WO2018225727A1 - ピラーレスフロントウインドウ用樹脂基板 - Google Patents

ピラーレスフロントウインドウ用樹脂基板 Download PDF

Info

Publication number
WO2018225727A1
WO2018225727A1 PCT/JP2018/021549 JP2018021549W WO2018225727A1 WO 2018225727 A1 WO2018225727 A1 WO 2018225727A1 JP 2018021549 W JP2018021549 W JP 2018021549W WO 2018225727 A1 WO2018225727 A1 WO 2018225727A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin substrate
pillarless
resin
thickness
thick
Prior art date
Application number
PCT/JP2018/021549
Other languages
English (en)
French (fr)
Inventor
美和 中村
幸三 内藤
由香 齊藤
孝志 依田
浩 岸本
Original Assignee
帝人株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝人株式会社 filed Critical 帝人株式会社
Priority to CN201880037334.2A priority Critical patent/CN110799368A/zh
Priority to EP18814376.2A priority patent/EP3636471B1/en
Priority to US16/619,144 priority patent/US20200139793A1/en
Priority to AU2018279408A priority patent/AU2018279408A1/en
Publication of WO2018225727A1 publication Critical patent/WO2018225727A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/008Windows; Windscreens; Accessories therefor of special shape, e.g. beveled edges, holes for attachment, bent windows, peculiar curvatures such as when being integrally formed with roof, door, etc.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • B60J1/02Windows; Windscreens; Accessories therefor arranged at the vehicle front, e.g. structure of the glazing, mounting of the glazing

Definitions

  • the present invention relates to a resin substrate for a front window of an automobile having no pillar (hereinafter referred to as a pillar-less front window resin substrate).
  • the present invention relates to a resin substrate for a pillarless front window that is large in size, lightweight, excellent in visibility, and has a high strength that can withstand a load calculated from air resistance when traveling at 150 km / h. It is.
  • inorganic glass is used for the front window of the vehicle body, but in recent years, resinization is required from the viewpoints of reducing fuel consumption by reducing weight, forming integrally with surrounding parts, and designing.
  • the need for pillarless automobiles not only ensures the safety of pedestrians by reducing the blind spots when driving, but also because the driver can enjoy a more comfortable drive that is freed from the feeling of pressure from the pillars. It is getting higher.
  • Patent Document 1 In the case of a vehicle body structure in which a front window is supported by a pillar, normally, as described in paragraph 0029 of Patent Document 1, a black resin layer is provided on the periphery, and an adhesive is applied to the surface of the black resin layer. It is known to fix a vehicle window member. By setting it as such a structure, the see-through
  • Patent Document 2 provides a special resin window panel having a structure in which the central part is thick and the peripheral part is thin.
  • the motorbike may be equipped with a windshield for the purpose of preventing rain and wind from the front.
  • the windshield is generally fixed to the main stay.
  • a resin substrate for a pillarless front window has been realized that is large yet lightweight, has excellent visibility, and has high strength that can withstand the load calculated from the air resistance when traveling at 150 km / h. It wasn't. JP 2016-120703 A JP 2002-114028 A Japanese Utility Model Publication No. 58-178086
  • the present invention is a pillarless front window that is large but lightweight, has excellent visibility, and realizes high strength that can withstand loads calculated from air resistance when traveling at 150 km / h.
  • the purpose is to obtain a resin substrate.
  • the present invention is as follows regarding the solution of the above-mentioned problems.
  • a resin substrate for a pillarless front window in which the longest side (S A ) of the resin substrate is fixed to the vehicle body (3) The resin substrate has an uneven thickness structure having a visual recognition part (1) having an average thickness (d 1 ) of 3 to 7 mm and a thick part (2) having a thickness of 1.3 times or more of the (d 1 ).
  • a resin substrate for a pillarless front window that satisfies all the following requirements (a) to (d):
  • the visual recognition part (1) and the thick part (2) are made of a light-transmitting thermoplastic resin satisfying a haze of 6 mm thickness measured by JIS K7105 of 5% or less
  • (C) The length (L 1 ) of the longest side (S A ) is 900 mm or more and 2000 mm or less
  • (D) The average thickness (d 2B , d 2C, and d 2D ) of the thick part (2B, 2C, and 2D) is 3.0 times
  • Pillarless front window resin substrate The total weight of the resin substrate (W 1) and the S B, S constant thick portion present in C and S D ratio of the weight (W 3) of the (4B, 4C and 4D) (W 3 / 6.
  • pillarless front window according to 4 above including a configuration in which the thickness of the thick part (2) of the resin substrate decreases at a maximum inclination angle of 45 ° or less when viewed in a direction reaching the visual recognition part (1).
  • pillarless front window for resin according to claim 5 substrate ⁇ 9> The resin substrate for a pillarless front window according to the item 1, wherein the resin substrate has a thick portion (2) only on the vehicle interior side.
  • the resin substrate for a pillarless front window according to the item 1 wherein the resin substrate has a curved portion having a maximum curvature radius of 500 to 5000 mm.
  • the resin substrate has a maximum projected area is a substrate of 270,000mm 2 ⁇ 1,200,000mm 2, pillarless windshield resin substrate according to item 1 above.
  • a resin substrate for a pillarless front window that is large in size, lightweight, excellent in visibility, and has a high strength that can withstand a load calculated from air resistance when traveling at 150 km / h. Obtainable.
  • FIG. 4 is a cross-sectional view taken along line A-A ′ in FIG. 3. Sectional drawing equivalent to the position of A-A 'in FIG. 3 of the resin substrate for pillarless front windows applied to other one Embodiment of this invention. Sectional drawing equivalent to the position of A-A 'in FIG.
  • the front schematic diagram seen from the vehicle outside about one Embodiment of the cowl which fixes the resin substrate for pillarless front windows of this invention The front schematic diagram seen from the vehicle outer side about other one Embodiment of the cowl which fixes the resin substrate for pillarless front windows of this invention.
  • the side surface schematic diagram seen from the vehicle outer side about other embodiment of the cowl which fixes the resin substrate for pillarless front windows of this invention The front schematic diagram seen from the vehicle outer side about other embodiment of the cowl which fixes the resin substrate for pillarless front windows of this invention.
  • FIG. 12B is a cross-sectional view taken along line A-A ′ in FIG.
  • the image figure of the simulation result which shows the stress at the time of applying the load computed from the air resistance at the time of driving
  • FIG. 1 is a schematic front view of a configuration in which a pillar-less front window resin substrate applied to an embodiment of the present invention is fixed to a cowl, as viewed from the outside of the vehicle.
  • the resin substrate of the present invention has a visual recognition part (1) in the center part, and the longest side (S A ) and S A fixed to a cowl (3) which is a part of the vehicle body.
  • 11A in addition to 2B, 2C and 2D, there are 2BC and 2BD sandwiched between 2B and 2C and 2B and 2D, and these 2BC and 2BD are also preferably thick portions. .
  • the visual recognition part in the present invention is located in the center of the resin substrate, and its average thickness (d 1 ) is 3 mm to 7 mm.
  • the average thickness (d 1 ) of the visual recognition portion in the present invention is orthogonal to the longest side direction and the longest side of the resin substrate in the central region where the periphery is uniformly removed by 50 wt% from the resin substrate. In the direction, the thickness was measured continuously every 5 cm, and the average value of the obtained thicknesses was defined as the average thickness (d 1 ).
  • the visible part of the present invention means an area of less than 1.3 times the thickness relative to the average thickness of the visible part (d 1), and the thick portion in the present invention, the average of the visible part It means a portion having a thickness of 1.3 times or more of the thickness (d 1 ).
  • the thickness in the present invention means the shortest distance from the vehicle inner surface to the vehicle outer surface at the measurement position when the resin substrate has a curved three-dimensional structure.
  • the resin substrate of the present invention the longest side as well, connecting the ends of the opposite sides of the longest side of each of the two sides (S C and S D) be fixed to the cowl (3) may, but from the viewpoint of enhancing the visibility of at least S C and S D of the cowl (3) to 70% less than the length of a portion which is fixed, it is preferably more than 50%.
  • the S C and S D above the cowl (3) the vehicle body is not fixed portion such as a good visibility can be obtained and, as described above thickness and S C and S D
  • the meat part it is possible to realize high strength that can withstand the load calculated from the air resistance when traveling at 150 km / h. From such a viewpoint, excellent visibility is also desired for the thick-walled portion, and the visual recognition portion may be referred to as a thin-wall visual recognition portion, and the thick-walled portion may be referred to as a thick-wall visual recognition portion.
  • FIG. 2 is a schematic side view of a structure in which a pillarless front window resin substrate applied to an embodiment of the present invention is fixed to a cowl, as viewed from the outside of the vehicle.
  • the angle when attached to the cowl (3) of the visual recognition part (1) when viewed from the side is 15 to 85 degrees, and further 20 to 70 degrees with respect to the vertical direction. Inclining to the rear of the vehicle body is desirable from the viewpoint of air resistance.
  • FIG. 3 is a schematic front view of a pillar-less front window resin substrate applied to an embodiment of the present invention, as viewed from the vehicle interior side.
  • the visual recognition part (1) is provided at the center, the longest side (S A ) below, the opposite side (S B ) positioned substantially parallel to S A, and the longest side (S A ) and the longest side of the opposite side (S B) end and two sides connecting respective and a (S C and S D), each side S B, the thick portion 2B to the position of S C and S D, 2C, 2D.
  • the longest side S A is a portion fixed to the cowl (3), said that the non-visible part, and has a thickness sufficient to have an upper thickness required for fixing the cowl (3)
  • FIG. 4 is a cross-sectional view along the thickness direction of A-A ′ in FIG.
  • the resin substrate of the present invention has a thick portion in the periphery and a thin visual recognition portion in the center.
  • FIG. 4 shows a structure in which the thick part has a certain thickness, then decreases continuously, becomes a visual recognition part, and the thickness is constant in the visual recognition part. In this way, while ensuring good visibility in the thick part and the visual recognition part respectively, the boundary between the thick part and the visual recognition part (area where the thickness is 1.3 times the average thickness of the visual recognition part) is also visible to some extent. Property can be ensured, and high strength due to the thick-walled portion can be highly developed.
  • L B in FIG. 3 is the closest visible part from S B against (average thickness (d 1 having a thickness of visible part) 1 shortest distance position to be less than .3 times)
  • L C is the shortest distance to the position where the visible part closest to S C
  • L D is meant the shortest distance to the position where the visible part closest to S D To do.
  • the average width of the thick portion in the present invention (L 2C and L 2D), as shown in FIG. 11a, the thick portions present in the S C and S D (2C and 2D (thick of each side )))))),
  • the width (L C and L D ) that is continuously shortest every 5 cm in each side direction is measured, and the obtained widths (L C and L D )
  • the average value was the average width (L 2C and L 2D ) of the thick part.
  • each of the average thickness of the thick portion of the invention (d 2B, d 2C and d 2D,), as shown in FIG. 11b, the S B, the thick portions existing S C and S D (2B 2C and 2D (excluding the region where the thick portions of each side overlap), the position of the width that is continuously the shortest every 5 cm in each side direction, as shown in FIG.
  • the thickness (d B , d C or d D ) was continuously measured every 1 mm, and the average value of the obtained thicknesses was taken as the average thickness (d 2B, d 2C or d 2C ) of the thick part.
  • the length (L 1 ) of the longest side (S A ) of the resin substrate in the present invention is not the shortest distance from the end of the longest side to the other end, but is the length along the shape of the longest side.
  • the length of the string can be measured along the longest side.
  • the visual recognition part (1) has an average thickness (d 1 ) of 3 mm to 7 mm, and a length (L 1 ) of the longest side (S A ) of 900 mm to 2000 mm.
  • the thick portion average thickness of (2B, 2C and 2D) (d 2B, d 2C , and d 2D,), respectively in the following 3.0 times the d 1, and the area is across the resin substrate thereof Occupy 3 to 20% of the area.
  • the lower limit of the average thickness (d 1 ) of the visual recognition part is preferably 4 mm or more, and more preferably 5 mm or more. Above the lower limit, high rigidity is obtained, which is preferable. Moreover, it is preferable that the upper limit of the average thickness of the said visual recognition part is 6 mm or less. Less than the upper limit is preferable because it is easy to reduce the weight.
  • the variation in the thickness of the visual recognition portion is within ⁇ 10% from the average thickness (d 1 ) of the visual recognition portion in the central region where the periphery is uniformly removed by 50 wt% from the resin substrate. are preferred, more preferably within 7% ⁇ from the average thickness of the visible part (d 1), and more preferably within 5% ⁇ from the average thickness of the visible part (d 1).
  • the above range is preferable because not only excellent visibility but also excellent antifouling properties can be obtained.
  • the average thickness (d 2B, d 2C and d 2D ) of the thick part (2B, 2C and 2D) is preferably 2.5 times or less of d 1 and more preferably 2.3 times or less, In particular, 2.0 times or less is preferable.
  • the area of the thick portion preferably occupies 3 to 18% of the entire area of the resin substrate, more preferably 3 to 17%, and particularly preferably 3 to 15%.
  • the area of the thick portion is an area obtained by adding 2B and 2C and 2BC and 2BD sandwiched between 2B and 2D in addition to 2B, 2C, and 2D when described with reference to FIG. 11a.
  • the d 2B, d 2C, d 2D, and the area of the thick wall portion are in the above range, so that it is difficult for the driver to feel the strain due to the uneven thickness structure, and the vehicle traveled at 150 km / h while realizing weight reduction. This is preferable because high strength that can withstand the load calculated from the air resistance at the time can be achieved.
  • the lower limit of the length (L 1 ) of the longest side is preferably 1000 mm or more, and more preferably 1100 mm or more. Above the lower limit, it is preferable because the effect of weight reduction appears remarkably when replaced with inorganic glass.
  • the upper limit of the length (L 1 ) of the longest side is preferably 1900 mm or less, and more preferably 1800 mm or less. Below the upper limit, high strength due to the uneven thickness structure appears remarkably, which is preferable.
  • the ratios (L 2C / L 1 and L 2D / L 1 ) are each preferably 0.010 or more and 0.060 or less, and more preferably 0.020 or more and 0.050 or less.
  • the thick wall part is outside the field of view when traveling, so that good visibility can be obtained, and both high strength that can withstand the load calculated from the air resistance when traveling at 150 km / h must be achieved. Is preferable.
  • the total weight of the resin substrate and (W 1), the S B, the thick portions existing S C and S D total weight (W 2) the ratio of the (2B, 2C and 2D) (W 2 / W 1 ) is preferably 0.070 or more and 0.230 or less, and more preferably 0.090 or more and 0.220 or less.
  • the above range is preferable because it can achieve both weight reduction and high strength that can withstand the load calculated from the air resistance when traveling at 150 km / h.
  • the total weight (W 2 ) of the thick portion will be described with reference to FIG. 11a.
  • 2B and 2C and 2BC and 2BD sandwiched between 2B and 2D are added. It is.
  • the thickness of the thick part (2) of the resin substrate includes the configuration of the inclined thick part (5) that continuously decreases when viewed in the direction reaching the visual recognition part (1).
  • the configuration including the inclined thick portion (5) includes the configurations shown in FIGS. 5b and 5c in addition to the configuration shown in FIG. 4 (in FIGS. 4, 5b and 5c, the inclined thick portion is (5C). ).
  • the thickness of the thick part of the said resin substrate contains the structure which decreases continuously when it sees in the direction to the visual recognition part (1)
  • the thickness of the thick part of the said resin board reaches a visual recognition part.
  • the maximum inclination angle is 45 ° or less.
  • the lower limit of the maximum inclination angle is not particularly limited, but when the lower limit is given, it is preferable that the angle is 15 ° or more where the angle is the longest.
  • the maximum inclination angle is an angle corresponding to ⁇ when described with reference to FIG.
  • the base line at the time of measuring the maximum inclination angle is a line drawn from the measurement position of the visual recognition unit shown in FIG.
  • the structure as shown in FIG. 4 including the constant thick part (4) in which the thickness of the thick part in the resin substrate is constant Is preferable because it is easy to obtain a high strength that can withstand the load calculated from the air resistance when traveling at 150 km / h, and it is easy to attach to the vehicle body.
  • the constituent elements having the constant thickness portion (4) and inclined thick portion (5), said predetermined thickness inclined thick section from the meat portion (4) (5) and a minimum radius of curvature at the boundary region (R 1 ) Is preferably 3 mm or more and 30 mm or less.
  • the above range is preferable because it is difficult for the driver to feel the strain due to the uneven thickness structure, and it is difficult to cause defects such as sagging when laminating a hard coat layer or the like on the resin substrate.
  • the minimum radius of curvature (R 1 ) is the minimum radius of curvature at a position corresponding to R 1 when described with reference to FIG.
  • the constituent elements having the constant thickness portion (4) and inclined thick portion (5), the total weight of the resin substrate (W 1) and the S B, constant thick portion present in S C and S D The ratio (W 3 / W 1 ) to the weight (W 3 ) of (4B, 4C and 4D) is preferably 0.060 or more and 0.210 or less, and 0.060 or more and 0.200 or less. Is more preferable.
  • the total weight (W 3 ) of the thick part is a weight obtained by adding 4BC and 4BD sandwiched between 4B and 4C and 4B and 4D in addition to 4B, 4C, and 4D when described with reference to FIG. It is.
  • the discontinuous part of the thickness feels distortion, but does not include the inclined thick part. This is preferable because the area where the strain is felt is reduced.
  • the thick portion may be provided on the inside and outside of the vehicle, but the shape having the thick portion only on the inside of the vehicle is preferable because there is no interference with the wiper.
  • the shape which provides a thick part in the vehicle outer side is preferable at the point which becomes difficult to take in the rain wind from the front into a vehicle.
  • the resin substrate preferably has a curved portion with a curvature radius of 800 mm to 5000 mm, and more preferably has a curved portion with a radius of 500 mm to 3000 mm.
  • the above range is preferable because it is difficult for the driver to feel the strain due to the uneven thickness structure and high strength that can withstand the load calculated from the air resistance when traveling at 150 km / h can be achieved.
  • the resin substrate is preferably a maximum projected area is a substrate of 270,000mm 2 ⁇ 1,200,000mm 2, and more preferably a substrate of 300,000mm 2 ⁇ 1,000,000mm 2.
  • a maximum projected area is a substrate of 270,000mm 2 ⁇ 1,200,000mm 2, and more preferably a substrate of 300,000mm 2 ⁇ 1,000,000mm 2.
  • the thickness (4B, 4C and 4D) of the constant thickness portion in the resin substrate is preferably 8 mm to 12 mm, and more preferably 9 mm to 11 mm.
  • the above range is preferable because it is difficult for the driver to feel the strain due to the uneven thickness structure and high strength that can withstand the load calculated from the air resistance when traveling at 150 km / h can be achieved.
  • the light-transmitting thermoplastic resin used for the pillarless front window resin substrate of the present invention is used for improving the field of view during traveling, and has a haze of 6 mm thickness measured by JIS K7105.
  • a light-transmitting thermoplastic resin satisfying 5% or less is used.
  • the haze having a thickness of 6 mm measured by JIS K7105 is preferably 4% or less, more preferably 3% or less.
  • the resin substrate is made of the same light-transmitting thermoplastic resin in the entire region including the thick portion.
  • the above configuration is preferable because the thick portion and the thin portion can be integrally formed, and the driver is less likely to feel the strain due to the uneven thickness structure.
  • a method of molding a resin substrate for a pillarless front window from the light-transmitting thermoplastic resin composition a method of molding a three-dimensional structure by injection compression molding, a two-dimensional molding plate formed by injection compression molding into a three-dimensional structure
  • a method of hot pressing, a method of forming a three-dimensional structure by injection molding, a method of hot pressing an injection-molded two-dimensional molding plate into a three-dimensional structure, and a method of hot pressing a two-dimensional extruded sheet into a three-dimensional structure Yes in order to suppress the amount of perspective distortion, a method of forming a three-dimensional structure by injection molding is preferable, a method of hot pressing a two-dimensional molding plate injection-molded into a three-dimensional structure is more preferable, and injection compression molding The method of forming a three-dimensional structure is most preferable.
  • thermoplastic resin constituting the pillar-less front window resin substrate of the present invention
  • polycarbonate resin acrylic resin, cyclic polyolefin resin, polyphenylene ether resin, and the like can be used.
  • polycarbonate is excellent in transparency. At the same time, it is preferable because it has high impact absorption and improves safety at the time of collision, and also has excellent impact resistance and is not easily damaged in light collisions.
  • the polycarbonate resin, acrylic resin, cyclic polyolefin resin, polyphenylene ether resin, etc. used as the light-transmitting thermoplastic resin are blended with a thermoplastic resin other than the main component resin as long as the characteristics of the present invention are not impaired. Can be used as a resin composition.
  • additives infrared shielding materials, infrared absorbers, ultraviolet absorbers, dyes and pigments, heat ray absorbing compounds, various stabilizers, antioxidants, mold release agents, bluing agents, (Decomposition improving agent, flame retardant, anti-dripping agent, antistatic agent, etc.) and various fillers may be used.
  • the pillarless front window resin substrate preferably contains an inorganic infrared shielding material in the light-transmitting thermoplastic resin composition in order to reduce the temperature rise in the automobile interior due to solar radiation.
  • the inorganic infrared shielding material preferably has a particle size of 1 nm to 800 nm, more preferably 1 nm to 600 nm, and even more preferably 1 nm to 300 nm. If the particle diameter is smaller than 1 nm, the coagulation effect is increased, so that dispersibility is likely to occur. If it is larger than 800 nm, defects such as an increase in the haze of the transparent resin molded product may occur.
  • the inorganic infrared shielding material include a tungsten inorganic infrared shielding material, a lanthanum inorganic infrared shielding material, and a tin inorganic infrared shielding material. Among these, tungsten-based inorganic infrared shielding materials are preferable from the viewpoint of infrared shielding performance and haze, and composite tungsten oxide fine particles are particularly preferred among them.
  • the light-transmitting thermoplastic resin used in the present invention is preferably a polycarbonate resin because it is excellent in transparency, heat resistance, mechanical properties, dimensional stability, and the like.
  • polycarbonate resin those known per se can be adopted.
  • 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, isosorbide, 1,1- Bis (3-methyl-4-hydroxyphenyl) cyclohexane and the like are exemplified, and these are not limited to homopolymers and may be copolymerized.
  • it has at least one repeating unit selected from the group consisting of 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, and isosorbide.
  • Polycarbonate resin those known per se can be adopted.
  • the viscosity average molecular weight of the polycarbonate resin is preferably 10,000 to 40,000.
  • a viscosity average molecular weight of 10,000 or more is preferable in terms of excellent strength, and a viscosity average molecular weight of 40,000 or less is preferable in terms of excellent moldability.
  • the viscosity average molecular weight (M) of the above polycarbonate resin is obtained by substituting the specific viscosity ( ⁇ SP) obtained at 20 ° C. from a solution of 0.7 g of polycarbonate resin in 100 ml of methylene chloride into the following equation.
  • polycarbonate resin having at least one repeating unit selected from the group consisting of 2,2-bis (4-hydroxyphenyl) propane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, and isosorbide is described in detail. Describe.
  • a polycarbonate resin having 2,2-bis (4-hydroxyphenyl) propane as a repeating unit is a polycarbonate resin called bisphenol A, which is preferable because it has excellent impact resistance compared to other polycarbonate resins.
  • the polycarbonate resin having isosorbide as a repeating unit is a polycarbonate resin containing a carbonate constituent unit represented by the following formula (1), and in particular, when isosorbide is used, the hardness of the resin component is Since the refractive index of the resin can be increased and the refractive index of the resin is lower than that of other polycarbonate resins, the change in the amount of perspective distortion can be further reduced, which is preferable. Furthermore, when bisphenol A and isosorbide are used in combination, the hardness can be increased while maintaining the impact resistance of the resin part, which is preferable.
  • a polycarbonate resin having 2-bis (4-hydroxy-3-methylphenyl) propane as a repeating unit is preferable because the hardness of the resin part can be increased, and the change in the perspective strain can be further reduced. . Further, when used in combination with bisphenol A, it is preferable because the hardness can be increased while maintaining the impact resistance of the resin part.
  • the resin substrate for a pillarless front window of the present invention may be provided with a hard coat layer in order to improve weather resistance and wear resistance, which is a preferable embodiment from the viewpoint of weather resistance and wear resistance.
  • a hard coat layer those known per se can be adopted, a method of wet coating an acrylic resin layer, a method of wet coating a cured film of an organosiloxane resin, a method of providing a plasma CVD layer of an organosilicon compound, The method of laminating nanosheet layers made of scale-like metal oxide fine particles as described in JP-A-2013-170209 can be raised, and these may be used alone or in combination.
  • thermosetting acrylic resin layer for example, a method of wet coating a thermosetting acrylic resin layer on the surface of a resin substrate, and further wet coating a cured film of a thermosetting organosiloxane resin on the resin substrate Can be formed.
  • a photocurable acrylic resin layer can be formed on the surface of the resin substrate by wet coating.
  • the plasma CVD layer of the organosilicon compound is formed on the resin substrate on which the hard coat layer is formed by plasma polymerization in the presence of an organic silicon compound vapor such as organosiloxane, organosilane or silazane and oxygen gas. It can be formed by a method of depositing an organic silicon-based oxidation polymer.
  • the nanosheet layer made of scale-like metal oxide fine particles is, for example, a dispersion obtained by dispersing scale-like metal oxide fine particles having a shortest width of 10 nm or more, a thickness of 10 nm or less, and a shortest width / thickness of 10 or more in a solvent. It can be formed by a method of coating, drying and fixing on the resin substrate on which the hard coat layer is formed.
  • the resin substrate for the pillarless front window of the present invention may be provided with a water repellent functional layer or a hydrophilic functional layer in order to improve waterproofness and antifouling properties, and a viewpoint applicable to a wiperless front window. Is a preferred form.
  • an authentication mark, an awning, a rearview mirror, etc. can be added to the pillar-less window resin substrate of the present invention where it does not significantly impair visibility.
  • the pillarless window resin substrate of the present invention is preferably attached to the vehicle body using a cowl or the like.
  • the longest side of the resin substrate and two sides including both ends of the longest side are attached to the vehicle body with a cowl or the like.
  • a screw and an adhesive are preferably used.
  • FIGS. 8a to 8c and FIGS. 9a to 9c are preferably used.
  • the values of the material properties were 1,200 kg / m 3 for the density of polycarbonate, 2,400 MPa for the elastic modulus, and 0.38 for the Poisson's ratio.
  • Evaluation 2 Observing strain by visual observation
  • Visual observation is performed outdoors on a sunny day, when the molded resin board is attached to the vehicle body, and the outside can be seen through the resin board from the driver's seat through the resin board to see the external situation and scenery with almost no distortion.
  • and the case where distortion that hinders visibility was observed was evaluated as x.
  • Example 1 ⁇ Resin material> Polycarbonate resin powder (manufactured by Teijin Chemicals Ltd .: Panlite L-1225WP) having a viscosity average molecular weight of 22,400 produced from bisphenol A and phosgene by an interfacial condensation polymerization method was used.
  • the content of the infrared shielding agent is the amount of the inorganic infrared shielding material Cs 0.33 WO 3 contained in YMDS-874 shown in parentheses. (The numbers outside the parentheses represent parts by weight in the resin composition of YMDS-874.)
  • the additives to be added to the PC were prepared in advance as pre-mixtures with PC, with a concentration of 10 to 100 times the blending amount as a guide. After that, the entire mixing was performed by a blender.
  • the vent type twin screw extruder used was TEX30 ⁇ (completely meshing, rotating in the same direction, two-thread screw) manufactured by Nippon Steel Works. The kneading zone was of one type before the vent opening.
  • the extrusion conditions were a discharge rate of 20 kg / h, a screw rotation speed of 150 rpm, a vent vacuum of 3 kPa, and an extrusion temperature of 280 ° C. from the first supply port to the die part.
  • the above resin composition was produced in an atmosphere in which clean air passed through a HEPA filter was circulated, and with great care so that no foreign matter was mixed during the operation.
  • a molded plate having a thickness of 6 mm was prepared, and the haze was measured according to the standard of JIS K7105.
  • ⁇ Molding method: injection compression molding> The above resin material pellets are shown in FIG.
  • Such a visual recognition part pillarless window resin substrate having the visual recognition part (1), the constant thick part (5), and the inclined thick part (4) was injection compression molded.
  • the fixed thick part (5) and the inclined thick part (4) were molded so as to be provided only inside the vehicle as shown in FIG.
  • the injection mold was made with CENA-V manufactured by Hitachi Metals, Ltd.
  • cylinder temperature is 280 ° C
  • hot runner set temperature is 280 ° C
  • mold temperature is 100 ° C on the fixed side
  • press stroke: 2mm mold movement from the intermediate mold clamping state to final mold clamping
  • the test was performed under the conditions of a speed of 0.02 mm / sec and a pressurization holding time of 600 sec.
  • the pressure at the time of compression was set to 25 MPa, and the pressure was maintained for the holding time of pressurization.
  • the injection speed was 5 mm / second in the area until the gate portion was filled, and 18 mm / second in the area after that.
  • the movable mold parting surface was not in contact with the fixed mold parting surface in the final forward position.
  • the runner was a valve gate type hot runner (diameter 16 mm ⁇ ) manufactured by Moldmasters. Mold compression was started immediately before completion of filling, and the overlap was 0.5 seconds. Immediately after completion of filling, the valve gate was closed so that the molten resin did not flow backward from the gate to the cylinder. In such molding, tan ⁇ representing the amount of tilt and the amount of twist was maintained at about 0.000025 or less by the 4-axis parallel control mechanism.
  • SL thick portion average thickness of (2B, 2C and 2D) (d 2B, d 2C and d 2D) are each a 9.5 mm, were respectively 1.6 times the d 1.
  • the area of the thick part (2B, 2C and 2D) occupied 10% of the area of the entire resin substrate.
  • the maximum side length of (S A) (L 1) is 1300 mm, thick portion present in the S C and S D (2C and 2D) of the average width (L 2C and L 2D), respectively 32.0 mm, the a (L 1), the (L 2C and L 2D) and the ratio of (L 2C / L 1 and L 2D / L 1), was 0.025, respectively.
  • the length of the S B is 1100 mm, the length of the shortest connecting each length of S C and S C 440 mm, S A and S B was 650 mm.
  • the total weight (W 1 ) of the resin substrate is 5.96 kg, and the thick portion (2B, 2C, and 2D total weight (W 2 ) present in the S B , S C, and SD is 0.
  • the ratio (W 2 / W 1 ) was 0.114.
  • the total weight (W 1 ) of the resin substrate and the weight (W 3 ) of the constant thickness portion (4) were 0.64 kg, and the ratio (W 3 / W 1 ) was 0.107. It was.
  • the resin substrate had a curved portion as shown in FIG. 7a, and the maximum radius of curvature was 1550 mm.
  • the resin substrate had a maximum projected area of 780000 mm 2 .
  • ⁇ Evaluation results> For pillarless windshield resin substrate obtained in Example 1, was simulated MUSES stress above evaluation method 1, as shown in FIG. 12, the central portion of the S A, and the S C and S D It was found that the stress was concentrated in the central part not fixed by the cowl. Among the most part stress concentration is a central portion which is not fixed in the cowl of the S C and S D, the value of the maximum MUSES stress was 0.46 MPa.
  • the image of the simulation result shown in FIG. 12 is displayed in black as the Muses stress is smaller and white as the Muses stress is larger.
  • Example 1 a pillarless window resin substrate was molded under the same conditions as in Example 1 except that a front flat resin substrate having no thick part was used. ⁇ Physical properties of resin substrates for pillarless windows> The average thickness (d 1 ) of the visual recognition part was 6.0 mm.
  • the longest side length of the (S A) (L 1) is, 1300 mm, the length of the S B is 1100 mm, respectively length of S C and S C 440 mm, the length of the shortest connecting S A and S B is It was 650 mm.
  • the total weight (W 1 ) of the resin substrate was 5.62 kg.
  • the resin substrate had a curved portion as shown in FIG. 7a, and the maximum radius of curvature was 1550 mm.
  • the resin substrate had a maximum projected area of 780000 mm 2 .
  • ⁇ Evaluation results> When the Muses stress was simulated for the pillar-less front window resin substrate obtained in Comparative Example 1 by the method of Evaluation 1, the portion where the stress is concentrated is the same as the image of the simulation result of Example 1 shown in FIG. in a central portion, and the S C and the central portion not fixed with the cowl of S D of the S a, a portion among the most stress is concentrated, it is fixed in the cowl of the S C and S D
  • the maximum Muses stress was 0.59 MPa, which was 22% higher than the value of Example 1, although it was not the central part.
  • the pillar-less front window resin substrate obtained in Comparative Example 1 was visually observed for distortion by the method of Evaluation 2 above. As a result, it was possible to see the external situation / scenery with almost no distortion. It was evaluation. Visual observation was performed by five adults and more than half of the evaluations were adopted, but there was little variation in the evaluation of each molded product.
  • Example 2 From the comparison with Example 1 and Comparative Example 1 described above, by having a structure having a specific thick portion in the periphery, the total weight (W 1 ) of the resin substrate is only increased by 6.0%, thereby reducing the weight. It was found that the maximum Muses stress value can be reduced by 22% while maintaining the above.
  • Comparative Example 2 The same resin substrate as in Example 1 was molded by adjusting the thickness so that the total weight (W 1 ) was 5.96 kg, so as to be a front flat resin substrate having no thick part as in Comparative Example 1. Except for the above, a pillarless window resin substrate was molded under the same conditions as in Example 1.
  • the pillar-less front window resin substrate obtained in Comparative Example 2 was subjected to visual distortion observation by the method of Evaluation 2 above. It was evaluation. Visual observation was performed by five adults and more than half of the evaluations were adopted, but there was little variation in the evaluation of each molded product.
  • the resin substrate for pillarless front window according to the present invention is large and lightweight, and has excellent visibility, and also realizes high strength that can withstand the load calculated from the air resistance when traveling at 150 km / h.
  • it is suitable for a front window mounted on an open car or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Body Structure For Vehicles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

大型でありながら軽量でかつ視認性に優れ、さらに、150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度を実現させたピラーレスフロントウインドウ用樹脂基板を提供する。樹脂基板の最長辺(SA)が車体(3)に固定されるピラーレスフロントウインドウ用樹脂基板であって、上記樹脂基板は、平均厚み(d1)が3mm~7mmである視認部(1)および厚みが上記(d1)の1.3倍以上である厚肉部(2)を有する偏肉構造物で、かつ、下記(a)~(d)の全ての要件を満たす、ピラーレスフロントウインドウ用の樹脂基板:(a)中央に薄肉の視認部(1)を有し、上記最長辺(SA)の対辺(SB)と、上記最長辺(SA)および上記最長辺の対辺(SB)の端部をそれぞれ結ぶ2辺(SCおよびSD)の合計3辺(SB、SCおよびSD)に厚肉部(2B、2Cおよび2D)を有しており、(b)上記視認部(1)および厚肉部(2)が、JIS K7105で測定された6mm厚みのヘーズが5%以下を満足する光透過性熱可塑性樹脂を用いてなり、(c)上記最長辺(SA)の長さ(L1)が、900mm以上2000mm以下であり、(d)上記厚肉部(2B、2Cおよび2D)の平均厚み(d2B、d2Cおよびd2D)がそれぞれ上記d1の3.0倍以下で、かつその面積が、上記樹脂基板全体の面積の3~20%を占めること:。

Description

ピラーレスフロントウインドウ用樹脂基板
 本発明は、ピラーが存在しない自動車のフロントウインドウ用樹脂基板(以下、ピラーレスフロントウインドウ用樹脂基板と称する)に関するものである。特に本発明は、大型でありながら軽量でかつ視認性に優れ、さらに、150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度を実現させたピラーレスフロントウインドウ用樹脂基板に関するものである。
 車体のフロントウインドウは通常無機ガラスが用いられているが、近年、軽量化による燃費低減、周囲部品との一体形成性、デザイン性の観点から樹脂化が求められている。
 また、自動車のピラーレス化は、走行時の死角を減少させることで歩行者の安全が確保できるだけでなく、ピラーによる圧迫感から解放されドライバーがより快適なドライブを楽しめるため、近年、そのニーズはより一層高まっている。
 さて、これまでフロントウインドウの樹脂化は、ピラーによりフロントウインドウが支えられる車体の構造を前提に検討されてきた。
 ピラーによりフロントウインドウが支えられる車体の構造の場合、通常、特許文献1の段落0029等に記載されているように、周縁部に黒色樹脂層を設け、黒色樹脂層の表面に接着剤を塗布して、車両用ウインドウ部材を固定することが知られている。このような構造とすることで、車外からの接着剤の透視を防止することができる。
 しかしながら、ピラーによりフロントウインドウが支えられる車体の構造の場合、周縁部に黒色樹脂層を設ける二色成形を想定しており、特許文献1に記載の樹脂部材をピラーの存在しない車体に採用しても、良好な視認性は得られない。
 また、特許文献2では、中央部が厚く周縁部が薄い構造である特殊な樹脂製ウインドウパネルが提供されている。
 しかしながら、特許文献2に記載の樹脂製ウインドウパネルをピラーの存在しない車体に採用すると、走行中、樹脂製ウインドウパネルに空気抵抗によるゆがみが発生してしまい、良好な視界を得ることができない。
 ここで、原動機付自転車には、前方からの雨風を防ぐ目的でウインドシールドを装着する場合があり、例えば、特許文献3のように、メインステーにウインドシールドを固定する構成が一般的である。
 しかしながら、このようなウインドシールドは、150km/hほどの高速で走行することは想定されていないため、自動車のピラーレスフロントウインドウに用いることは到底できない。
 一方、バイクの中には150km/hほどの高速で走行するものもあるが、その場合、装着するウインドシールドは視認性を犠牲にした小さいサイズのものでしかない。
 よって、これまで大型でありながら軽量でかつ視認性に優れ、さらに、150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度を実現させたピラーレスフロントウインドウ用樹脂基板は実現されていなかった。
特開2016-120703号公報 特開2002-114028号公報 実開昭58-178086号公報
 これらの状況を踏まえ、本発明では、大型でありながら軽量でかつ視認性に優れ、さらに、150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度を実現させたピラーレスフロントウインドウ用樹脂基板を得る事を目的とする。
 すなわち前記課題の解決に関し、本発明は次記のとおりである。
〈1〉樹脂基板の最長辺(S)が車体(3)に固定されるピラーレスフロントウインドウ用樹脂基板であって、
 上記樹脂基板は、平均厚み(d)が3mm~7mmである視認部(1)および厚みが上記(d)の1.3倍以上である厚肉部(2)を有する偏肉構造物で、かつ、下記(a)~(d)の全ての要件を満たす、ピラーレスフロントウインドウ用の樹脂基板:
 (a)中央に薄肉の視認部(1)を有し、上記最長辺(S)の対辺(S)と、上記最長辺(S)および上記最長辺の対辺(S)の端部をそれぞれ結ぶ2辺(SおよびS)の合計3辺(S、SおよびS)に厚肉部(2B、2Cおよび2D)を有しており、
 (b)上記視認部(1)および厚肉部(2)が、JIS K7105で測定された6mm厚みのヘーズが5%以下を満足する光透過性熱可塑性樹脂を用いてなり、
 (c)上記最長辺(S)の長さ(L)が、900mm以上2000mm以下であり、
 (d)上記厚肉部(2B、2Cおよび2D)の平均厚み(d2B、d2Cおよびd2D)がそれぞれ上記dの3.0倍以下で、かつその面積が、上記樹脂基板全体の面積の3~20%を占めること:。
〈2〉上記樹脂基板の最長辺(S)の長さ(L)と、上記SおよびSに存在する厚肉部(2Cおよび2D)の平均幅(L2CおよびL2D)との比(L2C/LおよびL2D/L)が、それぞれ0.01以上0.06以下である、上記1項に記載のピラーレスフロントウインドウ用樹脂基板。
〈3〉上記樹脂基板の全重量(W)と、上記S、SおよびSに存在する厚肉部(2B、2Cおよび2D)の合計重量(W)との比(W/W)が、0.070以上0.230以下である、上記1項に記載のピラーレスフロントウインドウ用樹脂基板。
〈4〉上記樹脂基板の厚肉部(2)の厚みが、視認部(1)に至る方向で見た時に連続的に減少する構成(傾斜厚肉部(5))を含む、上記1項に記載のピラーレスフロントウインドウ用樹脂基板。
〈5〉上記樹脂基板の厚肉部(2)の厚みが、視認部(1)に至る方向で見た時に一定となる構成(一定厚肉部(4))を含む、上記4項に記載のピラーレスフロントウインドウ用樹脂基板。
〈6〉上記樹脂基板の全重量(W)と上記S、SおよびSに存在する一定厚肉部(4B、4Cおよび4D)の重量(W)との比(W/W)が、0.060以上0.210以下である、上記5項に記載のピラーレスフロントウインドウ用樹脂基板。
〈7〉上記樹脂基板の厚肉部(2)の厚みが、視認部(1)に至る方向で見た時に最大傾斜角度45°以下で減少する構成を含む、上記4に記載のピラーレスフロントウインドウ用樹脂基板。
〈8〉上記一定厚肉部(4)から傾斜厚肉部(5)となる境界領域における最少曲率半径(R)が3mm以上30mm以下である、請求項5に記載のピラーレスフロントウインドウ用樹脂基板。
〈9〉上記樹脂基板は、車内側にのみ厚肉部(2)を有する、上記1項に記載のピラーレスフロントウインドウ用樹脂基板。
〈10〉上記樹脂基板は、最大曲率半径が500~5000mmの湾曲部を有する、上記1項に記載のピラーレスフロントウインドウ用樹脂基板。
〈11〉上記樹脂基板は、最大投影面積が270,000mm~1,200,000mmの基板である、上記1項に記載のピラーレスフロントウインドウ用樹脂基板。
〈12〉上記樹脂基板における一定厚肉部(4B、4Cおよび4D)の厚みが8mm~12mmである、上記5項に記載のピラーレスフロントウインドウ用樹脂基板。
〈13〉上記樹脂基板は、上記厚肉部(2)も含む全領域が同一の光透過性熱可塑性樹脂を用いてなる、上記1項に記載のピラーレスフロントウインドウ用樹脂基板。
〈14〉上記光透過性熱可塑性樹脂が、ポリカーボネート樹脂である、上記1項に記載のピラーレスフロントウインドウ用樹脂基板。
〈15〉樹脂基板の最長辺(S)と、上記SおよびSのそれぞれ半分の長さ部分をカウルによって車体に固定して150km/hで走行した際の空気抵抗から算出した荷重25.8kgf(253.0N)を前方から加えた際の最大ミーゼス応力が0.50以下である、上記1項に記載のピラーレスフロントウインドウ用樹脂基板。
 本発明によれば、大型でありながら軽量でかつ視認性に優れ、さらに、150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度を実現させたピラーレスフロントウインドウ用樹脂基板を得ることができる。
本発明の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板をカウルに固定した構成を車外側から見た正面模式図。 本発明の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板をカウルに固定した構成を車外側から見た側面模式図。 本発明の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板の車内側から見た正面模式図。 図3におけるA-A’断面図。 本発明の他の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板の図3におけるA-A’の位置に相当する断面図。 本発明の他の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板の図3におけるA-A’の位置に相当する断面図。 本発明の他の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板の図3におけるA-A’の位置に相当する断面図。 本発明の他の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板の車外側から見た正面模式図。 本発明の他の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板の車外側から見た正面模式図。 本発明の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板の車外側斜め前方から見た模式図。 本発明の他の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板の車外側斜め前方から見た模式図。 本発明のピラーレスフロントウインドウ用樹脂基板を固定するカウルの一実施形態について車外側から見た正面模式図。 本発明のピラーレスフロントウインドウ用樹脂基板を固定するカウルの他の一実施形態について車外側から見た正面模式図。 本発明のピラーレスフロントウインドウ用樹脂基板を固定するカウルの他の一実施形態について車外側から見た正面模式図。 本発明のピラーレスフロントウインドウ用樹脂基板を固定するカウルの一実施形態について車外側から見た側面模式図。 本発明のピラーレスフロントウインドウ用樹脂基板を固定するカウルの他の一実施形態について車外側から見た側面模式図。 本発明のピラーレスフロントウインドウ用樹脂基板を固定するカウルの他の一実施形態について車外側から見た側面模式図。 視認部の平均厚みおよび厚みのバラつきを求めるための測定箇所。 厚肉部の平均幅を求めるための測定箇所。 厚肉部の平均厚みを求めるための測定箇所。 図11bにおけるA-A’の位置の断面図であり、厚肉部の平均厚みを求めるための測定箇所。 本発明の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板をカウルに固定して、150km/hで走行した際の空気抵抗から算出した荷重を加えた際の応力を示すシミュレーション結果のイメージ図。
 以下に、本発明の実施の形態について、図面で具体例も示した上、順次説明するが、本発明はこれらに制限されるものではない。
 まず、本発明のピラーレスフロントウインドウ用樹脂基板の形状について説明する。
 〈本発明のピラーレスフロントウインドウ用樹脂基板の形状について〉
 本発明のピラーレスフロントウインドウ用樹脂基板について、その一例を図1~4を用いて説明する。
 図1は、本発明の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板をカウルに固定した構成を車外側から見た正面模式図である。
 図1に示す通り、本発明の樹脂基板は、中央部に視認部(1)を有し、車体の一部であるカウル(3)に固定される最長辺(S)とSに対し略平行に位置する対辺(S)と、最長辺および最長辺の対辺の端部をそれぞれ結ぶ2辺(SおよびS)とを有し、各辺S、SおよびSの位置に厚肉部2B、2C、2Dを有する。なお、図11aを用いて説明すると、上記2B、2Cおよび2Dに加え、2Bと2Cおよび2Bと2Dに挟まれた2BCと2BDとがあり、この2BCおよび2BDも厚肉部であることが好ましい。
 図1に示す通り、本発明における視認部は、樹脂基板の中央に位置し、その平均厚み(d)は3mm~7mmである。本発明における視認部の平均厚み(d)とは、図10に示すように、樹脂基板から周囲を均等に50wt%除いた中央の領域について、樹脂基板の最長辺方向および最長辺と直交する方向に、それぞれ5cm毎に連続的に厚みを測定し、得られた厚みの平均値を平均厚み(d)とした。なお、本発明における視認部とは、上記視認部の平均厚み(d)に対して厚みが1.3倍未満の領域を意味し、本発明における厚肉部とは、上記視認部の平均厚み(d)の1.3倍以上の厚みを有する部分を意味する。また、本発明における厚みとは、樹脂基板が湾曲した3次元構造を有する場合、測定位置における車内側の面から車外側の面の最短距離を意味する。
 また、図1に示す通り、本発明の樹脂基板は、最長辺だけでなく、最長辺の対辺の端部をそれぞれ結ぶ2辺(SおよびS)もカウル(3)に固定されていても良いが、視認性を高める観点から、少なくともSおよびSのカウル(3)に固定されている部分の長さは70%以下、さらに50%以下であることが好ましい。このように上記SおよびSの上方をカウル(3)等の車体に固定されていない部分とすることで、良好な視認性が得られ、かつ、SおよびSを前述の通り厚肉部にすることで150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度を実現できる。そのような観点から厚肉部にも優れた視認性が望まれ、視認部を薄肉視認部、厚肉部を厚肉視認部と称することもできる。
 図2は、本発明の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板をカウルに固定した構成を車外側から見た側面模式図である。図2に示すように、側面から見たときの視認部(1)のカウル(3)に取り付けたときの角度は、鉛直方向に対して、15~85度、さらに20~70度の角度で車体後方に傾斜していることが、空気抵抗の観点から望ましい。
 図3は、本発明の一実施形態に適用されるピラーレスフロントウインドウ用樹脂基板の車内側から見た正面模式図である。図1で説明したのと同様に、中央部に視認部(1)を有し、下方に最長辺(S)、Sと略平行に位置する対辺(S)、最長辺(S)および最長辺の対辺(S)の端部をそれぞれ結ぶ2辺(SおよびS)とを有し、各辺S、SおよびSの位置に厚肉部2B、2C、2Dを有する。
 なお、最長辺Sはカウル(3)に固定される部分であることから、非視認部といえ、その厚みはカウル(3)に固定する上で必要な厚さを有していればよく、望ましくは固定をより強固に出来ることから前述の厚肉部と同様な厚さを有することが望ましく、他方カウル(3)に固定された近傍の視認性を高める観点から、視認部と同様な厚さを有することが好ましい。
 つぎに、図4は、図3におけるA-A’の厚み方向に沿った断面図である。図4に示す通り、本発明の樹脂基板は、周囲に厚肉部が存在し、中央に薄肉の視認部が存在する。図4では、厚肉部が一定の厚みを有し、その後連続的に減少していき、視認部へとなり、視認部でまた厚みが一定となる構造を示しており、このような構造を有することで厚肉部および視認部でそれぞれ良好な視認性を確保しつつ、かつ厚肉部と視認部の境界(視認部の平均厚みに対して厚みが1.3倍の領域)もある程度の視認性を確保でき、さらに厚肉部による高強度も高度に発現することができる。
 また、厚肉部の幅とは、図3におけるLB、およびLであり、LはSから最も近い視認部(厚みが視認部の平均厚み(d)に対して1.3倍未満)になる位置までの最短距離、LはSから最も近い視認部になる位置までの最短距離、LはSから最も近い視認部になる位置までの最短距離を意味する。
 ここで、本発明における厚肉部の平均幅(L2CおよびL2D)は、図11aに示すように、上記SおよびSに存在する厚肉部(2Cおよび2D(各辺の厚肉部が重なる領域を除く))の領域について、各辺方向の5cm毎に連続的に最短となる幅(LおよびL)を測定し、得られた各幅(LおよびL)の平均値を厚肉部の平均幅(L2CおよびL2D)とした。
 また、本発明における厚肉部のそれぞれの平均厚み(d2B、2Cおよびd2D、)は、図11bに示すように、上記S、SおよびSに存在する厚肉部(2B、2Cおよび2D(各辺の厚肉部が重なる領域を除く))の領域について、各辺方向の5cm毎に連続的に最短となる幅の位置を、図11cに示すように、幅方向の1mm毎に厚み(d、dもしくはd)を連続的に測定し、得られた厚みの平均値を厚肉部の平均厚み(d2B、2Cもしくはd2C)とした。
 また、本発明における樹脂基板の最長辺(S)の長さ(L)は、最長辺の端部から他の端部までの最短距離ではなく、最長辺の形状に沿った長さで、例えば最長辺に紐を沿わせて、その紐の長さを測定できる。
 本発明のピラーレスフロントウインドウ用樹脂基板は、上記視認部(1)の平均厚み(d)が3mm~7mmであり、最長辺(S)の長さ(L)が900mm以上2000mm以下であり、上記厚肉部(2B、2Cおよび2D)の平均厚み(d2B、2C、およびd2D、)が、それぞれ上記dの3.0倍以下で、かつその面積が上記樹脂基板全体の面積の3~20%を占める。
 上記視認部の平均厚み(d)の下限は、4mm以上であることが好ましく、5mm以上であることがより好ましい。下限以上では高剛性が得られるため好ましい。また、上記視認部の平均厚みの上限は、6mm以下であることが好ましい。上限以下では軽量化が得られやすいため好ましい。
 また、視認部の厚みのバラつきは、図10に示すように、樹脂基板から周囲を均等に50wt%除いた中央の領域について、視認部の平均厚み(d)から±10%以内であることが好ましく、視認部の平均厚み(d)から±7%以内であることがより好ましく、視認部の平均厚み(d)から±5%以内であることがさらに好ましい。上記範囲では、視認性に優れるだけでなく優れた防汚性も得られるため好ましい。
 また、上記厚肉部(2B、2Cおよび2D)の平均厚み(d2B、2Cおよびd2D)は、それぞれ上記dの2.5倍以下が好ましく、さらに2.3倍以下が好ましく、特に2.0倍以下が好ましい。また、厚肉部の面積は上記樹脂基板全体の面積の3~18%を占めることが好ましく、さらに3~17%を占めることがより好ましく、特に3~15%を占めることがより好ましい。なお、厚肉部の面積は、図11aを用いて説明すると、2B、2C、2Dに加え、2Bと2Cおよび2Bと2Dに挟まれた2BCと2BDとを加えた、面積である。d2B、2C、2Dおよび厚肉部の面積が上記範囲にあることで、ドライバーが上記偏肉構造に起因するひずみを感じづらく、かつ、軽量化を実現させつつ150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度を両立することができるため好ましい。
 さらに、最長辺の長さ(L)の下限は1000mm以上であることが好ましく、1100mm以上であることがより好ましい。下限以上では無機ガラスと置き変えた際に、軽量化の効果が顕著に表れるため好ましい。また、最長辺の長さ(L)の上限は1900mm以下であることが好ましく、1800mm以下であることがより好ましい。上限以下では、偏肉構造による高強度が顕著に表れるため好ましい。
 また、上記樹脂基板の最長辺(S)の長さ(L)と、上記SおよびSに存在する厚肉部(2Cおよび2D)の平均幅(L2CおよびL2D)との比(L2C/LおよびL2D/L)が、それぞれ0.010以上0.060以下であることが好ましく、0.020以上0.050以下であることがより好ましい。上記範囲では、厚肉部が走行時の視界外に存在するため良好な視認性が得られ、かつ、150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度を両立することができるため好ましい。
 また、上記樹脂基板の全重量(W)と、上記S、SおよびSに存在する厚肉部(2B、2Cおよび2D)の合計重量(W)との比(W/W)が、0.070以上0.230以下であることが好ましく、0.090以上0.220以下であることがより好ましい。上記範囲では、軽量化および150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度を両立することができるため好ましい。なお、厚肉部の合計重量(W)は、図11aを用いて説明すると、2B、2C、2Dに加え、2Bと2Cおよび2Bと2Dに挟まれた2BCと2BDとを加えた、重量である。
 また、上記樹脂基板の厚肉部(2)の厚みは、視認部(1)に至る方向で見た時に連続的に減少する傾斜厚肉部(5)の構成を含むことが好ましい。上記傾斜厚肉部(5)を含む構成は、上記図4に示す構成の他、図5bおよび図5cに示す構成も含まれる(図4、図5bおよび図5cにおいて傾斜厚肉部は(5C)で示す部分である)。このような構成とすることで、ドライバーが上記偏肉構造に起因するひずみを感じづらく、また、上記樹脂基板上にハードコート層等の積層する構成の場合、タレ等の欠点が発生しづらいため好ましい。
 また、上記樹脂基板の厚肉部の厚みが、視認部(1)に至る方向で見た時に連続的に減少する構成を含む場合、上記樹脂基板の厚肉部の厚みが、視認部に至るまでに、最大傾斜角度45°以下で減少することが好ましい。このような最大傾斜角度とすることで、ドライバーが上記偏肉構造に起因するひずみを感じづらく、また、上記樹脂基板上にハードコート層等の積層する構成の場合、タレ等の欠点が発生しづらいため好ましい。また、最大傾斜角度の下限は特に限定されないが、下限を付ける場合は、一番角度がたつところで15°以上あることが好ましい。上記値を下限とすることで、良好な視認性および剛性が得られるため好ましい。ここで、最大傾斜角度とは、図4を用いて説明するとθに相当する角度である。なお、最大傾斜角度を測定する際のベースラインは図10に示す視認部の測定位置から引いてきたラインとする。
 また、傾斜厚肉部を有する上記図4、図5bおよび図5cのなかでも、上記樹脂基板における厚肉部における厚みが一定となる一定厚肉部(4)を含む図4に示すような構成は、150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度が得られやすく、さらに、車体への取り付けが容易となるため好ましい。
 また、一定厚肉部(4)および傾斜厚肉部(5)を有する構成については、上記一定厚肉部(4)から傾斜厚肉部(5)となる境界領域における最少曲率半径(R)を3mm以上30mm以下とすることが好ましい。上記範囲とすることで、ドライバーが上記偏肉構造に起因するひずみを感じづらく、また、上記樹脂基板上にハードコート層等の積層する際にタレ等の欠点が発生しづらいため好ましい。ここで、最少曲率半径(R)とは、図4を用いて説明すると、Rに相当する位置の最少曲率半径である。
 また、一定厚肉部(4)および傾斜厚肉部(5)を有する構成については、上記樹脂基板の全重量(W)と上記S、SおよびSに存在する一定厚肉部(4B、4Cおよび4D)の重量(W)との比(W/W)が、0.060以上0.210以下であることが好ましく、0.060以上0.200以下であることがより好ましい。なお、厚肉部の合計重量(W)は、図3を用いて説明すると、4B、4C、4Dに加え、4Bと4Cおよび4Bと4Dに挟まれた4BCと4BDとを加えた、重量である。
 上記範囲では、軽量化および150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度を両立することができるため好ましい。
 一方、上記樹脂基板の厚肉部から視認部へ厚みが、不連続に変化する図5aに示すような構成については、厚みの不連続部分ではひずみを感じるものの、傾斜厚肉部を含まない分、ひずみを感じる領域が少なくなるため、好ましい。
 また、本発明において、上記厚肉部は車内側および車外側に設けても良いが、車内側にのみ厚肉部を設ける形状では、ワイパーとの干渉がなくなるため、好ましい。なお、車外側に厚肉部を設ける形状は、前方からの雨風を車内に取り込みづらくなる点では好ましい。
 また、上記樹脂基板は、曲率半径が800mm~5000mmの湾曲部を有することが好ましく、500mm~3000mmの湾曲部を有することがより好ましい。上記範囲では、ドライバーが上記偏肉構造に起因するひずみを感じづらく、かつ、150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度を両立することができるため好ましい。
 また、上記樹脂基板は、最大投影面積が270,000mm~1,200,000mmの基板であることが好ましく、300,000mm~1,000,000mmの基板であることがより好ましい。上記範囲では、無機ガラスと置き変えた際に、軽量化の効果が顕著に表れ、かつ、偏肉構造による高強度が顕著に表れるため好ましい。
 また、上記樹脂基板における一定厚肉部の厚み(4B、4Cおよび4D)は、8mm~12mmであることが好ましく、9mm~11mmであることがより好ましい。上記範囲では、ドライバーが上記偏肉構造に起因するひずみを感じづらく、かつ、かつ、150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度を両立することができるため好ましい。
 〈本発明のピラーレスフロントウインドウ用樹脂基板の材質について〉
 本発明のピラーレスフロントウインドウ用樹脂基板に用いる光透過性熱可塑性樹脂としては、走行時の視界を良好なものとするために用いられるものであって、JIS K7105で測定された6mm厚みのヘーズが5%以下を満足する光透過性熱可塑性樹脂を用いる。JIS K7105で測定された6mm厚みのヘーズは、好ましくは4%以下、さらに好ましくは3%以下を満足することが好ましい。
 また、上記樹脂基板は、上記厚肉部も含む全領域が同一の光透過性熱可塑性樹脂を用いてなることが好ましい。上記構成とすることで、厚肉部と薄肉部の一体成型が可能となり、かつ、ドライバーが上記偏肉構造に起因するひずみをより感じづらくなるため好ましい。
 上記光透過性熱可塑性樹脂組成物から、ピラーレスフロントウインドウ用樹脂基板を成形する方法としては、射出圧縮成形で三次元構造を成形する方法、射出圧縮成形した二次元の成形版を三次元構造に熱プレスする方法、射出成形で三次元構造を成形する方法、射出成形した二次元の成形版を三次元構造に熱プレスする方法、および二次元の押出シートを三次元構造に熱プレスする方法があり、透視歪量を抑制させるためには、射出成形で三次元構造を成形する方法が好ましく、射出圧縮成形した二次元の成形版を三次元構造に熱プレスする方法がより好ましく、射出圧縮成形で三次元構造を成形する方法が最も好ましい。
 本発明のピラーレスフロントウインドウ用樹脂基板を構成する光透過性熱可塑性樹脂としては、ポリカーボネート樹脂、アクリル樹脂、環状ポリオレフィン樹脂、ポリフェニレンエーテル樹脂等を用いることができるが、この中でもポリカーボネートは透明性に優れるとともに、衝撃吸収性が高く衝突時の安全性が向上し、さらに、耐衝撃性に優れ軽衝突においては破損しにくいので好ましい。
 光透過性熱可塑性樹脂として用いられる、ポリカーボネート樹脂、アクリル樹脂、環状ポリオレフィン樹脂、ポリフェニレンエーテル樹脂等には、本発明の特性が損なわれない範囲で、主成分の樹脂以外の熱可塑性樹脂を配合して樹脂組成物として用いることができる。
 さらに、必要に応じて公知の添加剤(赤外線遮蔽材、赤外線吸収剤、紫外線吸収剤、染顔料、熱線吸収能を有する化合物、各種安定剤、酸化防止剤、離型剤、ブルーイング剤、加水分解改良剤、難燃剤、滴下防止剤、帯電防止剤等)、各種充填材等を配合した樹脂組成物としてもよい。
 特に、ピラーレスフロントウインドウ用樹脂基板は、日射による自動車室内の温度上昇を低減するために、光透過性熱可塑性樹脂組成物に、無機系赤外線遮蔽材を含有させることが好ましい。
 無機系赤外線遮蔽材は、粒子径が1nm~800nmであることが好ましく、1nm~600nmがより好ましく、1nm~300nmがさらに好ましい。粒子径が1nmより小さいと凝集効果が大きくなるため分散性不良が生じやすくなり、800nmより大きいと透明樹脂成形品の曇り度が高くなる等不良が生じることがある。この無機系赤外線遮蔽材料としては、タングステン系無機系赤外線遮蔽材料、ランタン系無機系赤外線遮蔽材料、スズ系無機系赤外線遮蔽材料等が挙げられる。この中でも赤外線遮蔽性能と曇り度の観点よりタングステン系無機系赤外線遮蔽材料が好ましく、その中でも複合タングステン酸化物微粒子が特に好ましい。
 本発明に用いる光透過性熱可塑性樹脂は、透明性、耐熱性、機械的特性、寸法安定性等に優れることから、ポリカーボネート樹脂が好ましい。
 ポリカーボネート樹脂としては、それ自体公知のものを採用でき、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、イソソルビド、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサン等が例示され、これらはホモポリマーに限られず、共重合されても良い。特に好ましいのは、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、イソソルビドからなる群より選ばれる少なくとも1種の繰り返し単位を有するポリカーボネート樹脂である。
 ポリカーボネート樹脂の粘度平均分子量としては、10,000~40,000であることが好ましい。粘度平均分子量が10,000以上であると強度に優れる点で好ましく、また、粘度平均分子量が40,000以下であると成形性に優れる点で好ましい。
 上記のポリカーボネート樹脂の粘度平均分子量(M)は、塩化メチレン100mlにポリカーボネート樹脂0.7gを溶解した溶液から20℃で求めた比粘度(ηSP)を次式に代入して求めたものである。
 式:ηSP/c=[η]+0.45×[η]
 上記の式において、[η]は極限粘度を表し、[η]=1.23×10-40.83であり、また、c=0.7である。
 このようなポリカーボネート樹脂の粘度平均分子量を求める手法は、例えば、特開2002-129003号公報の段落[0033]~[0034]に説明されている。
 さらに2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、イソソルビドからなる群より選ばれる少なくとも1種の繰り返し単位を有するポリカーボネート樹脂について詳述する。
 まず、2,2-ビス(4-ヒドロキシフェニル)プロパンを繰り返し単位として有するポリカーボネート樹脂は、ビスフェノールAと言われるポリカーボネート樹脂であり、他のポリカーボネート樹脂に比べ優れた耐衝撃性を有することから好ましい。つぎに、イソソルビドを繰り返し単位に有するポリカーボネート樹脂とは、下記式(1)で表されるカーボネート構成単位を含有するポリカーボネート樹脂であって、特に、イソソルビドを用いる場合には、樹脂製部品の硬度を高くすることができ、また樹脂の屈折率が他のポリカーボネート樹脂に比べて低いことから、透視歪量の変化をより小さくできるので好ましい。さらに、ビスフェノールAとイソソルビドを併用する場合には、樹脂製部品の耐衝撃性を保持したまま、硬度を高くすることができるので好ましい。
Figure JPOXMLDOC01-appb-C000001
 最後に、2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパンを繰り返し単位に有するポリカーボネート樹脂は、樹脂製部品の硬度を高くすることができることから、透視歪量の変化をより小さくできるので好ましい。さらに、ビスフェノールAと併用する場合には、樹脂製部品の耐衝撃性を保持したまま、硬度を高くすることができるので好ましい。
 〈本発明のピラーレスフロントウインドウ用樹脂基板の物性改善について〉
 本発明のピラーレスフロントウインドウ用樹脂基板には、耐候性および耐摩耗性を改善するために、ハードコート層を設けてもよく、耐候性および耐摩耗性の観点からは好ましい態様である。ハードコート層としては、それ自体公知のものを採用でき、アクリル樹脂層を湿式コーティングする方法、オルガノシロキサン系樹脂の硬化膜を湿式コーティングする方法、有機珪素化合物のプラズマCVD層を設ける方法、特開2013-170209号公報等に記載の鱗片状の金属酸化物微粒子からなるナノシート層を積層する方法などを上げることができ、これらは単独に限らず組合せて用いても良い。
 好ましいハードコート層としては、例えば、樹脂基板の表面に熱硬化型のアクリル樹脂層を湿式コーティングし、さらにその上に熱硬化型のオルガノシロキサン系樹脂の硬化膜を、樹脂基板に湿式コーティングする方法で形成することができる。また、樹脂基板の表面に光硬化型のアクリル樹脂層を湿式コーティングする方法で形成することができる。
 また、有機珪素化合物のプラズマCVD層は、例えば、オルガノシロキサン、オルガノシランまたはシラザン等の有機珪素化合物の蒸気と酸素ガスとを共存させてプラズマ重合により、上記ハードコート層が形成された樹脂基板上に有機珪素系の酸化重合物を堆積する方法で形成することができる。
 また、鱗片状の金属酸化物微粒子からなるナノシート層は、例えば、最短幅10nm以上、厚み10nm以下、最短幅/厚み10以上の鱗片状の金属酸化物微粒子を溶媒中に分散させた分散液を、上記ハードコート層が形成された樹脂基板上に塗布、乾燥および固定化する方法で形成することができる。
 また、本発明のピラーレスフロントウインドウ用樹脂基板には、防水性および防汚性を改善するために、撥水機能層や親水機能層を設けてもよく、ワイパーレスのフロントウインドウにも適応できる観点からは好ましい形態である。
 また、本発明のピラーレスウインドウ用樹脂基板には、視認性を大きく損なわない箇所に認証マーク、日除け、バックミラー等の付加することができる。
 〈本発明のピラーレスフロントウインドウ用樹脂基板のカウルへの固定について〉
 本発明のピラーレスウインドウ用樹脂基板は、カウル等を用いて車体に取り付けられることが好ましい。
 具体的には、図1に示すように、上記樹脂基板の最長辺および該最長辺の両端を含む2辺の約半分をカウル等で車体に取り付けられることが好ましい。固定の際には、ネジおよび接着剤等が好ましく用いられる。
 カウルの形状は、図8a~図8cおよび図9a~図9cに記載したものが好ましく用いられる。
 ここで、図7bに示すように樹脂基板の湾曲が大きい形状や、また、図1における2Cおよび2Dの厚みを厚くする形状では、図8cに示すように、図1におけるSおよびSの辺を固定するカウルの長さは短いものを用いる構成が好ましく、さらには樹脂基板の最長辺(S)のみが車体(3)に固定される構成が、視認性および剛性を両立するうえでより好ましい。
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれにより何ら限定を受けるものではない。ピラーレスフロントウインドウ用樹脂基板の評価は以下の方法で行った。
(評価1:最大ミューゼス応力のシミュレーション)
 ピラーレスフロントウインドウ用樹脂基板をカウルに固定して150km/hで走行した際の空気抵抗から算出した荷重25.8kgf(253.0N)をピラーレスフロントウインドウ用樹脂基板の前方から加えた際のミューゼス応力を解析ソフトNX I-deas6.1を用いてシミュレーションして、得られたミューゼス応力の値の最大値を最大ミューゼス応力の値とした。
 シミュレーションにおいて、材料物性の値は、ポリカーボネートの密度は1,200kg/m、弾性率は2,400MPa、ポアソン比は0.38の値を採用した。
(評価2:目視によるひずみ観察)
 目視観察は、屋外で天気の良い日中に行い、成形した樹脂基板を車体に取り付け、運転席から樹脂基板を通して遠方の外部を見て、外部の状況・景色をほとんど歪なく見ることができる場合を〇、視認性に支障をきたす歪が観察される場合を×と評価した。
(実施例1)
<樹脂材料>
 ビスフェノールAとホスゲンから界面縮重合法により製造された粘度平均分子量22,400のポリカーボネート樹脂パウダー(帝人化成(株)製:パンライトL-1225WP)を用いた。
<樹脂組成物>
 前記ポリカーボネート樹脂パウダー99.430重量部、Cs0.33WO(平均粒子径5nm)約23%および有機分散樹脂からなる赤外線遮蔽剤(住友金属鉱山(株)製YMDS-874)0.07(0.16)重量部、ベンゾトリアジン系紫外線吸収剤(チバ・スペシャリティケミカルズ社製:Tinuvin1577)0.300重量部、リン系安定剤(クラリアントジャパン(株)製P-EPQ)0.030重量部、ヒンダードフェノール系安定剤(旭電化工業(株)製AO412S)0.050重量部、脂肪酸フルエステル(コグニスジャパン(株)製:VPG861)0.100重量部、脂肪酸部分エステル(理研ビタミン(株)製:リケマールS-100A)0.020重量部の割合で計量して混合しブレンダーにて混合した後、ベント式二軸押出機を用いて溶融混練し、ポリカーボネート樹脂組成物のペレットを得た。
 なお、赤外線遮蔽剤の含有量は括弧内に示したYMDS-874に含まれる無機系赤外線遮蔽材料Cs0.33WOの量である。(括弧外の数字はYMDS-874の樹脂組成物中の重量部を表す。)PCに添加する添加剤はそれぞれ配合量の10~100倍の濃度を目安に予めPCとの予備混合物として作成した後、ブレンダーによる全体の混合を行った。ベント式二軸押出機は(株)日本製鋼所製:TEX30α(完全かみ合い、同方向回転、2条ネジスクリュー)を使用した。混練ゾーンはベント口手前に1箇所のタイプとした。押出条件は吐出量20kg/h、スクリュー回転数150rpm、ベントの真空度3kPaであり、また押出温度は第1供給口からダイス部分まで280℃とした。尚、上記の樹脂組成物の製造はHEPAフィルターを通した清浄な空気が循環する雰囲気において実施し、また作業時に異物の混入がないよう十分に注意して行った。得られた樹脂組成物について、厚み6mmの成形板を作製してJIS K7105の規格でヘーズを測定したところ1.3であった。
<成形方法:射出圧縮成形>
 上記の樹脂材料のペレットをプラテンの4軸平行制御機構を備えた射出プレス成形可能な大型成形機((株)名機製作所製:MDIP2100、最大型締め力33540kN)を用いて、図3に示すような、視認部(1)、一定厚肉部(5)および傾斜厚肉部(4)を有する視認部ピラーレスウインドウ用樹脂基板を射出圧縮成形した。ここで、上記一定厚肉部(5)および傾斜厚肉部(4)は、図4に示す通り車内側にのみ有するように成形した。
 射出成形用金型としては、日立金属(株)社製CENA-Vで作製した。射出圧縮成形はシリンダ温度280℃、ホットランナー設定温度280℃、金型温度は固定側100℃、可動側100℃、プレスストローク:2mm、中間型締め状態から最終型締め状態までの金型の移動速度0.02mm/秒、および加圧の保持時間:600秒の条件で行った。圧縮時の圧力は25MPaとし、該圧力で加圧の保持時間中保持した。射出速度はゲート部充填までの領域で5mm/秒、それ以降の領域で18mm/秒とした。また可動側金型パーティング面は最終の前進位置において固定側金型パーティング面に接触しないものとした。ランナはモールドマスターズ社製のバルブゲート型のホットランナー(直径16mmφ)を用いた。充填完了直前に型圧縮を開始し、オーバーラップは0.5秒とした。充填完了後直ちにバルブゲートを閉じて溶融樹脂がゲートからシリンダへ逆流しない条件とした。かかる成形においては、その4軸平行制御機構により、傾き量および捩れ量を表すtanθは約0.000025以下で保持された。
 上記樹脂基材を取り出し、各部品に特開2004-26871号公報に記載のハードコート処理を施した後に、図1~2に示すように上記Sと、上記SおよびSの約半分の長さ部分をカウルに接着剤を用いて接合した。ここで、上記SおよびSについては、それぞれ2箇所を更にネジを用いて固定した。
<ピラーレスウインドウ用樹脂基板の物性>
 視認部の平均厚み(d)は6.0mmであり、一定厚肉部(4)の厚み(d)は10mmであり、上記一定厚肉部(4)から傾斜厚肉部(5)となる境界領域における最少曲率半径(R)は5mmであり、上記傾斜厚肉部(4)の厚みが、視認部(1)に至る方向で見た時に最大傾斜角度30°であった。
 また、上記記厚肉部(2B、2Cおよび2D)の平均厚み(d2B、d2Cおよびd2D)は、それぞれ9.5mmであり、それぞれ上記dの1.6倍であった。
 また、厚肉部(2B、2Cおよび2D)の面積は、上記樹脂基板全体の面積の10%を占めていた。
 また、上記最長辺(S)の長さ(L)は、1300mm、上記SおよびSに存在する厚肉部(2Cおよび2D)の平均幅(L2CおよびL2D)は、それぞれ32.0mm、上記(L)と、上記(L2CおよびL2D)との比(L2C/LおよびL2D/L)は、それぞれ0.025であった。
 また、Sの長さは1100mm、SおよびSの長さはそれぞれ440mm、SとSを結ぶ最短の長さは650mmであった。
 また、上記樹脂基板の全重量(W)は、5.96kgであり、上記S、SおよびSに存在する厚肉部(2B、2Cおよび2Dの合計重量(W)は0.68kgであり、その比である(W/W)は、0.114であった。
 また、上記樹脂基板の全重量(W)と上記一定厚肉部(4)の重量(W)は0.64kgであり、その比(W/W)は、0.107であった。
 上記樹脂基板は、図7aに示すように湾曲部を有し、最大曲率半径は1550mmであった。
 上記樹脂基板は、最大投影面積が780000mmであった。
<評価結果>
 実施例1で得られたピラーレスフロントウインドウ用樹脂基板について、上記評価1の方法でミューゼス応力をシミュレーションしたところ、図12に示したように、上記Sの中央部分、および上記SおよびSのカウルで固定されていない中央部分に応力が集中することが判明した。なかでも最も応力が集中する部分は、上記SおよびSのカウルで固定されていない中央部分であり、最大ミューゼス応力の値は0.46MPaであった。なお、図12に示すシミュレーション結果のイメージ図は、ミューゼス応力が小さいほど黒くミューゼス応力が大きいほど白く表示されている。
 また、実施例1で得られたピラーレスフロントウインドウ用樹脂基板について、上記評価2の方法で、目視によるひずみ観察を行ったところ、外部の状況・景色をほとんど歪なく見ることができる「〇」の評価であった。目視観察は、大人5名で行い過半数以上の評価を採用したが、各成形体における評価のバラつきはほとんどみられなかった。
(比較例1)
 実施例1において、厚肉部を有さない前面フラットな樹脂基板とする以外は、実施例1と同じ条件でピラーレスウインドウ用樹脂基板を成形した。
<ピラーレスウインドウ用樹脂基板の物性>
 視認部の平均厚み(d)は6.0mmであった。上記最長辺(S)の長さ(L)は、1300mm、Sの長さは1100mm、SおよびSの長さはそれぞれ440mm、SとSを結ぶ最短の長さは650mmであった。
 また、上記樹脂基板の全重量(W)は、5.62kgであった。
 上記樹脂基板は、図7aに示すように湾曲部を有し、最大曲率半径は1550mmであった。
 上記樹脂基板は、最大投影面積が780000mmであった。
<評価結果>
 比較例1で得られたピラーレスフロントウインドウ用樹脂基板について、上記評価1の方法でミューゼス応力をシミュレーションしたところ、応力が集中する部分は、図12に示した実施例1のシミュレーション結果のイメージ図と同様に、上記Sの中央部分、および上記SおよびSのカウルで固定されていない中央部分であり、なかでも最も応力が集中する部分は、上記SおよびSのカウルで固定されていない中央部分であったが、その最大ミューゼス応力は、実施例1の値よりも22%も上回る0.59MPaであった。
 また、比較例1で得られたピラーレスフロントウインドウ用樹脂基板について、上記評価2の方法で、目視によるひずみ観察を行ったところ、外部の状況・景色をほとんど歪なく見ることができる「〇」の評価であった。目視観察は、大人5名で行い過半数以上の評価を採用したが、各成形体における評価のバラつきはほとんどみられなかった。
 上記実施例1および比較例1との対比から、周囲に特定の厚肉部を有する構造とすることで、樹脂基板の全重量(W)としては6.0%増加させるだけで、軽量化も維持しつつ最大ミューゼス応力の値を22%も低減できることが判明した。
(比較例2)
 実施例1と同じ樹脂基板の全重量(W)が5.96kgとなるように比較例1と同じく厚肉部を有さない前面フラットな樹脂基板となるように厚みを調整して成形した以外は、実施例1と同じ条件でピラーレスウインドウ用樹脂基板を成形した。
<評価結果>
 比較例2で得られたピラーレスフロントウインドウ用樹脂基板について、上記評価1の方法でミューゼス応力をシミュレーションしたところ、応力が集中する部分は、図12に示した実施例1のシミュレーション結果のイメージ図と同様に、上記Sの中央部分、および上記SおよびSのカウルで固定されていない中央部分であり、なかでも最も応力が集中する部分は、上記SおよびSのカウルで固定されていない中央部分であったが、その最大ミューゼス応力は、実施例1の値よりも16%上回る0.55MPaであった。
 また、比較例2で得られたピラーレスフロントウインドウ用樹脂基板について、上記評価2の方法で、目視によるひずみ観察を行ったところ、外部の状況・景色をほとんど歪なく見ることができる「〇」の評価であった。目視観察は、大人5名で行い過半数以上の評価を採用したが、各成形体における評価のバラつきはほとんどみられなかった。
 上記実施例1、比較例1および比較例2との対比から、単純に樹脂基板の全重量(W)を増やしただけでは発生する最大ミューゼス応力を小さくすることはできず、周囲に特定の厚肉部を有する構造とすることで、軽量化も維持しつつ最大ミューゼス応力の値を低減できることが判明した。
 本発明に係るピラーレスフロントウインドウ用樹脂基板は、大型でありながら軽量でかつ視認性に優れ、さらに、150km/hで走行した際の空気抵抗から算出した荷重にも耐える高強度を実現させており、特に、オープンカーなどに装着するフロントウインドウに適したものである。
1:視認部
2:厚肉部
 2B:最長辺と略平行に位置する対辺の厚肉部
 2C:最長辺および最長辺と略平行に位置する対辺の端部を結ぶ辺の厚肉部
 2D:最長辺および最長辺と略平行に位置する対辺の端部を結ぶ辺の厚肉部
 2BC:2Bと2Cに挟まれた厚肉部
 2BD:2Bと2Dに挟まれた厚肉部
3:カウル(車体の一部)
4:一定厚肉部
 4B:最長辺と略平行に位置する対辺の一定厚肉部
 4C:最長辺および最長辺と略平行に位置する対辺の端部を結ぶ辺の一定厚肉部
 4D:最長辺および最長辺と略平行に位置する対辺の端部を結ぶ辺の一定厚肉部
 4BC:4Bと4Cに挟まれた一定厚肉部
 4BD:4Bと4Dに挟まれた一定厚肉部
5:傾斜厚肉部
 5B:最長辺と略平行に位置する対辺の傾斜厚肉部
 5C:最長辺および最長辺と略平行に位置する対辺の端部を結ぶ辺の傾斜厚肉部
 5D:最長辺および最長辺と略平行に位置する対辺の端部を結ぶ辺の傾斜厚肉部
:最長辺
:最長辺と略平行に位置する対辺
:最長辺および最長辺と略平行に位置する対辺の端部を結ぶ辺
:最長辺および最長辺と略平行に位置する対辺の端部を結ぶ辺
:最長辺の長さ
:最長辺と略平行に位置する対辺の厚肉部の幅
:最長辺および最長辺と略平行に位置する対辺の端部を結ぶ辺の厚肉部の幅
:最長辺および最長辺と略平行に位置する対辺の端部を結ぶ辺の厚肉部の幅
:最長辺および最長辺と略平行に位置する対辺の端部を結ぶ辺の厚肉部の厚み
θ:厚肉部の厚みが視認部に至るまで最大傾斜角度
:一定厚肉部から傾斜厚肉部となる境界領域における最少曲率半径
PW:ピラーレスフロントウインドウ

Claims (15)

  1.  樹脂基板の最長辺(S)が車体(3)に固定されるピラーレスフロントウインドウ用樹脂基板であって、
     上記樹脂基板は、平均厚み(d)が3mm~7mmである視認部(1)および厚みが上記(d)の1.3倍以上である厚肉部(2)を有する偏肉構造物で、かつ、下記(a)~(d)の全ての要件を満たす、ピラーレスフロントウインドウ用の樹脂基板:
     (a)中央に薄肉の視認部(1)を有し、上記最長辺(S)の対辺(S)と、上記最長辺(S)および上記最長辺の対辺(S)の端部をそれぞれ結ぶ2辺(SおよびS)の合計3辺(S、SおよびS)に厚肉部(2B、2Cおよび2D)を有しており、
     (b)上記視認部(1)および厚肉部(2)が、JIS K7105で測定された6mm厚みのヘーズが5%以下を満足する光透過性熱可塑性樹脂を用いてなり、
     (c)上記最長辺(S)の長さ(L)が、900mm以上2000mm以下であり、
     (d)上記厚肉部(2B、2Cおよび2D)の平均厚み(d2B、d2Cおよびd2D)がそれぞれ上記dの3.0倍以下で、かつその面積が、上記樹脂基板全体の面積の3~20%を占めること:。
  2.  上記樹脂基板の最長辺(S)の長さ(L)と、上記SおよびSに存在する厚肉部(2Cおよび2D)の平均幅(L2CおよびL2D)との比(L2C/LおよびL2D/L)が、それぞれ0.01以上0.06以下である、請求項1に記載のピラーレスフロントウインドウ用樹脂基板。
  3.  上記樹脂基板の全重量(W)と、上記S、SおよびSに存在する厚肉部(2B、2Cおよび2D)の合計重量(W)との比(W/W)が、0.070以上0.230以下である、請求項1に記載のピラーレスフロントウインドウ用樹脂基板。
  4.  上記樹脂基板の厚肉部(2)の厚みが、視認部(1)に至る方向で見た時に連続的に減少する構成(傾斜厚肉部(5))を含む、請求項1に記載のピラーレスフロントウインドウ用樹脂基板。
  5.  上記樹脂基板の厚肉部(2)の厚みが、視認部(1)に至る方向で見た時に一定となる構成(一定厚肉部部(4))を含む、請求項4に記載のピラーレスフロントウインドウ用樹脂基板。
  6.  上記樹脂基板の全重量(W)と上記S、SおよびSに存在する一定厚肉部(4B、4Cおよび4D)の重量(W)との比(W/W)が、0.060以上0.210以下である、請求項5に記載のピラーレスフロントウインドウ用樹脂基板。
  7.  上記樹脂基板の厚肉部(2)の厚みが、視認部(1)に至る方向で見た時に最大傾斜角度45°以下で減少する構成を含む、請求項4に記載のピラーレスフロントウインドウ用樹脂基板。
  8.  上記一定厚肉部(4)から傾斜厚肉部(5)となる境界領域における最少曲率半径(R)が3mm以上30mm以下である、請求項5に記載のピラーレスフロントウインドウ用樹脂基板。
  9.  上記樹脂基板は、車内側にのみ厚肉部(2)を有する、請求項1に記載のピラーレスフロントウインドウ用樹脂基板。
  10.  上記樹脂基板は、最大曲率半径が500mm~5000mmの湾曲部を有する、請求項1に記載のピラーレスフロントウインドウ用樹脂基板。
  11.  上記樹脂基板は、最大投影面積が270,000mm~1,200,000mmの基板である、請求項1に記載のピラーレスフロントウインドウ用樹脂基板。
  12.  上記樹脂基板における一定厚肉部(4B、4Cおよび4D)の厚みが8mm~12mmである、請求項5に記載のピラーレスフロントウインドウ用樹脂基板。
  13.  上記樹脂基板は、上記厚肉部(2)も含む全領域が同一の光透過性熱可塑性樹脂を用いてなる、請求項1に記載のピラーレスフロントウインドウ用樹脂基板。
  14.  上記光透過性熱可塑性樹脂が、ポリカーボネート樹脂である、請求項1に記載のピラーレスフロントウインドウ用樹脂基板。
  15.  樹脂基板の最長辺(S)と、上記SおよびSのそれぞれ半分の長さ部分をカウルによって車体に固定して150km/hで走行した際の空気抵抗から算出した荷重25.8kgf(253.0N)を前方から加えた際の最大ミーゼス応力が0.50以下である、請求項1に記載のピラーレスフロントウインドウ用樹脂基板。
PCT/JP2018/021549 2017-06-09 2018-06-05 ピラーレスフロントウインドウ用樹脂基板 WO2018225727A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880037334.2A CN110799368A (zh) 2017-06-09 2018-06-05 无立柱前窗用树脂基板
EP18814376.2A EP3636471B1 (en) 2017-06-09 2018-06-05 Resin substrate for pillarless windshield
US16/619,144 US20200139793A1 (en) 2017-06-09 2018-06-05 Resin substrate for pillarless windshield
AU2018279408A AU2018279408A1 (en) 2017-06-09 2018-06-05 Resin substrate for pillarless windshield

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017114315A JP6799505B2 (ja) 2017-06-09 2017-06-09 ピラーレスフロントウインドウ用樹脂基板
JP2017-114315 2017-06-09

Publications (1)

Publication Number Publication Date
WO2018225727A1 true WO2018225727A1 (ja) 2018-12-13

Family

ID=64567302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021549 WO2018225727A1 (ja) 2017-06-09 2018-06-05 ピラーレスフロントウインドウ用樹脂基板

Country Status (6)

Country Link
US (1) US20200139793A1 (ja)
EP (1) EP3636471B1 (ja)
JP (1) JP6799505B2 (ja)
CN (1) CN110799368A (ja)
AU (1) AU2018279408A1 (ja)
WO (1) WO2018225727A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109795293A (zh) * 2019-02-11 2019-05-24 吴万里 一种主驾180度视线的新型车

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184595B2 (ja) 2018-10-29 2022-12-06 オークマ株式会社 工作機械システム

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3727128Y1 (ja) * 1961-06-09 1962-10-08
JPS58178086U (ja) 1982-04-26 1983-11-29 本田技研工業株式会社 自動二輪車等のウインドシ−ルド
US5833298A (en) * 1996-03-28 1998-11-10 Min; Aung Tiltable full vision automobile windshield
JP2002114028A (ja) 2000-10-10 2002-04-16 Toyota Industries Corp 樹脂製ウインドウパネル
JP2002129003A (ja) 2000-10-26 2002-05-09 Teijin Chem Ltd 電磁波遮蔽性樹脂組成物
JP2003026043A (ja) * 2001-07-18 2003-01-29 Mazda Motor Corp 車両の側部車体構造
JP2004026871A (ja) 2002-06-21 2004-01-29 Teijin Chem Ltd 表面を保護された透明プラスチック成形体およびオルガノシロキサン樹脂組成物用下塗り塗料組成物
JP2013170209A (ja) 2012-02-21 2013-09-02 Teijin Ltd プラスチック積層体
JP2016120703A (ja) 2014-12-25 2016-07-07 マツダ株式会社 樹脂部材およびその製造方法
JP2017081452A (ja) * 2015-10-29 2017-05-18 マツダ株式会社 車両のトリム構造

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560196B2 (ja) * 2000-10-18 2010-10-13 帝人化成株式会社 高意匠性シート状積層構造体からなる自動車窓
JP2005015519A (ja) * 2003-06-23 2005-01-20 Nissan Motor Co Ltd 樹脂組成物とその製造方法
JP5163020B2 (ja) * 2006-09-12 2013-03-13 三菱エンジニアリングプラスチックス株式会社 パネル状成形体
JP2008214596A (ja) * 2007-03-08 2008-09-18 Sumitomo Metal Mining Co Ltd ポリカーカーボネート樹脂組成物及びそれを用いた熱線遮蔽成形体
DE102009034936B4 (de) * 2009-07-28 2013-04-25 Webasto Ag Windschutzscheibe eines Kraftfahrzeuges
US8888172B2 (en) * 2012-08-02 2014-11-18 Ford Global Technologies, Llc Vehicle glazing assembly with noise and vibration reduction techniques
RU2615646C2 (ru) * 2012-10-15 2017-04-06 Асахи Гласс Компани, Лимитед Ветровое стекло транспортного средства
CN105829923B (zh) * 2013-12-27 2020-01-21 株式会社钟化 光学用热塑性树脂及成形体
ES2908839T3 (es) * 2014-11-18 2022-05-04 Toray Industries Moldeo integrado laminado, producto de moldeo integrado y método para fabricar el mismo
US9975315B2 (en) * 2014-12-08 2018-05-22 Solutia Inc. Poly(vinyl acetal) resin compositions, layers, and interlayers having enhanced optical properties

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS3727128Y1 (ja) * 1961-06-09 1962-10-08
JPS58178086U (ja) 1982-04-26 1983-11-29 本田技研工業株式会社 自動二輪車等のウインドシ−ルド
US5833298A (en) * 1996-03-28 1998-11-10 Min; Aung Tiltable full vision automobile windshield
JP2002114028A (ja) 2000-10-10 2002-04-16 Toyota Industries Corp 樹脂製ウインドウパネル
JP2002129003A (ja) 2000-10-26 2002-05-09 Teijin Chem Ltd 電磁波遮蔽性樹脂組成物
JP2003026043A (ja) * 2001-07-18 2003-01-29 Mazda Motor Corp 車両の側部車体構造
JP2004026871A (ja) 2002-06-21 2004-01-29 Teijin Chem Ltd 表面を保護された透明プラスチック成形体およびオルガノシロキサン樹脂組成物用下塗り塗料組成物
JP2013170209A (ja) 2012-02-21 2013-09-02 Teijin Ltd プラスチック積層体
JP2016120703A (ja) 2014-12-25 2016-07-07 マツダ株式会社 樹脂部材およびその製造方法
JP2017081452A (ja) * 2015-10-29 2017-05-18 マツダ株式会社 車両のトリム構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3636471A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109795293A (zh) * 2019-02-11 2019-05-24 吴万里 一种主驾180度视线的新型车

Also Published As

Publication number Publication date
CN110799368A (zh) 2020-02-14
JP6799505B2 (ja) 2020-12-16
EP3636471A1 (en) 2020-04-15
AU2018279408A1 (en) 2020-01-02
US20200139793A1 (en) 2020-05-07
EP3636471A4 (en) 2020-06-17
JP2018203203A (ja) 2018-12-27
EP3636471B1 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
JP6636232B2 (ja) シームレステールゲート
EP1312472B1 (en) Sheet-form layered structure with attractive appearance and utilization thereof
JP4542727B2 (ja) 高意匠性シート状積層構造体およびその利用
JP4186002B2 (ja) 樹脂組成物およびそれを用いた熱可塑性樹脂積層体とそれらの製造方法
WO2018225727A1 (ja) ピラーレスフロントウインドウ用樹脂基板
US9726795B2 (en) Multilayer plastic structure having low energy transmission
KR20090067207A (ko) 모터 차량용 플라스틱제 윈도우 조립체
US20030134130A1 (en) Modified silica compositions, transparent resin compositions and thermoplastic resin laminates and automotive parts formed therefrom, and production method thereof
JP2021127286A (ja) 合わせガラス、車両
JP2008006918A (ja) 窓を有するパネル構造体
CN1501861A (zh) 吸热性涂层体系
US20030108704A1 (en) Resin composition, laminate and vehicular parts using same composition and production methods of them
JP6431362B2 (ja) 透明な熱可塑性樹脂組成物により形成された自動車車体の略卵型上部ボデー
JP2012206721A (ja) 窓を有するパネル構造体
CN112313103B (zh) A柱用玻璃板
JP2004292698A (ja) 樹脂組成物、充填材及び樹脂組成物の製造方法
JP2009262918A (ja) 車両用前窓
JP6080018B2 (ja) 自動車用の枠体付き窓用板材及び自動車用の枠体付き窓用板材の製造方法
JP3828496B2 (ja) 高意匠性シート状積層構造体およびその利用
US20220410682A1 (en) Window glass for vehicle
JP4059117B2 (ja) 化合物、樹脂、化合物の製造方法、及び樹脂の製造方法、並びに成形体
EP3519217B1 (de) Kraftfahrzeug, aufweisend zwei a-säulen und eine frontscheibe
JP2005015519A (ja) 樹脂組成物とその製造方法
KR101002502B1 (ko) 차종의 구분없이 장착가능한 자동차용 썬바이저
CN107614358A (zh) 具有集成的通风井的聚合物侧玻璃板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18814376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018279408

Country of ref document: AU

Date of ref document: 20180605

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2018814376

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018814376

Country of ref document: EP

Effective date: 20200109