WO2018225889A1 - 수처리 시스템 - Google Patents

수처리 시스템 Download PDF

Info

Publication number
WO2018225889A1
WO2018225889A1 PCT/KR2017/006747 KR2017006747W WO2018225889A1 WO 2018225889 A1 WO2018225889 A1 WO 2018225889A1 KR 2017006747 W KR2017006747 W KR 2017006747W WO 2018225889 A1 WO2018225889 A1 WO 2018225889A1
Authority
WO
WIPO (PCT)
Prior art keywords
sewage
disposed
water
tank
chamber
Prior art date
Application number
PCT/KR2017/006747
Other languages
English (en)
French (fr)
Inventor
이광희
안남우
Original Assignee
경상북도 경주시
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상북도 경주시 filed Critical 경상북도 경주시
Publication of WO2018225889A1 publication Critical patent/WO2018225889A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5227Processes for facilitating the dissolution of solid flocculants in water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • B01D21/08Settling tanks with single outlets for the separated liquid provided with flocculating compartments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/18Construction of the scrapers or the driving mechanisms for settling tanks
    • B01D21/20Driving mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/24Feed or discharge mechanisms for settling tanks
    • B01D21/2433Discharge mechanisms for floating particles
    • B01D21/2438Discharge mechanisms for floating particles provided with scrapers on the liquid surface for removing floating particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • B01D21/265Separation of sediment aided by centrifugal force or centripetal force by using a vortex inducer or vortex guide, e.g. coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/30Control equipment
    • B01D21/34Controlling the feed distribution; Controlling the liquid level ; Control of process parameters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/24Treatment of water, waste water, or sewage by flotation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5209Regulation methods for flocculation or precipitation

Definitions

  • the present invention relates to a water treatment system, and more specifically, to form a swirling or circulating water flow in the sewage into which the flocculant is injected, thereby maximizing the flocculation efficiency between the flocculant and the suspended solids and floating the suspended solids using fine bubbles.
  • a water treatment system that can be effectively removed.
  • a sewage treatment process consisting of a rapid stirring bath, a slow stirring bath and a floating separation tank is used to purify sewage (wastewater) containing various pollutants.
  • flocculants such as alum and sewage are mixed to finely flocculate the fine suspended matter first and discharged into a slow agitation bath.
  • the suspended material is first agglomerated by the rapid agitation bath. This flocculates to a size capable of separating the flotation in the flotation separation tank and discharges it to the flotation separation tank disposed at the rear end.
  • a separate mechanical stirrer is added to the sewage flowed into the sewage flowed into the sewage into the sewage to form a circulating water flow in the agitator tank so that the agglomeration is induced by contact between the particles of the suspended matter.
  • Patent Document 1 Korean Laid-Open Patent Publication No. 2000-0017670 (2000. 04.06), high speed flocculation sedimentation wastewater treatment method.
  • Patent Document 2 Registered Patent Publication No. 10-0941387 (2010.02.02), an integrated continuous batch flocculation apparatus capable of removing sewage and wastewater total phosphorus (TP) and organic matter.
  • Patent Document 3 Korean Unexamined Patent Publication No. 2012-0138025 (2012.12.24), floating separation device.
  • the present invention has been made to solve the above-mentioned problems, and an object of the present invention is to dissolve the flocculant completely by swirling the sewage into which the flocculant has been injected in the flocculation chamber to completely dissolve the flocculant and the flocculant dissolved in a short time. To provide a water treatment system that maximizes.
  • Another object of the present invention is to separate the interior of the condensation chamber into a plurality of agglomeration tank divided into upper and lower, and the sewage of each agglomeration tank is provided with a structure that the circulation flow is generated while flowing into the interior of the adjacent agglomeration tank disposed in the lower portion by the fall
  • the present invention provides a water treatment system in which fine suspended matter contained in sewage is circulated internally by water flow and aggregates to a certain size by contacting each other with no power of stirring.
  • Another object of the present invention is to purify in a short time by removing the suspended matter particles introduced in the state of maintaining a saturated bubble state by limiting the temporary outflow of microbubbles step by step through the partition structure installed in multiple stages with respect to the flow direction of sewage
  • the treatment is also possible to provide a water treatment system using a microbubble that can minimize the suspended matter discharged in the treated water.
  • the first condensation chamber 210 is formed with a watertight inner space 211 is provided with a sewage inlet 212 and the sewage discharge port 213, respectively, Rotating shaft 220 vertically rotatable in the space 211 and formed with a coagulant discharge port 221 for discharging the coagulant supplied from the outside into the inner space 211, and is mounted around the rotary shaft 220 to rotate together
  • a high speed aggregating apparatus 200 including a stirring blade unit 230 for forming a vortex
  • a second agglomeration chamber 310 formed with a tight inner space and a sewage inlet 311 connected to the sewage outlet 213 of the high speed aggregator 200 and a sewage outlet 312 formed at the bottom;
  • the partition wall 320 is disposed in the second agglomeration chamber 310 in a transverse direction and partitions an inner space into a plurality of agglomeration tanks 321 divided up and down, and has a communication hole 322 open up and down
  • a non-powered flocculation apparatus 300 including a turbulence preventing plate 330 horizontally disposed at a lower position of each communication hole 322; And a watertight inlet is formed in one side and a sewage inlet 412 connected to the sewage outlet 312 of the non-powered flocculation device 300 on one side thereof, and a treatment water outlet 413 is formed on the other side of the inner space.
  • a reaction chamber which forms a plurality of bubble reaction tanks 416 while the plurality of lower partitions 414 extending upward from the upper portion and the plurality of upper partitions 415 extending downward from the top are alternately disposed at the lower and upper portions ( And a scum skimmer 400 including a bubble generator 420 for generating microbubbles having a micro or nano size and supplying them to the internal space.
  • the high speed aggregating apparatus 200 is formed in an upright disposed plate shape, one side of which is fixedly mounted on an inner wall of the first aggregating chamber 210, and a plurality of the high speed aggregating devices are spaced apart along the inner wall circumference of the first aggregating chamber 210. It may further include a water blocking plate 240 disposed.
  • the sewage inlet 212 of the high speed aggregation device 200 is connected to the other end of the sewage supply pipe 250, one end of which is connected to the flow control tank 110, the high speed aggregation device 200 is the sewage supply pipe 250 ) Or a sewage sensor 260 which measures the concentration of sewage which is disposed and is supplied to the sewage inlet 212, and the flocculant supplied to the high speed aggregator 200 according to a detection signal of the sewage sensor 260.
  • the control unit 500 for adjusting the supply amount of may be further included.
  • the high speed agglomeration apparatus 200 is connected to the upper end of the rotary shaft 220 rotary joint 270 for supplying a coagulant to the upper end of the coagulant feed pipe 222 extending up and down inside the rotating shaft 220 is rotated ) May be further included.
  • the non-powered flocculation device 300 the inclined portion 331 is inclined in the form of gradually upward toward the outside of the end circumference of the turbulence preventing plate 330 may be formed.
  • an inclined surface 323 that is inclined gradually toward the outside toward the outside of the partition 320 may be formed, or the partition 320 may be formed in an inclined shape that gradually increases toward the outside from the center portion. .
  • the non-powered flocculation device 300 may further include a pressure control tube 340 disposed above the second flocculation chamber 310 and discharging air in the inner space to the outside according to a control signal.
  • the control unit 500 for controlling to maintain the set value by driving control of the pressure control pipe 340 may further include a.
  • the scum skimmer 400 is disposed above the reaction chamber 410, the outer surface by rotating the rotating chain 432 equipped with a plurality of skimmer 431 each bubble by the microbubble It may further include a floating sludge discharge part 430 to scrape off the floating sludge on the top of the reaction tank 416 to discharge to the outside.
  • the round portion 440 is disposed on the upper end of the upper partition 415 and has a concave upward concave shape to guide the transfer of the suspended solids conveyed from the upper side of the bubble reaction tank 416 adjacent by the skimmer 431. It may further include.
  • the scum skimmer 400 is protruded upwardly outwardly at an upper end of one side wall of the reaction chamber 410 to contact the surface of the skimmer 431 pivoting at one side end position of the reaction chamber 410. While removing the moisture on the skimmer 431 may further include a water removal unit 450.
  • reaction chamber 410 is formed with a microbubble inlet 421 for injecting the microbubble supplied to one side into the inner space, the other side passes through each bubble reaction tank 416 and the treated water outlet 413
  • a treatment water supply port 424 is formed to discharge a portion of the treatment water moving toward the bubble generator
  • the bubble generator 420 is a treatment water transfer line connected between the treatment water supply port 424 and the fine bubble inlet 421.
  • the scum skimmer 400 generates a microbubble in the treated water to be supplied and discharges the generated microbubbles to the microbubble inlet 421, the scum skimmer 400, the scum skimmer 400 is the treated water transfer line
  • a plurality of strainers 460 disposed between the bubble generator 420 and the treated water supply port 424 on the 470 to remove foreign matters from the treated water supplied to the bubble generator 420, and each strainer 460.
  • each separation line 471 is provided with a solenoid valve 480 for opening and closing the pipe in accordance with the control signal, respectively, the pressure gauge 422 provided in the bubble generator 420
  • the control unit 500 for adjusting the opening and closing state of each sol valve 480 according to the digital signal value of the; may further include.
  • the upper end of the upper partition 415 disposed at the rear end of the plurality of the upper partition 415 is upward in a relatively longer length than the turning height of the skimmer 431 turning at the distal position of the rotating chain 432 Sludge leakage prevention wear 490 that is extended and bent roundly along a turning curve of the skimmer 431 may be mounted.
  • the flocculant can be completely dissolved to maximize the flocculation efficiency between the flocculant and the suspended solids dissolved in a short time.
  • the interior of the condensation chamber is partitioned into a plurality of agglomeration tanks divided into upper and lower sides, and the sewage of each agglomeration tank flows into an adjacent agglomeration tank disposed below by a drop, so that a circulating water flow is generated. Fine floating materials contained in sewage with no power are circulated inside by water flow, and they can come into contact with each other to aggregate to a certain size, thereby reducing equipment cost and maintenance cost.
  • the bulkhead structure installed in multiple stages with respect to the flow direction of sewage, it restricts the temporary outflow of bubbles step by step and removes the suspended matter particles in the state of maintaining the saturated bubble state. Minimizing suspended solids in water can be minimized.
  • FIG. 1 is a schematic diagram showing the overall configuration of a water treatment system according to a preferred embodiment of the present invention
  • Figure 2 is a side cross-sectional view showing the configuration of a high speed aggregation apparatus according to a preferred embodiment of the present invention
  • Figure 3 is a side cross-sectional view showing the configuration of a non-powered flocculation device according to a preferred embodiment of the present invention
  • Figure 4 is a side cross-sectional view showing the configuration of a scheme skimmer according to a preferred embodiment of the present invention
  • Figure 5 is a schematic diagram for explaining the principle of operation in which a plurality of strainers are used in accordance with a preferred embodiment of the present invention
  • Figure 6 is a side cross-sectional view showing the configuration of an ozone treatment apparatus according to a preferred embodiment of the present invention.
  • 'Sewage' referred to below is wastewater containing various pollutants, including sewage overflow (CSO), water-bloom, live sewage, factory wastewater, leachate, manure, and livestock wastewater. Means.
  • 'floating material' included in the sewage referred to below refers to various kinds of contaminants including chemical sludge, high concentration organic matter, as well as contaminants contained in large quantities in rainwater.
  • 'coagulation' refers to a phenomenon in which suspended solids are entangled by contact with each other to form a large mass. It is to be understood that the description is not to be distinguished from the meaning of 'flocculation'.
  • the high speed agglomeration device 200, the non-powered flocculation device 300, and the scum skimmer 400 are disposed in stages along a treatment transport direction of sewage. It is possible to maximize the purification efficiency of sewage.
  • the high speed aggregator 200 swirls the sewage introduced into the first agglomeration chamber 210 to replace the function of the conventional rapid stirring tank, thereby completely dissolving the flocculant and dissolving the flocculant and the sewage in a short time.
  • a device for maximizing the flocculation efficiency between the suspended solids as shown in FIG.
  • a watertight inner space 211 is formed, and a first agglomeration chamber 210 having a sewage inlet 212 and a sewage outlet 213, respectively;
  • the rotary shaft 220 is disposed vertically rotatably in the inner space 211 and has a coagulant discharge port 221 for discharging the coagulant supplied from the outside into the inner space 211, and is mounted around the rotary shaft 220. Rotating together and includes a stirring blade 230 to form a vortex.
  • the first agglomeration chamber 210 is formed in a tank type in which the inside is sealed so that the odor of the introduced sewage does not leak to the outside, and is preferably made of a material having excellent corrosion resistance and wear resistance, such as sus.
  • the sewage flowing into the lower portion of the first agglomeration chamber 210 is swirled and swirled in the chamber by the stirring blade unit 230, and at the same time, a coagulant is supplied through the coagulant discharge port 221 to the coagulant dissolved in the process.
  • the flocculated suspended solids are discharged to the sewage outlet 213 together with the sewage, and the sewage flowing into the sewage inlet 212 may be added in a mixed form with a coagulant to double the coagulation effect.
  • the sewage discharge port 213 may be connected to the sewage supply pipe 290 to supply the sewage discharged to the sewage inlet 311 of the non-powered flocculation device 300.
  • the rotating shaft 220 is a rotating shaft for rotating the stirring blade 230 for swirling the introduced sewage and flocculant in the second agglomeration chamber 210, the coagulant supplied therein the flocculant discharge port 221 Coagulant conveying pipe 222 for conveying up to) is arranged extending up and down.
  • the rotation shaft 220 is rotatably supported by a rotation means such as a bearing on the upper end of the first agglomeration chamber 210, the driving motor for rotating the drive according to the control signal of the control unit 500 to be described later Receives rotational force from 280 to rotate.
  • the driving motor 280 may be electrically connected to an inverter (not shown) to control the rotation speed and the rotation direction of the rotating shaft 220 by adjusting the frequency of the driving power through the inverter.
  • the stirring blade 230 is the first stirring blade 231 and the first stirring on the rotating shaft 220, the plurality of radially arranged in the upper position of the rotary shaft 220 in the first agglomeration chamber (210)
  • a plurality of stirring blades 233 are arranged radially in the lower position of the wing 231, each stirring blades (231, 233) is formed with a side opening through-holes (232, 234), each stirring blade (231, 232)
  • the high speed aggregator 200 is formed in an upright disposed plate shape, one side is fixedly mounted on the inner wall of the first agglomeration chamber 210 and a plurality of the agglomerates are spaced apart along the inner wall circumference of the first agglomeration chamber 210.
  • the water barrier plate 240 may be further included.
  • the water blocking plate 240 may form a vortex in a direction opposite to the swirling vortex direction by friction with the sewage rotating together in the first agglomeration chamber 210 according to the rotation of the stirring blade 230. Cohesion efficiency can be further increased.
  • the sewage inlet 212 of the high speed aggregation device 200 is connected to the other end of the sewage supply pipe 250, one end of which is connected to the flow control tank 110, the high speed aggregation device 200 is the sewage supply pipe 250 Or a sewage sensor 260 which is disposed at the sewage inlet 212 and measures the concentration of sewage supplied.
  • control unit 500 for centrally controlling the operation of the water treatment system adjusts the supply amount of the flocculant supplied to the high speed aggregator 200 according to the detection signal of the sewage sensor 260, the appropriate amount required to flocculate the suspended matter while the coagulant can be added, the amount of coagulant can be minimized.
  • the high speed agglomeration apparatus 200 is connected to the upper end of the rotary shaft 220, the rotary joint 270 for supplying the coagulant to the upper end of the coagulant feed pipe 222 extending up and down inside the rotating shaft 220 is rotated ) Can be further included, so that only the corresponding parts can be replaced when fixing occurs, which makes maintenance easy.
  • the flow rate adjusting tank 110 and the coagulant tank 120 are disposed at the front end of the high-speed aggregator 200 so that the sewage to be purified and the coagulant required to coagulate the sewage can be supplied.
  • a coagulant pump 121 driven according to a control signal of the controller 500 may be disposed to control a supply amount of the coagulant supplied to the high speed agglomeration device 200.
  • the non-powered flocculation device 300 divides the inside of the second agglomeration chamber 310 into a plurality of agglomeration tanks 321 divided up and down so as to replace the functions of the conventional mechanical slow agitation tank, As the sewage flows into the inner condensation tank 321 disposed below by the drop, the circulation water flow is generated, so that the fine suspended matter contained in the sewage is circulated inside by the water flow without any stirring power. And make contact with each other to aggregate to a certain size.
  • a watertight internal space is formed, and a sewage inlet 311 connected to the sewage outlet 213 of the high speed aggregator 200 is formed at an upper portion thereof, and a sewage outlet 312 is formed at a lower portion thereof.
  • the partition wall 320 in which the ball 322 is formed, and the turbulence prevention plate 330 horizontally disposed at the lower position of each communication hole 322.
  • the second agglomeration chamber 310 is formed in a closed tank type so that the odor of the introduced sewage does not leak to the outside, and is made of a material having excellent corrosion resistance and abrasion resistance such as sus.
  • the three agglomeration tanks 321 are illustrated as being formed inside the chamber by the two partition walls 320, but one or three or more partition walls 320 are disposed so that two or four or more agglomeration tanks 321 are provided. May be formed.
  • the sewage flowing into the sewage inlet 311 disposed at the upper end of the second agglomeration chamber 310 flows into the first agglomeration tank 321 partitioned by the first partition wall 320, and the sewage introduced into the communication hole 322.
  • the sewage introduced into the second flocculation tank 321 is discharged to the third flocculation tank 321 through the communication hole 322 and finally at the bottom of the second flocculation chamber 310 It is discharged to the outside through the formed sewage outlet 312.
  • the sewage flowing into the upper portion of each agglomeration tank through the sewage inlet 311 or the communication hole 322 is directed downward by a drop in the central position. Falling water flow is formed, and the sewage that is in contact with the bottom surface of each flocculation tank 321 while falling falls along with the inner wall surface of the flocculation tank 321 while moving along the bottom surface and rises along the wall surface.
  • the circulating water flows are generated at both sides of the central part in each of the agglomeration tanks 321.
  • the suspended solids contained in the sewage introduced from the outside may be aggregated to have a lump form larger than the size when they are brought into contact with each other while being circulated together by the circulating water flow generated in the first coagulation tank 321.
  • the suspended solids in the state becomes larger while passing through the second flocculation tank 321 and the third flocculation tank 321.
  • the inclined portion 331 is formed to be inclined upward gradually toward the outside of the end circumference of the turbulence blocking plate 330, the inflow of sewage stagnated on the turbulence blocking plate 330 It can increase the time and increase the drop width to further increase the cohesive efficiency.
  • an inclined surface 323 that is inclined gradually toward the outside toward the outside of the partition 320 is formed, or the partition 320 is formed in an inclined shape that gradually increases toward the outside from the center portion.
  • the sludge may be guided to move toward the communication hole 322 without stagnation in the upper surface of the partition wall 320.
  • a pressure control pipe 340 for discharging air in the inner space to the outside of the second agglomeration chamber 310 is disposed, the control unit 500 is the internal pressure of the second agglomeration chamber 310 When the set value is exceeded, the pressure regulating pipe 340 is driven to adjust to maintain the set value.
  • the sewage discharge pipe 360 is connected between the sewage discharge port 312 and the sewage inlet 412 of the scum skimmer 400, the sewage discharge pipe 360 of the sewage discharged from the lower outlet 312
  • the sewage discharge pipe 360 of the sewage discharged from the lower outlet 312 By forming a bent portion that is bent in a position opposite to the discharge direction is discharged through the sewage discharge port 312 while hitting the inner wall of the sewage discharge pipe 360 can minimize the separation of the flocculated state of the suspended solids contained in the sewage have.
  • the scum skimmer 400 purifies in a short time by removing the floating suspended matter particles in a state of maintaining a saturated bubble state by limiting the temporary outflow of bubbles step by step through the partition structure installed in multiple stages with respect to the flow direction of the lower portion In addition, it is possible to minimize the suspended solids contained in the treated water discharged.
  • the scum skimmer 400 is a watertight internal space is formed and one side is formed sewage inlet 412 connected to the sewage outlet 312 of the non-powered flocculation device 300 and the other side treated water outlet 413 And a plurality of lower bulkheads 414 extending upwardly from the bottom and a plurality of upper partitions 415 extending downwardly from the top are alternately disposed at the bottom and the top of the plurality of bubble reaction tanks.
  • the reaction chamber 410 is a chamber that provides a reaction space for floating by removing the suspended substances contained in the sewage while the sewage and microbubbles are supplied to the inside, and a predetermined internal space in which floating separation is formed is formed.
  • the sewage discharged from the non-powered flocculation device 300 is supplied to the sewage inlet 412 and the purified sewage is discharged to the outside through the treated water discharge port 413 disposed at the other side.
  • three bubble reactors 416 are formed by a partition wall structure in which three lower partition walls 414 and three upper partition walls 415 are alternately arranged in the reaction chamber 410 with respect to the flow direction of sewage.
  • two bubble reaction tanks or four or more bubble reaction tanks may be formed in consideration of the purification efficiency according to the concentration of suspended solids contained in the sewage and the supply of fine bubbles.
  • the sewage inlet 412 is equipped with a spray nozzle 419 for spraying the sewage introduced therein, and one spray nozzle 419 is shown in the drawing, but a plurality of spray nozzles 419 are shown.
  • the bubble reaction tank 416 is spaced apart in the width direction and each injection nozzle 419 is connected to the sewage inlet 412 and the branch pipe, respectively, it is possible to uniformly inject the sewage into the bubble reaction tank 416 as a whole. .
  • sewage introduced through the sewage inlet 412 may include suspended solids of a size that is not injured by the microbubbles. May not be discharged.
  • an outlet 418 is formed at the bottom of each bubble reaction tank 416 to discharge the precipitated sludge.
  • slanted surfaces of 45 degrees or more may be provided on both sides of the discharge port 418 to allow rapid sludge discharge.
  • the residence time is shorter than the existing precipitation method (sedimentation time), so it is excellent in responding to the rapid increase in the amount of processing and the required area required for installation.
  • the flotation method uses a large amount of flocculant to form larger suspended matter particles for sedimentation, whereas the flotation method can achieve sufficient flotation efficiency even with a smaller suspended particle size.
  • the flotation method due to the microbubbles has excellent interfacial adsorption due to the use of micro or nano-sized microbubbles having a diameter of 30 or less in place of the air bubbles having a millimeter size of the existing air flotation method.
  • the second feature is that in the case of microbubbles, the bubble rising speed in water is about 1 to 3mm / min, and it stays in water for about 1 hour for as long as 15 minutes. There is an advantage.
  • the third feature is that in the case of microbubbles (microbubbles or nanobubbles), the bubble surface area is large, so the oxygen dissolution rate is excellent, and the residual microbubbles are completely dissolved in water after flotation and oversaturated the dissolved oxygen (DO) concentration in the treated water. It has the advantage that it can minimize the effects of aquatic ecosystems when treated water flows into the water.
  • the fourth feature is that in the case of microbubbles, it generates OH * groups by the crushing effect of bubbles, and has the function of removing organic substances, removing odors and sterilization, reducing odors in treated water and sludge, and sterilizing E. coli. Has an effect.
  • the scum skimmer 400 is disposed above the reaction chamber 410, the outer surface by rotating the rotating chain 432 equipped with a plurality of skimmer 431, each bubble by the microbubble
  • the flocculating sludge discharge part 430 is provided to scrape off the flotation sludge on the upper end of the reaction tank 416 and discharge the scrubbing sludge to the sludge discharge port 411 disposed above the one end of the reaction chamber 410.
  • the rotating chain 432 is connected in a caterpillar form between the rotary roll 433 spaced apart on both sides of the reaction chamber 410, and the rotary roll 433 to the control signal of the control unit 500
  • a driving motor (not shown) that rotates along the shaft is axially connected to rotate the skimmer 431 by the rotational force of the driving motor.
  • the upper portion of the upper partition 415 has a rounded concave hemispherical shape and a round part 440 for guiding the transport of the suspended solids conveyed from the upper side of the bubble reaction tank 416 adjacent by the skimmer 431. ) Is arranged to minimize the phenomenon that the floating sludge that is moved laterally while being pressed by the skimmer 431 is caught on the pointed top of the upper partition 415.
  • the upper end of the one side wall surface of the reaction chamber 410 is formed to be projected upwardly outwardly in contact with the surface of the skimmer 431 pivoting at one side end position of the reaction chamber 410, the moisture on the skimmer 431 Moisture removal unit 450 to scrape off the arrangement is disposed, it is possible to prevent the unnecessary discharge of water to the sludge discharge port 411 and thus can discharge the concentrated sludge.
  • the upper end of the upper partition 415 disposed at the rear end of the plurality of upper partitions 415 is extended upward to a relatively longer length than the height of the skimmer 431 turning at the distal position of the rotating chain 432
  • Foreign matters such as the inflow to the treated water outlet 413 can be prevented from being discharged together with the sewage.
  • the reaction chamber 410 is formed with a microbubble inlet 421 for injecting the microbubble supplied to one side into the inner space, the other side passes through each bubble reaction tank 416 and processing
  • a treated water supply port 424 is formed to discharge a portion of the treated water moving toward the water outlet 413, and the bubble generator 420 is disposed between the treated water supply port 424 and the fine bubble inlet 421.
  • the microbubbles are generated in the treated water disposed on the connected process water transfer line 470 and discharged to the microbubble inlet 421.
  • the scum skimmer 400 is disposed between the bubble generator 420 and the treated water supply port 424 on the treated water transfer line 470 to remove foreign substances in the treated water supplied to the bubble generator 420.
  • a plurality of strainers 460, each strainer 460 is connected to the treated water transfer line 470 by a different branch line 471.
  • a separate solenoid valve 480 is provided in each of the separation lines 471 to open and close the pipe line according to a control signal, and the control unit 500 according to the digital signal value of the pressure gauge 422 provided in the bubble generator 420.
  • the open / close state of each sole valve 480 can be adjusted.
  • the solenoid valve 480 of the corresponding strainer 460 is automatically shut off and the other is automatically detected.
  • the sole valve 480 of one strainer 460 may be opened to allow the microbubble to be supplied through the new strainer 460 having no foreign matter. For example, when the digital signal value of the pressure gauge 422 is out of the range of 8 to 10 Kg / cm 2, the strainer 460 currently used is replaced by the sole valve 480 to another strainer 460.
  • the opening and closing cover 462 is provided on the upper portion of the strainer 460 to easily replace or wash the strainer 461 therein.
  • the bubble generator 420 generates a giant bubble by mixing with the circulating water, maintains a high pressure state using a pump, and arranges a split device at the rear stage to decompose it to a smaller size while passing it. It is possible to form an ultra fine bubble smaller than a fine bubble, and it is preferable to supply such ultra fine bubbles so that a plurality of ultra fine bubbles can be attached in the form of completely enclosing suspended solids to further increase the efficiency of injury and removal. Do.
  • the high speed agglomeration apparatus 200, the non-powered flocculation apparatus 300, and the scum skimmer 400 are disposed in a stepwise manner along the treatment transport direction of the sewage, and the high speed aggregation is performed.
  • the suspended solids can be aggregated in a short time through the scum skimmer 400 so as to be floated by the microbubbles.
  • the treated water can be discharged to the outside to minimize the substance.
  • a flow meter 140 is arranged to measure and adjust the supply amount of the microbubble, the sludge discharge tank 150 discharged through the discharge port 418 is disposed in the rear end 150 Is discharged and stored.
  • the treatment water outlet 413 is connected to the treatment water tank 610 of the ozone treatment device 600 is discharged, the purified water is discharged, the rear end of the treatment water tank 610, the ozone generator 620 and the ozone reaction tank 630. Is disposed to sterilize the treated water and is finally discharged to the discharge tank 180 or the UV disinfection facility 190 via the flow meter 160.
  • the water treatment system is provided with the ozone treatment device 600 can remove the organic material, BOD, bacteria, odor and color included in the sewage, for this purpose is shown in Figure 6
  • the ozone treatment device 600 includes a treatment water tank 610, an ozone generator 620, and an ozone reaction tank 630.
  • the treated water tank 610 is a storage tank for mixing the sewage discharged from the scum skimmer 400 disposed in the front and the ozone water that is ozone dissolved in the ozone reaction tank 630, a watertight internal space is formed on one side
  • a sewage inlet 612 is connected to a sewage outlet 413 of the scum skimmer 400 and is connected to a pipe, and a sewage outlet 613 is formed on the other side to discharge sewage from which ozonated sewage is discharged.
  • a sewage supply pipe 611 for injecting the sewage supplied and connected to the sewage inlet 612 evenly into the inner space is disposed in the inner space, and at the end of the sewage supply pipe 611 in a horizontal direction in the inner space. It may be in communication with the plurality of nozzles spaced apart so that the sewage may be supplied at a uniform pressure as a whole.
  • one side of the treatment tank 610 is formed with a treatment water inlet 619 for introducing the ozone water discharged from the ozone reaction tank 630 into the inside and the other side of the sewage supplied to the ozone generator 620
  • a sewage supply port 618 for supplying the water is formed, and the sewage discharge port 613 is disposed at a predetermined height on the treatment water tank 610 so that the sewage supplied over the set water level flows over the discharge tank 180 at the rear end or By discharging to the UV disinfection facility 190 side, it is possible to increase the stagnation time of the sewage and ozone water in the treatment tank (610).
  • the treatment tank 610 has a plurality of lower partitions 614a extending upwardly from a lower end in an internal space and a plurality of upper partitions 614b extending downwardly from an upper end thereof. Alternately disposed at the top and the top to form a plurality of mixing tank 615 to mix the ozone water and sewage, to maximize the stagnation time of the reaction between ozone and sewage and flow up and down while passing through each partition (614a, 614b) As it is transported, it can increase the mixing efficiency of ozone water and sewage.
  • the ozone gas (O 3 gas) degassed in the ozone reactor 630 is connected to the air flow meter of the bubble generator 420 through a pipe to reuse the remaining ozone to increase the treatment efficiency and to process the remaining ozone.
  • the treatment tank 610 is provided with an aeration unit (Bubble Generator, 616) for supplying bubbles into the innermost mixing tank 615 of the sewage flow direction of the plurality of mixing tank 615, the outermost The end mixing tank 615 serves as an aeration tank for degassing the ozone contained in the treated water by the bubbles supplied from the aeration unit 616, the upper portion of the treated water tank 610 for discharging the degassed ozone to the outside
  • a first gas discharge pipe 617 is provided. Ozone dissolved in the sewage may be degassed by the air injected by the aeration of the aeration unit 616 and the aeration tank, and may be discharged through the first gas discharge pipe 617. Can be prevented in advance.
  • a second gas discharge pipe 637 for discharging ozone inside to the outside is formed at an upper end of the ozone reaction tank 630 to be described later, and the aeration part 616 includes the first gas discharge pipe 617 and the second.
  • Ozone production amount and ozone can be recycled by forming bubbles for injecting into the last mixing tank 615 using ozone gas supplied in connection with one or more gas discharge pipes of the gas discharge pipes 637. The load on the disposal facility can be minimized.
  • the ozone generator (Ozonizer, 620) is a device for supplying ozone necessary for the ozone reaction, is connected to the sewage supply port 618 provided on the other side of the treatment tank 610 receives the sewage in the treatment tank 610 Ozone is generated and dissolved in the supplied sewage and discharged to the ozone reaction tank 630.
  • a circulation pump 650 is provided between the sewage supply port 618 and the ozone generator 620 to provide a flow pressure to the sewage to be circulated and supplied, and the circulation pump 650 is illustrated in FIG. 1.
  • a plurality of circulation pumps are connected to branch to the same supply line, and when a malfunction occurs in one circulation pump, it is preferable to operate the other circulation pump to prevent the sewage treatment from being interrupted.
  • the ozone reaction tank 630 is a water tank for purifying by the ozone reaction by contacting the supplied sewage and ozone, a watertight inner space is formed and the lower ozone water is connected to the ozone generator 620 to supply the ozone water Inlet 631 is formed, the inner partition is arranged horizontally in the horizontal partition partitioning the inner space into a plurality of contact tanks (633a to 633c) divided up and down, and the vertically-opened communication hole 634 in the center partition wall A portion 632 is provided, and a treatment water discharge port 635 is connected to one side of the treatment tank 610 and the treatment water supply pipe 640 to supply ozone-treated treatment water to the treatment tank 610. do.
  • the ozone reaction tank 630 the inner space is partitioned up and down by the partition portion 632, the high concentration contact tank 633a for removing the organic substances and BOD contained in the sewage due to the supersaturation of ozone in the lower portion
  • the lower concentration contact tank 633b for removing bacteria, odors and colors contained in the sewage is formed by dissolving less ozone than the high concentration contact tank 633a.
  • partition wall portion 632 is provided with a lower partition wall 614a and an upper partition wall 614b spaced up and down in the interior space, and placed between the high concentration contact tank 633a and the low concentration contact tank 633b.
  • concentration compartment tanks 633c are formed to maintain the ozone concentrations of the contact baths 633a and 633b.
  • the ozone concentration of the low concentration contacting tank 633b may be rapidly higher than an appropriate value.
  • the concentration of the ozone water located in the upper portion of the high concentration contact tank 633a may be smaller than an appropriate value due to the difference in concentration.
  • the concentration compartment 633c is disposed between the high concentration contacting tank 633a and the low concentration contacting tank 633b to perform a function of mitigating a sudden change in concentration, the high concentration contacting tank 633a and the low concentration contacting tank 633b. Each can maintain an appropriate ozone concentration.
  • the treatment water discharge port 635 disposed in the low concentration contact tank 633b is disposed at a predetermined height in the ozone reaction tank 630 to process the water through the treatment water supply pipe 640 while the treated water is supplied over the set water level. It is to be discharged to the treated water inlet 619 side of the water tank 610, thereby increasing the reaction time of ozone and sewage in the ozone reaction tank 630.
  • the sewage discharge port 613 is disposed at a predetermined height on the treatment tank 610 to be discharged to the discharge tank 180 or UV disinfection facility 190 side of the rear end while the sewage supplied over the set water level is overflowed.
  • the partition wall portion 632 disposed therein is provided therein.
  • a high concentration contact tank 633a is formed to remove organic substances and BOD contained in the sewage, and less ozone is dissolved in the upper portion than the high concentration contact tank 633a.
  • the low concentration contact tank 633b is formed to remove bacteria, odors and colors contained in the sewage, it is possible to maximize the purification efficiency of the sewage by ozone reaction and at the same time minimize the system construction cost and equipment specifications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Physical Water Treatments (AREA)

Abstract

본 발명에 따르면, 응집제가 주입된 하수를 챔버 내부에 선회와류나 순환수류를 형성하여 응집제와 부유물질 간의 응집효율을 극대화하고 미세버블을 이용하여 부유물질을 부상시켜 효과적으로 제거할 수 있는 수처리 시스템이 제공된다. 이를 통해 응집제가 주입된 하수를 응집챔버 내에서 선회와류시킴으로써 상기 응집제를 완전하게 용해시켜 단시간 내에 용해된 응집제와 부유물질 간의 응집효율을 극대화할 수 있다.

Description

수처리 시스템
본 발명은 수처리 시스템에 관한 것으로, 보다 상세하게는 응집제가 주입된 하수를 챔버 내부에 선회와류나 순환수류를 형성하여 응집제와 부유물질 간의 응집효율을 극대화하고 미세버블을 이용하여 부유물질을 부상시켜 효과적으로 제거할 수 있는 수처리 시스템에 관한 것이다.
일반적으로 각종 오염물질이 포함된 하수(폐수)를 정화처리 하기 위해 급속교반조, 완속교반조 및 부상분리조로 구성된 하수 처리공정이 이용되고 있다. 여기서, 상기 급속교반조에서는 명반(Alum) 등의 응집제와 하수를 혼합하여 미세 부유물질을 1차적으로 응집시켜 완속교반조로 배출하며, 상기 완속교반조에서는 급속교반조에 의해 1차적으로 응집된 부유물질을 상기 부상분리조에서의 부상분리가 가능한 크기로 응집시켜 후단에 배치된 부상분리조로 배출한다.
여기서, 종래의 급속교반조의 경우에는 상부가 개구되어 하수 내의 악취가 외부로 퍼지는 문제점이 있으며, 상기 응집제는 개구된 상부를 통해 하수로 투입됨에 따라 투입된 응집제가 하수 내에서 완전히 용해되기까지 소요되는 시간이 길어지며, 이로 인해 하수에 포함된 부유물질의 응집효율이 저하되는 문제점이 있었다.
또한, 종래의 완속교반조에서는 부유물질의 응집을 위해 내부로 유입된 하수에 보조응집제를 투입하고 부유물질의 입자간의 접촉으로 응집이 유도되도록 교반조 내부에 순환수류를 형성하기 위한 별도의 기계식 교반기가 설치되었다.
더불어, 종래의 완속교반조의 경우 상기 순환수류를 형성하기 위해 교반조 내부에서 하수를 회전시키기 위한 임펠러 형태의 기계식 교반기가 설치됨에 따라 하수처리를 위해서는 지속적으로 기계식 교반기를 구동시켜야 하며, 이로 인해 설비설치 비용 및 유지관리 비용이 증대되는 문제점이 이었다. 또한, 종래의 완속교반조는 상부가 개구된 복개구조를 가짐에 따라 상기 기계식 교반기를 구동시키게 되면 악취가 주변으로 확산되는 문제점이 있었다.
그리고, 종래에는 하수가 유입되는 반응조 내부에 미세버블을 주입하여, 하수 내에 포함된 유기물질(SS) 및 화학적 슬러지(Al+PO4 -3→AlPO4)는 미세버블과 부착되어 수면위로 부상되며 부상된 유기물질 및 화학적 슬러지를 상단에서 걸러내는 방식으로 정화하는 부상분리장치가 개발되었다.
그러나, 종래의 부상분리장치의 경우 반응조가 단일 구조로 구성됨에 따라 상기 미세버블이 흡착되지 않은 유기물질 및 화학적 슬러지는 그대로 처리수로 방류하게 되는 문제점이 있었다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국 공개특허공보 제2000-0017670호(2000. 04.06), 고속응집침전형 오폐수처리방법.
(특허문헌 2) 등록특허공보 제10-0941387호(2010.02.02), 하·폐수 총인(T-P) 및 유기물을 제거할 수 있는 일체형 연속회분식 응집침전장치.
(특허문헌 3) 한국 공개특허공보 제2012-0138025호(2012.12.24), 부상 분리 장치.
본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, 본 발명의 목적은 응집제가 주입된 하수를 응집챔버 내에서 선회와류시킴으로써 상기 응집제를 완전하게 용해시켜 단시간 내에 용해된 응집제와 부유물질 간의 응집효율을 극대화한 수처리 시스템을 제공하는 것에 있다.
본 발명의 다른 목적은 응결챔버의 내부를 상하로 구분되는 복수 개의 응집조로 구획하고 각 응집조의 하수가 낙차에 의해 하부에 배치된 인접 응집조의 내부로 유입되면서 순환수류가 생성되는 구조로 구비됨으로써 별도의 교반동력없이 무동력으로 하수에 포함된 미세한 부유물질들이 수류에 의해 내부에서 순환하며 상호간에 접촉하여 일정 크기로 응집되도록 하는 수처리 시스템을 제공하는 것에 있다.
본 발명의 또 다른 목적은 하수의 유동방향에 대하여 다단으로 설치된 격벽 구조를 통해 단계별로 일시적인 미세버블의 유출을 제한하여 포화된 버블상태를 유지시킨 상태에서 유입된 부유물질 입자를 제거함으로써 단시간 내에 정화처리가 가능함은 물론 처리수에 포함되어 배출되는 부유물질을 최소화할 수 있는 미세버블을 이용한 수처리 시스템을 제공하는 것에 있다.
상기의 목적을 달성하기 위한 본 발명에 따른 수처리 시스템은, 수밀한 내부공간(211)이 형성되고 하수유입구(212)와 하수배출구(213)가 각각 마련된 제1응집챔버(210)와, 상기 내부공간(211) 내에 회전가능하게 수직배치되고 외부로부터 공급된 응집제를 내부공간(211)으로 배출하는 응집제배출구(221)가 형성된 회전축(220) 및, 상기 회전축(220)의 둘레에 장착되어 함께 회전하며 와류를 형성하는 교반날개부(230)를 포함하는 고속응집장치(200); 수밀한 내부공간이 형성되고 상부에는 상기 고속응집장치(200)의 하수배출구(213)와 연결된 하수유입구(311)가 형성되며 하부에는 하수배출구(312)가 형성된 제2응집챔버(310)와, 상기 제2응집챔버(310)의 내부에 횡방향으로 배치되어 내부공간을 상하로 구분되는 복수의 응집조(321)로 구획하며 중앙부에는 상하로 개구된 연통공(322)이 형성된 격벽(320) 및, 각 연통공(322)의 하부 위치에 수평배치된 난류방지판(330)을 포함하는 무동력 플럭응집장치(300); 및 수밀한 내부공간이 형성되고 일측에는 상기 무동력 플럭응집장치(300)의 하수배출구(312)와 연결된 하수유입구(412)가 형성되며 타측에는 처리수배출구(413)가 형성되며 상기 내부공간에는 하단으로부터 상부방향으로 연장형성된 복수의 하부격벽(414)과 상단으로부터 하부방향으로 연장형성된 복수의 상부격벽(415)이 하부와 상부에 교호로 배치되면서 복수의 버블반응조(416)를 형성하는 반응챔버(410) 및, 마이크로 또는 나노 크기의 미세버블을 생성하여 상기 내부공간에 공급하는 버블생성기(420)를 포함하는 스컴스키머(400);를 포함한다.
여기서, 상기 고속응집장치(200)는, 직립배치된 판 형상으로 형성되어 상기 제1응집챔버(210)의 내벽에 일측이 고정장착되고 제1응집챔버(210)의 내벽 둘레를 따라 복수 개가 이격배치된 수류방해판(240)을 더 포함할 수 있다.
또한, 상기 고속응집장치(200)의 하수유입구(212)는 일단이 유량조정조(110)에 연결되는 하수공급관(250)의 타단이 연결되고, 상기 고속응집장치(200)는 상기 하수공급관(250) 또는 하수유입구(212)에 배치되어 공급되는 하수의 농도를 측정하는 하수센서(260)를 더 포함하며, 상기 하수센서(260)의 감지신호에 따라 상기 고속응집장치(200)에 공급되는 응집제의 공급량을 조절하는 제어부(500);를 더 포함할 수 있다.
또한, 상기 고속응집장치(200)는 상기 회전축(220)의 상단에 연결되어 회전하는 회전축(220)의 내부에 상하로 연장형성된 응집제이송관(222)의 상단에 응집제를 공급하기 위한 로터리조인트(270)를 더 포함할 수 있다.
또한, 상기 무동력 플럭응집장치(300)는, 상기 난류방지판(330)의 단부둘레에 외측으로 갈수록 점차적으로 상향하는 형태로 경사진 경사부(331)가 형성될 수 있다.
또한, 격벽(320)의 단부 둘레에 외측으로 갈수록 점차적으로 상향하는 형태로 경사진 경사면(323)이 형성되거나, 상기 격벽(320)이 중앙부에서 외측으로 갈수록 점차적으로 상향하는 경사형태로 이루어질 수 있다.
또한, 상기 무동력 플럭응집장치(300)는, 상기 제2응집챔버(310)의 상부에 배치되며 제어신호에 따라 내부공간의 공기를 외부로 배출하는 압력조절관(340)을 더 포함하며, 상기 제2응집챔버(310)의 내부압력이 설정치를 초과하면 상기 압력조절관(340)을 구동제어하여 상기 설정치가 유지되도록 조절하는 제어부(500);를 더 포함할 수 있다.
또한, 상기 스컴스키머(400)는, 상기 반응챔버(410)의 상부에 배치되되, 외부면에는 복수의 스키머(431)가 장착된 회전체인(432)을 회전시켜 상기 미세버블에 의해 각 버블반응조(416)의 상단에 부상된 부상슬러지를 긁어내어 외부로 배출시키는 부상슬러지 배출부(430)를 더 포함할 수 있다.
또한, 상기 상부격벽(415)의 상단에 배치되며 상향 오목한 반구형상으로 이루어져 스키머(431)에 의해 인접된 버블반응조(416)의 상측에서 이송되는 부유물질의 이송을 가이드하는 라운드부(440)를 더 포함할 수 있다.
또한, 상기 스컴스키머(400)는, 상기 반응챔버(410)의 일측 벽면의 상단에 외측으로 경사지게 상향 돌출형성되어 상기 반응챔버(410)의 일측단 위치에서 선회하는 스키머(431)의 표면과 접촉하면서 스키머(431)에 묻은 수분을 긁어내는 수분제거부(450)를 더 포함할 수 있다.
또한, 상기 반응챔버(410)는 일측에 공급되는 미세버블을 내부공간으로 주입하기 위한 미세버블 유입구(421)가 형성되고, 타측에는 각 버블반응조(416)를 통과하고 처리수배출구(413)를 향해 이동하는 처리수의 일부를 배출하기 위한 처리수공급구(424)가 형성되며, 상기 버블생성기(420)는 상기 처리수공급구(424)와 미세버블 유입구(421) 사이에 연결된 처리수이송라인(470) 상에 배치되어 공급되는 처리수에 미세버블을 생성하고 생성된 미세버블을 미세버블 유입구(421)로 배출하며, 상기 스컴스키머(400)는 상기 스컴스키머(400)는 상기 처리수이송라인(470) 상에서 상기 버블생성기(420)와 처리수공급구(424) 사이에 배치되어 버블생성기(420)에 공급되는 처리수의 이물질을 제거하는 복수의 스트레이너(460)를 포함하고, 각 스트레이너(460)는 서로 다른 분기라인(471)으로 상기 처리수이송라인(470)에 연결되며, 각 분리라인(471)에는 제어신호에 따라 관로를 개폐하는 솔밸브(480)가 각각 배치되고, 버블생성기(420)에 구비된 압력계(422)의 디지털 신호값에 따라 각 솔밸브(480)의 개폐상태를 조절하는 제어부(500);를 더 포함할 수 있다.
한편, 상기 복수 개의 상부격벽(415) 중 최후단에 배치된 상부격벽(415)의 상단에는 회전체인(432)의 말단위치에서 선회하는 스키머(431)의 선회높이보다 상대적으로 긴 길이로 상향 연장형성되고 상기 스키머(431)의 선회곡선을 따라 라운드지게 절곡된 슬러지 유출방지웨어(490)가 장착될 수 있다.
본 발명에 따른 수처리 시스템에 의하면,
첫째, 응집제가 주입된 하수를 응집챔버 내에서 선회와류시킴으로써 상기 응집제를 완전하게 용해시켜 단시간 내에 용해된 응집제와 부유물질 간의 응집효율을 극대화할 수 있다.
둘째, 응결챔버의 내부를 상하로 구분되는 복수 개의 응집조로 구획하고 각 응집조의 하수가 낙차에 의해 하부에 배치된 인접 응집조의 내부로 유입되면서 순환수류가 생성되는 구조로 구비됨으로써 별도의 교반동력없이 무동력으로 하수에 포함된 미세한 부유물질들이 수류에 의해 내부에서 순환하며 상호간에 접촉하여 일정 크기로 응집되도록 하여 설비비용 및 유지관리 비용을 절감할 수 있다.
셋째, 하수의 유동방향에 대하여 다단으로 설치된 격벽 구조를 통해 단계별로 일시적인 버블의 유출을 제한하여 포화된 버블상태를 유지시킨 상태에서 유입된 부유물질 입자를 제거함으로써 단시간 내에 정화처리가 가능함은 물론 처리수에 포함되어 배출되는 부유물질을 최소화할 수 있다.
도 1은 본 발명의 바람직한 실시예에 따른 수처리 시스템의 전체 구성을 나타낸 개략도,
도 2는 본 발명의 바람직한 실시예에 따른 고속응집장치의 구성을 나타낸 측단면도,
도 3은 본 발명의 바람직한 실시예에 따른 무동력 플럭응집장치의 구성을 나타낸 측단면도,
도 4는 본 발명의 바람직한 실시예에 따른 스킴스키머의 구성을 나타낸 측단면도,
도 5는 본 발명의 바람직한 실시예에 따른 복수의 스트레이너가 교대로 이용되는 동작원리를 설명하기 위한 개략도,
도 6은 본 발명의 바람직한 실시예에 따른 오존처리장치의 구성을 나타낸 측단면도이다.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
본 발명의 실시예에 대하여 설명하기에 앞서, 이하에서 설명되는 몇가지 용어들을 정의한다. 이하에서 언급되는 '하수'는 각종 오염물질이 포함된 폐수로서, 하수월류수(CSO)를 포함하여, 녹조(Water-Bloom), 생하수, 공장폐수, 침출수, 분뇨 및, 축산폐수 등의 정화처리 대상을 의미한다. 따라서, 이하에서 언급되는 하수에 포함된 '부유물질'은 우수에 다량으로 포함된 협잡물 뿐만 아니라, 화학적 슬러지, 고농도 유기물을 포함하는 다양한 종류의 오염물질을 의미한다.
또한, 이하에서 언급되는 '응집(Coagulation)'은 부유물질이 상호간의 접촉에 의해 엉키어 큰 덩어리를 이루는 현상을 의미하는 용어로서, 이하에서는 일반적으로 보다 큰 덩어리로 응집되는 현상을 나타내는 '응결(Flocculation)'의 의미와 구분하지 않고 이를 포함하는 넓은 의미로 기재하는 것임을 이해하여야 한다.
도 1에 도시된 바와 같이, 본 발명의 바람직한 실시예에 따른 수처리 시스템은 고속응집장치(200), 무동력 플럭응집장치(300) 및 스컴스키머(400)가 하수의 처리 이송방향을 따라 단계적으로 배치되어 하수의 정화효율을 극대화할 수 있다.
먼저, 상기 고속응집장치(200)는 종래의 급속교반조의 기능을 대신하도록 유입된 하수를 제1응집챔버(210) 내에서 선회와류시킴으로써 상기 응집제를 완전하게 용해시켜 단시간 내에 용해된 응집제와 하수의 부유물질 간의 응집효율을 극대화하는 장치로서, 도 2에 도시된 바와 같이 수밀한 내부공간(211)이 형성되고 하수유입구(212)와 하수배출구(213)가 각각 마련된 제1응집챔버(210)와, 상기 내부공간(211) 내에 회전가능하게 수직배치되고 외부로부터 공급된 응집제를 내부공간(211)으로 배출하는 응집제배출구(221)가 형성된 회전축(220) 및, 상기 회전축(220)의 둘레에 장착되어 함께 회전하며 와류를 형성하는 교반날개부(230)를 포함한다.
여기서, 상기 제1응집챔버(210)는 유입된 하수의 악취가 외부로 누출되지 않도록 내부가 밀폐된 탱크 타입으로 형성되며 서스(SUS) 등과 같이 내식성 및 내마모성이 우수한 재질로 이루어지는 것이 바람직하다.
또한, 상기 제1응집챔버(210)의 하부로 유입된 하수는 교반날개부(230)에 의해 챔버 내에서 선회와류되며 동시에 응집제배출구(221)를 통해 응집제가 공급되고 그 과정에서 용해된 응집제에 의해 응집된 부유물질이 하수와 함께 하수배출구(213)로 배출되며, 상기 하수유입구(212)로 유입되는 하수에는 보조응집제가 혼합된 형태로 투입되어 응집효과를 배가시킬 수 있다. 상기 하수배출구(213)에는 하수공급관(290)이 연결되어 무동력 플럭응집장치(300)의 하수유입구(311)에 배출되는 하수를 공급할 수 있다.
더불어, 상기 회전축(220)은 유입된 하수 및 응집제를 선회와류시키는 교반날개부(230)를 제2응집챔버(210) 내에서 회전시키는 회전축부로서, 내부에는 공급된 응집제를 상기 응집제배출구(221)까지 이송하기 위한 응집제이송관(222)이 상하로 연장배치된다.
그리고, 상기 회전축(220)은 제1응집챔버(210)의 상단에 베어링 등의 회전수단을 매개로 회전가능하게 지지되며 그 일측에는 후술되는 제어부(500)의 제어신호에 따라 회전구동하는 구동모터(280)로부터 회전력을 전달받아 회전한다. 또한, 상기 구동모터(280)는 도시되지 않은 인버터와 전기적으로 연결되어 인버터를 통해 구동전원의 주파수를 조절하는 것으로 회전축(220)의 회전속도 및 회전방향을 제어할 수 있다.
또한, 상기 교반날개부(230)는 제1응집챔버(210) 내에서 회전축(220)의 상부 위치에서 복수 개가 방사형으로 배치되는 제1교반날개(231) 및 상기 회전축(220) 상에서 제1교반날개(231)의 하부위치에 복수 개가 방사형으로 배치되는 제2교반날개(233)를 포함하며, 각 교반날개(231,233)에는 측방 개구된 통공(232,234)이 형성되어, 각 교반날개별(231,232)별로 유입된 하수를 가압하는 부분(날개 부분)과 가압되지 않는 부분(통공 부분)으로 구분됨으로써 교반날개부(230)의 회전에 따른 와류형성을 극대화할 수 있다.
여기서, 상기 고속응집장치(200)는 직립배치된 판 형상으로 형성되어 상기 제1응집챔버(210)의 내벽에 일측이 고정장착되고 제1응집챔버(210)의 내벽 둘레를 따라 복수 개가 이격배치된 수류방해판(240)을 더 포함할 수 있다. 이러한 수류방해판(240)은 교반날개부(230)의 회전에 따라 제1응집챔버(210) 내에서 함께 회전하는 하수와 마찰하여 선회와류방향과 반대되는 방향의 와류를 형성할 수 있고 이에 따라 응집효율을 더욱 증대시킬 수 있다.
또한, 상기 고속응집장치(200)의 하수유입구(212)는 일단이 유량조정조(110)에 연결되는 하수공급관(250)의 타단이 연결되고, 상기 고속응집장치(200)는 상기 하수공급관(250) 또는 하수유입구(212)에 배치되어 공급되는 하수의 농도를 측정하는 하수센서(260)를 더 포함할 수 있다.
더불어, 수처리 시스템의 동작을 중앙제어하는 제어부(500)는 상기 하수센서(260)의 감지신호에 따라 상기 고속응집장치(200)에 공급되는 응집제의 공급량을 조절함으로써 부유물질을 응집하는데 필요한 적절량의 응집제를 투입가능하면서도 응집제의 사용량을 최소화할 수 있다.
그리고, 상기 고속응집장치(200)는 상기 회전축(220)의 상단에 연결되어 회전하는 회전축(220)의 내부에 상하로 연장형성된 응집제이송관(222)의 상단에 응집제를 공급하기 위한 로터리조인트(270)를 더 포함할 수 있으며 이에 따라 고정발생시 해당 부분품만 교체할 수 있어 유지관리가 용이하다.
또한, 도 1에서와 같이 상기 고속응집장치(200)의 전단에는 유량조정조(110)와 응집제탱크(120)가 각각 배치되어 정화대상인 하수와 이 하수를 응집시키는데 필요한 응집제를 공급받을 수 있으며, 응집제 공급라인에는 제어부(500)의 제어신호에 따라 구동되는 응집제펌프(121)가 배치되어 고속응집장치(200)으로 공급되는 응집제의 공급량이 제어될 수 있다.
상기 무동력 플럭응집장치(300)는 종래의 기계식 완속교반조의 기능을 대신하도록 제2응집챔버(310)의 내부를 상하로 구분되는 복수의 응집조(321)로 구획하고 각 응집조(321)의 하수가 낙차에 의해 하부에 배치된 인접 응집조(321)의 내부로 유입되면서 순환수류가 생성되는 구조로 구비됨으로써 별도의 교반동력없이 무동력으로 하수에 포함된 미세한 부유물질이 수류에 의해 내부에서 순환하며 상호간에 접촉하여 일정크기로 응집되도록 한다.
이를 위해, 도 3에 도시된 바와 같이 수밀한 내부공간이 형성되고 상부에는 상기 고속응집장치(200)의 하수배출구(213)와 연결된 하수유입구(311)가 형성되며 하부에는 하수배출구(312)가 형성된 제2응집챔버(310)와, 상기 제2응집챔버(310)의 내부에 횡방향으로 배치되어 내부공간을 상하로 구분되는 복수의 응집조(321)로 구획하며 중앙부에는 상하로 개구된 연통공(322)이 형성된 격벽(320) 및, 각 연통공(322)의 하부 위치에 수평배치된 난류방지판(330)을 포함한다.
여기서, 상기 제2응집챔버(310)는 유입된 하수의 악취가 외부로 누출되지 않도록 밀폐된 탱크 타입으로 형성되며 서스 등과 같이 내식성 및 내마모성이 우수한 재질로 이루어진다.
또한, 도면에는 2개의 격벽(320)에 의해 3개의 응집조(321)가 챔버 내부에 형성된 것으로 예시하였으나, 하나 또는 세 개 이상의 격벽(320)이 배치되어 2개나 4개 이상의 응집조(321)를 형성할 수도 있다. 제2응집챔버(310)의 상단에 배치된 하수유입구(311)로 유입된 하수는 첫번째 격벽(320)에 의해 구획된 첫번째 응집조(321)로 유입되고 유입된 하수는 연통공(322)을 통해 두번째 응집조(321)로 배출되며, 두번째 응집조(321)에 유입된 하수는 연통공(322)을 통해 세번째 응집조(321)로 배출되고 최종적으로 제2응집챔버(310)의 하단에 형성된 하수배출구(312)를 통해 외부로 배출된다.
이와 같이 상부에서 하수가 유입되어 배출되는 다단 응집구조로 설계됨에 따라 하수유입구(311) 또는 연통공(322)을 통해 각 응집조의 상부로 유입된 하수는 중앙부의 위치에서 낙차에 의해 하부방향을 향하는 낙하수류를 형성하게 되며, 낙하하면서 각 응집조(321)의 바닥면과 접촉되는 하수는 바닥면을 따라 이동하고 이동하면서 응집조(321)의 내측벽면과 접촉되어 벽면을 따라 상승하는 상승수류를 형성하게 됨으로써 각 응집조(321)의 내부에는 중앙부를 중심으로 양측에 순환수류가 생성되는 것이다.
이에 따라 외부에서 유입된 하수에 포함된 부유물질은 첫번째 응집조(321)에서 생성된 순환수류에 의해 함께 순환하면서 상호 접촉되어 유입될 때의 크기보다 큰 덩어리 형태를 갖도록 응집될 수 있으며, 응집된 상태의 부유물질은 두번째 응집조(321) 및 세번째 응집조(321)를 거치면서 그 크기가 더욱 커지게 된다.
여기서, 도면에서와 같이 상기 난류방지판(330)의 단부둘레에 외측으로 갈수록 점차적으로 상향하는 형태로 경사진 경사부(331)가 형성되어, 유입된 하수가 난류방지판(330) 상에서 정체되는 시간을 증가시킬 수 있으며 낙차폭을 증대시켜 응집효율을 더욱 증대시킬 수 있다.
또한, 상기 격벽(320)의 단부 둘레에 외측으로 갈수록 점차적으로 상향하는 형태로 경사진 경사면(323)이 형성되거나, 상기 격벽(320)이 중앙부에서 외측으로 갈수록 점차적으로 상향하는 경사형태로 이루어짐으로써 격벽(320)의 상부면에 슬러지가 정체되지 않고 연통공(322)을 향하여 이동하도록 가이드할 수 있다.
더불어, 상기 제2응집챔버(310)의 상부에는 내부공간의 공기를 외부로 배출하는 압력조절관(340)이 배치되며, 상기 제어부(500)는 상기 제2응집챔버(310)의 내부압력이 설정치를 초과하면 상기 압력조절관(340)을 구동제어하여 상기 설정치가 유지되도록 조절한다.
그리고, 상기 하수배출구(312)와 상기 스컴스키머(400)의 하수유입구(412) 사이에는 하수배출관(360)이 연결되며, 상기 하수배출관(360)은 상기 하부배출구(312)에서 배출되는 하수의 배출방향과 대향하는 위치에 만곡하게 절곡된 절곡부가 형성됨으로써 하수배출구(312)를 통해 배출되면서 하수배출관(360)의 내벽과 부딪혀 하수에 포함된 부유물질의 응집된 상태가 분리되는 것을 최소화할 수 있다.
상기 스컴스키머(400)는 하부의 유동방향에 대하여 다단으로 설치된 격벽구조를 통해 단계별로 일시적인 버블의 유출을 제한하여 포화된 버블상태를 유지시킨 상태에서 부상된 부유물질 입자를 제거함으로써 단시간 내에 정화처리가 가능함은 물론 처리수에 포함되어 배출되는 부유물질을 최소화할 수 있다.
이를 위해, 상기 스컴스키머(400)는 수밀한 내부공간이 형성되고 일측에는 상기 무동력 플럭응집장치(300)의 하수배출구(312)와 연결된 하수유입구(412)가 형성되며 타측에는 처리수배출구(413)가 형성되며 상기 내부공간에는 하단으로부터 상부방향으로 연장형성된 복수의 하부격벽(414)과 상단으로부터 하부방향으로 연장형성된 복수의 상부격벽(415)이 하부와 상부에 교호로 배치되면서 복수의 버블반응조(416)를 형성하는 반응챔버(410) 및, 마이크로 또는 나노 크기의 미세버블을 생성하여 상기 내부공간에 공급하는 버블생성기(420)를 포함한다.
여기서, 상기 반응챔버(410)는 하수와 미세버블이 내부로 공급되면서 하수에 포함된 부유물질을 부상시켜 제거하기 위한 반응공간을 제공하는 챔버로서, 부상분리가 이루어지는 소정의 내부공간이 형성되되, 상기 하수유입구(412)로는 상기 무동력 플럭응집장치(300)로부터 배출된 하수가 내부공간으로 공급되고 정화된 하수는 타측에 배치된 처리수배출구(413)를 통해 외부로 배출된다.
또한, 도면에는 세 개의 하부격벽(414)와 세 개의 상부격벽(415)이 반응챔버(410) 내에서 하수의 유동방향에 대하여 교대로 배치되는 격벽구조에 의해 세 개의 버블반응조(416)가 형성된 것을 예시하였으나, 이에 국한되는 것은 아니며 하수에 포함된 부유물질의 농도 및 미세버블 공급량에 따른 정화효율을 고려하여 두 개의 버블반응조 또는 네 개 이상의 버블반응조를 형성할 수도 있음은 물론이다.
도 4에 도시된 바와 같이 상기 하수유입구(412)에는 유입된 하수를 내부로 분사하기 위한 분사노즐(419)이 장착되고 도면에는 하나의 분사노즐(419)이 도시되었으나 복수 개의 분사노즐(419)이 버블반응조(416)의 폭방향으로 이격배치되고 각 분사노즐(419)은 상기 하수유입구(412)와 분기관으로 각각 연결되어 버블반응조(416)의 내부에 전체적으로 균일하게 하수를 주입할 수 있다.
더불어, 하수의 효율적인 정화를 위해 유입펌프를 인버터 제어하여 정유량을 정밀하게 조절함으로써 하수의 정량유입 및 응집제의 정량투입으로 처리량을 효율적으로 제어할 수 있으며 응집극대화로 부상효율을 증대시킬 수 있다.
그리고, 하수유입구(412)를 통해 유입된 하수에는 미세버블에 의해 부상되지 않는 크기의 부유물질이 포함될 수 있는 데, 통상적으로 이러한 크기의 부유물질의 경우 시간이 경과하게 되면 하부에 침전되어 외부로 배출되지 않을 수 있다. 이를 위해 각 버블반응조(416)의 하부에는 침전된 침전슬러지를 배출시키기 위한 배출구(418)가 형성된다. 여기서, 슬러지의 원활한 제거를 위해 배출구(418)를 중심으로 양측에 45도 이상 경사면을 주어 신속한 슬러지 배출이 이루어지도록 할 수 있다.
상기 미세버블의 사용은 여러가지 장점을 가지고 있는데, 첫 번째로 기존의 침전방식(침전시간)보다 체류시간(부상시간)이 짧아 급격한 처리수량의 증가에 대한 대응성이 뛰어나고 설치에 필요한 소요부지 면적이 적으며 침전방식의 경우 침전을 위한 보다 큰 부유물질입자의 형성을 위해 응집제의 사용량이 많은 반면 부상방식의 경우 적은 부유물질 입자 크기로도 충분한 부상효율을 달성할 수 있기 때문이다. 또한, 미세버블에 의한 부상방식은 기존 공기부상방식의 밀리 크기를 갖는 기포를 대신하여 직경 30이하의 마이크로 또는 나노 크기의 미세기포를 사용함으로써 계면흡착현상이 우수하여 부유물질 입자와의 기포 부착빈도가 높아 응집제를 사용하지 않고도 2mm 크기 이하의 부유물질 입자를 제거할 수 있으며 보다 깨끗한 처리수질을 확보하기 위해 소량의 응집제 사용이 필요함으로 실질적인 응집제 사용량이 침전방식 및 기존 공기부상방식보다 적게 소요된다.
두 번째 특징으로는 미세버블의 경우 수중에서의 기포 상승속도가 약 1 내지 3mm/min로써 짧게는 15분 길게는 약 1시간 가량 수중에 머물러 있어 부유물질 입자와의 접촉시간이 길어 부상효율이 높은 장점이 있다.
세 번째 특징은 미세버블(마이크로버블 또는 나노버블)의 경우 기포 표면적이 넓어 산소용해율이 뛰어나 부상처리 후 잔여 미세버블은 수중에 완전 용해되어 처리수내 용존산소(DO, Dissolved Oxygen)농도를 과포화시켜 배출할 수 있다는 장점을 가지고 있는데 이는 처리수가 수계로 흘러갔을 때 수생생태계의 영향을 최소화하는 특징을 가지고 있다.
네 번째 특징으로는 미세버블의 경우 기포의 파쇄(Crushing)효과에 의한 OH*기를 발생시켜 유기물질 제거, 악취제거 및 살균기능을 가지고 있어 처리수 및 부상슬러지내 악취를 저감시켜 주며 대장균을 살균하는 효과를 가지고 있다.
한편, 상기 스컴스키머(400)는, 상기 반응챔버(410)의 상부에 배치되되, 외부면에는 복수의 스키머(431)가 장착된 회전체인(432)을 회전시켜 상기 미세버블에 의해 각 버블반응조(416)의 상단에 부상된 부상슬러지를 긁어내어 반응챔버(410)의 일측단 상부에 배치된 슬러지배출구(411)로 배출시키는 부상슬러지 배출부(430)를 구비한다. 여기서, 상기 회전체인(432)은 반응챔버(410)의 양 측에 이격배치된 회전롤(433) 사이에 무한궤도 형태로 연결되고 상기 회전롤(433)에는 제어부(500)의 제어신호에 따라 회전하는 구동모터(미도시)가 축연결되어 이 구동모터의 회전력으로 스키머(431)를 순환회전시킬 수 있다.
또한, 도면에서와 같이 상기 상부격벽(415)의 상단에는 상향 오목한 반구형상으로 이루어져 스키머(431)에 의해 인접된 버블반응조(416)의 상측에서 이송되는 부유물질의 이송을 가이드하는 라운드부(440)가 배치되어, 스키머(431)에 의해 가압되면서 측방으로 이동하는 부상슬러지가 상부격벽(415)의 뾰족한 상단에 걸려 분해되는 현상을 최소화할 수 있다.
더불어, 상기 반응챔버(410)의 일측 벽면의 상단에는 외측으로 경사지게 상향 돌출형성되어 상기 반응챔버(410)의 일측단 위치에서 선회하는 스키머(431)의 표면과 접촉하면서 스키머(431)에 묻은 수분을 긁어내는 수분제거부(450)가 배치되어, 슬러지배출구(411)로 불필요하게 수분이 배출되는 것을 방지할 수 있으며 이에 따라 농축된 슬러지를 배출할 수 있다.
그리고, 복수 개의 상부격벽(415) 중 최후단에 배치된 상부격벽(415)의 상단에는 회전체인(432)의 말단위치에서 선회하는 스키머(431)의 높이보다 상대적으로 긴 길이로 상향 연장형성되고 상기 스키머(431)의 선회곡선을 따라 라운드지게 절곡된 슬러지 유출방지웨어(490)가 장착되어, 스키머(431)가 회전체인(432)의 말단에서 선회하면서 스키머(431)에 흡착된 슬러지 등의 이물질이 처리수배출구(413)측으로 유입되어 하수와 함께 배출되는 것을 방지할 수 있다.
도 5에 도시된 바와 같이, 상기 반응챔버(410)는 일측에 공급되는 미세버블을 내부공간으로 주입하기 위한 미세버블 유입구(421)가 형성되고, 타측에는 각 버블반응조(416)를 통과하고 처리수배출구(413)를 향해 이동하는 처리수의 일부를 배출하기 위한 처리수공급구(424)가 형성되며, 상기 버블생성기(420)는 상기 처리수공급구(424)와 미세버블 유입구(421) 사이에 연결된 처리수이송라인(470) 상에 배치되어 공급되는 처리수에 미세버블을 생성하고 생성된 미세버블을 미세버블 유입구(421)로 배출한다.
여기서, 상기 스컴스키머(400)는 상기 처리수이송라인(470) 상에서 상기 버블생성기(420)와 처리수공급구(424) 사이에 배치되어 버블생성기(420)에 공급되는 처리수의 이물질을 제거하는 복수의 스트레이너(460)를 포함하고, 각 스트레이너(460)는 서로 다른 분기라인(471)으로 상기 처리수이송라인(470)에 연결된다.
또한, 각 분리라인(471)에는 제어신호에 따라 관로를 개폐하는 솔밸브(480)가 각각 배치되고, 제어부(500)는 버블생성기(420)에 구비된 압력계(422)의 디지털 신호값에 따라 각 솔밸브(480)의 개폐상태를 조절할 수 있다.
따라서, 두 개의 스트레이너(460) 중 어느 하나의 스트레이너(460)를 이용하는 중에 버블압력이 기준치 이상으로 증가하거나 감소하게 되면 이를 감지하여 자동적으로 해당 스트레이너(460)의 솔밸브(480)는 차단되고 다른 하나의 스트레이너(460)의 솔밸브(480)가 개방되어 이물질이 없는 새로운 스트레이너(460)를 통해 미세버블이 공급되도록 할 수 있다. 예를 들어, 압력계(422)의 디지털 신호값이 8 내지 10Kg/㎠ 범위를 벗어나면 현재 이용되는 스트레이너(460)가 솔밸브(480)에 의해 다른 스트레이너(460)로 교대되는 것이다.
더불어, 상기 스트레이너(460)의 상부에는 개폐덮개(462)가 구비되어 내부의 거름망(461)을 용이하게 교체하거나 세척할 수 있도록 하는 것이 바람직하다.
그리고, 상기 버블생성기(420)의 출력단에는 순환수와 혼합하여 거대기포를 생성한 후 펌프를 이용하여 고압상태를 유지하고 후단에 스플릿(Split) 장치를 배치하여 이를 통과하면서 더 작게 분해하여 기존의 미세버블보다 작은 초미세버블을 형성할 수 있으며, 이러한 초미세버블을 공급하여 다수의 초미세버블이 부유물질을 완전히 포위하는 형태로 부착되도록 하여 부상 및 제거효율을 더욱 증대시킬 수 있도록 하는 것이 바람직하다.
상술한 바와 같이, 본 발명의 바람직한 실시예에 따른 수처리 시스템은 고속응집장치(200), 무동력 플럭응집장치(300) 및 스컴스키머(400)가 하수의 처리 이송방향을 따라 단계적으로 배치되어 고속응집장치(200)과 무동력 플럭응집장치(300)을 통해 스컴스키머(400)를 통해 미세버블에 의해 부상시킬 수 있는 정도로 부유물질을 단시간 내에 응집시킬 수 있으며, 미세버블에 의해 부상효율을 증대시켜 부유물질을 최소화되도록 정화한 처리수를 외부로 배출할 수 있다.
그리고, 도 1에서와 같이 상기 하수공급라인 상에는 반송유량계(140)가 배치되어 미세버블의 공급량을 측정 및 조절할 수 있으며, 배출구(418)를 통해 배출된 침전슬러지는 후단에 배치된 슬러지저류조(150)로 배출되어 저장된다.
또한, 처리수배출구(413)에는 오존처리장치(600)의 처리수조(610)가 연결되어 정화된 처리수가 배출되고, 처리수조(610)의 후단에는 오존발생기(620) 및 오존반응조(630)가 배치되어 처리수를 살균소독할 수 있으며 유량계(160)를 거쳐 방류조(180) 또는 UV소독설비(190)로 최종 배출된다.
한편, 본 발명의 바람직한 실시예에 따른 수처리 시스템은 상기 오존처리장치(600)가 구비되어 하수에 포함된 유기물질, BOD, 세균, 냄새 및 색도를 제거할 수 있는데, 이를 위해 도 6에 도시된 바와 같이 오존처리장치(600)는 처리수조(610), 오존발생기(620) 및 오존반응조(630)을 포함한다.
상기 처리수조(610)는 오존반응조(630)에서 오존이 용해된 하수인 오존수와 전단에 배치된 스컴스키머(400)로부터 배출된 하수를 혼합하기 위한 저장탱크로서, 수밀한 내부공간이 형성되고 일측에는 스컴스키머(400)의 하수배출구(413)와 관로로 연결되어 하수가 공급되는 하수유입구(612)가 형성되며 타측에는 오존처리된 하수가 배출되는 하수가 배출되는 하수배출구(613)가 형성된다.
여기서, 상기 내부공간 내에는 상기 하수유입구(612)와 연결되어 공급되는 하수를 내부공간에 고르게 주입하기 위한 하수공급관(611)이 배치되며 상기 하수공급관(611)의 단부에는 내부공간 내에서 수평방향으로 이격배치된 복수의 노즐과 연통되어 전체적으로 균일한 압력으로 하수가 공급되도록 할 수 있다.
또한, 상기 처리수조(610)의 일측에는 오존반응조(630)로부터 배출되는 오존수를 내부로 유입하기 위한 처리수 유입구(619)가 형성되고 타측에는 내부에 공급된 하수의 일부를 오존발생기(620)에 공급하기 위한 하수공급구(618)이 형성되며, 상기 하수배출구(613)는 처리수조(610) 상에서 일정높이에 배치되어 설정수위 이상으로 공급되는 하수가 월류되면서 후단의 방류조(180)나 UV소독설비(190) 측으로 배출되도록 함으로써 처리수조(610) 내에서 하수와 오존수의 정체시간을 증가시킬 수 있다.
더불어, 도 6에 도시된 바와 같이 상기 처리수조(610)는 내부공간 내에 하단으로부터 상부방향으로 연장형성된 복수의 하부격벽(614a)과 상단으로부터 하부방향으로 연장형성된 복수의 상부격벽(614b)이 하부와 상부에 교호로 배치되면서 오존수와 하수를 혼합하는 복수의 혼합조(615)를 형성하여, 오존과 하수가 반응하는 정체시간을 극대화할 수 있으며 각 격벽(614a,614b)을 통과하면서 상하로 유동하며 이송되므로 오존수와 하수의 혼합효율을 높일 수 있다.
상기 오존반응조(630)에서 탈기된 오존가스(O3 Gas)는 배관을 통해 버블생성기(420)의 공기유량계에 연결되어 잔존오존을 재사용함으로써 처리효율을 높이고 잔존오존을 처리할 수 있다.
그리고, 상기 처리수조(610)는 상기 복수의 혼합조(615) 중 하수유동 방향의 최말단 혼합조(615)의 내부에 기포를 공급하는 폭기부(Bubble Generator,616)가 구비되어, 상기 최말단 혼합조(615)는 폭기부(616)로부터 공급되는 기포에 의해 처리수에 포함된 오존을 탈기하기 위한 폭기조로 기능하며, 처리수조(610)의 상부에는 탈기된 오존을 외부로 배출하기 위한 제1가스배출관(617)이 구비된다. 이러한 폭기부(616)와 폭기조에 의한 폭기작용으로 주입된 기포에 의해 하수에 용해된 오존이 탈기처리되어 제1가스배출관(617)를 통해 배출할 수 있으므로 처리수에 오존이 함유되어 인체에 유해작용하는 것을 미연에 방지할 수 있다.
또한, 후술되는 오존반응조(630)의 상단에는 내부의 오존을 외부로 배출하기 위한 제2가스배출관(637)이 형성되고, 상기 폭기부(616)는 상기 제1가스배출관(617)과 제2가스배출관(637) 중 하나 이상의 가스배출관과 연결되어 공급되는 오존가스를 이용하여 상기 최말단 혼합조(615)에 주입하기 위한 기포를 형성하여 기존에 버려지는 오존을 재활용할 수 있으므로 오존생성량과 오존폐기시설의 부하를 최소화할 수 있다.
상기 오존발생기(Ozonizer,620)는 오존반응에 필요한 오존을 공급하는 장치로서, 상기 처리수조(610)의 타측에 마련된 하수공급구(618)에 연결되어 처리수조(610) 내부의 하수를 공급받으며 오존을 생성하여 공급된 하수에 용해시켜 오존반응조(630)측으로 배출한다.
여기서, 상기 하수공급구(618)와 오존발생기(620) 사이에는 순환공급되는 하수에 유동압력을 제공하기 위한 순환펌프(650)부가 구비되며, 상기 순환펌프부(650)는 도 1에 도시된 바와 같이 복수 개의 순환펌프로 이루어져 동일한 공급라인에 분기되도록 연결되어 하나의 순환펌프에 기능고장이 발생하는 경우 다른 순환펌프를 동작시켜 하수처리가 중단되는 것을 방지하도록 구비되는 것이 바람직하다.
상기 오존반응조(630)는 공급된 하수와 오존을 접촉시켜 오존반응에 의한 정화가 이루어지도록 하는 수조로서, 수밀한 내부공간이 형성되고 하부에는 상기 오존발생기(620)에 연결되어 오존수가 공급되는 오존수유입구(631)가 형성되며, 내부에는 횡방향으로 수평배치되어 상기 내부공간을 상하로 구분되는 복수의 접촉조(633a 내지 633c)로 구획하고 상하로 개구된 연통공(634)이 중앙에 형성된 격벽부(632)가 구비되며, 상부에는 상기 처리수조(610)의 일측과 처리수공급관(640)으로 연결되어 오존처리된 처리수를 처리수조(610)에 공급하는 처리수배출구(635)가 형성된다.
여기서, 상기 오존반응조(630)는, 상기 격벽부(632)에 의해 내부공간이 상하로 구획되면서 하부에는 오존이 과포화되어 하수에 포함된 유기물질 및 BOD를 제거하기 위한 고농도접촉조(633a)가 형성되고, 상부에는 상기 고농도접촉조(633a)보다 상대적으로 오존이 적게 용해되어 하수에 포함된 세균, 냄새 및 색도를 제거하기 위한 저농도접촉조(633b)가 형성된다.
또한, 상기 격벽부(632)는 내부공간 내에서 상하로 이격배치되는 하부격벽(614a) 및 상부격벽(614b)이 구비되어, 상기 고농도접촉조(633a)와 저농도접촉조(633b) 사이에 두 접촉조(633a,633b)의 오존농도를 유지하기 위한 하나 이상의 농도구획조(633c)를 형성한다.
여기서, 상기 고농도접촉조(633a)와 저농도접촉조(633b)가 상하로 밀착배치되는 경우 연통공을 통해 유입되는 고농도의 오존수가 저농도접촉조(633b)의 오존농도가 적정치보다 급격하게 높아질 수 있으며 농도차에 의해 고농도접촉조(633a)의 상부부분에 위치하는 오존수의 농도가 적정치보다 작아질 수 있다.
그러나, 상기 농도구획조(633c)가 고농도접촉조(633a)와 저농도접촉조(633b) 사이에 배치되어 급격한 농도변화를 완화하는 기능을 수행하므로 고농도접촉조(633a)와 저농도접촉조(633b)는 각각 적절치의 오존농도를 유지할 수 있다.
또한, 상기 저농도접촉조(633b)에 배치되는 처리수배출구(635)는 오존반응조(630) 내에서 일정높이에 배치되어 설정수위 이상으로 공급되는 처리수가 월류되면서 처리수공급관(640)을 통해 처리수조(610)의 처리수 유입구(619) 측으로 배출되도록 하며, 이로 인해 오존반응조(630) 내에서 오존과 하수가 반응하는 시간을 증대시킬 수 있다.
상기 하수배출구(613)는 처리수조(610) 상에서 일정높이에 배치되어 설정수위 이상으로 공급되는 하수가 월류되면서 후단의 방류조(180)나 UV소독설비(190) 측으로 배출되도록 한다.
상술한 바와 같은 본 발명의 바람직한 실시예에 따른 오존처리장치(600)의 각 구성 및 기능에 의해, 오존반응이 이루어지는 오존반응조(630)의 경우, 내부에 배치된 격벽부(632)에 의해 내부공간이 상하로 구획되면서 하부에는 오존이 과포화되어 하수에 포함된 유기물질 및 BOD를 제거하기 위한 고농도접촉조(633a)가 형성되고, 상부에는 상기 고농도접촉조(633a)보다 상대적으로 오존이 적게 용해되어 하수에 포함된 세균, 냄새 및 색도를 제거하기 위한 저농도접촉조(633b)가 형성되므로 오존반응에 의한 하수의 정화효율을 극대화할 수 있으며 동시에 시스템 구축비용과 설비의 규격을 최소화할 수 있다.
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (12)

  1. 수밀한 내부공간(211)이 형성되고 하수유입구(212)와 하수배출구(213)가 각각 마련된 제1응집챔버(210)와, 상기 내부공간(211) 내에 회전가능하게 수직배치되고 외부로부터 공급된 응집제를 내부공간(211)으로 배출하는 응집제배출구(221)가 형성된 회전축(220) 및, 상기 회전축(220)의 둘레에 장착되어 함께 회전하며 와류를 형성하는 교반날개부(230)를 포함하는 고속응집장치(200);
    수밀한 내부공간이 형성되고 상부에는 상기 고속응집장치(200)의 하수배출구(213)와 연결된 하수유입구(311)가 형성되며 하부에는 하수배출구(312)가 형성된 제2응집챔버(310)와, 상기 제2응집챔버(310)의 내부에 횡방향으로 배치되어 내부공간을 상하로 구분되는 복수의 응집조(321)로 구획하며 중앙부에는 상하로 개구된 연통공(322)이 형성된 격벽(320) 및, 각 연통공(322)의 하부 위치에 수평배치된 난류방지판(330)을 포함하는 무동력 플럭응집장치(300); 및
    수밀한 내부공간이 형성되고 일측에는 상기 무동력 플럭응집장치(300)의 하수배출구(312)와 연결된 하수유입구(412)가 형성되며 타측에는 처리수배출구(413)가 형성되며 상기 내부공간에는 하단으로부터 상부방향으로 연장형성된 복수의 하부격벽(414)과 상단으로부터 하부방향으로 연장형성된 복수의 상부격벽(415)이 하부와 상부에 교호로 배치되면서 복수의 버블반응조(416)를 형성하는 반응챔버(410) 및, 마이크로 또는 나노 크기의 미세버블을 생성하여 상기 내부공간에 공급하는 버블생성기(420)를 포함하는 스컴스키머(400);를 포함하는 수처리 시스템.
  2. 제 1항에 있어서,
    상기 고속응집장치(200)는,
    직립배치된 판 형상으로 형성되어 상기 제1응집챔버(210)의 내벽에 일측이 고정장착되고 제1응집챔버(210)의 내벽 둘레를 따라 복수 개가 이격배치된 수류방해판(240)을 더 포함하는 것을 특징으로 하는 수처리 시스템.
  3. 제 2항에 있어서,
    상기 고속응집장치(200)의 하수유입구(212)는 일단이 유량조정조(110)에 연결되는 하수공급관(250)의 타단이 연결되고,
    상기 고속응집장치(200)는 상기 하수공급관(250) 또는 하수유입구(212)에 배치되어 공급되는 하수의 농도를 측정하는 하수센서(260)를 더 포함하며,
    상기 하수센서(260)의 감지신호에 따라 상기 고속응집장치(200)에 공급되는 응집제의 공급량을 조절하는 제어부(500);를 더 포함하는 것을 특징으로 하는 수처리 시스템.
  4. 제 3항에 있어서,
    상기 고속응집장치(200)는 상기 회전축(220)의 상단에 연결되어 회전하는 회전축(220)의 내부에 상하로 연장형성된 응집제이송관(222)의 상단에 응집제를 공급하기 위한 로터리조인트(270)를 더 포함하는 것을 특징으로 하는 수처리 시스템.
  5. 제 1항에 있어서,
    상기 무동력 플럭응집장치(300)는,
    상기 난류방지판(330)의 단부둘레에 외측으로 갈수록 점차적으로 상향하는 형태로 경사진 경사부(331)가 형성된 것을 특징으로 하는 수처리 시스템.
  6. 제 5항에 있어서,
    상기 무동력 플럭응집장치(300)는,
    상기 격벽(320)의 단부 둘레에 외측으로 갈수록 점차적으로 상향하는 형태로 경사진 경사면(323)이 형성되거나, 상기 격벽(320)이 중앙부에서 외측으로 갈수록 점차적으로 상향하는 경사형태로 이루어진 것을 특징으로 하는 수처리 시스템.
  7. 제 6항에 있어서,
    상기 무동력 플럭응집장치(300)는, 상기 제2응집챔버(310)의 상부에 배치되며 제어신호에 따라 내부공간의 공기를 외부로 배출하는 압력조절관(340)을 더 포함하며,
    상기 제2응집챔버(310)의 내부압력이 설정치를 초과하면 상기 압력조절관(340)을 구동제경어하여 상기 설정치가 유지되도록 조절하는 제어부(500);를 더 포함하는 것을 특징으로 하는 수처리 시스템.
  8. 제 1항에 있어서,
    상기 스컴스키머(400)는,
    상기 반응챔버(410)의 상부에 배치되되, 외부면에는 복수의 스키머(431)가 장착된 회전체인(432)을 회전시켜 상기 미세버블에 의해 각 버블반응조(416)의 상단에 부상된 부상슬러지를 긁어내어 외부로 배출시키는 부상슬러지 배출부(430)를 더 포함하는 것을 특징으로 하는 수처리 시스템.
  9. 제 8항에 있어서,
    상기 상부격벽(415)의 상단에 배치되며 상향 오목한 반구형상으로 이루어져 스키머(431)에 의해 인접된 버블반응조(416)의 상측에서 이송되는 부유물질의 이송을 가이드하는 라운드부(440)를 더 포함하는 것을 특징으로 하는 수처리 시스템.
  10. 제 9항에 있어서,
    상기 스컴스키머(400)는,
    상기 반응챔버(410)의 일측 벽면의 상단에 외측으로 경사지게 상향 돌출형성되어 상기 반응챔버(410)의 일측단 위치에서 선회하는 스키머(431)의 표면과 접촉하면서 스키머(431)에 묻은 수분을 긁어내는 수분제거부(450)를 더 포함하는 것을 특징으로 하는 수처리 시스템.
  11. 제 10항에 있어서,
    상기 반응챔버(410)는 일측에 공급되는 미세버블을 내부공간으로 주입하기 위한 미세버블 유입구(421)가 형성되고, 타측에는 각 버블반응조(416)를 통과하고 처리수배출구(413)를 향해 이동하는 처리수의 일부를 배출하기 위한 처리수공급구(424)가 형성되며,
    상기 버블생성기(420)는 상기 처리수공급구(424)와 미세버블 유입구(421) 사이에 연결된 처리수이송라인(470) 상에 배치되어 공급되는 처리수에 미세버블을 생성하고 생성된 미세버블을 미세버블 유입구(421)로 배출하며,
    상기 스컴스키머(400)는 상기 처리수이송라인(470) 상에서 상기 버블생성기(420)와 처리수공급구(424) 사이에 배치되어 버블생성기(420)에 공급되는 처리수의 이물질을 제거하는 복수의 스트레이너(460)를 포함하고,
    각 스트레이너(460)는 서로 다른 분기라인(471)으로 상기 처리수이송라인(470)에 연결되며,
    각 분리라인(471)에는 제어신호에 따라 관로를 개폐하는 솔밸브(480)가 각각 배치되고,
    상기 버블생성기(420)에 구비된 압력계(422)의 디지털 신호값에 따라 각 솔밸브(480)의 개폐상태를 조절하는 제어부(500);를 더 포함하는 것을 특징으로 하는 수처리 시스템.
  12. 제 8항에 있어서,
    상기 복수 개의 상부격벽(415) 중 최후단에 배치된 상부격벽(415)의 상단에는 회전체인(432)의 말단위치에서 선회하는 스키머(431)의 높이보다 상대적으로 긴 길이로 상향 연장형성되고 상기 스키머(431)의 선회곡선을 따라 라운드지게 절곡된 슬러지 유출방지웨어(490)가 장착되는 것을 특징으로 하는 수처리 시스템.
PCT/KR2017/006747 2017-06-07 2017-06-27 수처리 시스템 WO2018225889A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0070828 2017-06-07
KR1020170070828A KR101779748B1 (ko) 2017-06-07 2017-06-07 수처리 시스템

Publications (1)

Publication Number Publication Date
WO2018225889A1 true WO2018225889A1 (ko) 2018-12-13

Family

ID=60190057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006747 WO2018225889A1 (ko) 2017-06-07 2017-06-27 수처리 시스템

Country Status (2)

Country Link
KR (1) KR101779748B1 (ko)
WO (1) WO2018225889A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111420431A (zh) * 2020-04-17 2020-07-17 湖南洞庭环保科技有限公司 一种用于污水处理的沉砂装置
CN111644085A (zh) * 2020-06-24 2020-09-11 河南清波环境工程有限公司 无动力涡流絮凝装置
CN111777261A (zh) * 2020-05-28 2020-10-16 河南国威市政工程有限公司 高落差环境无动力污水处理系统
WO2021003474A1 (en) * 2019-07-04 2021-01-07 Blue Whale Ocean Filtration Llc Systems and methods for removal of contaminants from a liquid
CN113860453A (zh) * 2021-11-08 2021-12-31 浙江浙安机械制造有限公司 一种漆渣分离处理的试剂混合添加系统
CN113926625A (zh) * 2021-11-08 2022-01-14 浙江浙安机械制造有限公司 一种喷涂生产的漆渣回收装置
CN115572020A (zh) * 2022-11-09 2023-01-06 自然资源部第二海洋研究所 一种污水处理中溶解无机碳自动监测装置
RU216741U1 (ru) * 2022-11-17 2023-02-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Устройство флотационной очистки

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101858028B1 (ko) * 2017-11-10 2018-06-27 (주)엠비티 고속 복합 수처리 장치
KR20210050077A (ko) 2019-10-28 2021-05-07 주식회사 원화비앤디 마이크로버블 발생 장치와 인공지능 기술을 이용하여 이를 실시간 모니터링하는 장치를 포함하는 정수처리 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3522020B2 (ja) * 1995-10-31 2004-04-26 株式会社明電舎 加圧型下方注入式オゾン接触槽とその制御方法
KR20120074837A (ko) * 2010-12-28 2012-07-06 대림산업 주식회사 고효율의 오존 용해 성능을 가지는 반응조를 구비한 고도산화 수처리장치
KR101362858B1 (ko) * 2013-08-27 2014-02-14 경상북도 경주시 미세버블을 이용한 다단 격벽식 부상분리장치
KR101369975B1 (ko) * 2013-08-27 2014-03-06 경상북도 경주시 무동력 플럭응집 장치
KR101369979B1 (ko) * 2013-08-27 2014-03-06 경상북도 경주시 선회와류식 고속응집장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3522020B2 (ja) * 1995-10-31 2004-04-26 株式会社明電舎 加圧型下方注入式オゾン接触槽とその制御方法
KR20120074837A (ko) * 2010-12-28 2012-07-06 대림산업 주식회사 고효율의 오존 용해 성능을 가지는 반응조를 구비한 고도산화 수처리장치
KR101362858B1 (ko) * 2013-08-27 2014-02-14 경상북도 경주시 미세버블을 이용한 다단 격벽식 부상분리장치
KR101369975B1 (ko) * 2013-08-27 2014-03-06 경상북도 경주시 무동력 플럭응집 장치
KR101369979B1 (ko) * 2013-08-27 2014-03-06 경상북도 경주시 선회와류식 고속응집장치

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114040890A (zh) * 2019-07-04 2022-02-11 丹尼尔·特纳 从液体中去除污染物的系统和方法
WO2021003474A1 (en) * 2019-07-04 2021-01-07 Blue Whale Ocean Filtration Llc Systems and methods for removal of contaminants from a liquid
CN114040890B (zh) * 2019-07-04 2023-11-21 丹尼尔·特纳 从液体中去除污染物的系统和方法
CN111420431A (zh) * 2020-04-17 2020-07-17 湖南洞庭环保科技有限公司 一种用于污水处理的沉砂装置
CN111777261A (zh) * 2020-05-28 2020-10-16 河南国威市政工程有限公司 高落差环境无动力污水处理系统
CN111777261B (zh) * 2020-05-28 2022-05-03 河南国威市政工程有限公司 高落差环境无动力污水处理系统
CN111644085A (zh) * 2020-06-24 2020-09-11 河南清波环境工程有限公司 无动力涡流絮凝装置
CN113860453A (zh) * 2021-11-08 2021-12-31 浙江浙安机械制造有限公司 一种漆渣分离处理的试剂混合添加系统
CN113926625B (zh) * 2021-11-08 2022-07-12 浙江浙安机械制造有限公司 一种喷涂生产的漆渣回收装置
CN113860453B (zh) * 2021-11-08 2023-08-15 浙江浙安机械制造有限公司 一种漆渣分离处理的试剂混合添加系统
CN113926625A (zh) * 2021-11-08 2022-01-14 浙江浙安机械制造有限公司 一种喷涂生产的漆渣回收装置
CN115572020A (zh) * 2022-11-09 2023-01-06 自然资源部第二海洋研究所 一种污水处理中溶解无机碳自动监测装置
CN115572020B (zh) * 2022-11-09 2023-03-07 自然资源部第二海洋研究所 一种污水处理中溶解无机碳自动监测装置
RU216741U1 (ru) * 2022-11-17 2023-02-27 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" Устройство флотационной очистки

Also Published As

Publication number Publication date
KR101779748B1 (ko) 2017-10-10

Similar Documents

Publication Publication Date Title
WO2018225889A1 (ko) 수처리 시스템
WO2018225890A1 (ko) 오존처리장치 및 이를 포함하는 수처리 시스템
KR101362858B1 (ko) 미세버블을 이용한 다단 격벽식 부상분리장치
WO2016163583A1 (ko) 나노버블 및 수산화 라디칼 발생장치와 이를 이용한 오염수 무약품 처리시스템
WO2014112701A1 (ko) 호소 내 조류제거 및 수질정화 장치
WO2010008197A2 (ko) 마이크로버블을 이용한 호소 수질정화장치
WO2009148265A2 (ko) 하이드로사이클론 부상분리장치 및 이것을 포함하는 수질오염 방지시스템
WO2018030621A1 (ko) 양의 미세기포를 이용한 이동식 조류제거장치
KR101740264B1 (ko) 하폐수처리 시스템용 완속교반 침전조
WO2018030620A1 (ko) 초미세기포를 이용한 이동식 조류제거장치
KR101751250B1 (ko) 배오존을 이용한 부상분리와 무포기 오존 반응기를 이용한 수 처리장치
KR102093758B1 (ko) 와류식 미세기포 발생장치를 활용한 장방형 고효율 가압고액분리 수처리장치
KR101047166B1 (ko) 고농도 유기성 폐수처리를 위한 부상분리장치
KR101020238B1 (ko) 나노 입자 공기 부상을 이용한 하ㆍ폐수 처리 장치 및 방법
KR101369975B1 (ko) 무동력 플럭응집 장치
KR101369979B1 (ko) 선회와류식 고속응집장치
KR101026768B1 (ko) 케비테이션 고액분리 부상 장치 및 이를 이용한 하폐수처리 장치
WO2022169299A1 (ko) 고분자응집제 용해공급장치
JPS6084198A (ja) 活性汚泥処理装置
KR102097559B1 (ko) 고속 난류형 고도산화 부상분리 공정을 이용한 폐수처리장치
KR101306255B1 (ko) 수처리장치
JP2008062211A (ja) トルネード凝集装置付き圧力式濾過機
KR101894792B1 (ko) 가압부상장치
KR102266934B1 (ko) 해수 부상 장치
JP7520779B2 (ja) スラリ循環型高速凝集沈殿装置及び浄水処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17912636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17912636

Country of ref document: EP

Kind code of ref document: A1