WO2020150861A1 - Techniques for reporting channel state information in wireless communications - Google Patents

Techniques for reporting channel state information in wireless communications Download PDF

Info

Publication number
WO2020150861A1
WO2020150861A1 PCT/CN2019/072532 CN2019072532W WO2020150861A1 WO 2020150861 A1 WO2020150861 A1 WO 2020150861A1 CN 2019072532 W CN2019072532 W CN 2019072532W WO 2020150861 A1 WO2020150861 A1 WO 2020150861A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
beams
report
bases
corresponding compression
Prior art date
Application number
PCT/CN2019/072532
Other languages
French (fr)
Inventor
Chenxi HAO
Parisa CHERAGHI
Yu Zhang
Lei Xiao
Peter Gaal
Wanshi Chen
Alexei Yurievitch Gorokhov
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2019/072532 priority Critical patent/WO2020150861A1/en
Priority to PCT/CN2020/072928 priority patent/WO2020151612A1/en
Publication of WO2020150861A1 publication Critical patent/WO2020150861A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection

Definitions

  • aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to reporting channel state information.
  • Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code-division multiple access (CDMA) systems, time-division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, and orthogonal frequency-division multiple access (OFDMA) systems, and single-carrier frequency division multiple access (SC-FDMA) systems.
  • CDMA code-division multiple access
  • TDMA time-division multiple access
  • FDMA frequency-division multiple access
  • OFDMA orthogonal frequency-division multiple access
  • SC-FDMA single-carrier frequency division multiple access
  • 5G communications technology can include: enhanced mobile broadband addressing human-centric use cases for access to multimedia content, services and data; ultra-reliable-low latency communications (URLLC) with certain specifications for latency and reliability; and massive machine type communications, which can allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information.
  • URLLC ultra-reliable-low latency communications
  • a type 2 precoder can be used across frequency domain (FD) units where the precoder can use multiple layers and linear combinations of spatial beams.
  • a device can be configured to report channel state information (CSI) for the type 2 precoder including various values for each spatial beam, corresponding bases, and coefficients, which may cause significant overhead in wireless communication resources used for reporting CSI.
  • CSI channel state information
  • a method of wireless communication includes receiving a channel state information (CSI) report trigger triggering a reporting configuration for transmitting a CSI report, wherein the reporting configuration indicates a first periodicity for reporting CSI for at least one or more beams and corresponding compression bases and a second periodicity for reporting CSI for a coefficient quantization, receiving a first CSI-reference signal (CSI-RS) transmission, performing a CSI measurement based on the first CSI-RS, transmitting, based on the first periodicity, a first CSI report for at least the one or more beams and corresponding compression bases, receiving a second CSI-RS transmission, performing a second CSI measurement based on the second CSI-RS, and transmitting, based on the second periodicity, a second CSI report for the coefficient quantization for the one or more beams.
  • CSI channel state information
  • a method for wireless communications includes transmitting a CSI report trigger triggering a reporting configuration to a device, wherein the reporting configuration indicates a first periodicity for reporting CSI for one or more beams and corresponding bases and a second periodicity for reporting CSI for a coefficient quantization, transmitting a first CSI-RS, receiving, based on the first periodicity, a first CSI report of the first CSI-RS for at least the one or more beams and corresponding bases, transmitting a second CSI-RS, and receiving, based on the second periodicity, a second CSI report of the second CSI-RS for the coefficient quantization for the one or more beams.
  • a method for wireless communication includes receiving a trigger to report an aperiodic CSI report for a coefficient quantization for the one or more beams and one or more bases, receiving a CSI-RS transmission, performing a CSI measurement based on the CSI-RS, and transmitting, based on the trigger, a CSI report for the coefficient quantization for the one or more beams and corresponding compression bases, wherein the one or more beams and corresponding compression bases are at least one of associated with a last transmitted CSI report that includes the one or more beams and corresponding compression bases, or configured by a base station.
  • a method for wireless communication includes transmitting, to a device, a trigger to report a CSI report for a coefficient quantization for the one or more beams, transmitting a CSI-RS, and receiving, based on the second trigger, a CSI report indicating the coefficient quantization for the one or more beams and corresponding compression bases, wherein the one or more beams and corresponding compression bases are at least one of associated with a last received CSI report that includes the one or more beams and corresponding compression bases, or configured to the UE.
  • an apparatus for wireless communication includes a transceiver, a memory configured to store instructions, and one or more processors communicatively coupled with the transceiver and the memory. The one or more processors are configured to execute the instructions to perform the operations of methods described herein.
  • an apparatus for wireless communication is provided that includes means for performing the operations of methods described herein.
  • a computer-readable medium is provided including code executable by one or more processors to perform the operations of methods described herein.
  • the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims.
  • the following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
  • FIG. 1 illustrates an example of a wireless communication system, in accordance with various aspects of the present disclosure
  • FIG. 2 is a block diagram illustrating an example of a UE, in accordance with various aspects of the present disclosure
  • FIG. 3 is a block diagram illustrating an example of a base station, in accordance with various aspects of the present disclosure
  • FIG. 4 is a flow chart illustrating an example of a method for reporting semi-persistent and/or periodic channel state information (CSI) , in accordance with various aspects of the present disclosure
  • FIG. 5 illustrates an example of a timeline for reporting semi-persistent and/or periodic CSI, in accordance with various aspects of the present disclosure
  • FIG. 6 is a flow chart illustrating an example of a method for reporting aperiodic CSI, in accordance with various aspects of the present disclosure
  • FIG. 7 illustrates an example of a timeline for reporting aperiodic CSI with an implicit indication of beams, in accordance with various aspects of the present disclosure
  • FIG. 8 illustrates an example of a timeline for reporting aperiodic CSI with an explicit indication of beams, in accordance with various aspects of the present disclosure
  • FIG. 9 is a flow chart illustrating an example of a method for configuring reporting of semi-persistent and/or periodic CSI, in accordance with various aspects of the present disclosure
  • FIG. 10 is a flow chart illustrating an example of a method for configuring reporting of aperiodic CSI, in accordance with various aspects of the present disclosure.
  • FIG. 11 is a block diagram illustrating an example of a MIMO communication system including a base station and a UE, in accordance with various aspects of the present disclosure.
  • the described features generally relate to reporting channel state information (CSI) using multiple reports to prevent sending complete CSI information with each report. This can reduce reporting overhead, as described herein.
  • CSI channel state information
  • LTE long term evolution
  • NR new radio
  • the precoder can be represented as where b i is a given spatial beam for the layer l, coefficients and N 3 is the number of resources (as a number of subbands) .
  • the precoder can be represented as where is the discrete Fourier transform (DFT) basis and of size M i ⁇ N 3 , coefficients for a dimension of a compressed domain M i ⁇ N 3 .
  • the report can typically include beam information for each beam b i , corresponding DFT bases for each beam, and coefficient reports for each beam b i .
  • devices report a spatial beam matrix specifying up to L beams, basis selection (e.g., the matrix) , which may be common to the beams (e.g., M bases applied to all beams) or beam specific (e.g., M i bases for a particular beam) , and a coefficient report (e.g., report for the M i entries of ) .
  • basis selection e.g., the matrix
  • M bases applied to all beams
  • a coefficient report e.g., report for the M i entries of
  • reporting configuration types with different reporting quantities can be used for reporting of beam and bases as compared to coefficient reporting. For example, a larger periodicity can be used to report beam and basis as opposed to coefficient reporting.
  • different triggers can be used to trigger report of beam and bases as compared to coefficient reporting.
  • reporting coefficients can be implicitly based on a last report of beams and bases or the trigger for reporting coefficients can indicate the beams and bases for which to report CSI for the coefficients. In either case, signaling overhead can be conserved by refraining from transmitting at least the beam and bases portion for each CSI report.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be a component.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • the components can communicate by way of local and/or remote processes such as in accordance with a signal having one or more data packets, such as data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems by way of the signal.
  • a CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc.
  • CDMA2000 covers IS-2000, IS-95, and IS-856 standards.
  • IS-2000 Releases 0 and A are commonly referred to as CDMA2000 1X, 1X, etc.
  • IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc.
  • UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA.
  • a TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) .
  • GSM Global System for Mobile Communications
  • An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM TM , etc.
  • UMB Ultra Mobile Broadband
  • E-UTRA Evolved UTRA
  • Wi-Fi Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM TM
  • UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) .
  • 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are new releases of UMTS that use E-UTRA.
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) .
  • CDMA2000 and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) .
  • the techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies, including cellular (e.g., LTE) communications over a shared radio frequency spectrum band.
  • LTE/LTE-Asystem for purposes of example, and LTE terminology is used in much of the description below, although the techniques are applicable beyond LTE/LTE-Aapplications (e.g., to fifth generation (5G) new radio (NR) networks or other next generation communication systems) .
  • 5G fifth generation
  • NR new radio
  • FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100.
  • the wireless communications system (also referred to as a wireless wide area network (WWAN) ) can include base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and/or a 5G Core (5GC) 190.
  • the base stations 102 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) .
  • the macro cells can include base stations.
  • the small cells can include femtocells, picocells, and microcells.
  • the base stations 102 may also include gNBs 180, as described further herein.
  • some nodes of the wireless communication system may have a modem 240 and communicating component 242 for providing UAI and/or communicating degraded feedback, and some nodes may have a modem 340 and scheduling component 342 for receiving UAI and configuring devices with associated communication parameters, as described herein.
  • a UE 104 is shown as having the modem 240 and communicating component 242 and a base station 102/gNB 180 is shown as having the modem 340 and scheduling component 342, this is one illustrative example, and substantially any node or type of node may include a modem 240 and communicating component 242 and/or a modem 340 and scheduling component 342 for providing corresponding functionalities described herein.
  • the base stations 102 configured for 4G LTE (which can collectively be referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through backhaul links 132 (e.g., using an S1 interface) .
  • the base stations 102 configured for 5G NR (which can collectively be referred to as Next Generation RAN (NG-RAN) ) may interface with 5GC 190 through backhaul links 184.
  • NG-RAN Next Generation RAN
  • the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages.
  • NAS non-access stratum
  • RAN radio access network
  • MBMS multimedia broadcast multicast service
  • RIM RAN information management
  • the base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or 5GC 190) with each other over backhaul links 134 (e.g., using an X2 interface) .
  • the backhaul links 134 may be wired or wireless.
  • the base stations 102 may wirelessly communicate with one or more UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102'may have a coverage area 110'that overlaps the coverage area 110 of one or more macro base stations 102.
  • a network that includes both small cell and macro cells may be referred to as a heterogeneous network.
  • a heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group, which can be referred to as a closed subscriber group (CSG) .
  • eNBs Home Evolved Node Bs
  • HeNBs Home Evolved Node Bs
  • CSG closed subscriber group
  • the communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104.
  • the communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity.
  • the communication links may be through one or more carriers.
  • the base stations 102/UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc.
  • the component carriers may include a primary component carrier and one or more secondary component carriers.
  • a primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
  • D2D communication link 158 may use the DL/UL WWAN spectrum.
  • the D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • sidelink channels such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) .
  • D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia,
  • the wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • AP Wi-Fi access point
  • STAs Wi-Fi stations
  • communication links 154 in a 5 GHz unlicensed frequency spectrum.
  • the STAs 152/AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
  • CCA clear channel assessment
  • the small cell 102' may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102'may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
  • a base station 102 may include an eNB, gNodeB (gNB) , or other type of base station.
  • Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104.
  • mmW millimeter wave
  • mmW millimeter wave
  • mmW base station Extremely high frequency
  • Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters.
  • Radio waves in the band may be referred to as a millimeter wave.
  • Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters.
  • the super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW/near mmW radio frequency band has extremely high path loss and a short range.
  • the mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range.
  • a base station 102 referred to herein can include a gNB 180.
  • the EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172.
  • MME Mobility Management Entity
  • MBMS Multimedia Broadcast Multicast Service
  • BM-SC Broadcast Multicast Service Center
  • PDN Packet Data Network
  • the MME 162 may be in communication with a Home Subscriber Server (HSS) 174.
  • HSS Home Subscriber Server
  • the MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160.
  • the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172.
  • IP Internet protocol
  • the PDN Gateway 172 provides UE IP address allocation as well as other functions.
  • the PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176.
  • the IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the BM-SC 170 may provide functions for MBMS user service provisioning and delivery.
  • the BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions.
  • PLMN public land mobile network
  • the MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
  • MMSFN Multicast Broadcast Single Frequency Network
  • the 5GC 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195.
  • the AMF 192 may be in communication with a Unified Data Management (UDM) 196.
  • the AMF 192 can be a control node that processes the signaling between the UEs 104 and the 5GC 190.
  • the AMF 192 can provide QoS flow and session management.
  • User Internet protocol (IP) packets (e.g., from one or more UEs 104) can be transferred through the UPF 195.
  • the UPF 195 can provide UE IP address allocation for one or more UEs, as well as other functions.
  • the UPF 195 is connected to the IP Services 197.
  • the IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
  • the base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology.
  • the base station 102 provides an access point to the EPC 160 or 5GC 190 for a UE 104.
  • Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device.
  • SIP session initiation protocol
  • PDA personal digital assistant
  • the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) .
  • the UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
  • communicating component 242 can transmit CSI reports based on various configuration parameters. As described further herein, communicating component 242 can transmit CSI reports for coefficients separately from beams and bases to facilitate reducing overhead in CSI reporting for certain precoders.
  • scheduling component 342 can configure the UE 104 for CSI reporting in this regard by indicating one or more configurations that specify reporting parameters, by triggering the reporting for the UE 104, etc.
  • FIGS. 2-11 aspects are depicted with reference to one or more components and one or more methods that may perform the actions or operations described herein, where aspects in dashed line may be optional.
  • FIGS. 4, 6, 9, and 10 are presented in a particular order and/or as being performed by an example component, it should be understood that the ordering of the actions and the components performing the actions may be varied, depending on the implementation.
  • the following actions, functions, and/or described components may be performed by a specially-programmed processor, a processor executing specially-programmed software or computer-readable media, or by any other combination of a hardware component and/or a software component capable of performing the described actions or functions.
  • one example of an implementation of UE 104 may include a variety of components, some of which have already been described above and are described further herein, including components such as one or more processors 212 and memory 216 and transceiver 202 in communication via one or more buses 244, which may operate in conjunction with modem 240 and/or communicating component 242 to transmit UAI and/or degrade feedback for one or more signals.
  • the one or more processors 212 can include a modem 240 and/or can be part of the modem 240 that uses one or more modem processors.
  • the various functions related to communicating component 242 may be included in modem 240 and/or processors 212 and, in an aspect, can be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors.
  • the one or more processors 212 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receiver processor, or a transceiver processor associated with transceiver 202. In other aspects, some of the features of the one or more processors 212 and/or modem 240 associated with communicating component 242 may be performed by transceiver 202.
  • memory 216 may be configured to store data used herein and/or local versions of applications 275 or communicating component 242 and/or one or more of its subcomponents being executed by at least one processor 212.
  • Memory 216 can include any type of computer-readable medium usable by a computer or at least one processor 212, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof.
  • RAM random access memory
  • ROM read only memory
  • tapes such as magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof.
  • memory 216 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining communicating component 242 and/or one or more of its subcomponents, and/or data associated therewith, when UE 104 is operating at least one processor 212 to execute communicating component 242 and/or one or more of its subcomponents.
  • Transceiver 202 may include at least one receiver 206 and at least one transmitter 208.
  • Receiver 206 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • Receiver 206 may be, for example, a radio frequency (RF) receiver.
  • RF radio frequency
  • receiver 206 may receive signals transmitted by at least one base station 102. Additionally, receiver 206 may process such received signals, and also may obtain measurements of the signals, such as, but not limited to, Ec/Io, signal-to-noise ratio (SNR) , reference signal received power (RSRP) , received signal strength indicator (RSSI) , etc.
  • SNR signal-to-noise ratio
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • Transmitter 208 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) .
  • a suitable example of transmitter 208 may including, but is not limited to, an RF transmitter.
  • UE 104 may include RF front end 288, which may operate in communication with one or more antennas 265 and transceiver 202 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by at least one base station 102 or wireless transmissions transmitted by UE 104.
  • RF front end 288 may be connected to one or more antennas 265 and can include one or more low-noise amplifiers (LNAs) 290, one or more switches 292, one or more power amplifiers (PAs) 298, and one or more filters 296 for transmitting and receiving RF signals.
  • LNAs low-noise amplifiers
  • PAs power amplifiers
  • LNA 290 can amplify a received signal at a desired output level.
  • each LNA 290 may have a specified minimum and maximum gain values.
  • RF front end 288 may use one or more switches 292 to select a particular LNA 290 and its specified gain value based on a desired gain value for a particular application.
  • one or more PA (s) 298 may be used by RF front end 288 to amplify a signal for an RF output at a desired output power level.
  • each PA 298 may have specified minimum and maximum gain values.
  • RF front end 288 may use one or more switches 292 to select a particular PA 298 and its specified gain value based on a desired gain value for a particular application.
  • one or more filters 296 can be used by RF front end 288 to filter a received signal to obtain an input RF signal.
  • a respective filter 296 can be used to filter an output from a respective PA 298 to produce an output signal for transmission.
  • each filter 296 can be connected to a specific LNA 290 and/or PA 298.
  • RF front end 288 can use one or more switches 292 to select a transmit or receive path using a specified filter 296, LNA 290, and/or PA 298, based on a configuration as specified by transceiver 202 and/or processor 212.
  • transceiver 202 may be configured to transmit and receive wireless signals through one or more antennas 265 via RF front end 288.
  • transceiver may be tuned to operate at specified frequencies such that UE 104 can communicate with, for example, one or more base stations 102 or one or more cells associated with one or more base stations 102.
  • modem 240 can configure transceiver 202 to operate at a specified frequency and power level based on the UE configuration of the UE 104 and the communication protocol used by modem 240.
  • modem 240 can be a multiband-multimode modem, which can process digital data and communicate with transceiver 202 such that the digital data is sent and received using transceiver 202.
  • modem 240 can be multiband and be configured to support multiple frequency bands for a specific communications protocol.
  • modem 240 can be multimode and be configured to support multiple operating networks and communications protocols.
  • modem 240 can control one or more components of UE 104 (e.g., RF front end 288, transceiver 202) to enable transmission and/or reception of signals from the network based on a specified modem configuration.
  • the modem configuration can be based on the mode of the modem and the frequency band in use.
  • the modem configuration can be based on UE configuration information associated with UE 104 as provided by the network during cell selection and/or cell reselection.
  • communicating component 242 can optionally include a CSI configuring component 252 for configuring CSI reporting based on a received configuration, one or more received triggers, and/or the like, and/or a CSI component 254 for measuring a CSI-reference signal (RS) , generating corresponding CSI measurement information, and transmitting the CSI report to include CSI related to beams and bases or related to corresponding coefficients.
  • CSI configuring component 252 for configuring CSI reporting based on a received configuration, one or more received triggers, and/or the like
  • CSI component 254 for measuring a CSI-reference signal (RS) , generating corresponding CSI measurement information, and transmitting the CSI report to include CSI related to beams and bases or related to corresponding coefficients.
  • RS CSI-reference signal
  • the processor (s) 212 may correspond to one or more of the processors described in connection with the UE in FIG. 11.
  • the memory 216 may correspond to the memory described in connection with the UE in FIG. 11.
  • base station 102 may include a variety of components, some of which have already been described above, but including components such as one or more processors 312 and memory 316 and transceiver 302 in communication via one or more buses 344, which may operate in conjunction with modem 340 and scheduling component 342 for configuring a UE to report CSI.
  • the transceiver 302, receiver 306, transmitter 308, one or more processors 312, memory 316, applications 375, buses 344, RF front end 388, LNAs 390, switches 392, filters 396, PAs 398, and one or more antennas 365 may be the same as or similar to the corresponding components of UE 104, as described above, but configured or otherwise programmed for base station operations as opposed to UE operations.
  • scheduling component 342 can optionally include a configuration indicating component 352 for indicating one or more parameters for configuring CSI reporting and/or for triggering reporting of CSI by a UE, and/or a CSI processing component 354 for processing received CSI reports (e.g., to determine a channel quality indicator (CQI) for the UE) .
  • a configuration indicating component 352 for indicating one or more parameters for configuring CSI reporting and/or for triggering reporting of CSI by a UE
  • CSI processing component 354 for processing received CSI reports (e.g., to determine a channel quality indicator (CQI) for the UE) .
  • CQI channel quality indicator
  • the processor (s) 312 may correspond to one or more of the processors described in connection with the base station in FIG. 11.
  • the memory 316 may correspond to the memory described in connection with the base station in FIG. 11.
  • FIG. 4 illustrates a flow chart of an example of a method 400 for transmitting semi-persistent and/or periodic CSI reports.
  • a UE 104 can perform the functions described in method 400 using one or more of the components described in FIGS. 1-2.
  • a CSI report trigger triggering a reporting configuration for transmitting a CSI report indicating a first periodicity and a second periodicity can be determined.
  • CSI configuring component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the CSI report trigger triggering the reporting configuration for transmitting the CSI report indicating the first periodicity and the second periodicity.
  • the configuration can indicate the first periodicity for transmitting a CSI report for one or more beams and corresponding compression bases and the second periodicity for transmitting a CSI report for coefficients corresponding to the one or more beams and/or corresponding bases.
  • the compression bases can correspond to a tap associated with a particular delay in a time domain (e.g., such as DFT bases, as described above) .
  • the first periodicity can be larger than the second periodicity such that coefficient quantization reports can be transmitted more frequently than beam/bases reports.
  • CSI configuring component 252 can receive the CSI report trigger from a base station 102 or other network component.
  • multiple configurable reporting configurations and/or a trigger to use one of the multiple configurable reporting configurations can be received.
  • CSI configuring component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the multiple configurable reporting configurations and/or the CSI report trigger triggering to use one of the multiple configurable reporting configurations (e.g., from a base station 102) .
  • CSI configuring component 252 can receive the multiple reporting configurations from the base station 102 or other network component in radio resource control (RRC) signaling, dedicated control signaling or other messages.
  • the multiple reporting configurations may each indicate a certain periodicity for reporting CSI at least for beams and/or associated bases and another periodicity for reporting CSI for coefficients.
  • the configurations may indicate whether to report CSI for coefficients with the beams as well or not.
  • CSI configuring component 252 can also receive the CSI report trigger or other indication of which of the multiple reporting configurations to use in reporting CSI.
  • the CSI report trigger may trigger or indicate a reporting configuration based on an index.
  • the CSI configuring component 252 may receive a mapping of the multiple reporting configurations to indices in RRC signaling, and then may receive the CSI report trigger indicating the reporting configuration index in dedicated control signaling.
  • the CSI report trigger and/or reporting configurations can indicate for which beams (and thus which associated bases, coefficients, etc. ) to report CSI.
  • the reporting configuration and/or information in the associated trigger can indicate to transmit a full CSI report for all beams, bases, and coefficients of the precoder at the first periodicity, and transmit coefficients only at the second periodicity.
  • the reporting configuration and/or information in the associated CSI report trigger can indicate to transmit a CSI report for all beams and bases (with no coefficients) of the precoder at the first periodicity, and transmit coefficients only at the second periodicity.
  • the reporting configuration and/or information in the associated CSI report trigger can indicate to transmit a partial CSI report for an intermediate subset of beams including the associated bases and/or coefficients at the first periodicity, and transmit coefficients only at the second periodicity.
  • a first CSI-RS transmission can be received.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the first CSI-RS transmission (e.g., from base station 102 or other network components) .
  • CSI component 254 can receive the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
  • a first CSI measurement can be performed based on the first CSI-RS.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can perform he first CSI measurement based on the first CSI-RS.
  • the CSI component 254 can measure the first CSI for the one or more beams.
  • CSI component 254 can measure a CSI-RS from the base station 102 (e.g., over resources indicated by the base station 102 in the reporting configuration or another configuration) .
  • CSI component 254 may measure the CSI-RS for one or more beams and/or bases (e.g., DFT bases) of a precoder. As described, in an example, CSI component 254 may or may not also measure CSI for associated coefficients for reporting in the first CSI report. In an example, CSI component 254 can determine for which beams and/or bases or coefficients to report CSI based on the reporting configuration or corresponding trigger, as described.
  • beams and/or bases e.g., DFT bases
  • CSI component 254 may determine the measured CSI for the beams and corresponding bases (and including or not including the coefficients) based on the first periodicity (e.g., based on occurrence of a time or event in line with the first periodicity) , or otherwise to report based on the first periodicity.
  • a CQI can be determined based on the first CSI report.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine the CQI based on the first CSI report.
  • CSI component 254 can determine the CQI based on randomly selecting a beam from the reported beam set, applying the beam on a first part CSI-RS ports (e.g., 1st polarization) and a second part CSI-RS ports (e.g., 2nd polarization) , and applying a random phase on the second part CSI-RS ports.
  • the granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling.
  • PRG precoding resource block group
  • the precoder on a certain PRG can be where b is randomly selected from the reported L beams, and ⁇ is phase randomly selected from a quadrature phase-shift keying (QPSK) , 8PSK, or 16PSK alphabet.
  • QPSK quadrature phase-shift keying
  • scheduling component 342 can schedule resources for communications to/from the UE 104 based on the determined CQI.
  • CSI component 254 can determine the CQI based on, for each beam on a certain polarization, randomly selecting a basis among the reported basis. For the randomly selected beam on a certain beam and a certain polarization, the base station 102 can apply a coefficient with unit amplitude with a random phase to determine the CQI.
  • the granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling.
  • PRG precoding resource block group
  • the precoder on the N 3 FD units can be where b i is the reported L beams and 2 polarizations, is the 1 ⁇ N 3 basis randomly chosen from the M i bases for beam i, and ⁇ is phase randomly selected from a QPSK, 8PSK, or 16PSK alphabet.
  • a first CSI report for at least the one or more beams and corresponding compression bases can be transmitted based on the first periodicity.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can transmit (e.g., to the base station 102) , based on the first periodicity, the first CSI report for at least the one or more beams and corresponding compression bases.
  • the first CSI report may or may not also include CSI for the coefficients, as described.
  • the first CSI report may include CQI computed at Block 410.
  • the first CSI report may include CSI for all beams and DFT bases of the precoder, or for an intermediate subset of beams/bases.
  • CSI component 254 can transmit the first CSI report based on the first CSI-RS measurement and over CSI reporting resources, which may be configured by the base station 102, and/or may be part of a physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) .
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • transmitting the first CSI report can include transmitting a partial CSI report with the one or more beams and corresponding bases and no coefficient quantization, where the partial CSI report can be an update of a portion of a previously-transmitted full CSI report, where the full CSI report includes one or more additional beams and additional corresponding bases (e.g., all beams/bases for the precoder) .
  • a second CSI-RS transmission can be received.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the second CSI-RS transmission (e.g., from base station 102 or other network components) .
  • CSI component 254 can receive the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
  • a second CSI measurement can be performed based on the second CSI-RS.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can perform the second CSI-RS measurement based on the second CSI-RS.
  • CSI component 254 can, in a subsequent time period, measure the second CSI for coefficient quantization for the one or more beams, which may include all beams and/or bases, or an intermediate subset of beams and/or bases (e.g., depending on whether the first CSI report includes all beams/bases or the intermediate subset) .
  • CSI component 254 can measure a CSI-RS from the base station 102 (e.g., over resources indicated by the base station 102 in the reporting configuration or another configuration) .
  • CSI component 254 may measure the CSI-RS for one or more coefficients of the one or more beams and/or bases.
  • the one or more coefficients can relate to the one or more beams or corresponding bases in a latest CSI report (e.g., the first CSI report previously transmitted based on the first periodicity) which contains the report of one or more beams and/or bases.
  • CSI component 254 can determine for which beams and/or bases or coefficients to report CSI for the coefficient quantization based on the reporting configuration or the corresponding trigger, as described. For example, CSI component 254 may determine the measured CSI for the coefficients based on the second periodicity (e.g., based on occurrence of a time or event in line with the second periodicity) , or otherwise to report based on the second periodicity.
  • the second periodicity e.g., based on occurrence of a time or event in line with the second periodicity
  • a second CSI report for the coefficient quantization for the one or more beams can be transmitted based on the second periodicity.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can transmit, based on the second periodicity, the second CSI report for the coefficient quantization for the one or more beams.
  • the second CSI report may include CSI for coefficients of the beams and DFT bases of the precoder that are associated with the first CSI report (e.g., all beams/bases for a precoder or a subset thereof) , or for an intermediate selecting of bases applied to the beams (e.g., where the first CSI report includes an intermediate set of bases applied to the beams) .
  • CSI component 254 can transmit the second CSI report based on the second CSI-RS measurement and over CSI reporting resources, which may be configured by the base station 102, and/or may be part of a PUCCH or PUSCH.
  • the second CSI report may also include CQI, which can be computed based on the coefficient quantization and the one or more beams and corresponding compression bases reported in the first CSI report.
  • transmitting the first CSI report can include transmitting the one or more beams and an intermediate set of the corresponding compression bases applied to all beams for a precoder
  • transmitting the second CSI report can include transmitting a selection of the corresponding compression bases for each beam from the intermediate set and the associated coefficient quantization.
  • the larger periodicity can be applied to either of a full CSI report (e.g., with CSI report for all beam/bases and coefficients) , which may be carried by PUSCH given the increased payload capacity over PUCCH.
  • a CSI report with beam and basis selection can be carried by either PUCCH or PUSCH.
  • the CSI report can include an update of the intermediate subset without an update for other beams/bases.
  • the smaller periodicity can be applied to coefficient reports, and the UE does not need to update beam/basis in these reports. The UE reports coefficients associated with the most recent CSI report containing beam and basis report.
  • the UE may not update the intermediate subset, but may further update a beam-specific basis report from the intermediate subset.
  • the coefficient report can be carried on either PUCCH or PUSCH. A specific example is illustrated in FIG. 5.
  • FIG. 5 illustrates an example of a signaling timeline 500 for reporting semi-persistent and/or periodic CSI.
  • a semi-persistent/periodic CSI report trigger 502 can be transmitted to the UE 104.
  • the CSI report trigger 502 may indicate a reporting configuration and/or other reporting parameters (e.g., a set of beams for which to report CSI) , etc.
  • the reporting configuration may specify a first periodicity for transmitting CSI for beams/bases and a second periodicity for transmitting CSI for coefficients only.
  • the UE can transmit a first CSI report including CSI for beams, bases, and coefficients, where a time at which the first CSI report is sent at 504 can be based on the first periodicity.
  • the UE can then transmit second and third CSI reports, respectively, for coefficients only, where a time at which the CSI reports are sent at 506, 508 can be based on the second periodicity.
  • the coefficients can be based on the beams/bases for which CSI is reported at 504.
  • the UE can transmit another CSI report including CSI for beams, bases, and coefficients, where a time at which the first CSI report is sent at 510 can be based on the first periodicity (e.g., a time period from sending the CSI report at 504) .
  • the UE can then transmit additional CSI reports, respectively, for coefficients only, where a time at which the CSI reports are sent at 512, 514 can be based on the second periodicity.
  • the coefficients can be based on the beams/bases for which CSI is reported at 510.
  • FIG. 6 illustrates a flow chart of an example of a method 600 for transmitting aperiodic CSI reports.
  • a UE 104 can perform the functions described in method 600 using one or more of the components described in FIGS. 1-2.
  • a first trigger to report a first CSI report for at least one or more beams and corresponding bases can be received.
  • CSI configuring component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the first trigger to report the first CSI report for at least the one or more beams and corresponding bases.
  • the first trigger can include a signal received from a base station 102 (e.g., an RRC signal, dedicated control signal, etc. ) to report the CSI.
  • the trigger may indicate that the CSI report is to include CSI for beams and/or bases (e.g., which may be an intermediate subset of all beams) , a full CSI report for all beams and corresponding bases and coefficients, a partial CSI report for an intermediate subset of beams/bases, etc.
  • a first CSI-RS transmission can be received.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the first CSI-RS transmission (e.g., from base station 102 or other network components) .
  • CSI component 254 can receive the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
  • a first CSI measurement can be performed based on the first CSI-RS.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can perform the first CSI measurement based on the first CSI-RS.
  • CSI component 254 can measure a CSI-RS from the base station 102 (e.g., over resources indicated by the base station 102 in the reporting configuration or another configuration) .
  • CSI component 254 may measure the CSI-RS for one or more beams and/or bases of a precoder and/or for one or more coefficients.
  • CSI component 254 can determine for which beams and/or bases or coefficients to report CSI based on the trigger. For example, CSI component 254 may determine the measured CSI for the beams and corresponding bases (and including or not including the coefficients) . CSI component 254 may measure CSI for all beams/bases or an intermediate subset of beams/bases, which may be indicated by the trigger.
  • a CQI can be determined based on the first CSI report.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine the CQI based on the first CSI report.
  • CSI component 254 can determine the CQI based on randomly selecting a beam from the reported beam set, applying the beam on a first part CSI-RS ports (e.g., 1st polarization) and a second part CSI-RS ports (e.g., 2nd polarization) , and applying a random phase on the second part CSI-RS ports.
  • the granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling.
  • PRG precoding resource block group
  • the precoder on a certain PRG can be where b is randomly selected from the reported L beams, and ⁇ is phase randomly selected from a quadrature phase-shift keying (QPSK) , 8PSK, or 16PSK alphabet.
  • QPSK quadrature phase-shift keying
  • scheduling component 342 can schedule resources for communications to/from the UE 104 based on the determined CQI.
  • CSI component 254 can determine the CQI based on, for each beam on a certain polarization, randomly selecting a basis among the reported basis. For the randomly selected beam on a certain beam and a certain polarization, the base station 102 can apply a coefficient with unit amplitude with a random phase to determine the CQI.
  • the granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling.
  • PRG precoding resource block group
  • the precoder on the N 3 frequency domain (FD) units can be where b i is the reported L beams and 2 polarizations, is the 1 ⁇ N 3 basis randomly chosen from the M i bases for beam i, and ⁇ is phase randomly selected from a QPSK, 8PSK, or 16PSK alphabet.
  • a first CSI report for at least the one or more beams and corresponding compression bases can be transmitted based on the first trigger.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can transmit, based on the first trigger, the first CSI report for at least the one or more beams and corresponding compression bases.
  • the first CSI report may include CQI computed at Block 608.
  • CSI component 254 can transmit the first CSI report based on the first CSI-RS measurement and over CSI reporting resources, which may be configured by the base station 102, and/or may be part of a PUCCH or PUSCH.
  • a second trigger to report a second CSI report for coefficient quantization for the one or more beams can be received.
  • CSI configuring component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the second trigger to report the second CSI report for coefficient quantization for the one or more beams.
  • the second trigger can include a signal from a base station 102 (e.g., an RRC signal, dedicated control signal, etc. ) to report the CSI.
  • the one or more beams and corresponding compression bases for the coefficient quantization are at least one of associated with a last transmitted CSI report (by the UE 104) that includes the one or more beams and corresponding compression bases, or are configured to the UE in Block 614, as described herein.
  • an indication to transmit the coefficient quantization for the one or more beams can be received.
  • CSI configuring component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive an indication to transmit the coefficient quantization for the one or more beams.
  • the trigger may indicate that the CSI report is to include coefficient quantization but not beams and/or bases.
  • the trigger may indicate a set of beams/basis for which coefficient quantization is to be reported.
  • the second trigger can be an implicit indication to determine and transmit CSI for coefficient quantization corresponding to the beams and/or corresponding bases in a last transmitted full CSI report (or CSI report including an intermediate subset of beams/bases) .
  • it can be determined to transmit a second CSI report indicating coefficient quantization for the one or more beams based on determining that the last transmitted CSI report included the one or more beams.
  • CSI configuring component 252 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine to transmit the second CSI report indicating coefficient quantization for the one or more beams based on determining that the last transmitted CSI report (e.g., the first CSI report transmitted at Block 606) included the one or more beams.
  • the second trigger can include an indication for which beams and/or corresponding bases to measure and transmit CSI corresponding to the coefficient quantization.
  • a second CSI-RS transmission can be received.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the second CSI-RS transmission (e.g., from base station 102 or other network components) .
  • CSI component 254 can receive the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
  • a second CSI measurement can be performed based on the second CSI-RS.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can perform the second CSI-RS measurement based on the second CSI-RS.
  • CSI component 254 can measure a CSI-RS from the base station 102 (e.g., over resources indicated by the base station 102 in the reporting configuration or another configuration) .
  • CSI component 254 may measure the CSI-RS for one or more coefficients.
  • the one or more coefficients can relate to the one or more beams or corresponding bases specified in the trigger and/or in a previous CSI report (e.g., the first CSI report transmitted at Block 606) .
  • a second CSI report for the coefficient quantization for the one or more beams can be transmitted based on the second trigger.
  • CSI component 254 e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can transmit, based on the second trigger, the second CSI report for the coefficient quantization for the one or more beams.
  • CSI component 254 can transmit the second CSI report based on the second CSI-measurement and over CSI reporting resources, which may be configured by the base station 102, and/or may be part of a PUCCH or PUSCH.
  • the base station 102 can determine a CQI from the CSI reports.
  • the second CSI report may include CQI, which can be computed based on the coefficient quantization and the one or more beams and corresponding compression bases reported in the first CSI report.
  • a first aperiodic CSI report trigger can be for either of a full CSI report for all beams/bases for the precoder (e.g., which may be carried by PUSCH due to increased payload capacity) or a report of an intermediate subset of beam/basis selection (which can be carried by either PUCCH or PUSCH) .
  • this report can include an update of the intermediate subset (e.g., without including updates for other beams/bases in the full set) .
  • a second aperiodic CSI report is sent for coefficient report.
  • there can be an implicit association of beam/basis report such that if UE receives an aperiodic CSI report configuration for coefficient report only, the UE can report coefficient associated with the most recent CSI report containing beam/basis report.
  • UE can further report an update of the basis selection from the intermediate subset, which was included in the most recent CSI report containing the beam report and intermediate set report. An example is shown in FIG. 7.
  • FIG. 7 illustrates an example of a signaling timeline 700 for reporting semi-persistent and/or periodic CSI.
  • an aperiodic CSI report trigger 702 can be transmitted to the UE 104.
  • the CSI report trigger 702 may indicate a reporting configuration and/or other reporting parameters (e.g., a set of beams for which to report CSI) , etc.
  • the reporting configuration may specify resources to use for transmitting CSI for beams/bases (and/or coefficients) .
  • the UE can transmit a first CSI report including CSI for beams, bases, and coefficients based on the trigger.
  • a second aperiodic CSI report trigger can be transmitted to the UE 104.
  • the second CSI report trigger 706 may indicate a reporting configuration and/or other reporting parameters for reporting CSI for coefficients only, which may include an indication of resources to use for transmitting CSI for the coefficients.
  • the UE can then transmit a second CSI report for coefficients only based on the second trigger.
  • the coefficients can be based on the beams/bases for which CSI is reported at 704 where the second CSI report trigger 706 can represent an implicit indicator to report CSI for coefficients related to the beams/bases for which CSI is previously reported.
  • a third aperiodic CSI report trigger can be transmitted to the UE 104.
  • the third CSI report trigger 710 may indicate a reporting configuration and/or other reporting parameters for reporting CSI for coefficients only, which may include an indication of resources to use for transmitting CSI for the coefficients.
  • the UE can then transmit a third CSI report for coefficients only based on the third trigger.
  • the coefficients can be based on the beams/bases for which CSI is reported at 704 where the third CSI report trigger 710 can represent an implicit indicator to report CSI for coefficients related to the beams/bases for which CSI is previously reported.
  • the UE receives an aperiodic CSI report with a configuration of beam and/or basis, which may be via codebook subset restriction, an explicit configuration of basis selection for each beam, and/or the like.
  • UE can report coefficients associated with the configured beam and/or basis. For beam-specific basis selection from an intermediate subset, the UE further reports an update of the basis selection from the configured intermediate subset. An example is shown in FIG. 8.
  • FIG. 8 illustrates an example of a signaling timeline 800 for reporting semi-persistent and/or periodic CSI.
  • an aperiodic CSI report trigger 802 can be transmitted to the UE 104.
  • the CSI report trigger 802 may indicate a reporting configuration and/or other reporting parameters (e.g., a set of beams for which to report CSI) , etc.
  • the reporting configuration may specify resources to use for transmitting CSI for beams/bases (and/or coefficients) .
  • the UE can transmit a first CSI report including CSI for beams, bases, and coefficients based on the trigger.
  • a second aperiodic CSI report trigger can be transmitted to the UE 104.
  • the second CSI report trigger 806 may indicate a reporting configuration and/or other reporting parameters for reporting CSI for coefficients only, which may include an indication of resources to use for transmitting CSI for the coefficients.
  • the second CSI report trigger 806 can include an indication of beams/bases for which to report CSI for associated coefficients, where the beams/bases may be different than those for which CSI is reported at 804.
  • the UE can then transmit a second CSI report for coefficients only for the beams/bases indicated by the second trigger.
  • a third aperiodic CSI report trigger can be transmitted to the UE 104.
  • the third CSI report trigger 810 may indicate a reporting configuration and/or other reporting parameters for reporting CSI for coefficients only, which may include an indication of resources to use for transmitting CSI for the coefficients.
  • the third CSI report trigger 810 can include an indication of beams/bases for which to report CSI for associated coefficients, where the beams/bases may be different than those for which CSI is reported at 804 and/or at 808.
  • the UE can then transmit a third CSI report for coefficients only for the beams/bases indicated by the third trigger.
  • FIG. 9 illustrates a flow chart of an example of a method 900 for configuring semi-persistent/periodic CSI reports.
  • a base station 102 can perform the functions described in method 900 using one or more of the components described in FIGS. 1 and 3.
  • a CSI report trigger triggering a reporting configuration can be transmitted to a device for reporting CSI based on a first periodicity and a second periodicity.
  • configuration indicating component 352 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can transmit the CSI report trigger triggering the reporting configuration to the device (e.g., UE 104) for reporting CSI based on the first periodicity and the second periodicity.
  • the reporting configuration can indicate the first periodicity for transmitting CSI for beams and corresponding bases (and/or coefficients) and the second periodicity for transmitting CSI for coefficients only, as described above.
  • configuration indicating component 352 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc.
  • the trigger can indicate an index of the reporting configuration configured for the device, as described above.
  • trigger can indicate whether the CSI report is to include all beams and/or bases for the precoder, an intermediate subset of beams and/or bases, etc.
  • the trigger may indicate a set of resources over which the CSI can be reported, a set of resources over which the base station 102 can transmit the CSI-RS to be measured, etc., as described.
  • a first CSI-RS can be transmitted.
  • CSI processing component 354 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can transmit the first CSI-RS.
  • CSI processing component 354 can transmit the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
  • a first CSI report for at least one or more beams and corresponding bases can be received based on the first periodicity.
  • CSI processing component 354 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can receive, based on the first periodicity, the first CSI report for the at least one or more beams and corresponding bases (and/or for the coefficients) .
  • the base station 102 can transmit a CSI-RS, and the device can measure the CSI-RS and report CSI for the one or more beams and corresponding bases to which the reporting configuration relates based on the first periodicity.
  • the received CSI report may include CSI for coefficients of the beams and DFT bases of the precoder that are associated with the first CSI report (e.g., all beams/bases for a precoder or a subset thereof) , or for an intermediate selecting of bases applied to the beams (e.g., where the first CSI report includes an intermediate set of bases applied to the beams) .
  • a second CSI-RS can be transmitted.
  • CSI processing component 354 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can transmit the second CSI-RS.
  • CSI processing component 354 can transmit the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
  • a second CSI report for the coefficient quantization can be received based on the second periodicity.
  • CSI processing component 354 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can receive, based on the second periodicity, the second CSI report for the coefficient quantization for the one or more beams.
  • the base station 102 can transmit a CSI-RS, and the device can measure the CSI-RS and report CSI for the coefficient quantization for the one or more beams based on the second periodicity, but not for the beams/bases.
  • receiving the first CSI report can include receiving the one or more beams and an intermediate set of the corresponding compression bases applied to all beams for a precoder
  • receiving the second CSI report can include receiving a selection of the corresponding compression bases for each beam from the intermediate set and the associated coefficient quantization
  • a CQI can be determined based on the first and/or second CSI report.
  • CSI processing component 354 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine the CQI based on the first CSI report.
  • CSI processing component 354 can determine the CQI based on randomly selecting a beam from the reported beam set, applying the beam on a first part CSI-RS ports (e.g., 1st polarization) and a second part CSI-RS ports (e.g., 2nd polarization) , and applying a random phase on the second part CSI-RS ports.
  • the granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling.
  • PRG precoding resource block group
  • the precoder on a certain PRG can be where b is randomly selected from the reported L beams, and ⁇ is phase randomly selected from a quadrature phase-shift keying (QPSK) , 8PSK, or 16PSK alphabet.
  • QPSK quadrature phase-shift keying
  • scheduling component 342 can schedule resources for communications to/from the UE 104 based on the determined CQI.
  • CSI processing component 354 can determine the CQI based on, for each beam on a certain polarization, randomly selecting a basis among the reported basis. For the randomly selected beam on a certain beam and a certain polarization, the base station 102 can apply a coefficient with unit amplitude with a random phase to determine the CQI.
  • the granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling.
  • PRG precoding resource block group
  • the precoder on the N 3 FD units can be where b i is the reported L beams and 2 polarizations, is the 1 ⁇ N 3 basis randomly chosen from the M i bases for beam i, and ⁇ is phase randomly selected from a QPSK, 8PSK, or 16PSK alphabet.
  • FIG. 10 illustrates a flow chart of an example of a method 1000 for configuring aperiodic CSI reports.
  • a base station 102 can perform the functions described in method 1000 using one or more of the components described in FIGS. 1 and 3.
  • a first trigger to report a first CSI report for at least one or more beams or corresponding bases can be transmitted to a device.
  • configuration indicating component 352 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc.
  • the device e.g., UE 104
  • the first trigger can indicate the one or more beams and/or corresponding bases for which CSI is to be reported (e.g., all beams and/or bases for the precoder, an intermediate subset of beams and/or bases, etc. ) .
  • the first trigger may indicate a set of resources over which the CSI can be reported, a set of resources over which the base station 102 can transmit the CSI-RS to be measured, etc., as described.
  • a first CSI-RS can be transmitted.
  • CSI processing component 354 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can transmit the first CSI-RS.
  • CSI processing component 354 can transmit the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
  • a first CSI report for the one or more beams and corresponding bases can be received based on the first trigger.
  • CSI processing component 354 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can receive, based on the first trigger, the first CSI report for the at least one or more beams and corresponding bases (and/or for the coefficients) .
  • the base station 102 can transmit a CSI-RS, and the device can measure the CSI-RS and report CSI for the one or more beams and corresponding bases based on the first trigger.
  • a second trigger to report a second CSI report for the coefficient quantization of the one or more beams can be transmitted to the device.
  • configuration indicating component 352 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can transmit, to the device, the second trigger to report the second CSI report indicating the coefficient quantization for the one or more beams.
  • the second trigger can implicitly indicate to report coefficient quantization for the previously reported beams/bases or can include an explicit indication of the one or more beams and/or corresponding bases for which coefficient quantization is to be reported, as described.
  • the second trigger may indicate a set of resources over which the CSI can be reported, a set of resources over which the base station 102 can transmit the CSI-RS to be measured, etc., as described.
  • base station 102 may transmit the second trigger to receive only CSI for coefficient quantization without transmitting a preceding trigger for CSI for corresponding beams/compression bases.
  • the one or more beams and corresponding compression bases for the coefficient quantization are at least one of associated with a last received CSI report (from the UE 104) that includes the one or more beams and corresponding compression bases, or one or more beams and corresponding bases configured to the UE (e.g., by the base station 102) .
  • a second CSI-RS can be transmitted.
  • CSI processing component 354 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can transmit the second CSI-RS.
  • CSI processing component 354 can transmit the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
  • a second CSI report for the coefficient quantization for the one or more beams can be received based on the second trigger.
  • CSI processing component 354 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can receive, based on the second trigger, the second CSI report for the coefficient quantization for the one or more beams.
  • the base station 102 can transmit a CSI-RS, and the device can measure the CSI-RS and report CSI for the coefficient quantization for the one or more beams and corresponding bases indicated by the second trigger.
  • a CQI can be determined based on the first and/or second CSI report.
  • CSI processing component 354 e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine the CQI based on the first CSI report.
  • CSI processing component 354 can determine the CQI based on randomly selecting a beam from the reported beam set, applying the beam on a first part CSI-RS ports (e.g., 1st polarization) and a second part CSI-RS ports (e.g., 2nd polarization) , and applying a random phase on the second part CSI-RS ports.
  • the granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling.
  • PRG precoding resource block group
  • the precoder on a certain PRG can be where b is randomly selected from the reported L beams, and ⁇ is phase randomly selected from a quadrature phase-shift keying (QPSK) , 8PSK, or 16PSK alphabet.
  • QPSK quadrature phase-shift keying
  • scheduling component 342 can schedule resources for communications to/from the UE 104 based on the determined CQI.
  • CSI processing component 354 can determine the CQI based on, for each beam on a certain polarization, randomly selecting a basis among the reported basis. For the randomly selected beam on a certain beam and a certain polarization, the base station 102 can apply a coefficient with unit amplitude with a random phase to determine the CQI.
  • the granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling.
  • PRG precoding resource block group
  • the precoder on the N 3 FD units can be where b i is the reported L beams and 2 polarizations, is the 1 ⁇ N 3 basis randomly chosen from the M i bases for beam i, and ⁇ is phase randomly selected from a QPSK, 8PSK, or 16PSK alphabet.
  • FIG. 11 is a block diagram of a MIMO communication system 1100 including a base station 102 and a UE 104.
  • the MIMO communication system 1100 may illustrate aspects of the wireless communication access network 100 described with reference to FIG. 1.
  • the base station 102 may be an example of aspects of the base station 102 described with reference to FIG. 1.
  • the base station 102 may be equipped with antennas 1134 and 1135, and the UE 104 may be equipped with antennas 1152 and 1153.
  • the base station 102 may be able to send data over multiple communication links at the same time.
  • Each communication link may be called a “layer” and the “rank” of the communication link may indicate the number of layers used for communication. For example, in a 2x2 MIMO communication system where base station 102 transmits two “layers, ” the rank of the communication link between the base station 102 and the UE 104 is two.
  • a transmit (Tx) processor 1120 may receive data from a data source.
  • the transmit processor 1120 may process the data.
  • the transmit processor 1120 may also generate control symbols or reference symbols.
  • a transmit MIMO processor 1130 may perform spatial processing (e.g., precoding) on data symbols, control symbols, or reference symbols, if applicable, and may provide output symbol streams to the transmit modulator/demodulators 1132 and 1133.
  • Each modulator/demodulator 1132 through 1133 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream.
  • Each modulator/demodulator 1132 through 1133 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a DL signal.
  • DL signals from modulator/demodulators 1132 and 1133 may be transmitted via the antennas 1134 and 1135, respectively.
  • the UE 104 may be an example of aspects of the UEs 104 described with reference to FIGS. 1-2.
  • the UE antennas 1152 and 1153 may receive the DL signals from the base station 102 and may provide the received signals to the modulator/demodulators 1154 and 1155, respectively.
  • Each modulator/demodulator 1154 through 1155 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples.
  • Each modulator/demodulator 1154 through 1155 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols.
  • a MIMO detector 1156 may obtain received symbols from the modulator/demodulators 1154 and 1155, perform MIMO detection on the received symbols, if applicable, and provide detected symbols.
  • a receive (Rx) processor 1158 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, providing decoded data for the UE 104 to a data output, and provide decoded control information to a processor 1180, or memory 1182.
  • the processor 1180 may in some cases execute stored instructions to instantiate a communicating component 242 (see e.g., FIGS. 1 and 2) .
  • a transmit processor 1164 may receive and process data from a data source.
  • the transmit processor 1164 may also generate reference symbols for a reference signal.
  • the symbols from the transmit processor 1164 may be precoded by a transmit MIMO processor 1166 if applicable, further processed by the modulator/demodulators 1154 and 1155 (e.g., for SC-FDMA, etc. ) , and be transmitted to the base station 102 in accordance with the communication parameters received from the base station 102.
  • the UL signals from the UE 104 may be received by the antennas 1134 and 1135, processed by the modulator/demodulators 1132 and 1133, detected by a MIMO detector 1136 if applicable, and further processed by a receive processor 1138.
  • the receive processor 1138 may provide decoded data to a data output and to the processor 1140 or memory 1142.
  • the processor 1140 may in some cases execute stored instructions to instantiate a scheduling component 342 (see e.g., FIGS. 1 and 3) .
  • the components of the UE 104 may, individually or collectively, be implemented with one or more ASICs adapted to perform some or all of the applicable functions in hardware.
  • Each of the noted modules may be a means for performing one or more functions related to operation of the MIMO communication system 1100.
  • the components of the base station 102 may, individually or collectively, be implemented with one or more ASICs adapted to perform some or all of the applicable functions in hardware.
  • Each of the noted components may be a means for performing one or more functions related to operation of the MIMO communication system 1100.
  • Information and signals may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, computer-executable code or instructions stored on a computer-readable medium, or any combination thereof.
  • a specially-programmed device such as but not limited to a processor, a digital signal processor (DSP) , an ASIC, a FPGA or other programmable logic device, a discrete gate or transistor logic, a discrete hardware component, or any combination thereof designed to perform the functions described herein.
  • DSP digital signal processor
  • a specially-programmed processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a specially-programmed processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a non-transitory computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a specially programmed processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a storage medium may be any available medium that can be accessed by a general purpose or special purpose computer.
  • computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • Disk and disc include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Abstract

Aspects described herein relate to measuring first channel state information (CSI) for the one or more beams, transmitting the first CSI report indicating at least the one or more beams and corresponding bases, measuring second CSI for the coefficient quantization for the one or more beams, and separately transmitting a second CSI report for the coefficient quantization for the one or more beams.

Description

TECHNIQUES FOR REPORTING CHANNEL STATE INFORMATION IN WIRELESS COMMUNICATIONS BACKGROUND
Aspects of the present disclosure relate generally to wireless communication systems, and more particularly, to reporting channel state information.
Wireless communication systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include code-division multiple access (CDMA) systems, time-division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, and orthogonal frequency-division multiple access (OFDMA) systems, and single-carrier frequency division multiple access (SC-FDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. For example, a fifth generation (5G) wireless communications technology (which can be referred to as 5G new radio (5G NR) ) is envisaged to expand and support diverse usage scenarios and applications with respect to current mobile network generations. In an aspect, 5G communications technology can include: enhanced mobile broadband addressing human-centric use cases for access to multimedia content, services and data; ultra-reliable-low latency communications (URLLC) with certain specifications for latency and reliability; and massive machine type communications, which can allow a very large number of connected devices and transmission of a relatively low volume of non-delay-sensitive information.
In some wireless communication technologies, a type 2 precoder can be used across frequency domain (FD) units where the precoder can use multiple layers and linear combinations of spatial beams. In an example, a device can be configured to report channel state information (CSI) for the type 2 precoder including various values for each spatial beam, corresponding bases, and coefficients, which may cause significant overhead in wireless communication resources used for reporting CSI.
SUMMARY
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
According to an example, a method of wireless communication is provided. The method includes receiving a channel state information (CSI) report trigger triggering a reporting configuration for transmitting a CSI report, wherein the reporting configuration indicates a first periodicity for reporting CSI for at least one or more beams and corresponding compression bases and a second periodicity for reporting CSI for a coefficient quantization, receiving a first CSI-reference signal (CSI-RS) transmission, performing a CSI measurement based on the first CSI-RS, transmitting, based on the first periodicity, a first CSI report for at least the one or more beams and corresponding compression bases, receiving a second CSI-RS transmission, performing a second CSI measurement based on the second CSI-RS, and transmitting, based on the second periodicity, a second CSI report for the coefficient quantization for the one or more beams.
In another example, a method for wireless communications is provided. The method includes transmitting a CSI report trigger triggering a reporting configuration to a device, wherein the reporting configuration indicates a first periodicity for reporting CSI for one or more beams and corresponding bases and a second periodicity for reporting CSI for a coefficient quantization, transmitting a first CSI-RS, receiving, based on the first periodicity, a first CSI report of the first CSI-RS for at least the one or more beams and corresponding bases, transmitting a second CSI-RS, and receiving, based on the second periodicity, a second CSI report of the second CSI-RS for the coefficient quantization for the one or more beams.
In another example, a method for wireless communication is provided that includes receiving a trigger to report an aperiodic CSI report for a coefficient quantization for the one or more beams and one or more bases, receiving a CSI-RS transmission, performing a CSI measurement based on the CSI-RS, and transmitting, based on the  trigger, a CSI report for the coefficient quantization for the one or more beams and corresponding compression bases, wherein the one or more beams and corresponding compression bases are at least one of associated with a last transmitted CSI report that includes the one or more beams and corresponding compression bases, or configured by a base station.
In another example, a method for wireless communication is provided. The method includes transmitting, to a device, a trigger to report a CSI report for a coefficient quantization for the one or more beams, transmitting a CSI-RS, and receiving, based on the second trigger, a CSI report indicating the coefficient quantization for the one or more beams and corresponding compression bases, wherein the one or more beams and corresponding compression bases are at least one of associated with a last received CSI report that includes the one or more beams and corresponding compression bases, or configured to the UE.
In a further example, an apparatus for wireless communication is provided that includes a transceiver, a memory configured to store instructions, and one or more processors communicatively coupled with the transceiver and the memory. The one or more processors are configured to execute the instructions to perform the operations of methods described herein. In another aspect, an apparatus for wireless communication is provided that includes means for performing the operations of methods described herein. In yet another aspect, a computer-readable medium is provided including code executable by one or more processors to perform the operations of methods described herein.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosed aspects will hereinafter be described in conjunction with the appended drawings, provided to illustrate and not to limit the disclosed aspects, wherein like designations denote like elements, and in which:
FIG. 1 illustrates an example of a wireless communication system, in accordance with various aspects of the present disclosure;
FIG. 2 is a block diagram illustrating an example of a UE, in accordance with various aspects of the present disclosure;
FIG. 3 is a block diagram illustrating an example of a base station, in accordance with various aspects of the present disclosure;
FIG. 4 is a flow chart illustrating an example of a method for reporting semi-persistent and/or periodic channel state information (CSI) , in accordance with various aspects of the present disclosure;
FIG. 5 illustrates an example of a timeline for reporting semi-persistent and/or periodic CSI, in accordance with various aspects of the present disclosure;
FIG. 6 is a flow chart illustrating an example of a method for reporting aperiodic CSI, in accordance with various aspects of the present disclosure;
FIG. 7 illustrates an example of a timeline for reporting aperiodic CSI with an implicit indication of beams, in accordance with various aspects of the present disclosure;
FIG. 8 illustrates an example of a timeline for reporting aperiodic CSI with an explicit indication of beams, in accordance with various aspects of the present disclosure;
FIG. 9 is a flow chart illustrating an example of a method for configuring reporting of semi-persistent and/or periodic CSI, in accordance with various aspects of the present disclosure;
FIG. 10 is a flow chart illustrating an example of a method for configuring reporting of aperiodic CSI, in accordance with various aspects of the present disclosure; and
FIG. 11 is a block diagram illustrating an example of a MIMO communication system including a base station and a UE, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects are now described with reference to the drawings. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of one or more aspects. It may be evident, however, that such aspect (s) may be practiced without these specific details.
The described features generally relate to reporting channel state information (CSI) using multiple reports to prevent sending complete CSI information with each report. This can reduce reporting overhead, as described herein. For example, in a type 2 precoder used in some wireless communication technologies (e.g., long term evolution (LTE) , fifth generate (5G) new radio (NR) , etc. ) , given a number of communication layers L, the precoder can be represented as
Figure PCTCN2019072532-appb-000001
where b i is a given spatial beam for the layer l, coefficients
Figure PCTCN2019072532-appb-000002
and N 3 is the number of resources (as a number of subbands) . In another example, the precoder can be represented as
Figure PCTCN2019072532-appb-000003
Figure PCTCN2019072532-appb-000004
where
Figure PCTCN2019072532-appb-000005
is the discrete Fourier transform (DFT) basis and
Figure PCTCN2019072532-appb-000006
Figure PCTCN2019072532-appb-000007
of size M i×N 3, coefficients
Figure PCTCN2019072532-appb-000008
for a dimension of a compressed domain M i<N 3. In reporting CSI using such precoders, the report can typically include beam information for each beam b i, corresponding DFT bases
Figure PCTCN2019072532-appb-000009
for each beam, and coefficient reports
Figure PCTCN2019072532-appb-000010
for each beam b i. Currently, for CSI reporting, devices report a spatial beam matrix specifying up to L beams, basis selection (e.g., the
Figure PCTCN2019072532-appb-000011
matrix) , which may be common to the beams (e.g., M bases applied to all beams) or beam specific (e.g., M i bases for a particular beam) , and a coefficient report (e.g., report for the M i entries of
Figure PCTCN2019072532-appb-000012
) . In an example, overhead can be reduced by making report of beam and bases semi-static as compared to coefficient reporting.
In one example, for semi-persistent and/or periodic CSI reports, different reporting configuration types with different reporting quantities can be used for reporting of beam and bases as compared to coefficient reporting. For example, a larger periodicity can be used to report beam and basis as opposed to coefficient reporting. In another example, for aperiodic CSI reports, different triggers can be used to trigger report of beam and bases as compared to coefficient reporting. In this example, reporting coefficients can be implicitly based on a last report of beams and bases or the trigger for reporting coefficients can indicate the beams and bases for which to report CSI for the coefficients. In either case, signaling overhead can be conserved by refraining from transmitting at least the beam and bases portion for each CSI report.
The described features will be presented in more detail below with reference to FIGS. 1-11.
As used in this application, the terms “component, ” “module, ” “system” and the like are intended to include a computer-related entity, such as but not limited to hardware, firmware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a computing device and the computing device can be a component. One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers. In addition, these components can execute from various computer readable media having various data structures stored thereon. The components can communicate by way of local and/or remote processes such as in accordance with a signal having one or more data packets, such as data from one component interacting with another component in a local system, distributed system, and/or across a network such as the Internet with other systems by way of the signal.
Techniques described herein may be used for various wireless communication systems such as CDMA, TDMA, FDMA, OFDMA, SC-FDMA, and other systems. The terms “system” and “network” may often be used interchangeably. A CDMA system may implement a radio technology such as CDMA2000, Universal Terrestrial Radio Access (UTRA) , etc. CDMA2000 covers IS-2000, IS-95, and IS-856 standards. IS-2000 Releases 0 and A are commonly referred to as CDMA2000 1X, 1X, etc. IS-856 (TIA-856) is commonly referred to as CDMA2000 1xEV-DO, High Rate Packet Data (HRPD) , etc. UTRA includes Wideband CDMA (WCDMA) and other variants of CDMA. A TDMA system may implement a radio technology such as Global System for Mobile Communications (GSM) . An OFDMA system may implement a radio technology such as Ultra Mobile Broadband (UMB) , Evolved UTRA (E-UTRA) , IEEE 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM TM, etc. UTRA and E-UTRA are part of Universal Mobile Telecommunication System (UMTS) . 3GPP Long Term Evolution (LTE) and LTE-Advanced (LTE-A) are new releases of UMTS that use E-UTRA. UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named “3rd Generation Partnership Project” (3GPP) . CDMA2000  and UMB are described in documents from an organization named “3rd Generation Partnership Project 2” (3GPP2) . The techniques described herein may be used for the systems and radio technologies mentioned above as well as other systems and radio technologies, including cellular (e.g., LTE) communications over a shared radio frequency spectrum band. The description below, however, describes an LTE/LTE-Asystem for purposes of example, and LTE terminology is used in much of the description below, although the techniques are applicable beyond LTE/LTE-Aapplications (e.g., to fifth generation (5G) new radio (NR) networks or other next generation communication systems) .
The following description provides examples, and is not limiting of the scope, applicability, or examples set forth in the claims. Changes may be made in the function and arrangement of elements discussed without departing from the scope of the disclosure. Various examples may omit, substitute, or add various procedures or components as appropriate. For instance, the methods described may be performed in an order different from that described, and various steps may be added, omitted, or combined. Also, features described with respect to some examples may be combined in other examples.
Various aspects or features will be presented in terms of systems that can include a number of devices, components, modules, and the like. It is to be understood and appreciated that the various systems can include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. A combination of these approaches can also be used.
FIG. 1 is a diagram illustrating an example of a wireless communications system and an access network 100. The wireless communications system (also referred to as a wireless wide area network (WWAN) ) can include base stations 102, UEs 104, an Evolved Packet Core (EPC) 160, and/or a 5G Core (5GC) 190. The base stations 102 may include macro cells (high power cellular base station) and/or small cells (low power cellular base station) . The macro cells can include base stations. The small cells can include femtocells, picocells, and microcells. In an example, the base stations 102 may also include gNBs 180, as described further herein. In one example, some nodes of the wireless communication system may have a modem 240 and communicating component 242 for providing UAI and/or communicating degraded feedback, and some nodes may  have a modem 340 and scheduling component 342 for receiving UAI and configuring devices with associated communication parameters, as described herein. Though a UE 104 is shown as having the modem 240 and communicating component 242 and a base station 102/gNB 180 is shown as having the modem 340 and scheduling component 342, this is one illustrative example, and substantially any node or type of node may include a modem 240 and communicating component 242 and/or a modem 340 and scheduling component 342 for providing corresponding functionalities described herein.
The base stations 102 configured for 4G LTE (which can collectively be referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN) ) may interface with the EPC 160 through backhaul links 132 (e.g., using an S1 interface) . The base stations 102 configured for 5G NR (which can collectively be referred to as Next Generation RAN (NG-RAN) ) may interface with 5GC 190 through backhaul links 184. In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity) , inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS) , subscriber and equipment trace, RAN information management (RIM) , paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160 or 5GC 190) with each other over backhaul links 134 (e.g., using an X2 interface) . The backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with one or more UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102'may have a coverage area 110'that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macro cells may be referred to as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs) , which may provide service to a restricted group, which can be referred to as a closed subscriber group (CSG) . The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station  102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use multiple-input and multiple-output (MIMO) antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102/UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20, 100, 400, etc. MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (e.g., for x component carriers) used for transmission in the DL and/or the UL direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL) . The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell) .
In another example, certain UEs 104 may communicate with each other using device-to-device (D2D) communication link 158. The D2D communication link 158 may use the DL/UL WWAN spectrum. The D2D communication link 158 may use one or more sidelink channels, such as a physical sidelink broadcast channel (PSBCH) , a physical sidelink discovery channel (PSDCH) , a physical sidelink shared channel (PSSCH) , and a physical sidelink control channel (PSCCH) . D2D communication may be through a variety of wireless D2D communications systems, such as for example, FlashLinQ, WiMedia, Bluetooth, ZigBee, Wi-Fi based on the IEEE 802.11 standard, LTE, or NR.
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152/AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102'may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102'may employ NR and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102', employing NR in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network.
base station 102, whether a small cell 102'or a large cell (e.g., macro base station) , may include an eNB, gNodeB (gNB) , or other type of base station. Some base stations, such as gNB 180 may operate in a traditional sub 6 GHz spectrum, in millimeter wave (mmW) frequencies, and/or near mmW frequencies in communication with the UE 104. When the gNB 180 operates in mmW or near mmW frequencies, the gNB 180 may be referred to as an mmW base station. Extremely high frequency (EHF) is part of the RF in the electromagnetic spectrum. EHF has a range of 30 GHz to 300 GHz and a wavelength between 1 millimeter and 10 millimeters. Radio waves in the band may be referred to as a millimeter wave. Near mmW may extend down to a frequency of 3 GHz with a wavelength of 100 millimeters. The super high frequency (SHF) band extends between 3 GHz and 30 GHz, also referred to as centimeter wave. Communications using the mmW/near mmW radio frequency band has extremely high path loss and a short range. The mmW base station 180 may utilize beamforming 182 with the UE 104 to compensate for the extremely high path loss and short range. A base station 102 referred to herein can include a gNB 180.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN) , and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be  responsible for session management (start/stop) and for collecting eMBMS related charging information.
The 5GC 190 may include a Access and Mobility Management Function (AMF) 192, other AMFs 193, a Session Management Function (SMF) 194, and a User Plane Function (UPF) 195. The AMF 192 may be in communication with a Unified Data Management (UDM) 196. The AMF 192 can be a control node that processes the signaling between the UEs 104 and the 5GC 190. Generally, the AMF 192 can provide QoS flow and session management. User Internet protocol (IP) packets (e.g., from one or more UEs 104) can be transferred through the UPF 195. The UPF 195 can provide UE IP address allocation for one or more UEs, as well as other functions. The UPF 195 is connected to the IP Services 197. The IP Services 197 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS) , a PS Streaming Service, and/or other IP services.
The base station may also be referred to as a gNB, Node B, evolved Node B (eNB) , an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS) , an extended service set (ESS) , a transmit reception point (TRP) , or some other suitable terminology. The base station 102 provides an access point to the EPC 160 or 5GC 190 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA) , a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player) , a camera, a game console, a tablet, a smart device, a wearable device, a vehicle, an electric meter, a gas pump, a large or small kitchen appliance, a healthcare device, an implant, a sensor/actuator, a display, or any other similar functioning device. Some of the UEs 104 may be referred to as IoT devices (e.g., parking meter, gas pump, toaster, vehicles, heart monitor, etc. ) . The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
In an example, communicating component 242 can transmit CSI reports based on various configuration parameters. As described further herein, communicating  component 242 can transmit CSI reports for coefficients separately from beams and bases to facilitate reducing overhead in CSI reporting for certain precoders. In addition, for example, scheduling component 342 can configure the UE 104 for CSI reporting in this regard by indicating one or more configurations that specify reporting parameters, by triggering the reporting for the UE 104, etc.
Turning now to FIGS. 2-11, aspects are depicted with reference to one or more components and one or more methods that may perform the actions or operations described herein, where aspects in dashed line may be optional. Although the operations described below in FIGS. 4, 6, 9, and 10 are presented in a particular order and/or as being performed by an example component, it should be understood that the ordering of the actions and the components performing the actions may be varied, depending on the implementation. Moreover, it should be understood that the following actions, functions, and/or described components may be performed by a specially-programmed processor, a processor executing specially-programmed software or computer-readable media, or by any other combination of a hardware component and/or a software component capable of performing the described actions or functions.
Referring to FIG. 2, one example of an implementation of UE 104 may include a variety of components, some of which have already been described above and are described further herein, including components such as one or more processors 212 and memory 216 and transceiver 202 in communication via one or more buses 244, which may operate in conjunction with modem 240 and/or communicating component 242 to transmit UAI and/or degrade feedback for one or more signals.
In an aspect, the one or more processors 212 can include a modem 240 and/or can be part of the modem 240 that uses one or more modem processors. Thus, the various functions related to communicating component 242 may be included in modem 240 and/or processors 212 and, in an aspect, can be executed by a single processor, while in other aspects, different ones of the functions may be executed by a combination of two or more different processors. For example, in an aspect, the one or more processors 212 may include any one or any combination of a modem processor, or a baseband processor, or a digital signal processor, or a transmit processor, or a receiver processor, or a transceiver processor associated with transceiver 202. In other aspects, some of the features of the one or more processors 212 and/or modem 240 associated with communicating component 242 may be performed by transceiver 202.
Also, memory 216 may be configured to store data used herein and/or local versions of applications 275 or communicating component 242 and/or one or more of its subcomponents being executed by at least one processor 212. Memory 216 can include any type of computer-readable medium usable by a computer or at least one processor 212, such as random access memory (RAM) , read only memory (ROM) , tapes, magnetic discs, optical discs, volatile memory, non-volatile memory, and any combination thereof. In an aspect, for example, memory 216 may be a non-transitory computer-readable storage medium that stores one or more computer-executable codes defining communicating component 242 and/or one or more of its subcomponents, and/or data associated therewith, when UE 104 is operating at least one processor 212 to execute communicating component 242 and/or one or more of its subcomponents.
Transceiver 202 may include at least one receiver 206 and at least one transmitter 208. Receiver 206 may include hardware, firmware, and/or software code executable by a processor for receiving data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . Receiver 206 may be, for example, a radio frequency (RF) receiver. In an aspect, receiver 206 may receive signals transmitted by at least one base station 102. Additionally, receiver 206 may process such received signals, and also may obtain measurements of the signals, such as, but not limited to, Ec/Io, signal-to-noise ratio (SNR) , reference signal received power (RSRP) , received signal strength indicator (RSSI) , etc. Transmitter 208 may include hardware, firmware, and/or software code executable by a processor for transmitting data, the code comprising instructions and being stored in a memory (e.g., computer-readable medium) . A suitable example of transmitter 208 may including, but is not limited to, an RF transmitter.
Moreover, in an aspect, UE 104 may include RF front end 288, which may operate in communication with one or more antennas 265 and transceiver 202 for receiving and transmitting radio transmissions, for example, wireless communications transmitted by at least one base station 102 or wireless transmissions transmitted by UE 104. RF front end 288 may be connected to one or more antennas 265 and can include one or more low-noise amplifiers (LNAs) 290, one or more switches 292, one or more power amplifiers (PAs) 298, and one or more filters 296 for transmitting and receiving RF signals.
In an aspect, LNA 290 can amplify a received signal at a desired output level. In an aspect, each LNA 290 may have a specified minimum and maximum gain values. In  an aspect, RF front end 288 may use one or more switches 292 to select a particular LNA 290 and its specified gain value based on a desired gain value for a particular application.
Further, for example, one or more PA (s) 298 may be used by RF front end 288 to amplify a signal for an RF output at a desired output power level. In an aspect, each PA 298 may have specified minimum and maximum gain values. In an aspect, RF front end 288 may use one or more switches 292 to select a particular PA 298 and its specified gain value based on a desired gain value for a particular application.
Also, for example, one or more filters 296 can be used by RF front end 288 to filter a received signal to obtain an input RF signal. Similarly, in an aspect, for example, a respective filter 296 can be used to filter an output from a respective PA 298 to produce an output signal for transmission. In an aspect, each filter 296 can be connected to a specific LNA 290 and/or PA 298. In an aspect, RF front end 288 can use one or more switches 292 to select a transmit or receive path using a specified filter 296, LNA 290, and/or PA 298, based on a configuration as specified by transceiver 202 and/or processor 212.
As such, transceiver 202 may be configured to transmit and receive wireless signals through one or more antennas 265 via RF front end 288. In an aspect, transceiver may be tuned to operate at specified frequencies such that UE 104 can communicate with, for example, one or more base stations 102 or one or more cells associated with one or more base stations 102. In an aspect, for example, modem 240 can configure transceiver 202 to operate at a specified frequency and power level based on the UE configuration of the UE 104 and the communication protocol used by modem 240.
In an aspect, modem 240 can be a multiband-multimode modem, which can process digital data and communicate with transceiver 202 such that the digital data is sent and received using transceiver 202. In an aspect, modem 240 can be multiband and be configured to support multiple frequency bands for a specific communications protocol. In an aspect, modem 240 can be multimode and be configured to support multiple operating networks and communications protocols. In an aspect, modem 240 can control one or more components of UE 104 (e.g., RF front end 288, transceiver 202) to enable transmission and/or reception of signals from the network based on a specified modem configuration. In an aspect, the modem configuration can be based on the mode of the modem and the frequency band in use. In another aspect, the modem configuration  can be based on UE configuration information associated with UE 104 as provided by the network during cell selection and/or cell reselection.
In an aspect, communicating component 242 can optionally include a CSI configuring component 252 for configuring CSI reporting based on a received configuration, one or more received triggers, and/or the like, and/or a CSI component 254 for measuring a CSI-reference signal (RS) , generating corresponding CSI measurement information, and transmitting the CSI report to include CSI related to beams and bases or related to corresponding coefficients.
In an aspect, the processor (s) 212 may correspond to one or more of the processors described in connection with the UE in FIG. 11. Similarly, the memory 216 may correspond to the memory described in connection with the UE in FIG. 11.
Referring to FIG. 3, one example of an implementation of base station 102 (e.g., a base station 102 and/or gNB 180, as described above) may include a variety of components, some of which have already been described above, but including components such as one or more processors 312 and memory 316 and transceiver 302 in communication via one or more buses 344, which may operate in conjunction with modem 340 and scheduling component 342 for configuring a UE to report CSI.
The transceiver 302, receiver 306, transmitter 308, one or more processors 312, memory 316, applications 375, buses 344, RF front end 388, LNAs 390, switches 392, filters 396, PAs 398, and one or more antennas 365 may be the same as or similar to the corresponding components of UE 104, as described above, but configured or otherwise programmed for base station operations as opposed to UE operations.
In an aspect, scheduling component 342 can optionally include a configuration indicating component 352 for indicating one or more parameters for configuring CSI reporting and/or for triggering reporting of CSI by a UE, and/or a CSI processing component 354 for processing received CSI reports (e.g., to determine a channel quality indicator (CQI) for the UE) .
In an aspect, the processor (s) 312 may correspond to one or more of the processors described in connection with the base station in FIG. 11. Similarly, the memory 316 may correspond to the memory described in connection with the base station in FIG. 11.
FIG. 4 illustrates a flow chart of an example of a method 400 for transmitting semi-persistent and/or periodic CSI reports. In an example, a UE 104 can perform the  functions described in method 400 using one or more of the components described in FIGS. 1-2.
In method 400, at Block 402, a CSI report trigger triggering a reporting configuration for transmitting a CSI report indicating a first periodicity and a second periodicity can be determined. In an aspect, CSI configuring component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the CSI report trigger triggering the reporting configuration for transmitting the CSI report indicating the first periodicity and the second periodicity. In an example, the configuration can indicate the first periodicity for transmitting a CSI report for one or more beams and corresponding compression bases and the second periodicity for transmitting a CSI report for coefficients corresponding to the one or more beams and/or corresponding bases. For example, the compression bases can correspond to a tap associated with a particular delay in a time domain (e.g., such as DFT bases, as described above) . For example, the first periodicity can be larger than the second periodicity such that coefficient quantization reports can be transmitted more frequently than beam/bases reports. In one example, CSI configuring component 252 can receive the CSI report trigger from a base station 102 or other network component.
In an example, in receiving the reporting configuration at Block 402 (or in a previous communication) , optionally at Block 404, multiple configurable reporting configurations and/or a trigger to use one of the multiple configurable reporting configurations can be received. In an aspect, CSI configuring component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the multiple configurable reporting configurations and/or the CSI report trigger triggering to use one of the multiple configurable reporting configurations (e.g., from a base station 102) . For example, CSI configuring component 252 can receive the multiple reporting configurations from the base station 102 or other network component in radio resource control (RRC) signaling, dedicated control signaling or other messages. The multiple reporting configurations may each indicate a certain periodicity for reporting CSI at least for beams and/or associated bases and another periodicity for reporting CSI for coefficients. In one example, the configurations may indicate whether to report CSI for coefficients with the beams as well or not.
In one example, CSI configuring component 252 can also receive the CSI report trigger or other indication of which of the multiple reporting configurations to use in  reporting CSI. For example, the CSI report trigger may trigger or indicate a reporting configuration based on an index. In one example, the CSI configuring component 252 may receive a mapping of the multiple reporting configurations to indices in RRC signaling, and then may receive the CSI report trigger indicating the reporting configuration index in dedicated control signaling. In addition, in an example, the CSI report trigger and/or reporting configurations can indicate for which beams (and thus which associated bases, coefficients, etc. ) to report CSI. For example, the reporting configuration and/or information in the associated trigger can indicate to transmit a full CSI report for all beams, bases, and coefficients of the precoder at the first periodicity, and transmit coefficients only at the second periodicity. In another example, the reporting configuration and/or information in the associated CSI report trigger can indicate to transmit a CSI report for all beams and bases (with no coefficients) of the precoder at the first periodicity, and transmit coefficients only at the second periodicity. In another example, the reporting configuration and/or information in the associated CSI report trigger can indicate to transmit a partial CSI report for an intermediate subset of beams including the associated bases and/or coefficients at the first periodicity, and transmit coefficients only at the second periodicity.
In method 400, at Block 406, a first CSI-RS transmission can be received. In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the first CSI-RS transmission (e.g., from base station 102 or other network components) . For example, CSI component 254 can receive the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
In method 400, at Block 408, a first CSI measurement can be performed based on the first CSI-RS. In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can perform he first CSI measurement based on the first CSI-RS. For example, the CSI component 254 can measure the first CSI for the one or more beams. For example, CSI component 254 can measure a CSI-RS from the base station 102 (e.g., over resources indicated by the base station 102 in the reporting configuration or another configuration) . In addition, for example, CSI component 254 may measure the CSI-RS for one or more beams and/or bases (e.g., DFT bases) of a precoder. As described, in an example, CSI component 254 may or may not also measure CSI for associated coefficients for reporting in the first CSI  report. In an example, CSI component 254 can determine for which beams and/or bases or coefficients to report CSI based on the reporting configuration or corresponding trigger, as described. For example, CSI component 254 may determine the measured CSI for the beams and corresponding bases (and including or not including the coefficients) based on the first periodicity (e.g., based on occurrence of a time or event in line with the first periodicity) , or otherwise to report based on the first periodicity.
In method 400, optionally at Block 410, a CQI can be determined based on the first CSI report. In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine the CQI based on the first CSI report. In an example, CSI component 254 can determine the CQI based on randomly selecting a beam from the reported beam set, applying the beam on a first part CSI-RS ports (e.g., 1st polarization) and a second part CSI-RS ports (e.g., 2nd polarization) , and applying a random phase on the second part CSI-RS ports. The granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling. For example, for a certain layer, the precoder on a certain PRG can be
Figure PCTCN2019072532-appb-000013
where b is randomly selected from the reported L beams, and θ is phase randomly selected from a quadrature phase-shift keying (QPSK) , 8PSK, or 16PSK alphabet. In any case, for example, scheduling component 342 can schedule resources for communications to/from the UE 104 based on the determined CQI.
In another example, CSI component 254 can determine the CQI based on, for each beam on a certain polarization, randomly selecting a basis among the reported basis. For the randomly selected beam on a certain beam and a certain polarization, the base station 102 can apply a coefficient with unit amplitude with a random phase to determine the CQI. The granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling. For example, for a certain layer, the precoder on the N 3 FD units can be
Figure PCTCN2019072532-appb-000014
where b i is the reported L beams and 2 polarizations, 
Figure PCTCN2019072532-appb-000015
is the 1×N 3 basis randomly chosen from the M i bases for beam i, and θ is phase randomly selected from a QPSK, 8PSK, or 16PSK alphabet.
In method 400, at Block 412, a first CSI report for at least the one or more beams and corresponding compression bases can be transmitted based on the first periodicity.  In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can transmit (e.g., to the base station 102) , based on the first periodicity, the first CSI report for at least the one or more beams and corresponding compression bases. In an example, the first CSI report may or may not also include CSI for the coefficients, as described. In one example, the first CSI report may include CQI computed at Block 410. In addition, as described, the first CSI report may include CSI for all beams and DFT bases of the precoder, or for an intermediate subset of beams/bases. In an example, CSI component 254 can transmit the first CSI report based on the first CSI-RS measurement and over CSI reporting resources, which may be configured by the base station 102, and/or may be part of a physical uplink control channel (PUCCH) or physical uplink shared channel (PUSCH) . In addition, in an example, transmitting the first CSI report can include transmitting a partial CSI report with the one or more beams and corresponding bases and no coefficient quantization, where the partial CSI report can be an update of a portion of a previously-transmitted full CSI report, where the full CSI report includes one or more additional beams and additional corresponding bases (e.g., all beams/bases for the precoder) .
In method 400, at Block 414, a second CSI-RS transmission can be received. In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the second CSI-RS transmission (e.g., from base station 102 or other network components) . For example, CSI component 254 can receive the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
In method 400, at Block 416, a second CSI measurement can be performed based on the second CSI-RS. In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can perform the second CSI-RS measurement based on the second CSI-RS. For example, CSI component 254 can, in a subsequent time period, measure the second CSI for coefficient quantization for the one or more beams, which may include all beams and/or bases, or an intermediate subset of beams and/or bases (e.g., depending on whether the first CSI report includes all beams/bases or the intermediate subset) . For example, CSI component 254 can measure a CSI-RS from the base station 102 (e.g., over resources indicated by the base station 102 in the reporting configuration or another configuration) . In addition, for example, CSI component 254 may measure the CSI-RS for one or more  coefficients of the one or more beams and/or bases. In one example, the one or more coefficients can relate to the one or more beams or corresponding bases in a latest CSI report (e.g., the first CSI report previously transmitted based on the first periodicity) which contains the report of one or more beams and/or bases. In an example, CSI component 254 can determine for which beams and/or bases or coefficients to report CSI for the coefficient quantization based on the reporting configuration or the corresponding trigger, as described. For example, CSI component 254 may determine the measured CSI for the coefficients based on the second periodicity (e.g., based on occurrence of a time or event in line with the second periodicity) , or otherwise to report based on the second periodicity.
In method 400, at Block 418, a second CSI report for the coefficient quantization for the one or more beams can be transmitted based on the second periodicity. In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can transmit, based on the second periodicity, the second CSI report for the coefficient quantization for the one or more beams. As described, the second CSI report may include CSI for coefficients of the beams and DFT bases of the precoder that are associated with the first CSI report (e.g., all beams/bases for a precoder or a subset thereof) , or for an intermediate selecting of bases applied to the beams (e.g., where the first CSI report includes an intermediate set of bases applied to the beams) . In one example, CSI component 254 can transmit the second CSI report based on the second CSI-RS measurement and over CSI reporting resources, which may be configured by the base station 102, and/or may be part of a PUCCH or PUSCH. In addition, the second CSI report may also include CQI, which can be computed based on the coefficient quantization and the one or more beams and corresponding compression bases reported in the first CSI report.
In an example, transmitting the first CSI report can include transmitting the one or more beams and an intermediate set of the corresponding compression bases applied to all beams for a precoder, and transmitting the second CSI report can include transmitting a selection of the corresponding compression bases for each beam from the intermediate set and the associated coefficient quantization.
In the examples described above, the larger periodicity can be applied to either of a full CSI report (e.g., with CSI report for all beam/bases and coefficients) , which may be carried by PUSCH given the increased payload capacity over PUCCH. In addition, a CSI  report with beam and basis selection can be carried by either PUCCH or PUSCH. For beam-specific basis selection from an intermediate subset, the CSI report can include an update of the intermediate subset without an update for other beams/bases. Similarly, in the above examples, the smaller periodicity can be applied to coefficient reports, and the UE does not need to update beam/basis in these reports. The UE reports coefficients associated with the most recent CSI report containing beam and basis report. For beam-specific basis selection from an intermediate subset, the UE may not update the intermediate subset, but may further update a beam-specific basis report from the intermediate subset. The coefficient report can be carried on either PUCCH or PUSCH. A specific example is illustrated in FIG. 5.
FIG. 5 illustrates an example of a signaling timeline 500 for reporting semi-persistent and/or periodic CSI. At 502, a semi-persistent/periodic CSI report trigger 502 can be transmitted to the UE 104. As described, for example, the CSI report trigger 502 may indicate a reporting configuration and/or other reporting parameters (e.g., a set of beams for which to report CSI) , etc. For example, the reporting configuration may specify a first periodicity for transmitting CSI for beams/bases and a second periodicity for transmitting CSI for coefficients only. At 504, the UE can transmit a first CSI report including CSI for beams, bases, and coefficients, where a time at which the first CSI report is sent at 504 can be based on the first periodicity. At 506 and 508, the UE can then transmit second and third CSI reports, respectively, for coefficients only, where a time at which the CSI reports are sent at 506, 508 can be based on the second periodicity. In addition, the coefficients can be based on the beams/bases for which CSI is reported at 504. At 510, the UE can transmit another CSI report including CSI for beams, bases, and coefficients, where a time at which the first CSI report is sent at 510 can be based on the first periodicity (e.g., a time period from sending the CSI report at 504) . At 512 and 514, the UE can then transmit additional CSI reports, respectively, for coefficients only, where a time at which the CSI reports are sent at 512, 514 can be based on the second periodicity. In addition, the coefficients can be based on the beams/bases for which CSI is reported at 510.
FIG. 6 illustrates a flow chart of an example of a method 600 for transmitting aperiodic CSI reports. In an example, a UE 104 can perform the functions described in method 600 using one or more of the components described in FIGS. 1-2.
In method 600, optionally at Block 602, a first trigger to report a first CSI report for at least one or more beams and corresponding bases can be received. In an aspect, CSI configuring component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the first trigger to report the first CSI report for at least the one or more beams and corresponding bases. In an example, the first trigger can include a signal received from a base station 102 (e.g., an RRC signal, dedicated control signal, etc. ) to report the CSI. In one example, the trigger may indicate that the CSI report is to include CSI for beams and/or bases (e.g., which may be an intermediate subset of all beams) , a full CSI report for all beams and corresponding bases and coefficients, a partial CSI report for an intermediate subset of beams/bases, etc.
In method 600, optionally at Block 604, a first CSI-RS transmission can be received. In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the first CSI-RS transmission (e.g., from base station 102 or other network components) . For example, CSI component 254 can receive the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
In method 600, optionally at Block 606, a first CSI measurement can be performed based on the first CSI-RS. In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can perform the first CSI measurement based on the first CSI-RS. For example, CSI component 254 can measure a CSI-RS from the base station 102 (e.g., over resources indicated by the base station 102 in the reporting configuration or another configuration) . In addition, for example, CSI component 254 may measure the CSI-RS for one or more beams and/or bases of a precoder and/or for one or more coefficients. In an example, CSI component 254 can determine for which beams and/or bases or coefficients to report CSI based on the trigger. For example, CSI component 254 may determine the measured CSI for the beams and corresponding bases (and including or not including the coefficients) . CSI component 254 may measure CSI for all beams/bases or an intermediate subset of beams/bases, which may be indicated by the trigger.
In method 600, optionally at Block 608, a CQI can be determined based on the first CSI report. In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine the CQI based on the first CSI report. In an example, CSI component 254 can determine  the CQI based on randomly selecting a beam from the reported beam set, applying the beam on a first part CSI-RS ports (e.g., 1st polarization) and a second part CSI-RS ports (e.g., 2nd polarization) , and applying a random phase on the second part CSI-RS ports. The granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling. For example, for a certain layer, the precoder on a certain PRG can be
Figure PCTCN2019072532-appb-000016
where b is randomly selected from the reported L beams, and θ is phase randomly selected from a quadrature phase-shift keying (QPSK) , 8PSK, or 16PSK alphabet. In any case, for example, scheduling component 342 can schedule resources for communications to/from the UE 104 based on the determined CQI.
In another example, CSI component 254 can determine the CQI based on, for each beam on a certain polarization, randomly selecting a basis among the reported basis. For the randomly selected beam on a certain beam and a certain polarization, the base station 102 can apply a coefficient with unit amplitude with a random phase to determine the CQI. The granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling. For example, for a certain layer, the precoder on the N 3 frequency domain (FD) units can be
Figure PCTCN2019072532-appb-000017
Figure PCTCN2019072532-appb-000018
where b i is the reported L beams and 2 polarizations, 
Figure PCTCN2019072532-appb-000019
is the 1×N 3 basis randomly chosen from the M i bases for beam i, and θ is phase randomly selected from a QPSK, 8PSK, or 16PSK alphabet.
In method 600, optionally at Block 610, a first CSI report for at least the one or more beams and corresponding compression bases can be transmitted based on the first trigger. In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can transmit, based on the first trigger, the first CSI report for at least the one or more beams and corresponding compression bases. In one example, the first CSI report may include CQI computed at Block 608. For example, CSI component 254 can transmit the first CSI report based on the first CSI-RS measurement and over CSI reporting resources, which may be configured by the base station 102, and/or may be part of a PUCCH or PUSCH.
In method 600, at Block 612, a second trigger to report a second CSI report for coefficient quantization for the one or more beams can be received. In an aspect, CSI configuring component 252, e.g., in conjunction with processor (s) 212, memory 216,  transceiver 202, communicating component 242, etc., can receive the second trigger to report the second CSI report for coefficient quantization for the one or more beams. In an example, the second trigger can include a signal from a base station 102 (e.g., an RRC signal, dedicated control signal, etc. ) to report the CSI. In an example, this can occur without  Blocks  602, 604, 606, 608, 610, where the base station 102 may configure the UE 104 (e.g., via the indication received at Block 614) to transmit only CSI for coefficient quantization without also transmitting CSI for one or more beams and/or corresponding compression bases associated with the coefficients. In this example, the one or more beams and corresponding compression bases for the coefficient quantization are at least one of associated with a last transmitted CSI report (by the UE 104) that includes the one or more beams and corresponding compression bases, or are configured to the UE in Block 614, as described herein.
Thus, in an example, in detecting the second trigger at Block 614, optionally at Block 610, an indication to transmit the coefficient quantization for the one or more beams can be received. In an aspect, CSI configuring component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive an indication to transmit the coefficient quantization for the one or more beams. In an example, the trigger may indicate that the CSI report is to include coefficient quantization but not beams and/or bases. In addition, in an example, the trigger may indicate a set of beams/basis for which coefficient quantization is to be reported.
In another example, the second trigger can be an implicit indication to determine and transmit CSI for coefficient quantization corresponding to the beams and/or corresponding bases in a last transmitted full CSI report (or CSI report including an intermediate subset of beams/bases) . In this example, in method 600, optionally at Block 616, it can be determined to transmit a second CSI report indicating coefficient quantization for the one or more beams based on determining that the last transmitted CSI report included the one or more beams. In an aspect, CSI configuring component 252, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can determine to transmit the second CSI report indicating coefficient quantization for the one or more beams based on determining that the last transmitted CSI report (e.g., the first CSI report transmitted at Block 606) included the one or more beams. In another example, the second trigger can include an indication for  which beams and/or corresponding bases to measure and transmit CSI corresponding to the coefficient quantization.
In method 600, at Block 618, a second CSI-RS transmission can be received. In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can receive the second CSI-RS transmission (e.g., from base station 102 or other network components) . For example, CSI component 254 can receive the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
In method 600, at Block 620, a second CSI measurement can be performed based on the second CSI-RS. In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can perform the second CSI-RS measurement based on the second CSI-RS. For example, CSI component 254 can measure a CSI-RS from the base station 102 (e.g., over resources indicated by the base station 102 in the reporting configuration or another configuration) . In addition, for example, CSI component 254 may measure the CSI-RS for one or more coefficients. In one example, the one or more coefficients can relate to the one or more beams or corresponding bases specified in the trigger and/or in a previous CSI report (e.g., the first CSI report transmitted at Block 606) .
In method 600, at Block 622, a second CSI report for the coefficient quantization for the one or more beams can be transmitted based on the second trigger. In an aspect, CSI component 254, e.g., in conjunction with processor (s) 212, memory 216, transceiver 202, communicating component 242, etc., can transmit, based on the second trigger, the second CSI report for the coefficient quantization for the one or more beams. For example, CSI component 254 can transmit the second CSI report based on the second CSI-measurement and over CSI reporting resources, which may be configured by the base station 102, and/or may be part of a PUCCH or PUSCH. In this example, the base station 102 can determine a CQI from the CSI reports. In addition, the second CSI report may include CQI, which can be computed based on the coefficient quantization and the one or more beams and corresponding compression bases reported in the first CSI report.
In the examples described above, a first aperiodic CSI report trigger can be for either of a full CSI report for all beams/bases for the precoder (e.g., which may be carried by PUSCH due to increased payload capacity) or a report of an intermediate subset of beam/basis selection (which can be carried by either PUCCH or PUSCH) . For beam- specific basis selection from an intermediate subset, this report can include an update of the intermediate subset (e.g., without including updates for other beams/bases in the full set) . A second aperiodic CSI report is sent for coefficient report. In one example, there can be an implicit association of beam/basis report such that if UE receives an aperiodic CSI report configuration for coefficient report only, the UE can report coefficient associated with the most recent CSI report containing beam/basis report. For beam-specific basis selection from an intermediate subset, UE can further report an update of the basis selection from the intermediate subset, which was included in the most recent CSI report containing the beam report and intermediate set report. An example is shown in FIG. 7.
FIG. 7 illustrates an example of a signaling timeline 700 for reporting semi-persistent and/or periodic CSI. At 702, an aperiodic CSI report trigger 702 can be transmitted to the UE 104. As described, for example, the CSI report trigger 702 may indicate a reporting configuration and/or other reporting parameters (e.g., a set of beams for which to report CSI) , etc. For example, the reporting configuration may specify resources to use for transmitting CSI for beams/bases (and/or coefficients) . At 704, the UE can transmit a first CSI report including CSI for beams, bases, and coefficients based on the trigger. At 706, a second aperiodic CSI report trigger can be transmitted to the UE 104. As described, for example, the second CSI report trigger 706 may indicate a reporting configuration and/or other reporting parameters for reporting CSI for coefficients only, which may include an indication of resources to use for transmitting CSI for the coefficients. At 708, the UE can then transmit a second CSI report for coefficients only based on the second trigger. In addition, the coefficients can be based on the beams/bases for which CSI is reported at 704 where the second CSI report trigger 706 can represent an implicit indicator to report CSI for coefficients related to the beams/bases for which CSI is previously reported. At 710, a third aperiodic CSI report trigger can be transmitted to the UE 104. As described, for example, the third CSI report trigger 710 may indicate a reporting configuration and/or other reporting parameters for reporting CSI for coefficients only, which may include an indication of resources to use for transmitting CSI for the coefficients. At 712, the UE can then transmit a third CSI report for coefficients only based on the third trigger. In addition, the coefficients can be based on the beams/bases for which CSI is reported at 704 where the third CSI report  trigger 710 can represent an implicit indicator to report CSI for coefficients related to the beams/bases for which CSI is previously reported.
In another example, as described above, there can be an explicit association of beam/basis report. In this example, the UE receives an aperiodic CSI report with a configuration of beam and/or basis, which may be via codebook subset restriction, an explicit configuration of basis selection for each beam, and/or the like. In addition, in this example, UE can report coefficients associated with the configured beam and/or basis. For beam-specific basis selection from an intermediate subset, the UE further reports an update of the basis selection from the configured intermediate subset. An example is shown in FIG. 8.
FIG. 8 illustrates an example of a signaling timeline 800 for reporting semi-persistent and/or periodic CSI. At 802, an aperiodic CSI report trigger 802 can be transmitted to the UE 104. As described, for example, the CSI report trigger 802 may indicate a reporting configuration and/or other reporting parameters (e.g., a set of beams for which to report CSI) , etc. For example, the reporting configuration may specify resources to use for transmitting CSI for beams/bases (and/or coefficients) . At 804, the UE can transmit a first CSI report including CSI for beams, bases, and coefficients based on the trigger. At 806, a second aperiodic CSI report trigger can be transmitted to the UE 104. As described, for example, the second CSI report trigger 806 may indicate a reporting configuration and/or other reporting parameters for reporting CSI for coefficients only, which may include an indication of resources to use for transmitting CSI for the coefficients. In addition, the second CSI report trigger 806 can include an indication of beams/bases for which to report CSI for associated coefficients, where the beams/bases may be different than those for which CSI is reported at 804. At 808, the UE can then transmit a second CSI report for coefficients only for the beams/bases indicated by the second trigger. At 810, a third aperiodic CSI report trigger can be transmitted to the UE 104. As described, for example, the third CSI report trigger 810 may indicate a reporting configuration and/or other reporting parameters for reporting CSI for coefficients only, which may include an indication of resources to use for transmitting CSI for the coefficients. In addition, the third CSI report trigger 810 can include an indication of beams/bases for which to report CSI for associated coefficients, where the beams/bases may be different than those for which CSI is reported at 804 and/or  at 808. At 812, the UE can then transmit a third CSI report for coefficients only for the beams/bases indicated by the third trigger.
FIG. 9 illustrates a flow chart of an example of a method 900 for configuring semi-persistent/periodic CSI reports. In an example, a base station 102 can perform the functions described in method 900 using one or more of the components described in FIGS. 1 and 3.
In method 900, at Block 902, a CSI report trigger triggering a reporting configuration can be transmitted to a device for reporting CSI based on a first periodicity and a second periodicity. In an aspect, configuration indicating component 352, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can transmit the CSI report trigger triggering the reporting configuration to the device (e.g., UE 104) for reporting CSI based on the first periodicity and the second periodicity. In an example, the reporting configuration can indicate the first periodicity for transmitting CSI for beams and corresponding bases (and/or coefficients) and the second periodicity for transmitting CSI for coefficients only, as described above. There may be multiple reporting configurations having different values for the periodicities, in one example, to allow the base station 102 to select a combination of periodicities specific for the device. As described, in one example, the multiple reporting configurations may be indicated in a RRC message.
Thus, for example, in method 900, at Block 904, multiple configurable reporting configurations and/or a trigger to use one of the multiple reporting configurations to use can be transmitted to the device. In an aspect, configuration indicating component 352, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can transmit the multiple configurable reporting configurations and/or the trigger (e.g., CSI report trigger) to use one of the multiple reporting configurations. For example, the trigger can indicate an index of the reporting configuration configured for the device, as described above. In addition, in an example, trigger can indicate whether the CSI report is to include all beams and/or bases for the precoder, an intermediate subset of beams and/or bases, etc. Moreover, the trigger may indicate a set of resources over which the CSI can be reported, a set of resources over which the base station 102 can transmit the CSI-RS to be measured, etc., as described.
In method 900, optionally at Block 906, a first CSI-RS can be transmitted. In an aspect, CSI processing component 354, e.g., in conjunction with processor (s) 312,  memory 316, transceiver 302, scheduling component 342, etc., can transmit the first CSI-RS. For example, CSI processing component 354 can transmit the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
In method 900, optionally at Block 908, a first CSI report for at least one or more beams and corresponding bases can be received based on the first periodicity. In an aspect, CSI processing component 354, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can receive, based on the first periodicity, the first CSI report for the at least one or more beams and corresponding bases (and/or for the coefficients) . For example, the base station 102 can transmit a CSI-RS, and the device can measure the CSI-RS and report CSI for the one or more beams and corresponding bases to which the reporting configuration relates based on the first periodicity. In addition, as described, the received CSI report may include CSI for coefficients of the beams and DFT bases of the precoder that are associated with the first CSI report (e.g., all beams/bases for a precoder or a subset thereof) , or for an intermediate selecting of bases applied to the beams (e.g., where the first CSI report includes an intermediate set of bases applied to the beams) .
In method 900, optionally at Block 910, a second CSI-RS can be transmitted. In an aspect, CSI processing component 354, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can transmit the second CSI-RS. For example, CSI processing component 354 can transmit the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
In method 900, optionally at Block 912, a second CSI report for the coefficient quantization can be received based on the second periodicity. In an aspect, CSI processing component 354, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can receive, based on the second periodicity, the second CSI report for the coefficient quantization for the one or more beams. For example, the base station 102 can transmit a CSI-RS, and the device can measure the CSI-RS and report CSI for the coefficient quantization for the one or more beams based on the second periodicity, but not for the beams/bases.
In an example, receiving the first CSI report can include receiving the one or more beams and an intermediate set of the corresponding compression bases applied to all beams for a precoder, and receiving the second CSI report can include receiving a  selection of the corresponding compression bases for each beam from the intermediate set and the associated coefficient quantization.
In method 900, optionally at Block 914, a CQI can be determined based on the first and/or second CSI report. In an aspect, CSI processing component 354, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine the CQI based on the first CSI report. In an example, CSI processing component 354 can determine the CQI based on randomly selecting a beam from the reported beam set, applying the beam on a first part CSI-RS ports (e.g., 1st polarization) and a second part CSI-RS ports (e.g., 2nd polarization) , and applying a random phase on the second part CSI-RS ports. The granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling. For example, for a certain layer, the precoder on a certain PRG can be
Figure PCTCN2019072532-appb-000020
where b is randomly selected from the reported L beams, and θ is phase randomly selected from a quadrature phase-shift keying (QPSK) , 8PSK, or 16PSK alphabet. In any case, for example, scheduling component 342 can schedule resources for communications to/from the UE 104 based on the determined CQI.
In another example, CSI processing component 354 can determine the CQI based on, for each beam on a certain polarization, randomly selecting a basis among the reported basis. For the randomly selected beam on a certain beam and a certain polarization, the base station 102 can apply a coefficient with unit amplitude with a random phase to determine the CQI. The granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling. For example, for a certain layer, the precoder on the N 3 FD units can be
Figure PCTCN2019072532-appb-000021
Figure PCTCN2019072532-appb-000022
where b i is the reported L beams and 2 polarizations, 
Figure PCTCN2019072532-appb-000023
is the 1×N 3 basis randomly chosen from the M i bases for beam i, and θ is phase randomly selected from a QPSK, 8PSK, or 16PSK alphabet.
FIG. 10 illustrates a flow chart of an example of a method 1000 for configuring aperiodic CSI reports. In an example, a base station 102 can perform the functions described in method 1000 using one or more of the components described in FIGS. 1 and 3.
In method 1000, optionally at Block 1002, a first trigger to report a first CSI report for at least one or more beams or corresponding bases can be transmitted to a device. In  an aspect, configuration indicating component 352, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can transmit, to the device (e.g., UE 104) , the first trigger to report the first CSI report indicating the at least one or more beams or corresponding bases. In an example, the first trigger can indicate the one or more beams and/or corresponding bases for which CSI is to be reported (e.g., all beams and/or bases for the precoder, an intermediate subset of beams and/or bases, etc. ) . Moreover, the first trigger may indicate a set of resources over which the CSI can be reported, a set of resources over which the base station 102 can transmit the CSI-RS to be measured, etc., as described.
In method 1000, optionally at Block 1004, a first CSI-RS can be transmitted. In an aspect, CSI processing component 354, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can transmit the first CSI-RS. For example, CSI processing component 354 can transmit the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
In method 1000, optionally at Block 1006, a first CSI report for the one or more beams and corresponding bases can be received based on the first trigger. In an aspect, CSI processing component 354, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can receive, based on the first trigger, the first CSI report for the at least one or more beams and corresponding bases (and/or for the coefficients) . For example, the base station 102 can transmit a CSI-RS, and the device can measure the CSI-RS and report CSI for the one or more beams and corresponding bases based on the first trigger.
In method 1000, at Block 1008, a second trigger to report a second CSI report for the coefficient quantization of the one or more beams can be transmitted to the device. In an aspect, configuration indicating component 352, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can transmit, to the device, the second trigger to report the second CSI report indicating the coefficient quantization for the one or more beams. In an example, the second trigger can implicitly indicate to report coefficient quantization for the previously reported beams/bases or can include an explicit indication of the one or more beams and/or corresponding bases for which coefficient quantization is to be reported, as described. Moreover, the second trigger may indicate a set of resources over which the CSI can be reported, a set of resources over which the base station 102 can transmit the CSI-RS to be measured, etc.,  as described. As described, in one example, base station 102 may transmit the second trigger to receive only CSI for coefficient quantization without transmitting a preceding trigger for CSI for corresponding beams/compression bases. In this example, the one or more beams and corresponding compression bases for the coefficient quantization are at least one of associated with a last received CSI report (from the UE 104) that includes the one or more beams and corresponding compression bases, or one or more beams and corresponding bases configured to the UE (e.g., by the base station 102) .
In method 1000, optionally at Block 1010, a second CSI-RS can be transmitted. In an aspect, CSI processing component 354, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can transmit the second CSI-RS. For example, CSI processing component 354 can transmit the CSI-RS over resources indicated by the base station 102 in the reporting configuration or another configuration.
In method 1000, optionally at Block 1012, a second CSI report for the coefficient quantization for the one or more beams can be received based on the second trigger. In an aspect, CSI processing component 354, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can receive, based on the second trigger, the second CSI report for the coefficient quantization for the one or more beams. For example, the base station 102 can transmit a CSI-RS, and the device can measure the CSI-RS and report CSI for the coefficient quantization for the one or more beams and corresponding bases indicated by the second trigger.
In method 1000, optionally at Block 1014, a CQI can be determined based on the first and/or second CSI report. In an aspect, CSI processing component 354, e.g., in conjunction with processor (s) 312, memory 316, transceiver 302, scheduling component 342, etc., can determine the CQI based on the first CSI report. In an example, CSI processing component 354 can determine the CQI based on randomly selecting a beam from the reported beam set, applying the beam on a first part CSI-RS ports (e.g., 1st polarization) and a second part CSI-RS ports (e.g., 2nd polarization) , and applying a random phase on the second part CSI-RS ports. The granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling. For example, for a certain layer, the precoder on a certain PRG can be
Figure PCTCN2019072532-appb-000024
where b is randomly selected from the reported L beams,  and θ is phase randomly selected from a quadrature phase-shift keying (QPSK) , 8PSK, or 16PSK alphabet. In any case, for example, scheduling component 342 can schedule resources for communications to/from the UE 104 based on the determined CQI.
In another example, CSI processing component 354 can determine the CQI based on, for each beam on a certain polarization, randomly selecting a basis among the reported basis. For the randomly selected beam on a certain beam and a certain polarization, the base station 102 can apply a coefficient with unit amplitude with a random phase to determine the CQI. The granularity of a random selection can be determined by the precoding resource block group (PRG) size configured via higher-layer signaling. For example, for a certain layer, the precoder on the N 3 FD units can be
Figure PCTCN2019072532-appb-000025
Figure PCTCN2019072532-appb-000026
where b i is the reported L beams and 2 polarizations, 
Figure PCTCN2019072532-appb-000027
is the 1×N 3 basis randomly chosen from the M i bases for beam i, and θ is phase randomly selected from a QPSK, 8PSK, or 16PSK alphabet.
FIG. 11 is a block diagram of a MIMO communication system 1100 including a base station 102 and a UE 104. The MIMO communication system 1100 may illustrate aspects of the wireless communication access network 100 described with reference to FIG. 1. The base station 102 may be an example of aspects of the base station 102 described with reference to FIG. 1. The base station 102 may be equipped with  antennas  1134 and 1135, and the UE 104 may be equipped with  antennas  1152 and 1153. In the MIMO communication system 1100, the base station 102 may be able to send data over multiple communication links at the same time. Each communication link may be called a “layer” and the “rank” of the communication link may indicate the number of layers used for communication. For example, in a 2x2 MIMO communication system where base station 102 transmits two “layers, ” the rank of the communication link between the base station 102 and the UE 104 is two.
At the base station 102, a transmit (Tx) processor 1120 may receive data from a data source. The transmit processor 1120 may process the data. The transmit processor 1120 may also generate control symbols or reference symbols. A transmit MIMO processor 1130 may perform spatial processing (e.g., precoding) on data symbols, control symbols, or reference symbols, if applicable, and may provide output symbol streams to the transmit modulator/ demodulators  1132 and 1133. Each modulator/demodulator 1132 through 1133 may process a respective output symbol stream (e.g., for OFDM, etc. ) to obtain an output sample stream. Each modulator/demodulator 1132 through 1133 may  further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a DL signal. In one example, DL signals from modulator/ demodulators  1132 and 1133 may be transmitted via the  antennas  1134 and 1135, respectively.
The UE 104 may be an example of aspects of the UEs 104 described with reference to FIGS. 1-2. At the UE 104, the  UE antennas  1152 and 1153 may receive the DL signals from the base station 102 and may provide the received signals to the modulator/ demodulators  1154 and 1155, respectively. Each modulator/demodulator 1154 through 1155 may condition (e.g., filter, amplify, downconvert, and digitize) a respective received signal to obtain input samples. Each modulator/demodulator 1154 through 1155 may further process the input samples (e.g., for OFDM, etc. ) to obtain received symbols. A MIMO detector 1156 may obtain received symbols from the modulator/ demodulators  1154 and 1155, perform MIMO detection on the received symbols, if applicable, and provide detected symbols. A receive (Rx) processor 1158 may process (e.g., demodulate, deinterleave, and decode) the detected symbols, providing decoded data for the UE 104 to a data output, and provide decoded control information to a processor 1180, or memory 1182.
The processor 1180 may in some cases execute stored instructions to instantiate a communicating component 242 (see e.g., FIGS. 1 and 2) .
On the uplink (UL) , at the UE 104, a transmit processor 1164 may receive and process data from a data source. The transmit processor 1164 may also generate reference symbols for a reference signal. The symbols from the transmit processor 1164 may be precoded by a transmit MIMO processor 1166 if applicable, further processed by the modulator/demodulators 1154 and 1155 (e.g., for SC-FDMA, etc. ) , and be transmitted to the base station 102 in accordance with the communication parameters received from the base station 102. At the base station 102, the UL signals from the UE 104 may be received by the  antennas  1134 and 1135, processed by the modulator/ demodulators  1132 and 1133, detected by a MIMO detector 1136 if applicable, and further processed by a receive processor 1138. The receive processor 1138 may provide decoded data to a data output and to the processor 1140 or memory 1142.
The processor 1140 may in some cases execute stored instructions to instantiate a scheduling component 342 (see e.g., FIGS. 1 and 3) .
The components of the UE 104 may, individually or collectively, be implemented with one or more ASICs adapted to perform some or all of the applicable functions in  hardware. Each of the noted modules may be a means for performing one or more functions related to operation of the MIMO communication system 1100. Similarly, the components of the base station 102 may, individually or collectively, be implemented with one or more ASICs adapted to perform some or all of the applicable functions in hardware. Each of the noted components may be a means for performing one or more functions related to operation of the MIMO communication system 1100.
The above detailed description set forth above in connection with the appended drawings describes examples and does not represent the only examples that may be implemented or that are within the scope of the claims. The term “example, ” when used in this description, means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, well-known structures and apparatuses are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
Information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, computer-executable code or instructions stored on a computer-readable medium, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a specially-programmed device, such as but not limited to a processor, a digital signal processor (DSP) , an ASIC, a FPGA or other programmable logic device, a discrete gate or transistor logic, a discrete hardware component, or any combination thereof designed to perform the functions described herein. A specially-programmed processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A specially-programmed processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a non-transitory computer-readable medium. Other examples and implementations are within the scope and spirit of the disclosure and appended claims. For example, due to the nature of software, functions described above can be implemented using software executed by a specially programmed processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations. Also, as used herein, including in the claims, “or” as used in a list of items prefaced by “at least one of” indicates a disjunctive list such that, for example, a list of “at least one of A, B, or C” means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) .
Computer-readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A storage medium may be any available medium that can be accessed by a general purpose or special purpose computer. By way of example, and not limitation, computer-readable media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to carry or store desired program code means in the form of instructions or data structures and that can be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of medium. Disk and disc, as used herein, include compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
The previous description of the disclosure is provided to enable a person skilled in the art to make or use the disclosure. Various modifications to the disclosure will be readily apparent to those skilled in the art, and the common principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. Furthermore, although elements of the described aspects and/or embodiments may be described or claimed in the singular, the plural is contemplated unless limitation to the singular is explicitly stated. Additionally, all or a portion of any aspect and/or embodiment may be utilized with all or a portion of any other aspect and/or embodiment, unless stated otherwise. Thus, the disclosure is not to be limited to the examples and designs described herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

Claims (65)

  1. A method of wireless communication, comprising:
    receiving a channel state information (CSI) report trigger triggering a reporting configuration for transmitting a CSI report, wherein the reporting configuration indicates a first periodicity for reporting CSI for at least one or more beams and corresponding compression bases and a second periodicity for reporting CSI for a coefficient quantization;
    receiving a first CSI-reference signal (CSI-RS) transmission;
    performing a CSI measurement based on the first CSI-RS;
    transmitting, based on the first periodicity, a first CSI report for at least the one or more beams and corresponding compression bases;
    receiving a second CSI-RS transmission;
    performing a second CSI measurement based on the second CSI-RS; and
    transmitting, based on the second periodicity, a second CSI report for the coefficient quantization for the one or more beams.
  2. The method of claim 1, wherein the first CSI report includes at least one of the one or more beams and compression bases or all of the one or more beams and compression bases and the coefficient quantization for the one or more beams.
  3. The method of claim 1, wherein the corresponding compression bases correspond to a tap associated with a particular delay in a time domain.
  4. The method of claim 1, wherein the coefficient quantization corresponds to the one or more beams and corresponding compression bases in the first CSI report.
  5. The method of claim 1, wherein the first periodicity is larger than the second periodicity.
  6. The method of claim 1, wherein determining the reporting configuration comprises receiving multiple configurable reporting configurations with associated first and second periodicities, and receiving the CSI report trigger to use one of the multiple configurable reporting configurations in reporting CSI.
  7. The method of claim 1, wherein transmitting the first CSI report comprises transmitting the one or more beams and an intermediate set of the corresponding compression bases applied to all beams for a precoder, and wherein the second CSI report comprises a selection of the corresponding compression bases for each beam from the intermediate set and the associated coefficient quantization.
  8. The method of claim 1, wherein the transmitting the first CSI report further comprises determining channel quality information (CQI) based at least in part on randomly selecting a beam from the one or more beams, applying the beam on a first part CSI-RS port and a second part CSI-RS port, and applying a random phase on a second part CSI-RS port.
  9. The method of claim 8, wherein the first and second part CSI-RS ports comprise CSI-RS ports associated with a first and second polarization, respectively.
  10. The method of claim 1, wherein transmitting the first CSI report further comprises determining channel quality information (CQI) based at least in part on, for each beam of the one or more beams, randomly selecting a basis from the corresponding compression bases reported for one of the one or more beams, and applying a random phase on the randomly selected basis.
  11. The method of claim 1, wherein the second CSI report includes CQI, which is computed based on the coefficient quantization and the one or more beams and corresponding compression bases reported in the first CSI report.
  12. A method of wireless communication, comprising:
    transmitting a channel state information (CSI) report trigger triggering a reporting configuration to a device, wherein the reporting configuration indicates a first periodicity  for reporting CSI for one or more beams and corresponding bases and a second periodicity for reporting CSI for a coefficient quantization;
    transmitting a first CSI-reference signal (CSI-RS) ;
    receiving, based on the first periodicity, a first CSI report of the first CSI-RS for at least the one or more beams and corresponding bases;
    transmitting a second CSI-RS; and
    receiving, based on the second periodicity, a second CSI report of the second CSI-RS for the coefficient quantization for the one or more beams.
  13. The method of claim 12, wherein the first CSI report includes at least one of the one or more beams and compression bases or all of the one or more beams and compression bases and the coefficient quantization for the one or more beams.
  14. The method of claim 12, wherein the corresponding compression bases correspond to a tap associated with a particular delay in a time domain.
  15. The method of claim 12, wherein the coefficient quantization corresponds to the one or more beams and corresponding compression bases in the first CSI report.
  16. The method of claim 12, wherein receiving the first CSI report comprises receiving the one or more beams and an intermediate set of the corresponding compression bases applied to all beams for a precoder, and wherein the second CSI report comprises a selection of the corresponding compression bases for each beam from the intermediate set and the associated coefficient quantization.
  17. The method of claim 12, further comprising transmitting multiple configurable reporting configurations and/or the CSI report trigger indication which one of the multiple configurable reporting configurations to use in reporting CSI.
  18. The method of claim 12, further comprising determining channel quality information (CQI) based on the first CSI report and the second CSI report at least in part by randomly selecting a beam from the one or more beams, applying the beam on a first  part CSI-RS port and a second part CSI-RS port, and applying a random phase on the second part CSI-RS port.
  19. The method of claim 18, wherein the first and second part CSI-RS ports comprise CSI-RS ports associated with a first and second polarization, respectively.
  20. The method of claim 12, further comprising determining channel quality information (CQI) based at least in part on, for each beam of the one or more beams, randomly selecting a basis from the corresponding compression bases reported for one of the one or more beams, and applying a random phase on the randomly selected basis.
  21. The method of claim 12, wherein the second CSI report includes CQI, which is computed based on the coefficient quantization and the one or more beams and corresponding compression bases reported in the first CSI report.
  22. The method of claim 12, wherein the first periodicity is larger than the second periodicity.
  23. A method for wireless communication, comprising:
    receiving a trigger to report an aperiodic channel state information (CSI) report for a coefficient quantization for the one or more beams and one or more bases;
    receiving a CSI-reference signal (CSI-RS) transmission;
    performing a CSI measurement based on the CSI-RS; and
    transmitting, based on the trigger, a CSI report for the coefficient quantization for the one or more beams and corresponding compression bases, wherein the one or more beams and corresponding compression bases are at least one of associated with a last transmitted CSI report that includes the one or more beams and corresponding compression bases, or configured by a base station.
  24. [Rectified under Rule 91, 25.01.2019]
    The method of claim 23, further comprising, before receiving the trigger to report the aperiodic CSI report for the coefficient quantization:
    receiving a first trigger to report a first aperiodic channel state information (CSI) report for at least one or more beams and corresponding compression bases;
    receiving a first CSI-RS transmission;
    performing a first CSI measurement based on the first CSI-RS;
    transmitting, based on the first trigger, a first CSI report for at least the one or more beams and corresponding bases.
  25. The method of claim 24, wherein transmitting the first CSI report comprises transmitting the one or more beams and an intermediate set of the corresponding compression bases applied to all beams for a precoder, and wherein the CSI report comprises a selection of the corresponding compression bases for each beam from the intermediate set and the associated coefficient quantization.
  26. The method of claim 24, wherein the transmitting the first CSI report further comprises determining channel quality information (CQI) based at least in part on randomly selecting a beam from the one or more beams, applying the beam on a first part CSI-RS port and a second part CSI-RS port, and applying a random phase on a second part CSI-RS port.
  27. The method of claim 26, wherein the first and second part CSI-RS ports comprise CSI-RS ports associated with a first and second polarization, respectively.
  28. The method of claim 24, wherein transmitting the first CSI report further comprises determining channel quality information (CQI) based at least in part on, for each beam of the one or more beams, randomly selecting a basis from the corresponding compression bases reported for one of the one or more beams, and applying a random phase on the randomly selected basis.
  29. The method of claim 24, wherein the CSI report includes CQI, which is computed based on the coefficient quantization and the one or more beams and corresponding compression bases reported in the first CSI report.
  30. The method of claim 24, wherein the first CSI report includes at least one of the one or more beams and compression bases or all of the one or more beams and compression bases and the coefficient quantization for the one or more beams.
  31. The method of claim 23, wherein the corresponding compression bases correspond to a tap associated with a particular delay in a time domain.
  32. The method of claim 23, wherein the trigger comprises at least one of a codebook subset restriction on at least the one or more beams and corresponding compression bases, or an explicit indication of at least the one or more bases and corresponding compression beams.
  33. A method for wireless communication, comprising:
    transmitting, to a device, a trigger to report a channel state information (CSI) report for a coefficient quantization for the one or more beams;
    transmitting a CSI-reference signal (CSI-RS) ; and
    receiving, based on the second trigger, a CSI report indicating the coefficient quantization for the one or more beams and corresponding compression bases, wherein the one or more beams and corresponding compression bases are at least one of associated with a last received CSI report that includes the one or more beams and corresponding compression bases, or configured to the UE.
  34. [Rectified under Rule 91, 25.01.2019]
    The method of claim 33, further comprising, before transmitting the CSI-RS:
    transmitting, to a device, a first trigger to report a first channel state information (CSI) report indicating at least one or more beams and corresponding bases;
    transmitting a first CSI-RS; and
    receiving, based on the first trigger, a first CSI report of the first CSI-RS for at least the one or more beams and corresponding compression bases.
  35. The method of claim 34, wherein the first CSI report includes at least one of the one or more beams and corresponding compression bases or all of the one or more beams and corresponding compression bases and the coefficient quantization for the one or more beams.
  36. The method of claim 34, wherein the corresponding compression bases correspond to a tap associated with a particular delay in a time domain.
  37. The method of claim 34, wherein the coefficient quantization corresponds to the one or more beams and corresponding compression bases in the first CSI report.
  38. The method of claim 34, further comprising determining channel quality information (CQI) based on the first CSI report and the CSI report at least in part by randomly selecting, for each beam from the one or more beams, a random one of the corresponding bases, and applying, to the random one of the corresponding bases, a coefficient with unit amplitude with a random phase.
  39. The method of claim 38, wherein the first and second part CSI-RS ports comprise CSI-RS ports associated with a first and second polarization, respectively.
  40. The method of claim 34, further comprising determining channel quality information (CQI) based at least in part on, for each beam of the one or more beams, randomly selecting a basis from the corresponding compression bases reported for one of the one or more beams, and applying a random phase on the randomly selected basis.
  41. The method of claim 34, wherein the CSI report includes CQI, which is computed based on the coefficient quantization and the one or more beams and corresponding compression bases reported in the first CSI report.
  42. An apparatus for wireless communication, comprising:
    a transceiver;
    a memory configured to store instructions; and
    one or more processors communicatively coupled with the transceiver and the memory, wherein the one or more processors are configured to:
    receive a channel state information (CSI) report trigger triggering a reporting configuration for transmitting a CSI report, wherein the reporting configuration indicates a first periodicity for reporting CSI for at least one or more  beams and corresponding compression bases and a second periodicity for reporting CSI for a coefficient quantization;
    receive a first CSI-reference signal (CSI-RS) transmission;
    perform a CSI measurement based on the first CSI-RS;
    transmit, based on the first periodicity, a first CSI report for at least the one or more beams and corresponding compression bases;
    receive a second CSI-RS transmission;
    perform a second CSI measurement based on the second CSI-RS; and
    transmit, based on the second periodicity, a second CSI report for the coefficient quantization for the one or more beams.
  43. The apparatus of claim 42, wherein the one or more processors are further configured to perform the operations of one or more methods in claims 2-11.
  44. An apparatus for wireless communication, comprising:
    a transceiver;
    a memory configured to store instructions; and
    one or more processors communicatively coupled with the transceiver and the memory, wherein the one or more processors are configured to:
    transmit a channel state information (CSI) report trigger triggering a reporting configuration to a device, wherein the reporting configuration indicates a first periodicity for reporting CSI for one or more beams and corresponding bases and a second periodicity for reporting CSI for a coefficient quantization;
    transmit a first CSI-reference signal (CSI-RS) ;
    receive, based on the first periodicity, a first CSI report of the first CSI-RS for at least the one or more beams and corresponding bases;
    transmit a second CSI-RS; and
    receive, based on the second periodicity, a second CSI report of the second CSI-RS for the coefficient quantization for the one or more beams.
  45. The apparatus of claim 44, wherein the one or more processors are further configured to perform the operations of one or more methods in claims 13-22.
  46. An apparatus for wireless communication, comprising:
    a transceiver;
    a memory configured to store instructions; and
    one or more processors communicatively coupled with the transceiver and the memory, wherein the one or more processors are configured to:
    receive a trigger to report an aperiodic CSI report for a coefficient quantization for the one or more beams and one or more bases;
    receive a CSI-reference signal (CSI-RS) transmission;
    perform a CSI measurement based on the CSI-RS; and
    transmit, based on the trigger, a CSI report for the coefficient quantization for the one or more beams and corresponding compression bases, wherein the one or more beams and corresponding compression bases are at least one of associated with a last transmitted CSI report that includes the one or more beams and corresponding compression bases, or configured by a base station.
  47. The apparatus of claim 46, wherein the one or more processors are further configured to perform the operations of one or more methods in claims 24-32.
  48. An apparatus for wireless communication, comprising:
    a transceiver;
    a memory configured to store instructions; and
    one or more processors communicatively coupled with the transceiver and the memory, wherein the one or more processors are configured to:
    transmit, to a device, a trigger to report a channel state information (CSI) report for a coefficient quantization for the one or more beams;
    transmit a CSI-reference signal (CSI-RS) ; and
    receive, based on the second trigger, a CSI report indicating the coefficient quantization for the one or more beams and corresponding compression bases, wherein the one or more beams and corresponding compression bases are at least one of associated with a last received CSI report that includes the one or more beams and corresponding compression bases, or configured to the UE.
  49. The apparatus of claim 48, wherein the one or more processors are further configured to perform the operations of one or more methods in claims 34-41.
  50. An apparatus for wireless communication, comprising:
    means for receiving a channel state information (CSI) report trigger triggering a reporting configuration for transmitting a CSI report, wherein the reporting configuration indicates a first periodicity for reporting CSI for at least one or more beams and corresponding compression bases and a second periodicity for reporting CSI for a coefficient quantization;
    means for receiving a first CSI-reference signal (CSI-RS) transmission;
    means for performing a CSI measurement based on the first CSI-RS;
    means for transmitting, based on the first periodicity, a first CSI report for at least the one or more beams and corresponding compression bases;
    means for receiving a second CSI-RS transmission;
    means for performing a second CSI measurement based on the second CSI-RS; and
    means for transmitting, based on the second periodicity, a second CSI report for the coefficient quantization for the one or more beams.
  51. The apparatus of claim 50, further comprising means for performing the operations of one or more methods in claims 2-11.
  52. An apparatus for wireless communication, comprising:
    means for transmitting a channel state information (CSI) report trigger triggering a reporting configuration to a device, wherein the reporting configuration indicates a first periodicity for reporting CSI for one or more beams and corresponding bases and a second periodicity for reporting CSI for a coefficient quantization;
    means for transmitting a first CSI-reference signal (CSI-RS) ;
    means for receiving, based on the first periodicity, a first CSI report of the first CSI-RS for at least the one or more beams and corresponding bases;
    means for transmitting a second CSI-RS; and
    means for receiving, based on the second periodicity, a second CSI report of the second CSI-RS for the coefficient quantization for the one or more beams.
  53. The apparatus of claim 52, wherein the one or more processors are further configured to perform the operations of one or more methods in claims 13-22.
  54. An apparatus for wireless communication, comprising:
    means for receiving a trigger to report an aperiodic channel state information (CSI) report for a coefficient quantization for the one or more beams and one or more bases;
    means for receiving a CSI-reference signal (CSI-RS) transmission;
    means for performing a CSI measurement based on the CSI-RS; and
    means for transmitting, based on the trigger, a CSI report for the coefficient quantization for the one or more beams and corresponding compression bases, wherein the one or more beams and corresponding compression bases are at least one of associated with a last transmitted CSI report that includes the one or more beams and corresponding compression bases, or configured by a base station.
  55. The apparatus of claim 54, wherein the one or more processors are further configured to perform the operations of one or more methods in claims 24-32.
  56. An apparatus for wireless communication, comprising:
    means for transmitting, to a device, a trigger to report a channel state information (CSI) report for a coefficient quantization for the one or more beams;
    means for transmitting a CSI-reference signal (CSI-RS) ; and
    means for receiving, based on the second trigger, a CSI report indicating the coefficient quantization for the one or more beams and corresponding compression bases, wherein the one or more beams and corresponding compression bases are at least one of associated with a last received CSI report that includes the one or more beams and corresponding compression bases, or configured to the UE.
  57. The apparatus of claim 56, wherein the one or more processors are further configured to perform the operations of one or more methods in claims 34-41.
  58. A computer-readable medium comprising code executable by a process for wireless communications, the code comprising:
    code for receiving a channel state information (CSI) report trigger triggering a reporting configuration for transmitting a CSI report, wherein the reporting configuration indicates a first periodicity for reporting CSI for at least one or more beams and corresponding compression bases and a second periodicity for reporting CSI for a coefficient quantization;
    code for receiving a first CSI-reference signal (CSI-RS) transmission;
    code for performing a CSI measurement based on the first CSI-RS;
    code for transmitting, based on the first periodicity, a first CSI report for at least the one or more beams and corresponding compression bases;
    code for receiving a second CSI-RS transmission;
    code for performing a second CSI measurement based on the second CSI-RS; and
    code for transmitting, based on the second periodicity, a second CSI report for the coefficient quantization for the one or more beams.
  59. The computer-readable medium of claim 58, further comprising code for performing the operations of one or more methods in claims 2-11.
  60. A computer-readable medium comprising code executable by a process for wireless communications, the code comprising:
    code for transmitting a channel state information (CSI) report trigger triggering a reporting configuration to a device, wherein the reporting configuration indicates a first periodicity for reporting CSI for one or more beams and corresponding bases and a second periodicity for reporting CSI for a coefficient quantization;
    code for transmitting a first CSI-reference signal (CSI-RS) ;
    code for receiving, based on the first periodicity, a first CSI report of the first CSI-RS for at least the one or more beams and corresponding bases;
    code for transmitting a second CSI-RS; and
    code for receiving, based on the second periodicity, a second CSI report of the second CSI-RS for the coefficient quantization for the one or more beams.
  61. The computer-readable medium of claim 60, wherein the one or more processors are further configured to perform the operations of one or more methods in claims 13-22.
  62. A computer-readable medium comprising code executable by a process for wireless communications, the code comprising:
    code for receiving a trigger to report an aperiodic channel state information (CSI) report for a coefficient quantization for the one or more beams and one or more bases;
    code for receiving a CSI-reference signal (CSI-RS) transmission;
    code for performing a CSI measurement based on the CSI-RS; and
    code for transmitting, based on the trigger, a CSI report for the coefficient quantization for the one or more beams and corresponding compression bases, wherein the one or more beams and corresponding compression bases are at least one of associated with a last transmitted CSI report that includes the one or more beams and corresponding compression bases, or configured by a base station.
  63. The computer-readable medium of claim 62, wherein the one or more processors are further configured to perform the operations of one or more methods in claims 24-32.
  64. A computer-readable medium comprising code executable by a process for wireless communications, the code comprising:
    code for transmitting, to a device, a trigger to report a channel state information (CSI) report for a coefficient quantization for the one or more beams;
    code for transmitting a CSI-reference signal (CSI-RS) ; and
    code for receiving, based on the second trigger, a CSI report indicating the coefficient quantization for the one or more beams and corresponding compression bases, wherein the one or more beams and corresponding compression bases are at least one of associated with a last received CSI report that includes the one or more beams and corresponding compression bases, or configured to the UE.
  65. The computer-readable medium of claim 64, wherein the one or more processors are further configured to perform the operations of one or more methods in claims 34-41.
PCT/CN2019/072532 2019-01-21 2019-01-21 Techniques for reporting channel state information in wireless communications WO2020150861A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/072532 WO2020150861A1 (en) 2019-01-21 2019-01-21 Techniques for reporting channel state information in wireless communications
PCT/CN2020/072928 WO2020151612A1 (en) 2019-01-21 2020-01-19 Techniques for reporting channel state information in wireless communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072532 WO2020150861A1 (en) 2019-01-21 2019-01-21 Techniques for reporting channel state information in wireless communications

Publications (1)

Publication Number Publication Date
WO2020150861A1 true WO2020150861A1 (en) 2020-07-30

Family

ID=71735340

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2019/072532 WO2020150861A1 (en) 2019-01-21 2019-01-21 Techniques for reporting channel state information in wireless communications
PCT/CN2020/072928 WO2020151612A1 (en) 2019-01-21 2020-01-19 Techniques for reporting channel state information in wireless communications

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072928 WO2020151612A1 (en) 2019-01-21 2020-01-19 Techniques for reporting channel state information in wireless communications

Country Status (1)

Country Link
WO (2) WO2020150861A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058920A1 (en) * 2022-09-15 2024-03-21 Qualcomm Incorporated Techniques for spatial domain basis function refinement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023197285A1 (en) * 2022-04-15 2023-10-19 Nec Corporation Method, device and computer storage medium of communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140369293A1 (en) * 2012-01-19 2014-12-18 Zte Corporation Method and Device for Processing and Indicating Downlink Data
CN109151842A (en) * 2017-06-16 2019-01-04 维沃移动通信有限公司 A kind of wave beam measurement processing method and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101931498B (en) * 2010-07-06 2013-04-24 华为技术有限公司 Method and device for transmitting channel state information
WO2016179801A1 (en) * 2015-05-12 2016-11-17 Nec Corporation Method and apparatus for channel state information feedback for full dimensional mimo
US10164747B2 (en) * 2015-05-29 2018-12-25 Samsung Electronics Co., Ltd. Method and apparatus for operating MIMO measurement reference signals and feedback
WO2018170821A1 (en) * 2017-03-23 2018-09-27 Qualcomm Incorporated Differential csi reporting for higher resolution csi

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140369293A1 (en) * 2012-01-19 2014-12-18 Zte Corporation Method and Device for Processing and Indicating Downlink Data
CN109151842A (en) * 2017-06-16 2019-01-04 维沃移动通信有限公司 A kind of wave beam measurement processing method and device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: ""Discussion on Type II CSI compression"", 3GPP TSG RAN WG1 #95,R1-1812511, 16 November 2018 (2018-11-16), XP051554455, DOI: 20190417110324X *
INTEL CORPORATION: ""Discussion on Type II CSI compression"", 3GPP TSG RAN WG1 #95,R1-1813871, 16 November 2018 (2018-11-16), XP051555778, DOI: 20190417110455X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024058920A1 (en) * 2022-09-15 2024-03-21 Qualcomm Incorporated Techniques for spatial domain basis function refinement

Also Published As

Publication number Publication date
WO2020151612A1 (en) 2020-07-30

Similar Documents

Publication Publication Date Title
US11165481B2 (en) Techniques for beam failure recovery in wireless communications
US11115970B2 (en) Techniques for configuring transmission configuration states in wireless communications
US11291006B2 (en) Techniques for configuring active spatial relations in wireless communications
US20200314832A1 (en) Techniques for managing feedback in sidelink communications
WO2021031990A1 (en) Techniques for configuring random access occasions in wireless communications
WO2022021362A1 (en) Techniques for cross link interference reporting in wireless communications
US11463144B2 (en) Techniques for reporting channel quality indicators in wireless communications
US11664869B2 (en) Techniques for reported resource indicator and maximum resource number for signal-to-interference-and-noise ratio (SINR) in a wireless communication system
WO2020151612A1 (en) Techniques for reporting channel state information in wireless communications
US20210105708A1 (en) Evaluation period in nr-u networks
US20230121713A1 (en) Techniques for beamforming for multiple component carriers in wireless communications
US11844120B2 (en) Methods and apparatus for determining physical cell identification
US11652528B2 (en) Techniques for indicating selection of channel state information (CSI) report setting option by a demodulation reference signal (DMRS) pattern
US20220303044A1 (en) Techniques for device-assisted waveform selection in wireless communications
US11626943B2 (en) Techniques for on-demand soft ACK/NACK in a wireless communication system
US20210266772A1 (en) Techniques for cross-channel interference measurement in wireless communications
US20230143953A1 (en) Techniques for retransmission with component carrier switching configuration
WO2023147685A1 (en) Techniques for codebook subset restriction for adaptive antenna arrays
WO2023115380A1 (en) Techniques for power control with unified transmission configuration indicator states for multiple transmission/reception points
US20220338242A1 (en) Techniques for determining feedback timing capability in sidelink wireless communications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19911125

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19911125

Country of ref document: EP

Kind code of ref document: A1