UE can support two beam measurements within one OFDM symbol using techniques such as IFDMA (Interleaved Frequency Division Multiple Access) or large subcarrier spacing, then for Figure 1, each A time unit occupies 1 OFDM symbol, which requires 4 time units, that is, a total of 4 OFDM symbols, each time unit is divided into 2 sub-time units, and each sub-time unit occupies 1/2 OFDM symbols.
  • IFDMA Interleaved Frequency Division Multiple Access
  • each time unit occupies 2 OFDM symbols, requiring a total of 2 time units, that is, a total of 4 OFDM symbols, each time unit is divided into 4 sub-time units, each sub-time unit Occupies 1/2 OFDM symbol length.
  • the network side notifies the UE that one time unit occupies 2 OFDM symbols in the delivered CSI-RS configuration message, and each time unit includes 4 sub-time units.
  • the UE will complete the measurement of Tx beam 1+Rx beam 1 and Tx beam 2+Rx beam 1 in the first OFDM symbol, and complete Tx beam 3+Rx beam 1 in the second symbol. It can be seen from FIG. 3 that at this time, there is one sub-time unit remaining in each time unit in an idle state.
  • the Rx beam is unchanged in each time unit, even if the current Rx beam and all Tx beams are measured when the current OFDM symbol is not completed, that is, the BPL quality corresponding to a time unit.
  • the next OFDM symbol can only be waited for the next round of BPL quality measurement, which causes the time resource to be wasted.
  • each time unit is originally divided into four sub-time units as shown by the dashed box in FIG. 4, where a time unit is divided into three sub-time units according to the number of Tx beams, although there is no sub.
  • the -time unit is idle, but for each sub-time unit, the training beam time becomes longer, which also causes the time resource to be wasted.
  • the embodiment of the present disclosure provides a beam measurement processing method, as shown in FIG. 5 and FIG. 6, including:
  • S104 Determine, when performing link quality measurement of the beam pair in the first mode, a first completion time that the mobile terminal completes one round of receiving beam rotation for the current transmit beam.
  • the link quality measurement of the beam pair of the first mode herein includes: before each transmit beam switch, each receive beam is rotated, and each beam pair formed by the rotation is measured; and each pair of beams is completed. After the link quality measurement, switch to the next transmit beam for the next round of receive beam rotation; until the link quality measurement of all beam pairs composed of each transmit beam and each receive beam is completed. That is to say, the link quality measurement of the beam pair of the first mode is a measurement mode in which the fixed Tx beam of the network side is repeatedly transmitted and the mobile terminal performs Rx beam sweeping in each time unit (refer to FIG. 1 for measurement mode). ).
  • the process of "complete a round of receive beam rotation for the current transmit beam” specifically means that the Tx beam repeats transmission in the time domain, and the Rx beam rotates for reception, and the UE forms each of the Tx beam and each Rx beam.
  • the quality of the beam pair is measured such that a process is called completing a round of receive beam rotation for the current transmit beam.
  • the first completion time herein may be an end time of one OFDM symbol or an intermediate time of one OFDM symbol, and specifically, which time needs to be viewed according to actual measurement conditions.
  • the next transmit beam is transmitted from the first completion time.
  • transmitting the next transmit beam from the first completion time may include: transmitting the next beam immediately after the first completion time. It may also include performing a transmission of the next transmit beam at intervals from the first completion time. For example, due to the influence of the radio frequency device of the network side device, the process of the network side device implementing switching from one transmit beam adjustment to another may take some time, so the network side device may need to be separated from the first completion time. The transmission of the next transmit beam is performed at a switching time. Of course, this switching time can also be set manually, and the embodiment of the present disclosure does not specifically limit this.
  • the link quality measurement of the beam pair of the second mode includes: before each receiving beam switching, each transmitting beam is rotated, and each beam pair formed by the rotation is measured; and each pair of beams is completed. After the link quality measurement, switch to the next receive beam for the next round of transmit beam rotation; until the link quality measurement of all beam pairs formed by each transmit beam and each receive beam is completed. That is to say, the link quality measurement of the beam pair of the second mode is a measurement mode in which the mobile terminal fixed Rx beam is repeatedly received in each time unit and Tx beam sweeping is performed on the network side (refer to FIG. 2 for measurement mode) .
  • next round of transmit beam rotation means that each transmit beam is transmitted in turn.
  • the UE side measures only the beam pair link quality composed of one receive beam and each transmit beam.
  • the rotation of the next round of the transmit beam from the second completion time may also be an immediate transmission, or may be transmitted at one end of the interval, which is not specifically limited in the embodiment of the present disclosure.
  • the second completion time is similar to the first completion time, and may be an end time of one OFDM symbol, or may be an intermediate time of one OFDM symbol, and specifically, which time needs to be based on actual measurement conditions.
  • the network side device transmits the next transmit beam after determining to complete one round of receive beam rotation, or performs the next round after determining to complete one round of transmit beam rotation.
  • the rotation of the beam so that when a time unit has been completed but has not reached the end time of the currently located OFDM symbol, the network side device does not need to wait for the end of the current OFDM symbol, that is, it does not need to satisfy a time unit that must occupy an integer multiple of the OFDM symbol.
  • the condition can be that the OFDM symbol of a non-integer multiple can directly perform the beam measurement of the next time unit, so that the maximum measurement capability of the UE can be fully utilized, and the time of the entire beam measurement can be minimized under the condition that the UE capability can be supported, thereby effectively saving. Time resources to make more resources available for data transfer.
  • the transmit beam here is the transmit beam on the network side
  • the receive beam is the receive beam of the terminal. The content is described in detail.
  • the method provided by the embodiment of the present disclosure may further include:
  • S101 Determine a number of transmit beams and a number of receive beams, and determine corresponding transmit beams according to the number of transmit beams.
  • the number of Tx beams here is known to the network side device, so it is only necessary to select the Tx beam to be measured according to the number of Tx beams;
  • the number of Rx beams may be determined according to the number of Rx beams that the UE has reported, and the number of Rx beams determined by S101 may be less than or equal to the number of Rx beams owned by the UE. . When it is less than, that is, only a few Rx beams of the UE are measured this time, and when equal, that is, all Rx beams of the UE are to be measured this time.
  • S102 Determine symbol division information according to a maximum division time division number of the mobile terminal, where the maximum division time division number refers to a maximum number of time divisions for OFDM symbol division supported by the mobile terminal when the setting condition is satisfied; setting The condition includes: within each time division, the mobile terminal can complete link quality measurement of at least one beam pair; the symbol division information is the number of time divisions or time divisions that need to be divided within one OFDM symbol.
  • the maximum division time division number of the UE actually reflects the maximum capability of the UE. It is not difficult to understand that the duration of one type of OFDM symbol is fixed for one OFDM symbol, and the maximum number of time divisions for OFDM symbol division supported by the UE can also be described as: The maximum number of times that can be measured within one OFDM symbol, or the maximum number of time units that can be divided within one OFDM symbol, etc., can be translated into number of symbol partition within each OFDM symbols. Of course, there may be other description manners as long as the division of the OFDM symbol is embodied and such division can reflect the measurement capability of the UE and the "maximum number of time divisions for OFDM symbol division" in the embodiment of the present disclosure. The concept is equivalent. Similarly, referring to FIG. 7, the "time division time" in S102 can also be described as: the duration of each measurement by the UE, or the duration of each divided sub-time unit, and the like. These are also equivalent concepts, the essence of which is the same.
  • S103 Send the CSI-RS configuration information to the mobile terminal, where the CSI-RS configuration information is used to indicate the number of transmit beams, the number of receive beams, and the symbol split information.
  • CSI-RS configuration information for indicating the number of Tx beams, the number of Rx beams, and symbol division information can be understood as being used to make the UE aware of these parameters.
  • the CSI-RS configuration information may directly include the value of the Tx number, the value of the Rx number, and the value of the beam measurement number of one OFDM symbol or the value of the duration of each beam measurement, so that the UE side can directly access the CSI.
  • - RS configuration information extracts these values to know these parameters.
  • the CSI-RS configuration information may also contain values of other parameters that are related to these parameters, so that the UE side can learn the information based on the agreed calculations based on the values of these other parameters.
  • the CSI-RS configuration information may further include identification information that can identify the parameters, so that the UE can obtain the identification information according to the correspondence between the identification information and the parameters that are agreed in advance with the network side device after receiving the identification information.
  • identification information herein may be multiple, and may be one-to-one or one-to-many relationship with each parameter, or all the parameters may be corresponding to one of the identification information, and the comparison of the embodiments of the present disclosure is not specifically limited.
  • step S104 can be:
  • S1041 Determine, according to the symbol division information and the number of receive beams, a first completion time that the mobile terminal completes one round of receive beam rotation for the current transmit beam.
  • the network side device can learn the time required for the UE to perform one measurement according to the symbol division information, and can know the time required for performing one round of receiving beam rotation according to the number of the received beams, thereby being able to know that one round of receiving beam rotation is performed. The first completion moment.
  • step S104' may be:
  • the network side device can learn the time required for the UE to perform one measurement according to the symbol division information, and can know the time required for performing one round of transmission beam rotation according to the number of the transmitted beams, thereby being able to know that one round of transmit beam rotation is performed. The second completion moment.
  • the network side device may configure the measured configuration parameter according to different measurement requirements, and send the configuration parameter to the UE for the UE to cooperate with the measurement. And when a time unit has been completed and has not reached the end time of the currently located OFDM symbol, the network side device can directly perform beam measurement of the next time unit without waiting for the end of the current OFDM symbol, thereby fully utilizing the maximum measurement of the UE. Capability, maximally compressing the time of the entire beam measurement with the support of UE capabilities, effectively saving time resources so that more resources are available for data transmission.
  • the CSI-RS configuration information may include any one of the following and any combination: the symbol division information and the number of the transmit beams. Number of receiving beams, CSI-RS resource configuration related information, CSI-RS resource number related information, time domain repetition number associated with each CSI-RS resource, total number of used OFDM symbols, and indication of measurement mode. The identifier, the number of symbol intervals, the CSI-RS period, the beam selection mode indication information, the link quality measurement activation information of the beam pair, and the number of CSI-RS resources or CSI-RS ports supported in each time division.
  • the UE side can directly or indirectly obtain the number of Tx beams, the number of Rx beams, and symbol division information according to the information.
  • the embodiment of the present disclosure provides a combination of multiple parameters for the UE, so that the UE can be more flexible when acquiring the number of beams and the symbol division information.
  • the parameters listed above also include some other parameters for controlling beam training, such as an indication flag for indicating a measurement mode of performing a Tx scan first or an Rx scan first, and is used to indicate a CSI-RS period of the beam measurement period. and many more.
  • the UE side also controls the beam pair link quality measurement according to these parameters. The specific control method will also be described in detail later.
  • the UE supports four time divisions within each OFDM symbol, that is, four measurements can be performed.
  • the CSI-RS configuration information delivered by the network side may include:
  • ⁇ Option 1 does beam sweeping (that is, first Rx beam scanning)
  • the UE side after receiving the configuration information, the UE side starts to perform beam measurement in cooperation with the network side. Since the Rx beam scanning method is used first, for a time unit, only two measurements are needed to complete the measurement of the current Tx beam and all Rx beams, for example, only the Tx beam 1+ is measured in the first time unit. Rx beam 1 and Tx beam 1+Rx beam 2. Since the UE supports 4 measurements in each OFDM symbol, and the related art option specifies that one time unit corresponds to at least one OFDM symbol, one time unit here occupies one OFDM symbol. It can be seen from FIG.
  • the CSI-RS configuration information includes:
  • the UE can support four time divisions in each symbol, but only divides two time divisions according to the Rx beam number. At this time, although no sub-time unit is in an idle state, dividing the time division that can be divided into four into two will undoubtedly cause a lengthening of each measurement time, resulting in a longer total time for training all beams, It will cause a waste of time resources.
  • the CSI-RS configuration information delivered by the network side may include:
  • the Tx beam 2 transmission can be started directly from the completion time, that is, directly entering the first Two time units, where the time unit is 1/2 OFDM symbol duration.
  • the next process is deduced until the Tx beam 4 and all Rx beams are scanned.
  • the maximum difference between the embodiment of the present disclosure and the related art is that one time unit in the related art can only occupy an integer multiple of OFDM symbols.
  • the number of Rx beams is not an integer multiple of the maximum number of measurements of the UE in one OFDM symbol (here, the number of Rx beams is 2, and the maximum number of measurements is 4), because the network side device is Each time unit cannot switch to the next Tx beam at the end of all Rx beam scanning, and a time unit can only occupy an integer multiple of OFDM symbols, so the time for switching the Tx beam on the network side can only be an integer multiple. The moment at which the OFDM symbol is located.
  • one time unit may be an integer multiple of OFDM symbols, and may occupy a non-integer multiple OFDM symbol.
  • the situation shown in FIG. 10 is that one time unit can occupy 1/2 OFDM symbols.
  • the method provided by the embodiment of the present disclosure is also the same for the Tx beam scanning mode, and details are not described herein again.
  • the UE supports 6 time divisions within each symbol.
  • the CSI-RS configuration information delivered by the network side device may include:
  • the CSI-RS configuration information delivered by the network side includes:
  • the UE may perform beam measurement with the network side device by referring to FIG.
  • a time unit in the method provided by the embodiment of the present disclosure may correspond to a non-integer multiple OFDM symbol, for example, 2/3 OFDM symbols as shown in FIG. 12, so that the network side can be
  • the transmission of the next Tx beam starts at the 2/3th OFDM symbol, and finally all the beam measurements need 2 OFDM symbols, saving one OFDM symbol compared to the case of FIG. 11, saving the time of the entire beam training process. .
  • FIG. 12 shows an Rx beam scanning mode first, and an example of first performing a Tx beam scanning mode to further illustrate the method provided by the embodiment of the present disclosure.
  • the CSI-RS configuration information delivered by the network side includes:
  • the next round is started at the end of the scan.
  • Tx beam scanning As in FIG. 12, a total of 2 OFDM symbols are required to complete all measurements, saving one OFDM symbol compared to the manner shown in FIG. 11, saving the time of the entire beam training process.
  • the method provided by the embodiment of the present disclosure can fully utilize the measurement capability of the UE, and can change the Tx beam or the Rx beam in each OFDM symbol, that is, one time unit can occupy a non-integer multiple OFDM symbol (for example, 1/2).
  • Symbols, 2/3 symbols can also be integer multiples), so that all beam measurements can be completed as quickly as possible, reducing the delay of the beam management process, without wasting time resources for beam management, so that more resources Can be used for data transfer.
  • the foregoing content is only a case where the network side device sends configuration information to one UE and cooperates with the UE to complete beam training. In a specific implementation, multiple UEs may also occur.
  • the CSI-RS configuration information for UE1 includes the following:
  • UE1 can perform measurement in the manner shown in FIG. 1 when performing beam measurement.
  • the CSI-RS configuration information for UE2 includes the following:
  • Option 2 does beam sweeping (if option 1, the number of symbols required is more)
  • UE1 can perform measurement in the manner shown in FIG. 1 when performing beam measurement.
  • UE2 When the number of UEs is large, the required signaling overhead is large. In addition, when there are many UEs that perform beam sweeping at the same time, UE2 also needs to use the scan mode of option 1 in the same manner as UE1. At this time, UE2 also has a waste of sub-time unit resources.
  • the sending CSI-RS configuration information in S103 may include: sending the same CSI-RS configuration information to multiple UEs.
  • the minimum value of each of the maximum number of times corresponding to multiple UEs is selected when determining the maximum number of times that the beam can be measured in one OFDM symbol for different UE capabilities, that is, the UE with the smallest capability is used to determine an intra-OFDM symbol.
  • the maximum number of times the beam can be measured, and then the symbol division information is determined according to the maximum number of times, so that the capability requirements of all UEs can be satisfied while compressing the beam training time as much as possible.
  • the network side device is only provided with one antenna panel.
  • the network side device in one time division in one OFDM symbol, can only transmit one Tx beam. And the beam can only correspond to one CSI-RS resource.
  • the network side device sets a plurality of antenna panels, in which case each panel can transmit one Tx beam in one time division, and in this case Multiple CSI-RS resources can be supported in time division.
  • the configuration information may include, in addition to indicating the number of the transmit beams, the number of the receive beams, and the content of the symbol split information.
  • the number of CSI-RS resources or CSI-RS ports supported in the split time division of each OFDM symbol, where the number of supported resources or ports herein represents the number of simultaneously transmitted transmit beams supported.
  • TRP Transmission Reception Point
  • it represents the number of antenna panels of the TRP.
  • it represents the total number of antenna panels of these TRPs.
  • the number of transmit beams that can be simultaneously transmitted by the network side can be obtained according to this information.
  • the network side base station has only one TRP, and the TRP has 2 panels, each panel has 2 Tx beams, and the UE has 2 Rx beams.
  • the UE supports two time divisions within each symbol.
  • the CSI-RS configuration information includes:
  • Tx beam 1 and Tx beam 3 are Tx beams transmitted by Panel 1
  • Tx beam 2 and Tx beam 4 are Tx beams transmitted by Panel 2.
  • Panel 1 and Panel 2 simultaneously transmit Tx beam 1 and Tx beam 2.
  • the UE supports two time divisions in each symbol, that is, two beam measurements are performed at most, one time unit needs to occupy two OFDM symbols.
  • the process of a specific beam measurement is similar to the process of the single panel described above.
  • Figure 15 shows the beam measurement process first performed in the Rx beam scanning mode.
  • Tx beam 3 when the Tx beam scanning mode is first performed, for Panel 1, when it is determined that the scanning of Tx beam 1 and Tx beam 3 for Rx beam 1 is completed, the next round is started when it is completed. Tx beam scanning.
  • the method provided by the embodiment of the present disclosure can support multiple TRP and multiple Panels by carrying information indicating the number of CSI-RS resources or the number of CSI-RS ports supported in each divided time division in the CSI-RS configuration information. Simultaneous multi-beam measurements simultaneously improve the speed of the beam management process.
  • multiple CSI-RS resources are corresponding to different antenna panels as shown in FIG. 14, it is also possible that multiple ports of one CSI-RS resource correspond to different antenna panels, and the implementation manner thereof is as follows. The manner is similar and will not be described here.
  • these panels may be located on one TRP or may be located on multiple TRPs, which are not specifically limited in this embodiment of the present disclosure.
  • the network side device may send a plurality of combined CSI-RS configuration information for the UE to learn the specific content of the current measurement task and cooperate with the network side device to end at a time unit. Then, the measurement of the next time unit is entered, and there is no need to wait for the end of the OFDM symbol, so that the maximum capacity of the UE can be fully utilized, and the waste of time resources is avoided.
  • the method provided by the embodiment of the present disclosure can also support multiple TRP and multi-Panel modes, and can be more widely adapted to the 5G communication field.
  • the embodiment of the present disclosure provides another beam measurement processing method, as shown in FIGS. 16 and 17, including:
  • the link quality measurement of the beam pair of the first mode herein includes: before each transmit beam switch, each receive beam is rotated, and each beam pair formed by the rotation is measured; and each pair of beams is completed. After the link quality measurement, switch to the next transmit beam for the next round of receive beam rotation; until the link quality measurement of all beam pairs composed of each transmit beam and each receive beam is completed
  • the link quality measurement of the beam pair of the second mode includes: before each receiving beam switching, each transmitting beam is rotated, and each beam pair formed by the rotation is measured; and the chain of each beam pair is completed. After the path quality measurement, switch to the next receive beam for the next round of transmit beam rotation; until the link quality measurement of all beam pairs formed by each transmit beam and each receive beam is completed.
  • the UE device performs the next round of receiving beam rotation after determining to complete one round of receiving beam rotation, or switches to the next receiving beam after determining to complete one round of transmitting beam rotation. Therefore, when a time unit has been completed but has not yet reached the end time of the currently located OFDM symbol, the UE does not need to wait for the end of the current OFDM symbol, that is, the condition that a time unit must occupy an integer multiple of OFDM symbols, and can occupy The non-integer multiple OFDM symbols directly perform the beam measurement of the next time unit, so that the maximum measurement capability of the UE can be fully utilized, and the time of the entire beam measurement can be compressed to the maximum extent, which can effectively save time resources. Make more resources available for data transfer.
  • the method provided by the embodiment of the present disclosure may further include:
  • Receive CSI-RS configuration information that is sent by the network side device, where the CSI-RS configuration information is used to indicate the number of transmit beams, the number of receive beams, and the symbol split information.
  • the maximum number of division time divisions of the mobile terminal is determined; the maximum division time division number refers to the maximum number of time divisions for OFDM symbol division supported by the mobile terminal when the set condition is satisfied; the setting conditions include: Within each time division, the mobile terminal is capable of performing link quality measurement of at least one beam pair; the symbol division information is the number of time divisions or time divisions that need to be divided within one OFDM symbol.
  • step S202 can further be:
  • S2021 Determine, according to the symbol division information and the number of receiving beams, a time when the mobile terminal completes one round of receiving beam rotation for the current transmit beam.
  • the UE can know the time required to perform one measurement according to the symbol division information, and can know the time required to perform one round of reception beam rotation according to the number of received beams, thereby being able to know the completion of one round of reception beam rotation. time.
  • Step S202' may further be:
  • the UE can learn the time required for the UE to perform one measurement according to the symbol division information, and can know the time required for performing one round of transmit beam rotation according to the number of transmit beams, thereby being able to know that one round of transmit beam rotation is performed. Completion time.
  • the UE side after receiving the CSI-RS configuration information, the UE side starts beam measurement according to the configuration information.
  • the UE can directly perform beam measurement of the next time unit without waiting for the end of the current OFDM symbol, that is, a time unit can correspond to a non-integer multiple. OFDM symbols, so that the maximum measurement capability of the UE can be fully utilized, and the time of the entire beam measurement can be minimized under the condition that the UE capability can support, thereby saving time resources, so that more resources can be used for data transmission.
  • the CSI-RS configuration information received by the UE may have different conditions.
  • the parameters that may be sent by the CSI-RS configuration information are described in detail below.
  • the CSI-RS configuration information may include all or part of the following:
  • CSI-RS resource configuration which may include a CSI-RS RE pattern (CSI-RS resource element pattern) and a number of CSI-RS antenna ports per CSI-RS resource. (number of CSI-RS antenna ports);
  • Symbol division information the number of time divisions that can be divided within each OFDM symbol (that is, the number of beam measurements that can be performed within each OFDM symbol), or the duration of each time division (ie, each beam measurement) duration);
  • CSI-RS period a parameter for indicating a period value of periodic beam management
  • the UE can directly know the number of Tx beams and the number of Rx beams; the value of the number of Tx beams can be It is less than or equal to the number of Tx beams owned by the network side, where the number of Rx beams can be less than or equal to the number of Rx beams owned by the UE. That is, only a few Tx beam or Rx beam can be measured each time the beam is trained, so that the efficiency of beam training can be improved.
  • the UE may select the same number of Rx beams as the number of Rx beams to perform beam measurement according to a preset rule. Assuming that the UE has a total of 5 Rx beams, the UE itself can know the logical number of the five Rx beams. For example, the UE itself numbers the five Rx beams as 1-5.
  • the third Rx beam is the receive beam of the optimal beam pair link in the last round of beam training, if the number of Rx beams sent this time is 3, the third round of this round of beam training can be The Rx beam is centered, and the second, third, and fourth beams are selected for training, and the first, third, and fifth beams can be selected for training at equal intervals.
  • the UE to perform the selection in the actual situation, there are two ways, one is that the UE presets a fixed selection mode, and the other is that the network side device can deliver parameters (13) beam selection.
  • the mode indicates information indicating which mode the UE chooses.
  • the number of Tx beam and the number of Rx beam There may be some special cases for the number of Tx beam and the number of Rx beam: for example, the network side and the UE agree in advance, if the number of Rx beam is the default state, then the default Rx to be trained may be used.
  • the number of beams is the total number of Rx beams owned by the UE. Since the number of the Tx beam and the number of the Rx beam are in a logical relationship with other configuration parameters, the number of the Tx beam and the number of the Rx beam can be calculated by other configuration parameters.
  • the number of Rx beam is the default state, and the network side device makes the number of Rx beams default. In order to let the UE think that this is to train all Rx beams, then a more reasonable one. The situation may be that the UE cannot calculate the number of Rx beams according to the parameters currently sent by the network side. In this case, the UE considers that the current number of Rx beams defaults to train all Rx beam
  • the purpose of the beam measurement is finally to let the network side know which Tx beam is the optimal transmit beam, and the Tx beam itself does not have the identity, and the UE passes the beam measurement and then in the beam report.
  • the identifier of the optimal Tx beam is reported by reporting the CSI-RS resource identifier or reporting the CSI-RS resource identifier and the time identifier.
  • the number of Tx beams is greater than or equal to the number of CSI-RS resources, that is, one CSI-RS resource may be transmitted through one Tx beam or multiple Tx beams.
  • the CSI-RS resource identifier When transmitting through a Tx beam, the CSI-RS resource identifier can be directly reported, so that the network side device can directly know which Tx beam is used when transmitting the CSI-RS resource according to the CSI-RS resource identifier; When the Tx beam is transmitted, if only the CSI-RS resource identifier is reported, the network side may not know which Tx beam is specific. However, because the transmission time of each Tx beam is different, the network identifier can be reported at the same time. The specified Tx beam.
  • the resource identifier of each CSI-RS resource herein may be known by CSI-RS resource configuration related information, and the CSI-RS resource configuration related information includes CSI-RS RE pattern and CSI-RS antenna port number of each CSI-RS resource. Of course, you can also include other information.
  • the UE may also know the total number of CSI-RS resources, which is equivalent to several CSI-RS resource configuration related information. Implicitly indicates the total number of CSI-RS resources.
  • the CSI-RS configuration information may further include (12) CSI-RS resource related information (Information related to number of CSI-RS resource).
  • the information about the number of the CSI-RS resources may be directly used as the number of the CSI-RS resources, and may be the information used to indicate the number of CSI-RS resources, which is not specifically limited in this embodiment of the present disclosure.
  • L*P>M*N it means that after all the transmit and receive beam pair link qualities are completed in L OFDM symbols, there are still several split time divisions remaining.
  • L is the smallest integer that can satisfy this relationship. That is, when M is 3, N is 7, and P is 6, L is 4. Since the network side knows the values of M, N, L, and P when configuring L and P, it must be configured according to the situation of M and N when configuring L and P, and reduce as much as possible. Waste of resources. Under this premise, if only the values of N (or M), L, and P are sent by the network side at this time, then it is possible for the UE to launch M according to the formula of L*P>M*N (or The value of N).
  • M can be the largest integer that satisfies this condition.
  • the method provided by the embodiment of the present disclosure may also carry some other messages in the idle time division, for example, a terminal that performs beam training using a large subcarrier spacing technique, and may perform transmission control in the remaining time division. Messages or data or other reference signals, so that these time divisions can be fully utilized to improve resource utilization.
  • a single beam measurement can be performed at a time, that is, a single panel case
  • the parameter can be omitted.
  • a multi-beam measurement is to be performed at a time, that is, a multi-TRP or multi-panel case
  • the CSI-RS resources supported in the split time division of each OFDM symbol multiple CSI-RS ports in the same CSI-RS resource
  • the number of CSI-RS ports is Q, indicating that Q Tx beam measurements can be performed simultaneously.
  • each panel can generate a Tx beam at the same time, that is, Q Tx beams are generated at the same time.
  • this parameter is required if it is periodic beam training.
  • Tx beam and Rx beam sweeping are periodically performed according to (8).
  • the parameter may be configured in the CSI-RS configuration message, and the parameter is the activation signaling, and the UE is activated to perform beam training until the UE receives the deactivation of the network side device. Signaling up to now. Between the two signalings, one or more Tx beam and Rx beam sweeping are performed (if performed multiple times, it may be performed periodically or non-periodically).
  • the activation signaling and the inactive signaling may not be configured in the CSI-RS configuration message, and may also be sent in the same layer of signaling as the CSI-RS configuration message (the layer here refers to the RRC layer).
  • the MAC layer and the physical layer are not specifically limited in this disclosure.
  • the network side can also control the UE to perform only one-time beam training.
  • trigger signaling can be sent for one-time Tx beam and Rx beam sweeping. Since such a training requires fast signaling of the triggering, it can be generally sent through the physical layer, so that the UE can perform one-time beam training immediately after learning.
  • the UE can be notified by explicit signaling or implicitly. After receiving the indication flag indicating the measurement mode of the beam scanning mode, the UE selects to perform the measurement of the Rx beam scanning mode or the Tx beam scanning mode first according to the indication flag of the measurement mode.
  • the signaling may be omitted.
  • the UE and the network side may pre-arrange the manner of beam scanning, for example, first fix the Tx beam and perform Rx beam sweeping, and then switch the Tx beam to implement Tx beam sweeping.
  • beam training can also be performed in discrete OFDM symbols.
  • the network side also needs to issue symbol intervals.
  • This parameter can be used to indicate that the OFDM symbols performing beam training are separated by several symbols. For example, training is performed every two OFDM symbols, so that the UE can continue training in the third symbol after performing training of one OFDM symbol according to this parameter.
  • the CSI-RS configuration parameters may be sent to the UE through RRC signaling, MAC CE, DCI, and the like.
  • the UE may know that the number of transmit beams and the number of receive beams may be different according to CSI-RS configuration information. Ways, several of which are described below.
  • the above parameter (7) is the default state.
  • the CSI-RS configuration information includes: the number of Tx beams and the number of Rx beams; the UE directly extracts the number of Tx beams and the number of Rx beams from the CSI-RS configuration information;
  • the CSI-RS configuration information includes: a total number L of OFDM symbols used, symbol division information, and a number of first beams; one of the number M of Tx beams and the number N of Rx beams; if symbol division
  • the information is the number of beam measurements (that is, the number of time divisions P per OFDM symbol division), then the other of M and N is directly obtained according to the relationship of L*P ⁇ M*N; if the symbol division information is beam measurement
  • the duration that is, the length of each time division number
  • the CSI-RS configuration information includes: the total number of OFDM symbols used, symbol division information; this case is similar to (d), but firstly, according to the convention, it is considered that all Rx needs to be measured at this time, so the UE
  • the number of Rx beams owned by the UE may be used as the number of Rx beams, and the number of Tx beams may be calculated according to the relationship of L*P ⁇ M*N.
  • N defaults, it is considered that all Rx needs to be measured at this time, then this content needs to be agreed in advance by the UE and the network side. . If there is no agreement, you can't think that N is the default for all Rx measurements.
  • the CSI-RS configuration information includes: CSI-RS resources or CSI-RS port number D, CSI-RS resource description information, and number of Rx beams or number of Tx beams M supported in one beam measurement; Then, the UE according to the CSI-RS resource or the CSI-RS port number D supported in the primary beam measurement, the time domain repetition number B of each CSI-RS resource, the CSI-RS resource number related information A, and the N or M.
  • the CSI-RS configuration information includes: the number of CSI-RS resources or CSI-RS ports supported in the primary beam measurement and the CSI-RS resource description information, that is, the default case of N; similar to (a), The UE uses the number of Rx beams owned by the UE as the number of Rx beams, and according to the number of CSI-RS resources or CSI-RS ports supported in the primary beam measurement, the number of times of time domain repetition, and the number of CSI-RS resources, and Calculate the number of Tx beams by the number of Rx beams;
  • the CSI-RS configuration information includes: a CSI-RS resource or a CSI-RS port number supported in one beam measurement, one between M and N, a total number of used OFDM symbols, and symbol division information; Obtaining the beam measurement number P according to the symbol division information, and then according to the CSI-RS resource supported in the primary beam measurement or the number of CSI-RS ports D, M and N, the total number of used OFDM symbols L, and the number of beam measurements P, calculate the other between M and N. Specifically, at this time, L*P ⁇ (M/D)*N should be satisfied;
  • the UE first uses the number of Rx beams owned by the UE as the number of Rx beams, according to the number of CSI-RS resources or CSI-RS ports supported in one beam measurement, the number of Rx beams, and the used OFDM. The total number of symbols and the symbol division information calculate the number of Tx beams.
  • the CSI-RS configuration information sent by the network-side device may have many different combinations for different application scenarios.
  • the network-side device may deliver the most suitable combination of configuration information according to actual needs, for example, the combination of the most resource-saving signaling resources.
  • the UE side may also directly or indirectly obtain the measurement parameters to complete the measurement process according to the different conditions of the combination. Therefore, the configuration of the configuration parameter and the mode of the UE and the network side device can be various, and are better adapted to different application scenarios in the field of 5G communication.
  • the UE side can perform beam measurement in cooperation with the network side device according to the configuration delivered by the network side device.
  • the measurement of the next time unit is performed immediately after the measurement of a time unit is performed, so that it is not necessary to satisfy a condition that a time unit can only occupy an integer multiple of OFDM symbols, and the next time unit can be entered when the OFDM symbol is not finished.
  • the maximum capacity of the UE can be fully utilized, and the time of the entire beam training can be compressed as much as possible, saving time resources.
  • the UE side can flexibly acquire the parameters in the measurement process according to different conditions of the delivered parameters, and can also perform beam training in different modes according to the indication of the network side device, thereby increasing the diversity of the beam training mode, thereby improving the diversity.
  • an embodiment of the present disclosure provides a beam measurement processing apparatus, as shown in FIG. 18, including: a first time determination unit 301 and a transmit beam control unit 302;
  • the first time determining unit 301 is configured to determine, when performing link quality measurement of the beam pair of the first mode, a first completion time that the mobile terminal completes one round of receiving beam rotation for the current transmit beam;
  • the transmit beam control unit 302 is configured to transmit a next transmit beam from the first completion time
  • the first time determining unit 301 is configured to determine, when performing the link quality measurement of the beam pair in the second mode, a second completion time that the network side device completes one round of transmitting beam rotation for the current receiving beam;
  • the transmit beam control unit 302 is configured to perform a next round of transmit beam rotation from the second completion time.
  • the link quality measurement of the beam pair in the first mode includes: before each transmit beam switch, each receive beam is rotated, and the link quality of each beam pair formed by the rotation is measured; After completing the link quality measurement for each beam pair, switching to the next transmit beam for the next round of receive beam rotation; until the link quality measurement of all beam pairs formed by each transmit beam and each receive beam is completed;
  • the link quality measurement of the beam pair of the second mode includes: before each receiving beam switching, each transmitting beam is rotated, and the link quality of each beam pair formed by the rotation is measured; After the link quality measurement of the beam pair, the next receive beam is switched to the next round of transmit beam rotation; the link quality measurement of all beam pairs composed of the respective transmit beams and the respective receive beams is completed.
  • the method further includes: a first beam number determining unit, configured to determine a number of transmit beams and a number of receive beams, and determine, according to the number of the transmit beams, before the link quality measurement of the beam pair Corresponding individual transmit beams;
  • a symbol dividing unit configured to determine symbol division information according to a maximum division time division number of the mobile terminal
  • a configuration information sending unit configured to send CSI-RS configuration information to the mobile terminal, where the CSI-RS configuration information is used to indicate the number of transmit beams, the number of receive beams, and the symbol division information;
  • the first time determining unit 301 is configured to determine a first completion time that the mobile terminal completes one round of receiving beam rotation for the current transmit beam, including:
  • Determining a second completion time for completing one round of transmit beam rotation for the current receive beam including:
  • the maximum division time division number refers to a maximum number of time divisions for OFDM symbol division supported by the mobile terminal when the setting condition is satisfied; the setting condition includes: in each time division, the mobile terminal The link quality measurement of the beam pair can be completed at least once; the symbol division information is the number of time divisions or time divisions that need to be divided within one OFDM symbol.
  • the CSI-RS configuration information includes at least one of the following:
  • the symbol division information, the number of transmit beams, the number of receive beams, the CSI-RS resource configuration related information, the CSI-RS resource number related information, the time domain repetition number associated with each CSI-RS resource, and the used The total number of OFDM symbols, the indication flag of the measurement mode, the number of symbol intervals, the CSI-RS period, the beam selection mode indication information, the link quality measurement activation information of the beam pair, and the CSI-RS resources supported in each time division. Or the number of CSI-RS ports;
  • the CSI-RS resource configuration related information includes: a CSI-RS resource element pattern and a CSI-RS antenna port number.
  • the configuration information sending unit is configured to send the CSI-RS configuration information to the mobile terminal, including:
  • the maximum division time division number is a minimum value among the maximum division time division numbers corresponding to the plurality of mobile terminals.
  • the transmission beam control unit 302 transmits the next transmission beam; or the first time determination unit 301 determines to complete one. After the round transmit beam rotation, the transmit beam control unit 302 performs the rotation of the next round of transmit beams, so that when a time unit has been completed but has not reached the end time of the currently located OFDM symbol, the network side device does not need to wait for the end of the current OFDM symbol.
  • a time unit it is not necessary to satisfy the condition that a time unit must occupy an integer multiple of OFDM symbols, and may be a non-integer multiple of OFDM symbols, and the next time unit beam measurement can be directly performed, thereby fully utilizing the maximum measurement capability of the UE, and the UE capability.
  • the ability to support the entire beam measurement time is maximized, saving time resources and making more resources available for data transfer.
  • Embodiments of the present disclosure also provide a network side device, including a processor, a memory, a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor to implement the above
  • a network side device including a processor, a memory, a computer program stored on the memory and executable on the processor, the computer program being implemented by the processor to implement the above
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements various processes of the beam scanning processing method embodiment, and can achieve the same The technical effect, in order to avoid duplication, will not be repeated here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • an embodiment of the present disclosure provides a beam measurement processing apparatus, which is applied to a mobile terminal. Referring to FIG. 19, the second time determination unit 401 and the reception beam control unit 402 are included;
  • the second time determining unit 401 is configured to determine, when performing link quality measurement of the beam pair of the first mode, a first completion time that the mobile terminal completes one round of receiving beam rotation for the current transmit beam;
  • the receiving beam control unit 402 is configured to perform a next round of receiving beam rotation from the first completion time
  • the second time determining unit 401 is configured to determine, when performing the link quality measurement of the beam pair in the second mode, a second completion time that the network side device completes one round of transmitting beam rotation for the current receiving beam;
  • the receiving beam control unit 402 is configured to switch to the next receiving beam for measurement from the second completion time.
  • the link quality measurement of the beam pair of the first mode includes: before each transmit beam switch, each receive beam is rotated, and each beam pair formed by the rotation is measured; After measuring the link quality of the beam pair, switching to the next transmit beam for the next round of receive beam rotation; until the link quality measurement of all beam pairs formed by each transmit beam and each receive beam is completed;
  • the link quality measurement of the beam pair of the second mode includes: before each receiving beam switching, each transmitting beam is rotated, and each beam pair formed by the rotation is measured; and the chain of each beam pair is completed. After the path quality measurement, switch to the next receive beam for the next round of transmit beam rotation; until the link quality measurement of all beam pairs formed by each transmit beam and each receive beam is completed.
  • it also includes:
  • a second beam number determining unit configured to receive CSI-RS configuration information sent by the network side device before the link quality measurement of the beam pair
  • the second time determining unit 401 is configured to determine a first completion time that the mobile terminal completes one round of receiving beam rotation for the current transmit beam, including:
  • the second time determining unit 401 is configured to determine a second completion time for completing one round of transmitting beam rotation for the current receiving beam, including:
  • the CSI-RS configuration information is used to indicate the number of transmit beams, the number of receive beams, and the symbol split information; the symbol split information is determined according to a maximum split time division number of the mobile terminal; the maximum partition The time division number refers to the maximum number of time divisions for OFDM symbol division supported by the mobile terminal when the set condition is satisfied; the setting condition includes: the mobile terminal can complete at least one beam pair in each time division Link quality measurement; the symbol division information is the number of time divisions or time divisions that need to be divided within one OFDM symbol.
  • the CSI-RS configuration information includes: a number of transmit beams and a number of receive beams
  • the second beam number determining unit is configured to extract, from the CSI-RS configuration information, the number of transmit beams and the number of receive beams before the link quality measurement of the beam pair.
  • the CSI-RS configuration information includes: one of a time domain repetition number, a CSI-RS resource number related information, and a CSI-RS resource configuration related information associated with each CSI-RS resource, and a number of beams; the first beam is one of a transmit beam or a receive beam;
  • the second beam number determining unit is configured to use, according to the time domain repetition number, the CSI-RS resource number related information, and the CSI-RS resource configuration related information, before the link quality measurement of the beam pair Calculating the number of the second beam by one and the number of the first beams;
  • the second beam is another one of a transmit beam or a receive beam.
  • the CSI-RS configuration information includes: one of a time domain repetition number and a CSI-RS resource number related information and a CSI-RS resource configuration related information associated with each CSI-RS resource;
  • the second beam number determining unit is configured to determine, according to the link quality measurement of the beam pair, the number of receiving beams owned by the mobile terminal as the number of the receiving beams;
  • the CSI-RS configuration information includes: a total number of used OFDM symbols, the symbol division information, and a number of third beams; the third beam is one of a receive beam or a transmit beam. ;
  • the second beam number determining unit is configured to calculate, according to the total number of the used OFDM symbols, the symbol division information, and the number of the third beams, before the link quality measurement of the beam pair The number of four beams;
  • the fourth beam is another one of a receive beam or a transmit beam.
  • the CSI-RS configuration information includes: a total number of used OFDM symbols, the symbol division information;
  • the second beam number determining unit is configured to determine, according to the link quality measurement of the beam pair, the number of receiving beams owned by the mobile terminal as the number of the receiving beams;
  • the CSI-RS configuration information includes: CSI-RS resources or CSI-RS ports supported in each time division, CSI-RS resource number related information, and CSI-RS resource configuration related information. a number of time domain repetitions associated with each CSI-RS resource and a number of fifth beams; the fifth beam being one of a receive beam or a transmit beam;
  • the second beam number determining unit is configured to: according to the number of CSI-RS resources or CSI-RS ports supported in each time division, each of the CSI-RSs before the link quality measurement of the beam pair Calculating the number of sixth beams by using one of the number of time domain repetitions, the CSI-RS resource number related information, and one of the CSI-RS resource configuration related information, and the number of the fifth beams;
  • the sixth beam is another one of a receive beam or a transmit beam.
  • the CSI-RS configuration information includes: CSI-RS resources or CSI-RS ports supported in each time division, CSI-RS resource number related information, and CSI-RS resource configuration related information. One, and the number of time domain repetitions associated with each CSI-RS resource;
  • the second beam number determining unit is configured to determine, according to the link quality measurement of the beam pair, the number of receiving beams owned by the mobile terminal as the number of the receiving beams;
  • CSI-RS resource or CSI-RS port number CSI-RS resource number related information, and one of CSI-RS resource configuration related information and each CSI-RS resource supported in each time division.
  • the number of times of the time domain repetition and the number of the received beams are calculated, and the number of the transmitted beams is calculated.
  • the CSI-RS configuration information includes: a CSI-RS resource or a CSI-RS port number supported in each time division, a number of seventh beams, a total number of used OFDM symbols, and the symbol Dividing information; the seventh beam is one of a receive beam or a transmit beam;
  • the second beam number determining unit is configured to: according to the CSI-RS resource or the CSI-RS port number and the seventh beam supported in each time division before the link quality measurement of the beam pair Calculating the number of the eighth beam by using the number, the total number of OFDM symbols used, and the symbol division information;
  • the eighth beam is another one of a receive beam or a transmit beam.
  • the CSI-RS configuration information includes: a CSI-RS resource or a CSI-RS port number supported in each time division, a total number of used OFDM symbols, and the symbol division information;
  • the second beam number determining unit is configured to use the number of receiving beams owned by the mobile terminal as the number of the receiving beams before the link quality measurement of the beam pair, according to the time division
  • the number of the transmitted CSI-RS resources or the number of CSI-RS ports, the number of received beams, the total number of OFDM symbols used, and the symbol division information are calculated.
  • the CSI-RS configuration information further includes: an indication identifier of the measurement mode
  • the second beam number determining unit is configured to measure link quality of the beam pair before
  • the measurement mode comprises the first mode and the second mode.
  • the CSI-RS configuration information further includes: link quality measurement activation information of the beam pair;
  • the device also includes:
  • a first measurement control module configured to perform link quality measurement of the beam pair according to the indication of the link quality measurement activation information of the beam pair; and deactivate the link quality measurement of the beam pair delivered by the network side device Information, then stop the link quality measurement of the beam pair.
  • the CSI-RS configuration information further includes: a CSI-RS period
  • the device also includes:
  • a second measurement control module configured to perform link quality measurement of the beam pair according to a period indicated by the CSI-RS period when performing link quality measurement of the beam pair.
  • the CSI-RS configuration information further includes: a number of symbol intervals
  • the device also includes:
  • a third measurement control module configured to perform link quality measurement of the beam pair in the discrete OFDM symbol according to the number of symbol intervals when performing link quality measurement of the beam pair.
  • it also includes:
  • a fourth measurement control module configured to: if the number of the receiving beams is smaller than the number of receiving beams owned by the mobile terminal, select the same number of receiving beams as the number of the receiving beams to perform beam measurement;
  • a fifth measurement control module configured to: if the CSI-RS configuration information further includes beam selection mode indication information, select, according to the beam selection mode indication information, the same number of receive beams as the number of the receive beams to perform beam measuring.
  • the selecting the same number of receive beams as the number of the receive beams to perform beam measurement including:
  • the reception beam control unit performs the next round of reception beam rotation, or the second time determination unit determines to complete one.
  • the receiving beam control unit switches to the next receiving beam for measurement, so that when a time unit has been completed but has not reached the end time of the currently located OFDM symbol, the UE does not need to wait for the end of the current OFDM symbol, that is, no need If a time unit must occupy an integer multiple of OFDM symbols, the non-integer multiple OFDM symbols can be used to directly perform beam measurement of the next time unit, so that the maximum measurement capability of the UE can be fully utilized, and the UE capability can be supported. Maximum compression of the entire beam measurement time, effectively saving time resources, so that more resources can be used for data transmission.
  • the beam measurement processing apparatus introduced in the third aspect and the fourth aspect is a device that can perform the beam measurement processing in the embodiment of the present disclosure, the method based on the beam measurement processing introduced in the embodiment of the present disclosure, the technology in the art A person can understand the specific implementation of the beam measurement processing apparatus of the present embodiment and various changes thereof. Therefore, how the beam measurement processing apparatus implements the message transmission method in the embodiment of the present disclosure will not be described in detail herein.
  • the apparatus used by the person skilled in the art to implement the message transmitting method in the embodiments of the present disclosure is within the scope of the present application.
  • Embodiments of the present disclosure also provide a terminal device including a processor, a memory, a computer program stored on the memory and operable on the processor, the computer program being implemented by the processor to implement the beam
  • a terminal device including a processor, a memory, a computer program stored on the memory and operable on the processor, the computer program being implemented by the processor to implement the beam
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements various processes of the beam scanning processing method embodiment, and can achieve the same The technical effect, in order to avoid duplication, will not be repeated here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • FIG. 20 is a structural diagram of a network side device according to an embodiment of the present disclosure, which can implement the details of the method described in the first aspect and achieve the same effect.
  • the network side device 2000 includes: a processor 2001, a transceiver 2002, a memory 2003, a user interface 2004, and a bus interface, where:
  • the processor 2001 is configured to read a program in the memory 2003.
  • the network side device 2000 further includes: a computer program stored on the memory 2003 and executable on the processor 2001, the computer program being processed by the processor
  • the 2001 implementation implements the following steps:
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 2001 and various circuits of memory represented by memory 2003.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 2002 can be a plurality of components, including a transmitter and a receiver, providing means for communicating with various other devices on a transmission medium.
  • the user interface 2004 may also be an interface capable of externally connecting the required devices, including but not limited to a keypad, a display, a speaker, a microphone, a joystick, and the like.
  • the processor 2001 is responsible for managing the bus architecture and the usual processing, and the memory 2003 can store data used by the processor 2001 in performing operations.
  • the link quality measurement of the beam pair of the first mode includes: before each transmit beam switch, each receive beam is rotated, and the link quality of each beam pair formed by the rotation is measured; After measuring the link quality of each beam pair, switching to the next transmit beam for the next round of receive beam rotation; until the quality measurement of all beam pairs formed by each transmit beam and each receive beam is completed;
  • the link quality measurement of the beam pair of the second mode includes: before each receiving beam switching, each transmitting beam is rotated, and the link quality of each beam pair formed by the rotation is measured; After the link quality measurement of the beam pair, the next receive beam is switched to the next round of transmit beam rotation; the link quality measurement of all beam pairs composed of the respective transmit beams and the respective receive beams is completed.
  • the following steps may be implemented when the computer program is executed by the processor 2001 before the link quality measurement of the beam pair is performed:
  • CSI-RS configuration information is used to indicate the number of transmit beams, the number of receive beams, and the symbol division information
  • Determining, by the mobile terminal, a first completion time of completing one round of receiving beam rotation for the current transmit beam including:
  • Determining a second completion time for completing one round of transmit beam rotation for the current receive beam including:
  • the maximum division time division number refers to a maximum number of time divisions for OFDM symbol division supported by the mobile terminal when the setting condition is satisfied;
  • the setting condition includes: in each time division, the mobile terminal Performing link quality measurement of at least one beam pair;
  • the symbol division information is a number of time divisions or time divisions that need to be divided within one OFDM symbol;
  • the CSI-RS configuration information includes at least one of the following:
  • the symbol division information, the number of transmit beams, the number of receive beams, the CSI-RS resource configuration related information, the CSI-RS resource number related information, the time domain repetition number associated with each CSI-RS resource, and the used The total number of OFDM symbols, the indication flag of the measurement mode, the number of symbol intervals, the CSI-RS period, the beam selection mode indication information, the link quality measurement activation information of the beam pair, and the CSI-RS resources supported in each time division. Or the number of CSI-RS ports;
  • the CSI-RS resource configuration related information includes: a CSI-RS resource element pattern and a CSI-RS antenna port number.
  • the sending the CSI-RS configuration information to the mobile terminal includes:
  • the maximum division time division number is a minimum value among the maximum division time division numbers corresponding to the plurality of mobile terminals.
  • the next transmitting beam is transmitted, or after determining that one round of transmitting beam rotation is completed, the next round of transmitting beams is rotated, so that when a time unit has been When the end time of the OFDM symbol is not completed, the network side device does not need to wait for the end of the current OFDM symbol, that is, the condition that a time unit must occupy an integer multiple of OFDM symbols, and the next time unit can be directly executed.
  • the beam measurement can make full use of the maximum measurement capability of the UE, and can fully compress the time of the entire beam measurement under the condition that the UE capability can support, thereby saving time resources, so that more resources can be used for data transmission.
  • the terminal device 2100 shown in FIG. 21 includes at least one processor 2101, a memory 2102, at least one network interface 2104, and other user interfaces 2103.
  • the various components in terminal device 2100 are coupled together by a bus system 2105.
  • the bus system 2105 is used to implement connection communication between these components.
  • the bus system 2105 includes a power bus, a control bus, and a status signal bus in addition to the data bus.
  • various buses are labeled as bus system 2105 in FIG.
  • the user interface 2103 may include a display, a keyboard, or a pointing device (eg, a mouse, a trackball, a touchpad, or a touch screen, etc.).
  • a pointing device eg, a mouse, a trackball, a touchpad, or a touch screen, etc.
  • the memory 2102 in an embodiment of the present disclosure may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM Random Access Memory
  • many forms of RAM are available, such as static random access memory (SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (Synchronous DRAM).
  • SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • DDRSDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SDRAM Synchronous Connection Dynamic Random Access Memory
  • DRRAM direct memory bus random access memory
  • the memory 2102 stores elements, executable modules or data structures, or a subset thereof, or their extended set: an operating system 21021 and an application 21022.
  • the operating system 21021 includes various system programs, such as a framework layer, a core library layer, a driver layer, and the like, for implementing various basic services and processing hardware-based tasks.
  • the application 21022 includes various applications, such as a media player (Media Player), a browser, and the like, for implementing various application services.
  • a program implementing the method of the embodiments of the present disclosure may be included in the application 21022.
  • the mobile terminal 2100 further includes: a computer program stored on the memory 2102 and executable on the processor 2102, and specifically, may be a computer program in the application 21022, and the computer program is executed by the processor 2102. And performing the following steps: determining, when performing link quality measurement of the beam pair of the first mode, a first completion time of the mobile terminal completing one round of receiving beam rotation for the current transmit beam; starting from the first completion time The next round of receive beam rotation; and/or, when performing the link quality measurement of the beam pair of the second mode, determining the second completion time of the network side device completing one round of transmit beam rotation for the current receive beam; From the second completion time, switch to the next receive beam for measurement.
  • a computer program stored on the memory 2102 and executable on the processor 2102 and specifically, may be a computer program in the application 21022, and the computer program is executed by the processor 2102. And performing the following steps: determining, when performing link quality measurement of the beam pair of the first mode, a first completion time of the mobile terminal completing
  • the method disclosed in the above embodiments of the present disclosure may be applied to the processor 2101 or implemented by the processor 2101.
  • the processor 2101 may be an integrated circuit chip with signal processing capabilities. In the implementation process, each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 2101 or an instruction in a form of software.
  • the processor 2101 may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA), or the like. Programmable logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in connection with the embodiments of the present disclosure may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory 2102, and the processor 2101 reads the information in the memory 2102 and completes the steps of the above method in combination with its hardware.
  • the embodiments described herein can be implemented in hardware, software, firmware, middleware, microcode, or a combination thereof.
  • the processing unit can be implemented in one or more Application Specific Integrated Circuits (ASICs), Digital Signal Processing (DSP), Digital Signal Processing Equipment (DSP Device, DSPD), programmable Programmable Logic Device (PLD), Field-Programmable Gate Array (FPGA), general purpose processor, controller, microcontroller, microprocessor, other for performing the functions described herein In an electronic unit or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSP Digital Signal Processing
  • DSP Device Digital Signal Processing Equipment
  • PLD programmable Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • the techniques described herein can be implemented by modules (eg, procedures, functions, and so on) that perform the functions described herein.
  • the software code can be stored in memory and executed by the processor.
  • the memory can be implemented in the processor or external to the processor.
  • the link quality measurement of the beam pair of the first mode includes: before each transmit beam switch, each receive beam is rotated, and each beam pair formed by the rotation is measured; and each pair of beams is completed. After the link quality measurement, switch to the next transmit beam for the next round of receive beam rotation; until the link quality measurement of all beam pairs formed by each transmit beam and each receive beam is completed;
  • the link quality measurement of the beam pair of the second mode includes: before each receiving beam switching, each transmitting beam is rotated, and each beam pair formed by the rotation is measured; and the chain of each beam pair is completed. After the path quality measurement, switch to the next receive beam for the next round of transmit beam rotation; until the link quality measurement of all beam pairs formed by each transmit beam and each receive beam is completed.
  • the processor 2101 is further configured to perform the following steps:
  • Determining, by the mobile terminal, a first completion time of completing one round of receiving beam rotation for the current transmit beam including:
  • Determining a second completion time for completing one round of transmit beam rotation for the current receive beam including:
  • the CSI-RS configuration information is used to indicate the number of transmit beams, the number of receive beams, and the symbol split information; the symbol split information is determined according to a maximum split time division number of the mobile terminal; the maximum partition The time division number refers to the maximum number of time divisions for OFDM symbol division supported by the mobile terminal when the set condition is satisfied; the setting condition includes: the mobile terminal can complete at least one beam pair in each time division Link quality measurement; the symbol division information is the number of time divisions or time divisions that need to be divided within one OFDM symbol.
  • the CSI-RS configuration information includes: a number of transmit beams and a number of receive beams
  • the processor 2101 is further configured to: extract the number of transmit beams and the number of receive beams from the CSI-RS configuration information.
  • the CSI-RS configuration information includes: one of a time domain repetition number, a CSI-RS resource number related information, and a CSI-RS resource configuration related information associated with each CSI-RS resource, and one of the first beams
  • the first beam is one of a transmit beam or a receive beam;
  • the processor 2101 is further configured to perform the following steps before the link quality measurement of the beam pair:
  • the second beam is another one of a transmit beam or a receive beam.
  • the CSI-RS configuration information includes: one of a time domain repetition number and a CSI-RS resource number related information and a CSI-RS resource configuration related information associated with each CSI-RS resource;
  • the processor 2101 is further configured to perform the following steps before the link quality measurement of the beam pair:
  • the CSI-RS configuration information includes: a total number of used OFDM symbols, the symbol division information, and a number of third beams; the third beam is one of a receive beam or a transmit beam;
  • the processor 2101 is further configured to perform the following steps before the link quality measurement of the beam pair:
  • the fourth beam is another one of a receive beam or a transmit beam.
  • the CSI-RS configuration information includes: a total number of used OFDM symbols, the symbol division information;
  • the processor 2101 is further configured to perform the following steps before the link quality measurement of the beam pair:
  • the CSI-RS configuration information includes: one, each of CSI-RS resources or CSI-RS port numbers, CSI-RS resource number related information, and CSI-RS resource configuration related information supported in each time division a number of time domain repetitions associated with the CSI-RS resource and a number of fifth beams; the fifth beam being one of a receive beam or a transmit beam;
  • the processor 2101 is further configured to perform the following steps before the link quality measurement of the beam pair:
  • the sixth beam is another one of a receive beam or a transmit beam.
  • the CSI-RS configuration information includes: one of CSI-RS resources or CSI-RS ports supported in each time division, CSI-RS resource number related information, and CSI-RS resource configuration related information, and each Number of time domain repetitions associated with CSI-RS resources;
  • the processor 2101 is further configured to perform the following steps before the link quality measurement of the beam pair:
  • CSI-RS resource or CSI-RS port number CSI-RS resource number related information, and one of CSI-RS resource configuration related information and each CSI-RS resource supported in each time division.
  • the number of times of the time domain repetition and the number of the received beams are calculated, and the number of the transmitted beams is calculated.
  • the CSI-RS configuration information includes: the number of CSI-RS resources or CSI-RS ports supported in each time division, the number of seventh beams, the total number of used OFDM symbols, and the symbol division information;
  • the seventh beam is one of a receive beam or a transmit beam;
  • the processor 2101 is further configured to perform the following steps before the link quality measurement of the beam pair:
  • the eighth beam is another one of a receive beam or a transmit beam.
  • the CSI-RS configuration information includes: a number of CSI-RS resources or CSI-RS ports supported in each time division, a total number of used OFDM symbols, and the symbol division information;
  • the processor 2101 is further configured to perform the following steps before the link quality measurement of the beam pair:
  • the number of receiving beams owned by the mobile terminal is used as the number of the received beams, according to the number of CSI-RS resources or CSI-RS ports supported in each time division, the number of receiving beams, and the used OFDM symbols.
  • the total number of bits and the symbol division information, and the number of the transmit beams is calculated.
  • the CSI-RS configuration information further includes: an indication identifier of the measurement mode
  • the processor 2101 is further configured to perform the following steps before the link quality measurement of the beam pair:
  • the measurement mode comprises the first mode and the second mode.
  • the CSI-RS configuration information further includes: link quality measurement activation information of the beam pair;
  • the processor 2101 is further configured to: perform link quality measurement of the beam pair according to the indication of the link quality measurement activation information of the beam pair;
  • the link quality measurement of the beam pair delivered by the network side device is received, the link quality measurement of the beam pair is stopped.
  • the CSI-RS configuration information further includes: a CSI-RS period
  • the processor 2101 is further configured to perform the following steps when performing link quality measurement of the beam pair:
  • the link quality measurement of the beam pair is performed according to the period indicated by the CSI-RS period.
  • the CSI-RS configuration information further includes: a number of symbol intervals
  • the processor 2101 is further configured to perform the following steps when performing link quality measurement of the beam pair:
  • the link quality measurement of the beam pair is performed within the discrete OFDM symbols according to the number of symbol intervals.
  • the processor 2101 is further configured to perform the following steps:
  • the mobile terminal selecting the same number of receiving beams as the number of the receiving beams to perform beam measurement;
  • the CSI-RS configuration information further includes beam selection mode indication information, selecting, according to the beam selection mode indication information, the same number of receive beams as the number of the received beams to perform beam measurement.
  • the selecting the same number of receive beams as the number of the receive beams to perform beam measurement including:
  • the terminal device 2100 can implement various processes of the foregoing implementation. To avoid repetition, details are not described herein again.
  • the UE after determining to complete one round of receiving beam rotation, performing the next round of receiving beam rotation, or after determining to complete one round of transmitting beam rotation, switching to the next receiving beam for measurement, thereby
  • the UE does not need to wait for the end of the current OFDM symbol, that is, the condition that a time unit must occupy an integer multiple of OFDM symbols, and the next time can be directly performed.
  • the beam measurement of the unit can fully utilize the maximum measurement capability of the UE, and can fully compress the time of the entire beam measurement under the condition that the UE capability can support, thereby effectively saving time resources, so that more resources can be used for data transmission.
  • Embodiments of the present disclosure also provide a terminal device including a processor, a memory, a computer program stored on the memory and operable on the processor, the computer program being implemented by the processor to implement the beam
  • a terminal device including a processor, a memory, a computer program stored on the memory and operable on the processor, the computer program being implemented by the processor to implement the beam
  • the embodiment of the present disclosure further provides a computer readable storage medium, where the computer readable storage medium stores a computer program, and when the computer program is executed by the processor, implements various processes of the beam scanning processing method embodiment, and can achieve the same The technical effect, in order to avoid duplication, will not be repeated here.
  • the computer readable storage medium such as a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in various embodiments of the present disclosure may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on such understanding, a portion of the technical solution of the present disclosure that contributes in essence or to the related art or a part of the technical solution may be embodied in the form of a software product stored in a storage medium, including several The instructions are for causing a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present disclosure.
  • the foregoing storage medium includes various media that can store program codes, such as a USB flash drive, a mobile hard disk, a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种波束测量处理方法及装置。所述方法应用于网络侧设备,包括:在进行第一模式的波束对的链路质量测量时,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;自所述第一完成时刻起,发射下一个发射波束;和/或,在进行第二模式的波束对的链路质量测量时,确定网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;自所述第二完成时刻起,进行下一轮的发射波束轮换。

Description

波束测量处理方法及装置
相关申请的交叉引用
本申请主张在2017年6月16日在中国提交的中国专利申请号No.201710459813.0的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及通信技术领域,尤其涉及一种波束测量处理方法及装置。
背景技术
大规模多入多出(Massive MIMO)技术使用大规模天线阵列,能够极大地提升系统频带利用效率,支持更大数量的接入用户。因此各大研究组织均将massive MIMO技术视为下一代移动通信系统中最有潜力的物理层技术之一。在massive MIMO技术中包括全数字赋形技术以及数模混合波束赋形技术。其中,数模混合波束赋形技术在传统的数字域波束赋形基础上,在靠近天线系统的前端,在射频信号上增加一级波束赋形。相比于全数字赋形技术来说,模拟赋形能够通过较为简单的方式,使发送信号与信道实现较为粗略的匹配,能够将性能与复杂度进行良好的折中,在高频段大带宽或天线数量很大的系统中具有较高的实用前景。
模拟波束赋形是全带宽发射的,并且每个高频天线阵列的面板上每个极化方向阵元仅能以时分复用的方式发送模拟波束。模拟波束的赋形权值是通过调整射频前端移相器等设备的参数来实现。目前通常是使用轮询的方式进行模拟波束赋形向量的训练,即网络侧首先下发波束测量的配置信息,接着每个天线面板每个极化方向的阵元以时分复用方式依次在约定时间依次发送训练信号(即发射波束),终端经过对发射波束与自身拥有的接收波束进行测量后,反馈最优的发射波束标识以及测量出的最优发射波束所在波束对链路的质量(如接收功率),供网络侧在下一次传输业务时采用最优的模拟发射波束来实现数据传输。
对于上述测量过程的波束管理中,可以使用发射波束扫描(Tx beam sweeping)和接收波束扫描(Rx beam sweeping)来测量出最优的发射接收波束对链路(BPL:beam pair link)。在Tx/Rx beam sweeping的过程中,还定义了时间分割(time unit),对应一个或多个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,也即整数倍个OFDM符号,每个time unit可以划分为多个sub-time unit(子时间分割)。目前常用的测量方式包括如下选项:
选项1、在每个time unit内发射波束不变,在不同time unit中改变发射波束;(为便于表述,后文中将选项方式表述为Rx波束扫描方式);
选项2、在每个time unit内的不同sub-time unit改变发射波束,在不同的time unit中发射波束相同;(为便于表述,后文中将选项方式表述为Tx波束扫描方式);
选项3:在一个time unit内发射波束不变,在另一个time unit内的不同sub-time unit改变发射波束。
然而,在对相关技术研究的过程中发明人发现,相关技术中的测量方式都是UE在一个time unit内要完成一个Tx beam与全部Rx beam所形成的波束对链路质量测量或一个Rx beam与全部Tx beam所形成的波束对链路质量测量,在这一测量过程中并没有考虑到UE的测量能力,也即用户设备(User Equipment,UE,也可以称为移动终端)在一个OFDM符号能够支持的最大测量次数,这样可能导致波束测量的时间资源被浪费的情况发生。
发明内容
本公开实施例提供一种波束测量处理方法及装置。
第一方面,本公开实施例提供一种波束测量处理方法,包括:
在进行第一模式的波束对的链路质量测量时,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
自所述第一完成时刻起,发射下一个发射波束;
和/或,
在进行第二模式的波束对的链路质量测量时,确定网络侧设备针对当前 的接收波束完成一轮发射波束轮换的第二完成时刻;
自所述第二完成时刻起,进行下一轮的发射波束轮换。
第二方面,本公开实施例提供另一种波束测量处理方法,包括:
在进行第一模式的波束对的链路质量测量时,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
自所述第一完成时刻起,进行下一轮的接收波束轮换;
和/或,
在进行第二模式的波束对的链路质量测量时,确定网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
自所述第二完成时刻起,切换至下一个接收波束进行测量。
第三方面,本公开实施例提供一种波束测量处理装置,包括:第一时刻确定单元和发射波束控制单元;
所述第一时刻确定单元,用于在进行第一模式的波束对的链路质量测量时,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
所述发射波束控制单元,用于自所述第一完成时刻起,发射下一个发射波束;
和/或,
所述第一时刻确定单元,用于在进行第二模式的波束对的链路质量测量时,确定网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
所述发射波束控制单元,用于自所述第二完成时刻起,进行下一轮的发射波束轮换。
第四方面,本公开实施例提供另一种波束测量处理装置,包括:第二时刻确定单元和接收波束控制单元;
所述第二时刻确定单元,用于在进行第一模式的波束对的链路质量测量时,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
所述接收波束控制单元,用于自所述第一完成时刻起,进行下一轮的接 收波束轮换;
和/或,
所述第二时刻确定单元,用于在进行第二模式的波束对的链路质量测量时,确定网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
所述接收波束控制单元,用于自所述第二完成时刻起,切换至下一个接收波束进行测量。
第五方面,本公开实施例提供了一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的波束测量处理方法的步骤。
第六方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被所述处理器执行时实现如第一方面所述的波束测量处理方法的步骤。
第七方面,本公开实施例提供了一种终端设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的波束测量处理方法的步骤。
第八方面,本公开实施例提供了一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被所述处理器执行时实现如第二方面所述的波束测量处理方法的步骤。
附图说明
为了更清楚地说明本公开实施例或相关技术中的技术方案,下面将对实施例或相关技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术中Rx波束扫描方式的波束训练示意图之一;
图2为相关技术中Tx波束扫描方式的波束训练示意图之一;
图3为相关技术中Rx波束扫描方式的波束训练示意图之二;
图4为相关技术中Tx波束扫描方式的波束训练示意图之二;
图5为本公开实施例提供的波束测量处理方法流程图之一;
图6为本公开实施例提供的波束测量处理方法流程图之二;
图7为本公开实施例提供的波束管理方法示意图;
图8为相关技术中Rx波束扫描方式的波束训练示意图之三;
图9为相关技术中Rx波束扫描方式的波束训练示意图之四;
图10为本公开实施例提供的Rx波束扫描方式的波束训练示意图之一;
图11为相关技术中Rx波束扫描方式的波束训练示意图之五;
图12为本公开实施例提供的Rx波束扫描方式的波束训练示意图之五;
图13为本公开实施例提供的Tx波束扫描方式的波束训练示意图;
图14为本公开实施例提供的多panel情况示意图;
图15为本公开实施例提供的多波束同时训练示意图;
图16为本公开实施例提供的波束测量处理方法流程图之三;
图17为本公开实施例提供的波束测量处理方法流程图之四;
图18为本公开实施例提供波束测量处理装置结构示意图之一;
图19为本公开实施例提供波束测量处理装置结构示意图之二;
图20为本公开实施例提供一种网络侧设备结构框图;
图21为本公开实施例提供一种终端设备结构框图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。本申请中和/或表示所连接对象至少其中之一。
为便于理解本公开实施例与相关技术中的测量方式的区别,下面对相关技术中的测量方式进行说明。
首先对于背景技术中选项1以及选项2这两种测量方式进行举例说明,由于选项3为上述两种选项的结合,在此不再赘述。
假设网络侧共有4个Tx波束,UE侧共有2个Rx波束。
参见图1,如果采用选项1的Rx波束扫描方式,那么每个Tx波束将占用一个time unit,共需4个time unit。每个time unit划分为2个sub-time unit,对应2个Rx波束。UE在1个time unit中完成一个Tx波束和所有Rx波束(Rx beam 1以及Rxbeam 2)的BPL质量测量,在4个time unit中完成所有Tx波束(Tx beam 1、Tx beam 2、Tx beam 3以及Tx beam 4)和所有Rx波束的BPL质量测量。
参见图2,如果采用选项2的Tx波束扫描方式进行测量,那么每个Rx波束占用一个time unit,共需2个time unit。每个time unit划分为4个sub-time unit,对应4个Tx波束。UE在1个time unit中完成所有Tx波束和一个Rx波束的BPL质量测量,在2个time unit中完成所有Tx波束和所有Rx波束的BPL质量测量。
其中,对于图1以及图2示出的两种测量方式,每种测量方式中每个time unit占用的OFDM符号个数可以是不同的。例如,如果UE可以支持在一个OFDM符号内利用IFDMA(Interleaved Frequency Division Multiple Access,交织频分多址)或large subcarrier spacing(大子载波间隔)等技术完成两次波束测量,那么对于图1,每个time unit就占用1个OFDM符号,共需4个time unit,即共4个OFDM符号,每个time unit分为2个sub-time unit,每个sub-time unit占用1/2个OFDM符号长度;对于图2,每个time unit就占用2个OFDM符号,共需2个time unit,即共4个OFDM符号,每个time unit分为4个sub-time unit,每个sub-time unit占用1/2个OFDM符号长度。
对于图1和图2示出的情况来说,虽然采用相关技术中的测量方法没有造成sub-time unit的时间资源浪费,但在实际应用中,采用相关技术中的测量方法还可能出现以下情况。
一种情况参见图3,设网络侧的Tx波束有3个,UE侧的Rx波束有2个,采用选项2的Tx波束扫描方式进行测量,UE可以支持每个OFDM符号内完成2次测量。由于采用选项2的方式是在每个time unit中对3个Rx波束与3个Tx波束进行BPL质量测量,因此至少需要2个OFDM符号才能完成一个time  unit的测量过程。因此,网络侧会在下发的CSI-RS配置消息中通知UE一个time unit占用2个OFDM符号,并且每个time unit包括4个sub-time unit。
那么,UE将在第1个OFDM符号内完成Tx beam 1+Rx beam 1和Tx beam 2+Rx beam 1的测量,在第2个符号内完成Tx beam 3+Rx beam 1。由图3可以看出此时每个time unit中还剩下一个sub-time unit处于空闲状态。而根据选项2的规定,在每个time unit内Rx波束不变,即使在当前的OFDM符号未结束之时已完成了当前Rx波束与所有Tx波束的测量,也即一个time unit对应的BPL质量测量结束了,也只能等待到下一OFDM符号来临时才能进行下一轮的BPL质量测量,这就造成了时间资源被浪费的情况。
另一种情况参见图4,其中Tx波束的个数、Rx波束的个数、扫描的方式、UE可支持的一个OFDM符号内做几次波束测量均与图3示出的情况相同,区别仅在于每个time unit本来如图4中的虚线框所示划分为4个sub-time unit,这里根据Tx波束的个数将一个time unit划分成3个sub-time unit,这种情况虽然没有sub-time unit空闲,但对于每个sub-time unit来说训练波束时间变长,同样也造成了时间资源被浪费的情况。
基于此,第一方面,本公开实施例提供了一种波束测量处理方法,如图5、6所示,包括:
S104、在进行第一模式的波束对的链路质量测量时,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
其中,这里的第一模式的波束对的链路质量测量,包括:在每一次发射波束切换之前,各个接收波束进行轮换,并对轮换所组成的各个波束对进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个发射波束,进行下一轮的接收波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量。也就是说,第一模式的波束对的链路质量测量为在每个time unit中网络侧固定Tx beam做重复发射、且移动终端做Rx beam sweeping的测量模式(可以参考图1示出测量方式)。
这里的“针对当前的发射波束完成一轮接收波束轮换”的过程具体是指:Tx beam在时域上重复发射,而Rx beam轮换进行接收,UE对这个Tx beam与各个Rx beam所组成的各个波束对的质量进行测量,这样一个过程叫做针 对当前的发射波束完成一轮接收波束轮换。
此外,这里的第一完成时刻既可以为一个OFDM符号的结束时刻,也可以为一个OFDM符号的中间时刻,具体为哪个时刻需要根据实际的测量情况来看。
S105、自第一完成时刻起发射下一个发射波束。
其中,这里的自第一完成时刻起发射下一发射波束可能包括:自第一完成时刻起立即发射下一波束。还可能包括自第一完成时刻起间隔一段时间再进行下一发射波束的发射。例如,由于网络侧设备的射频器件的影响,网络侧设备实现由一个发射波束调整切换至另一个发射波束这一过程可能需要花费一段时间,因此网络侧设备可能自第一完成时刻起需要间隔这一切换时间再进行下一发射波束的发射。当然,这一切换时间也可以人为设置,本公开实施例对此不作具体限定。
和/或,
S104’、在进行第二模式的波束对的链路质量测量时,确定网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
其中,这里的第二模式的波束对的链路质量测量,包括:在每一次接收波束切换之前,各个发射波束进行轮换,并对轮换所形成的各个波束对进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个接收波束,进行下一轮的发射波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量。也就是说,第二模式的波束对的链路质量测量为在每个time unit中移动终端固定Rx beam做重复接收、且网络侧做Tx beam sweeping的测量模式(可以参考图2示出测量方式)。
S105’、自第二完成时刻起进行下一轮的发射波束轮换。
这里的进行下一轮的发射波束轮换是指:各个发射波束轮流发射。此时UE一侧只测量一个接收波束与各个发射波束所组成的波束对链路质量。此外,与S102中的情况类似,这里的自第二完成时刻起进行下一轮发射波束的轮换也可以为立即发射,也可以为间隔一端时间发射,本公开实施例对此不作具体限定。
此外,这里的第二完成时刻与第一完成时刻类似,也可以为一个OFDM符号的结束时刻,也可以为一个OFDM符号的中间时刻,具体为哪个时刻需要根 据实际的测量情况来看。
本公开实施例提供的波束测量处理方法中,网络侧设备(例如基站)通过在确定完成一轮接收波束轮换后发射下一个发射波束,或在确定完成一轮发射波束轮换后进行下一轮发射波束的轮换,从而当一个time unit已经完成但还未到当前所在的OFDM符号的结束时间时,网络侧设备无需等待当前OFDM符号结束,也即无需满足一个time unit必须占用整数倍OFDM符号这样的条件,可以为非整数倍的OFDM符号直接进行下一个time unit的波束测量,从而可以充分利用UE的最大测量能力,在UE能力能够支持的情况下最大限度地压缩整个波束测量的时间,有效节约时间资源,以使得更多资源可用于数据传输。
需要说明的是,本公开实施例提供的方法主要是针对的是下行链路的波束管理,因此这里的发射波束就是网络侧的发射波束,接收波束就是终端的接收波束,后文中不再对此内容进行赘述。
基于上述实施例,在波束对的链路质量测量之前,本公开实施例提供的方法还可以包括:
S101、确定发射波束的个数和接收波束的个数,并根据发射波束的个数确定对应的各个发射波束;
在实际应用中,这里的Tx波束的个数对于网络侧设备来说是已知的,所以只需要根据Tx波束的个数来选择本次要测量的Tx波束;
这里的Rx波束的个数可以根据UE上报的其自身拥有的Rx波束的个数来确定,具体来说经过S101确定的Rx波束的个数可以小于或等于UE的自身拥有的Rx波束的个数。在小于时也即本次仅要测量UE的其中几个Rx波束,在等于时也即本次要测量UE的所有Rx波束。
S102、根据移动终端的最大划分时间分割数确定符号划分信息;其中,最大划分时间分割数是指在满足设定条件时移动终端所支持的对OFDM符号划分的时间分割的最大个数;设定条件包括:在每个时间分割内,移动终端能够完成至少一次波束对的链路质量测量;符号划分信息为在一个OFDM符号内需要划分的时间分割的个数或时间分割的时长。
这里的UE的最大划分时间分割数其实反映的是UE的最大能力。不难理 解的是,这里的对于一个OFDM符号来说,一种类型的OFDM符号的时长是固定的,那么UE所支持的对OFDM符号划分的时间分割的最大个数也可以描述为:UE在一个OFDM符号内能够测量的最大次数,或在一个OFDM符号内能够划分的时间单元(time unit)的最大个数等等,可以翻译为number of symbol partition within each OFDM symbols。当然还可以有其他的描述方式,只要是体现对OFDM符号的划分且这样的划分能够体现UE的测量能力的都与本公开实施例中的“对OFDM符号划分的时间分割的最大个数”的概念等同。同样地,参见图7,S102中“时间分割的时长”也可以描述为:UE每次测量的时长,或每个被划分的子时间单元(sub-time unit)的时长等等。这些也都是等同的概念,其实质都是相同的。
S103、将CSI-RS配置信息发送至移动终端,所述CSI-RS配置信息用于指示发射波束的个数、接收波束的个数以及所述符号划分信息;
这里的“CSI-RS配置信息用于指示Tx波束的个数、Rx波束的个数以及符号划分信息”可以理解为用于使得UE获知这些参数。使UE能够获知这些参数的方式有很多种。具体来说,CSI-RS配置信息可以直接包含Tx个数的数值、Rx个数的数值、以及一个OFDM符号进行波束测量次数的数值或每次波束测量时长的数值,从而UE侧可以直接从CSI-RS配置信息提取这些数值获知这些参数。CSI-RS配置信息还可以包含与这些参数具有相关性的其他参数的值,从而UE侧可以根据这些其他参数的值基于约定好的计算方式获知这些信息。CSI-RS配置信息还可以包含能够标识这些参数的标识信息,从而UE在接收到这些标识信息之后可以根据与网络侧设备事先约定好的标识信息与参数的对应关系获知这些参数。进一步地,这里的标识信息可以为多个,且与各个参数可以为一对一或一对多的关系,也可以仅通过一个标识信息对应所有的参数,本公开实施例对比不作具体限定。
进而,上述步骤S104可以为:
S1041、根据符号划分信息以及接收波束的个数,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
也就是说,网络侧设备根据符号划分信息能够获知UE进行一次测量所需的时间,根据接收波束的个数能够获知进行一轮接收波束轮换所需的时间, 从而能够获知进行一轮接收波束轮换的第一完成时刻。
上述步骤S104’可以为:
S1041’、根据符号划分信息以及发射波束的个数,确定针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
也就是说,网络侧设备根据符号划分信息能够获知UE进行一次测量所需的时间,根据发射波束的个数能够获知进行一轮发射波束轮换所需的时间,从而能够获知进行一轮发射波束轮换的第二完成时刻。
本公开实施例提供的方法中,网络侧设备可以根据不同的测量需求对测量的配置参数进行配置,同时将该配置参数下发至UE以供UE与其配合进行测量。且当一个time unit已经完成而还未到当前所在的OFDM符号的结束时间时,网络侧设备可以直接进行下一个time unit的波束测量,无需等待当前OFDM符号结束,从而可以充分利用UE的最大测量能力,在UE能力能够支持的情况下最大限度地压缩整个波束测量的时间,有效节约时间资源,以使得更多资源可用于数据传输。
在具体实施时,在S103中下发的CSI-RS配置信息直接下发参数的情况时,CSI-RS配置信息可以包括如下任意一种及任意组合:所述符号划分信息、发射波束的个数、接收波束的个数、CSI-RS资源配置相关信息、CSI-RS资源个数相关信息、每个CSI-RS资源所关联的时域重复次数、所用OFDM符号的总个数、测量模式的指示标识、符号间隔数、CSI-RS周期、波束选择方式指示信息、波束对的链路质量测量激活信息以及在每个时间分割中支持的CSI-RS资源或CSI-RS端口数。
从而UE一侧可以根据这些信息直接或间接获知Tx波束的个数、Rx波束的个数以及符号划分信息。本公开实施例为UE提供了多种参数的组合,从而UE在获取波束个数及符号划分信息时能够更加灵活。
UE侧如何获知Tx波束的个数、Rx波束的个数以及符号划分信息的具体过程将在后文中进行详细说明。当然,上述所列举的参数中还包含一些其他控制波束训练的参数,例如用于指示进行首先做Tx扫描还是首先做Rx扫描的测量模式的指示标识,用于指示波束测量周期的CSI-RS周期等等。相应地,UE一侧也会根据这些参数对波束对链路质量测量进行相应的控制,具体的控 制方式同样会在后文中进行详细说明。
为了更进一步理解本公开实施例提供的方法,下面举几个示例来具体说明本公开实施例提供的方法是如何节约时间资源的。
一、举例1
设Tx beam有4个,Rx beam有2个。UE支持每个OFDM符号内划分4个时间分割,也即可以进行4次测量。
(一)采用相关技术中的波束测量方式
采用相关技术进行测量可以有两种方式:一种方式下,网络侧下发的CSI-RS配置信息可以包括:
● CSI-RS资源个数:4
● 每个CSI-RS资源相关联的时域重复次数:2
● CSI-RS RE pattern、CSI-RS天线端口数以及CSI-RS周期
● 选项1做beam sweeping(也即首先做Rx波束扫描方式)
● time unit个数:4个
● time unit长度:1个符号
● sub-time unit:1/4 time unit
参见图8,UE侧在接收到上述配置信息后与网络侧配合开始进行波束测量。由于采用的是首先做Rx波束扫描方式,因此对于一个time unit来说仅需要进行两次测量就可以完成当前Tx波束与所有Rx波束的测量,例如第一个time unit中只测量Tx beam 1+Rx beam 1以及Tx beam 1+Rx beam 2。由于UE支持每个OFDM符号内进行4次测量,而相关技术选项中规定一个time unit至少对应一个OFDM符号,因此这里的一个time unit占用一个OFDM符号。由图8不难看出,在一个OFDM符号内由于UE支持的时间分割的个数(也即测量次数)4大于完成一个time unit所需要测量的次数2,因此会有两个sub-time unit处于空闲状态,这两个sub-time unit的空闲就造成了时间资源的浪费。
另一种方式下,CSI-RS配置信息包括:
● CSI-RS资源个数:4
● 每个CSI-RS资源相关联的时域重复次数:2
● CSI-RS RE pattern、CSI-RS天线端口数、CSI-RS周期。
● 选项1做beam sweeping
● time unit个数:4
● time unit长度:1个符号
● sub-time unit:1/2 time unit
参见图9,可以看出这种方式下本来UE可以支持每个符号内划分4个时间分割,但是根据Rx beam数仅分了2个时间分割。此时,虽然没有sub-time unit处于空闲状态,但将原本能划分为四个的时间分割划分为两个无疑会造成每次测量时间的变长,导致训练所有波束的总时间变长,也会造成时间资源的浪费。
(二)采用本公开实施例提供的波束测量方式
由于Tx beam有4个,Rx beam有2个,因此需要进行的总测量数为8次。因为UE支持每个OFDM符号内可以进行4次测量,因此完成所有的测量只需要2个OFDM符号。此外,在本实施例中,UE侧与网络侧可以预先约定首先固定Tx beam重复发射且做Rx beam sweeping,也即首先做Rx波束扫描方式。则网络侧下发的CSI-RS配置信息可以包括:
● 发射波束个数:4
● 接收波束个数:2
● CSI-RS RE pattern,CSI-RS天线端口数,CSI-RS周期等
● 所用OFDM符号数:2
● 每个OFDM符号内的划分时间分割数:4
● 在每个OFDM符号的划分时间分割中支持的CSI-RS资源或CSI-RS端口数:缺省
UE侧在获得这些配置信息后如何获知波束测量所必要的参数将在后文中进行详细介绍,在这里重点想要说明的是采用本公开实施例提供的方法UE侧与网络侧是如何能够尽可能的压缩整个波束的训练时间的。
参见图10,对于网络侧设备来说,第一个time unit中在确定了Rx beam 1以及Rx beam 2扫描完成之后,可以自完成时刻起直接开始Tx beam 2的发射,也即直接进入了第二个time unit,这里的time unit为1/2个OFDM 符号时长。接下来的过程以此类推,直至完成Tx beam 4与所有Rx波束的扫描。
从图8、图9以及图10的对比中不难发现,本公开实施例与相关技术最大的不同之处就在于:相关技术中1个time unit只能占用整数倍个OFDM符号。以Rx波束扫描方式来说,如果Rx波束的个数不是UE在一个OFDM符号内的最大测量次数的整数倍(在这里Rx波束个数为2,最大测量次数为4),由于网络侧设备在每个time unit中在所有的Rx波束扫描结束之时无法切换至下一个Tx波束,而一个time unit又只能占用整数倍个OFDM符号,因此网络侧切换Tx波束的时间只能为整数倍个OFDM符号所在的时刻。在这种前提下,无论是采用图8所示的按UE的最大能力来进行测量,还是采用图9所示的延长每次测量的时间,都会造成时间资源的浪费,最后完成所有的波束测量总共需要4个OFDM符号。
而在本公开实施例中,1个time unit既可以整数倍个OFDM符号,又可以占用非整数倍个OFDM符号,图10所示的情况就是1个time unit可以占用1/2个OFDM符号,那么在完成一个time unit之后就可以在当前的OFDM符号中切换至下一个Tx波束,最后完成所有的波束测量只需要2个OFDM符号,从而能够充分利用UE的测量能力,有效节约整个波束训练时间。本公开实施例提供的方法对于Tx波束扫描方式也是同理,在此不再赘述。
二、举例2
设Tx beam有3个,Rx beam有4个。UE支持每个符号内划分6个时间分割。
(一)采用相关技术中的波束测量方式
在举例2中仅列出相关技术中不延长每次波束测量时间的测量方式。在这种方式下,网络侧设备下发的CSI-RS配置信息可以包括:
● CSI-RS资源个数:3
● 每个CSI-RS资源相关联的时域重复次数:4
● CSI-RS RE pattern、CSI-RS天线端口数、CSI-RS周期。
● 选项1做beam sweeping
● time unit个数:3
● time unit长度:1个符号
● sub-time unit:1/6time unit
参见图11,与图8类似,由于一个time unit内不能进行Tx波束的切换且一个time unit对应一个OFDM符号,因此每个time unit中的最后两个sub-time unit处于空闲状态,最后完成所有的波束测量总共需要3个OFDM符号,造成了时间资源的浪费。
(二)采用本公开实施例提供的波束测量方式
以首先做Rx波束扫描方式为例,完成所有测量共需2个OFDM符号,每个符号有6个划分时间分割。网络侧下发的CSI-RS配置信息包括:
● 发射波束个数:3
● 接收波束个数:4
● CSI-RS RE pattern,CSI-RS天线端口数,CSI-RS周期等
● 所用OFDM符号数:2
● 每个OFDM符号内的划分时间分割数:6
● 在每个OFDM符号的划分时间分割中支持的CSI-RS资源或CSI-RS端口数:缺省
参见图12,UE在接收到上述配置信息后可以参照图12与网络侧设备进行波束测量。通过图11与图12的对比不难看出,本公开实施例提供的方法中一个time unit可以对应非整数倍个OFDM符号,例如图12所示的2/3个OFDM符号,从而网络侧可以在第2/3个OFDM符号处开始下一个Tx波束的发射,最后完成所有的波束测量总共需要2个OFDM符号,相比于图11的情况节省了一个OFDM符号,节省了整个波束训练过程的时间。
图12示出的是首先做Rx波束扫描方式,下面再举一个首先做Tx波束扫描方式的例子来进一步说明本公开实施例提供的方法。
网络侧下发的CSI-RS配置信息包括:
● 发射波束个数:3
● 接收波束个数:4
● CSI-RS RE pattern,CSI-RS天线端口数,CSI-RS周期等
● 所用OFDM符号数:2
● 每个OFDM符号内的划分时间分割数:6
● 在每个OFDM符号的划分时间分割中支持的CSI-RS资源或CSI-RS端口数:缺省
参见图13,对于网络侧设备来说,在第一个time unit中,在确定自身已经完成了Tx beam 1、Tx beam 2、Tx beam 3的扫描之后,在扫描结束之时开启下一轮的Tx波束扫描。与图12相同,完成所有测量也总共需要2个OFDM符号,相比于图11所示的方式节省了一个OFDM符号,节约了整个波束训练过程的时间。
总而言之,本公开实施例提供的方法可以充分利用UE的测量能力,在每个OFDM符号内都可以改变Tx beam或Rx beam,也即一个time unit可以占用非整数倍个OFDM符号(例如1/2个符号,2/3个符号,当然也可以为整数倍),从而尽可能快的完成所有波束测量,降低波束管理过程的时延,不会产生波束管理的时间资源浪费,以使得更多资源可用于数据传输。
可以理解的是,上述内容仅是网络侧设备向一个UE下发配置信息并与UE配合完成波束训练的情况,在具体实施时,还有可能出现多个UE的情况。
假设网络侧的Tx beam有4个,UE1有2个Rx beam,UE2也有2个Rx beam,但是UE1支持在一个符号内完成2次beam测量,UE2支持在一个符号内完成4次beam测量。若采用相关技术中的测量方法,那么对于UE1的CSI-RS配置信息包括如下:
● 选项1做beam sweeping
● time unit个数:4个
● time unit长度:1个符号
● sub-time unit:1/2 time unit
UE1在进行波束测量时可以参照图1所示的方式进行测量。
对于UE2的CSI-RS配置信息包括如下:
● 选项2做beam sweeping(如果采用选项1,则所需符号个数更多)
● time unit个数:2个
● time unit长度:1个符号
● sub-time unit:1/4 time unit
UE1在进行波束测量时可以参照图1所示的方式进行测量。
可见,对不同UE需要给出分别不同的CSI-RS配置信令,当UE数很多时,所需的信令开销很大。另外,当同时进行beam sweeping的UE较多时,UE2也需要和UE1一样采用选项1的扫描方式,那么此时UE2则也会存在sub-time unit资源浪费情况。
据此,本公开实施例提供的方法中,在S103中发送CSI-RS配置信息可以包括:向多个UE发送相同的CSI-RS配置信息。其中,针对不同的UE能力,在确定一个OFDM符号内对波束能够测量的最大次数时选择多个UE对应的各个最大次数中的最小值,也即以能力最小的UE来确定一个OFDM符号内对波束能够测量的最大次数,再根据这一最大次数来确定符号划分信息,从而能够在尽可能压缩波束训练时间的情况下满足所有UE的能力需要。
此外,上述所述情况均为网络侧设备只设置有一个天线面板的情况,在只有一个天线面板的情况下,在一个OFDM符号内的一个时间分割中,网络侧设备仅能够发射一个Tx波束,且该波束仅能够对应一个CSI-RS资源。然而,在实际情况中,参见图14,还有可能出现网络侧设备设置多个天线面板(Panel)的情况,此时,在一个时间分割中各个面板均能够发射一个Tx波束,且在这一时间分割中可以支持多个CSI-RS资源。
在这一情况下,当网络侧设备下发CSI-RS配置信息时,该配置信息除了包含用于指示发射波束的个数、接收波束的个数以及所述符号划分信息的内容,还可以包括在每个OFDM符号的划分时间分割中支持的CSI-RS资源或CSI-RS端口数,其中这里的支持的资源或端口数即代表了支持的同时发射的发射波束个数。对于网络侧基站有一个传输接收点(TRP,Transmission Reception Point)时,则代表了该TRP的天线面板个数。对于网络侧基站有多个TRP时,则代表了这些TRP总的天线面板个数。特别的,当网络侧基站的多个TRP都只有一个天线面板时,则代表了该网络侧基站的TRP个数。当UE获知这一信息之后,即可以根据这一信息获得网络侧能够同时发射的发射波束个数。
举例来说,设网络侧基站只有一个TRP,且该TRP有2个panel,每个panel有2个Tx beam,UE有2个Rx beam。UE支持每个符号内划分2个时 间分割。CSI-RS配置信息中包括:
● Tx beam个数:4
● Rx beam个数:2
● 所用OFDM符号个数:2。
● 每个符号内划分单元数:2。
● 每个划分时间分割内支持的CSI-RS资源数或CSI-RS端口数:2
在UE获取这些参数后即可以根据这些参数进行波束测量。参见图15,Tx beam 1以及Tx beam 3为Panel 1发射的Tx波束,Tx beam 2以及Tx beam 4为Panel 2发射的Tx波束。在一个time unit中,Panel 1与Panel 2同时发射Tx beam 1和Tx beam 2。但由于UE支持每个符号内划分2个时间分割,也即最多做两次波束测量,因此一个time unit需要占用两个OFDM符号。具体的波束测量的过程与上述单panel的过程类似。图15示出了首先做Rx波束扫描方式的波束测量过程,对于Panel 1来说,当其确定针对于Tx beam 1的Rx beam 1以及Rx beam 2的扫描完成时,则在完成之时开始发射Tx beam 3;当为首先做Tx波束扫描方式时,对于Panel 1来说,当其确定针对于Rx beam 1的Tx beam 1以及Tx beam 3的扫描完成时,则在完成之时开始下一轮的Tx波束扫描。
本公开实施例提供的方法通过在CSI-RS配置信息中携带用于指示每个划分时间分割内支持的CSI-RS资源数或CSI-RS端口数的信息,从而能够支持多TRP、多Panel情况下的多波束同时测量,提高波束管理过程的速度。当然在实际应用中,除了图14所示多个CSI-RS资源对应不同天线面板的情况,还有可能出现一个CSI-RS资源的多个端口对应不同天线面板的情况,其实施的方式与上述方式类似在此不再赘述。此外,这些面板可以位于一个TRP上,也可以位于多个TRP上,本公开实施例对此不做具体限定。
本公开实施例提供的波束测量处理方法中,网络侧设备可以下发多种组合的CSI-RS配置信息,以供UE获知本次测量任务的具体内容同时与网络侧设备配合在一个time unit结束之后就进入下一个time unit的测量,无需等待OFDM符号的结束,从而能够充分利用UE的最大能力,避免出现时间资源浪费的情况。此外本公开实施例提供的方法还能够支持多TRP、多Panel 的模式,能够更广泛的适应于5G通信领域。
基于同样的思想,第二方面,本公开实施例提供了另一种波束测量处理方法,如图16、17所示,包括:
S202、在进行第一模式的波束对的链路质量测量时,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
其中,这里的第一模式的波束对的链路质量测量,包括:在每一次发射波束切换之前,各个接收波束进行轮换,并对轮换所形成的各个波束对进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个发射波束,进行下一轮的接收波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量
S203、自第一完成时刻起,进行下一轮的接收波束轮换;
和/或,
S202’、在进行第二模式的波束对的链路质量测量时,确定网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
其中,第二模式的波束对的链路质量测量,包括:在每一次接收波束切换之前,各个发射波束进行轮换,并对轮换所形成的各个波束对进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个接收波束,进行下一轮的发射波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量。
S203’、自第二完成时刻起,切换至下一个接收波束进行测量。
由于对第一模式、第二模式、第一完成时刻以及第二完成时刻在第一方面中已经进行了详细介绍,在此不再赘述。
本公开实施例提供的波束测量处理方法中,UE设备在确定完成一轮接收波束轮换后进行下一轮的接收波束轮换,或在确定完成一轮发送波束轮换后切换至下一个接收波束进行测量,从而当一个time unit已经完成但还未到当前所在的OFDM符号的结束时间时,UE无需等待当前OFDM符号结束,也即无需满足一个time unit必须占用整数倍个OFDM符号这样的条件,可以占用非整数倍个OFDM符号直接进行下一个time unit的波束测量,从而可以充分利用UE的最大测量能力,在UE能力能够支持的情况下最大限度地压缩整个 波束测量的时间,有效节约时间资源,以使得更多资源可用于数据传输。
基于上述实施例,在波束对的链路质量测量之前,本公开实施例提供的方法还可以包括:
S201、接收网络侧设备发送的CSI-RS配置信息,其中,所述CSI-RS配置信息用于指示发射波束的个数、接收波束的个数以及所述符号划分信息;所述符号划分信息根据移动终端的最大划分时间分割数确定;所述最大划分时间分割数是指在满足设定条件时移动终端所支持的对OFDM符号划分的时间分割的最大个数;所述设定条件包括:在每个时间分割内,移动终端能够完成至少一次波束对的链路质量测量;所述符号划分信息为在一个OFDM符号内需要划分的时间分割的个数或时间分割的时长。
对于这里的“用于指示”、“最大划分时间分割数”以及“时间分割”的含义以及等同的概念已经在第一方面进行了说明,在此不再赘述。
相应的,步骤S202可以进一步为:
S2021、根据符号划分信息以及接收波束的个数,确定移动终端针对当前的发射波束完成一轮接收波束轮换的时刻;
也就是说,UE能够根据符号划分信息能够获知进行一次测量所需的时间,根据接收波束的个数能够获知进行一轮接收波束轮换所需的时间,从而能够获知进行一轮接收波束轮换的完成时刻。
步骤S202’可以进一步为:
S2021’、根据符号划分信息以及发射波束的个数,确定针对当前的接收波束完成一轮发射波束轮换的时刻;
也就是说,UE能够根据符号划分信息能够获知UE进行一次测量所需的时间,根据发射波束的个数能够获知进行一轮发射波束轮换所需的时间,从而能够获知进行一轮发射波束轮换的完成时刻。
在本公开实施例提供的波束测量处理方法中,UE侧在接收到CSI-RS配置信息后,根据配置信息开始波束测量。当一个time unit已经完成而还未到当前所在的OFDM符号的结束时间时,UE可以直接进行下一个time unit的波束测量,无需等待当前OFDM符号结束,也即一个time unit可以对应非整数倍个OFDM符号,从而可以充分利用UE的最大测量能力,在UE能力能够 支持的情况下最大限度地压缩整个波束测量的时间,有效节约时间资源,以使得更多资源可用于数据传输。
在具体实施时,UE侧接收到的CSI-RS配置信息可能有多种不同的情况,下面对CSI-RS配置信息可能下发的参数进行详细说明。CSI-RS配置信息可能包括下述全部或者部分内容:
(1)发射波束个数;
(2)接收波束个数;
(3)CSI-RS资源配置相关信息(Information related to CSI-RS resource configuration),可以包括每个CSI-RS资源的CSI-RS RE pattern(CSI-RS资源元素图样)以及CSI-RS天线端口数(number of CSI-RS antenna ports);
(4)每个CSI-RS资源所关联的时域重复次数;
(5)所用OFDM符号数;
(6)符号划分信息:可以为每个OFDM符号内划分的时间分割数(也即每个OFDM符号内可以进行的波束测量次数),或每个时间分割的时长(也即每次波束测量的时长);
(7)在每个OFDM符号的划分时间分割中支持的CSI-RS资源或CSI-RS端口数:
(8)CSI-RS周期:用于指示周期性波束管理的周期值等参数;
(9)波束对的链路质量测量激活信息;
(10)测量模式的指示标识;
(11)符号间隔数;
(12)CSI-RS资源个数相关信息;
(13)波束选择方式指示信息。
下面对各个参数进行说明:
对于(1)(2),如果直接下发Tx beam个数的值和Rx beam个数的值,则UE可直接获知Tx beam个数以及Rx beam个数;这里的Tx beam个数的值可以小于等于网络侧拥有的Tx beam个数,这里的Rx beam个数可以小于等于UE拥有的Rx beam个数。也即每次波束训练时可以仅对若干个Tx beam或 Rx beam进行测量,从而能够提高波束训练的效率。
当CSI-RS配置信息下发的Rx波束的个数小于UE拥有的Rx波束的个数时,则UE可以根据预设规则选择与Rx波束的个数相同数目的Rx波束进行波束测量。假设UE一共有5个Rx波束,UE自己可以知道这五个Rx波束的逻辑编号,例如UE自己给这五个Rx波束编号为1-5。如果在上一轮波束训练中,第3个Rx波束为最优波束对链路的接收波束,若此次下发的Rx波束的个数为3,则此轮波束训练中可以以第3个Rx波束为中心,选择第2、3、4个波束进行训练,也可以等间隔的选择第1、3、5个波束进行训练。也可以有其他的选择方式,本公开实施例对此不做具体限定。当然对于实际情况中UE到底进行那种选择,那么可以有两种方式,一种是说UE预设了固定的选择模式,另一种情况是说网络侧设备可以下发参数(13)波束选择方式指示信息,从而指示UE去选择哪种模式。
对于Tx beam个数和Rx beam个数还可能存在一些特殊的情况:例如,网路侧与UE事先约定好,如果Rx beam个数为缺省状态,那么可以默认为此次要进行训练的Rx beam个数为UE所拥有的全部Rx beam个数。由于Tx beam个数和Rx beam个数与其他的配置参数还存在着一定的逻辑关系,可以通过其他配置参数能够计算出Tx beam个数和Rx beam个数,因此如果网络侧下发的配置参数中Rx beam个数为缺省状态,且网络侧设备使这个Rx beam个数为缺省的目的是为了让UE认为此次是要对所有的Rx beam进行训练,那么此时较为合理的一种情况可能是UE根据网络侧当前下发的参数无法计算Rx beam个数,此时UE就会认为当前的Rx beam个数缺省即意味着要训练全部Rx beam。
对于(3)(4),由于波束测量的目的最终是为了让网络侧获知哪个或哪几个Tx beam为最优发射波束,而Tx beam本身不具有标识,UE通过波束测量后在波束报告中上报最优Tx beam的标识是通过上报CSI-RS资源标识或上报CSI-RS资源标识以及时间标识来实现的。具体来说,Tx beam的个数是大于或等于CSI-RS资源的个数的,也即一个CSI-RS资源可以通过一个Tx beam发射也可以通过多个Tx beam发射。当通过一个Tx beam发射时,可以直接上报CSI-RS资源标识,从而网络侧设备可以直接根据CSI-RS资源标识 来获知当时发送该CSI-RS资源时用的是哪个Tx beam;当通过多个Tx beam发射时,此时若只上报CSI-RS资源标识,网络侧可能无法获知具体是哪个Tx beam,但由于各个Tx beam的发射时间不同,因此此时同时上报时间标识即可让网络侧获知指定的Tx beam。
这里的每个CSI-RS资源的资源标识可以CSI-RS资源配置相关信息来获知,而CSI-RS资源配置相关信息包括每个CSI-RS资源的CSI-RS RE pattern以及CSI-RS天线端口数,当然还可以包括其他信息。
不难理解的是,如果配置信息中包含若干个CSI-RS资源配置相关信息,那么对于UE来说其也可以获知CSI-RS资源的总个数,相当于若干个CSI-RS资源配置相关信息隐式指示了CSI-RS资源的总个数。而CSI-RS资源的总个数A与每个CSI-RS资源所关联的时域重复次数B的乘积即为总共需要进行的波束测量次数。若设Tx beam的个数为M,Rx beam的个数为N,则有:M*N=A*B的关系存在。等式两边的乘积均表示总共需要进行的波束测量次数。因此,那么可以根据这一等式来获得M和N的值。
当然,除了利用CSI-RS资源配置相关信息隐式指示的方式来指示CSI-RS资源的总个数,还可以通过显示指示的方式来指示。也即CSI-RS配置信息中还可以包括上述参数中的(12)CSI-RS资源个数相关信息(Information related to number of CSI-RS resource)。其中这个CSI-RS资源个数相关信息可以直接为CSI-RS资源的个数,也可以为用于指示CSI-RS资源个数的信息,本公开实施例对此不作具体限定。
对于(5)(6),设OFDM符号个数为L,每个符号的划分时间分割个数为P,Tx beam个数为M,Rx beam个数为N,则:
如果满足L*P=M*N,也就是说,在这L个OFDM符号内恰好完成全部收发beam sweeping。此时,对于(1)(2)(5)(6),只需要知道其中3个参数即可,第四个参数可以推导得出。但是,等号两边的参数没有一一对应相等的关系,如L不一定等于M,P不一定等于N。因此,可以下发(1)(2)(5)(6)中的三个参数,从而UE根据这一关系来获知第四个参数。
如果L*P>M*N,则说明在L个OFDM符号内完成全部收发波束对链路质量后,还剩余若干划分时间分割。其中,L为能够满足这一关系的最小整数。 也即当M为3、N为7、P为6时,L为4。由于网路侧在配置L和P时,其是获知M、N、L、P的值,因此其在对L和P配置时肯定是根据M和N的情况进行合理的配置,尽可能的减少资源的浪费。在这样的前提下,如果网络侧此时下发的只有N(或M)、L、P的值,那么此时UE也是有可能可以根据L*P>M*N这一公式来推出M(或N)的值的。例如,N为7、P为6、L为4时,M可以为满足这个条件的最大整数,也即M=3。当然这里说M可以为满足这个条件的最大整数只是一种可能的情况,不排除会存在使UE求得错误的M和N的个数情况。也即如果网络侧设备想让UE通过这一等式来去获取M和N中的一个,那么其必须能够确保UE根据这一关系求得的值是正确的。因此,也可以下发(1)(2)(5)(6)中的三个参数,从而UE根据这一关系可能获知第四个参数。
当L*P>M*N时,可以理解的是,这种情况下即为基站和UE配置的波束测量次数超过了整个波束训练的总次数,这样也可能会存在如图10所示的省去空闲的时间分割的情况。在这种情况下,本公开实施例提供的方法还可以在这些空闲的时间分割中携带一些其它消息,例如在采用大子载波间隔技术进行波束训练的终端,可以在剩余的时间分割内传输控制消息或者数据或者其它参考信号,从而能够将这些时间分割充分利用上,提升资源的利用率。
对于(7),如果一个时刻仅能做单beam测量,也即单panel情况,则该参数可以省略。如果一个时刻要做多beam测量,也即多TRP或多panel情况,设在每个OFDM符号的划分时间分割中支持的CSI-RS资源(同一个CSI-RS资源内的多个CSI-RS端口使用相同的Tx beam)或CSI-RS端口数为Q,则说明同时可以进行Q个Tx beam测量。如网络侧有Q个panel,在同一时间每个panel可以产生一个Tx beam,即同时产生Q个Tx beam。
对于(8),如果是周期性波束训练,则需要该参数。如果是周期波束训练,则根据(8),周期性地进行Tx beam和Rx beam sweeping。
对于(9),如果是半持续波束训练,则可以在CSI-RS配置消息中配置该参数,该参数为激活信令,激活UE进行波束训练,直至UE接收到网络侧设备下发的去激活信令为止。在这两个信令之间,进行一次或多次Tx beam和Rx beam sweeping(如果进行多次,可以周期性进行也可以非周期性进行)。
当然这一激活信令以及非激活信令也可以不配置在CSI-RS配置消息中,还可以与CSI-RS配置消息不在同一个层的信令来下发(这里的层指的是RRC层、MAC层、物理层)本公开对此不作具体限定。
此外,网络侧还可以控制UE只进行一次性的波束训练,例如,可以发送触发信令(trigger)来进行一次性的Tx beam和Rx beam sweeping。由于这样的一次训练需要很快的下发触发信令,因此一般来说可以通过物理层来下发,从而UE获知之后立刻进行一次性的波束训练。
对于(10),可以通过显式信令或隐式通知UE。则UE在接收到指示波束扫描方式的测量模式的指示标识后,根据这一测量模式的指示标识选择进行首先做Rx波束扫描方式的测量或首先做Tx波束扫描方式的测量。
或者,该信令也可以省略,UE和网络侧可以预先约定好波束扫描的方式,例如先固定Tx beam且做Rx beam sweeping,再切换Tx beam实现Tx beam sweeping。
对于(11),由于网络侧可以规定UE在连续的OFDM符号内进行波束训练,也可以在离散的OFDM符号内进行波束训练,当为离散的情况下,则网络侧还需下发符号间隔数,该参数可以用于指示进行波束训练的OFDM符号相隔几个符号。例如,每隔两个OFDM符号进行训练,从而UE就根据这一参数可以在进行了一个OFDM符号的训练后,在第三个符号内继续训练。
需要说明的是,CSI-RS配置参数可以通过RRC信令、MAC CE、DCI等发送给UE。
由上述叙述可以看出,根据参数之间满足的关系针对不同情况的CSI-RS配置参数,UE根据CSI-RS配置信息获知发射波束的个数、接收波束的个数也可能有多种不同的方式,下面对其中几种可选的实施方式进行说明。
一、单panel的情况,也即上述参数(7)为缺省状态。
(a)若CSI-RS配置信息包括:Tx波束的个数和Rx波束的个数;则UE直接从CSI-RS配置信息中提取得到Tx波束的个数和Rx波束的个数;
(b)若CSI-RS配置信息包括:CSI-RS资源描述信息;还包括第一波束个数;第一波束个数为Tx波束的个数或Rx波束的个数中的一种;则UE根据时域重复次数、CSI-RS资源个数相关信息以及第一波束个数计算第二波束个 数;第二波束个数为Tx波束的个数或Rx波束的个数中的另一种;也即利用上述M*N=A*B的关系来获知Tx波束的个数以及Rx波束的个数;其中,A为CSI-RS资源个数相关信息,B为每个CSI-RS资源所关联的时域重复次数。
(c)若CSI-RS配置信息包括:CSI-RS资源描述信息,此时Rx波束的个数N为缺省状态,如果UE与网络侧事先约定好N为缺省时即意味着对所有的Rx波束进行检测,则UE将UE所拥有的Rx波束的个数作为Rx波束的个数,根据M*N=A*B的关系计算Tx波束的个数;
(d)若CSI-RS配置信息包括:所用OFDM符号的总个数L、符号划分信息以及第一波束个数;Tx波束的个数M与Rx波束的个数N中的一个;如果符号划分信息为波束测量次数(即每个OFDM符号划分的时间分割数P),那么直接根据L*P≥M*N这一关系来求得M和N中的另一个;如果符号划分信息为波束测量时长(即每个时间分割数的时长),那么先根据这一时长获取每个OFDM符号划分的时间分割数P,再根据L*P≥M*N这一关系来求得M和N中的另一个。如前文中所述,根据L*P≥M*N这一关系来求得M和N中的一个有可能出现计算有偏差的时候,因为如果网络侧设备想让UE通过这样的方式来获取其中一种波束的个数,那么其就需要确保UE通过这样的方式求得的波束个数是正确的,对于下面的根据L*P≥M*N这一关系来求得M和N中的一个情况也与这一情况相同,后文中不再赘述。
(e)若CSI-RS配置信息包括:所用OFDM符号的总个数、符号划分信息;这种情况与(d)类似,但首先可以根据约定认为此时需要对所有的Rx进行测量,因此UE可以将UE所拥有的Rx波束的个数作为Rx波束的个数,再根据L*P≥M*N这一关系计算Tx波束的个数。
对于上述所述(c)与(e)的情况,需要说明的是,如果N缺省则认为此时需要对所有的Rx进行测量,那么这一内容是需要在UE与网络侧事先约定好的。如果没有约定,则不能认为N缺省就是对所有的Rx进行测量。
二、多panel的情况,也即上述参数(7)下发的情况。
(a)若CSI-RS配置信息包括:一次波束测量中支持的CSI-RS资源或CSI-RS端口数D、CSI-RS资源描述信息以及Rx波束的个数N或Tx波束的个数M;则UE此时根据一次波束测量中支持的CSI-RS资源或CSI-RS端口数D、 每个CSI-RS资源的时域重复次数B、CSI-RS资源个数相关信息A以及N或M中的一个,计算N或M中的另一个;具体来说,此时应该满足(M/D)*N=AB;
(b)若CSI-RS配置信息包括:一次波束测量中支持的CSI-RS资源或CSI-RS端口数以及CSI-RS资源描述信息,也即N缺省的情况;则与(a)类似,UE将UE所拥有的Rx波束的个数作为Rx波束的个数,根据一次波束测量中支持的CSI-RS资源或CSI-RS端口数、时域重复次数、CSI-RS资源个数相关信息以及Rx波束的个数计算Tx波束的个数;
(c)若CSI-RS配置信息包括:一次波束测量中支持的CSI-RS资源或CSI-RS端口数、M和N之间的一个、所用OFDM符号的总个数以及符号划分信息;则UE根据符号划分信息获得波束测量次数P,再根据一次波束测量中支持的CSI-RS资源或CSI-RS端口数D、M和N之间的一个、所用OFDM符号的总个数L以及波束测量次数P,计算M和N之间的另一个。具体来说,此时应该满足L*P≥(M/D)*N;
(d)若CSI-RS配置信息包括:一次波束测量中支持的CSI-RS资源或CSI-RS端口数、所用OFDM符号的总个数以及符号划分信息,也即N缺省的情况;则与(c)类似,UE首先将UE所拥有的Rx波束的个数作为Rx波束的个数,根据一次波束测量中支持的CSI-RS资源或CSI-RS端口数、Rx波束的个数、所用OFDM符号的总个数以及符号划分信息计算Tx波束的个数。
总而言之,网络侧设备下发的CSI-RS配置信息可能针对不同的应用场景有许多不同的组合方式,网络侧设备可以根据实际需要下发最合适的配置信息组合,例如最节省信令资源的组合,UE一侧也可以根据组合的不同情况利用上述所述的参数之间的关系直接或间接的去获取测量参数完成整个测量的过程。从而这一配置参数下发以及UE与网络侧设备的模式可以多种多样,更好地适应于5G通信领域中的不同应用场景。
需要说明的是,上述一、二部分列举的几种方式仅为几种可选的实施方式,在实际应用中,本领域技术人员还可以根据各个参数之间的逻辑关系采用其他的方式来获取Tx波束的个数以及Rx波束的个数。
本公开实施例提供的波束测量处理方法中,UE一侧可以根据网络侧设备下发的配置与网路侧设备配合进行波束测量。在执行完一个time unit的测 量之后立刻进行下一个time unit的测量,从而无需满足一个time unit只能占用整数倍个OFDM符号这样的条件,可以在OFDM符号未结束之时就进入下一time unit,进而能够充分利用UE的最大能力,尽可能地压缩整个波束训练的时间,节约时间资源。同时UE一侧还可以根据下发参数的不同情况灵活的获取测量过程中的参数,还可以根据网路侧设备的指示进行不同模式的波束训练,增加了波束训练方式的多样性,从而更好地适应于5G通信领域。
第三方面,本公开实施例提供了一种波束测量处理装置,如图18所示,包括:第一时刻确定单元301和发射波束控制单元302;
所述第一时刻确定单元301,用于在进行第一模式的波束对的链路质量测量时,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
所述发射波束控制单元302,用于自所述第一完成时刻起,发射下一个发射波束;
和/或,
所述第一时刻确定单元301,用于在进行第二模式的波束对的链路质量测量时,确定网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
所述发射波束控制单元302,用于自所述第二完成时刻起,进行下一轮的发射波束轮换。
可选的,所述第一模式的波束对的链路质量测量,包括:在每一次发射波束切换之前,各个接收波束进行轮换,并对轮换所组成的各个波束对的链路质量进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个发射波束,进行下一轮的接收波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量;
所述第二模式的波束对的链路质量测量,包括:在每一次接收波束切换之前,各个发射波束进行轮换,并对轮换所形成的各个波束对的链路质量进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个接收波束,进行下一轮的发射波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量。
可选的,还包括:第一波束个数确定单元,用于在波束对的链路质量测量之前,确定发射波束的个数和接收波束的个数,并根据所述发射波束的个数确定对应的各个发射波束;
符号划分单元,用于根据移动终端的最大划分时间分割数,确定符号划分信息;
配置信息下发单元,用于将CSI-RS配置信息发送至移动终端,所述CSI-RS配置信息用于指示发射波束的个数、接收波束的个数以及所述符号划分信息;
所述第一时刻确定单元301,用于确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻,包括:
根据所述符号划分信息以及接收波束的个数,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
所述确定针对当前的接收波束完成一轮发射波束轮换的第二完成时刻,包括:
根据所述符号划分信息以及发射波束的个数,确定针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
其中,所述最大划分时间分割数是指在满足设定条件时移动终端所支持的对OFDM符号划分的时间分割的最大个数;所述设定条件包括:在每个时间分割内,移动终端能够完成至少一次波束对的链路质量测量;所述符号划分信息为在一个OFDM符号内需要划分的时间分割的个数或时间分割的时长。
可选的,所述CSI-RS配置信息包括以下至少一项:
所述符号划分信息、发射波束的个数、接收波束的个数、CSI-RS资源配置相关信息、CSI-RS资源个数相关信息、每个CSI-RS资源所关联的时域重复次数、所用OFDM符号的总个数、测量模式的指示标识、符号间隔数、CSI-RS周期、波束选择方式指示信息、波束对的链路质量测量激活信息以及在每个时间分割中支持的CSI-RS资源或CSI-RS端口数;
所述CSI-RS资源配置相关信息包括:CSI-RS资源元素图样以及CSI-RS天线端口数。
可选的,所述配置信息下发单元,用于将CSI-RS配置信息发送至移动终 端,包括:
向多个移动终端发送相同的CSI-RS配置信息;
所述最大划分时间分割数为所述多个移动终端对应的最大划分时间分割数中的最小值。
本公开实施例提供的波束测量处理装置中,在第一时刻确定单元301确定完成一轮接收波束轮换后,发射波束控制单元302发射下一个发射波束;或在第一时刻确定单元301确定完成一轮发射波束轮换后发射波束控制单元302进行下一轮发射波束的轮换,从而当一个time unit已经完成但还未到当前所在的OFDM符号的结束时间时,网络侧设备无需等待当前OFDM符号结束,也即无需满足一个time unit必须占用整数倍OFDM符号这样的条件,可以为非整数倍的OFDM符号,可以直接进行下一个time unit的波束测量,从而可以充分利用UE的最大测量能力,在UE能力能够支持的情况下最大限度地压缩整个波束测量的时间,有效节约时间资源,以使得更多资源可用于数据传输。
本公开实施例还提供一种网络侧设备,包括处理器,存储器,存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述波束扫描处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述波束扫描处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
第四方面,本公开实施例提供了一种波束测量处理装置,应用于移动终端,参见图19,包括:第二时刻确定单元401和接收波束控制单元402;
所述第二时刻确定单元401,用于在进行第一模式的波束对的链路质量测量时,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
所述接收波束控制单元402,用于自所述第一完成时刻起,进行下一轮的接收波束轮换;
和/或,
所述第二时刻确定单元401,用于在进行第二模式的波束对的链路质量测量时,确定网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
所述接收波束控制单元402,用于自所述第二完成时刻起,切换至下一个接收波束进行测量。
可选的,所述第一模式的波束对的链路质量测量,包括:在每一次发射波束切换之前,各个接收波束进行轮换,并对轮换所形成的各个波束对进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个发射波束,进行下一轮的接收波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量;
所述第二模式的波束对的链路质量测量,包括:在每一次接收波束切换之前,各个发射波束进行轮换,并对轮换所形成的各个波束对进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个接收波束,进行下一轮的发射波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量。
可选的,还包括:
第二波束个数确定单元,用于在波束对的链路质量测量之前,接收网络侧设备发送的CSI-RS配置信息;
所述第二时刻确定单元401,用于确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻,包括:
根据所述符号划分信息以及接收波束的个数,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
所述第二时刻确定单元401,用于确定针对当前的接收波束完成一轮发射波束轮换的第二完成时刻,包括:
根据所述符号划分信息以及发射波束的个数,确定针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
其中,所述CSI-RS配置信息用于指示发射波束的个数、接收波束的个数以及所述符号划分信息;所述符号划分信息根据移动终端的最大划分时间分割数确定;所述最大划分时间分割数是指在满足设定条件时移动终端所支持的对OFDM符号划分的时间分割的最大个数;所述设定条件包括:在每个时间分割内,移动终端能够完成至少一次波束对的链路质量测量;所述符号划分信息为在一个OFDM符号内需要划分的时间分割的个数或时间分割的时长。
可选的,若所述CSI-RS配置信息包括:发射波束的个数和接收波束的个数;
所述第二波束个数确定单元,用于在波束对的链路质量测量之前,从所述CSI-RS配置信息中提取发射波束的个数和接收波束的个数。
可选的,若所述CSI-RS配置信息包括:每个CSI-RS资源所关联的时域重复次数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个,以及第一波束的个数;所述第一波束为发射波束或接收波束中的一种;
所述第二波束个数确定单元,用于在波束对的链路质量测量之前,根据所述时域重复次数、所述CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及第一波束的个数,计算第二波束的个数;
其中,所述第二波束为发射波束或接收波束中的另一种。
可选的,若所述CSI-RS配置信息包括:每个CSI-RS资源所关联的时域重复次数和CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个;
所述第二波束个数确定单元,用于在波束对的链路质量测量之前,将移动终端所拥有的接收波束的个数确定为所述接收波束的个数;
根据所述每个CSI-RS资源所关联的时域重复次数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及所述接收波束的个数,计算所述发射波束的个数。
可选的,若所述CSI-RS配置信息包括:所用OFDM符号的总个数、所述符号划分信息以及第三波束的个数;所述第三波束为接收波束或发射波束中的一种;
所述第二波束个数确定单元,用于在波束对的链路质量测量之前,根据所述所用OFDM符号的总个数、所述符号划分信息以及所述第三波束的个数, 计算第四波束的个数;
其中,所述第四波束为接收波束或发射波束中的另一种。
可选的,若所述CSI-RS配置信息包括:所用OFDM符号的总个数、所述符号划分信息;
所述第二波束个数确定单元,用于在波束对的链路质量测量之前,将移动终端所拥有的接收波束的个数确定为所述接收波束的个数;
根据所述所用OFDM符号的总个数以及所述符号划分信息,计算所述发射波束的个数。
可选的,若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个、每个CSI-RS资源所关联的时域重复次数以及第五波束的个数;所述第五波束为接收波束或发射波束中的一种;
所述第二波束个数确定单元,用于在波束对的链路质量测量之前,根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、所述每个CSI-RS资源所关联的时域重复次数、所述CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及所述第五波束的个数,计算第六波束的个数;
其中,所述第六波束为接收波束或发射波束中的另一种。
可选的,若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个,以及每个CSI-RS资源所关联的时域重复次数;
所述第二波束个数确定单元,用于在波束对的链路质量测量之前,将移动终端所拥有的接收波束的个数确定为所述接收波束的个数;
根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及每个CSI-RS资源所关联的时域重复次数以及所述接收波束的个数,计算所述发射波束的个数。
可选的,若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、第七波束的个数、所用OFDM符号的总个数以及所述符号划分信息;所述第七波束为接收波束或发射波束中的一种;
所述第二波束个数确定单元,用于在波束对的链路质量测量之前,根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、所述第七波束的个数、所用OFDM符号的总个数以及所述符号划分信息,计算第八波束的个数;
其中,所述第八波束为接收波束或发射波束中的另一种。
可选的,若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、所用OFDM符号的总个数以及所述符号划分信息;
所述第二波束个数确定单元,用于在波束对的链路质量测量之前,将移动终端所拥有的接收波束的个数作为所述接收波束的个数,根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、接收波束的个数、所用OFDM符号的总个数以及所述符号划分信息,计算所述发射波束的个数。
可选的,若所述CSI-RS配置信息还包括:测量模式的指示标识;
所述第二波束个数确定单元,用于在波束对的链路质量测量之前,
根据所述测量模式的指示标识,选择波束对的链路质量的测量模式;
其中,所述测量模式包括所述第一模式和所述第二模式。
可选的,若所述CSI-RS配置信息还包括:波束对的链路质量测量激活信息;
所述装置还包括:
第一测量控制模块,用于根据所述波束对的链路质量测量激活信息的指示,进行波束对的链路质量测量;若接收到网络侧设备下发的波束对的链路质量测量去激活信息,则停止波束对的链路质量测量。
可选的,若所述CSI-RS配置信息还包括:CSI-RS周期;
所述装置还包括:
第二测量控制模块,用于在进行波束对的链路质量测量时,按所述CSI-RS周期指示的周期,进行波束对的链路质量测量。
可选的,若所述CSI-RS配置信息还包括:符号间隔数;
所述装置还包括:
第三测量控制模块,用于在进行波束对的链路质量测量时,按照所述符号间隔数,在离散的OFDM符号内进行波束对的链路质量测量。
可选的,还包括:
第四测量控制模块,用于若所述接收波束的个数小于移动终端拥有的接收波束的个数,则选择与所述接收波束的个数相同数目的接收波束进行波束测量;
或,
第五测量控制模块,用于若所述CSI-RS配置信息还包括波束选择方式指示信息,则根据所述波束选择方式指示信息,选择与所述接收波束的个数相同数目的接收波束进行波束测量。
可选的,所述选择与所述接收波束的个数相同数目的接收波束进行波束测量,包括:
选择上一次波束对的链路质量测量中的最优接收波束及其相邻的若干个接收波束作为目标接收波束,进行波束测量;
或,选择上一次波束对的链路质量测量中的最优接收波束以及与所述最优接收波束等间隔的若干个接收波束作为目标接收波束,进行波束测量。
本公开实施例提供的波束测量处理装置中,在第二时刻确定单元确定完成一轮接收波束轮换后,接收波束控制单元进行下一轮的接收波束轮换,或在第二时刻确定单元确定完成一轮发送波束轮换后接收波束控制单元切换至下一个接收波束进行测量,从而当一个time unit已经完成但还未到当前所在的OFDM符号的结束时间时,UE无需等待当前OFDM符号结束,也即无需满足一个time unit必须占用整数倍个OFDM符号这样的条件,可以占用非整数倍个OFDM符号直接进行下一个time unit的波束测量,从而可以充分利用UE的最大测量能力,在UE能力能够支持的情况下最大限度地压缩整个波束测量的时间,有效节约时间资源,以使得更多资源可用于数据传输。
由于第三方面以及第四方面所介绍的波束测量处理装置为可以执行本公开实施例中的波束测量处理的装置,故而基于本公开实施例中所介绍的波束测量处理的方法,本领域所属技术人员能够了解本实施例的波束测量处理装置的具体实施方式以及其各种变化形式,所以在此对于该波束测量处理装置如何实现本公开实施例中的消息发送方法不再详细介绍。只要本领域所属技术人员实施本公开实施例中消息发送方法所采用的装置,都属于本申请所欲保护的范围。
本公开实施例还提供一种终端设备,包括处理器,存储器,存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述波束扫描处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述波束扫描处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
请参阅图20,图20是本公开实施例应用的网络侧设备的结构图,能够实现第一方面所述的方法的细节,并达到相同的效果。如图20所示,网络侧设备2000包括:处理器2001、收发机2002、存储器2003、用户接口2004和总线接口,其中:
处理器2001,用于读取存储器2003中的程序;在本公开实施例中,网络侧设备2000还包括:存储在存储器上2003并可在处理器2001上运行的计算机程序,计算机程序被处理器2001执行时实现如下步骤:
在进行第一模式的波束对的链路质量测量时,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
自所述第一完成时刻起,发射下一个发射波束;
和/或,
在进行第二模式的波束对的链路质量测量时,确定网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
自所述第二完成时刻起,进行下一轮的发射波束轮换。
在图20中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器2001代表的一个或多个处理器和存储器2003代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机2002可以是多个元件,即包 括发送机和接收机,提供用于在传输介质上与各种其他装置通信的单元。针对不同的用户设备,用户接口2004还可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器2001负责管理总线架构和通常的处理,存储器2003可以存储处理器2001在执行操作时所使用的数据。
可选的,计算机程序被处理器2001执行时还可实现如下步骤:
其中,所述第一模式的波束对的链路质量测量,包括:在每一次发射波束切换之前,各个接收波束进行轮换,并对轮换所组成的各个波束对的链路质量进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个发射波束,进行下一轮的接收波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的质量测量;
所述第二模式的波束对的链路质量测量,包括:在每一次接收波束切换之前,各个发射波束进行轮换,并对轮换所形成的各个波束对的链路质量进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个接收波束,进行下一轮的发射波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量。
可选的,在波束对的链路质量测量之前,计算机程序被处理器2001执行时还可实现如下步骤:
确定发射波束的个数和接收波束的个数,并根据所述发射波束的个数确定对应的各个发射波束;
根据移动终端的最大划分时间分割数,确定符号划分信息;
将CSI-RS配置信息发送至移动终端,所述CSI-RS配置信息用于指示发射波束的个数、接收波束的个数以及所述符号划分信息;
所述确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻,包括:
根据所述符号划分信息以及接收波束的个数,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
所述确定针对当前的接收波束完成一轮发射波束轮换的第二完成时刻,包括:
根据所述符号划分信息以及发射波束的个数,确定针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
其中,所述最大划分时间分割数是指在满足设定条件时移动终端所支持的对OFDM符号划分的时间分割的最大个数;所述设定条件包括:在每个时间分割内,移动终端能够完成至少一次波束对的链路质量测量;所述符号划分信息为在一个OFDM符号内需要划分的时间分割的个数或时间分割的时长;
所述CSI-RS配置信息包括以下至少一项:
所述符号划分信息、发射波束的个数、接收波束的个数、CSI-RS资源配置相关信息、CSI-RS资源个数相关信息、每个CSI-RS资源所关联的时域重复次数、所用OFDM符号的总个数、测量模式的指示标识、符号间隔数、CSI-RS周期、波束选择方式指示信息、波束对的链路质量测量激活信息以及在每个时间分割中支持的CSI-RS资源或CSI-RS端口数;
所述CSI-RS资源配置相关信息包括:CSI-RS资源元素图样以及CSI-RS天线端口数。
所述将CSI-RS配置信息发送至移动终端,包括:
向多个移动终端发送相同的CSI-RS配置信息;
所述最大划分时间分割数为所述多个移动终端对应的最大划分时间分割数中的最小值。
本公开实施例的网络侧设备中,在确定完成一轮接收波束轮换后发射下一个发射波束,或在确定完成一轮发送波束轮换后进行下一轮发射波束的轮换,从而当一个time unit已经完成但还未到当前所在的OFDM符号的结束时间时,网络侧设备无需等待当前OFDM符号结束,也即无需满足一个time unit必须占用整数倍OFDM个符号这样的条件,可以直接进行下一个time unit的波束测量,从而可以充分利用UE的最大测量能力,在UE能力能够支持的情况下最大限度地压缩整个波束测量的时间,有效节约时间资源,以使得更多资源可用于数据传输。
图21是本公开另一个实施例的终端设备的框图。图21所示的终端设备2100包括:至少一个处理器2101、存储器2102、至少一个网络接口2104和 其他用户接口2103。终端设备2100中的各个组件通过总线系统2105耦合在一起。可理解,总线系统2105用于实现这些组件之间的连接通信。总线系统2105除包括数据总线之外,还包括电源总线、控制总线和状态信号总线。但是为了清楚说明起见,在图21中将各种总线都标为总线系统2105。
其中,用户接口2103可以包括显示器、键盘或者点击设备(例如,鼠标,轨迹球(trackball)、触感板或者触摸屏等。
可以理解,本公开实施例中的存储器2102可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本文描述的系统和方法的存储器2102旨在包括但不限于这些和任意其它适合类型的存储器。
在一些实施方式中,存储器2102存储了如下的元素,可执行模块或者数据结构,或者他们的子集,或者他们的扩展集:操作系统21021和应用程序21022。
其中,操作系统21021,包含各种系统程序,例如框架层、核心库层、驱动层等,用于实现各种基础业务以及处理基于硬件的任务。应用程序21022,包含各种应用程序,例如媒体播放器(Media Player)、浏览器(Browser)等,用于实现各种应用业务。实现本公开实施例方法的程序可以包含在应用程序21022中。
在本公开实施例中,移动终端2100还包括:存储在存储器上2102并可 在处理器2102上运行的计算机程序,具体地,可以是应用程序21022中的计算机程序,计算机程序被处理器2102执行时实现如下步骤:在进行第一模式的波束对的链路质量测量时,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;自所述第一完成时刻起,进行下一轮的接收波束轮换;和/或,在进行第二模式的波束对的链路质量测量时,确定网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;自所述第二完成时刻起,切换至下一个接收波束进行测量。
上述本公开实施例揭示的方法可以应用于处理器2101中,或者由处理器2101实现。处理器2101可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法的各步骤可以通过处理器2101中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器2101可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本公开实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本公开实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2102,处理器2101读取存储器2102中的信息,结合其硬件完成上述方法的步骤。
可以理解的是,本文描述的这些实施例可以用硬件、软件、固件、中间件、微码或其组合来实现。对于硬件实现,处理单元可以实现在一个或多个专用集成电路(Application Specific Integrated Circuits,ASIC)、数字信号处理器(Digital Signal Processing,DSP)、数字信号处理设备(DSP Device,DSPD)、可编程逻辑设备(Programmable Logic Device,PLD)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)、通用处理器、控制器、微控制器、微处理器、用于执行本申请所述功能的其它电子单元或其组 合中。
对于软件实现,可通过执行本文所述功能的模块(例如过程、函数等)来实现本文所述的技术。软件代码可存储在存储器中并通过处理器执行。存储器可以在处理器中或在处理器外部实现。
其中,所述第一模式的波束对的链路质量测量,包括:在每一次发射波束切换之前,各个接收波束进行轮换,并对轮换所形成的各个波束对进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个发射波束,进行下一轮的接收波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量;
所述第二模式的波束对的链路质量测量,包括:在每一次接收波束切换之前,各个发射波束进行轮换,并对轮换所形成的各个波束对进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个接收波束,进行下一轮的发射波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量。
可选地,在波束对的链路质量测量之前,所述处理器2101还用于执行以下步骤:
接收网络侧设备发送的CSI-RS配置信息;
所述确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻,包括:
根据所述符号划分信息以及接收波束的个数,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
所述确定针对当前的接收波束完成一轮发射波束轮换的第二完成时刻,包括:
根据所述符号划分信息以及发射波束的个数,确定针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
其中,所述CSI-RS配置信息用于指示发射波束的个数、接收波束的个数以及所述符号划分信息;所述符号划分信息根据移动终端的最大划分时间分割数确定;所述最大划分时间分割数是指在满足设定条件时移动终端所支持的对OFDM符号划分的时间分割的最大个数;所述设定条件包括:在每个时间 分割内,移动终端能够完成至少一次波束对的链路质量测量;所述符号划分信息为在一个OFDM符号内需要划分的时间分割的个数或时间分割的时长。
可选地,若所述CSI-RS配置信息包括:发射波束的个数和接收波束的个数;
所述处理器2101还用于执行以下步骤:从所述CSI-RS配置信息中提取发射波束的个数和接收波束的个数。
若所述CSI-RS配置信息包括:每个CSI-RS资源所关联的时域重复次数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个,以及第一波束的个数;所述第一波束为发射波束或接收波束中的一种;
则在波束对的链路质量测量之前,所述处理器2101还用于执行以下步骤:
根据所述时域重复次数、所述CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及第一波束的个数,计算第二波束的个数;
其中,所述第二波束为发射波束或接收波束中的另一种。
若所述CSI-RS配置信息包括:每个CSI-RS资源所关联的时域重复次数和CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个;
则在波束对的链路质量测量之前,所述处理器2101还用于执行以下步骤:
将移动终端所拥有的接收波束的个数确定为所述接收波束的个数;
根据所述每个CSI-RS资源所关联的时域重复次数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及所述接收波束的个数,计算所述发射波束的个数。
若所述CSI-RS配置信息包括:所用OFDM符号的总个数、所述符号划分信息以及第三波束的个数;所述第三波束为接收波束或发射波束中的一种;
则在波束对的链路质量测量之前,所述处理器2101还用于执行以下步骤:
根据所述所用OFDM符号的总个数、所述符号划分信息以及所述第三波束的个数,计算第四波束的个数;
其中,所述第四波束为接收波束或发射波束中的另一种。
若所述CSI-RS配置信息包括:所用OFDM符号的总个数、所述符号划分信息;
则在波束对的链路质量测量之前,所述处理器2101还用于执行以下步骤:
将移动终端所拥有的接收波束的个数确定为所述接收波束的个数;
根据所述所用OFDM符号的总个数以及所述符号划分信息,计算所述发射波束的个数。
若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个、每个CSI-RS资源所关联的时域重复次数以及第五波束的个数;所述第五波束为接收波束或发射波束中的一种;
则在波束对的链路质量测量之前,所述处理器2101还用于执行以下步骤:
根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、所述每个CSI-RS资源所关联的时域重复次数、所述CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及所述第五波束的个数,计算第六波束的个数;
其中,所述第六波束为接收波束或发射波束中的另一种。
若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个,以及每个CSI-RS资源所关联的时域重复次数;
则在波束对的链路质量测量之前,所述处理器2101还用于执行以下步骤:
将移动终端所拥有的接收波束的个数确定为所述接收波束的个数;
根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及每个CSI-RS资源所关联的时域重复次数以及所述接收波束的个数,计算所述发射波束的个数。
若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、第七波束的个数、所用OFDM符号的总个数以及所述符号划分信息;所述第七波束为接收波束或发射波束中的一种;
则在波束对的链路质量测量之前,所述处理器2101还用于执行以下步骤:
根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、所述第七波束的个数、所用OFDM符号的总个数以及所述符号划分信息,计算第八波束的个数;
其中,所述第八波束为接收波束或发射波束中的另一种。
若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、所用OFDM符号的总个数以及所述符号划分信息;
则在波束对的链路质量测量之前,所述处理器2101还用于执行以下步骤:
将移动终端所拥有的接收波束的个数作为所述接收波束的个数,根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、接收波束的个数、所用OFDM符号的总个数以及所述符号划分信息,计算所述发射波束的个数。
若所述CSI-RS配置信息还包括:测量模式的指示标识;
则在波束对的链路质量测量之前,所述处理器2101还用于执行以下步骤:
根据所述测量模式的指示标识,选择波束对的链路质量的测量模式;
其中,所述测量模式包括所述第一模式和所述第二模式。
若所述CSI-RS配置信息还包括:波束对的链路质量测量激活信息;
所述处理器2101还用于执行以下步骤:则根据所述波束对的链路质量测量激活信息的指示,进行波束对的链路质量测量;
若接收到网络侧设备下发的波束对的链路质量测量去激活信息,则停止波束对的链路质量测量。
若所述CSI-RS配置信息还包括:CSI-RS周期;
则在进行波束对的链路质量测量时,所述处理器2101还用于执行以下步骤:
按所述CSI-RS周期指示的周期,进行波束对的链路质量测量。
若所述CSI-RS配置信息还包括:符号间隔数;
则在进行波束对的链路质量测量时,所述处理器2101还用于执行以下步骤:
按照所述符号间隔数,在离散的OFDM符号内进行波束对的链路质量测量。
所述处理器2101还用于执行以下步骤:
若所述接收波束的个数小于移动终端拥有的接收波束的个数,则选择与所述接收波束的个数相同数目的接收波束进行波束测量;
或,若所述CSI-RS配置信息还包括波束选择方式指示信息,则根据所述波束选择方式指示信息,选择与所述接收波束的个数相同数目的接收波束进 行波束测量。
所述选择与所述接收波束的个数相同数目的接收波束进行波束测量,包括:
选择上一次波束对的链路质量测量中的最优接收波束及其相邻的若干个接收波束作为目标接收波束,进行波束测量;
或,选择上一次波束对的链路质量测量中的最优接收波束以及与所述最优接收波束等间隔的若干个接收波束作为目标接收波束,进行波束测量。
终端设备2100能够实现上述实现的各个过程,为避免重复,这里不再赘述。
本公开实施例提供的终端设备中,在确定完成一轮接收波束轮换后进行下一轮的接收波束轮换,或在确定完成一轮发射波束轮换后切换至下一个接收波束进行测量,从而当一个time unit已经完成但还未到当前所在的OFDM符号的结束时间时,UE无需等待当前OFDM符号结束,也即无需满足一个time unit必须占用整数倍OFDM个符号这样的条件,可以直接进行下一个time unit的波束测量,从而可以充分利用UE的最大测量能力,在UE能力能够支持的情况下最大限度地压缩整个波束测量的时间,有效节约时间资源,以使得更多资源可用于数据传输。
本公开实施例还提供一种终端设备,包括处理器,存储器,存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现上述波束扫描处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本公开实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现上述波束扫描处理方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结 合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本公开各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开的技术方案本质上或者说对相关技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本公开各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限 于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (50)

  1. 一种波束测量处理方法,应用于网络侧设备,包括:
    在进行第一模式的波束对的链路质量测量时,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
    自所述第一完成时刻起,发射下一个发射波束;
    和/或,
    在进行第二模式的波束对的链路质量测量时,确定所述网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
    自所述第二完成时刻起,进行下一轮的发射波束轮换。
  2. 根据权利要求1所述的方法,其中,
    所述第一模式的波束对的链路质量测量,包括:在每一次发射波束切换之前,各个接收波束进行轮换,并对轮换所组成的各个波束对的链路质量进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个发射波束,进行下一轮的接收波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量;
    所述第二模式的波束对的链路质量测量,包括:在每一次接收波束切换之前,各个发射波束进行轮换,并对轮换所形成的各个波束对的链路质量进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个接收波束,进行下一轮的发射波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量。
  3. 根据权利要求2所述的处理方法,其中,在波束对的链路质量测量之前,所述方法还包括:
    确定所述发射波束的个数和所述接收波束的个数,并根据所述发射波束的个数确定对应的各个发射波束;
    根据所述移动终端的最大划分时间分割数,确定符号划分信息;
    将CSI-RS配置信息发送至所述移动终端,所述CSI-RS配置信息用于指示所述发射波束的个数、所述接收波束的个数以及所述符号划分信息;
    所述确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完 成时刻,包括:
    根据所述符号划分信息以及所述接收波束的个数,确定所述移动终端针对所述当前的发射波束完成一轮接收波束轮换的所述第一完成时刻;
    所述确定针对当前的接收波束完成一轮发射波束轮换的第二完成时刻,包括:
    根据所述符号划分信息以及所述发射波束的个数,确定针对所述当前的接收波束完成一轮发射波束轮换的所述第二完成时刻;
    其中,所述最大划分时间分割数是指在满足设定条件时移动终端所支持的对OFDM符号划分的时间分割的最大个数;所述设定条件包括:在每个时间分割内,所述移动终端能够完成至少一次波束对的链路质量测量;所述符号划分信息为在一个OFDM符号内需要划分的时间分割的个数或时间分割的时长。
  4. 根据权利要求3所述的方法,其中,所述CSI-RS配置信息包括以下至少一项:
    所述符号划分信息、所述发射波束的个数、所述接收波束的个数、CSI-RS资源配置相关信息、CSI-RS资源个数相关信息、每个CSI-RS资源所关联的时域重复次数、所用OFDM符号的总个数、测量模式的指示标识、符号间隔数、CSI-RS周期、波束选择方式指示信息、波束对的链路质量测量激活信息以及在每个时间分割中支持的CSI-RS资源或CSI-RS端口数;
    所述CSI-RS资源配置相关信息包括:CSI-RS资源元素图样以及CSI-RS天线端口数。
  5. 根据权利要求3所述的方法,其中,所述将CSI-RS配置信息发送至移动终端,包括:
    向多个所述移动终端发送相同的CSI-RS配置信息;
    所述最大划分时间分割数为所述多个移动终端对应的最大划分时间分割数中的最小值。
  6. 一种波束测量处理方法,应用于移动终端,包括:
    在进行第一模式的波束对的链路质量测量时,确定所述移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
    自所述第一完成时刻起,进行下一轮的接收波束轮换;
    和/或,
    在进行第二模式的波束对的链路质量测量时,确定网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
    自所述第二完成时刻起,切换至下一个接收波束进行测量。
  7. 根据权利要求6所述的方法,其中,
    所述第一模式的波束对的链路质量测量,包括:在每一次发射波束切换之前,各个接收波束进行轮换,并对轮换所形成的各个波束对进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个发射波束,进行下一轮的接收波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量;
    所述第二模式的波束对的链路质量测量,包括:在每一次接收波束切换之前,各个发射波束进行轮换,并对轮换所形成的各个波束对进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个接收波束,进行下一轮的发射波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量。
  8. 根据权利要求7所述的方法,其中,在所述波束对的链路质量测量之前,所述方法还包括:
    接收所述网络侧设备发送的CSI-RS配置信息;
    所述确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻,包括:
    根据符号划分信息以及所述接收波束的个数,确定所述移动终端针对所述当前的发射波束完成一轮接收波束轮换的所述第一完成时刻;
    所述确定针对当前的接收波束完成一轮发射波束轮换的第二完成时刻,包括:
    根据所述符号划分信息以及所述发射波束的个数,确定针对所述当前的接收波束完成一轮发射波束轮换的所述第二完成时刻;
    其中,所述CSI-RS配置信息用于指示所述发射波束的个数、所述接收波束的个数以及所述符号划分信息;所述符号划分信息根据所述移动终端的最 大划分时间分割数确定;所述最大划分时间分割数是指在满足设定条件时所述移动终端所支持的对OFDM符号划分的时间分割的最大个数;所述设定条件包括:在每个时间分割内,所述移动终端能够完成至少一次波束对的链路质量测量;所述符号划分信息为在一个OFDM符号内需要划分的时间分割的个数或时间分割的时长。
  9. 根据权利要求8所述的方法,其中,若所述CSI-RS配置信息包括:所述发射波束的个数和所述接收波束的个数;
    则在所述波束对的链路质量测量之前,所述方法还包括:
    从所述CSI-RS配置信息中提取所述发射波束的个数和所述接收波束的个数。
  10. 根据权利要求8所述的方法,其中,若所述CSI-RS配置信息包括:每个CSI-RS资源所关联的时域重复次数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个,以及第一波束的个数;所述第一波束为发射波束或接收波束中的一种;
    则在所述波束对的链路质量测量之前,所述方法还包括:
    根据所述时域重复次数、所述CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及所述第一波束的个数,计算第二波束的个数;
    其中,所述第二波束为发射波束或接收波束中的另一种。
  11. 根据权利要求8所述的方法,其中,若所述CSI-RS配置信息包括:每个CSI-RS资源所关联的时域重复次数和CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个;
    则在所述波束对的链路质量测量之前,所述方法还包括:
    将所述移动终端所拥有的接收波束的个数确定为所述接收波束的个数;
    根据所述每个CSI-RS资源所关联的时域重复次数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及所述接收波束的个数,计算所述发射波束的个数。
  12. 根据权利要求8所述的方法,其中,若所述CSI-RS配置信息包括:所用OFDM符号的总个数、所述符号划分信息以及第三波束的个数;所述第三波束为接收波束或发射波束中的一种;
    则在所述波束对的链路质量测量之前,所述方法还包括:
    根据所述所用OFDM符号的总个数、所述符号划分信息以及所述第三波束的个数,计算第四波束的个数;
    其中,所述第四波束为接收波束或发射波束中的另一种。
  13. 根据权利要求8所述的方法,其中,若所述CSI-RS配置信息包括:所用OFDM符号的总个数、所述符号划分信息;
    则在所述波束对的链路质量测量之前,所述方法还包括:
    将所述移动终端所拥有的接收波束的个数确定为所述接收波束的个数;
    根据所述所用OFDM符号的总个数以及所述符号划分信息,计算所述发射波束的个数。
  14. 根据权利要求8所述的方法,其中,若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个、每个CSI-RS资源所关联的时域重复次数以及第五波束的个数;所述第五波束为接收波束或发射波束中的一种;
    则在所述波束对的链路质量测量之前,所述方法还包括:
    根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、所述每个CSI-RS资源所关联的时域重复次数、所述CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及所述第五波束的个数,计算第六波束的个数;
    其中,所述第六波束为接收波束或发射波束中的另一种。
  15. 根据权利要求8所述的方法,其中,若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个,以及每个CSI-RS资源所关联的时域重复次数;
    则在所述波束对的链路质量测量之前,所述方法还包括:
    将所述移动终端所拥有的接收波束的个数确定为所述接收波束的个数;
    根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及每个CSI-RS资 源所关联的时域重复次数以及所述接收波束的个数,计算所述发射波束的个数。
  16. 根据权利要求8所述的方法,其中,若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、第七波束的个数、所用OFDM符号的总个数以及所述符号划分信息;所述第七波束为接收波束或发射波束中的一种;
    则在所述波束对的链路质量测量之前,所述方法还包括:
    根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、所述第七波束的个数、所用OFDM符号的总个数以及所述符号划分信息,计算第八波束的个数;
    其中,所述第八波束为接收波束或发射波束中的另一种。
  17. 根据权利要求8所述的方法,其中,若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、所用OFDM符号的总个数以及所述符号划分信息;
    则在所述波束对的链路质量测量之前,所述方法还包括:
    将所述移动终端所拥有的接收波束的个数作为所述接收波束的个数,根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、接收波束的个数、所用OFDM符号的总个数以及所述符号划分信息,计算所述发射波束的个数。
  18. 根据权利要求8所述的方法,其中,若所述CSI-RS配置信息还包括:测量模式的指示标识;
    则在所述波束对的链路质量测量之前,所述方法还包括:
    根据所述测量模式的指示标识,选择波束对的链路质量的测量模式;
    其中,所述测量模式包括所述第一模式和所述第二模式。
  19. 根据权利要求8所述的方法,其中,若所述CSI-RS配置信息还包括:波束对的链路质量测量激活信息;
    则根据所述波束对的链路质量测量激活信息的指示,进行波束对的链路质量测量;
    若接收到所述网络侧设备下发的波束对的链路质量测量去激活信息,则 停止所述波束对的链路质量测量。
  20. 根据权利要求8所述的方法,其中,若所述CSI-RS配置信息还包括:CSI-RS周期;
    则在进行所述波束对的链路质量测量时,所述方法还包括:
    按所述CSI-RS周期指示的周期,进行所述波束对的链路质量测量。
  21. 根据权利要求8所述的方法,其中,若所述CSI-RS配置信息还包括:符号间隔数;
    则在进行所述波束对的链路质量测量时,所述方法还包括:
    按照所述符号间隔数,在离散的OFDM符号内进行所述波束对的链路质量测量。
  22. 根据权利要求8所述的方法,还包括:
    若所述接收波束的个数小于所述移动终端拥有的接收波束的个数,则选择与所述接收波束的个数相同数目的接收波束进行波束测量;
    或,若所述CSI-RS配置信息还包括波束选择方式指示信息,则根据所述波束选择方式指示信息,选择与所述接收波束的个数相同数目的接收波束进行波束测量。
  23. 根据权利要求22所述的方法,其中,所述选择与所述接收波束的个数相同数目的接收波束进行波束测量,包括:
    选择上一次波束对的链路质量测量中的最优接收波束及其相邻的若干个接收波束作为目标接收波束,进行波束测量;
    或,选择上一次波束对的链路质量测量中的最优接收波束以及与所述最优接收波束等间隔的若干个接收波束作为目标接收波束,进行波束测量。
  24. 一种波束测量处理装置,应用于网络侧设备,包括:第一时刻确定单元和发射波束控制单元;
    所述第一时刻确定单元,用于在进行第一模式的波束对的链路质量测量时,确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
    所述发射波束控制单元,用于自所述第一完成时刻起,发射下一个发射波束;
    和/或,
    所述第一时刻确定单元,用于在进行第二模式的波束对的链路质量测量时,确定所述网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
    所述发射波束控制单元,用于自所述第二完成时刻起,进行下一轮的发射波束轮换。
  25. 根据权利要求24所述的装置,其中,
    所述第一模式的波束对的链路质量测量,包括:在每一次发射波束切换之前,各个接收波束进行轮换,并对轮换所组成的各个波束对的链路质量进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个发射波束,进行下一轮的接收波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量;
    所述第二模式的波束对的链路质量测量,包括:在每一次接收波束切换之前,各个发射波束进行轮换,并对轮换所形成的各个波束对的链路质量进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个接收波束,进行下一轮的发射波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量。
  26. 根据权利要求25所述的装置,还包括:第一波束个数确定单元,用于在波束对的链路质量测量之前,确定所述发射波束的个数和所述接收波束的个数,并根据所述发射波束的个数确定对应的各个发射波束;
    符号划分单元,用于根据所述移动终端的最大划分时间分割数,确定符号划分信息;
    配置信息下发单元,用于将CSI-RS配置信息发送至所述移动终端,所述CSI-RS配置信息用于指示所述发射波束的个数、所述接收波束的个数以及所述符号划分信息;
    所述第一时刻确定单元,用于确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻,包括:
    根据所述符号划分信息以及所述接收波束的个数,确定所述移动终端针对所述当前的发射波束完成一轮接收波束轮换的所述第一完成时刻;
    所述确定针对当前的接收波束完成一轮发射波束轮换的第二完成时刻,包括:
    根据所述符号划分信息以及发射波束的个数,确定针对所述当前的接收波束完成一轮发射波束轮换的所述第二完成时刻;
    其中,所述最大划分时间分割数是指在满足设定条件时移动终端所支持的对OFDM符号划分的时间分割的最大个数;所述设定条件包括:在每个时间分割内,移动终端能够完成至少一次波束对的链路质量测量;所述符号划分信息为在一个OFDM符号内需要划分的时间分割的个数或时间分割的时长。
  27. 根据权利要求26所述的装置,其中,所述CSI-RS配置信息包括以下至少一项:
    所述符号划分信息、所述发射波束的个数、所述接收波束的个数、CSI-RS资源配置相关信息、CSI-RS资源个数相关信息、每个CSI-RS资源所关联的时域重复次数、所用OFDM符号的总个数、测量模式的指示标识、符号间隔数、CSI-RS周期、波束选择方式指示信息、波束对的链路质量测量激活信息以及在每个时间分割中支持的CSI-RS资源或CSI-RS端口数;
    所述CSI-RS资源配置相关信息包括:CSI-RS资源元素图样以及CSI-RS天线端口数。
  28. 根据权利要求26所述的装置,其中,所述配置信息下发单元,用于将CSI-RS配置信息发送至移动终端,包括:
    向多个所述移动终端发送相同的CSI-RS配置信息;
    所述最大划分时间分割数为所述多个移动终端对应的最大划分时间分割数中的最小值。
  29. 一种波束测量处理装置,应用于移动终端,包括:第二时刻确定单元和接收波束控制单元;
    所述第二时刻确定单元,用于在进行第一模式的波束对的链路质量测量时,确定所述移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻;
    所述接收波束控制单元,用于自所述第一完成时刻起,进行下一轮的接收波束轮换;
    和/或,
    所述第二时刻确定单元,用于在进行第二模式的波束对的链路质量测量时,确定网络侧设备针对当前的接收波束完成一轮发射波束轮换的第二完成时刻;
    所述接收波束控制单元,用于自所述第二完成时刻起,切换至下一个接收波束进行测量。
  30. 根据权利要求29所述的装置,其中,
    所述第一模式的波束对的链路质量测量,包括:在每一次发射波束切换之前,各个接收波束进行轮换,并对轮换所形成的各个波束对进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个发射波束,进行下一轮的接收波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量;
    所述第二模式的波束对的链路质量测量,包括:在每一次接收波束切换之前,各个发射波束进行轮换,并对轮换所形成的各个波束对进行测量;在完成对各个波束对的链路质量测量之后,切换到下一个接收波束,进行下一轮的发射波束轮换;直至完成各个发射波束与各个接收波束所组成的所有波束对的链路质量测量。
  31. 根据权利要求30所述的装置,还包括:
    第二波束个数确定单元,用于在所述波束对的链路质量测量之前,接收所述网络侧设备发送的CSI-RS配置信息;
    所述第二时刻确定单元,用于确定移动终端针对当前的发射波束完成一轮接收波束轮换的第一完成时刻,包括:
    根据符号划分信息以及接收波束的个数,确定所述移动终端针对所述当前的发射波束完成一轮接收波束轮换的所述第一完成时刻;
    所述所述第二时刻确定单元,用于确定针对当前的接收波束完成一轮发射波束轮换的第二完成时刻,包括:
    根据所述符号划分信息以及发射波束的个数,确定针对所述当前的接收波束完成一轮发射波束轮换的所述第二完成时刻;
    其中,所述CSI-RS配置信息用于指示发射波束的个数、接收波束的个数 以及所述符号划分信息;所述符号划分信息根据移动终端的最大划分时间分割数确定;所述最大划分时间分割数是指在满足设定条件时移动终端所支持的对OFDM符号划分的时间分割的最大个数;所述设定条件包括:在每个时间分割内,移动终端能够完成至少一次波束对的链路质量测量;所述符号划分信息为在一个OFDM符号内需要划分的时间分割的个数或时间分割的时长。
  32. 根据权利要求31所述的装置,其中,若所述CSI-RS配置信息包括:发射波束的个数和接收波束的个数;
    所述第二波束个数确定单元,用于在所述波束对的链路质量测量之前,从所述CSI-RS配置信息中提取发射波束的个数和接收波束的个数。
  33. 根据权利要求31所述的装置,其中,若所述CSI-RS配置信息包括:每个CSI-RS资源所关联的时域重复次数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个,以及第一波束的个数;所述第一波束为发射波束或接收波束中的一种;
    所述第二波束个数确定单元,用于在所述波束对的链路质量测量之前,根据所述时域重复次数、所述CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及第一波束的个数,计算第二波束的个数;
    其中,所述第二波束为发射波束或接收波束中的另一种。
  34. 根据权利要求31所述的装置,其中,若所述CSI-RS配置信息包括:每个CSI-RS资源所关联的时域重复次数和CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个;
    所述第二波束个数确定单元,用于在所述波束对的链路质量测量之前,将所述移动终端所拥有的接收波束的个数确定为所述接收波束的个数;
    根据所述每个CSI-RS资源所关联的时域重复次数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及所述接收波束的个数,计算所述发射波束的个数。
  35. 根据权利要求31所述的装置,其中,若所述CSI-RS配置信息包括:所用OFDM符号的总个数、所述符号划分信息以及第三波束的个数;所述第三波束为接收波束或发射波束中的一种;
    所述第二波束个数确定单元,用于在所述波束对的链路质量测量之前, 根据所述所用OFDM符号的总个数、所述符号划分信息以及所述第三波束的个数,计算第四波束的个数;
    其中,所述第四波束为接收波束或发射波束中的另一种。
  36. 根据权利要求31所述的装置,其中,若所述CSI-RS配置信息包括:所用OFDM符号的总个数、所述符号划分信息;
    所述第二波束个数确定单元,用于在所述波束对的链路质量测量之前,将所述移动终端所拥有的接收波束的个数确定为所述接收波束的个数;
    根据所述所用OFDM符号的总个数以及所述符号划分信息,计算所述发射波束的个数。
  37. 根据权利要求31所述的装置,其中,若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个、每个CSI-RS资源所关联的时域重复次数以及第五波束的个数;所述第五波束为接收波束或发射波束中的一种;
    所述第二波束个数确定单元,用于在所述波束对的链路质量测量之前,根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、所述每个CSI-RS资源所关联的时域重复次数、所述CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及所述第五波束的个数,计算第六波束的个数;
    其中,所述第六波束为接收波束或发射波束中的另一种。
  38. 根据权利要求31所述的装置,其中,若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个,以及每个CSI-RS资源所关联的时域重复次数;
    所述第二波束个数确定单元,用于在所述波束对的链路质量测量之前,将所述移动终端所拥有的接收波束的个数确定为所述接收波束的个数;
    根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、CSI-RS资源个数相关信息与CSI-RS资源配置相关信息中的一个以及每个CSI-RS资源所关联的时域重复次数以及所述接收波束的个数,计算所述发射波束的个数。
  39. 根据权利要求31所述的装置,其中,若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、第七波束的个数、所用OFDM符号的总个数以及所述符号划分信息;所述第七波束为接收波束或发射波束中的一种;
    所述第二波束个数确定单元,用于在所述波束对的链路质量测量之前,根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、所述第七波束的个数、所用OFDM符号的总个数以及所述符号划分信息,计算第八波束的个数;
    其中,所述第八波束为接收波束或发射波束中的另一种。
  40. 根据权利要求31所述的装置,其中,若所述CSI-RS配置信息包括:每个时间分割中支持的CSI-RS资源或CSI-RS端口数、所用OFDM符号的总个数以及所述符号划分信息;
    所述第二波束个数确定单元,用于在所述波束对的链路质量测量之前,将所述移动终端所拥有的接收波束的个数作为所述接收波束的个数,根据所述每个时间分割中支持的CSI-RS资源或CSI-RS端口数、接收波束的个数、所用OFDM符号的总个数以及所述符号划分信息,计算所述发射波束的个数。
  41. 根据权利要求31所述的装置,其中,若所述CSI-RS配置信息还包括:测量模式的指示标识;
    所述第二波束个数确定单元,用于在所述波束对的链路质量测量之前,
    根据所述测量模式的指示标识,选择波束对的链路质量的测量模式;
    其中,所述测量模式包括所述第一模式和所述第二模式。
  42. 根据权利要求31所述的装置,其中,若所述CSI-RS配置信息还包括:波束对的链路质量测量激活信息;
    所述装置还包括:
    第一测量控制模块,用于根据所述波束对的链路质量测量激活信息的指示,进行所述波束对的链路质量测量;若接收到所述网络侧设备下发的波束对的链路质量测量去激活信息,则停止所述波束对的链路质量测量。
  43. 根据权利要求31所述的装置,其中,若所述CSI-RS配置信息还包括:CSI-RS周期;
    所述装置还包括:
    第二测量控制模块,用于在进行所述波束对的链路质量测量时,按所述CSI-RS周期指示的周期,进行所述波束对的链路质量测量。
  44. 根据权利要求31所述的装置,其中,若所述CSI-RS配置信息还包括:符号间隔数;
    所述装置还包括:
    第三测量控制模块,用于在进行所述波束对的链路质量测量时,按照所述符号间隔数,在离散的OFDM符号内进行所述波束对的链路质量测量。
  45. 根据权利要求31所述的装置,还包括:
    第四测量控制模块,用于若所述接收波束的个数小于所述移动终端拥有的接收波束的个数,则选择与所述接收波束的个数相同数目的接收波束进行波束测量;
    或,
    第五测量控制模块,用于若所述CSI-RS配置信息还包括波束选择方式指示信息,则根据所述波束选择方式指示信息,选择与所述接收波束的个数相同数目的接收波束进行波束测量。
  46. 根据权利要求45所述的装置,其中,所述选择与所述接收波束的个数相同数目的接收波束进行波束测量,包括:
    选择上一次波束对的链路质量测量中的最优接收波束及其相邻的若干个接收波束作为目标接收波束,进行波束测量;
    或,选择上一次波束对的链路质量测量中的最优接收波束以及与所述最优接收波束等间隔的若干个接收波束作为目标接收波束,进行波束测量。
  47. 一种网络侧设备,包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至5中任一项所述的波束测量处理方法方法的步骤。
  48. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被所述处理器执行时实现如权利要求1至5中任一项所述的波束测量处理方法方法的步骤。
  49. 一种终端设备,包括处理器、存储器及存储在所述存储器上并可在 所述处理器上运行的计算机程序,所述计算机程序被所述处理器执行时实现如权利要求6至23中任一项所述的波束测量处理方法的步骤。
  50. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被所述处理器执行时实现如权利要求6至23中任一项所述的波束测量处理方法的步骤。
PCT/CN2018/090799 2017-06-16 2018-06-12 波束测量处理方法及装置 WO2018228366A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18818416.2A EP3641376A4 (en) 2017-06-16 2018-06-12 RAY MEASUREMENT PROCESSING METHOD AND DEVICE
US16/623,237 US11184262B2 (en) 2017-06-16 2018-06-12 Beam measurement processing method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710459813.0A CN109151842B (zh) 2017-06-16 2017-06-16 一种波束测量处理方法及装置
CN201710459813.0 2017-06-16

Publications (1)

Publication Number Publication Date
WO2018228366A1 true WO2018228366A1 (zh) 2018-12-20

Family

ID=64658986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090799 WO2018228366A1 (zh) 2017-06-16 2018-06-12 波束测量处理方法及装置

Country Status (4)

Country Link
US (1) US11184262B2 (zh)
EP (1) EP3641376A4 (zh)
CN (1) CN109151842B (zh)
WO (1) WO2018228366A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113273278A (zh) * 2019-01-11 2021-08-17 联想(北京)有限公司 启用面板特定配置和传输的方法和装置
WO2020150861A1 (en) * 2019-01-21 2020-07-30 Qualcomm Incorporated Techniques for reporting channel state information in wireless communications
US20220191709A1 (en) * 2019-03-19 2022-06-16 Beijing Xiaomi Mobile Software Co., Ltd. Information transmission method user equipment and base station
WO2021081770A1 (zh) * 2019-10-29 2021-05-06 华为技术有限公司 一种测量方法及装置
CN112787734B (zh) * 2019-11-08 2022-04-15 维沃移动通信有限公司 信干噪比测量方法、装置、设备及介质
US11412394B2 (en) * 2019-12-20 2022-08-09 Qualcomm Incorporated Radar management based on interference detected over an air interface
US20230155658A1 (en) * 2020-08-05 2023-05-18 Apple Inc. System and method for fast beam tracking in a cellular environment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891161A (zh) * 2011-10-19 2014-06-25 三星电子株式会社 无线通信系统中的上行链路控制方法和装置
CN106162673A (zh) * 2015-04-17 2016-11-23 华为技术有限公司 波束选择方法及终端设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9197387B2 (en) * 2011-08-15 2015-11-24 Google Technology Holdings LLC Method and apparatus for control channel transmission and reception
KR102049772B1 (ko) * 2013-01-15 2019-11-28 삼성전자 주식회사 빔포밍 시스템에서 신호 측정 방법 및 장치
KR101998856B1 (ko) * 2013-01-28 2019-07-11 삼성전자주식회사 무선통신시스템에서의 송/수신 장치 및 방법
KR102261878B1 (ko) 2013-04-30 2021-06-08 삼성전자주식회사 빔 포밍 방식을 지원하는 무선 통신 시스템에서 기준 신호 송/수신 장치 및 방법
WO2015186380A1 (ja) * 2014-06-06 2015-12-10 ソニー株式会社 端末装置、基地局、及びプログラム
US9414285B2 (en) * 2014-06-30 2016-08-09 Qualcomm Incorporated Handover with integrated antenna beam training in wireless networks
KR102289945B1 (ko) * 2014-12-16 2021-08-17 한국전자통신연구원 초고주파 대역의 이동 통신 시스템에서의 빔 스케줄링 방법 및 그 장치
US10270514B2 (en) * 2016-01-14 2019-04-23 Samsung Electronics Co., Ltd. Method and apparatus for generating beam measurement information in a wireless communication system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891161A (zh) * 2011-10-19 2014-06-25 三星电子株式会社 无线通信系统中的上行链路控制方法和装置
CN106162673A (zh) * 2015-04-17 2016-11-23 华为技术有限公司 波束选择方法及终端设备

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ETRI: "Beam Sweeping for Initial Access", 3GPP TSG RAN WGI MEETING #86 R1 -166947, 13 August 2016 (2016-08-13), XP051142521 *
HUAWEI ET AL.: "CSI-RS Design for Beam Management", 3GPP TSG RAN WG1 MEETING #89 R1-1706931, 8 May 2017 (2017-05-08), XP051263393 *
See also references of EP3641376A4 *

Also Published As

Publication number Publication date
CN109151842B (zh) 2020-07-17
US20210152447A1 (en) 2021-05-20
EP3641376A1 (en) 2020-04-22
CN109151842A (zh) 2019-01-04
EP3641376A4 (en) 2020-05-13
US11184262B2 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2018228366A1 (zh) 波束测量处理方法及装置
US11445484B2 (en) Communication method, related device, and computer storage medium
WO2020034889A1 (zh) 信号传输的方法和通信装置
WO2018121342A1 (zh) 一种波束测量上报的方法、网络侧设备及移动终端
WO2018082680A1 (zh) 信号传输方法和装置
WO2020035069A1 (zh) 一种上行传输指示的方法、终端、基站及计算机存储介质
EP3567744A1 (en) Beam information feedback method and apparatus, and configuration information feedback method and apparatus
WO2019136941A1 (zh) 一种用于终端设备能力传输的方法、装置及系统
WO2015042855A1 (zh) 通信方法、基站和用户设备
JP6108250B2 (ja) チャネル状態情報を報告および受信する方法およびデバイス
CN113923709B (zh) 波束报告的发送、接收方法、装置及电子设备
WO2018059128A1 (zh) 一种波束扫描和切换的方法及装置
CN114071690B (zh) 信息上报方法、信息接收方法及相关设备
CN110831198A (zh) 带宽资源切换方法、指示带宽资源切换方法、终端和网络设备
WO2014194525A1 (zh) 传输导频信号的方法、基站和用户设备
CN109479296B (zh) 信息传输方法、接入网设备和终端设备
WO2014139303A1 (zh) 一种无线信道参考信号的发送方法、装置和计算机存储介质
CN108111268B (zh) 一种传输参数处理方法及装置
WO2018126882A1 (zh) 一种信号传输方法和网络设备以及终端设备
US11290158B2 (en) Signaling RX/TX beamforming linkage for MIMO systems
WO2018023646A1 (zh) 探测参考信号的发送方法和装置
WO2018028291A1 (zh) 一种波束赋形训练方法、终端和基站
WO2014000206A1 (zh) 信道状态信息处理方法及终端
CN109150254B (zh) 波束训练的配置参数的获取方法及装置
WO2018130093A1 (zh) 同步接入信号组的发送方法、接收方法、相关设备及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18818416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018818416

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018818416

Country of ref document: EP

Effective date: 20200116