WO2018023646A1 - 探测参考信号的发送方法和装置 - Google Patents

探测参考信号的发送方法和装置 Download PDF

Info

Publication number
WO2018023646A1
WO2018023646A1 PCT/CN2016/093430 CN2016093430W WO2018023646A1 WO 2018023646 A1 WO2018023646 A1 WO 2018023646A1 CN 2016093430 W CN2016093430 W CN 2016093430W WO 2018023646 A1 WO2018023646 A1 WO 2018023646A1
Authority
WO
WIPO (PCT)
Prior art keywords
sounding reference
reference signal
terminal device
configuration information
identifier
Prior art date
Application number
PCT/CN2016/093430
Other languages
English (en)
French (fr)
Inventor
孙晓东
徐凯
刘斌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP16911242.2A priority Critical patent/EP3487203B1/en
Priority to PCT/CN2016/093430 priority patent/WO2018023646A1/zh
Priority to CN201680080805.9A priority patent/CN108702634B/zh
Publication of WO2018023646A1 publication Critical patent/WO2018023646A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0404Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas the mobile station comprising multiple antennas, e.g. to provide uplink diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • Embodiments of the present invention relate to the field of communications, and in particular, to a method and apparatus for transmitting a sounding reference signal.
  • a network device In a wireless communication system, in order to improve transmission efficiency while ensuring transmission reliability, a network device generally estimates the quality of a wireless channel for transmitting signals, and determines a scheduling scheme according to the quality of the wireless channel.
  • the quality information of the wireless channel is usually obtained by means of a Sounding Reference Signal (SRS).
  • SRS Sounding Reference Signal
  • the network device sends the SRS configuration parameter to the terminal device, and after receiving the configuration parameter of the SRS, the terminal device sends the SRS according to the configuration parameter, so that the network device can obtain the uplink by measuring the SRS sent by the terminal device.
  • the quality of the channel and determine the final uplink scheduling scheme.
  • TDD Time Division Duplex
  • the network device can obtain the downlink channel by measuring the SRS sent by the terminal device, and assist Downstream service transmission.
  • SRS is transmitted in a omnidirectional manner using a single antenna port.
  • This transmission mode has no directionality, which not only limits the coverage performance of the SRS, but also causes interference between adjacent cells.
  • the embodiments of the present invention provide a method and a device for transmitting a sounding reference signal, which can effectively enhance the coverage performance of the sounding reference signal SRS and reduce interference between adjacent cells.
  • a method for transmitting a sounding reference signal including: determining, by a network device, configuration information of a first sounding reference signal, where configuration information of the first sounding reference signal includes a beam configuration parameter of the first sounding reference signal, The beam configuration parameter of the first sounding reference signal is used to indicate that the terminal device sends the first sounding reference signal by using the first beam; and the network device sends the configuration information of the first sounding reference signal to the terminal device.
  • the method for transmitting the sounding reference signal in the embodiment of the present invention sends the configuration information of the beam-related parameter including the first sounding reference signal to the terminal device through the network device, so that the terminal device directly transmits the first beam according to the configuration information.
  • First sounding reference signal, implementing beam based Transmitting the first sounding reference signal effectively enhances the coverage performance of the sounding reference signal and reduces interference between adjacent cells, thereby improving the user experience.
  • one sounding reference signal corresponds to one beam, thereby corresponding to one configuration information
  • the configuration information of the sounding reference signal is sent by the network device for configuring the sounding reference signal sent by the terminal device, and according to the sounding reference sent by the terminal device.
  • the signal is used to measure the corresponding channel quality, and the network device may send the configuration information of the other sounding reference signals to the terminal device in addition to the configuration information of the first sounding reference signal to the terminal device, which is not used by the embodiment of the present invention. limited.
  • the embodiments of the present invention may also be applied to the transmission of other reference signals, such as a demodulation reference signal (DMRS), or may be used in future communication systems.
  • DMRS demodulation reference signal
  • Other reference signals for measuring the channel are not limited in this embodiment of the present invention.
  • the network device sends configuration information of each second sounding reference signal of the at least one second sounding reference signal to the terminal device, where the second sounding reference signal is
  • the configuration information includes beam configuration parameters of each of the second sounding reference signals, and the beam configuration parameters of each of the second sounding reference signals are respectively used to indicate that the terminal device adopts a second corresponding to each of the second sounding reference signals.
  • the beam transmits the each second sounding reference signal, and the at least one second sounding reference signal is in one-to-one correspondence with the at least one second beam.
  • the network device may send configuration parameters of each of the plurality of sounding reference signals to the terminal device, and configure each sounding reference signal.
  • the configuration parameters of each sounding reference signal are determined and sent by the network device, so that the configured transmit beam has a flexible sending direction.
  • the network device sends an identifier of the beam pattern to the terminal device, where the identifier of the beam pattern is used to indicate that the terminal device adopts At least one third beam of the beam pattern transmits at least one third sounding reference signal, and the at least one third sounding reference signal is in one-to-one correspondence with the at least one third beam.
  • the network device may send the identifier of the beam pattern to the terminal device, to indicate that the terminal device sends the sounding reference signal by using a beam in the beam pattern. It should be understood that the network device and the terminal device may predetermine a plurality of beam patterns and identifiers of beam patterns corresponding to each of the plurality of beam patterns. When configuring the sounding reference signals, the network device may directly The identifier of one of the beam patterns is sent, and the terminal device can send a corresponding sounding reference signal by using a beam in the beam pattern corresponding to the identifier.
  • the network device when the system needs to configure multiple sounding reference signals, the network device only needs to send the configuration information of the sounding reference signal and the identifier of the beam pattern to the terminal device, and the terminal device uses the same configuration information to the beam according to the identifier of the beam pattern.
  • the configuration of the beam in the pattern can effectively reduce the signaling overhead of configuring the sounding reference signal.
  • the network device sends, to the terminal device, beam number indication information, where the beam number indication information is used to indicate the terminal device The number of the third beam in the beam pattern employed.
  • the network device may further send, to the terminal device, beam number indication information, which is used to indicate the number of beams in the beam pattern used in the current transmission. Since there may be a strong channel correlation, it is not necessary to transmit all the beams to measure all channels, and the number of beams to be transmitted can be determined by the network device, thereby reducing unnecessary signaling overhead.
  • the number indicated in the beam number indication information may be the maximum number of beams that the terminal device can transmit under the same time domain resource or frequency domain resource, or may be determined by the network device according to actual network conditions or needs.
  • the number of the transmission beams determined by the measured channel conditions is not limited in this embodiment of the present invention.
  • the method before the determining, by the network device, the configuration information of the first sounding reference signal, the method further includes: the network device according to the The moving direction of the terminal device determines the first beam.
  • the method before the determining, by the network device, the configuration information of the first sounding reference signal, the method further includes: the network device according to the The moving direction of the terminal device determines the identifier of the first beam and the beam pattern.
  • the network device may configure a beam pattern for the terminal device based on a moving direction of the terminal device.
  • the moving direction of the terminal device can be divided into a horizontal direction and a vertical direction.
  • the horizontal direction can be understood as the terminal device moving on the ground or a plane parallel to the ground.
  • the vertical direction can be understood as the plane of the terminal device perpendicular to the ground. Move on.
  • the beam configuration parameter of the first sounding reference signal includes: the first resource occupied by the first sounding reference signal Identifying and/or identifying the first port, the first resource and/or the first port corresponding to the first beam.
  • the resource here is a time-frequency resource, and may be a specific time-frequency resource in a physical resource block ("Physical Resource Block” (referred to as "PRB").
  • PRB Physical Resource Block
  • the terminal device can transmit multiple beams by using one physical resource block. Therefore, the time-frequency resources in each physical resource block need to be identified to achieve one-to-one correspondence between resources and beams.
  • the port and the beam are also in one-to-one correspondence. For example, the terminal device sends the first sounding reference signal by using the first resource to form a first beam, thereby corresponding to the first port.
  • the beam configuration parameter of the first sounding reference signal further includes: a precoding codebook of the first sounding reference signal Logo.
  • the configuration information of the first sounding reference signal further includes: a frequency domain configuration parameter of the first sounding reference signal and/or Or a time domain configuration parameter of the first sounding reference signal, where the frequency domain configuration parameter of the first sounding reference signal includes a frequency domain start position of the first sounding reference signal, and a sounding reference signal adjacent to the frequency domain.
  • the time domain configuration parameter of the first sounding reference signal includes a time domain start position of the first sounding reference signal, At least one of a time domain offset between adjacent sounding reference signals in the time domain and a transmission period of the first sounding reference signal.
  • the frequency domain start position and/or the time domain start position are used to configure a resource block used by the terminal device when transmitting the first sounding reference signal, wherein the time domain start position may be a time domain start. Subframe or symbol identification.
  • the frequency domain offset and/or the time domain offset are used to configure a resource block used by the terminal device to transmit other beams after acquiring the beam pattern, and are used to indicate adjacent detection in the frequency domain and/or the time domain. The offset between the reference signals.
  • the terminal device may send the sounding reference signal in a time division manner according to different configurations of the network device, and may send the sounding reference signal in a frequency division manner, or may transmit the sounding reference signal in a time division and frequency frequency mixing manner.
  • the configuration information of the first sounding reference signal further includes: an identifier of an antenna panel used by the first sounding reference signal.
  • a method for transmitting a sounding reference signal comprising: receiving, by a terminal device, configuration information of a first sounding reference signal sent by a network device, where configuration information of the first sounding reference signal includes the first sounding reference signal a beam configuration parameter, the beam configuration parameter of the first sounding reference signal is used to indicate that the terminal device sends the first sounding reference signal by using a first beam; and the terminal device adopts the first information according to the configuration information of the first sounding reference signal The beam transmits the first sounding reference signal.
  • the method for transmitting the sounding reference signal in the embodiment of the present invention sends the configuration information of the beam-related parameter including the first sounding reference signal to the terminal device through the network device, so that the terminal device directly transmits the first beam according to the configuration information.
  • the first sounding reference signal is configured to transmit the first sounding reference signal in a beamforming manner, which can effectively enhance coverage performance of the sounding reference signal and reduce interference between adjacent cells, thereby improving user experience.
  • the method further includes: receiving, by the terminal device, configuration information of each second sounding reference signal in the at least one second sounding reference signal sent by the network device, where each The configuration information of the second sounding reference signal respectively includes beam configuration parameters of each of the second sounding reference signals, and the beam configuration parameters of each of the second sounding reference signals are respectively used to indicate that the terminal device adopts each of the second soundings.
  • each of the second sounding reference signals is in one-to-one correspondence with the at least one second beam; the terminal device is configured according to the second sounding reference signal And transmitting, by the at least one second beam, the at least one second sounding reference signal.
  • the method further includes: receiving, by the terminal device, an identifier of a beam pattern sent by the network device, where the identifier of the beam pattern is used Instructing the terminal device to transmit at least one third sounding reference signal by using at least one third beam in the beam pattern, the at least one third sounding reference signal being in one-to-one correspondence with the at least one third beam; the terminal device according to the beam The identifier of the pattern determines the at least one third beam; the terminal device sends the at least one third sounding reference signal by using the at least one third beam according to the configuration information of the first sounding reference signal.
  • the terminal device sends the at least one third beam by using the at least one third beam according to the configuration information of the first sounding reference signal.
  • the method further comprises: the terminal The device receives the beam number indication information sent by the network device, where the beam number indication information is used to indicate the number of the third beam in the beam pattern used by the terminal device; and the terminal device is configured according to the configuration information of the first sounding reference signal.
  • the beam configuration parameter of the first sounding reference signal includes: the first resource occupied by the first sounding reference signal Identifying and/or the identifier of the first port, the first resource and/or the first port corresponding to the first beam; the terminal device transmitting the first by using the first beam according to the configuration information of the first sounding reference signal
  • the sounding of the reference signal includes: the terminal device transmitting the first sounding reference signal by using the first resource and/or the first port according to the identifier of the first resource and/or the identifier of the first port.
  • the beam configuration parameter of the first sounding reference signal further includes: a precoding codebook of the first sounding reference signal
  • the first device detects the first sounding reference signal by using the first beam according to the configuration information of the first sounding reference signal, and the terminal device uses the precoding codebook pair according to the identifier of the precoding codebook.
  • the first sounding reference signal is encoded, and the encoded first sounding reference signal is transmitted by using the first beam.
  • the configuration information of the first sounding reference signal further includes: a frequency domain configuration parameter of the first sounding reference signal and/or Or a time domain configuration parameter of the first sounding reference signal, where the frequency domain configuration parameter of the first sounding reference signal includes a frequency domain start position of the first sounding reference signal, and a sounding reference signal adjacent to the frequency domain.
  • the time domain configuration parameter of the first sounding reference signal includes a time domain start position of the first sounding reference signal, At least one of a time domain offset between adjacent sounding reference signals in the time domain and a transmission period of the first sounding reference signal.
  • the configuration information of the first sounding reference signal further includes: an identifier of an antenna panel used by the first sounding reference signal
  • the terminal device sends the first sounding reference signal by using the first beam according to the configuration information of the first sounding reference signal, including: the terminal device according to the antenna panel And the configuration information of the first sounding reference signal, and the first sounding reference signal is sent by using the antenna panel and the first beam.
  • a transmitting apparatus for detecting a reference signal for performing the method of any of the above first aspect or any of the possible implementations of the first aspect.
  • the apparatus comprises means for performing the method of any of the above-described first aspect or any of the possible implementations of the first aspect.
  • a transmitting apparatus for detecting a reference signal for performing the method of any of the above-mentioned second aspect or any of the possible implementations of the second aspect.
  • the apparatus comprises means for performing the method of any of the above-described second aspect or any of the possible implementations of the second aspect.
  • a transmitting apparatus for detecting a reference signal
  • the apparatus comprising: a receiver, a transmitter, a memory, a processor, and a bus system.
  • the receiver, the transmitter, the memory and the processor are connected by the bus system
  • the memory is for storing instructions for executing the instructions stored by the memory to control the receiver to receive signals and control the sending
  • the transmitter transmits a signal
  • the processor executes the memory stored instructions, the execution causes the processor to perform the method of the first aspect or any of the possible implementations of the first aspect.
  • a transmitting apparatus for detecting a reference signal
  • the apparatus comprising: a receiver, a transmitter, a memory, a processor, and a bus system.
  • the receiver, the transmitter, the memory and the processor are connected by the bus system
  • the memory is for storing instructions for executing the instructions stored by the memory to control the receiver to receive signals and control the sending
  • the transmitter transmits a signal
  • the processor executes the memory stored instructions, the execution causes the processor to perform the method of any of the second aspect or any of the possible implementations of the second aspect.
  • a transmission system for sounding reference signals comprising the apparatus of any of the possible implementations of the third aspect or the third aspect, and any possible implementation of the fourth aspect or the fourth aspect Means in the way; or
  • the system comprises the apparatus of any of the possible implementations of the fifth or fifth aspect, and the apparatus of any of the sixth or sixth aspect of the possible implementation.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of the first aspect or any of the possible implementations of the first aspect.
  • a ninth aspect a computer readable medium for storing a computer program, the computer program comprising instructions for performing the method of any of the second aspect or the second aspect of the second aspect.
  • FIG. 1 is a schematic diagram of a communication system to which an embodiment of the present invention is applied.
  • FIG. 2 is a schematic flowchart of a method for transmitting a sounding reference signal according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a beam of a method for transmitting a sounding reference signal according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of sending a sounding reference signal occupying different resources according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of sending a sounding reference signal occupied by different ports according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of transmitting a sounding reference signal by using a time division manner according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of transmitting a sounding reference signal by using a frequency division method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of transmitting a sounding reference signal by means of time division and frequency division mixing according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of an antenna panel according to an embodiment of the present invention.
  • FIG. 10 is a schematic block diagram of a device for transmitting a sounding reference signal according to an embodiment of the present invention.
  • FIG. 11 is a schematic block diagram of another apparatus for transmitting a sounding reference signal according to an embodiment of the present invention.
  • FIG. 12 is a schematic block diagram of another apparatus for transmitting a sounding reference signal according to an embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of another apparatus for transmitting a sounding reference signal according to an embodiment of the present invention.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Double Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 shows a communication system 100 to which an embodiment of the present invention is applied.
  • the communication system 100 can include at least one network device 110.
  • Network device 100 may be a device that communicates with a terminal device, such as a base station or base station controller or the like.
  • Each network device 100 can provide communication coverage for a particular geographic area and can communicate with terminal devices (e.g., UEs) located within the coverage area (cell).
  • terminal devices e.g., UEs
  • the network device 100 may be a base station (Base Transceiver Station, abbreviated as "BTS”) in a GSM system or a Code Division Multiple Access (“CDMA”) system, or may be a base station in a WCDMA system (
  • the NodeB (abbreviated as “NB") may also be an evolved base station (Evolutional Node B, referred to as “eNB” or “eNodeB”) in the LTE system, or a Cloud Radio Access Network (Cloud Radio Access Network, referred to as
  • the wireless controller in "CRAN” or the network device can be a relay station, an access point, an in-vehicle device, a wearable device, a network side device in a future 5G network, or a future evolved public land mobile network (Public Land Mobile Network) Network devices in the "PLMN" for short.
  • PLMN Public Land Mobile Network
  • the wireless communication system 100 also includes a plurality of terminal devices 120 located within the coverage of the network device 110.
  • the terminal device 120 can be mobile or fixed.
  • the terminal device 120 can refer to an access terminal, a user equipment (User Equipment, abbreviated as "UE"), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless device.
  • Communication device User agent or user device.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol ("SSIP”) phone, a Wireless Local Loop (WLL) station, and a personal digital processing (Personal Digital) Assistant, referred to as "PDA"), a handheld device with wireless communication capabilities, a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a future 5G network, or a future evolving public land mobile A terminal device or the like in a network (Public Land Mobile Network, abbreviated as "PLMN").
  • PLMN Public Land Mobile Network
  • Figure 1 exemplarily shows a network device and two terminal devices, optionally the communication system
  • the system 100 may include a plurality of network devices and may include other numbers of terminal devices in the coverage of each network device, which is not limited by the embodiment of the present invention.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like, and the embodiment of the present invention is not limited thereto.
  • network entities such as a network controller, a mobility management entity, and the like, and the embodiment of the present invention is not limited thereto.
  • the communication system has higher and higher requirements for data transmission rate and system bandwidth, and the number of antennas deployed on the network device side and the terminal device side will be more and more. As the system frequency increases, the wavelength will become shorter, and the size of the antenna will be smaller, making large-scale commercial use of multiple antennas on the terminal device side possible.
  • a beamforming-based manner can be adopted for the reception and transmission of the sounding reference signal, thereby ensuring significant parameters such as uplink coverage performance, cell average throughput, and edge user rate. improve.
  • FIG. 2 is a schematic flowchart of a method for transmitting a sounding reference signal according to an embodiment of the present invention.
  • the method 200 can be applied to the communication system 100 shown in FIG. 1, but the embodiment of the present invention is not limited thereto.
  • the network device determines configuration information of the first sounding reference signal, where the configuration information of the first sounding reference signal includes a beam configuration parameter of the first sounding reference signal, where a beam configuration parameter of the first sounding reference signal is used to indicate the terminal
  • the device sends the first sounding reference signal by using a first beam
  • the network device sends configuration information of the first sounding reference signal to the terminal device.
  • the terminal device receives configuration information of the first sounding reference signal sent by the network device, and sends the first sounding reference signal according to the configuration information.
  • the network device may send the configuration information of the first sounding reference signal to the terminal device, where the configuration information includes a beam configuration parameter, and is used to indicate that the terminal device sends the first sounding reference signal by using a beamforming manner.
  • a sounding reference signal corresponds to a configuration information, and is configured by the terminal device according to the configuration information, so as to send a corresponding sounding reference signal on the corresponding beam.
  • a network device In a wireless communication system, in order to improve transmission efficiency while ensuring transmission reliability, a network device generally estimates the quality of a wireless channel for transmitting signals, and determines a scheduling scheme according to the quality of the wireless channel. If the estimated quality of the wireless channel is good, a scheduling scheme with higher transmission efficiency is adopted; if the estimated quality of the radio channel is poor, a scheduling scheme with low transmission efficiency but generally high reliability is adopted. In current wireless communication systems, the quality information of a wireless channel is usually obtained by means of transmission of a reference signal.
  • the network device For example, in the uplink transmission process of the LTE system, the network device The terminal device sends the configuration parameter of the sounding reference signal; after receiving the configuration parameter of the sounding reference signal, the terminal device sends the sounding reference signal according to the configuration parameter; thus, the network device can measure the sounding reference sent by the terminal device.
  • the signal acquires the quality of the uplink channel and determines the final uplink scheduling scheme.
  • the network device can also obtain downlink channel state information by measuring the sounding reference signal sent by the terminal device, and assist downlink data transmission.
  • the sounding reference signals are all transmitted in a unidirectional manner using a single antenna port. This transmission mode has no directivity, which not only limits the coverage performance of the sounding reference signal, but also causes interference between adjacent cells. .
  • the method for transmitting the sounding reference signal in the embodiment of the present invention sends the configuration information of the beam-related parameter including the first sounding reference signal to the terminal device through the network device, so that the terminal device directly transmits the first beam according to the configuration information.
  • the first sounding reference signal is configured to transmit the first sounding reference signal in a beamforming manner, which can effectively enhance coverage performance of the sounding reference signal and reduce interference between adjacent cells, thereby improving user experience.
  • the configuration information of the sounding reference signal is sent by the network device to configure the sounding reference signal sent by the terminal device, and the corresponding channel quality is measured according to the sounding reference signal sent by the terminal device, except for the network device.
  • the configuration information of the other sounding reference signals may be sent to the terminal device in addition to the configuration information of the first sounding reference signal, which is not limited in this embodiment of the present invention.
  • the embodiments of the present invention may be applied to the transmission of other reference signals, such as a demodulation reference signal (DMRS), or may occur in a future communication system, in addition to the sounding reference signal.
  • DMRS demodulation reference signal
  • the other reference signals used for the measurement of the channel are not limited in this embodiment of the present invention.
  • the method further includes:
  • the network device sends, to the terminal device, configuration information of each second sounding reference signal in the at least one second sounding reference signal, where the configuration information of each second sounding reference signal respectively includes a beam of each second sounding reference signal a configuration parameter, where the beam configuration parameters of each second sounding reference signal are respectively used to indicate that the terminal device sends the second sounding reference signal by using a second beam corresponding to each second sounding reference signal, the at least one The second sounding reference signal is in one-to-one correspondence with the at least one second beam;
  • the terminal device receives configuration information of each second sounding reference signal of the at least one second sounding reference signal sent by the network device, and according to the configuration letter of each second sounding reference signal And transmitting, by the at least one second beam, the at least one second sounding reference signal.
  • the network device may send configuration parameters of each of the plurality of sounding reference signals to the terminal device, and configure each sounding reference signal.
  • the configuration parameters of each sounding reference signal are determined and sent by the network device, so that the configured transmit beam has a flexible sending direction.
  • the method further includes:
  • the network device sends an identifier of the beam pattern to the terminal device, where the identifier of the beam pattern is used to indicate that the terminal device sends at least one third sounding reference signal by using at least one third beam in the beam pattern, the at least one third sounding The reference signal is in one-to-one correspondence with the at least one third beam;
  • the terminal device receives the identifier of the beam pattern sent by the network device, and determines the at least one third beam according to the identifier of the beam pattern;
  • the terminal device sends the at least one third sounding reference signal by using the at least one third beam according to the configuration information of the first sounding reference signal.
  • the network device may send the identifier of the beam pattern to the terminal device, to indicate that the terminal device sends the sounding reference signal by using a beam in the beam pattern.
  • the network device and the terminal device may predetermine a plurality of beam patterns and identifiers of beam patterns corresponding to each of the plurality of beam patterns, and when the sounding reference signal is configured, the network device may directly send one of the beam patterns.
  • the terminal device can transmit the corresponding sounding reference signal by using the beam in the beam pattern corresponding to the identifier.
  • the identification of the beam pattern is shown in the following table.
  • the network device may configure a beam pattern for the terminal device based on a moving direction of the terminal device.
  • the moving direction of the terminal device can be divided into a horizontal direction and a vertical direction.
  • the horizontal direction can be understood as the terminal device moving on the ground or a plane parallel to the ground.
  • the vertical direction can be understood as the plane of the terminal device perpendicular to the ground. Move on. For a terminal device, it is possible to move only in the horizontal direction, to move only in the vertical direction, or to move both in the horizontal direction and in the vertical direction.
  • the network device can transmit a beam pattern with the identifier 0, that is, configure the beam device with a beam spacing of (d H , 0). If the terminal device moves in the vertical direction, the network device may send a beam pattern with the identifier of 1, that is, configure the beam device with a beam spacing of (0, d V ). If the terminal device moves simultaneously in the horizontal direction and the vertical direction, the network device may send a beam pattern with the identifier 2, that is, configure the beam device with a beam spacing of (d H , d V ). It should be understood that the beam pattern may also be identified by other means, such as a binary bit string, or other characters, which is not limited by the embodiment of the present invention.
  • the terminal device may determine at least one third beam in the beam pattern according to the identifier of the beam pattern, and use at least configuration information of the first sounding reference signal to A third sounding reference signal is configured to transmit the at least one third sounding reference signal using at least one third beam.
  • the network device when the system needs to configure multiple sounding reference signals, the network device only needs to send the configuration information of the sounding reference signal and the identifier of the beam pattern to the terminal device, and the terminal device uses the same configuration information to the beam according to the identifier of the beam pattern.
  • the configuration of the beam in the pattern can effectively reduce the signaling overhead of configuring the sounding reference signal.
  • the method further includes:
  • the network device sends the beam number indication information to the terminal device, where the beam number indication information is used to indicate the number of the third beam in the beam pattern used by the terminal device;
  • the terminal device sends the at least one third sounding reference signal by using the at least one third beam according to the configuration information of the first sounding reference signal, including:
  • the terminal device receives the beam number indication information sent by the network device, and sends the third probe with the third beam according to the configuration information of the first sounding reference signal and the beam number indication information. Reference signal.
  • the network device may further send, to the terminal device, beam number indication information, which is used to indicate the number of beams in the beam pattern used in the current transmission. Since there may be a strong channel correlation, it is not necessary to transmit all the beams to measure all channels, and the number of beams to be transmitted can be determined by the network device, thereby reducing unnecessary signaling overhead.
  • the number indicated in the beam number indication information may be the maximum number of beams that the terminal device can transmit under the same time domain resource or frequency domain resource, or may be determined by the network device according to actual network conditions or needs.
  • the number of transmit beams determined by the measured channel conditions, the present invention is implemented This example does not limit this.
  • FIG. 3 is a schematic diagram of a beam of a method for transmitting a sounding reference signal according to an embodiment of the present invention.
  • both the network device and the terminal device use multiple antennas, so the detection and reception signals are transmitted and received by beamforming technology.
  • the network device can determine the transmission beam and the optimal reception beam. Correspondence. Therefore, the network device indicates, by using the configuration information, that the terminal device sends the sounding reference signal on the at least one transmitting beam, and the network device can receive the sounding reference signal on the optimal receiving beam corresponding to the at least one transmitting beam.
  • the terminal device uses the beams 2 and 3 to transmit the sounding reference signal, and the network device can receive the sounding reference signal by using the optimal receiving beam 4.
  • the beam configuration parameter of the first sounding reference signal includes: an identifier of the first resource occupied by the first sounding reference signal and/or an identifier of the first port, the first resource and/or The first port corresponds to the first beam;
  • the terminal device sends the first sounding reference signal by using the first beam according to the configuration information of the first sounding reference signal, including:
  • the terminal device sends the first sounding reference signal by using the first resource and/or the first port according to the identifier of the first resource and/or the identifier of the first port.
  • the beam configuration parameter sent by the network device to the terminal device may include an identifier of the first resource occupied by the first sounding reference signal and/or an identifier of the first port, so that the terminal device may adopt the first
  • the first sounding reference signal is transmitted by a resource and/or a first port.
  • the resource here is a time-frequency resource, and may be a specific time-frequency resource in a physical resource block ("Physical Resource Block” (referred to as "PRB").
  • PRB Physical Resource Block
  • the PRB corresponds to a number of consecutive carriers in the frequency domain, and the time domain is a resource of one slot.
  • the terminal device can transmit multiple beams by using one physical resource block. Therefore, the time-frequency resources in each physical resource block need to be identified to achieve one-to-one correspondence between resources and beams.
  • the port and the beam are also in one-to-one correspondence.
  • the terminal device sends the first sounding reference signal by using the first resource to form a first beam, thereby corresponding to the first port.
  • the antenna port is a logical concept that does not have a one-to-one correspondence with the physical antenna.
  • the antenna port has a one-to-one correspondence with the sounding reference signals. If the same sounding reference signal is transmitted through multiple physical antennas, the physical antennas correspond to the same antenna port; and if there are two different sounding reference signals, If the same physical antenna is transmitted, then the physical antenna corresponds to two independent antenna ports.
  • FIG. 4 is a schematic diagram of sending a sounding reference signal occupying different resources according to an embodiment of the present invention.
  • the network device instructs the terminal device to occupy the resource 0 to send the first sounding reference signal, the occupied resource 1 to send the second sounding reference signal, and the occupied resource 2 to send the third sounding reference signal. Therefore, the resource identifier of the configuration information of the first sounding reference signal is 0, the resource identifier of the configuration information of the second sounding reference signal is 1, and the resource identifier of the configuration information of the third sounding reference signal is 2. It should be understood that this is only a specific implementation manner, which is not limited by the embodiment of the present invention.
  • FIG. 5 is a schematic diagram of sending a sounding reference signal occupied by different ports according to an embodiment of the present invention.
  • the network device may indicate that the terminal device occupies port 0, port 1, and port 2 respectively transmit the first sounding reference signal, the second sounding reference signal, and the third sounding reference signal. Therefore, the port identifier of the configuration information of the first sounding reference signal is 0, the port identifier of the configuration information of the second sounding reference signal is 1, and the port identifier of the configuration information of the third sounding reference signal is 2. It should be understood that this is only a specific implementation manner, which is not limited by the embodiment of the present invention.
  • the beam configuration parameter of the first sounding reference signal further includes: an identifier of the pre-coded codebook of the first sounding reference signal;
  • the terminal device sends the first sounding reference signal by using the first beam according to the configuration information of the first sounding reference signal, including:
  • the terminal device encodes the first sounding reference signal by using the precoding codebook according to the identifier of the precoding codebook, and sends the encoded first sounding reference signal by using the first beam.
  • the purpose of precoding is to reduce the complexity of the implementation of eliminating interference between channels at the receiving end, while reducing system overhead and maximizing the capacity of the system.
  • the effect of eliminating multiple channels can be implemented on the receiving end side, or the transmitting signal can be pre-processed by changing the transmitting mode of the transmitting end, and the receiving end can eliminate the influence between the channels.
  • the transmitting end may have M transmitting antennas
  • the receiving end has N receiving antennas
  • the channel between the transmitting antenna and the receiving antenna may be represented by a channel matrix.
  • the precoding matrix requires a codebook as a precoding matrix.
  • the codebook is a codebook set consisting of a plurality of codebooks specified by the protocol according to channel information estimated by the receiving end by a precoding algorithm that optimizes a certain performance of the system. Selected in.
  • the same known codebook set may be shared between the receiving end and the transmitting end, the codebook set includes a plurality of precoding matrices, and the receiving end selects the system performance in the codebook set according to a channel performance matrix estimated by a certain performance target.
  • the optimal precoding matrix is fed back to the transmitting end by the codebook identifier, and the transmitting end may select the precoding matrix according to the codebook identifier to perform precoding. In this way, only the codebook identifier of the precoding matrix needs to be sent, which greatly reduces the signaling overhead and saves the band. Wide, convenient for practical operation.
  • the configuration information of the first sounding reference signal further includes: a frequency domain configuration parameter of the first sounding reference signal and/or a time domain configuration parameter of the first sounding reference signal, wherein the first The frequency domain configuration parameter of the sounding reference signal includes a frequency domain start position of the first sounding reference signal, a frequency domain offset between adjacent sounding reference signals in the frequency domain, and a frequency of the first sounding reference signal. At least one of the domain occupied bandwidth, the time domain configuration parameter of the first sounding reference signal includes a time domain start position of the first sounding reference signal, and a time domain offset between adjacent sounding reference signals in the time domain And a quantity and at least one of a transmission period of the first sounding reference signal.
  • the frequency domain start position and/or the time domain start position are used to configure a resource block used by the terminal device when transmitting the first sounding reference signal, wherein the time domain start position may be a time domain start. Subframe or symbol identification.
  • the frequency domain start location and/or the time domain start location is the location of the resource block that actually transmits the sounding reference signal.
  • the frequency domain start location may be from the frequency domain indicated by the network device.
  • the start position and the frequency domain offset are calculated, and the time domain start position can be calculated by the time domain start position indicated by the network device and a time domain offset, which is not limited by the embodiment of the present invention.
  • the frequency domain offset and/or the time domain offset are used to configure a resource block used by the terminal device to send other beams after acquiring the beam pattern, and is used to indicate the phase in the frequency domain and/or the time domain.
  • the offset between adjacent sounding reference signals are used to configure a resource block used by the terminal device to send other beams after acquiring the beam pattern, and is used to indicate the phase in the frequency domain and/or the time domain.
  • the terminal device may send the sounding reference signal in a time division manner according to different configurations of the network device, and may send the sounding reference signal in a frequency division manner, or may transmit the sounding reference signal in a time division and frequency frequency mixing manner.
  • the network device needs to configure the terminal device in 8 Eight sounding reference signals are transmitted in the direction. Specifically, when the terminal device sends the sounding reference signal, the following three manners may be adopted according to the indication of the network device.
  • FIG. 6 is a schematic diagram of transmitting a sounding reference signal in a time division manner according to an embodiment of the present invention.
  • the terminal device sends two sounding reference signals by using beam 0 and beam 1.
  • the terminal device uses beam 2 and beam 3 to send two sounding reference signals.
  • the terminal device transmits two sounding reference signals by using beam 4 and beam 5.
  • the terminal device transmits two sounding reference signals by using beam 6 and beam 7, where T Offset is the time domain offset that the network device configures for the terminal device. That is, in the time division transmission mode, the above eight sounding reference signals can respectively occupy different time domain resources, but occupy the same frequency domain resources.
  • FIG. 7 is a schematic diagram of transmitting a sounding reference signal by using a frequency division method according to an embodiment of the present invention.
  • the terminal device uses beam 4 and beam 5 to transmit two sounding reference signals at a frequency of f 0 +3F offset
  • the terminal device uses the beam 6 and the beam 7 to send two sounding reference signals, where F offset is the frequency domain offset configured by the network device for the terminal device. That is, in the frequency division transmission mode, the above eight sounding reference signals may respectively occupy different frequency domain resources, but occupy the same time domain resources.
  • FIG. 8 is a schematic diagram of transmitting a sounding reference signal in a manner of time division and frequency division mixing according to an embodiment of the present invention.
  • the network device's configuration the time t 0, the terminal device 0 uses beam, beam 1, beam 5 and the beam 4 four transmit sounding reference signal, wherein the frequency f 0 of the frequency domain resource, the terminal apparatus uses beam 0 And the beam 1 transmits two sounding reference signals, and the frequency device uses the beam 4 and the beam 5 to transmit the other two sounding reference signals in the frequency domain resource with the frequency f 0 + 2F offset .
  • the terminal device transmits four sounding reference signals by using beam 2, beam 3, beam 6 and beam 7, wherein the terminal device adopts beam 2 under the frequency domain resource with frequency f 0 +F offset And the beam 3 transmits two sounding reference signals, and the frequency device uses the beam 6 and the beam 7 to transmit the other two sounding reference signals under the frequency domain resource with the frequency f 0 +3F offset . That is, in the transmission mode in which the time division and the frequency division are mixed, the above eight sounding reference signals can respectively occupy different frequency domain resources and different time domain resources. It should be understood that the foregoing manner of occupying time-frequency resources is merely exemplary, and the embodiment of the present invention is not limited thereto.
  • the number of transmission beams is two, and the number of the transmission beams may be determined by the terminal device according to its own capability, or may be configured by the network device to the terminal device, if the network device does not have the terminal device.
  • the terminal device can directly transmit the eight sounding reference signals by using the beam 0 to the beam 7 to measure the measured signals.
  • the quality of the entire channel is not limited in this embodiment of the present invention.
  • the configuration information of the first sounding reference signal further includes: an identifier of an antenna panel used by the first sounding reference signal;
  • the terminal device sends the first sounding reference signal by using the first beam according to the configuration information of the first sounding reference signal, including:
  • the terminal device sends the first sounding reference signal by using the antenna panel and the first beam according to the identifier of the antenna panel and the configuration information of the first sounding reference signal.
  • the network device and the terminal device can agree on at least one antenna panel and the identifier of each antenna panel in advance.
  • the identifier of the antenna panel may be sent to the terminal device to indicate the antenna panel that is specifically used when the terminal device sends the sounding reference signal.
  • Figure 9 shows a schematic view of an antenna panel. As shown in FIG. 9, it is assumed that there are four antenna panels, and the identifiers of the four antenna panels are 0, 1, 2, and 3, respectively. Therefore, the network device only needs to send the identifier of the antenna panel to the terminal device, and the terminal device can use the antenna on the corresponding antenna panel to transmit the sounding reference signal.
  • FIG. 10 shows a transmitting apparatus 300 for detecting a reference signal according to an embodiment of the present invention.
  • the apparatus 300 includes:
  • the determining unit 310 is configured to determine configuration information of the first sounding reference signal, where configuration information of the first sounding reference signal includes a beam configuration parameter of the first sounding reference signal, and a beam configuration parameter of the first sounding reference signal is used to indicate
  • the terminal device sends the first sounding reference signal by using a first beam;
  • the sending unit 320 is configured to send configuration information of the first sounding reference signal to the terminal device.
  • the transmitting device of the sounding reference signal of the embodiment of the present invention transmits the configuration information of the beam-related parameter including the first sounding reference signal to the terminal device through the network device, so that the terminal device directly transmits the first beam according to the configuration information.
  • the first sounding reference signal is configured to transmit the first sounding reference signal in a beamforming manner, which can effectively enhance coverage performance of the sounding reference signal and reduce interference between adjacent cells, thereby improving user experience.
  • the sending unit 320 is further configured to: send, to the terminal device, configuration information of each second sounding reference signal of the at least one second sounding reference signal, where each second sounding reference signal
  • the configuration information includes beam configuration parameters of each of the second sounding reference signals, and the beam configuration parameters of each of the second sounding reference signals are respectively used to indicate that the terminal device adopts a second corresponding to each of the second sounding reference signals.
  • the beam transmits the each second sounding reference signal, and the at least one second sounding reference signal is in one-to-one correspondence with the at least one second beam.
  • the sending unit 320 is further configured to: send, to the terminal device, an identifier of a beam pattern, where the identifier of the beam pattern is used to indicate that the terminal device sends at least one third probe by using at least one third beam in the beam pattern.
  • the reference signal, the at least one third sounding reference signal is in one-to-one correspondence with the at least one third beam.
  • the sending unit 320 is further configured to: send the beam number indication information to the terminal device, where the beam number indication information is used to indicate the number of the third beam in the beam pattern used by the terminal device.
  • the determining unit 310 is further configured to determine the first beam according to a moving direction of the terminal device before determining configuration information of the first sounding reference signal.
  • the beam configuration parameter of the first sounding reference signal includes: an identifier of the first resource occupied by the first sounding reference signal and/or an identifier of the first port, the first resource and/or the first port Corresponding to the first beam.
  • the beam configuration parameter of the first sounding reference signal further includes: an identifier of the pre-coded codebook of the first sounding reference signal.
  • the configuration information of the first sounding reference signal further includes: a frequency domain configuration parameter of the first sounding reference signal and/or a time domain configuration parameter of the first sounding reference signal, wherein the first sounding reference signal
  • the frequency domain configuration parameter includes a frequency domain start position of the first sounding reference signal, a frequency domain offset between adjacent sounding reference signals in the frequency domain, and a frequency domain occupied bandwidth of the first sounding reference signal.
  • At least one of the time domain configuration parameters of the first sounding reference signal includes a time domain start position of the first sounding reference signal, a time domain offset between adjacent sounding reference signals in the time domain, and the first At least one of the transmission periods of the sounding reference signal.
  • the configuration information of the first sounding reference signal further includes: an identifier of an antenna panel used by the first sounding reference signal.
  • the apparatus 300 herein is embodied in the form of a functional unit.
  • the term "unit” herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a proprietary processor, or a group). Processor, etc.) and memory, merge logic, and/or other support described The right component for the function.
  • ASIC application specific integrated circuit
  • the device 300 may be specifically the network device in the foregoing embodiment, and the device 300 may be used to perform various processes and/or steps corresponding to the network device in the foregoing method embodiment. To avoid repetition, we will not repeat them here.
  • FIG. 11 shows a transmitting apparatus 400 for detecting a reference signal according to an embodiment of the present invention.
  • the apparatus 400 includes:
  • the receiving unit 410 is configured to receive configuration information of the first sounding reference signal sent by the network device, where the configuration information of the first sounding reference signal includes a beam configuration parameter of the first sounding reference signal, and a beam configuration of the first sounding reference signal
  • the parameter is used to indicate that the apparatus sends the first sounding reference signal by using a first beam
  • the sending unit 420 is configured to send the first sounding reference signal by using the first beam according to the configuration information of the first sounding reference signal.
  • the transmitting device of the sounding reference signal of the embodiment of the present invention transmits the configuration information of the beam-related parameter including the first sounding reference signal to the terminal device through the network device, so that the terminal device directly transmits the first beam according to the configuration information.
  • the first sounding reference signal is configured to transmit the first sounding reference signal in a beamforming manner, which can effectively enhance coverage performance of the sounding reference signal and reduce interference between adjacent cells, thereby improving user experience.
  • the receiving unit 410 is further configured to: receive configuration information of each second sounding reference signal of the at least one second sounding reference signal sent by the network device, where configuration information of each second sounding reference signal includes Beam configuration parameters of each of the second sounding reference signals, the beam configuration parameters of each of the second sounding reference signals are respectively used to indicate that the device transmits the each of the second beams corresponding to each of the second sounding reference signals a second sounding reference signal, the at least one second sounding reference signal is in one-to-one correspondence with the at least one second beam; the sending unit 420 is further configured to: adopt the at least one according to configuration information of each second sounding reference signal The second beam transmits the at least one second sounding reference signal.
  • the receiving unit 410 is further configured to: receive an identifier of a beam pattern sent by the network device, where the identifier of the beam pattern is used to indicate that the apparatus sends at least one third probe by using at least one third beam in the beam pattern.
  • a reference signal the at least one third sounding reference signal is in one-to-one correspondence with the at least one third beam
  • the device further comprising: a determining unit, configured to determine the at least one third beam according to the identifier of the beam pattern
  • the 420 is further configured to: send the at least one third sounding reference signal by using the at least one third beam according to the configuration information of the first sounding reference signal.
  • the receiving unit 410 is further configured to: receive, according to the configuration information of the first sounding reference signal, the number of beams sent by the network device before sending the at least one third sounding reference signal by using the at least one third beam Instructing information, the beam number indication information is used to indicate the number of the third beam in the beam pattern used by the device; the sending unit 420 is specifically configured to: according to the configuration information of the first sounding reference signal and the beam number indication The information is transmitted with the third beam of the quantity to transmit the third sounding reference signal.
  • the beam configuration parameter of the first sounding reference signal includes: an identifier of the first resource occupied by the first sounding reference signal and/or an identifier of the first port, the first resource and/or the first port Corresponding to the first beam; the sending unit 420 is specifically configured to: send the first sounding reference by using the first resource and/or the first port according to the identifier of the first resource and/or the identifier of the first port signal.
  • the beam configuration parameter of the first sounding reference signal further includes: an identifier of the precoding codebook of the first sounding reference signal; the sending unit 420 is specifically configured to: adopt the identifier according to the identifier of the precoding codebook
  • the precoding codebook encodes the first sounding reference signal, and transmits the encoded first sounding reference signal by using the first beam.
  • the configuration information of the first sounding reference signal further includes: a frequency domain configuration parameter of the first sounding reference signal and/or a time domain configuration parameter of the first sounding reference signal, wherein the first sounding reference signal
  • the frequency domain configuration parameter includes a frequency domain start position of the first sounding reference signal, a frequency domain offset between adjacent sounding reference signals in the frequency domain, and a frequency domain occupied bandwidth of the first sounding reference signal.
  • At least one of the time domain configuration parameters of the first sounding reference signal includes a time domain start position of the first sounding reference signal, a time domain offset between adjacent sounding reference signals in the time domain, and the first At least one of the transmission periods of the sounding reference signal.
  • the configuration information of the first sounding reference signal further includes: an identifier of an antenna panel used by the first sounding reference signal; the sending unit 420 is specifically configured to: according to the identifier of the antenna panel and the first sounding reference The configuration information of the signal is sent by using the antenna panel and the first beam.
  • the apparatus 400 herein is embodied in the form of a functional unit.
  • the term "unit” herein may refer to an application specific integrated circuit (ASIC), an electronic circuit, a processor for executing one or more software or firmware programs (eg, a shared processor, a proprietary processor, or a group). Processors, etc.) and memory, merge logic, and/or other suitable components that support the described functionality.
  • ASIC application specific integrated circuit
  • processors, etc. and memory, merge logic, and/or other suitable components that support the described functionality.
  • device 400 may be specifically configured to perform the processes and/or steps corresponding to the terminal device in the foregoing method embodiments. To avoid repetition, details are not described herein.
  • FIG. 12 shows a transmitting apparatus 500 for detecting a reference signal according to an embodiment of the present invention.
  • the apparatus 500 includes a processor 510, a transmitter 520, a receiver 530, a memory 540, and a bus system 550.
  • the processor 510, the transmitter 520, the receiver 530 and the memory 540 are connected by a bus system 550 for storing instructions for executing instructions stored in the memory 540 to control the transmitter 520.
  • a signal is sent and the receiver 530 is controlled to receive the signal.
  • the processor 510 is configured to determine configuration information of the first sounding reference signal, where configuration information of the first sounding reference signal includes a beam configuration parameter of the first sounding reference signal, and a beam configuration parameter of the first sounding reference signal is used. Transmitting, by the terminal device, the first sounding reference signal by using a first beam;
  • the transmitter 520 is configured to send configuration information of the first sounding reference signal to the terminal device.
  • the device 500 may be specifically the network device in the foregoing embodiment, and may be used to perform various steps and/or processes corresponding to the network device in the foregoing method embodiments.
  • the memory 540 can include read only memory and random access memory and provides instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor 510 can be configured to execute instructions stored in a memory, and when the processor executes instructions stored in the memory, the processor is operative to perform various steps and/or processes of the method embodiments described above.
  • FIG. 13 shows a transmitting apparatus 600 for detecting a reference signal according to an embodiment of the present invention.
  • the apparatus 600 includes a receiver 610, a processor 620, a transmitter 630, a memory 640, and a bus system 650.
  • the receiver 610, the processor 620, the transmitter 630, and the memory 640 are connected by a bus system 650 for storing instructions for executing instructions stored in the memory 640 to control the receiver 610.
  • a signal is received and the transmitter 630 is controlled to send an instruction.
  • the receiver 610 is configured to receive configuration information of a first sounding reference signal that is sent by the network device, where the configuration information of the first sounding reference signal includes a beam configuration parameter of the first sounding reference signal, where the first sounding reference signal is The beam configuration parameter is used to indicate that the terminal device sends the first sounding reference signal by using the first beam;
  • the transmitter 630 is configured to send the first sounding reference signal by using the first beam according to the configuration information of the first sounding reference signal.
  • the device 600 may be specifically the terminal device in the above embodiment, and may be used for Performing various steps and/or processes corresponding to the terminal device in the foregoing method embodiments.
  • the memory 640 can include read only memory and random access memory and provide instructions and data to the processor. A portion of the memory may also include a non-volatile random access memory.
  • the memory can also store information of the device type.
  • the processor 620 can be configured to execute instructions stored in a memory, and when the processor executes the instructions, the processor can perform various steps and/or processes corresponding to the terminal devices in the above method embodiments.
  • the processor may be a central processing unit (CPU), and the processor may also be other general purpose processors, digital signal processors (DSPs), and application specific integrated circuits (ASICs). ), Field Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in a memory, and the processor executes instructions in the memory, in combination with hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division, and may be implemented in actual implementation.
  • multiple units or components may be combined or integrated into another system, or some features may be omitted or not performed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, or an electrical, mechanical or other form of connection.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present invention.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the technical solution of the present invention contributes in essence or to the prior art, or all or part of the technical solution may be embodied in the form of a software product stored in a storage medium.
  • a number of instructions are included to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a USB flash drive, a mobile hard disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a disk or a CD.
  • ROM Read-Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种探测参考信号的发送方法和装置。该方法包括:网络设备确定第一探测参考信号的配置信息,该第一探测参考信号的配置信息包括该第一探测参考信号的波束配置参数,该第一探测参考信号的波束配置参数用于指示终端设备采用第一波束发送该第一探测参考信号;该网络设备向该终端设备发送该第一探测参考信号的配置信息。本发明实施例的探测参考信号的发送方法和装置,能够有效增强探测参考信号的覆盖性能,并降低相邻小区之间的干扰,从而提高用户体验。

Description

探测参考信号的发送方法和装置 技术领域
本发明实施例涉及通信领域,更具体地,涉及一种探测参考信号的发送方法和装置。
背景技术
在无线通信系统中,为了在保证传输可靠性的前提下提升传输效率,网络设备通常会估计用于传输信号的无线信道的质量,并根据无线信道的质量确定调度方案。在目前的无线通信系统中,通常会借助传输探测参考信号(Sounding Reference Signal,简称为“SRS”)来获取无线信道的质量信息。网络设备向终端设备发送SRS的配置参数,该终端设备在收到该SRS的配置参数之后,就根据该配置参数发送该SRS,从而网络设备就可以通过测量该终端设备发送的该SRS而获取上行信道的质量,并确定最终的上行调度方案。特别地,在时分双工(Time Division Duplex,简称为“TDD”)系统中,由于上下行信道具有互易性,因此,网络设备可通过测量该终端设备发送的该SRS获取下行信道,并辅助下行业务传输。
在现有技术中,SRS都是采用单天线端口全向发送的,这种发送方式没有方向性,不但限制了SRS的覆盖性能,而且会引起相邻小区之间的干扰。
发明内容
有鉴于此,本发明实施例提供了一种探测参考信号的发送方法和装置,能够有效增强探测参考信号SRS的覆盖性能,并降低相邻小区之间的干扰。
第一方面,提供了一种探测参考信号的发送方法,包括:网络设备确定第一探测参考信号的配置信息,该第一探测参考信号的配置信息包括该第一探测参考信号的波束配置参数,该第一探测参考信号的波束配置参数用于指示终端设备采用第一波束发送该第一探测参考信号;该网络设备向该终端设备发送该第一探测参考信号的配置信息。
因此,本发明实施例的探测参考信号的发送方法,通过网络设备向终端设备发送包括第一探测参考信号的波束相关参数的配置信息,使该终端设备直接根据该配置信息采用第一波束发送该第一探测参考信号,实现基于波束 赋形的方式发送该第一探测参考信号,能够有效增强探测参考信号的覆盖性能,并降低相邻小区之间的干扰,从而提高用户体验。
应理解,一个探测参考信号对应一个波束,从而对应一个配置信息,且该网络设备发送探测参考信号的配置信息是为了对终端设备发送的探测参考信号进行配置,并根据该终端设备发送的探测参考信号来测量对应的信道质量,该网络设备除了向该终端设备发送第一探测参考信号的配置信息之外,还可以向该终端设备发送其他探测参考信号的配置信息,本发明实施例对此不作限定。
此外,除了探测参考信号之外,本发明实施例还可以应用于其他参考信号的发送,例如解调参考信号(demodulation reference signal,简称为“DMRS”),或未来通信系统中可能出现的用于对信道进行测量的其他参考信号,本发明实施例对此不作限定。
在第一方面的第一种可能的实现方式中,该网络设备向该终端设备发送至少一个第二探测参考信号中每个第二探测参考信号的配置信息,该每个第二探测参考信号的配置信息分别包括该每个第二探测参考信号的波束配置参数,该每个第二探测参考信号的波束配置参数分别用于指示该终端设备采用与该每个第二探测参考信号对应的第二波束发送该每个第二探测参考信号,该至少一个第二探测参考信号与至少一个该第二波束一一对应。
具体地,该网络设备可以向该终端设备发送多个探测参考信号中每个探测参考信号的配置参数,对每个探测参考信号进行配置。这种方式下,每个探测参考信号的配置参数都是网络设备确定并发送的,这样配置的发送波束具有灵活的发送方向。
结合第一方面的上述可能的实现方式,在第一方面的第二种可能的实现方式中,该网络设备向该终端设备发送波束图样的标识,该波束图样的标识用于指示该终端设备采用该波束图样中的至少一个第三波束发送至少一个第三探测参考信号,该至少一个第三探测参考信号与该至少一个第三波束一一对应。
具体地,该网络设备可以向该终端设备发送波束图样的标识,用于指示该终端设备采用该波束图样中的波束发送探测参考信号。应理解,网络设备与终端设备可以预先确定多个波束图样,以及该多个波束图样中每个波束图样所对应的波束图样的标识,在配置探测参考信号时,该网络设备可以直接 发送其中某个波束图样的标识,终端设备即可采用该标识对应的波束图样中的波束发送对应的探测参考信号。
这样,在系统需要配置多个探测参考信号的时候,网络设备仅需要向终端设备发送一个探测参考信号的配置信息和波束图样的标识,由终端设备根据波束图样的标识采用相同的配置信息对波束图样中的波束进行配置,能够有效降低配置探测参考信号的信令开销。
结合第一方面的上述可能的实现方式,在第一方面的第三种可能的实现方式中,该网络设备向该终端设备发送波束数指示信息,该波束数指示信息用于指示该终端设备所采用的该波束图样中该第三波束的数量。
具体地,该网络设备还可以向该终端设备发送波束数指示信息,用于指示本次发送所采用波束图样中的波束的数量。由于可能存在信道强相关的情况,因此要测量全部信道并不需要发送所有的波束,可以由网络设备决定需要发送的波束的数量,从而能够减少不必要的信令开销。
应理解,该波束数指示信息中所指示的数量可以是该终端设备在同一时域资源或频域资源下能发送的波束的最大个数,也可以是由网络设备根据实际网络情况或所需要测量的信道情况而确定的发送波束的个数,本发明实施例对此不作限定。
结合第一方面的上述可能的实现方式,在第一方面的第四种可能的实现方式中,在该网络设备确定第一探测参考信号的配置信息之前,该方法还包括:该网络设备根据该终端设备的移动方向,确定该第一波束。
结合第一方面的上述可能的实现方式,在第一方面的第五种可能的实现方式中,在该网络设备确定第一探测参考信号的配置信息之前,该方法还包括:该网络设备根据该终端设备的移动方向,确定该第一波束以及该波束图样的标识。
具体地,该网络设备可以基于该终端设备的移动方向,为该终端设备配置波束图样。例如,该终端设备的移动方向可以分为水平方向和垂直方向,水平方向可以理解为该终端设备在地面或者与地面平行的平面上移动,垂直方向可以理解为该终端设备在与地面垂直的平面上移动。对于一个终端设备而言,可以仅沿着水平方向移动,可以仅沿着垂直方向移动,也可以既沿着水平方向移动,又沿着垂直方向移动。因此,对于不同移动方向上的终端设备,可以配置不同的波束图样,这样能够提高探测参考信号的覆盖性能,并 减少终端设备的功耗。
结合第一方面的上述可能的实现方式,在第一方面的第六种可能的实现方式中,该第一探测参考信号的波束配置参数包括:该第一探测参考信号所占用的第一资源的标识和/或第一端口的标识,该第一资源和/或该第一端口对应该第一波束。
应理解,这里的资源是时频资源,可以为物理资源块(Physical Resource Block,简称为“PRB”)中的具体时频资源。终端设备可以采用一个物理资源块发送多个波束,因此,需要将每个物理资源块中的时频资源进行标识,实现资源与波束的一一对应。此外,端口与波束也是一一对应的,例如,终端设备采用第一资源发送第一探测参考信号,即可形成第一波束,从而对应第一端口。
结合第一方面的上述可能的实现方式,在第一方面的第七种可能的实现方式中,该第一探测参考信号的波束配置参数还包括:该第一探测参考信号的预编码码本的标识。
结合第一方面的上述可能的实现方式,在第一方面的第八种可能的实现方式中,该第一探测参考信号的配置信息还包括:该第一探测参考信号的频域配置参数和/或该第一探测参考信号的时域配置参数,其中,该第一探测参考信号的频域配置参数包括该第一探测参考信号的频域起始位置、在频域上相邻的探测参考信号之间的频域偏移量和该第一探测参考信号的频域占用带宽中的至少一个,该第一探测参考信号的时域配置参数包括该第一探测参考信号的时域起始位置、在时域上相邻的探测参考信号之间的时域偏移量和该第一探测参考信号的发送周期中的至少一个。
应理解,这里的频域起始位置和/或时域起始位置用于配置终端设备在发送第一探测参考信号时所采用的资源块,其中,时域起始位置可以为时域起始子帧或符号标识。频域偏移量和/或时域偏移量用于配置终端设备在获取了波束图样后,发送其他波束所采用的资源块,用于表示在频域上和/或时域上相邻探测参考信号之间的偏移量。
基于网络设备不同的配置,该终端设备可以采用时分方式发送探测参考信号,可以采用频分方式发送探测参考信号,也可以采用时分与频分混合的方式发送探测参考信号。
结合第一方面的上述可能的实现方式,在第一方面的第九种可能的实现 方式中,该第一探测参考信号的配置信息还包括:该第一探测参考信号所采用的天线面板的标识。
第二方面,提供了另一种探测参考信号的发送方法,包括:终端设备接收网络设备发送的第一探测参考信号的配置信息,该第一探测参考信号的配置信息包括该第一探测参考信号的波束配置参数,该第一探测参考信号的波束配置参数用于指示终端设备采用第一波束发送该第一探测参考信号;该终端设备根据该第一探测参考信号的配置信息,采用该第一波束发送该第一探测参考信号。
因此,本发明实施例的探测参考信号的发送方法,通过网络设备向终端设备发送包括第一探测参考信号的波束相关参数的配置信息,使该终端设备直接根据该配置信息采用第一波束发送该第一探测参考信号,实现基于波束赋形的方式发送该第一探测参考信号,能够有效增强探测参考信号的覆盖性能,并降低相邻小区之间的干扰,从而提高用户体验。
在第二方面的第一种可能的实现方式中,该方法还包括:该终端设备接收该网络设备发送的至少一个第二探测参考信号中每个第二探测参考信号的配置信息,该每个第二探测参考信号的配置信息分别包括该每个第二探测参考信号的波束配置参数,该每个第二探测参考信号的波束配置参数分别用于指示该终端设备采用与该每个第二探测参考信号对应的第二波束发送该每个第二探测参考信号,该至少一个第二探测参考信号与至少一个该第二波束一一对应;该终端设备根据该每个第二探测参考信号的配置信息,采用该至少一个该第二波束发送该至少一个第二探测参考信号。
结合第二方面的上述可能的实现方式,在第二方面的第二种可能的实现方式中,该方法还包括:该终端设备接收该网络设备发送的波束图样的标识,该波束图样的标识用于指示该终端设备采用该波束图样中的至少一个第三波束发送至少一个第三探测参考信号,该至少一个第三探测参考信号与该至少一个第三波束一一对应;该终端设备根据该波束图样的标识,确定该至少一个第三波束;该终端设备根据该第一探测参考信号的配置信息,采用该至少一个第三波束发送该至少一个第三探测参考信号。
结合第二方面的上述可能的实现方式,在第二方面的第三种可能的实现方式中,在该终端设备根据该第一探测参考信号的配置信息,采用该至少一个第三波束发送该至少一个第三探测参考信号之前,该方法还包括:该终端 设备接收该网络设备发送的波束数指示信息,该波束数指示信息用于指示该终端设备所采用的该波束图样中该第三波束的数量;该终端设备根据该第一探测参考信号的配置信息,采用该至少一个第三波束发送该至少一个第三探测参考信号,包括:该终端设备根据该第一探测参考信号的配置信息以及该波束数指示信息,采用与该数量的该第三波束发送该数量的该第三探测参考信号。
结合第二方面的上述可能的实现方式,在第二方面的第四种可能的实现方式中,该第一探测参考信号的波束配置参数包括:该第一探测参考信号所占用的第一资源的标识和/或第一端口的标识,该第一资源和/或该第一端口对应该第一波束;该终端设备根据该第一探测参考信号的配置信息,采用该第一波束发送该第一探测参考信号,包括:该终端设备根据该第一资源的标识和/或该第一端口的标识,采用该第一资源和/或该第一端口,发送该第一探测参考信号。
结合第二方面的上述可能的实现方式,在第二方面的第五种可能的实现方式中,该第一探测参考信号的波束配置参数还包括:该第一探测参考信号的预编码码本的标识;该终端设备根据该第一探测参考信号的配置信息,采用该第一波束发送该第一探测参考信号,包括:该终端设备根据该预编码码本的标识,采用该预编码码本对该第一探测参考信号进行编码,并采用该第一波束发送编码后的该第一探测参考信号。
结合第二方面的上述可能的实现方式,在第二方面的第六种可能的实现方式中,该第一探测参考信号的配置信息还包括:该第一探测参考信号的频域配置参数和/或该第一探测参考信号的时域配置参数,其中,该第一探测参考信号的频域配置参数包括该第一探测参考信号的频域起始位置、在频域上相邻的探测参考信号之间的频域偏移量和该第一探测参考信号的频域占用带宽中的至少一个,该第一探测参考信号的时域配置参数包括该第一探测参考信号的时域起始位置、在时域上相邻的探测参考信号之间的时域偏移量和该第一探测参考信号的发送周期中的至少一个。
结合第二方面的上述可能的实现方式,在第二方面的第七种可能的实现方式中,该第一探测参考信号的配置信息还包括:该第一探测参考信号所采用的天线面板的标识;该终端设备根据该第一探测参考信号的配置信息,采用该第一波束发送该第一探测参考信号,包括:该终端设备根据该天线面板 的标识以及该第一探测参考信号的配置信息,采用该天线面板以及该第一波束发送该第一探测参考信号。
第三方面,提供了一种探测参考信号的发送装置,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的单元。
第四方面,提供了一种探测参考信号的发送装置,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,该装置包括用于执行上述第二方面或第二方面的任意可能的实现方式中的方法的单元。
第五方面,提供了一种探测参考信号的发送装置,该装置包括:接收器、发送器、存储器、处理器和总线系统。其中,该接收器、该发送器、该存储器和该处理器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种探测参考信号的发送装置,该装置包括:接收器、发送器、存储器、处理器和总线系统。其中,该接收器、该发送器、该存储器和该处理器通过该总线系统相连,该存储器用于存储指令,该处理器用于执行该存储器存储的指令,以控制接收器接收信号,并控制发送器发送信号,并且当该处理器执行该存储器存储的指令时,该执行使得该处理器执行第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种探测参考信号的发送系统,该系统包括上述第三方面或第三方面的任一种可能实现方式中的装置以及第四方面或第四方面的任一种可能实现方式中的装置;或者
该系统包括上述第五方面或第五方面的任一种可能实现方式中的装置以及第六方面或第六方面中的任一种可能实现方式中的装置。
第八方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第一方面或第一方面的任意可能的实现方式中的方法的指令。
第九方面,提供了一种计算机可读介质,用于存储计算机程序,该计算机程序包括用于执行第二方面或第二方面的任意可能的实现方式中的方法的指令。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例应用的通信系统的示意图。
图2是本发明实施例提供的探测参考信号的发送方法的示意性流程图。
图3是本发明实施例提供的探测参考信号的发送方法的波束示意图。
图4是本发明实施例提供的占用不同资源发送探测参考信号的示意图。
图5是本发明实施例提供的占用不同端口发送探测参考信号的示意图。
图6是本发明实施例提供的采用时分方式发送探测参考信号的示意图。
图7是本发明实施例提供的采用频分方式发送探测参考信号的示意图。
图8是本发明实施例提供的采用时分与频分混合的方式发送探测参考信号的示意图。
图9是本发明实施例提供的天线面板示意图。
图10是本发明实施例提供的探测参考信号的发送装置的示意性框图。
图11是本发明实施例提供的另一探测参考信号的发送装置的示意性框图。
图12是本发明实施例提供的另一探测参考信号的发送装置的示意性框图。
图13是本发明实施例提供的另一探测参考信号的发送装置的示意性框图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
应理解,本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband  Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、以及未来的5G通信系统等。
图1示出了本发明实施例应用的通信系统100。该通信系统100可以包括至少一个网络设备110。网络设备100可以是与终端设备通信的设备,如基站或基站控制器等。每个网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域(小区)内的终端设备(例如UE)进行通信。该网络设备100可以是GSM系统或码分多址(Code Division Multiple Access,简称为“CDMA”)系统中的基站(Base Transceiver Station,简称为“BTS”),也可以是WCDMA系统中的基站(NodeB,简称为“NB”),还可以是LTE系统中的演进型基站(Evolutional Node B,简称为“eNB”或“eNodeB”),或者是云无线接入网络(Cloud Radio Access Network,简称为“CRAN”)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、未来5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为“PLMN”)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的多个终端设备120。该终端设备120可以是移动的或固定的。该终端设备120可以指接入终端、用户设备(User Equipment,简称为“UE”)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称为“SIP”)电话、无线本地环路(Wireless Local Loop,简称为“WLL”)站、个人数字处理(Personal Digital Assistant,简称为“PDA”)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、未来5G网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为“PLMN”)中的终端设备等。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系 统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本发明实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本发明实施例不限于此。
随着通信技术的发展,通信系统对数据传输速率和系统带宽要求越来越高,网络设备侧和终端设备侧部署的天线数将会越来越多。随着系统频率的增大,波长将会变短,天线的尺寸将会更小,使得终端设备侧多天线的大规模商用成为可能。在网络设备和终端设备均采用多天线的情况下,对于探测参考信号的接收和发送将可以采用基于波束赋形的方式,从而保证上行覆盖性能、小区平均吞吐量和边缘用户速率等参数的显著提高。
图2示出了本发明实施例的探测参考信号的发送方法200的示意性流程图,该方法200可以应用于图1所示的通信系统100,但本发明实施例不限于此。
S210,网络设备确定第一探测参考信号的配置信息,该第一探测参考信号的配置信息包括该第一探测参考信号的波束配置参数,该第一探测参考信号的波束配置参数用于指示该终端设备采用第一波束发送该第一探测参考信号;
S220,该网络设备向该终端设备发送该第一探测参考信号的配置信息;
S230,该终端设备接收该网络设备发送的第一探测参考信号的配置信息,并根据该配置信息发送该第一探测参考信号。
具体地,网络设备可以向终端设备发送第一探测参考信号的配置信息,该配置信息包括波束配置参数,用于指示该终端设备采用波束赋形的方式发送该第一探测参考信号。一个探测参考信号对应一个配置信息,用于终端设备根据该配置信息进行配置,从而在对应的波束上发送对应的探测参考信号。
在无线通信系统中,为了在保证传输可靠性的前提下提升传输效率,网络设备通常会估计用于传输信号的无线信道的质量,并根据无线信道的质量确定调度方案。如果估计的无线信道质量较好,则采用传输效率较高的调度方案;如果估计的无线信道质量较差,则采用传输效率较低但通常可靠性较高的调度方案。在目前的无线通信系统中,通常会借助参考信号的传输来获取无线信道的质量信息。例如,在LTE系统的上行传输过程中,网络设备向 终端设备发送探测参考信号的配置参数;该终端设备收到该探测参考信号的配置参数之后,就根据该配置参数发送该探测参考信号;从而网络设备就可以通过测量该终端设备发送的该探测参考信号而获取上行信道的质量,并确定最终的上行调度方案。特别地,在TDD系统中,由于上下行信道具有互易性,网络设备还可以通过测量该终端设备发送的该探测参考信号而获取下行信道状态信息,并辅助下行数据传输。但是,在现有技术中,探测参考信号都是采用单天线端口全向发送的,这种发送方式没有方向性,不但限制了探测参考信号的覆盖性能,而且会引起相邻小区之间的干扰。
因此,本发明实施例的探测参考信号的发送方法,通过网络设备向终端设备发送包括第一探测参考信号的波束相关参数的配置信息,使该终端设备直接根据该配置信息采用第一波束发送该第一探测参考信号,实现基于波束赋形的方式发送该第一探测参考信号,能够有效增强探测参考信号的覆盖性能,并降低相邻小区之间的干扰,从而提高用户体验。
应理解,该网络设备发送探测参考信号的配置信息是为了对终端设备发送的探测参考信号进行配置,并根据该终端设备发送的探测参考信号来测量对应的信道质量,该网络设备除了向该终端设备发送第一探测参考信号的配置信息之外,还可以向该终端设备发送其他探测参考信号的配置信息,本发明实施例对此不作限定。
此外,应理解,除了探测参考信号之外,本发明实施例还可以应用于其他参考信号的发送,例如解调参考信号(demodulation reference signal,简称为“DMRS”),或未来通信系统中可能出现的用于对信道进行测量的其他参考信号,本发明实施例对此不作限定。
作为一个可选的实施例,该方法还包括:
该网络设备向该终端设备发送至少一个第二探测参考信号中每个第二探测参考信号的配置信息,该每个第二探测参考信号的配置信息分别包括该每个第二探测参考信号的波束配置参数,该每个第二探测参考信号的波束配置参数分别用于指示该终端设备采用与该每个第二探测参考信号对应的第二波束发送该每个第二探测参考信号,该至少一个第二探测参考信号与至少一个该第二波束一一对应;
该终端设备接收该网络设备发送的至少一个第二探测参考信号中每个第二探测参考信号的配置信息,并根据该每个第二探测参考信号的配置信 息,采用该至少一个该第二波束发送该至少一个第二探测参考信号。
具体地,该网络设备可以向该终端设备发送多个探测参考信号中每个探测参考信号的配置参数,对每个探测参考信号进行配置。这种方式下,每个探测参考信号的配置参数都是网络设备确定并发送的,这样配置的发送波束具有灵活的发送方向。
作为一个可选的实施例,该方法还包括:
该网络设备向该终端设备发送波束图样的标识,该波束图样的标识用于指示该终端设备采用该波束图样中的至少一个第三波束发送至少一个第三探测参考信号,该至少一个第三探测参考信号与该至少一个第三波束一一对应;
该终端设备接收该网络设备发送的波束图样的标识,并根据该波束图样的标识,确定该至少一个第三波束;
该终端设备根据该第一探测参考信号的配置信息,采用该至少一个第三波束发送该至少一个第三探测参考信号。
具体地,该网络设备可以向该终端设备发送波束图样的标识,用于指示该终端设备采用该波束图样中的波束发送探测参考信号。应理解,网络设备与终端设备可以预先确定多个波束图样,以及该多个波束图样中每个波束图样所对应的波束图样的标识,在配置探测参考信号时,该网络设备可以直接发送其中某个波束图样的标识,终端设备即可采用该标识对应的波束图样中的波束发送对应的探测参考信号。例如,在一种具体实现中,该波束图样的标识如下表所示。
波束图样的标识 波束间距
0 (dH,0)
1 (0,dV)
2 (dH,dV)
在具体的实现中,网络设备可以基于终端设备的移动方向,为该终端设备配置波束图样。例如,该终端设备的移动方向可以分为水平方向和垂直方向,水平方向可以理解为该终端设备在地面或者与地面平行的平面上移动,垂直方向可以理解为该终端设备在与地面垂直的平面上移动。对于一个终端设备而言,可以仅沿着水平方向移动,可以仅沿着垂直方向移动,也可以既 沿着水平方向移动,又沿着垂直方向移动。如上表所示,若终端设备沿着水平方向移动,该网络设备可以发送标识为0的波束图样,即为该终端设备配置波束间距为(dH,0)的波束。若该终端设备沿着垂直方向移动,该网络设备可以发送标识为1的波束图样,即为该终端设备配置波束间距为(0,dV)的波束。若该终端设备沿着水平方向和垂直方向同时移动,该网络设备可以发送标识为2的波束图样,即为该终端设备配置波束间距为(dH,dV)的波束。应理解,波束图样还可以采用其他方式来标识,例如二进制比特串、或其他字符,本发明实施例对此不作限定。
在本发明实施例中,该终端设备接收该波束图样的标识之后,可以根据该波束图样的标识,确定该波束图样中的至少一个第三波束,并采用第一探测参考信号的配置信息对至少一个第三探测参考信号进行配置,采用至少一个第三波束发送该至少一个第三探测参考信号。
这样,在系统需要配置多个探测参考信号的时候,网络设备仅需要向终端设备发送一个探测参考信号的配置信息和波束图样的标识,由终端设备根据波束图样的标识采用相同的配置信息对波束图样中的波束进行配置,能够有效降低配置探测参考信号的信令开销。
作为一个可选的实施例,该方法还包括:
该网络设备向该终端设备发送波束数指示信息,该波束数指示信息用于指示该终端设备所采用的该波束图样中该第三波束的数量;
该终端设备根据该第一探测参考信号的配置信息,采用该至少一个第三波束发送该至少一个第三探测参考信号,包括:
该终端设备接收该网络设备发送的该波束数指示信息,并根据该第一探测参考信号的配置信息以及该波束数指示信息,采用与该数量的该第三波束发送该数量的该第三探测参考信号。
具体地,该网络设备还可以向该终端设备发送波束数指示信息,用于指示本次发送所采用波束图样中的波束的数量。由于可能存在信道强相关的情况,因此要测量全部信道并不需要发送所有的波束,可以由网络设备决定需要发送的波束的数量,从而能够减少不必要的信令开销。
应理解,该波束数指示信息中所指示的数量可以是该终端设备在同一时域资源或频域资源下能发送的波束的最大个数,也可以是由网络设备根据实际网络情况或所需要测量的信道情况而确定的发送波束的个数,本发明实施 例对此不作限定。
图3示出了本发明实施例提供的探测参考信号的发送方法的波束示意图。在图3中,网络设备和终端设备均采用多天线,因此探测参考信号的收发均采用波束赋形技术,在初始上下行同步建立之后,网络设备就可以确定发送波束与最佳接收波束之间的对应关系。因此,该网络设备通过配置信息指示该终端设备在至少一个发送波束上发送探测参考信号,该网络设备即可以在与该至少一个发送波束对应的最佳接收波束上接收该探测参考信号。以图3为例,终端设备采用波束2和3发送探测参考信号,则网络设备可以采用最佳接收波束4接收该探测参考信号。
作为一个可选的实施例,该第一探测参考信号的波束配置参数包括:该第一探测参考信号所占用的第一资源的标识和/或第一端口的标识,该第一资源和/或该第一端口对应该第一波束;
该终端设备根据该第一探测参考信号的配置信息,采用该第一波束发送该第一探测参考信号,包括:
该终端设备根据该第一资源的标识和/或该第一端口的标识,采用该第一资源和/或该第一端口,发送该第一探测参考信号。
具体地,该网络设备向该终端设备发送的波束配置参数中可以包括该第一探测参考信号所占用的第一资源的标识和/或第一端口的标识,这样,该终端设备就可以采用第一资源和/或第一端口发送该第一探测参考信号。
应理解,这里的资源是时频资源,可以为物理资源块(Physical Resource Block,简称为“PRB”)中的具体时频资源。PRB对应的是频域上若干个连续的载波,时域上是一个时隙的资源。终端设备可以采用一个物理资源块发送多个波束,因此,需要将每个物理资源块中的时频资源进行标识,实现资源与波束的一一对应。
此外,端口与波束也是一一对应的,例如,终端设备采用第一资源发送第一探测参考信号,即可形成第一波束,从而对应第一端口。还应理解,天线端口是一个逻辑上的概念,它与物理天线并没有一一对应的关系。天线端口与探测参考信号是一一对应的关系,如果通过多个物理天线来传输同一个探测参考信号,那么这些物理天线就对应同一个天线端口;而如果有两个不同的探测参考信号是从同一个物理天线中传输的,那么这个物理天线就对应两个独立的天线端口。
图4示出了本发明实施例提供的占用不同资源发送探测参考信号的示意图。在图4中,网络设备指示终端设备占用资源0发送第一探测参考信号,占用资源1发送第二探测参考信号,占用资源2发送第三探测参考信号。因此,第一探测参考信号的配置信息中资源标识为0,第二探测参考信号的配置信息中资源标识为1,第三探测参考信号的配置信息中资源标识为2。应理解,这仅仅是一种具体实现方式,本发明实施例对此不作限定。
图5示出了本发明实施例提供的占用不同端口发送探测参考信号的示意图。在图5中,网络设备可以指示该终端设备占用端口0、端口1、端口2分别发送第一探测参考信号、第二探测参考信号以及第三探测参考信号。因此,第一探测参考信号的配置信息中端口标识为0,第二探测参考信号的配置信息中端口标识为1,第三探测参考信号的配置信息中端口标识为2。应理解,这仅仅是一种具体实现方式,本发明实施例对此不作限定。
作为一个可选的实施例,该第一探测参考信号的波束配置参数还包括:该第一探测参考信号的预编码码本的标识;
该终端设备根据该第一探测参考信号的配置信息,采用该第一波束发送该第一探测参考信号,包括:
该终端设备根据该预编码码本的标识,采用该预编码码本对该第一探测参考信号进行编码,并采用该第一波束发送编码后的该第一探测参考信号。
具体地,应理解,预编码的目的是降低接收端消除信道间影响实现的复杂度,同时减少系统开销,最大提升系统的容量。当然,消除多个信道间的影响,可以在接收端侧实现,也可以通过改变发射端的发射方式,对发射信号进行预处理,辅助接收端消除信道间的影响,这种发射方式的改变就是通过预编码实现的。具体地,发射端可以有M根发射天线,接收端有N根接收天线,发射天线与接收天线之间信道可以用信道矩阵来表示。此外,预编码矩阵需要一个码本作为预编码矩阵,这个码本是由使得系统某一性能最优的预编码算法根据接收端估计的信道信息从协议规定的多个码本组成的码本集合中选择的。在接收端和发送端可以共享同一个已知码本集合,该码本集合包含多个预编码矩阵,接收端根据信道估计的信道矩阵以某一性能目标在该码本集合中选择使系统性能最优的预编码矩阵,再将其码本标识反馈给发送端,发送端可以根据该码本标识选择预编码矩阵进行预编码。采用这种方式仅仅需要发送预编码矩阵的码本标识,大大减少了信令开销,节约了带 宽,方便实际操作。
作为一个可选的实施例,该第一探测参考信号的配置信息还包括:该第一探测参考信号的频域配置参数和/或该第一探测参考信号的时域配置参数,其中,该第一探测参考信号的频域配置参数包括该第一探测参考信号的频域起始位置、在频域上相邻的探测参考信号之间的频域偏移量和该第一探测参考信号的频域占用带宽中的至少一个,该第一探测参考信号的时域配置参数包括该第一探测参考信号的时域起始位置、在时域上相邻的探测参考信号之间的时域偏移量和该第一探测参考信号的发送周期中的至少一个。
应理解,这里的频域起始位置和/或时域起始位置用于配置终端设备在发送第一探测参考信号时所采用的资源块,其中,时域起始位置可以为时域起始子帧或符号标识。上述频域起始位置和/或时域起始位置为真实发送探测参考信号的资源块的位置,在一种具体实现方式中,该频域起始位置可以由该网络设备指示的频域起始位置与一个频域偏移量计算得到,该时域起始位置可以由该网络设备指示的时域起始位置与一个时域偏移量计算得到,本发明实施例对此不作限定。
此外,频域偏移量和/或时域偏移量用于配置终端设备在获取了波束图样后,发送其他波束所采用的资源块,用于表示在频域上和/或时域上相邻探测参考信号之间的偏移量。
基于网络设备不同的配置,该终端设备可以采用时分方式发送探测参考信号,可以采用频分方式发送探测参考信号,也可以采用时分与频分混合的方式发送探测参考信号。
在一个具体地实施例中,若信道的秩信息为8,终端设备每一个探测参考信号的发送方向代表一维的秩信息,那么为了获取全部信道的信息,网络设备需要配置终端设备在8个方向上分别发送8个探测参考信号。具体地,在终端设备发送探测参考信号的时候,可以根据网络设备的指示采用如下三种方式。
图6示出了本发明实施例采用时分方式发送探测参考信号的示意图。根据网络设备的配置,在t0时刻,终端设备采用波束0和波束1发送两个探测参考信号,在t0+Toffset时刻,该终端设备采用波束2和波束3发送两个探测参考信号,在t0+2Toffset时刻,该终端设备采用波束4和波束5发送两个探测参考信号,在t0+3Toffset时刻,该终端设备采用波束6和波束7发送两个探测参 考信号,这里Toffset为网络设备为终端设备配置的时域偏移量。即在时分发送方式下,上述8个探测参考信号可以分别占用不同的时域资源,但占用相同的频域资源。
图7示出了本发明实施例采用频分方式发送探测参考信号的示意图。根据网络设备的配置,在频率为f0的频域资源下,终端设备采用波束0和波束1发送两个探测参考信号,在频率为f0+Foffset的频域资源下,该终端设备采用波束2和波束3发送两个探测参考信号,在频率为f0+2Foffset的频域资源下,该终端设备采用波束4和波束5发送两个探测参考信号,在频率为f0+3Foffset的频域资源下,该终端设备采用波束6和波束7发送两个探测参考信号,这里Foffset为网络设备为终端设备配置的频域偏移量。即在频分发送方式下,上述8个探测参考信号可以分别占用不同的频域资源,但占用相同的时域资源。
图8示出了本发明实施例采用时分与频分混合的方式发送探测参考信号的示意图。根据网络设备的配置,在t0时刻,终端设备采用波束0、波束1、波束4和波束5发送四个探测参考信号,其中,在频率为f0的频域资源下,终端设备采用波束0和波束1发送两个探测参考信号,在频率为f0+2Foffset的频域资源下,该终端设备采用波束4和波束5发送另两个探测参考信号。在t0+Toffset时刻,终端设备采用波束2、波束3、波束6和波束7发送四个探测参考信号,其中,在频率为f0+Foffset的频域资源下,终端设备采用波束2和波束3发送两个探测参考信号,在频率为f0+3Foffset的频域资源下,该终端设备采用波束6和波束7发送另两个探测参考信号。即在时分与频分混合的发送方式下,上述8个探测参考信号可以分别占用不同的频域资源和不同的时域资源。应理解,上述对时频资源的占用方式仅仅为示例性说明,本发明实施例并不限于此。
应理解,对于上述三种发送方式,发送波束数为2,该发送波束数可以由终端设备根据自身能力确定,也可以是网络设备配置给该终端设备的,若在网络设备没有向该终端设备配置该发送波束数,且该终端设备的能力足以在同一时频资源上发送完所有的波束的情况下,该终端设备可以直接采用上述波束0至波束7发送8个探测参考信号,从而测量完全部信道的质量,本发明实施例对此不作限定。
作为一个可选的实施例,该第一探测参考信号的配置信息还包括:该第一探测参考信号所采用的天线面板的标识;
该终端设备根据该第一探测参考信号的配置信息,采用该第一波束发送该第一探测参考信号,包括:
该终端设备根据该天线面板的标识以及该第一探测参考信号的配置信息,采用该天线面板以及该第一波束发送该第一探测参考信号。
具体地,网络设备与终端设备可以提前约定好至少一个天线面板以及每个天线面板的标识。在网络设备发送探测参考信号的配置信息时,可以将天线面板的标识发送给终端设备,用于指示该终端设备发送探测参考信号时具体所采用的天线面板。图9示出了天线面板的示意图。如图9所示,假设存在4个天线面板,该4个天线面板的标识分别为0、1、2、3。因此,该网络设备只需要将天线面板的标识发送给终端设备,该终端设备就可以采用对应的天线面板上的天线进行探测参考信号的发送。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
上文中结合图1至图9,详细描述了根据本发明实施例的探测参考信号的发送方法,下面将结合图10至图13,详细描述根据本发明实施例的探测参考信号的发送装置。
图10示出了本发明实施例提供的探测参考信号的发送装置300,该装置300包括:
确定单元310,用于确定第一探测参考信号的配置信息,该第一探测参考信号的配置信息包括该第一探测参考信号的波束配置参数,该第一探测参考信号的波束配置参数用于指示终端设备采用第一波束发送该第一探测参考信号;
发送单元320,用于向该终端设备发送该第一探测参考信号的配置信息。
因此,本发明实施例的探测参考信号的发送装置,通过网络设备向终端设备发送包括第一探测参考信号的波束相关参数的配置信息,使该终端设备直接根据该配置信息采用第一波束发送该第一探测参考信号,实现基于波束赋形的方式发送该第一探测参考信号,能够有效增强探测参考信号的覆盖性能,并降低相邻小区之间的干扰,从而提高用户体验。
可选地,该发送单元320还用于:向该终端设备发送至少一个第二探测参考信号中每个第二探测参考信号的配置信息,该每个第二探测参考信号的 配置信息分别包括该每个第二探测参考信号的波束配置参数,该每个第二探测参考信号的波束配置参数分别用于指示该终端设备采用与该每个第二探测参考信号对应的第二波束发送该每个第二探测参考信号,该至少一个第二探测参考信号与至少一个该第二波束一一对应。
可选地,该发送单元320还用于:向该终端设备发送波束图样的标识,该波束图样的标识用于指示该终端设备采用该波束图样中的至少一个第三波束发送至少一个第三探测参考信号,该至少一个第三探测参考信号与该至少一个第三波束一一对应。
可选地,该发送单元320还用于:向该终端设备发送波束数指示信息,该波束数指示信息用于指示该终端设备所采用的该波束图样中该第三波束的数量。
可选地,该确定单元310还用于:在确定第一探测参考信号的配置信息之前,根据该终端设备的移动方向,确定该第一波束。
可选地,该第一探测参考信号的波束配置参数包括:该第一探测参考信号所占用的第一资源的标识和/或第一端口的标识,该第一资源和/或该第一端口对应该第一波束。
可选地,该第一探测参考信号的波束配置参数还包括:该第一探测参考信号的预编码码本的标识。
可选地,该第一探测参考信号的配置信息还包括:该第一探测参考信号的频域配置参数和/或该第一探测参考信号的时域配置参数,其中,该第一探测参考信号的频域配置参数包括该第一探测参考信号的频域起始位置、在频域上相邻的探测参考信号之间的频域偏移量和该第一探测参考信号的频域占用带宽中的至少一个,该第一探测参考信号的时域配置参数包括该第一探测参考信号的时域起始位置、在时域上相邻的探测参考信号之间的时域偏移量和该第一探测参考信号的发送周期中的至少一个。
可选地,该第一探测参考信号的配置信息还包括:该第一探测参考信号所采用的天线面板的标识。
应理解,这里的装置300以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(Application Specific Integrated Circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的 功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置300可以具体为上述实施例中的网络设备,装置300可以用于执行上述方法实施例中与网络设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图11示出了本发明实施例提供的探测参考信号的发送装置400,该装置400包括:
接收单元410,用于接收网络设备发送的第一探测参考信号的配置信息,该第一探测参考信号的配置信息包括该第一探测参考信号的波束配置参数,该第一探测参考信号的波束配置参数用于指示所述装置采用第一波束发送该第一探测参考信号;
发送单元420,用于根据该第一探测参考信号的配置信息,采用该第一波束发送该第一探测参考信号。
因此,本发明实施例的探测参考信号的发送装置,通过网络设备向终端设备发送包括第一探测参考信号的波束相关参数的配置信息,使该终端设备直接根据该配置信息采用第一波束发送该第一探测参考信号,实现基于波束赋形的方式发送该第一探测参考信号,能够有效增强探测参考信号的覆盖性能,并降低相邻小区之间的干扰,从而提高用户体验。
可选地,该接收单元410还用于:接收该网络设备发送的至少一个第二探测参考信号中每个第二探测参考信号的配置信息,该每个第二探测参考信号的配置信息分别包括该每个第二探测参考信号的波束配置参数,该每个第二探测参考信号的波束配置参数分别用于指示该装置采用与该每个第二探测参考信号对应的第二波束发送该每个第二探测参考信号,该至少一个第二探测参考信号与至少一个该第二波束一一对应;该发送单元420还用于:根据该每个第二探测参考信号的配置信息,采用该至少一个该第二波束发送该至少一个第二探测参考信号。
可选地,该接收单元410还用于:接收该网络设备发送的波束图样的标识,该波束图样的标识用于指示该装置采用该波束图样中的至少一个第三波束发送至少一个第三探测参考信号,该至少一个第三探测参考信号与该至少一个第三波束一一对应;该装置还包括:确定单元,用于根据该波束图样的标识,确定该至少一个第三波束;该发送单元420还用于:根据该第一探测参考信号的配置信息,采用该至少一个第三波束发送该至少一个第三探测参考信号。
可选地,该接收单元410还用于:在根据该第一探测参考信号的配置信息,采用该至少一个第三波束发送该至少一个第三探测参考信号之前,接收该网络设备发送的波束数指示信息,该波束数指示信息用于指示该装置所采用的该波束图样中该第三波束的数量;该发送单元420具体用于:根据该第一探测参考信号的配置信息以及该波束数指示信息,采用与该数量的该第三波束发送该数量的该第三探测参考信号。
可选地,该第一探测参考信号的波束配置参数包括:该第一探测参考信号所占用的第一资源的标识和/或第一端口的标识,该第一资源和/或该第一端口对应该第一波束;该发送单元420具体用于:根据该第一资源的标识和/或该第一端口的标识,采用该第一资源和/或该第一端口,发送该第一探测参考信号。
可选地,该第一探测参考信号的波束配置参数还包括:该第一探测参考信号的预编码码本的标识;该发送单元420具体用于:根据该预编码码本的标识,采用该预编码码本对该第一探测参考信号进行编码,并采用该第一波束发送编码后的该第一探测参考信号。
可选地,该第一探测参考信号的配置信息还包括:该第一探测参考信号的频域配置参数和/或该第一探测参考信号的时域配置参数,其中,该第一探测参考信号的频域配置参数包括该第一探测参考信号的频域起始位置、在频域上相邻的探测参考信号之间的频域偏移量和该第一探测参考信号的频域占用带宽中的至少一个,该第一探测参考信号的时域配置参数包括该第一探测参考信号的时域起始位置、在时域上相邻的探测参考信号之间的时域偏移量和该第一探测参考信号的发送周期中的至少一个。
可选地,该第一探测参考信号的配置信息还包括:该第一探测参考信号所采用的天线面板的标识;该发送单元420具体用于:根据该天线面板的标识以及该第一探测参考信号的配置信息,采用该天线面板以及该第一波束发送该第一探测参考信号。
应理解,这里的装置400以功能单元的形式体现。这里的术语“单元”可以指应用特有集成电路(Application Specific Integrated Circuit,ASIC)、电子电路、用于执行一个或多个软件或固件程序的处理器(例如共享处理器、专有处理器或组处理器等)和存储器、合并逻辑电路和/或其它支持所描述的功能的合适组件。在一个可选例子中,本领域技术人员可以理解,装置400 可以具体为上述实施例中的终端设备,装置400可以用于执行上述方法实施例中与终端设备对应的各个流程和/或步骤,为避免重复,在此不再赘述。
图12示出了本发明实施例提供的探测参考信号的发送装置500。该装置500包括处理器510、发送器520、接收器530、存储器540和总线系统550。其中,处理器510、发送器520、接收器530和存储器540通过总线系统550相连,该存储器540用于存储指令,该处理器510用于执行该存储器540存储的指令,以控制该发送器520发送信号,并控制该接收器530接收信号。
其中,该处理器510用于确定第一探测参考信号的配置信息,该第一探测参考信号的配置信息包括该第一探测参考信号的波束配置参数,该第一探测参考信号的波束配置参数用于指示终端设备采用第一波束发送该第一探测参考信号;
该发送器520用于向该终端设备发送该第一探测参考信号的配置信息。
应理解,装置500可以具体为上述实施例中的网络设备,并且可以用于执行上述方法实施例中与网络设备对应的各个步骤和/或流程。可选地,该存储器540可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器510可以用于执行存储器中存储的指令,并且当该处理器执行存储器中存储的指令时,该处理器用于执行上述方法实施例的各个步骤和/或流程。
图13示出了本发明实施例提供的探测参考信号的发送装置600。该装置600包括接收器610、处理器620、发送器630、存储器640和总线系统650。其中,接收器610、处理器620、发送器630和存储器640通过总线系统650相连,该存储器640用于存储指令,该处理器620用于执行该存储器640存储的指令,以控制该接收器610接收信号,并控制该发送器630发送指令。
其中,该接收器610用于接收网络设备发送的第一探测参考信号的配置信息,该第一探测参考信号的配置信息包括该第一探测参考信号的波束配置参数,该第一探测参考信号的波束配置参数用于指示终端设备采用第一波束发送该第一探测参考信号;
该发送器630用于根据该第一探测参考信号的配置信息,采用该第一波束发送该第一探测参考信号。
应理解,装置600可以具体为上述实施例中的终端设备,并且可以用于 执行上述方法实施例中与终端设备对应的各个步骤和/或流程。可选地,该存储器640可以包括只读存储器和随机存取存储器,并向处理器提供指令和数据。存储器的一部分还可以包括非易失性随机存取存储器。例如,存储器还可以存储设备类型的信息。该处理器620可以用于执行存储器中存储的指令,并且该处理器执行该指令时,该处理器可以执行上述方法实施例中与终端设备对应的各个步骤和/或流程。
应理解,在本发明实施例中,该处理器可以是中央处理单元(Central Processing Unit,CPU),该处理器还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器执行存储器中的指令,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例中描述的各方法步骤和单元,能够以电子硬件、计算机软件或者二者的结合来实现,为了清楚地说明硬件和软件的可互换性,在上述说明中已经按照功能一般性地描述了各实施例的步骤及组成。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。本领域普通技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可 以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口、装置或单元的间接耦合或通信连接,也可以是电的,机械的或其它的形式连接。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本发明实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以是两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分,或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,简称为“ROM”)、随机存取存储器(Random Access Memory,简称为“RAM”)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (34)

  1. 一种探测参考信号的发送方法,其特征在于,包括:
    网络设备确定第一探测参考信号的配置信息,所述第一探测参考信号的配置信息包括所述第一探测参考信号的波束配置参数,所述第一探测参考信号的波束配置参数用于指示终端设备采用第一波束发送所述第一探测参考信号;
    所述网络设备向所述终端设备发送所述第一探测参考信号的配置信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送至少一个第二探测参考信号中每个第二探测参考信号的配置信息,所述每个第二探测参考信号的配置信息分别包括所述每个第二探测参考信号的波束配置参数,所述每个第二探测参考信号的波束配置参数分别用于指示所述终端设备采用与所述每个第二探测参考信号对应的第二波束发送所述每个第二探测参考信号,所述至少一个第二探测参考信号与至少一个所述第二波束一一对应。
  3. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送波束图样的标识,所述波束图样的标识用于指示所述终端设备采用所述波束图样中的至少一个第三波束发送至少一个第三探测参考信号,所述至少一个第三探测参考信号与所述至少一个第三波束一一对应。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送波束数指示信息,所述波束数指示信息用于指示所述终端设备所采用的所述波束图样中所述第三波束的数量。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,在所述网络设备确定第一探测参考信号的配置信息之前,所述方法还包括:
    所述网络设备根据所述终端设备的移动方向,确定所述第一波束。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一探测参考信号的波束配置参数包括:
    所述第一探测参考信号所占用的第一资源的标识和/或第一端口的标识,所述第一资源和/或所述第一端口对应所述第一波束。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一探测参考信号的波束配置参数还包括:
    所述第一探测参考信号的预编码码本的标识。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第一探测参考信号的配置信息还包括:
    所述第一探测参考信号的频域配置参数和/或所述第一探测参考信号的时域配置参数,
    其中,所述第一探测参考信号的频域配置参数包括所述第一探测参考信号的频域起始位置、在频域上相邻的探测参考信号之间的频域偏移量和所述第一探测参考信号的频域占用带宽中的至少一个,
    所述第一探测参考信号的时域配置参数包括所述第一探测参考信号的时域起始位置、在时域上相邻的探测参考信号之间的时域偏移量和所述第一探测参考信号的发送周期中的至少一个。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一探测参考信号的配置信息还包括:
    所述第一探测参考信号所采用的天线面板的标识。
  10. 一种探测参考信号的发送方法,其特征在于,包括:
    终端设备接收网络设备发送的第一探测参考信号的配置信息,所述第一探测参考信号的配置信息包括所述第一探测参考信号的波束配置参数,所述第一探测参考信号的波束配置参数用于指示终端设备采用第一波束发送所述第一探测参考信号;
    所述终端设备根据所述第一探测参考信号的配置信息,采用所述第一波束发送所述第一探测参考信号。
  11. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的至少一个第二探测参考信号中每个第二探测参考信号的配置信息,所述每个第二探测参考信号的配置信息分别包括所述每个第二探测参考信号的波束配置参数,所述每个第二探测参考信号的波束配置参数分别用于指示所述终端设备采用与所述每个第二探测参考信号对应的第二波束发送所述每个第二探测参考信号,所述至少一个第二探测参考信号与至少一个所述第二波束一一对应;
    所述终端设备根据所述每个第二探测参考信号的配置信息,采用所述至少一个所述第二波束发送所述至少一个第二探测参考信号。
  12. 根据权利要求10所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收所述网络设备发送的波束图样的标识,所述波束图样的标识用于指示所述终端设备采用所述波束图样中的至少一个第三波束发送至少一个第三探测参考信号,所述至少一个第三探测参考信号与所述至少一个第三波束一一对应;
    所述终端设备根据所述波束图样的标识,确定所述至少一个第三波束;
    所述终端设备根据所述第一探测参考信号的配置信息,采用所述至少一个第三波束发送所述至少一个第三探测参考信号。
  13. 根据权利要求12所述的方法,其特征在于,在所述终端设备根据所述第一探测参考信号的配置信息,采用所述至少一个第三波束发送所述至少一个第三探测参考信号之前,所述方法还包括:
    所述终端设备接收所述网络设备发送的波束数指示信息,所述波束数指示信息用于指示所述终端设备所采用的所述波束图样中所述第三波束的数量;
    所述终端设备根据所述第一探测参考信号的配置信息,采用所述至少一个第三波束发送所述至少一个第三探测参考信号,包括:
    所述终端设备根据所述第一探测参考信号的配置信息以及所述波束数指示信息,采用与所述数量的所述第三波束发送所述数量的所述第三探测参考信号。
  14. 根据权利要求10至13中任一项所述的方法,其特征在于,所述第一探测参考信号的波束配置参数包括:所述第一探测参考信号所占用的第一资源的标识和/或第一端口的标识,所述第一资源和/或所述第一端口对应所述第一波束;
    所述终端设备根据所述第一探测参考信号的配置信息,采用所述第一波束发送所述第一探测参考信号,包括:
    所述终端设备根据所述第一资源的标识和/或所述第一端口的标识,采用所述第一资源和/或所述第一端口,发送所述第一探测参考信号。
  15. 根据权利要求10至14中任一项所述的方法,其特征在于,所述第一探测参考信号的波束配置参数还包括:所述第一探测参考信号的预编码码本的标识;
    所述终端设备根据所述第一探测参考信号的配置信息,采用所述第一波束发送所述第一探测参考信号,包括:
    所述终端设备根据所述预编码码本的标识,采用所述预编码码本对所述第一探测参考信号进行编码,并采用所述第一波束发送编码后的所述第一探测参考信号。
  16. 根据权利要求10至15中任一项所述的方法,其特征在于,所述第一探测参考信号的配置信息还包括:所述第一探测参考信号的频域配置参数和/或所述第一探测参考信号的时域配置参数,
    其中,所述第一探测参考信号的频域配置参数包括所述第一探测参考信号的频域起始位置、在频域上相邻的探测参考信号之间的频域偏移量和所述第一探测参考信号的频域占用带宽中的至少一个,
    所述第一探测参考信号的时域配置参数包括所述第一探测参考信号的时域起始位置、在时域上相邻的探测参考信号之间的时域偏移量和所述第一探测参考信号的发送周期中的至少一个。
  17. 根据权利要求10至16中任一项所述的方法,其特征在于,所述第一探测参考信号的配置信息还包括:所述第一探测参考信号所采用的天线面板的标识;
    所述终端设备根据所述第一探测参考信号的配置信息,采用所述第一波束发送所述第一探测参考信号,包括:
    所述终端设备根据所述天线面板的标识以及所述第一探测参考信号的配置信息,采用所述天线面板以及所述第一波束发送所述第一探测参考信号。
  18. 一种探测参考信号的发送装置,其特征在于,包括:
    确定单元,用于确定第一探测参考信号的配置信息,所述第一探测参考信号的配置信息包括所述第一探测参考信号的波束配置参数,所述第一探测参考信号的波束配置参数用于指示终端设备采用第一波束发送所述第一探测参考信号;
    发送单元,用于向所述终端设备发送所述第一探测参考信号的配置信息。
  19. 根据权利要求18所述的装置,其特征在于,所述发送单元还用于:
    向所述终端设备发送至少一个第二探测参考信号中每个第二探测参考信号的配置信息,所述每个第二探测参考信号的配置信息分别包括所述每个第二探测参考信号的波束配置参数,所述每个第二探测参考信号的波束配置 参数分别用于指示所述终端设备采用与所述每个第二探测参考信号对应的第二波束发送所述每个第二探测参考信号,所述至少一个第二探测参考信号与至少一个所述第二波束一一对应。
  20. 根据权利要求18所述的装置,其特征在于,所述发送单元还用于:
    向所述终端设备发送波束图样的标识,所述波束图样的标识用于指示所述终端设备采用所述波束图样中的至少一个第三波束发送至少一个第三探测参考信号,所述至少一个第三探测参考信号与所述至少一个第三波束一一对应。
  21. 根据权利要求20所述的装置,其特征在于,所述发送单元还用于:
    向所述终端设备发送波束数指示信息,所述波束数指示信息用于指示所述终端设备所采用的所述波束图样中所述第三波束的数量。
  22. 根据权利要求18至21中任一项所述的装置,其特征在于,所述确定单元还用于:
    在所述确定第一探测参考信号的配置信息之前,根据所述终端设备的移动方向,确定所述第一波束。
  23. 根据权利要求18至22中任一项所述的装置,其特征在于,所述第一探测参考信号的波束配置参数包括:
    所述第一探测参考信号所占用的第一资源的标识和/或第一端口的标识,所述第一资源和/或所述第一端口对应所述第一波束。
  24. 根据权利要求18至23中任一项所述的装置,其特征在于,所述第一探测参考信号的波束配置参数还包括:
    所述第一探测参考信号的预编码码本的标识。
  25. 根据权利要求18至24中任一项所述的装置,其特征在于,所述第一探测参考信号的配置信息还包括:
    所述第一探测参考信号的频域配置参数和/或所述第一探测参考信号的时域配置参数,
    其中,所述第一探测参考信号的频域配置参数包括所述第一探测参考信号的频域起始位置、在频域上相邻的探测参考信号之间的频域偏移量和所述第一探测参考信号的频域占用带宽中的至少一个,
    所述第一探测参考信号的时域配置参数包括所述第一探测参考信号的时域起始位置、在时域上相邻的探测参考信号之间的时域偏移量和所述第一 探测参考信号的发送周期中的至少一个。
  26. 根据权利要求18至25中任一项所述的装置,其特征在于,所述第一探测参考信号的配置信息还包括:
    所述第一探测参考信号所采用的天线面板的标识。
  27. 一种探测参考信号的发送装置,其特征在于,包括:
    接收单元,用于接收网络设备发送的第一探测参考信号的配置信息,所述第一探测参考信号的配置信息包括所述第一探测参考信号的波束配置参数,所述第一探测参考信号的波束配置参数用于指示所述装置采用第一波束发送所述第一探测参考信号;
    发送单元,用于根据所述第一探测参考信号的配置信息,采用所述第一波束发送所述第一探测参考信号。
  28. 根据权利要求27所述的装置,其特征在于,所述接收单元还用于:
    接收所述网络设备发送的至少一个第二探测参考信号中每个第二探测参考信号的配置信息,所述每个第二探测参考信号的配置信息分别包括所述每个第二探测参考信号的波束配置参数,所述每个第二探测参考信号的波束配置参数分别用于指示所述装置采用与所述每个第二探测参考信号对应的第二波束发送所述每个第二探测参考信号,所述至少一个第二探测参考信号与至少一个所述第二波束一一对应;
    所述发送单元还用于:
    根据所述每个第二探测参考信号的配置信息,采用所述至少一个所述第二波束发送所述至少一个第二探测参考信号。
  29. 根据权利要求27所述的装置,其特征在于,所述接收单元还用于:
    接收所述网络设备发送的波束图样的标识,所述波束图样的标识用于指示所述装置采用所述波束图样中的至少一个第三波束发送至少一个第三探测参考信号,所述至少一个第三探测参考信号与所述至少一个第三波束一一对应;
    所述装置还包括:
    确定单元,用于根据所述波束图样的标识,确定所述至少一个第三波束;
    所述发送单元还用于:
    根据所述第一探测参考信号的配置信息,采用所述至少一个第三波束发送所述至少一个第三探测参考信号。
  30. 根据权利要求29所述的装置,其特征在于,所述接收单元还用于:
    在所述根据所述第一探测参考信号的配置信息,采用所述至少一个第三波束发送所述至少一个第三探测参考信号之前,接收所述网络设备发送的波束数指示信息,所述波束数指示信息用于指示所述装置所采用的所述波束图样中所述第三波束的数量;
    所述发送单元具体用于:
    根据所述第一探测参考信号的配置信息以及所述波束数指示信息,采用与所述数量的所述第三波束发送所述数量的所述第三探测参考信号。
  31. 根据权利要求27至30中任一项所述的装置,其特征在于,所述第一探测参考信号的波束配置参数包括:所述第一探测参考信号所占用的第一资源的标识和/或第一端口的标识,所述第一资源和/或所述第一端口对应所述第一波束;
    所述发送单元具体用于:
    根据所述第一资源的标识和/或所述第一端口的标识,采用所述第一资源和/或所述第一端口,发送所述第一探测参考信号。
  32. 根据权利要求27至31中任一项所述的装置,其特征在于,所述第一探测参考信号的波束配置参数还包括:所述第一探测参考信号的预编码码本的标识;
    所述发送单元具体用于:
    根据所述预编码码本的标识,采用所述预编码码本对所述第一探测参考信号进行编码,并采用所述第一波束发送编码后的所述第一探测参考信号。
  33. 根据权利要求27至32中任一项所述的装置,其特征在于,所述第一探测参考信号的配置信息还包括:所述第一探测参考信号的频域配置参数和/或所述第一探测参考信号的时域配置参数,
    其中,所述第一探测参考信号的频域配置参数包括所述第一探测参考信号的频域起始位置、在频域上相邻的探测参考信号之间的频域偏移量和所述第一探测参考信号的频域占用带宽中的至少一个,
    所述第一探测参考信号的时域配置参数包括所述第一探测参考信号的时域起始位置、在时域上相邻的探测参考信号之间的时域偏移量和所述第一探测参考信号的发送周期中的至少一个。
  34. 根据权利要求27至33中任一项所述的装置,其特征在于,所述第 一探测参考信号的配置信息还包括:所述第一探测参考信号所采用的天线面板的标识;
    所述发送单元具体用于:
    根据所述天线面板的标识以及所述第一探测参考信号的配置信息,采用所述天线面板以及所述第一波束发送所述第一探测参考信号。
PCT/CN2016/093430 2016-08-05 2016-08-05 探测参考信号的发送方法和装置 WO2018023646A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16911242.2A EP3487203B1 (en) 2016-08-05 2016-08-05 Transmission method and apparatus for sounding reference signal
PCT/CN2016/093430 WO2018023646A1 (zh) 2016-08-05 2016-08-05 探测参考信号的发送方法和装置
CN201680080805.9A CN108702634B (zh) 2016-08-05 2016-08-05 探测参考信号的发送方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/093430 WO2018023646A1 (zh) 2016-08-05 2016-08-05 探测参考信号的发送方法和装置

Publications (1)

Publication Number Publication Date
WO2018023646A1 true WO2018023646A1 (zh) 2018-02-08

Family

ID=61072527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/093430 WO2018023646A1 (zh) 2016-08-05 2016-08-05 探测参考信号的发送方法和装置

Country Status (3)

Country Link
EP (1) EP3487203B1 (zh)
CN (1) CN108702634B (zh)
WO (1) WO2018023646A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110944346A (zh) * 2018-09-21 2020-03-31 中国移动通信有限公司研究院 一种信号发送方法及设备
WO2020113246A1 (en) * 2020-02-14 2020-06-04 Futurewei Technologies, Inc. Sidelink beam sweeping
CN112292834A (zh) * 2018-06-27 2021-01-29 华为技术有限公司 选择传输模式的方法和通信装置
US20220124457A1 (en) * 2019-02-15 2022-04-21 Sony Group Corporation Methods and devices for coordinated uplink-based positioning

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115189851B (zh) * 2021-04-06 2023-12-26 展讯通信(上海)有限公司 频域资源位置确定方法与装置、终端和网络设备
WO2023038780A1 (en) * 2021-09-13 2023-03-16 Qualcomm Incorporated Reference signal security to combat eavesdropping and directional denial of service attacks
WO2023097625A1 (zh) * 2021-12-02 2023-06-08 北京小米移动软件有限公司 一种针对第二网络设备的波束管理方法、装置、设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103918196A (zh) * 2011-09-16 2014-07-09 三星电子株式会社 用于在无线通信系统中的波束分配的方法及装置
US20140211731A1 (en) * 2011-08-15 2014-07-31 Ntt Docomo, Inc. Radio base station, user terminal, radio communication system and radio communication method
CN104955061A (zh) * 2014-03-28 2015-09-30 华为技术有限公司 波束选择方法及基站
CN105453629A (zh) * 2013-08-05 2016-03-30 三星电子株式会社 在无线通信系统中用于通过波束分组发送和接收参考信号的方法和装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102088303B (zh) * 2010-02-11 2014-11-05 电信科学技术研究院 Srs信号发送方法及其触发方法以及设备
CN103945541B (zh) * 2010-02-11 2017-09-19 电信科学技术研究院 触发srs信号发送的方法以及设备
CN103905104B (zh) * 2012-12-28 2017-12-19 中兴通讯股份有限公司 一种根据探测参考信号的多天线发送方法及终端及基站

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140211731A1 (en) * 2011-08-15 2014-07-31 Ntt Docomo, Inc. Radio base station, user terminal, radio communication system and radio communication method
CN103918196A (zh) * 2011-09-16 2014-07-09 三星电子株式会社 用于在无线通信系统中的波束分配的方法及装置
CN105453629A (zh) * 2013-08-05 2016-03-30 三星电子株式会社 在无线通信系统中用于通过波束分组发送和接收参考信号的方法和装置
CN104955061A (zh) * 2014-03-28 2015-09-30 华为技术有限公司 波束选择方法及基站

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112292834A (zh) * 2018-06-27 2021-01-29 华为技术有限公司 选择传输模式的方法和通信装置
CN110944346A (zh) * 2018-09-21 2020-03-31 中国移动通信有限公司研究院 一种信号发送方法及设备
US20220124457A1 (en) * 2019-02-15 2022-04-21 Sony Group Corporation Methods and devices for coordinated uplink-based positioning
WO2020113246A1 (en) * 2020-02-14 2020-06-04 Futurewei Technologies, Inc. Sidelink beam sweeping

Also Published As

Publication number Publication date
EP3487203A1 (en) 2019-05-22
EP3487203B1 (en) 2020-12-16
CN108702634B (zh) 2021-01-15
EP3487203A4 (en) 2019-07-17
CN108702634A (zh) 2018-10-23

Similar Documents

Publication Publication Date Title
US11382105B2 (en) Methods and apparatuses for receiving and transmitting configuration information and communication system
CN110637495B (zh) 无线通信系统中通过波束发送和接收信号的方法及用于该方法的装置
WO2018023646A1 (zh) 探测参考信号的发送方法和装置
US11139936B2 (en) Data transmission method, terminal device, and network device
US10009083B2 (en) Communication method, base station, and user equipment
WO2018082680A1 (zh) 信号传输方法和装置
US11395267B2 (en) Wireless communication method, terminal device, and network device
US11595108B2 (en) Wireless communication method, network device, and terminal device
CN117998381A (zh) 用于通信波束恢复的系统和方法
CN107889220B (zh) 通信方法、基站和终端设备
US20180227890A1 (en) Method for transmitting control information in wireless communications system, base station, and user equipment
CN109479296B (zh) 信息传输方法、接入网设备和终端设备
WO2021059162A1 (en) Methods and apparatuses for channel state information configuration and reporting for multi-transmission reception point operation
WO2018107363A1 (zh) 传输信号的方法、终端设备和网络设备
US20190349049A1 (en) Downlink-beam adjustment method and apparatus
CN108631836B (zh) 数据传输方法和装置
WO2018059343A1 (zh) 信号传输方法和装置
WO2019100905A1 (zh) 数据传输方法、终端设备和网络设备
WO2018059470A1 (zh) 传输信息的方法和设备
US10411778B1 (en) Antenna diversity for beacon broadcasting in directional wireless network
US20210152219A1 (en) Method and apparatus for millimeter-wave mimo mode selection
WO2019019055A1 (zh) 传输数据的方法、终端设备和网络设备
US20190280786A1 (en) Method for transmitting measurement signal and apparatus
CN111726815B (zh) 数据传输方法和装置
CN107733540B (zh) 测量的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016911242

Country of ref document: EP

Effective date: 20190213