WO2018059128A1 - 一种波束扫描和切换的方法及装置 - Google Patents

一种波束扫描和切换的方法及装置 Download PDF

Info

Publication number
WO2018059128A1
WO2018059128A1 PCT/CN2017/096199 CN2017096199W WO2018059128A1 WO 2018059128 A1 WO2018059128 A1 WO 2018059128A1 CN 2017096199 W CN2017096199 W CN 2017096199W WO 2018059128 A1 WO2018059128 A1 WO 2018059128A1
Authority
WO
WIPO (PCT)
Prior art keywords
packet
grouping
scanning
type
switching
Prior art date
Application number
PCT/CN2017/096199
Other languages
English (en)
French (fr)
Inventor
高波
鲁照华
李儒岳
陈艺戬
吴昊
袁弋非
王欣晖
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17854581.0A priority Critical patent/EP3522387A1/en
Publication of WO2018059128A1 publication Critical patent/WO2018059128A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • H04B7/061Antenna selection according to transmission parameters using feedback from receiving side
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection

Definitions

  • the present application relates to, but is not limited to, the field of communications, and more particularly to a method and apparatus for beam scanning and switching.
  • the ultra-wide bandwidth high frequency band (ie, millimeter wave communication) has become an important direction for the development of mobile communication in the future, attracting the attention of academic and industrial circles around the world.
  • the advantages of millimeter waves become more and more attractive when the increasingly congested spectrum resources and physical networks are heavily accessed, in many standards organizations such as IEEE (Institute of Electrical and Electronics Engineers, Electrical and Electronic Engineers).
  • IEEE Institute of Electrical and Electronics Engineers, Electrical and Electronic Engineers
  • 3GPP 3rd Generation Partnership Project
  • high-band communication will become an important innovation point of 5G New Radio Access Technology (New RAT) due to its significant advantages of large bandwidth.
  • New RAT 5G New Radio Access Technology
  • high-band communication also faces the challenge of link attenuation, including large loss of propagation path, greater absorption of air (especially oxygen), and heavy rain attenuation. Faced with these challenges, high-band communication systems can take advantage of the high frequency band and short antenna integration, and achieve high antenna gain and signal transmission loss through multi-antenna array and beamforming schemes to ensure link margin. And improve communication robustness.
  • the high frequency band sends a training pilot, and the terminal receives the channel and performs channel estimation. Then, the high-band training receiver needs to feed back the channel state information to the training initiator, so that the transceiver can select the weights of multiple sets of transceiver antennas that can be used for multi-channel data transmission from the optional transceiver antenna weight pairing. Improve overall spectral efficiency.
  • Beam scanning is performed without a priori information or based on the optimal beam feedback information configured at the previous time, so beam scanning can only be performed on the current beam and its adjacent beams.
  • beam refinement can be performed step by step, it is difficult to measure measurements in other independent paths.
  • beam training for other paths is limited, and a backup path or effective space division multiplexing is selected; on the other hand, in the data transmission phase, once the path is occluded, it is difficult to retrain other paths to implement data. Uninterrupted transmission.
  • Embodiments of the present invention provide a method and apparatus for beam scanning and switching.
  • a beam scanning and switching method is applied to a transmitting end of a reference signal, including:
  • the transmitting end notifies the receiving end of the M beam packet number indication, the M is an integer greater than or equal to 1, and the M beam packet sequence numbers are used to indicate that the receiving end of the reference signal performs one or more of the following:
  • the method further includes: performing beam grouping to obtain a grouping result, where the grouping result includes the M beam grouping sequence number indications.
  • the method further includes: receiving a beam grouping result from the receiving end, where the grouping result includes the M beam grouping sequence number indications.
  • the sending end when it notifies the receiving end of the M beam packet sequence number indication, it sends a request indication to switch to the second type of beam packet; meanwhile, the first type of beam packet is maintained to bear the data transmission service until the receiving end responds Switching to or after the second type of beam packet; wherein the first type of beam packet is a beam packet currently carrying data transmission service, the first The class class beam packet includes K2 beam packets; the second class beam packet corresponds to the M beam packet sequence number indication, and the second class beam packet includes K1 beam packets, and the K1 and K2 are not less than 1. An integer, and K1 is not greater than the M.
  • the transmitting end sends a beam scanning indication of the second type of beam packet to the receiving end when the M beam group number indication is sent; and at the same time, the first type of beam packet is maintained to bear the data transmission service until the receiving end response has been switched.
  • the first type of beam packet is a beam packet currently carrying data transmission service
  • the first type of beam packet includes K2 beam packets
  • the second type of beam corresponds to the M beam packet sequence numbers
  • the second class beam packet includes K1 beam packets
  • the K1 and K2 are integers not less than 1
  • K1 is not greater than the M.
  • the first type of beam packet is maintained to bear the data transmission service until the receiving end response has been switched to the second type of beam packet, or after;
  • the first type of beam packet is a beam packet currently carrying data transmission service, the first type of beam packet includes K2 beam packets;
  • the second type of beam packet corresponds to the M beam packet sequence number indication,
  • the second type of beam packet includes K1 beam packets, the K1 and K2 being integers not less than 1, and K1 being not greater than the M.
  • the method further includes: the transmitting end transmitting the reference signal by using the second type of beam grouping and the second type of beam grouping adjacent beam, wherein the reference signal is used for the second type of beam grouping and the second type of beam grouping is adjacent to the second type of beam grouping Channel quality measurement under the beam; or
  • the transmitting end transmits the reference signal by using the second type of beam packet adjacent beam, and the reference signal is used for channel quality measurement under the adjacent beam of the second type of beam packet.
  • the beam scanning includes transmitting a beam scanning control signal, and the beam scanning control signal includes one of the following:
  • the method further includes: the transmitting end instructing the receiving end to switch the receiving beam to the K beam packets, where K is an integer greater than or equal to 1, and M is greater than or equal to K.
  • a device for beam scanning and switching, applied to a transmitting end of a reference signal comprising:
  • the first notification unit is configured to notify the receiving end of the M beam packet sequence numbers, the M is an integer greater than or equal to 1, and the M beam packet sequence numbers are used to indicate that the receiving end performs one or more of the following:
  • the method further includes: a first grouping unit configured to perform beam grouping to obtain a grouping result, where the grouping result includes the M beam grouping sequence number indications; or, the first receiving unit is configured to receive a beam from the receiving end As a result of the grouping, the grouping result includes the M beam grouping sequence number indications.
  • the first notification unit is further configured to: when the M beam packet number indication is notified to the receiving end, send a beam scanning indication of the second type of beam packet; or, notify the receiving end of the M beam packet sequence numbers.
  • marking transmitting a beam scanning indication of the second type of beam packet;
  • the method further includes: a control unit configured to maintain the first type of beam packet to undertake data transmission services until the receiving end response has been switched to or after the second type of beam packet;
  • the first type of beam packet is a beam packet currently carrying data transmission service
  • the first type of beam packet includes K2 beam packets
  • the second type of beam packet corresponds to the M beam packet number indication
  • the second type of beam packet includes K1 beam packets, the K1 and K2 being integers not less than 1, and K1 is not greater than the M.
  • the notification unit is further configured to:
  • a reference signal is transmitted by the second type of beam packet adjacent beam, and the reference signal is used for channel quality measurement under adjacent beam of the second type of beam packet.
  • An apparatus for beam scanning and switching comprising: a processor and a memory, the apparatus being applied to a transmitting end of a reference signal, the memory storing computer executable instructions, the computer executable instructions being The following methods are implemented during execution:
  • the M beam packet number indication is sent to the receiving end, where the M is an integer greater than or equal to 1.
  • the M beam packet sequence number indication is used to indicate that the receiving end performs one or more of the following:
  • a beam scanning and switching method is applied to a receiving end of a reference signal, including:
  • the receiving end uses the M beam packet sequence numbers to indicate the corresponding beam group, and performs one or more of the following:
  • the M beam packet sequence number indication is notified to the receiving end by the sending end of the reference signal, and the M is an integer greater than or equal to 1.
  • the receiving end uses the beam packet of one of the following to feed back the response information to the sending end:
  • M1 beam packets corresponding to the M beam packet sequence numbers where M1 is an integer greater than or equal to 1, less than or equal to M;
  • the first one of the M beam packets indicated by the M beam packet sequence numbers is the first one of the M beam packets indicated by the M beam packet sequence numbers.
  • the bearer mode indicated by the beam packet sequence number in the response information includes one of the following:
  • the location of the time-frequency resource where the sequence of the beam packet is carried or the specified sequence identifier is carried or the specified sequence identifier.
  • the response information includes an execution time of executing the M beam packet sequence number to indicate a corresponding instruction.
  • the receiving end periodically feeds back the response information to the sending end; or the receiving end feeds back the response information to the sending end after being triggered.
  • the method before using the M beam packet sequence numbers to indicate the corresponding beam grouping, the method further includes: The receiving end performs beam grouping, and notifies the sending end of the grouping result, where the grouping result includes the M beam grouping sequence number indications.
  • the channel quality measurement under the corresponding beam grouping includes: receiving, by using the receiving beam corresponding to the M beam groups, a reference signal sent by the transmitting end, and measuring a channel under the M beam group according to the reference signal. .
  • the method further includes: configuring, according to the M beam grouping sequence numbers, a receiving beam group configured for beam scanning; wherein the M beam packet sequence numbers are marked to be carried in downlink control information. , uplink control information or media access control frame.
  • the channel quality feedback under the corresponding beam grouping includes: feeding back beam measurement results of all M beam packets or partial K3 beam packets in the M beam packets to the transmitting end, where K3 is greater than An integer equal to 1, and less than M.
  • a device for beam scanning and switching, applied to a receiving end of a reference signal comprising:
  • the first execution unit is configured to use the M beam packet sequence numbers to indicate the corresponding beam group, and perform one or more of the following:
  • the M beam packet sequence number indication is notified to the receiving end by the sending end of the reference signal, and the M is an integer greater than or equal to 1.
  • the method further includes: a first sending unit, configured to use the beam packet of one of the following to feed back the response information to the sending end:
  • the first one of the M beam packets indicated by the M beam packet sequence numbers is the first one of the M beam packets indicated by the M beam packet sequence numbers.
  • the method further includes: a second grouping unit, configured to perform beam grouping;
  • the first sending unit is further configured to notify the sending end of the grouping result obtained by the second grouping unit, where the grouping result includes the M beam grouping sequence number indications.
  • An apparatus for beam scanning and switching comprising: a processor and a memory, the apparatus being applied to a receiving end of a reference signal, the memory storing computer executable instructions, the computer executable instructions being The following methods are implemented during execution:
  • the M beam packet sequence number indication is notified to the receiving end by the sending end of the reference signal, and the M is an integer greater than or equal to 1.
  • a method of responding to a terminal comprising:
  • the terminal receives the signaling sent by the base station, generates a first effective time of the signaling, and sends the first effective time to the base station;
  • the signaling carries M beam packet sequence numbers, and the M is an integer greater than or equal to 1.
  • the M beam packet sequence numbers are used to indicate that the terminal performs one or more of the following:
  • the signaling is: beam measurement signaling, beam switching signaling, or beam quality feedback signaling.
  • the resource information used by the first effective time is carried in the signaling.
  • the signaling carries the second effective time recommended by the base station, and when the second effective time is less than the first effective time, the terminal sends the second effective time to the base station.
  • the first effective time is the second effective time recommended by the base station.
  • the signaling carries the second effective time recommended by the base station, and when the second effective time is greater than the first effective time, the terminal stops sending the first effective time to the base station.
  • the first effective time is sent to the base station, including one of the following:
  • the first effective time is indicated by a location or a specified sequence of time-frequency resources carrying the notification message.
  • a device for answering, applied to a terminal comprising:
  • a second receiving unit configured to receive signaling sent by the base station
  • a first generating unit configured to generate a first effective time of the signaling
  • a second sending unit configured to send the first effective time to the base station
  • the signaling carries M beam packet sequence numbers, and the M is an integer greater than or equal to 1.
  • the M beam packet sequence numbers are used to indicate that the terminal performs one or more of the following:
  • the signaling carries the second effective time suggested by the base station.
  • the second sending unit is configured to send the first effective time to the base station before the second effective time when the second effective time is less than the first effective time; or, set to When the second effective time is greater than the first effective time, the sending of the first effective time to the base station is stopped.
  • the first effective time is indicated by a location or a specified sequence of time-frequency resources carrying the notification message.
  • An apparatus for answering comprising: a processor and a memory, the apparatus being applied to a terminal, the memory storing computer executable instructions, the computer executable instructions being implemented by the processor to implement the following method:
  • the signaling carries M beam packet sequence numbers, and the M is an integer greater than or equal to 1.
  • the M beam packet sequence numbers are used to indicate that the terminal performs one or more of the following:
  • a method for feeding back antenna configuration information is applied to a terminal, including: the terminal feeding back antenna parameters to the base station side.
  • the antenna parameter is used to configure an uplink codebook, where the uplink codebook is used to generate at least one of a receive beam, and a receive beam packet, a transmit beam, and a transmit beam packet.
  • the antenna parameters include one or more of the following combinations:
  • the accuracy of the codebook quantization includes an oversampling size of the DFT codebook.
  • the method further includes: executing a codebook packet, where the codebook packet is represented by a codebook packet identifier, and all or part of the codebook in the same codebook packet is used for receiving or transmitting a transmission.
  • An apparatus for feeding back antenna configuration information is applied to a terminal, including: a third sending unit, configured to feed back antenna parameters to a base station side.
  • An apparatus for feeding back antenna configuration information comprising: a processor and a memory, the apparatus being applied to a terminal, the memory storing computer executable instructions, when the computer executable instructions are executed by the processor, Method:
  • the antenna parameters are fed back to the base station side.
  • a method for configuring an antenna, applied to a base station comprising:
  • the antenna configuration is performed according to the antenna parameters.
  • the antenna configuration includes one or more of the following combinations:
  • the uplink codebook of the configuration terminal is implemented by one of the following methods:
  • the binding relationship between the uplink beam of the terminal and the uplink codebook is as follows:
  • a device for antenna configuration, applied to a base station comprising:
  • a third receiving unit configured to receive antenna parameters fed back by the terminal
  • a configuration unit configured to perform an antenna configuration based on the antenna parameters.
  • An apparatus for antenna configuration comprising: a processor and a memory, the apparatus being applied to a base station, the memory storing computer executable instructions, the computer executable instructions being implemented by the processor to implement the following method:
  • the antenna configuration is performed according to the antenna parameters.
  • an embodiment of the present invention further provides a computer readable storage medium, where a computer is stored Executable instructions that, when executed, implement a method of beam scanning and switching as described above.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, the method of implementing another beam scanning and switching described above when the computer executable instructions are executed.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, the method for implementing the above response when the computer executable instructions are executed.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, the method for implementing the feedback antenna parameters when the computer executable instructions are executed.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, the method for implementing the antenna configuration when the computer executable instructions are executed.
  • the transmitting end of the reference signal may indicate that the receiving end receives the beam packet by an explicit or implicit method, and instruct the receiving end to perform at least one of the corresponding beam scanning and channel measurement, thereby implementing the transmitting end and receiving.
  • the end performs beam training and channel quality measurement on the transmit and receive beams in a specific independent path. In this way, beam refinement or beam tracking for each independent path can be implemented on the one hand; on the other hand, when the transmission path is occluded, the transceiver can measure and maintain other beam packets in time, and support effective beam switching.
  • This application is particularly applicable to beam scanning in high-band 5G mobile communications or millimeter-wave communications scenarios.
  • FIG. 1 is a schematic structural diagram of a device for beam scanning and switching in Embodiment 1 of the present application;
  • FIG. 2 is a schematic structural diagram of a device for beam scanning and switching in Embodiment 2 of the present application;
  • FIG. 3 is a schematic structural diagram of a device for responding in Embodiment 3 of the present application.
  • Embodiment 4 is a schematic structural diagram of a device for feeding back antenna parameters in Embodiment 4 of the present application;
  • FIG. 5 is a schematic structural diagram of a device for an antenna configuration according to Embodiment 4 of the present application.
  • FIG. 6 is a schematic flowchart of an antenna configuration in Embodiment 4 of the present application. ;
  • FIG. 7 is a schematic structural diagram of a hybrid precoding (beamforming) transceiver according to the present application.
  • FIG. 8 is a schematic diagram of informing a message bearer signaling effective time
  • FIG. 9 is a schematic diagram of sending a response message after switching to a designated beam packet
  • FIG. 10 is a schematic diagram of a beam grouping according to the present application.
  • Figure 11 is an embodiment of a beam packet of the present application.
  • FIG. 12 is a schematic diagram of a beam scanning method of the present application.
  • FIG. 13 is a schematic diagram of a precoding (beam) training and channel state information feedback process according to the present application
  • FIG. 14 is a schematic diagram of a frame structure and a mapping relationship between a control signal and a reference signal according to the present application
  • 15 is an embodiment of the present invention for downlink receive beam scanning under a second type of beam packet for a specific beam packet;
  • 16 is an embodiment of the present application for downlink transmit beam scanning under a second type of beam packet for a specific beam packet
  • 17 is an embodiment of the present invention for uplink receive beam scanning under a second type of beam packet for a specific beam packet;
  • 18 is an embodiment of the present invention for downlink transmit beam scanning under a second type of beam packet for a particular beam packet;
  • FIG. 19 is a schematic diagram of transmission and reception end transmission caused by occlusion
  • FIG. 20 is a schematic diagram of transmission and reception of a beam after scanning under beam grouping.
  • the present invention provides a method for beam scanning and switching, which is applied to a transmitting end of a reference signal, and includes: the transmitting end notifying the receiving end of M beam packet sequence numbers, and the M is an integer greater than or equal to 1,
  • the M beam packet sequence numbers are used to indicate that the receiving end of the reference signal performs one or more of the following:
  • the method before informing the receiving end of the M beam packet sequence number indications, the method further includes: performing beam grouping to obtain a grouping result, where the grouping result includes the M beam grouping sequence number indications.
  • the method before notifying the receiving end of the M beam packet sequence number indications, the method further includes: receiving a beam grouping result from the receiving end, where the grouping result includes the M beam grouping sequence number indications.
  • the sending end when the sending end notifies the receiving end of the M beam packet sequence number indication, the request flag for switching to the second type of beam packet is sent; and at the same time, maintaining the first type of beam packet to bear the data transmission service until the The receiving end response is switched to or after the second type of beam packet; wherein the first type of beam packet is a beam packet currently carrying data transmission service, and the first type of beam packet includes K2 beam packets;
  • the second type of beam packet corresponds to the M beam packet number indication, the second type of beam packet includes K1 beam packets, the K1 and K2 are integers not less than 1, and K1 is not greater than the M.
  • the beam scanning indication of the second type of beam packet is sent; and at the same time, the first type of beam packet is maintained to bear the data transmission service until the receiving When the end response has been switched to the second type of beam grouping Thereafter, wherein the first type of beam packet is a beam packet currently carrying data transmission service, the first type of beam packet includes K2 beam packets; and the second type of beam packet corresponds to the M beam grouping
  • the serial number indicates that the second type of beam packet includes K1 beam packets, the K1 and K2 are integers not less than 1, and K1 is not greater than the M.
  • the first type of beam packet is held to bear the data transmission service until the receiving end response has switched to the second type of beam packet or Thereafter, wherein the first type of beam packet is a beam packet currently carrying data transmission service, the first type of beam packet includes K2 beam packets; and the second type of beam packet corresponds to the M beam grouping
  • the serial number indicates that the second type of beam packet includes K1 beam packets, the K1 and K2 are integers not less than 1, and K1 is not greater than the M.
  • the beam direction and the beam width of the first type of beam group and the partial beam or all beams of the second type of beam group are different.
  • the transmitting end sends the set information of the second type of beam packet, the beam scanning indication of transmitting the second type of beam packet, the transmission switch to the second type of beam packet request indication, and the response is switched to the second type of beam packet indication or
  • the first type of beam packet can remain in the data transmission service until or after the response is switched to the second type of beam packet.
  • the method may further include: the transmitting end and the receiving end jointly transmit beam scanning and measuring to the transceiver end of the M beam packet sequence numbers.
  • the method further includes: the transmitting end transmitting the reference signal by using the second type of beam grouping and/or the second type of beam grouping adjacent beam, where the reference signal is used for the second type of beam grouping and down / or the second type of beam packet channel quality measurement under adjacent beams.
  • the beam scanning includes transmitting a beam scanning control signal, where the beam scanning control signal includes:
  • mapping manner of the scan beam corresponding to the antenna port binding relationship is as follows: 1) display mode, which is represented by the correspondence between the scan beam and the antenna port, and the correspondence between the scan beam and the antenna port includes all scans. The case where the beam uses the same antenna port; 2) implicitly, mapping the correspondence between the scanning beam and the antenna port through the specified function and configuration parameters;
  • the method may further include: the transmitting end instructing the receiving end to switch the receiving beam to the K beam packets, where K is an integer greater than or equal to 1, and M is greater than or equal to K.
  • the reference signal includes a Demodulation Reference Signal (DMRS), a Channel State Information Reference Signal (CSI-RS), and a Cell Specific Reference Signal (CRS). , Sounding Reference Signal (SRS) and other signals.
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • CRS Cell Specific Reference Signal
  • SRS Sounding Reference Signal
  • the beam may be a resource (eg, originating precoding, terminating precoding, antenna port, antenna weight vector, antenna weight matrix, etc.), and the beam ID may be replaced by a resource ID, because the beam may be combined with some
  • the time-frequency code resource is bound on the transmission.
  • the beam may also be a transmission (transmit/receive) mode; the transmission mode may include space division multiplexing, frequency domain/time domain diversity, and the like.
  • the beam grouping refers to dividing a beam having the same channel characteristics and/or transmission scheme into a set, and the criteria of the grouping include any one of the following and any combination mode:
  • TA timing advance
  • the extreme case of the beam grouping that is, the number of beams per packet is 1,
  • the channel characteristics that is, including physical propagation channel characteristics, such as horizontal transmission azimuth, vertical transmission azimuth, horizontal reception azimuth, vertical reception azimuth, etc., also include characteristics of radio frequency and baseband circuits, such as antenna pattern features (element pattern) ), antenna placement, and baseband bias and frequency offset;
  • the beam scanning refers to a process in which a reference signal transmitting end sequentially adjusts a transmitting and/or receiving beam to a reference signal receiving end, transmits and receives a reference signal, and performs channel quality measurement.
  • beam scanning and/or channel measurement is implemented by transmitting a beam scanning control signal, including but not limited to:
  • Transmitter beam scanning enable indication scanning beam number indication (or abstract indication of the number of scanning beams);
  • #6 Send and receive the combined beam scan enable indicator, scan the correspondence between the transmit beam and the receive beam, the number of scan beams (or the abstract indication of the number of scan beams), and the scan beam corresponds to the antenna port binding relationship.
  • the scanning beam corresponds to an antenna port binding relationship, and the possible situations include the following:
  • the beam packet number indication and the beam scanning control signal may be sent by using downlink control information carried by the reference signal transmitting end, or uplink control information or a medium access control frame.
  • the present application further provides an apparatus for beam scanning and switching, which is applied to a transmitting end of a reference signal, and includes:
  • the first notification unit 11 is configured to notify the receiving end of the M beam packet sequence numbers, the M is an integer greater than or equal to 1, and the M beam packet sequence numbers are used to indicate that the receiving end performs one or more of the following: : 1) switching the control channel and/or the beam of the data channel to the corresponding beam packet; 2) beam scanning under the corresponding beam packet; 3) channel quality measurement under the corresponding beam packet; 4) channel quality feedback under the corresponding beam packet .
  • the method further includes: a first grouping unit 12 configured to perform beam grouping to obtain a grouping result, where the grouping result includes the M beam grouping sequence numbers.
  • the method may further include: a first receiving unit 13 configured to receive a beam grouping result from the receiving end, where the grouping result includes the M beam grouping sequence number indications.
  • the first notification unit 11 may be further configured to send a beam scan indication of the second type of beam packet when the M beam packet number indication is notified to the receiving end; or Sending a beam scanning indication of the second type of beam packet to the receiving end when the M beam packet number indication is notified;
  • the method may further include: the control unit 14 being configured to maintain the first type of beam packet to bear data transmission service until the receiving end responds to the time when the second type of beam packet has been switched;
  • the first type of beam packet is a beam packet currently carrying data transmission service, the first type of beam packet includes K2 beam packets;
  • the second type of beam packet corresponds to the M beam packet sequence number indication,
  • the second type of beam packet contains K1 beam packets, the K1 and K2 being integers not less than 1, and K1 not being greater than the M.
  • the notifying unit 11 may be further configured to transmit a reference signal by using the second type of beam grouping and/or the second type of beam grouping adjacent beam, the reference signal being used in the second class. Channel quality measurements under beam grouping and/or second class beam grouping adjacent beams.
  • the present application further provides an apparatus for beam scanning and switching, comprising: a processor and a memory, the apparatus being applied to a transmitting end of a reference signal, the memory storing computer executable instructions, the computer The following method is implemented when the execution instruction is executed by the processor:
  • the M beam packet number indication is sent to the receiving end, where the M is an integer greater than or equal to 1.
  • the M beam packet sequence number indication is used to indicate that the receiving end performs one or more of the following:
  • the foregoing apparatus for beam scanning and switching provided by this embodiment may be used to perform all the processes of the foregoing method, and details are not described herein again.
  • the transmitting end of the reference signal may indicate that the receiving end receives the beam packet by an explicit or implicit method, and instructs the receiving end to perform corresponding beam scanning and/or channel measurement, thereby implementing The transmitting end and the receiving end perform beam training and channel quality measurement on the transmitting and receiving beams in a specific independent path.
  • beam refinement or beam tracking for each independent path can be implemented on the one hand; on the other hand, when the transmission path is occluded, the transceiver can measure and maintain other beam packets in time, and support effective beam switching.
  • the method and device of the embodiment are especially suitable for high frequency band 5G mobile communication or millimeter wave communication Beam scanning in the scene.
  • This embodiment provides a method for beam scanning and switching, which is applied to a receiving end of a reference signal, and includes:
  • the receiving end uses the M beam packet sequence numbers to indicate the corresponding beam group, and performs one or more of the following:
  • the M beam packet sequence number indication is notified to the receiving end by the sending end of the reference signal, and the M is an integer greater than or equal to 1.
  • the receiving end uses the beam packet of one of the following to feed back the response information to the sending end:
  • M1 beam packets corresponding to the M beam packet sequence numbers where M1 is an integer greater than or equal to 1, less than or equal to M;
  • the first one of the M beam packets indicated by the M beam packet sequence numbers is the first one of the M beam packets indicated by the M beam packet sequence numbers.
  • the bearer mode indicated by the beam packet sequence number in the response information includes one of: 1) carrying beam packet sequence number indication information in the response information; 2) time-frequency resources by carrying a beam packet sequence number The location or the specified sequence identifier.
  • the response information may be instructed to perform the transceiver beam switching time, for example, the next subframe switching, or a certain time unit (for example, TTI (Transmission Time Interval)).
  • the response information includes performing an execution time of the M beam packet sequence number to indicate a corresponding instruction.
  • the receiving end may periodically send a response to the sending end. Information; or, the receiving end may feed back the response information to the transmitting end after being triggered.
  • the method before the M beam packet sequence number is used to indicate the corresponding beam packet, the method further includes: the receiving end performing a beam packet, and notifying the sending end of the grouping result, where the grouping result includes the M The beam packet number is indicated.
  • the channel quality measurement under the corresponding beam grouping may include: receiving, by using the receiving beam corresponding to the M beam groups, a reference signal sent by the transmitting end, and measuring M according to the reference signal.
  • the channel under the beam grouping may include: receiving, by using the receiving beam corresponding to the M beam groups, a reference signal sent by the transmitting end, and measuring M according to the reference signal.
  • the receiving end can adjust the receiving beam according to the beam scanning control signal and its own requirements, and the non-strong binding relationship.
  • the method before the beam scanning under the corresponding beam grouping, the method further includes: configuring, according to the M beam grouping sequence numbers, a receiving beam group configured for beam scanning; wherein the M beam grouping numbers indicate bearer On the downlink control information, uplink control information, or media access control frame.
  • the method further includes: adjusting, according to the beam scanning control signal, the receiving beam according to the beam scanning control signal, and the non-strong binding relationship;
  • the channel quality feedback under the respective beam grouping includes: feeding back beam measurement results of any one of the M beam groups to the transmitting end.
  • the embodiment further provides an apparatus for beam scanning and switching, which is applied to a receiving end of a reference signal, and includes:
  • the first execution unit 21 is configured to use the M beam packet sequence numbers to indicate the corresponding beam group, and perform one or more of the following:
  • the M beam packet sequence number indication is notified to the receiving end by the sending end of the reference signal, and the M is an integer greater than or equal to 1.
  • the method further includes: a first sending unit 22, configured to use the beam packet of one of the following to feed back response information to the sending end: carrying a beam packet used before the M beam packet sequence number indication;
  • the M beam packet sequence numbers indicate corresponding M1 beam packets, where M1 is an integer greater than or equal to 1, less than or equal to M; and the first one of the M beam packets indicated by the M beam packet sequence numbers.
  • the method further includes: a second grouping unit 23 configured to perform beam grouping; the first sending unit 21, further configured to notify the sending end of the grouping result obtained by the second grouping unit,
  • the grouping result includes the M beam packet number indications.
  • the embodiment further provides an apparatus for beam scanning and switching, comprising: a processor and a memory, the apparatus being applied to a receiving end of a reference signal, the memory storing computer executable instructions, the computer
  • the executable method implements the following methods when executed by the processor:
  • the M beam packet sequence number indication is notified to the receiving end by the sending end of the reference signal, and the M is an integer greater than or equal to 1.
  • the foregoing apparatus for beam scanning and switching provided by this embodiment may be used to perform all the processes of the foregoing method, and details are not described herein again.
  • the receiving end can use the beam segment indicated by the explicit or implicit method at the transmitting end of the reference signal to perform corresponding beam scanning and/or channel measurement, thereby implementing the transmitting end and the The receiving end performs beam training and channel quality measurement on the transmitting and receiving beams in a specific independent path.
  • beam refinement or beam tracking for each independent path can be implemented on the one hand; on the other hand, when the transmission path is occluded, the transceiver can measure and maintain other beam packets in time, and support effective beam switching.
  • the method and device of the embodiment are especially suitable for high frequency band 5G mobile communication or millimeter wave communication Beam scanning in the scene.
  • This embodiment provides a method for responding, which is applied to a terminal, and includes:
  • the terminal receives the signaling sent by the base station, generates a first effective time of the signaling, and sends the first effective time to the base station; where the signaling carries M beam packet sequence numbers, the M Is an integer greater than or equal to 1, the M beam packet sequence number indication is used to indicate that the terminal performs one or more of the following: switching a control channel and/or a data channel beam to a corresponding beam packet; corresponding beam grouping Beam scanning; channel quality measurement under corresponding beam grouping; channel quality feedback under corresponding beam grouping.
  • the expiration time includes: #1 is effective immediately; #2 is in K time units, where K is an integer greater than or equal to 0.
  • the signaling may be: beam measurement signaling, beam switching signaling, or beam quality feedback signaling.
  • the resource information used by the first effective time is carried in the signaling.
  • the signaling carries a second effective time recommended by the base station, and when the second effective time is less than the first effective time, the terminal sends a second effective time The base station sends the first effective time.
  • the signaling carries a second effective time recommended by the base station, and when the second effective time is greater than the first effective time, the terminal stops sending the first to the base station. An effective time.
  • the first effective time is sent to the base station, including one of the following: 1) displaying a feedback mode: carrying the first effective time in the form of information in the notification message, and The notification message is sent to the base station; 2) implicit feedback mode: the first effective time is indicated by a location or a specified sequence of time-frequency resources carrying the notification message.
  • the embodiment further provides a device for answering, which is applied to the terminal, and includes:
  • the second receiving unit 31 is configured to receive signaling sent by the base station
  • the first generating unit 32 is configured to generate a first effective time of the signaling
  • the second sending unit 33 is configured to send the first effective time to the base station
  • the signaling carries M beam packet sequence numbers, and the M is an integer greater than or equal to 1.
  • the M beam packet sequence numbers are used to indicate that the terminal performs one or more of the following: switching a control channel. And/or beam of the data channel to the corresponding beam packet; beam scanning under the corresponding beam packet; channel quality measurement under the corresponding beam packet; channel quality feedback under the corresponding beam packet.
  • the signaling carries a second effective time suggested by the base station.
  • the second sending unit 33 is configured to send the first effective time to the base station before the second effective time when the second effective time is less than the first effective time; or, set to And stopping, when the second effective time is greater than the first effective time, sending the first effective time to the base station.
  • the second sending unit 33 is configured to send the first effective time to the base station by using one of: 1) carrying the first effective time in the form of information in the notification message. And sending the notification message to the base station; 2) indicating the first effective time by a location or a specified sequence of time-frequency resources carrying the notification message.
  • the embodiment further provides an apparatus for answering, comprising: a processor and a memory, the apparatus is applied to a terminal, the memory stores computer executable instructions, and the computer executable instructions are processed by the The following methods are implemented when the device is executed:
  • the signaling carries M beam packet sequence numbers, the M is an integer greater than or equal to 1, and the M beam packet sequence numbers are used to indicate that the terminal performs one or more of the following: switching a control channel and/or Or beam of the data channel to the corresponding beam packet; beam scanning under the corresponding beam packet; channel quality measurement under the corresponding beam packet; channel quality feedback under the corresponding beam packet.
  • the terminal informs the base station of the effective time of the signaling, which can improve the flexibility of the terminal side. Sex.
  • This embodiment provides a method for feeding back antenna configuration information, which is applied to a terminal, and includes:
  • the terminal feeds back the antenna parameters to the base station side.
  • the antenna parameter is used to configure an uplink codebook, where the uplink codebook is used to generate an uplink beam and/or a beam packet.
  • the antenna parameters include one or more of the following combinations:
  • the accuracy of the codebook quantization includes oversampling of a Discrete Fourier Transform (DFT) codebook. size.
  • DFT Discrete Fourier Transform
  • the method further includes: executing a codebook packet, the codebook packet being represented by a codebook packet identifier, and all or part of the codebook in the same codebook packet being used for receiving or transmitting a transmission.
  • the antenna polarization characteristics include: horizontal polarization, vertical pole Chemical, clockwise circular polarization, counterclockwise circular polarization, etc.
  • the embodiment further provides an apparatus for feeding back antenna configuration information, which is applied to a terminal, and includes: a third sending unit 41, configured to feed back antenna parameters to a base station side.
  • the embodiment further provides an apparatus for feeding back antenna configuration information, comprising: a processor and a memory, the device is applied to a terminal, the memory stores computer executable instructions, and the computer executable instructions are When the processor executes, the following method is implemented: feeding back antenna parameters to the base station side.
  • the embodiment further provides a method for configuring an antenna, which is applied to a base station, and includes:
  • the antenna configuration is performed according to the antenna parameters.
  • the antenna configuration includes one or more of the following combinations:
  • the uplink codebook of the configuration terminal is implemented by one of the following methods:
  • the binding relationship between the uplink beam of the terminal and the uplink codebook includes: reconfiguring an element of the uplink codebook based on the selection information of the uplink beam; setting the uplink codebook based on the selection information of the uplink beam And an optional range of subcodebooks for forming the uplink codebook.
  • the manner in which the subcodebook synthesizes the codebook may include synthesizing at least one subcodebook by Kronecker product.
  • the embodiment further provides an apparatus for antenna configuration, which is applied to a base station, and includes:
  • the third receiving unit 51 is configured to receive an antenna parameter fed back by the terminal
  • the configuration unit 52 is configured to perform an antenna configuration according to the antenna parameters.
  • the embodiment further provides an apparatus for antenna configuration, comprising: a processor and a memory, the apparatus is applied to a base station, the memory stores computer executable instructions, and the computer executable instructions are
  • the processor implements the following methods when it executes:
  • the antenna configuration is performed according to the antenna parameters.
  • the method in this embodiment may include:
  • step 601 the antenna configuration on the terminal side is inconsistent, and the complexity of the corresponding uplink codebook design is very high. Therefore, in this embodiment, the terminal side feeds back the antenna parameters of the terminal side to the base station side;
  • Step 602 The base station side configures an uplink codebook to the terminal side based on the antenna parameter information of the existing terminal side.
  • Step 603 The terminal sends an uplink reference signal to the base station side for channel measurement according to the uplink codebook shown.
  • Step 604 The base station side feeds back the uplink beam ID, or the uplink precoding matrix identifier, or the uplink codebook group information to the terminal side based on the configured uplink code.
  • the present application is applied to a transceiver of the hybrid precoding (hybrid analog digital beamforming) shown in FIG. 7, which includes a transmitting end of a reference signal and a receiving end of a reference signal.
  • the transmitting end and the receiving end are configured with a multi-antenna array and a plurality of radio frequency paths.
  • each of the RF paths is interconnected with the antenna array (without repelling part of the connection scenario), each antenna array has a phase shifter and a splitter.
  • the high-band system implements beamforming at the analog end by loading signals on the respective antenna arrays with different phase shift amounts.
  • Each signal stream is loaded with an antenna weight vector (AWV) through a phase shifter, and is transmitted from the multi-antenna array to the high-band physical propagation channel; at the receiving end, the RF signal stream received by the multi-antenna array is weighted and combined In a single signal stream, after receiving RF demodulation at the receiving end, the receiving end finally obtains multiple received signal streams, which are sampled and received by the digital baseband. Therefore, the above transceiver can simultaneously generate radio frequency beams directed in multiple directions.
  • AMV antenna weight vector
  • FIG. 8 is a schematic diagram of informing the message bearer signaling effective time.
  • the base station sends a signaling to the terminal side, for example, beam switching, beam scanning, feedback channel status information, and the like.
  • the terminal feeds back a notification message to the base station side, where the notification message carries the effective time of the base station sending signaling, for example, immediately.
  • K time units such as Transmission Time Interval (TTI)
  • TTI Transmission Time Interval
  • K Transmission Time Interval
  • the effective time information can be indicated by explicit feedback (that is, carrying the effective time information directly in the notification message), or by carrying the location or specific sequence of the time-frequency resource where the notification message is located.
  • FIG. 9 is a schematic diagram of transmitting a response message after switching to a designated beam packet.
  • the reference signal transmitting end sends M beam grouping messages and control information, and the reference signal transmitting end informs the receiving end of the beam to be used, so as to implement measurement of the switching beam, wherein the beam to be used may include one of the following:
  • M1 is an integer greater than or equal to 1
  • the first beam packet of the corresponding M beam packets is indicated using M beam packet numbers.
  • Figure 10 is a schematic diagram of beam grouping.
  • the reference signal transmitting end and the reference signal receiving end are configured with a plurality of beam packets for different physical paths through previous beam training.
  • Each packet includes one or more transceiving beams. It should be noted that only the beam packet sequence number is known to the transmitting end of the reference signal and the receiving end of the reference signal, and the transmitting and receiving beams used by the other party are not known, so that the transmitting end and the receiving end can be more flexible. Sex.
  • TB represents a transmit beam of a transmit end of a reference signal
  • RB represents a receive beam of a receive end of a reference signal.
  • the beam packet is -0
  • the reference signal transmitting beam is ⁇ TB-10, TB-11, TB-12 ⁇
  • the reference signal The receiving end receiving beam is RB-8.
  • Figure 12 illustrates a schematic diagram of a beam scanning method.
  • the reference signal sender and reference letter The receiving end performs the transmission of the data and the control signal under the first type of beam packet through the a priori information; then, when the channel quality is deteriorated, the switching transmission mode is expected, or further beam refinement is performed, the reference signal transmitting end sends the to-be-scanned The beam packet sequence number and the beam scanning control signal; thereafter, the beam scanning under the corresponding beam packet sequence number is started, and the corresponding beam packet information is updated after the beam scanning is completed (for example, the received signal power under different transceiver beam pairs (Reference) Signal Receiving Power (RSRP); Note: There may be no reporting information); if beam packet switching is required, the transmitting end of the reference signal or the receiving end of the reference signal indicates the beam packet sequence number of the updated data/control signal transmission.
  • RSRP Reference Signal Receiving Power
  • the beam scanning control signal includes one or a combination of any of the following:
  • Transmitter beam scanning enable indication scanning beam number indication (or abstract indication of the number of scanning beams);
  • #6 Send and receive the combined beam scan enable indicator, scan the correspondence between the transmit beam and the receive beam, the number of scan beams (or the abstract indication of the number of scan beams), and the scan beam corresponds to the antenna port binding relationship.
  • the beam packet sequence number to be scanned and the beam scanning control signal may be transmitted through the downlink control information carried by the reference signal transmitting end, or the uplink control information or the medium access control frame.
  • the scanning beam corresponds to the antenna port binding relationship.
  • the possible situations include the following:
  • the information indicating the correspondence between the scan beam and the antenna port, and the information of the correspondence between the scan beam and the antenna port includes the case where all the scan beams use the same antenna port;
  • Implicit representation maps the correspondence between the scanning beam and the antenna port through the specified function and configuration parameters.
  • the beam packet sequence number and the beam scanning control signal may be sent by using downlink control information carried by the reference signal transmitting end, or uplink control information or a medium access control frame.
  • the beam packet (0, 1) is used for control and data channel data transmission; since the received signal quality is degraded, correlation beam scanning and channel measurement for the beam packet (2) are performed; according to the reference signal receiving end
  • the channel quality information is fed back, the reference signal transmitting end initiates beam switching, and the beam packet (1, 2) is used for subsequent data and control channel transmission.
  • the reference signal sending end initiates beam switching, and after the receiving end responds, the beam switching may occur immediately or may be switched at a later time point according to the protocol.
  • FIG. 13 is a schematic diagram of a precoding (beam) training and channel state information feedback flow according to the present application.
  • the reference signal transmitting end is generated by a same originating precoding (beam) group, or both are generated by different origin precoding (beam) groups, or several sets of origin precoding (beam) are used to generate multiple reference signals respectively. And sent to the reference signal receiving end.
  • the reference signal receiving end performs channel measurement with the same or different receiving antenna weights under one or more reference signals, and feeds back corresponding channel state information.
  • a scenario that does not feed back channel state information such as training of a receive beam corresponding to a reference signal receiving end.
  • FIG. 14 is a schematic diagram of a frame structure and a mapping relationship between a control signal and a reference signal according to the present application.
  • the time-frequency resource that is subsequently used to identify the reference signal under the beam packet is indicated by the indication information carried in the control channel.
  • the control signals are allowed to indicate reference signals at different TTIs.
  • Figure 15 is an embodiment of the present application for downlink receive beam scanning for a particular beam packet (i.e., a second type of beam packet).
  • the uplink ACK carries the beam refinement request (BRF-RX Requested), and the number of received scanning beams (BRF-LEN)>0; then, in the downlink data transmission, the loading BS uses a specific beam packet (ie, the second type of beam packet)
  • the uplink control field carries a BRF-TX Request request and sends
  • the number of scanning beams is BRF-LEN>0; during downlink data transmission, the BS side scans the optional transmit beam of the specific beam packet (ie, the second type of beam packet) and transmits the reference signal, and the UE end is fixed under the specific beam packet. Receive beam; subsequently, when the ACK is fed back, the CSI information under each reference signal is fed back to the BS by the UE.
  • Figure 17 is an embodiment of the present application for uplink receive beam scanning for a particular beam packet (i.e., a second type of beam packet).
  • the downlink ACK carries the BRF-RX Requested request, and the number of the received scanning beams is BRF-LEN>0; then, in the uplink data transmission, the UE transmits the transmission reference signal under the specific beam packet (ie, the second type of beam packet), and The BS side scans an optional receive beam under a specific beam packet, thereby updating the receive beam on the BS side under the beam packet.
  • Figure 18 is an embodiment of the present application for uplink transmit beam scanning for a particular beam packet (i.e., a second type of beam packet).
  • the downlink control field carries a BRF-TX Request request, and the number of scanning beams is transmitted, BRF-LEN>0; during downlink data transmission, the UE scans an optional transmit beam of a specific beam packet (ie, a second type of beam packet) and transmits a reference signal. And the BS end is fixed to the receiving beam under the specific beam packet; then, in the ACK feedback, the CSI information under each reference signal is fed back from the BS to the BS.
  • FIG. 19 is a schematic diagram of transmission and reception end transmission deterioration due to occlusion.
  • the reference signal transceiver uses beam packet-0 and beam packet-1 for space division multiplexing, but due to human occlusion, the quality of the received signal under beam packet-0 is greatly reduced, so the transmitting end and the receiving end of the reference signal try Switch to beam packet-2.
  • FIG. 20 is a schematic diagram of transmission and reception of a beam after scanning under beam grouping.
  • beam packet-2 is optimized, TB-2 of the original reference signal transmitting end is switched to TB-3, and TB-3 and RB-1 are used to construct beam packet-2 to perform data transmission.
  • the transmitting end of the reference signal may indicate the receiving end receiving beam (group) by an explicit or implicit method, and instruct the receiving end to perform corresponding beam scanning and/or channel measurement, and further
  • the transmitting end of the reference signal and the receiving end of the reference signal are used for beam training and channel quality measurement for the transmitting and receiving beams in a specific independent path.
  • the solution can implement beam refinement or beam tracking for each independent path on the one hand; on the other hand, when the transmission path is occluded, the transceiver can measure and maintain other beam packets in time. Switch to achieve effective beam.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, the method of implementing the above beam scanning and switching when the computer executable instructions are executed.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, the method of implementing another beam scanning and switching described above when the computer executable instructions are executed.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, the method for implementing the above response when the computer executable instructions are executed.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, the method for implementing the feedback antenna parameters when the computer executable instructions are executed.
  • an embodiment of the present invention further provides a computer readable storage medium storing computer executable instructions, the method for implementing the antenna configuration when the computer executable instructions are executed.
  • the foregoing storage medium may include, but not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • mobile hard disk a magnetic disk
  • magnetic disk a magnetic disk
  • optical disk a variety of media that can store program code.
  • the processor executes the method steps of the above embodiments in accordance with program code already stored in the storage medium.
  • each module/unit in the above embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • This application is not limited to any particular form of hardware and software. The combination of pieces.
  • the transmitting end of the reference signal may indicate that the receiving end receives the beam packet by an explicit or implicit method, and instruct the receiving end to perform at least one of the corresponding beam scanning and channel measurement, thereby implementing the transmitting end and receiving.
  • the end performs beam training and channel quality measurement on the transmit and receive beams in a specific independent path. In this way, beam refinement or beam tracking for each independent path can be implemented on the one hand; on the other hand, when the transmission path is occluded, the transceiver can measure and maintain other beam packets in time, and support effective beam switching.

Abstract

一种波束扫描和切换的方法及装置,应用于参考信号的发送端,包括:所述发送端向接收端告知M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示参考信号的接收端执行如下之一或多项:切换控制信道和/或数据信道的波束到相应的波束分组;相应波束分组下的波束扫描;相应波束分组下的信道质量测量;相应波束分组下的信道质量反馈。

Description

一种波束扫描和切换的方法及装置 技术领域
本申请涉及但不限于通信领域,尤指一种波束扫描和切换的方法及装置。
背景技术
超宽带宽的高频段(即毫米波通信),成为未来移动通信发展的重要方向,吸引了全球的学术界和产业界的目光。特别是,在当下日益拥塞的频谱资源和物理网大量接入时,毫米波的优势变得越来越有吸引力,在很多标准组织,例如IEEE(Institute of Electrical and Electronics Engineers,电气和电子工程师协会)、3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)都开始展开相应的标准化工作。例如,在3GPP标准组,高频段通信凭借着其大带宽的显著优势将会成为5G New Radio Access Technology(New RAT,新型无线接入技术)的重要创新点。
然而,高频段通信也面临着链路衰减的挑战,包括传播路径损失大、空气吸收(尤其是氧气)吸收更大、雨衰影响较重等。面对这些挑战,高频段通信系统可以利用高频段波长较短和易于天线集成等特点,通过多天线阵列和波束赋形方案来获取高天线增益和对抗信号传输损耗,进而以确保链路余量和提升通信鲁棒性。
在天线权重(也称为,预编码、波束)训练过程中,高频段发端发送训练导频,接端接收信道并执行信道估计。然后,高频段训练收端需要向训练发端反馈信道状态信息,便于实现收发端从可选的收发端天线权重对中,找到可以用于多路数据传输所需要的多组收发端天线权重对,提升整体的频谱效率。
波束扫描是无先验信息或者基于上一个时刻配置的最佳波束反馈信息展开的,因此波束扫描仅仅可以在当前的波束及其相邻波束展开。虽然可以逐级的进行波束的细化,但是难以测定其他独立路径下的测量。在这种 情况下,一方面会限制对于其他路径的波束训练,选择备份路径或者有效的空分复用;另一方面,在数据传输阶段,一旦路径被遮挡,难以对其他路径进行再训练以便于实现数据不中断的传输。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本发明实施例提供了一种波束扫描和切换的方法及装置。
一种波束扫描和切换的方法,应用于参考信号的发送端,包括:
所述发送端向接收端告知M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示参考信号的接收端执行如下之一或多项:
切换控制信道的波束到相应的波束分组;
切换数据信道的波束到相应的波束分组;
切换控制信道和数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈。
其中,在向接收端告知M个波束分组序号标示之前,还包括:执行波束分组,得到分组结果,所述分组结果包含所述M个波束分组序号标示。
其中,在向接收端告知M个波束分组序号标示之前,还包括:接收来自所述接收端的波束分组结果,所述分组结果包括所述M个波束分组序号标示。
其中,所述发送端向接收端告知M个波束分组序号标示时,发送切换到第二类波束分组的请求标示;同时,保持第一类波束分组承担数据传输业务,直到所述接收端响应已切换到第二类波束分组之时或之后;其中,所述第一类波束分组为当前正在承担数据传输业务的波束分组,所述第一 类波束分组包含K2个波束分组;所述第二类波束分组对应于所述M个波束分组序号标示,所述第二类波束分组包含K1个波束分组,所述K1和K2为不小于1的整数,且K1不大于所述M。
其中,所述发送端向接收端告知M个波束分组序号标示时,发送第二类波束分组的波束扫描指示;同时,保持第一类波束分组承担数据传输业务,直到所述接收端响应已切换到第二类波束分组之时或之后;其中,所述第一类波束分组为当前正在承担数据传输业务的波束分组,所述第一类波束分组包含K2个波束分组;所述第二类波束分组对应于所述M个波束分组序号标示,所述第二类波束分组包含K1个波束分组,所述K1和K2为不小于1的整数,且K1不大于所述M。
其中,所述发送端向接收端告知M个波束分组序号标示时,保持第一类波束分组承担数据传输业务,直到所述接收端响应已切换到第二类波束分组之时或之后;其中,所述第一类波束分组为当前正在承担数据传输业务的波束分组,所述第一类波束分组包含K2个波束分组;所述第二类波束分组对应于所述M个波束分组序号标示,所述第二类波束分组包含K1个波束分组,所述K1和K2为不小于1的整数,且K1不大于所述M。
其中,还包括:发送端通过所述第二类波束分组和所述第二类波束分组相邻波束发送参考信号,所述参考信号用于第二类波束分组下和第二类波束分组相邻波束下的信道质量测量;或者
发送端通过所述第二类波束分组发送参考信号,所述参考信号用于第二类波束分组下的信道质量测量;或者
发送端通过所述第二类波束分组相邻波束发送参考信号,所述参考信号用于第二类波束分组相邻波束下的信道质量测量。
其中,所述波束扫描包括发送波束扫描控制信号,所述波束扫描控制信号包括如下之一:
发送端波束扫描使能标示和扫描波束个数标示;
接收端波束扫描使能标示和扫描波束个数标示;
发送和接收联合波束扫描使能标示、扫描发送波束和接收波束的对应 关系和扫描波束个数标示;
发送端波束扫描使能标示、扫描波束个数标示和扫描波束对应天线端口绑定关系;
接收端波束扫描使能标示、扫描波束个数标示和扫描波束对应天线端口绑定关系;
发送和接收联合波束扫描使能标示、扫描发送波束和接收波束的对应关系、扫描波束个数标示和扫描波束对应天线端口绑定关系。
其中,所述扫描波束对应天线端口绑定关系的表示方式为如下之一:
表示为扫描波束与天线端口对应关系信息,所述扫描波束与天线端口对应关系包括所有扫描波束使用相同的天线端口的情况;
通过指定的函数和配置参数映射扫描波束与天线端口对应关系;
其中,还包括:发送端指示所述接收端切换接收波束到K个波束分组,其中K是大于等于1的整数,并且M大于等于K。
一种用于波束扫描和切换的装置,应用于参考信号的发送端,包括:
第一告知单元,设置为向接收端告知M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示接收端执行如下之一或多项:
切切换控制信道的波束到相应的波束分组;
切换数据信道的波束到相应的波束分组;
换控制信道和数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈。
其中,还包括:第一分组单元,设置为执行波束分组,得到分组结果,所述分组结果包含所述M个波束分组序号标示;或者,第一接收单元,设置为接收来自所述接收端的波束分组结果,所述分组结果包括所述M个波束分组序号标示。
其中,所述第一告知单元,还设置为在向接收端告知所述M个波束分组序号标示时,发送第二类波束分组的波束扫描指示;或者,在向接收端告知M个波束分组序号标示时,发送第二类波束分组的波束扫描指示;
还包括:控制单元,设置为保持第一类波束分组承担数据传输业务,直到所述接收端响应已切换到第二类波束分组之时或之后;
其中,所述第一类波束分组为当前正在承担数据传输业务的波束分组,所述第一类波束分组包含K2个波束分组;所述第二类波束分组对应于所述M个波束分组序号标示,所述第二类波束分组包含K1个波束分组,所述K1和K2为不小于1的整数,且K1不大于所述M。
其中,所述告知单元,还设置为:
通过所述第二类波束分组和/或所述第二类波束分组相邻波束发送参考信号,所述参考信号用于第二类波束分组下和/或第二类波束分组相邻波束下的信道质量测量;或者
通过所述第二类波束分组发送参考信号,所述参考信号用于第二类波束分组下的信道质量测量;或者
通过所述第二类波束分组相邻波束发送参考信号,所述参考信号用于第二类波束分组相邻波束下的信道质量测量。
一种用于波束扫描和切换的装置,包括:处理器和存储器,所述装置应用于参考信号的发送端,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
向接收端告知M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示接收端执行如下之一或多项:
切换控制信道的波束到相应的波束分组;
切换数据信道的波束到相应的波束分组;
切换控制信道和数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈。
一种波束扫描和切换的方法,应用于参考信号的接收端,包括:
所述接收端使用M个波束分组序号标示对应的波束分组,执行如下之一或多项:
切换控制信道的波束到相应的波束分组;
切换数据信道的波束到相应的波束分组;
切换控制信道和数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈;
其中,所述M个波束分组序号标示由参考信号的发送端告知所述接收端,所述M是一个大于等于1的整数。
其中,所述接收端使用如下之一的波束分组向所述发送端反馈应答信息:
承载所述M个波束分组序号标示前使用的波束分组;
与所述M个波束分组序号标示对应的M1个波束分组,其中M1为大于等于1的整数,小于等于M;
所述M个波束分组序号标示的M个波束分组中的第一个波束分组。
其中,所述应答信息中波束分组序号标示的承载方式包括如下之一:
在所述应答信息中携带波束分组序号标示信息;
通过承载波束分组序号所在的时频资源的位置或者指定序列标示。
其中,所述应答信息中包含执行所述M个波束分组序号标示相应指令的生效时间。
其中,所述接收端周期性地向所述发送端反馈应答信息;或者,所述接收端在被触发之后向所述发送端反馈应答信息。
其中,使用M个波束分组序号标示对应的波束分组之前,还包括:所 述接收端执行波束分组,并将分组结果告知所述发送端,所述分组结果包含所述M个波束分组序号标示。
其中,所述相应波束分组下的信道质量测量,包括:使用所述M个波束分组对应的接收波束,接收所述发送端发送的参考信号,根据所述参考信号测量M个波束分组下的信道。
其中,所述相应波束分组下的波束扫描之前,还包括:根据所述M个波束分组序号标示配置用于波束扫描的接收波束组;其中,所述M个波束分组序号标示承载在下行控制信息、上行控制信息或者媒体接入控制帧上。
其中,所述相应波束分组下的信道质量反馈,包括:将所述M个波束分组中全部M个波束分组或者部分K3波束分组下的波束测量结果反馈给所述发送端,其中K3是一个大于等于1的整数,并且小于M。
一种用于波束扫描和切换的装置,应用于参考信号的接收端,包括:
第一执行单元,设置为使用M个波束分组序号标示对应的波束分组,执行如下之一或多项:
切换控制信道的波束到相应的波束分组;
切换数据信道的波束到相应的波束分组;
切换控制信道和数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈;
其中,所述M个波束分组序号标示由参考信号的发送端告知所述接收端,所述M是一个大于等于1的整数。
其中,还包括:第一发送单元,设置为使用如下之一的波束分组向所述发送端反馈应答信息:
承载所述M个波束分组序号标示前使用的波束分组;
与所述M个波束分组序号标示对应的M1个波束分组,其中M1为大于 等于1的整数,小于等于M;
所述M个波束分组序号标示的M个波束分组中的第一个波束分组。
其中,还包括:第二分组单元,设置为执行波束分组;
所述第一发送单元,还设置为将所述第二分组单元得到的分组结果告知所述发送端,所述分组结果包含所述M个波束分组序号标示。
一种用于波束扫描和切换的装置,包括:处理器和存储器,所述装置应用于参考信号的接收端,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
使用M个波束分组序号标示对应的波束分组,执行如下之一或多项:
切换控制信道的波束到相应的波束分组;
切换数据信道的波束到相应的波束分组;
切换控制信道和数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈;
其中,所述M个波束分组序号标示由参考信号的发送端告知所述接收端,所述M是一个大于等于1的整数。
一种应答的方法,应用于终端,包括:
终端接收基站发送的信令,生成所述信令的第一生效时间,并将所述第一生效时间发送至所述基站;
所述信令携带M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示所述终端执行如下之一或多项:
切换控制信道的波束到相应的波束分组;
切换数据信道的波束到相应的波束分组;
切换控制信道和数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈。
其中,所述信令为:波束测量信令、波束切换信令、或波束质量反馈信令。
其中,所述第一生效时间使用的资源信息携带在所述信令中。
其中,所述信令中携带所述基站建议的第二生效时间,在所述第二生效时间小于所述第一生效时间时,所述终端在所述第二生效时间之前向所述基站发送所述第一生效时间。
其中,所述信令中携带所述基站建议的第二生效时间,在所述第二生效时间大于所述第一生效时间时,所述终端停止向所述基站发送所述第一生效时间。
其中,将所述第一生效时间发送给所述基站,包括如下之一:
将第一生效时间以信息的形式携带在告知消息中,并将所述告知消息发送至所述基站;
通过承载所述告知消息的时频资源所在的位置或者指定序列标示所述第一生效时间。
一种用于应答的装置,应用于终端,包括:
第二接收单元,设置为接收基站发送的信令;
第一生成单元,设置为生成所述信令的第一生效时间;
第二发送单元,设置为将所述第一生效时间发送至所述基站;
所述信令携带M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示所述终端执行如下之一或多项:
切换控制信道的波束到相应的波束分组;
切换数据信道的波束到相应的波束分组;
切换控制信道和数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈。
其中,所述信令中携带所述基站建议的第二生效时间
所述第二发送单元,设置为在所述第二生效时间小于所述第一生效时间时,在所述第二生效时间之前向所述基站发送所述第一生效时间;或者,设置为在所述第二生效时间大于所述第一生效时间时,停止向所述基站发送所述第一生效时间。
其中,所述第二发送单元,设置为通过如下之一的方式将所述第一生效时间发送给所述基站:
将第一生效时间以信息的形式携带在告知消息中,并将所述告知消息发送至所述基站;
通过承载所述告知消息的时频资源所在的位置或者指定序列标示所述第一生效时间。
一种用于应答的装置,包括:处理器和存储器,所述装置应用于终端,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
接收基站发送的信令;
生成所述信令的第一生效时间;
将所述第一生效时间发送至所述基站;
所述信令携带M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示所述终端执行如下之一或多项:
切换控制信道的波束到相应的波束分组;
切换数据信道的波束到相应的波束分组;
切换控制信道和数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈。
一种反馈天线配置信息的方法,应用于终端,包括:终端向基站侧反馈天线参数。
其中,所述天线参数,用于配置上行码本,其中上行码本用来产生接收波束,和接收波束分组,发送波束,和发送波束分组中的至少之一。
其中,所述天线参数,包括如下之一或多项之组合:
1)天线端口的数目;
2)2-D天线组码本的维度大小和2-D天线组码本的个数;
3)天线组下的2D波束码本的维度大小和2-D波束码本个数;
4)面向大带宽的码本的维度大小和面向大带宽的码本的个数;
5)面向小带宽的码本的维度大小和面向小带宽的码本的个数
6)面向极化的码本的维度大小和面向极化的码本的个数;
7)码本量化的精度大小;
8)下行接收码本是否和2)~5)中全部或任一码本之间关联;
9)天线面板的个数,天线面板的行数,天线面板的行数列数,方向拓扑形状;
10)天线面板下的天线元素的行数;
11)天线面板下的天线的列数;
12)天线极化特征。
其中,所述码本量化的精度大小包括DFT码本的过采样大小。
其中,还包括:执行码本分组,所述码本分组通过码本分组标示表示,同一码本分组中的全部或部分码本用于接收或者发送传输。
一种用于反馈天线配置信息的装置,应用于终端,包括:第三发送单元,设置为向基站侧反馈天线参数。
一种用于反馈天线配置信息的装置,包括:处理器和存储器,所述装置应用于终端,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
向基站侧反馈天线参数。
一种天线配置的方法,应用于基站,包括:
接收终端反馈的天线参数;
根据所述天线参数执行天线配置。
其中,所述天线配置,包括如下之一或多项的组合:
设置终端上行波束和下行波束相同,或者允许与下行波束相差的角度小于门限;
配置终端的上行码本;
设置终端上行波束与所述上行码本之间的绑定关系。
其中,所述配置终端的上行码本通过如下之一的方式实现:
将上行码本的码本集合反馈给终端;
向终端指示用于形成上行码本的子码本及其合成码本的方式。
其中,所述设置终端上行波束与所述上行码本之间的绑定关系,包括:
基于上行波束的选择信息,重新配置上行码本的元素;
基于上行波束的选择信息,设置上行码本和子码本中至少之一的可选范围,所述子码本用于形成所述上行码本。
一种用于天线配置的装置,应用于基站,包括:
第三接收单元,设置为接收终端反馈的天线参数;
配置单元,设置为根据所述天线参数执行天线配置。
一种用于天线配置的装置,包括:处理器和存储器,所述装置应用于基站,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
接收终端反馈的天线参数;
根据所述天线参数执行天线配置。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机 可执行指令,所述计算机可执行指令被执行时实现上述一种波束扫描和切换的方法。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述另一种波束扫描和切换的方法。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述应答的方法。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述反馈天线参数的方法。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述天线配置的方法。
通过本申请,参考信号的发送端可以通过显式或者隐式的方法指示接收端接收波束分组,并且指示接收端执行相应的波束扫描和信道测量中的至少之一,进而实现了发送端和接收端对于特定独立路径下的收发波束进行波束训练和信道质量测量。如此,一方面可以实现面向各个独立路径的波束细化或者波束追踪;另一方面,在传输路径被遮挡时,收发机可以及时针对其他波束分组进行测量和维护,支持实现有效波束的切换。
本申请尤其适用于高频段5G移动通信或毫米波通信场景下的波束扫描。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1为本申请实施例一中用于波束扫描和切换的装置的组成结构示意图;
图2为本申请实施例二中用于波束扫描和切换的装置的组成结构示意图;
图3为本申请实施例三中用于应答的装置的组成结构示意图;
图4为本申请实施例四中用于反馈天线参数的装置的组成结构示意图;
图5为本申请实施例四中用于天线配置的装置的组成结构示意图;
图6为本申请实施例四中天线配置的流程示意图。;
图7为本申请所涉及的混合预编码(波束赋形)收发机结构示意图;
图8为告知消息承载信令生效时间的示意图;
图9为切换到指定波束分组后发送应答消息的示意图;
图10为本申请所涉及的波束分组的示意图;
图11为本申请的波束分组的一实施例;
图12为本申请的波束扫描方法的示意图;
图13为本申请在预编码(波束)训练和信道状态信息反馈流程的示意图;
图14为本申请的帧结构和控制信号与参考信号的映射关系的示意图;
图15为本申请在面向特定波束分组第二类波束分组下的下行接收波束扫描上的一实施例;
图16为本申请在在面向特定波束分组第二类波束分组下的下行发送波束扫描上的一实施例;
图17为本申请在面向特定波束分组第二类波束分组下的上行接收波束扫描上的一实施例;
图18为本申请在在面向特定波束分组第二类波束分组下的下行发送波束扫描上的一实施例;
图19为因遮挡导致信道质量恶化的收发端传输示意图;
图20为波束分组下的波束扫描后收发端传输示意图。
详述
下文中将结合附图对本申请的实施例进行详细说明。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
实施例一
本申请提供一种波束扫描和切换的方法,应用于参考信号的发送端,包括:所述发送端向接收端告知M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示参考信号的接收端执行如下之一或多项:
切换控制信道和/或数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈。
在一些实现方式中,在向接收端告知M个波束分组序号标示之前,还可以包括:执行波束分组,得到分组结果,所述分组结果包含所述M个波束分组序号标示。
在一些实现方式中,在向接收端告知M个波束分组序号标示之前,还可以包括:接收来自所述接收端的波束分组结果,所述分组结果包括所述M个波束分组序号标示。
在一些实现方式中,所述发送端向接收端告知M个波束分组序号标示时,发送切换到第二类波束分组的请求标示;同时,保持第一类波束分组承担数据传输业务,直到所述接收端响应已切换到第二类波束分组之时或之后;其中,所述第一类波束分组为当前正在承担数据传输业务的波束分组,所述第一类波束分组包含K2个波束分组;所述第二类波束分组对应于所述M个波束分组序号标示,所述第二类波束分组包含K1个波束分组,所述K1和K2为不小于1的整数,且K1不大于所述M。
在一些实现方式中,所述发送端向接收端告知M个波束分组序号标示时,发送第二类波束分组的波束扫描指示;同时,保持第一类波束分组承担数据传输业务,直到所述接收端响应已切换到第二类波束分组之时或之 后;其中,所述第一类波束分组为当前正在承担数据传输业务的波束分组,所述第一类波束分组包含K2个波束分组;所述第二类波束分组对应于所述M个波束分组序号标示,所述第二类波束分组包含K1个波束分组,所述K1和K2为不小于1的整数,且K1不大于所述M。
在一些实现方式中,所述发送端向接收端告知M个波束分组序号标示时,保持第一类波束分组承担数据传输业务,直到所述接收端响应已切换到第二类波束分组之时或之后;其中,所述第一类波束分组为当前正在承担数据传输业务的波束分组,所述第一类波束分组包含K2个波束分组;所述第二类波束分组对应于所述M个波束分组序号标示,所述第二类波束分组包含K1个波束分组,所述K1和K2为不小于1的整数,且K1不大于所述M。
其中,第一类波束分组与第二类波束分组中部分波束或全部波束的波束方向、波束宽度存在不同。
实际应用中,发送端在发送第二类波束分组的集合信息、发送第二类波束分组的波束扫描指示、发送切换到第二类波束分组请求标示、响应切换到第二类波束分组标示时或者任意两两之间,第一类波束分组可以保持承担数据传输业务一直到响应切换到第二类波束分组之时或之后。
在一些实现方式中,还可以包括:发送端和接收端面向M个波束分组序号的收发端联合波束扫描和测量的情况。
在一些实现方式中,还可以包括:发送端通过所述第二类波束分组和/或所述第二类波束分组相邻波束发送参考信号,所述参考信号用于第二类波束分组下和/或第二类波束分组相邻波束下的信道质量测量。
在一些实现方式中,所述波束扫描包括发送波束扫描控制信号,所述波束扫描控制信号包括:
发送端波束扫描使能标示、扫描波束个数标示;
接收端波束扫描使能标示、扫描波束个数标示;
发送和接收联合波束扫描使能标示、扫描发送波束和接收波束的对应关系、扫描波束个数标示;
发送端波束扫描使能标示、扫描波束个数标示、扫描波束对应天线端口绑定关系;
接收端波束扫描使能标示、扫描波束个数标示、扫描波束对应天线端口绑定关系;
发送和接收联合波束扫描使能标示、扫描发送波束和接收波束的对应关系、扫描波束个数标示、扫描波束对应天线端口绑定关系。
实际应用中,所述扫描波束对应天线端口绑定关系的表示方式为如下之一:1)显示方式,表示为扫描波束与天线端口对应关系信息,所述扫描波束与天线端口对应关系包括所有扫描波束使用相同的天线端口的情况;2)隐式方式,通过指定的函数和配置参数映射扫描波束与天线端口对应关系;
在一些实现方式中,还可以包括:发送端指示所述接收端切换接收波束到K个波束分组,其中K是大于等于1的整数,并且M大于等于K。
本申请中,所述参考信号,包括解调参考信号(Demodulation Reference Signal,DMRS)、信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)、公共参考信号(Cell specific Reference Signal,CRS),探测参考信号(Sounding Reference Signal,SRS)等信号。
本申请中,所述波束可以为一种资源(例如发端预编码,收端预编码、天线端口,天线权重矢量,天线权重矩阵等),波束ID可以被替换为资源ID,因为波束可以与一些时频码资源进行传输上的绑定。波束也可以为一种传输(发送/接收)方式;所述的传输方式可以包括空分复用、频域/时域分集等。
本申请中,所述波束分组是指将具有相同信道特性和/或传输方案的波束划分成一个集合,分组的准则包括以下任意一种以及任意几种的组合模式:
根据接收信号功率进行分组;
根据水平发送方位角进行分组;
根据垂直发送方位角进行分组;
根据水平接收方位角进行分组;
根据垂直接收方位角进行分组;
根据簇到达时间进行分组;
根据资源对应的接收资源进行分组;
根据预定复用方式进行分组;
根据定时提前(TA)参数进行分组;
根据循环前缀(CP)长度进行分组;
根据空分复用方式进行分组;
根据准共位置关系进行分组。
所述的波束分组的极端情况,即每个分组的波束个数均为1,
所述信道特征,即包括物理传播信道特征,例如水平发送方位角,垂直发送方位角,水平接收方位角,垂直接收方位角等,也包括射频和基带电路的特征,例如天线阵子特征(element pattern),天线摆放,以及基带时偏和频偏等;
本申请中,所述波束扫描,是指参考信号发送端向参考信号接收端依次调整发送和/或接收波束,发送和接收参考信号,并进行信道质量测量的过程。
在一实施方式中,波束扫描和/或信道测量,是通过发送波束扫描控制信号来实现控制,波束扫描控制信号包括但不限于:
#1 发送端波束扫描使能标示,扫描波束个数标示(或扫描波束个数的抽象标示);
#2 接收端波束扫描使能标示,扫描波束个数标示(或扫描波束个数的抽象标示);
#3 发送和接收联合波束扫描使能标示,扫描发送波束和接收波束的对应关系,扫描波束个数标示(或扫描波束个数的抽象标示);
#4 发送端波束扫描使能标示,扫描波束个数标示(或扫描波束个数的抽象标示),扫描波束对应天线端口绑定关系;
#5 接收端波束扫描使能标示,扫描波束个数标示(或扫描波束个数的抽象标示),扫描波束对应天线端口绑定关系;
#6 发送和接收联合波束扫描使能标示,扫描发送波束和接收波束的对应关系,扫描波束个数标示(或扫描波束个数的抽象标示),扫描波束对应天线端口绑定关系。
其中,所述的扫描波束对应天线端口绑定关系,可能情况包括如下:
显式表示,扫描波束与天线端口对应关系,包括所有扫描波束使用相同的天线端口的情况;
通过特定的函数和配置参数,映射扫描波束与天线端口对应关系;
波束分组序号标示、波束扫描控制信号,可以通过参考信号发送端承载的下行控制信息,或者上行控制信息或者媒体接入控制帧发送。
相应的,如图1所示,本申请还提供了一种用于波束扫描和切换的装置,应用于参考信号的发送端,包括:
第一告知单元11,设置为向接收端告知M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示接收端执行如下之一或多项:1)切换控制信道和/或数据信道的波束到相应的波束分组;2)相应波束分组下的波束扫描;3)相应波束分组下的信道质量测量;4)相应波束分组下的信道质量反馈。
在一些实现方式中,还可以包括:第一分组单元12,设置为执行波束分组,得到分组结果,所述分组结果包含所述M个波束分组序号标示。
在一些实现方式中,还可以包括:第一接收单元13,设置为接收来自所述接收端的波束分组结果,所述分组结果包括所述M个波束分组序号标示。
在一些实现方式中,所述第一告知单元11,还可设置为在向接收端告知所述M个波束分组序号标示时,发送第二类波束分组的波束扫描指示;或者,还设置为在向接收端告知M个波束分组序号标示时,发送第二类波束分组的波束扫描指示;
在一些实现方式中,还可以包括:控制单元14,可设置为保持第一类波束分组承担数据传输业务,直到所述接收端响应已切换到第二类波束分组之时或之后;其中,所述第一类波束分组为当前正在承担数据传输业务的波束分组,所述第一类波束分组包含K2个波束分组;所述第二类波束分组对应于所述M个波束分组序号标示,所述第二类波束分组包含K1个波束分组,所述K1和K2为不小于1的整数,且K1不大于所述M。
在一些实现方式中,所述告知单元11,还可设置为通过所述第二类波束分组和/或所述第二类波束分组相邻波束发送参考信号,所述参考信号用于第二类波束分组下和/或第二类波束分组相邻波束下的信道质量测量。
相应的,本申请还提供一种用于波束扫描和切换的装置,包括:处理器和存储器,所述装置应用于参考信号的发送端,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
向接收端告知M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示接收端执行如下之一或多项:
切换控制信道和/或数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈。
本实施例提供的上述用于波束扫描和切换的装置,可用于执行上述方法的所有流程,在此不再赘述。
本实施例中波束扫描和切换的方法,参考信号的发送端可以通过显式或者隐式的方法指示接收端接收波束分组,并且指示接收端执行相应的波束扫描和/或信道测量,进而实现了发送端和接收端对于特定独立路径下的收发波束进行波束训练和信道质量测量。如此,一方面可以实现面向各个独立路径的波束细化或者波束追踪;另一方面,在传输路径被遮挡时,收发机可以及时针对其他波束分组进行测量和维护,支持实现有效波束的切换。本实施例的方法及装置,尤其适用于高频段5G移动通信或毫米波通信 场景下的波束扫描。
实施例二
本实施例提供一种波束扫描和切换的方法,应用于参考信号的接收端,包括:
所述接收端使用M个波束分组序号标示对应的波束分组,执行如下之一或多项:
切换控制信道和/或数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈;
其中,所述M个波束分组序号标示由参考信号的发送端告知所述接收端,所述M是一个大于等于1的整数。
在一些实现方式中,所述接收端使用如下之一的波束分组向所述发送端反馈应答信息:
承载所述M个波束分组序号标示前使用的波束分组;
与所述M个波束分组序号标示对应的M1个波束分组,其中M1为大于等于1的整数,小于等于M;
所述M个波束分组序号标示的M个波束分组中的第一个波束分组。
在一些实现方式中,所述应答信息中波束分组序号标示的承载方式包括如下之一:1)在所述应答信息中携带波束分组序号标示信息;2)通过承载波束分组序号所在的时频资源的位置或者指定序列标示。所述的应答信息中可以指示执行收发端波束切换时间,例如下一个子帧切换,或者某个时间单位(例如TTI(Transmission Time Interval,传输时间间隔))后执行。
在一些实现方式中,所述应答信息中包含执行所述M个波束分组序号标示相应指令的生效时间。
在一些实现方式中,所述接收端可以周期性地向所述发送端反馈应答 信息;或者,所述接收端可以在被触发之后向所述发送端反馈应答信息。
在一些实现方式中,用M个波束分组序号标示对应的波束分组之前,还可以包括:所述接收端执行波束分组,并将分组结果告知所述发送端,所述分组结果包含所述M个波束分组序号标示。
在一些实现方式中,所述相应波束分组下的信道质量测量,可以包括:使用所述M个波束分组对应的接收波束,接收所述发送端发送的参考信号,根据所述参考信号测量M个波束分组下的信道。
在一些实现方式中,即使在相同的波束分组下,接收端可以根据波束扫描控制信号,自身需求来调整接收波束,非强绑定关系。
在一些实现方式中,所述相应波束分组下的波束扫描之前,还包括:根据所述M个波束分组序号标示配置用于波束扫描的接收波束组;其中,所述M个波束分组序号标示承载在下行控制信息、上行控制信息或者媒体接入控制帧上。
在一些实现方式中,还可以包括:在相同的波束分组下,根据波束扫描控制信号,自身需求来调整接收波束,非强绑定关系;
在一些实现方式中,所述相应波束分组下的信道质量反馈,包括:将所述M个波束分组中任一波束分组下的波束测量结果反馈给所述发送端。
如图2所示,相应的,本实施例还提供一种用于波束扫描和切换的装置,应用于参考信号的接收端,包括:
第一执行单元21,设置为使用M个波束分组序号标示对应的波束分组,执行如下之一或多项:
切换控制信道和/或数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈;
其中,所述M个波束分组序号标示由参考信号的发送端告知所述接收端,所述M是一个大于等于1的整数。
在一些实现方式中,还包括:第一发送单元22,设置为使用如下之一的波束分组向所述发送端反馈应答信息:承载所述M个波束分组序号标示前使用的波束分组;与所述M个波束分组序号标示对应的M1个波束分组,其中M1为大于等于1的整数,小于等于M;所述M个波束分组序号标示的M个波束分组中的第一个波束分组。
在一些实现方式中,还包括:第二分组单元23,设置为执行波束分组;所述第一发送单元21,还可设置为将所述第二分组单元得到的分组结果告知所述发送端,所述分组结果包含所述M个波束分组序号标示。
相应的,本实施例还提供一种用于波束扫描和切换的装置,包括:处理器和存储器,所述装置应用于参考信号的接收端,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
使用M个波束分组序号标示对应的波束分组,执行如下之一或多项:
切换控制信道和/或数据信道的波束到相应的波束分组;
相应波束分组下的波束扫描;
相应波束分组下的信道质量测量;
相应波束分组下的信道质量反馈;
其中,所述M个波束分组序号标示由参考信号的发送端告知所述接收端,所述M是一个大于等于1的整数。
本实施例提供的上述用于波束扫描和切换的装置,可用于执行上述方法的所有流程,在此不再赘述。
本实施例中波束扫描和切换的方法,接收端可使用参考信号的发送端可以通过显式或者隐式的方法指示的波束分组,执行相应的波束扫描和/或信道测量,实现了发送端和接收端对于特定独立路径下的收发波束进行波束训练和信道质量测量。如此,一方面可以实现面向各个独立路径的波束细化或者波束追踪;另一方面,在传输路径被遮挡时,收发机可以及时针对其他波束分组进行测量和维护,支持实现有效波束的切换。
本实施例的方法及装置,尤其适用于高频段5G移动通信或毫米波通信 场景下的波束扫描。
实施例三
本实施例提供一种应答的方法,应用于终端,包括:
终端接收基站发送的信令,生成所述信令的第一生效时间,并将所述第一生效时间发送至所述基站;其中,所述信令携带M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示所述终端执行如下之一或多项:切换控制信道和/或数据信道的波束到相应的波束分组;相应波束分组下的波束扫描;相应波束分组下的信道质量测量;相应波束分组下的信道质量反馈。
其中,所述的生效时间,包括:#1立刻生效;#2在K个时间单位,其中K为大于等于0的整数。
在一些实现方式中,所述信令可以为:波束测量信令、波束切换信令、或波束质量反馈信令。
在一些实现方式中,所述第一生效时间使用的资源信息携带在所述信令中。
在一些实现方式中,所述信令中携带所述基站建议的第二生效时间,在所述第二生效时间小于所述第一生效时间时,所述终端在所述第二生效时间之前向所述基站发送所述第一生效时间。
在一些实现方式中,所述信令中携带所述基站建议的第二生效时间,在所述第二生效时间大于所述第一生效时间时,所述终端停止向所述基站发送所述第一生效时间。
在一些实现方式中,,将所述第一生效时间发送给所述基站,包括如下之一:1)显示反馈方式:将第一生效时间以信息的形式携带在告知消息中,并将所述告知消息发送至所述基站;2)隐式反馈方式:通过承载所述告知消息的时频资源所在的位置或者指定序列标示所述第一生效时间。
相应的,如图3所示,本实施例还提供一种用于应答的装置,应用于终端,包括:
第二接收单元31,设置为接收基站发送的信令;
第一生成单元32,设置为生成所述信令的第一生效时间;
第二发送单元33,设置为将所述第一生效时间发送至所述基站;
其中,所述信令携带M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示所述终端执行如下之一或多项:切换控制信道和/或数据信道的波束到相应的波束分组;相应波束分组下的波束扫描;相应波束分组下的信道质量测量;相应波束分组下的信道质量反馈。
在一些实现方式中,所述信令中携带所述基站建议的第二生效时间。所述第二发送单元33,设置为在所述第二生效时间小于所述第一生效时间时,在所述第二生效时间之前向所述基站发送所述第一生效时间;或者,设置为在所述第二生效时间大于所述第一生效时间时,停止向所述基站发送所述第一生效时间。
在一些实现方式中,所述第二发送单元33,设置为通过如下之一的方式将所述第一生效时间发送给所述基站:1)将第一生效时间以信息的形式携带在告知消息中,并将所述告知消息发送至所述基站;2)通过承载所述告知消息的时频资源所在的位置或者指定序列标示所述第一生效时间。
相应的,本实施例还提供一种用于应答的装置,包括:处理器和存储器,所述装置应用于终端,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
接收基站发送的信令;
生成所述信令的第一生效时间;
将所述第一生效时间发送至所述基站;
所述信令携带M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示所述终端执行如下之一或多项:切换控制信道和/或数据信道的波束到相应的波束分组;相应波束分组下的波束扫描;相应波束分组下的信道质量测量;相应波束分组下的信道质量反馈。
本实施例中,终端告知基站信令的生效时间,可提升终端侧的灵活 性。
实施例四
本实施例提供一种反馈天线配置信息的方法,应用于终端,包括:
终端向基站侧反馈天线参数。
其中,所述天线参数,用于配置上行码本,其中上行码本用来产生上行的波束和/或波束分组。
在一些实现方式中,所述天线参数,包括如下之一或多项之组合:
1)天线端口的数目;
2)2-D天线组码本的维度大小和2-D天线组码本的个数;
3)天线组下的2D波束码本的维度大小和2-D波束码本个数;
4)面向大带宽的码本的维度大小和面向大带宽的码本的个数;
5)面向小带宽的码本的维度大小和面向小带宽的码本的个数
6)面向极化的码本的维度大小和面向极化的码本的个数;
7)码本量化的精度大小;
8)下行接收码本是否和2)~5)中全部或任一码本之间关联;
9)天线面板的个数,天线面板的行数,天线面板的行数列数,方向拓扑形状;
10)天线面板下的天线元素的行数;
11)天线面板下的天线的列数;
12)天线极化特征。
在一实施方式中,所述码本量化(或者称为码本过采样,码本量化相位距离)的精度大小包括离散傅里叶变换(Discrete Fourier Transform,DFT)码本的过采样(oversampling)大小。
在一实施方式中,还包括:执行码本分组,所述码本分组通过码本分组标示表示,同一码本分组中的全部或部分码本用于接收或者发送传输。
在一实施方式中,所述的天线极化特征,包括:水平极化,垂直极 化,顺时针圆极化,逆时针圆极化等。
如图4所示,相应的,本实施例还提供一种用于反馈天线配置信息的装置,应用于终端,包括:第三发送单元41,设置为向基站侧反馈天线参数。
相应的,本实施例还提供一种用于反馈天线配置信息的装置,包括:处理器和存储器,所述装置应用于终端,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:向基站侧反馈天线参数。
本实施例还提供一种天线配置的方法,应用于基站,包括:
接收终端反馈的天线参数;
根据所述天线参数执行天线配置。
在一实施方式中,所述天线配置,包括如下之一或多项的组合:
设置终端上行波束和下行波束相同,或者允许与下行波束相差的角度小于门限;
配置终端的上行码本;
设置终端上行波束与所述上行码本之间的绑定关系。
其中,所述配置终端的上行码本通过如下之一的方式实现:
1)将上行码本的码本集合反馈给终端;
2)向终端指示用于形成上行码本的子码本及其合成码本的方式。
其中,所述设置终端上行波束与所述上行码本之间的绑定关系,包括:基于上行波束的选择信息,重新配置上行码本的元素;基于上行波束的选择信息,设置上行码本和/或子码本的可选范围,所述子码本用于形成所述上行码本。
其中,所述子码本合成码本的方式,可以包括将至少一个子码本通过Kronecker积合成。
如图5所示,相应的,本实施例还提供一种用于天线配置的装置,应用于基站,包括:
第三接收单元51,设置为接收终端反馈的天线参数;
配置单元52,设置为根据所述天线参数执行天线配置。
相应的,本实施例还提供一种用于天线配置的装置,包括:处理器和存储器,所述装置应用于基站,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
接收终端反馈的天线参数;
根据所述天线参数执行天线配置。
如图6所示,本实施例的方法可以包括:
步骤601,由于在终端侧的天线配置不定,相对应的上行码本设计的复杂度非常高,因此,本实施例中,终端侧向基站侧反馈终端侧的天线参数;
步骤602,基站侧基于已有终端侧的天线参数信息来向终端侧配置上行码本;
步骤603,终端基于所示上行码本,向基站侧发送上行参考信号,用于信道测量;
步骤604,基站侧基于配置的上行码本向终端侧反馈上行波束ID、或上行预编码矩阵标示、或上行码本分组信息。
本申请应用于图7所示混合预编码(混合模拟数字波束赋型)的收发机,该收发机包含参考信号的发送端和参考信号的接收端。所述发送端和所述接收端配置多天线阵列和多个射频通路。其中,每个射频通路与天线阵列的相互连接(不排斥部分连接场景),每个天线阵列具有一个移相器和分离器。通过各个天线阵列上的信号加载不同相移量的办法,高频段系统实现模拟端的波束赋形(Beamforming)。在混合波束赋形收发机中,存在多条射频信号流。每条信号流通过移相器加载天线权重矢量(antenna weight vector,AWV),从多天线阵列发送到高频段物理传播信道;在接收端,由多天线阵列所接收到的射频信号流被加权合并成单一信号流,经过接收端射频解调,接收端最终获得多条接收信号流,并被数字基带采样和接收。 因此,上述收发机可以同时产生指向多个方向的射频波束。
图8为告知消息承载信令生效时间的示意图。基站侧向终端侧发送一信令,例如波束切换、波束扫描、反馈信道状态信息等相关的信令;终端向基站侧反馈告知消息,该告知消息承载有基站发送信令的生效时间,例如立即生效,或者在K个时间单位(例如传输时间间隔(Transmission Time Interval,TTI))后生效,其中K为大于等于0的整数。而生效时间信息,可以通过显式反馈(即直接在告知消息中携带生效时间信息),也可以通过承载告知消息所在的时频资源的位置或者特定序列来标示。
图9为切换到指定波束分组后发送应答消息的示意图。参考信号发送端发送M个波束分组消息和控制信息,参考信号发送端告知接收端需要使用的波束,以便实现对切换波束的测量,其中,需要使用的波束可以包括如下之一:
使用承载波束分组序号标示前最近使用的波束分组;
使用与M个波束分组序号标示对应的M1个波束分组,其中M1为大于等于1的整数;
使用M个波束分组序号标示所对应M个波束分组中的第一个波束分组。
图10为波束分组的示意图。参考信号发送端和参考信号接收端通过之前的波束训练,配置了多个面向不同物理路径的波束分组。每个分组包括一个或者多个收发波束。需要说明的是,参考信号的发送端和参考信号的接收端,仅已知波束分组序号,而并不知道对方所使用的收发波束,如此,可以为发送端和接收端带来更大的灵活性。
图11为本申请波束分组的一实施例,其中TB表示参考信号的发送端的发送波束,而RB表示参考信号的接收端的接收波束。基于图10所述的情况,这里一共有三个不同的波束分组,例如其中波束分组-0下,参考信号发送端发送波束为{TB-10,TB-11,TB-12},而参考信号接收端接收波束为RB-8。
图12说明了波束扫描方法的示意图。首先,参考信号发送端和参考信 号接收端通过先验信息来执行第一类波束分组下的数据和控制信号的传输;然后,在信道质量变差、期待切换传输模式或者进行进一步波束细化时,参考信号发送端发送待扫描的波束分组序号和波束扫描的控制信号;其后,启动相应波束分组序号下的波束扫描,并在波束扫描完毕后更新相应的波束分组信息(例如,不同收发波束对下的接收信号功率(Reference Signal Receiving Power,RSRP);注:可能无上报信息);随后若需要波束分组切换,参考信号的发送端或者参考信号的接收端标示更新数据/控制信号传输的波束分组序号。
其中,波束扫描的控制信号,包括以下之一或者任意几项的组合:
#1 发送端波束扫描使能标示,扫描波束个数标示(或扫描波束个数的抽象标示);
#2 接收端波束扫描使能标示,扫描波束个数标示(或扫描波束个数的抽象标示);
#3 发送和接收联合波束扫描使能标示,扫描发送波束和接收波束的对应关系,扫描波束个数标示(或扫描波束个数的抽象标示);
#4 发送端波束扫描使能标示,扫描波束个数标示(或扫描波束个数的抽象标示),扫描波束对应天线端口绑定关系;
#5 接收端波束扫描使能标示,扫描波束个数标示(或扫描波束个数的抽象标示),扫描波束对应天线端口绑定关系;
#6 发送和接收联合波束扫描使能标示,扫描发送波束和接收波束的对应关系,扫描波束个数标示(或扫描波束个数的抽象标示),扫描波束对应天线端口绑定关系。
另外,待扫描的波束分组序号和波束扫描的控制信号,可以通过参考信号发送端承载的下行控制信息,或者上行控制信息或者媒体接入控制帧传输。
扫描波束对应天线端口绑定关系,可能情况包括如下:
1)显式表示:表示为扫描波束与天线端口对应关系信息,扫描波束与天线端口对应关系信息包括所有扫描波束使用相同的天线端口的情况;
2)隐式表示:通过指定的函数和配置参数,映射扫描波束与天线端口对应关系。
在一实施方式中,波束分组序号、波束扫描控制信号,可以通过参考信号发送端承载的下行控制信息,或者上行控制信息或者媒体接入控制帧发送。
例如,在初始状态下,使用波束分组(0,1)进行控制和数据信道数据的传输;因为接收信号质量恶化,执行对于波束分组(2)的相关波束扫描和信道测量;根据参考信号接收端反馈的信道质量信息,参考信号发送端发起波束切换,使用波束分组(1,2)进行随后的数据和控制信道的传输。需要说明的是,参考信号发送端发起波束切换,接收端进行响应后,波束切换可以立即发生也可以根据协议的规定在之后的某个时间点进行切换。
图13为本申请在预编码(波束)训练和信道状态信息反馈流程的示意图。参考信号发送端由一个相同的发端预编码(波束)组来生成,或者均由不同的发端预编码(波束)组来生成,或者由几组发端预编码(波束)来分别生成多个参考信号并发送给参考信号接收端。参考信号接收端,在一个或者多个参考信号下,用相同或者不同的收端天线权重下做信道测量,反馈对应的信道状态信息。允许不反馈信道状态信息的场景,例如参考信号接收端所对应的接收波束的训练。
图14为本申请的帧结构和控制信号与参考信号的映射关系的示意图。通过控制信道中承载的指示信息,标示随后用于标示波束分组下的参考信号的时频资源。同时,允许控制信号指示不同TTI下的参考信号。
图15为本申请在面向特定波束分组(即第二类波束分组)下的下行接收波束扫描上的一实施例。上行ACK时承载波束细化请求(BRF-RX Requested),接收扫描波束数目(BRF-LEN)>0;然后,在下行数据传输时,加载BS端使用特定波束分组(即第二类波束分组)下的发送参考信号,而UE端扫描在特定波束分组下的可选的接收波束,进而更新在该波束分组下的BS侧的接收波束。
图16为本申请在面向特定波束分组(即第二类波束分组)下的下行发送波束扫描上的一实施例。上行控制字段承载BRF-TX Request请求,发送 扫描波束数目BRF-LEN>0;在下行数据传输时,BS端扫描特定波束分组(即第二类波束分组)下的可选发送波束并发送参考信号,而UE端固定在特定波束分组下的接收波束;随后,在ACK反馈时,将每个参考信号下的CSI信息反馈由UE上行反馈给BS。
图17为本申请在面向特定波束分组(即第二类波束分组)下的上行接收波束扫描上的一实施例。下行ACK时承载BRF-RX Requested请求,接收扫描波束数目BRF-LEN>0;然后,在上行数据传输时,加载UE端使用特定波束分组(即第二类波束分组)下的发送参考信号,而BS端扫描在特定波束分组下的可选的接收波束,进而更新在该波束分组下的BS侧的接收波束。
图18为本申请在面向特定波束分组(即第二类波束分组)下的上行发送波束扫描上的一实施例。下行控制字段承载BRF-TX Request请求,发送扫描波束数目BRF-LEN>0;在下行数据传输时,UE端扫描特定波束分组(即第二类波束分组)下的可选发送波束并发送参考信号,而BS端固定在特定波束分组下的接收波束;随后,在ACK反馈时,将每个参考信号下的CSI信息反馈由BS下行反馈给BS。
图19为因遮挡导致信道质量恶化的收发端传输示意图。参考信号收发端使用波束分组-0和波束分组-1来进行空分复用,但由于人体的遮挡,波束分组-0下的接收信号质量大幅度下降,因此参考信号的发送端和接收端尝试切换到波束分组-2。
图20为波束分组下的波束扫描后收发端传输示意图。通过执行所提的波束扫描方法,对于波束分组-2进行优化,将原参考信号发送端的TB-2切换到TB-3,使用TB-3和RB-1来构成波束分组-2执行数据传输。
综上所述,基于本发明实施例,参考信号的发送端可以通过显式或者隐式的方法指示接收端接收波束(组),并且指示接收端执行相应的波束扫描和/或信道测量,进而实现了参考信号的发送端和参考信号的接收端对于特定独立路径下的收发波束进行波束训练和信道质量测量。该方案,一方面可以实现面向各个独立路径的波束细化或者波束追踪;另一方面,在传输路径被遮挡时,收发机可以及时针对其他波束分组进行测量和维护,支 持实现有效波束的切换。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述一种波束扫描和切换的方法。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述另一种波束扫描和切换的方法。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述应答的方法。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述反馈天线参数的方法。
此外,本发明实施例还提供一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令被执行时实现上述天线配置的方法。
在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
在本实施例中,处理器根据存储介质中已存储的程序代码执行上述实施例的方法步骤。
本实施例中的示例可以参考上述实施例及实施方式中所描述的示例,本实施例在此不再赘述。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软 件的结合。
以上显示和描述了本申请的基本原理和主要特征和本申请的优点。本申请不受上述实施例的限制,上述实施例和说明书中描述的只是说明本申请的原理,在不脱离本申请精神和范围的前提下,本申请还会有各种变化和改进,这些变化和改进都落入要求保护的本申请范围内。
工业实用性
通过本申请,参考信号的发送端可以通过显式或者隐式的方法指示接收端接收波束分组,并且指示接收端执行相应的波束扫描和信道测量中的至少之一,进而实现了发送端和接收端对于特定独立路径下的收发波束进行波束训练和信道质量测量。如此,一方面可以实现面向各个独立路径的波束细化或者波束追踪;另一方面,在传输路径被遮挡时,收发机可以及时针对其他波束分组进行测量和维护,支持实现有效波束的切换。

Claims (51)

  1. 一种波束扫描和切换的方法,应用于参考信号的发送端,包括:
    所述发送端向接收端告知M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示参考信号的接收端执行如下之一或多项:
    切换控制信道的波束到相应的波束分组;
    切换数据信道的波束到相应的波束分组;
    切换控制信道和数据信道的波束到相应的波束分组;
    相应波束分组下的波束扫描;
    相应波束分组下的信道质量测量;
    相应波束分组下的信道质量反馈。
  2. 根据权利要求1所述的方法,其中,
    在向接收端告知M个波束分组序号标示之前,还包括:执行波束分组,得到分组结果,所述分组结果包含所述M个波束分组序号标示。
  3. 根据权利要求1所述的方法,其中,在向接收端告知M个波束分组序号标示之前,还包括:
    接收来自所述接收端的波束分组结果,所述分组结果包括所述M个波束分组序号标示。
  4. 根据权利要求1所述的方法,还包括:
    所述发送端向接收端告知M个波束分组序号标示时,发送切换到第二类波束分组的请求标示;同时,保持第一类波束分组承担数据传输业务,直到所述接收端响应已切换到第二类波束分组之时或之后;
    其中,所述第一类波束分组为当前正在承担数据传输业务的波束分组,所述第一类波束分组包含K2个波束分组;所述第二类波束分组对应于所述M个波束分组序号标示,所述第二类波束分组包含K1个波束分组,所述K1和K2为不小于1的整数,且K1不大于所述M。
  5. 根据权利要求1所述的方法,还包括:
    所述发送端向接收端告知M个波束分组序号标示时,发送第二类波束分组的波束扫描指示;同时,保持第一类波束分组承担数据传输业务,直到所述接收端响应已切换到第二类波束分组之时或之后;
    其中,所述第一类波束分组为当前正在承担数据传输业务的波束分组,所述第一类波束分组包含K2个波束分组;所述第二类波束分组对应于所述M个波束分组序号标示,所述第二类波束分组包含K1个波束分组,所述K1和K2为不小于1的整数,且K1不大于所述M。
  6. 根据权利要求1所述的方法,还包括:
    所述发送端向接收端告知M个波束分组序号标示时,保持第一类波束分组承担数据传输业务,直到所述接收端响应已切换到第二类波束分组之时或之后;
    其中,所述第一类波束分组为当前正在承担数据传输业务的波束分组,所述第一类波束分组包含K2个波束分组;所述第二类波束分组对应于所述M个波束分组序号标示,所述第二类波束分组包含K1个波束分组,所述K1和K2为不小于1的整数,且K1不大于所述M。
  7. 根据权利要求4、5或6所述的方法,还包括:
    发送端通过所述第二类波束分组和所述第二类波束分组相邻波束发送参考信号,所述参考信号用于第二类波束分组下和第二类波束分组相邻波束下的信道质量测量;或者
    发送端通过所述第二类波束分组发送参考信号,所述参考信号用于第二类波束分组下的信道质量测量;或者
    发送端通过所述第二类波束分组相邻波束发送参考信号,所述参考信号用于第二类波束分组相邻波束下的信道质量测量。
  8. 根据权利要求1或5所述的方法,其中,所述波束扫描包括发送波束扫描控制信号,所述波束扫描控制信号包括如下之一:
    发送端波束扫描使能标示和扫描波束个数标示;
    接收端波束扫描使能标示和扫描波束个数标示;
    发送和接收联合波束扫描使能标示、扫描发送波束和接收波束的对应关 系和扫描波束个数标示;
    发送端波束扫描使能标示、扫描波束个数标示和扫描波束对应天线端口绑定关系;
    接收端波束扫描使能标示、扫描波束个数标示和扫描波束对应天线端口绑定关系;
    发送和接收联合波束扫描使能标示、扫描发送波束和接收波束的对应关系、扫描波束个数标示和扫描波束对应天线端口绑定关系。
  9. 根据权利要求8所述的方法,其中,所述扫描波束对应天线端口绑定关系的表示方式为如下之一:
    表示为扫描波束与天线端口对应关系信息,所述扫描波束与天线端口对应关系包括所有扫描波束使用相同的天线端口的情况;
    通过指定的函数和配置参数映射扫描波束与天线端口对应关系。
  10. 根据权利要求1所述的方法,还包括:
    发送端指示所述接收端切换接收波束到K个波束分组,其中K是大于等于1的整数,并且M大于等于K。
  11. 一种用于波束扫描和切换的装置,应用于参考信号的发送端,包括:
    第一告知单元,设置为向接收端告知M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示接收端执行如下之一或多项:
    切换控制信道的波束到相应的波束分组;
    切换数据信道的波束到相应的波束分组;
    切换控制信道和数据信道的波束到相应的波束分组;
    相应波束分组下的波束扫描;
    相应波束分组下的信道质量测量;
    相应波束分组下的信道质量反馈。
  12. 根据权利要求11所述的装置,还包括:
    第一分组单元,设置为执行波束分组,得到分组结果,所述分组结果包含所述M个波束分组序号标示;或者,
    第一接收单元,设置为接收来自所述接收端的波束分组结果,所述分组结果包括所述M个波束分组序号标示。
  13. 根据权利要求11所述的装置,其中,
    所述第一告知单元,还设置为在向接收端告知所述M个波束分组序号标示时,发送第二类波束分组的波束扫描指示;或者,在向接收端告知M个波束分组序号标示时,发送第二类波束分组的波束扫描指示;
    还包括:控制单元,设置为保持第一类波束分组承担数据传输业务,直到所述接收端响应已切换到第二类波束分组之时或之后;
    其中,所述第一类波束分组为当前正在承担数据传输业务的波束分组,所述第一类波束分组包含K2个波束分组;所述第二类波束分组对应于所述M个波束分组序号标示,所述第二类波束分组包含K1个波束分组,所述K1和K2为不小于1的整数,且K1不大于所述M。
  14. 根据权利要求11所述的装置,其中,
    所述告知单元,还设置为:
    通过所述第二类波束分组和所述第二类波束分组相邻波束发送参考信号,所述参考信号用于第二类波束分组下和第二类波束分组相邻波束下的信道质量测量;或者
    通过所述第二类波束分组发送参考信号,所述参考信号用于第二类波束分组下的信道质量测量;或者
    通过所述第二类波束分组相邻波束发送参考信号,所述参考信号用于第二类波束分组相邻波束下的信道质量测量。
  15. 一种用于波束扫描和切换的装置,包括:处理器和存储器,所述装置应用于参考信号的发送端,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
    向接收端告知M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示接收端执行如下之一或多项:
    切换控制信道的波束到相应的波束分组;
    切换数据信道的波束到相应的波束分组;
    切换控制信道和数据信道的波束到相应的波束分组;
    相应波束分组下的波束扫描;
    相应波束分组下的信道质量测量;
    相应波束分组下的信道质量反馈。
  16. 一种波束扫描和切换的方法,应用于参考信号的接收端,包括:
    所述接收端使用M个波束分组序号标示对应的波束分组,执行如下之一或多项:
    切换控制信道的波束到相应的波束分组;
    切换数据信道的波束到相应的波束分组;
    切换控制信道和数据信道的波束到相应的波束分组;
    相应波束分组下的波束扫描;
    相应波束分组下的信道质量测量;
    相应波束分组下的信道质量反馈;
    其中,所述M个波束分组序号标示由参考信号的发送端告知所述接收端,所述M是一个大于等于1的整数。
  17. 根据权利要求16所述的方法,还包括:
    所述接收端使用如下之一的波束分组向所述发送端反馈应答信息:
    承载所述M个波束分组序号标示前使用的波束分组;
    与所述M个波束分组序号标示对应的M1个波束分组,其中M1为大于等于1的整数,小于等于M;
    所述M个波束分组序号标示的M个波束分组中的第一个波束分组。
  18. 根据权利要求17所述的方法,其中,所述应答信息中波束分组序号标示的承载方式包括如下之一:
    在所述应答信息中携带波束分组序号标示信息;
    通过承载波束分组序号所在的时频资源的位置或者指定序列标示。
  19. 根据权利要求17所述的方法,其中,所述应答信息中包含执行所述M个波束分组序号标示相应指令的生效时间。
  20. 根据权利要求17所述的方法,其中,
    所述接收端周期性地向所述发送端反馈应答信息;或者,
    所述接收端在被触发之后向所述发送端反馈应答信息。
  21. 根据权利要求16所述的方法,其中,使用M个波束分组序号标示对应的波束分组之前,还包括:
    所述接收端执行波束分组,并将分组结果告知所述发送端,所述分组结果包含所述M个波束分组序号标示。
  22. 根据权利要求16所述的方法,其中,所述相应波束分组下的信道质量测量,包括:
    使用所述M个波束分组对应的接收波束,接收所述发送端发送的参考信号,根据所述参考信号测量M个波束分组下的信道。
  23. 根据权利要求16所述的方法,其中,所述相应波束分组下的波束扫描之前,还包括:
    根据所述M个波束分组序号标示配置用于波束扫描的接收波束组;
    其中,所述M个波束分组序号标示承载在下行控制信息、上行控制信息或者媒体接入控制帧上。
  24. 根据权利要求16所述的方法,其中,所述相应波束分组下的信道质量反馈,包括:
    将所述M个波束分组中全部M个波束分组或者部分K3波束分组下的波束测量结果反馈给所述发送端,其中K3是一个大于等于1的整数,并且小于M。
  25. 一种用于波束扫描和切换的装置,应用于参考信号的接收端,包括:
    第一执行单元,设置为使用M个波束分组序号标示对应的波束分组,执行如下之一或多项:
    切换控制信道的波束到相应的波束分组;
    切换数据信道的波束到相应的波束分组;
    切换控制信道和数据信道的波束到相应的波束分组;
    相应波束分组下的波束扫描;
    相应波束分组下的信道质量测量;
    相应波束分组下的信道质量反馈;
    其中,所述M个波束分组序号标示由参考信号的发送端告知所述接收端,所述M是一个大于等于1的整数。
  26. 根据权利要求25所述的装置,还包括:
    第一发送单元,设置为使用如下之一的波束分组向所述发送端反馈应答信息:
    承载所述M个波束分组序号标示前使用的波束分组;
    与所述M个波束分组序号标示对应的M1个波束分组,其中M1为大于等于1的整数,小于等于M;
    所述M个波束分组序号标示的M个波束分组中的第一个波束分组。
  27. 根据权利要求25所述的装置,
    还包括:第二分组单元,设置为执行波束分组;
    所述第一发送单元,还设置为将所述第二分组单元得到的分组结果告知所述发送端,所述分组结果包含所述M个波束分组序号标示。
  28. 一种用于波束扫描和切换的装置,包括:处理器和存储器,所述装置应用于参考信号的接收端,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
    使用M个波束分组序号标示对应的波束分组,执行如下之一或多项:
    切换控制信道的波束到相应的波束分组;
    切换数据信道的波束到相应的波束分组;
    切换控制信道和数据信道的波束到相应的波束分组;
    相应波束分组下的波束扫描;
    相应波束分组下的信道质量测量;
    相应波束分组下的信道质量反馈;
    其中,所述M个波束分组序号标示由参考信号的发送端告知所述接收端,所述M是一个大于等于1的整数。
  29. 一种应答的方法,应用于终端,包括:
    终端接收基站发送的信令,生成所述信令的第一生效时间,并将所述第一生效时间发送至所述基站;
    所述信令携带M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示所述终端执行如下之一或多项:
    切换控制信道的波束到相应的波束分组;
    切换数据信道的波束到相应的波束分组;
    切换控制信道和数据信道的波束到相应的波束分组;
    相应波束分组下的波束扫描;
    相应波束分组下的信道质量测量;
    相应波束分组下的信道质量反馈。
  30. 根据权利要求29所述的方法,其中,所述信令为:波束测量信令、波束切换信令、或波束质量反馈信令。
  31. 根据权利要求29所述的方法,其中,所述第一生效时间使用的资源信息携带在所述信令中。
  32. 根据权利要求29所述的方法,其中,所述信令中携带所述基站建议的第二生效时间,在所述第二生效时间小于所述第一生效时间时,所述终端在所述第二生效时间之前向所述基站发送所述第一生效时间。
  33. 根据权利要求29所述的方法,其中,所述信令中携带所述基站建议的第二生效时间,在所述第二生效时间大于所述第一生效时间时,所述终端停止向所述基站发送所述第一生效时间。
  34. 根据权利要求29所述的方法,其中,将所述第一生效时间发送给 所述基站,包括如下之一:
    将第一生效时间以信息的形式携带在告知消息中,并将所述告知消息发送至所述基站;
    通过承载所述告知消息的时频资源所在的位置或者指定序列标示所述第一生效时间。
  35. 一种用于应答的装置,应用于终端,包括:
    第二接收单元,设置为接收基站发送的信令;
    第一生成单元,设置为生成所述信令的第一生效时间;
    第二发送单元,设置为将所述第一生效时间发送至所述基站;
    所述信令携带M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示所述终端执行如下之一或多项:
    切换控制信道的波束到相应的波束分组;
    切换数据信道的波束到相应的波束分组;
    切换控制信道和数据信道的波束到相应的波束分组;
    相应波束分组下的波束扫描;
    相应波束分组下的信道质量测量;
    相应波束分组下的信道质量反馈。
  36. 根据权利要求35所述的装置,其中,
    所述信令中携带所述基站建议的第二生效时间;
    所述第二发送单元,设置为在所述第二生效时间小于所述第一生效时间时,在所述第二生效时间之前向所述基站发送所述第一生效时间;或者,在所述第二生效时间大于所述第一生效时间时,停止向所述基站发送所述第一生效时间。
  37. 根据权利要求35或36所述的装置,其中,所述第二发送单元,设置为通过如下之一的方式将所述第一生效时间发送给所述基站:
    将第一生效时间以信息的形式携带在告知消息中,并将所述告知消息发 送至所述基站;
    通过承载所述告知消息的时频资源所在的位置或者指定序列标示所述第一生效时间。
  38. 一种用于应答的装置,包括:处理器和存储器,所述装置应用于终端,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
    接收基站发送的信令;
    生成所述信令的第一生效时间;
    将所述第一生效时间发送至所述基站;
    所述信令携带M个波束分组序号标示,所述M是一个大于等于1的整数,所述M个波束分组序号标示用于指示所述终端执行如下之一或多项:
    切换控制信道的波束到相应的波束分组;
    切换数据信道的波束到相应的波束分组;
    切换控制信道和数据信道的波束到相应的波束分组;
    相应波束分组下的波束扫描;
    相应波束分组下的信道质量测量;
    相应波束分组下的信道质量反馈。
  39. 一种反馈天线配置信息的方法,应用于终端,包括:
    终端向基站侧反馈天线参数。
  40. 根据权利要求39所述的方法,其中,所述天线参数,用于配置上行码本,其中上行码本用来产生接收波束,接收波束分组,发送波束,和发送波束分组中的至少之一。
  41. 根据权利要求39所述的方法,其中,所述天线参数,包括如下之一或多项之组合:
    1)天线端口的数目;
    2)2-D天线组码本的维度大小和2-D天线组码本的个数;
    3)天线组下的2D波束码本的维度大小和2-D波束码本个数;
    4)面向大带宽的码本的维度大小和面向大带宽的码本的个数;
    5)面向小带宽的码本的维度大小和面向小带宽的码本的个数
    6)面向极化的码本的维度大小和面向极化的码本的个数;
    7)码本量化的精度大小;
    8)下行接收码本是否和2)~5)中全部或任一码本之间关联;
    9)天线面板的个数,天线面板的行数,天线面板的行数列数,方向拓扑形状;
    10)天线面板下的天线元素的行数;
    11)天线面板下的天线的列数;
    12)天线极化特征。
  42. 根据权利要求41所述的方法,其中,
    所述码本量化的精度大小包括离散傅里叶变换DFT码本的过采样大小。
  43. 根据权利要求41所述的方法,还包括:
    执行码本分组,所述码本分组通过码本分组标示表示,同一码本分组中的全部或部分码本用于接收或者发送传输。
  44. 一种用于反馈天线配置信息的装置,应用于终端,包括:
    第三发送单元,设置为向基站侧反馈天线参数。
  45. 一种用于反馈天线配置信息的装置,包括:处理器和存储器,所述装置应用于终端,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
    向基站侧反馈天线参数。
  46. 一种天线配置的方法,应用于基站,包括:
    接收终端反馈的天线参数;
    根据所述天线参数执行天线配置。
  47. 根据权利要求46所述的方法,其中,所述天线配置,包括如下之 一或多项的组合:
    设置终端上行波束和下行波束相同,或者允许与下行波束相差的角度小于门限;
    配置终端的上行码本;
    设置终端上行波束与所述上行码本之间的绑定关系。
  48. 根据权利要求47所述的方法,其中,所述配置终端的上行码本通过如下之一的方式实现:
    将上行码本的码本集合反馈给终端;
    向终端指示用于形成上行码本的子码本及其合成码本的方式。
  49. 根据权利要求47所述的方法,其中,所述设置终端上行波束与所述上行码本之间的绑定关系,包括:
    基于上行波束的选择信息,重新配置上行码本的元素;
    基于上行波束的选择信息,设置上行码本和子码本中至少之一的可选范围,所述子码本用于形成所述上行码本。
  50. 一种用于天线配置的装置,应用于基站,包括:
    第三接收单元,设置为接收终端反馈的天线参数;
    配置单元,设置为根据所述天线参数执行天线配置。
  51. 一种用于天线配置的装置,包括:处理器和存储器,所述装置应用于基站,所述存储器存储有计算机可执行指令,所述计算机可执行指令被所述处理器执行时实现如下方法:
    接收终端反馈的天线参数;
    根据所述天线参数执行天线配置。
PCT/CN2017/096199 2016-09-30 2017-08-07 一种波束扫描和切换的方法及装置 WO2018059128A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17854581.0A EP3522387A1 (en) 2016-09-30 2017-08-07 Method and device for scanning and switching wave beam

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610877414.1A CN107888240B (zh) 2016-09-30 2016-09-30 一种波束扫描和切换的方法及装置
CN201610877414.1 2016-09-30

Publications (1)

Publication Number Publication Date
WO2018059128A1 true WO2018059128A1 (zh) 2018-04-05

Family

ID=61763291

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/096199 WO2018059128A1 (zh) 2016-09-30 2017-08-07 一种波束扫描和切换的方法及装置

Country Status (3)

Country Link
EP (1) EP3522387A1 (zh)
CN (1) CN107888240B (zh)
WO (1) WO2018059128A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818660A (zh) * 2019-08-05 2020-10-23 维沃移动通信有限公司 波束信息更新的方法、终端设备和网络设备
CN115276724A (zh) * 2022-08-01 2022-11-01 深圳海星智驾科技有限公司 一种基于多天线的通信增强方法、装置、终端设备及介质
WO2023050208A1 (zh) * 2021-09-29 2023-04-06 北京小米移动软件有限公司 波束切换、评估上报方法和装置、通信装置及存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581725B (zh) * 2018-06-08 2023-08-22 华为技术有限公司 用于波束训练的方法和通信装置
CN110649947B (zh) * 2018-06-26 2023-09-08 华为技术有限公司 波束赋形训练的方法和装置
CN110838862B (zh) * 2018-08-17 2022-06-21 大唐移动通信设备有限公司 一种波束处理方法、装置、终端及网络侧设备
CN112152686B (zh) * 2019-06-27 2023-09-26 中兴通讯股份有限公司 一种实现波束扫描与通信的方法、装置
CN110649943B (zh) * 2019-09-20 2021-04-20 西安交通大学 一种通过多个子波束叠加设计波束宽度的波束扫描方法
CN113497644B (zh) * 2020-03-20 2022-10-11 华为技术有限公司 发送波束处理方法、基站及芯片
CN116134791A (zh) * 2020-09-19 2023-05-16 华为技术有限公司 一种信道信息上报方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102255643A (zh) * 2011-06-30 2011-11-23 电信科学技术研究院 上行预编码矩阵指示及信号传输方法、系统和设备
CN104135348A (zh) * 2010-05-04 2014-11-05 华为技术有限公司 预编码处理方法以及用户设备
CN104335500A (zh) * 2012-05-25 2015-02-04 三星电子株式会社 在使用波束形成的移动通信系统中发送和接收参考信号的方法和装置
CN104937972A (zh) * 2013-01-15 2015-09-23 三星电子株式会社 在波束形成系统中测量信号的方法和设备
CN105897322A (zh) * 2015-02-17 2016-08-24 财团法人工业技术研究院 毫米波通信的波束形成方法及其基站与用户设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105453629B (zh) * 2013-08-05 2019-03-15 三星电子株式会社 在无线通信系统中用于通过波束分组发送和接收参考信号的方法和装置
US9450723B2 (en) * 2013-11-01 2016-09-20 Samsung Electronics Co., Ltd. Channel estimation for data transmission parameter determination in systems employing an array-of-subarrays transceiver architecture
WO2016044994A1 (zh) * 2014-09-23 2016-03-31 华为技术有限公司 波束配置方法、基站及用户设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104135348A (zh) * 2010-05-04 2014-11-05 华为技术有限公司 预编码处理方法以及用户设备
CN102255643A (zh) * 2011-06-30 2011-11-23 电信科学技术研究院 上行预编码矩阵指示及信号传输方法、系统和设备
CN104335500A (zh) * 2012-05-25 2015-02-04 三星电子株式会社 在使用波束形成的移动通信系统中发送和接收参考信号的方法和装置
CN104937972A (zh) * 2013-01-15 2015-09-23 三星电子株式会社 在波束形成系统中测量信号的方法和设备
CN105897322A (zh) * 2015-02-17 2016-08-24 财团法人工业技术研究院 毫米波通信的波束形成方法及其基站与用户设备

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111818660A (zh) * 2019-08-05 2020-10-23 维沃移动通信有限公司 波束信息更新的方法、终端设备和网络设备
WO2023050208A1 (zh) * 2021-09-29 2023-04-06 北京小米移动软件有限公司 波束切换、评估上报方法和装置、通信装置及存储介质
CN115276724A (zh) * 2022-08-01 2022-11-01 深圳海星智驾科技有限公司 一种基于多天线的通信增强方法、装置、终端设备及介质
CN115276724B (zh) * 2022-08-01 2023-06-02 深圳海星智驾科技有限公司 一种基于多天线的通信增强方法、装置、终端设备及介质

Also Published As

Publication number Publication date
CN107888240B (zh) 2022-07-19
CN107888240A (zh) 2018-04-06
EP3522387A1 (en) 2019-08-07

Similar Documents

Publication Publication Date Title
WO2018059128A1 (zh) 一种波束扫描和切换的方法及装置
CN110168957B (zh) 基站控制的波束管理
US11374644B2 (en) Group-based beam management
US11522597B2 (en) Beam information feedback method and apparatus, and configuration information feedback method and apparatus
JP7132227B2 (ja) 無線通信システムにおいてチャネル状態情報を測定及び報告する方法及びそのための装置
US11296766B2 (en) Method for reporting channel state information in wireless communication system and device therefor
EP3711188B1 (en) Ue reporting aggregated channel state information based on multiple p3 sweeps
CN112771791B (zh) 指示用户设备(ue)极化跟踪能力
EP3520228B1 (en) Reference signal with beamforming training and channel estimation
KR102053934B1 (ko) 무선 통신 시스템에서 sounding reference signal을 전송하는 방법 및 이를 위한 장치
WO2014071852A1 (zh) 一种基于天线阵列的参考信号映射方法、装置及系统
WO2018059154A1 (zh) 一种波束处理方法、基站及移动终端
WO2018177183A1 (zh) 一种获取、反馈发送波束信息的方法及装置
WO2018028291A1 (zh) 一种波束赋形训练方法、终端和基站
WO2018028470A1 (zh) 一种波束管理方法和相关设备
CN111385812B (zh) 一种波束管理方法及装置
US11811484B2 (en) Apparatuses and methods for multi-user transmissions
WO2021096402A1 (en) Method and network node for uplink beam management
US20240072859A1 (en) Radio channel antenna pattern matching via configurable front end mmwave module
WO2018176328A1 (zh) 一种用户设备、基站中的被用于多天线传输的方法和装置
WO2023044771A1 (en) Beam failure recovery with uplink antenna panel selection
WO2018126803A1 (zh) 波束信息、配置信息的反馈方法及装置
EP4200996A1 (en) Ue selection for ue aided antenna calibration
CN113287338A (zh) 通信装置、通信控制装置、通信方法、通信控制方法以及计算机程序

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854581

Country of ref document: EP

Effective date: 20190430