WO2018225687A1 - Laminate for circuit boards, metal base circuit board and power module - Google Patents

Laminate for circuit boards, metal base circuit board and power module Download PDF

Info

Publication number
WO2018225687A1
WO2018225687A1 PCT/JP2018/021378 JP2018021378W WO2018225687A1 WO 2018225687 A1 WO2018225687 A1 WO 2018225687A1 JP 2018021378 W JP2018021378 W JP 2018021378W WO 2018225687 A1 WO2018225687 A1 WO 2018225687A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
rubber
resin
insulating layer
thermosetting resin
Prior art date
Application number
PCT/JP2018/021378
Other languages
French (fr)
Japanese (ja)
Inventor
水野 克美
陽子 木内
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2018225687A1 publication Critical patent/WO2018225687A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate

Definitions

  • the present invention relates to a circuit board laminate, a metal base circuit board manufactured from the circuit board laminate, and a power module including the metal base circuit board.
  • Japanese Patent Application Laid-Open No. 2007-254709 discloses an epoxy resin-containing composition as a resin composition that can provide an insulating layer having high interface adhesion strength with a conductor layer even if the surface roughness of the insulating layer is small.
  • a resin composition containing a phenolic curing agent, a phenoxy resin, and rubber particles is disclosed.
  • International Publication No. 2009/119598 discloses a resin composition in which a specific phenoxy resin and a cyanate resin are added to an epoxy resin-containing composition in order to improve heat resistance and moisture resistance reliability in addition to plating adhesion. Is disclosed.
  • the present invention provides a circuit board laminate having excellent processability and water absorption and oxidation degradation resistance under high temperature moisture absorption conditions, a metal base circuit board produced from the circuit board laminate, and An object of the present invention is to provide a power module including the metal base circuit board.
  • a circuit board laminate comprising a metal substrate, an insulating layer provided on at least one surface of the metal substrate, and a metal foil provided on the insulating layer.
  • the insulating layer contains a resin component and an inorganic filler, and the resin component has a phase separation structure including a discontinuous phase containing a thermosetting resin and a continuous phase containing rubber.
  • a laminated board is provided.
  • the circuit board laminate includes at least a rubber having a weight average molecular weight of 1.5 million or less as the rubber.
  • the circuit board laminate includes at least a rubber having a saturated main chain structure as the rubber.
  • the circuit board laminate includes at least acrylic rubber as the rubber.
  • the blending ratio of the rubber in the insulating layer is 1 to 40% by mass with respect to the total mass of the resin component.
  • the circuit board laminate includes at least a cyanate resin as the thermosetting resin.
  • the circuit board laminate includes a bisphenol-type cyanate resin and a novolac-type cyanate resin as the thermosetting resin.
  • the compounding ratio of the epoxy resin as the thermosetting resin is 0 to 10% by mass with respect to the total mass of the thermosetting resin.
  • a metal base circuit board obtained by patterning the metal foil included in any one of the circuit board laminates.
  • a power module including the metal base circuit board is provided.
  • a circuit board laminate having excellent processability and water resistance and oxidation deterioration resistance under high temperature moisture absorption conditions, a metal base circuit board produced from the circuit board laminate, and It has become possible to provide a power module comprising this metal base circuit board.
  • FIG. 1A is an SEM photograph showing an example of a phase separation structure made of a continuous phase rubber and a discontinuous phase thermosetting resin.
  • FIG. 1B is an optical micrograph showing an example of a structure in which an inorganic filler is dispersed in a phase separation structure composed of a continuous phase rubber and a discontinuous phase thermosetting resin.
  • FIG. 1C is an optical micrograph showing an example of a structure in which an inorganic filler is dispersed in a continuous phase thermosetting resin.
  • FIG. 1D is an SEM photograph showing an example of a phase separation structure composed of a continuous phase thermosetting resin and discontinuous phase rubber particles.
  • FIG. 1E is an SEM photograph showing an example of a structure in which an inorganic filler is dispersed in a phase separation structure composed of a continuous phase thermosetting resin and discontinuous phase rubber particles.
  • FIG. 2 is a perspective view schematically showing a circuit board laminate according to an embodiment of the present invention.
  • 3 is a cross-sectional view taken along the line II-II of the circuit board laminate shown in FIG.
  • FIG. 4 is a cross-sectional view schematically showing an example of a metal base circuit board obtained from the circuit board laminate shown in FIGS. 2 and 3.
  • FIG. 5 is a cross-sectional view schematically showing a power module according to the embodiment of the present invention.
  • FIG. 6 is a cross-sectional view schematically showing a conventional power module.
  • FIG. 7A is a graph showing the behavior of tan ⁇ obtained by DMA measurement for the insulating layer included in the circuit board laminate of Example 3.
  • FIG. 7B is a graph showing the behavior of tan ⁇ obtained by DMA measurement for the insulating layer included in the circuit board laminate of Comparative Example 3.
  • a circuit board laminate according to an embodiment of the present invention includes a metal substrate, an insulating layer provided on at least one surface of the metal substrate, and a metal foil provided on the insulating layer.
  • 2 and 3 has a three-layer structure in which an insulating layer 3 is formed on one side of a metal substrate 2 and a metal foil 4 is formed on the insulating layer 3.
  • the circuit board laminate has a five-layer structure in which the insulating layer 3 is formed on both surfaces of the metal plate 2 and the metal foil 4 is further formed on each insulating layer 3. May be.
  • FIG. 2 shows a rectangular circuit board laminate 1 as an example, but the circuit board laminate 1 may have other shapes.
  • the insulating layer included in the circuit board laminate according to the embodiment is a cured product of a coating film formed using a resin composition containing at least a resin component and an inorganic filler.
  • the insulating layer contains at least a thermosetting resin and rubber as a resin component.
  • the resin component forms a phase separation structure in the insulating layer.
  • This phase separation structure is a sea-island structure in which a discontinuous phase is dispersed in a continuous phase (matrix), the discontinuous phase contains a thermosetting resin, and the continuous phase contains rubber.
  • the rubber is not dispersed as a discontinuous phase in the matrix, but the rubber forms a continuous phase (matrix), and the thermosetting resin is contained in the continuous phase.
  • One of the characteristics is that it has a phase separation structure dispersed as a discontinuous phase (dispersed phase).
  • the phase separation structure having a continuous phase containing rubber and a discontinuous phase containing a thermosetting resin, which is included in the insulating layer is referred to as a phase separation structure of the present invention.
  • Rubber has low water absorption, but even if rubber is dispersed as a discontinuous phase (dispersed phase) in the matrix constituting the insulating layer, the low water absorption desired for the metal base circuit board cannot be obtained.
  • the rubber constitutes a continuous phase (matrix) in the insulating layer, the water absorption suppressing effect in the insulating layer is exhibited, contributing to the improvement in low water absorption in the metal base circuit board.
  • the rubber constituting a continuous phase also contributes to improvement of oxidation resistance in the metal base circuit board.
  • ⁇ Flexible rubber is compatible with thermosetting resin to improve processability, and a phase separation structure is formed with curing, improving the mechanical strength and stress relaxation of the insulating layer.
  • phase separation structure of the present invention in the insulating layer can be confirmed by, for example, microscopic observation and / or scattering measurement.
  • the phase separation structure can be confirmed by a scanning electron microscope (SEM), an atomic force microscope, an optical microscope, a transmission electron microscope, or the like.
  • SEM scanning electron microscope
  • scattering measurement the presence or absence of a phase-separated structure may be confirmed by small-angle incident small-angle X-ray scattering measurement, elemental analysis, energy dispersive X-ray analysis, electron probe microanalyzer, X-ray photoelectron spectroscopy, etc. it can.
  • the presence or absence of the phase separation structure of the present invention in the insulating layer can also be confirmed by DMA measurement (dynamic viscoelasticity measurement).
  • the means for confirming the phase separation structure of the present invention by this DMA measurement is particularly effective when the compounding ratio of the rubber in the resin component is not high.
  • FIG. 1A is a scanning electron microscope (SEM) photograph showing an example of the phase separation structure of the present invention.
  • SEM scanning electron microscope
  • the phase separation structure shown in FIG. 1A does not contain an inorganic filler.
  • a discontinuous phase (dispersed phase) thermosetting resin 102 is dispersed in a continuous phase rubber 101.
  • gum comprises a continuous phase, and as above-mentioned, low water absorption and oxidation degradation resistance improve.
  • the SEM photograph in FIG. 1D shows a phase separation structure opposite to the phase separation structure of the present invention (hereinafter referred to as “reverse phase separation structure”).
  • reverse phase separation structure a phase separation structure opposite to the phase separation structure of the present invention
  • discontinuous phase (dispersed phase) rubber particles 112 are dispersed in the continuous phase thermosetting resin 111.
  • the above effect cannot be obtained even if a rubber component is contained.
  • FIG. 1B is an optical micrograph showing an example of a structure in which an inorganic filler is dispersed in the phase separation structure of the present invention.
  • two types of inorganic fillers 103a and 103b are used as the inorganic filler.
  • the inorganic filler 103a is aluminum nitride
  • the streaky inorganic filler 103b surrounded by a solid line is boron nitride. From this photograph, the phase separation structure of the present invention can be confirmed from the gaps or voids between the inorganic fillers 103a and 103b.
  • FIG. 1C is an optical micrograph of a system containing no rubber.
  • the inorganic filler (aluminum nitride) 123a and the streaky inorganic filler (boron nitride) 123b surrounded by the solid line are dispersed in the thermosetting resin 121 in the continuous phase.
  • the voids of the inorganic filler (aluminum nitride) 123 a are filled with only the thermosetting resin 121.
  • FIG. 1E is an SEM photograph showing an example of a structure in which an inorganic filler is dispersed with respect to FIG. 1D showing a reverse phase separation structure.
  • the continuous phase thermosetting resin 111 two kinds of inorganic fillers, that is, an inorganic filler (alumina) 113a and a streaky inorganic filler (boron nitride) 113b surrounded by a broken line,
  • the rubber particles 112 are dispersed. It can be seen that the rubber particles 112 are not uniformly dispersed in the gap between the two kinds of inorganic fillers (alumina) 113a and the inorganic filler (boron nitride) 113b.
  • the rubber that can be used in the present invention may be a polymer material having rubber elasticity at room temperature.
  • the rubber may have a modulus of elasticity of 100 MPa or less at room temperature (for example, 25 ° C.).
  • the rubber and the thermosetting resin are dissolved in a solvent and are in a compatible state in which they are uniformly dispersed. Is preferred.
  • the thermosetting resin is cured by heating from this state, the molecular weight of the thermosetting resin partially increases to increase the viscosity, and finally the viscosity becomes higher (harder) than the rubber.
  • a component having a lower viscosity forms a continuous phase, so that the phase separation structure of the present invention having a continuous phase containing rubber and a discontinuous phase containing a thermosetting resin is formed.
  • the weight average molecular weight of rubber is preferably 1.5 million or less, more preferably 1.3 million or less, and still more preferably 900,000 or less, from the viewpoint of solubility in a solvent.
  • the lower limit of the weight average molecular weight of the rubber is not particularly limited, but is preferably 50,000 or more, for example.
  • the important average molecular weight represents a polystyrene equivalent value measured by a GPC (gel permeation chromatography) method.
  • Examples of rubber that can be suitably used in the embodiment include the following. That is, diene rubbers such as styrene butadiene rubber, isoprene rubber, butadiene rubber, chloroprene rubber, or acrylonitrile butadiene rubber; butyl rubber, ethylene propylene rubber, ethylene propylene diene rubber, urethane rubber, silicone rubber, fluorine rubber, chlorosulfonated polyethylene
  • Non-diene rubbers such as rubber, chlorinated polyethylene, acrylic rubber, polysulfide rubber, or epichlorohydrin rubber; styrene, olefin, ester, urethane, amide, polyvinyl chloride (PVC), or Examples include fluorine-based thermoplastic elastomers; or natural rubber.
  • the main chain of the rubber has a saturated structure.
  • the main chain having a saturated structure means a structure in which the polymer main chain does not have a double bond or a triple bond unsaturated bond in a bond between carbon atoms.
  • Examples of the rubber having a saturated main chain structure include, for example, butyl rubber, ethylene propylene rubber, ethylene propylene diene rubber, urethane rubber, silicone rubber, fluorine rubber, chlorosulfonated polyethylene rubber, chlorinated polyethylene, acrylic rubber, polysulfide rubber, or Non-diene rubbers such as epichlorohydrin rubber, or thermoplastic elastomers such as styrene, olefin, ester, urethane, amide, PVC, or fluorine are listed. In one embodiment, acrylic rubber is particularly preferred.
  • the insulating layer may contain 1 type independently as rubber
  • thermosetting resin constituting the discontinuous phase examples include cyanate resin, epoxy resin, phenol resin, urea resin, melamine resin, acrylic resin, urethane resin, maleimide resin, benzoxazine resin, polyimide resin, polyamideimide resin, Examples include unsaturated polyester resins, silicone resins, diallyl phthalate resins, alkyd resins, and the like. One type may be used alone as the thermosetting resin, or two or more types may be used in combination.
  • a cyanate resin is particularly preferable as the thermosetting resin.
  • the cyanate resin include bisphenol type cyanate resin and novolak type cyanate resin.
  • the bisphenol type cyanate resin include bisphenol A type cyanate resin, bisphenol E type phenol resin, and tetramethylbisphenol F type cyanate resin.
  • the weight average molecular weight of the bisphenol cyanate resin is not particularly limited, and may be an oligomer or a monomer.
  • tetramethylbisphenol F type cyanate resin, bisphenol A type cyanate resin, and bisphenol E type cyanate resin are excellent in this order, and from the viewpoint of reactivity, bisphenol A type cyanate resin is excellent.
  • thermosetting resin it is preferable to use a mixed system of a bisphenol type cyanate resin and a novolac type cyanate resin as the thermosetting resin.
  • the ratio for example, the mass ratio represented by bisphenol type cyanate resin: novolac type cyanate resin is preferably 11: 1 to 1: 1, and more preferably 9: 1 to 2: 1. .
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, triazine type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy.
  • examples thereof include an epoxy resin having two or more epoxy groups.
  • the content when the epoxy resin is not contained or the epoxy resin is contained, the content is preferably a predetermined amount or less with respect to the total mass of the thermosetting resin.
  • the content of the epoxy resin is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, and still more preferably 0 to 5% by mass based on the total mass of the thermosetting resin.
  • the resin component of the insulating layer has a phase separation structure composed of a discontinuous phase containing a thermosetting resin and a continuous phase containing rubber.
  • the blending ratio of the continuous phase containing is preferably lower than the blending ratio of the non-continuous phase containing the thermosetting resin.
  • the compounding ratio of the rubber is preferably in the range of 1 to 40% by mass, more preferably 5 to 30% by mass, with respect to the total mass of the resin component, and 5 to 20% by mass. More preferably it is.
  • the insulating layer contains an inorganic filler together with a resin component.
  • the inorganic filler include alumina, aluminum nitride, boron nitride, silicon nitride, magnesium oxide, and silicon oxide. It is preferable to use one or more selected from these.
  • the inorganic filler is present in the resin component without distinction between the discontinuous phase and the continuous phase. That is, the inorganic filler may be present in the discontinuous phase, may be present in the continuous phase, or may be present in both. In addition, the inorganic filler may be present across the discontinuous phase and the continuous phase.
  • the exothermic reaction accompanying curing tends to be suppressed by the presence of the inorganic filler.
  • the reaction heat is absorbed by the inorganic filler, so that the curing reaction is delayed, and depending on the surface functional groups of the inorganic filler, problems such as inhibiting the curing reaction of the thermosetting resin are conceivable.
  • a surface-treated inorganic filler may be used, and it is preferable to use an inorganic filler in an appropriate combination with an effect accelerator described later.
  • the surface of the inorganic filler may be modified with a functional group that can chemically bond with the thermosetting resin, or a functional group highly compatible with the thermosetting resin. May be modified with a group (for example, cyanate group, epoxy group, amino group, hydroxyl group, carboxyl group, vinyl group, styryl group, methacryl group, acrylic group, ureido group, mercapto group, sulfide group, isocyanate group, etc.)
  • silane coupling treatment or plasma treatment is used.
  • the proportion of the inorganic filler contained in the insulating layer is preferably 50 to 90% by volume based on the total volume of the resin components.
  • the content of the inorganic filler is more preferably 60 to 80% by volume. If the filling rate is too low, the desired thermal conductivity cannot be obtained and the inorganic filler tends to precipitate. On the other hand, if the filling rate is too high, the viscosity becomes too high, a uniform coating film cannot be obtained, and pore defects may increase.
  • the insulating layer may contain a curing accelerator.
  • the curing accelerator is not particularly limited, and examples thereof include benzoxazine compounds, borate complexes, zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and triacetyl.
  • examples thereof include organic metal salts such as acetonate cobalt (III), phenol compounds such as phenol, bisphenol A, and nonylphenol.
  • the benzoxazine compound only needs to have at least one benzoxazine ring in the molecule.
  • a monomer may be used, or a compound in which several molecules are polymerized into an oligomer state may be used.
  • the benzoxazine compound is preferably a monomer having two or more benzoxazine rings in the molecule.
  • a plurality of types of benzoxazine compounds having different structures may be used simultaneously.
  • benzoxazine compound examples include Pd-type benzoxazine, bisphenol F-type benzoxazine, and Fa-type benzoxazine, among which Pd-type benzoxazine is preferable. Since the Pd type benzoxazine has a rigid skeleton such as a diphenylmethylene skeleton, the compound derived from the Pd type benzoxazine forms a cross-linked structure having better thermal characteristics as compared with, for example, a compound derived from a Ba type benzoxazine. Can do.
  • the borate complex may be a phosphorus borate complex or a non-phosphorus borate complex.
  • phosphoric borate complexes include tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-tolylborate, tri-tert-butylphosphonium tetraphenylborate, di-tert-butylmethylphosphonium tetraphenylborate, p-tolyltri
  • non-phosphorous borate complexes examples include sodium tetraphenyl borate, pyridine triphenyl borate, 2-ethyl-4-methylimidazolium tetraphenyl borate, 1,5-diazobicyclo [4.3.0] nonene-5
  • examples thereof include tetraphenyl borate and lithium triphenyl (n-butyl) borate.
  • the content when a curing accelerator is added to the insulating layer, the content can be appropriately set.
  • the content when a benzoxazine compound is used as a curing accelerator, the content is preferably 1 to 20% by mass, more preferably 5 to 15% by mass based on the total mass of the thermosetting resin. preferable.
  • the insulating layer may further contain other components.
  • Other components that the insulating layer may contain include, for example, coupling agents such as silane coupling agents and titanium coupling agents, ion adsorbents, anti-settling agents, hydrolysis inhibitors, leveling agents, and antioxidants. Agents and the like.
  • the insulating layer is a cured product of a coating film formed from a resin composition containing at least the resin component and the inorganic filler described above.
  • this resin composition is preferably in a compatible state in which the rubber and the thermosetting resin are uniformly dispersed to enable the formation of the phase separation structure of the present invention.
  • a solvent capable of dissolving the resin capable of dissolving the resin.
  • amide solvents such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), 1-methoxy-2-propano- And ether solvents such as ethylene glycol monomethyl ether, ketone solvents such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclohexanone and cyclopentanone, and aromatic solvents such as toluene and xylene. .
  • amide solvents such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), 1-methoxy-2-propano- And ether solvents such as ethylene glycol monomethyl ether, ketone solvents such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclohexan
  • the coating film (for example, dry film) before the phase separation structure of the present invention is formed is preferably in a compatible state in which the rubber and the thermosetting resin are uniformly dispersed with each other. Excellent. For this reason, the insulating layer having the phase separation structure of the present invention formed through a compatible state of such rubber and thermosetting resin is excellent in processability.
  • the metal substrate is made of, for example, a single metal or an alloy.
  • a material of the metal substrate for example, aluminum, iron, copper, aluminum alloy, or stainless steel can be used.
  • the metal substrate may further contain a nonmetal such as carbon.
  • the metal substrate 2 may contain aluminum combined with carbon.
  • the metal substrate may have a single layer structure or a multilayer structure.
  • the metal substrate has a high thermal conductivity.
  • the metal substrate 2 has a thermal conductivity of 60 W ⁇ m ⁇ 1 ⁇ K ⁇ 1 or more.
  • the metal substrate may have flexibility or may not have flexibility.
  • the thickness of the metal substrate is, for example, in the range of 0.2-5 mm.
  • the metal foil is provided on the insulating layer.
  • the metal foil faces the metal substrate with an insulating layer interposed therebetween.
  • the metal foil is made of, for example, a single metal or an alloy.
  • As a material of the metal foil for example, copper or aluminum can be used.
  • the thickness of the metal foil is, for example, in the range of 10 to 500 ⁇ m.
  • the laminated board for circuit boards which concerns on embodiment can be manufactured with the following method, for example.
  • the above-described resin composition is applied to at least one of a metal substrate and a metal foil.
  • a roll coating method, a bar coating method, or a screen printing method can be used. You may carry out by a continuous type and may carry out by a single plate type.
  • the metal substrate and the metal foil are stacked so that they face each other with the coating film in between. Furthermore, they are hot pressed.
  • a circuit board laminate is obtained as described above.
  • the resin composition is applied to at least one of a metal plate and a metal foil to form a coating film.
  • the dispersion is applied to a substrate such as a PET film and dried in advance.
  • a coating film may be formed and thermally transferred to one of the metal substrate and the metal foil.
  • FIG. 4 shows an embodiment of a metal base circuit board.
  • a metal base circuit board 1 ′ shown in FIG. 4 is obtained from the circuit board laminate 1 shown in FIGS. 2 and 3, and includes a metal board 2, an insulating layer 3, and a circuit pattern 4 ′. It is out.
  • the circuit pattern 4 ′ is obtained by patterning the metal foil 4 of the circuit board laminate described with reference to FIGS. 2 and 3. This patterning can be obtained, for example, by forming a mask pattern on the metal foil 4 and removing the exposed portion of the metal foil 4 by etching.
  • the metal base circuit board 1 ′ can be obtained, for example, by performing the above-described patterning on the metal foil 4 of the circuit board laminate 1 and performing processing such as cutting and drilling as necessary. it can.
  • the metal base circuit board according to the embodiment is obtained from the above-described laminated board for circuit boards, it is excellent in low water absorption, workability, and oxidation deterioration resistance.
  • FIG. 5 shows a power module according to an embodiment. Since the power module 100 includes the metal base circuit board 13 according to an embodiment of the present invention including the metal substrate 13c, the insulating layer 13b, and the circuit pattern 13a, the power module 100 has low water absorption, workability, and oxidation deterioration resistance. Excellent. In the present situation where the heat generation temperature tends to increase as the performance of power devices increases, the module of the present invention can be suitably used even in a temperature region that cannot be handled by conventional power modules.
  • the power module 100 according to the embodiment has fewer constituent members (layers) by providing the metal base circuit board 13 as compared with the conventional power module 200 shown as an example in FIG. Since it becomes thinner, a compact design with lower thermal resistance becomes possible. In addition, there is a merit that assembly is easy because processing such as drilling and cutting is easy.
  • Pd-type benzoxazine compound represented by the following formula (trade name “Pd-type benzoxazine”; manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator for 100 parts by mass of the resulting cyanate resin mixture.
  • the mixture was added, stirred at 100 ° C. until the mixture became homogeneous, and was made into a solution with the solvent methyl ethyl ketone (MEK).
  • MEK solvent methyl ethyl ketone
  • Synthesis Example 7 Preparation of Resin Composition 1R Mass ratio of B-type cyanate resin (trade name “BA200”; manufactured by Lonza Japan Co., Ltd.) and N-type cyanate resin (trade name “PT30”; manufactured by Lonza Japan Co., Ltd.)
  • the mixture was added, stirred at 100 ° C. until the mixture became homogeneous, and was made into a solution with the solvent ethylene glycol monomethyl ether.
  • Resin composition 1R was prepared.
  • Synthesis Example 8 Preparation of Resin Composition 2R Add 10 parts by mass of phenoxy resin (trade name “YP-50”; manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) to 90 parts by mass of the cyanate resin mixture until uniform. A resin composition 2R was prepared in the same manner as the resin composition 1R, except that it was mixed.
  • phenoxy resin trade name “YP-50”; manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.
  • Synthesis Example 9 Preparation of Composition 3R Acrylic rubber particles (trade name “Unipowder”; manufactured by JX Energy Co., Ltd.) were added in an amount of 10 parts by mass to 90 parts by mass of the cyanate resin mixture, and mixed until uniform. Except for the above, a resin composition 3R was prepared in the same manner as the resin composition 1R.
  • the obtained resin compositions 1 to 6, 1R to 3R are shown in Table 1.
  • gum is a polystyrene conversion value measured by GPC method.
  • phase separation structure ⁇ Confirmation of phase separation structure> The presence or absence of the phase separation structure of the present invention in the insulating layer was confirmed by observing the cross section of the insulating layer with a scanning electron microscope.
  • the presence or absence of the phase separation structure of the present invention in the insulating layer was also confirmed by analysis means using DMA measurement.
  • DMA measurement a circuit copper foil and a base copper plate were removed from each laminated plate by etching, and the obtained insulating layer was cut into a strip shape having a width of 3 mm and a length of 50 mm as a sample.
  • the measurement conditions were that the temperature was raised from -50 ° C. to 350 ° C. at a rate of 5 ° C./min, and the measurement was performed in a frequency of 1 Hz and a tensile mode.
  • the ratio between the storage elastic modulus and the loss elastic modulus thus obtained was defined as tan ⁇ .
  • FIG. 7A is a graph showing the behavior of tan ⁇ obtained by DMA measurement for an insulating layer (Example 3) using the resin composition 3
  • FIG. 7B shows an insulating layer using the resin composition 3R ( It is a graph which shows the behavior of tan-sigma obtained by DMA measurement about the comparative example 3).
  • a peak T 1 derived from a thermosetting resin (cyanate resin) and a peak T 2 derived from rubber are detected, and it can be seen that the phase separation structure of the present invention is formed.
  • the peak derived from rubber since the peak derived from rubber is not detected, the added acrylic rubber particles do not form a continuous phase and are in a dispersed state as a discontinuous phase. It can be seen that no phase separation structure is formed.
  • thermosetting resin cyanate resin
  • the mass of the insulating layer was measured. Thereafter, after absorbing moisture for 24 hours under the conditions of a temperature of 85 ° C. and a humidity of 85%, the mass of the insulating layer was measured again. The mass increase rate before and after moisture absorption was calculated, and this was taken as the water absorption rate.
  • a stud pin with an epoxy adhesive was fixed vertically on a ⁇ 4 mm circuit pattern, and was cured and adhered by heating at 150 ° C. for 1 hour to prepare a sample for a tensile test. Next, the sample was fixed to a tensile tester, the stud pin was pulled in the vertical direction, and the adhesive strength was calculated from the load and adhesive area when the circuit pattern was peeled, thereby measuring the vertical peeling strength of the circuit pattern.
  • Examples 1 to 6 according to the embodiment of the present invention are excellent in workability. In addition, it can be seen that Examples 1 to 6 according to the embodiment of the present invention are excellent in low water absorption because the water absorption rate is small and the water-absorbing solder withstand voltage is large. In addition, it can be seen that Examples 1 to 6 according to the embodiment of the present invention have excellent resistance to oxidation and deterioration because of their high heat-resistant adhesive strength.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention in the implementation stage.
  • the embodiments may be appropriately combined as much as possible, and in that case, the combined effect can be obtained.
  • the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effect described in the column of the effect of the invention Can be obtained as an invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

Provided is a laminate for circuit boards, which comprises a metal substrate, an insulating layer that is provided on at least one surface of the metal substrate, and a metal foil that is provided on the insulating layer. The insulating layer contains a resin component and an inorganic filler; and the resin component has a phase separation structure that comprises a discontinuous phase containing a thermosetting resin and a continuous phase containing a rubber.

Description

回路基板用積層板、金属ベース回路基板及びパワーモジュールCircuit board laminate, metal base circuit board and power module
 本発明は、回路基板用積層板、この回路基板用積層板から製造される金属ベース回路基板、及び、この金属ベース回路基板を備えるパワーモジュールに関する。 The present invention relates to a circuit board laminate, a metal base circuit board manufactured from the circuit board laminate, and a power module including the metal base circuit board.
 近年のエレクトロニクス技術の発達は目覚しく、電気電子機器の高性能化及び小型化は急速に進行している。これに伴い、これらに使用される高密度実装対応の金属ベース回路基板は、従来にも増して小型化且つ高密度化が進んでいる。従って、金属ベース回路基板についても、様々な性能の改善が求められており、これら要望に応えるべく幅広い取り組みがなされている。 The recent development of electronics technology is remarkable, and the performance and miniaturization of electrical and electronic equipment are rapidly progressing. In connection with this, the metal base circuit board corresponding to high-density mounting used for these is further miniaturized and densified more than before. Accordingly, various performance improvements are also demanded for metal base circuit boards, and a wide range of efforts are being made to meet these demands.
 これまで、金属ベース回路基板を構成する絶縁層に用いられる樹脂組成物としては、エポキシ樹脂を用いた樹脂組成物が幅広く使用されている。例えば、特開2007-254709号公報には、絶縁層表面の粗度が小さくても導体層との界面密着強度が高い絶縁層を提供可能な樹脂組成物として、エポキシ樹脂含有組成物に、特定のフェノール系硬化剤、フェノキシ樹脂及びゴム粒子を添加した樹脂組成物が開示されている。また、国際公開第2009/119598号公報には、メッキ密着性に加え、耐熱性及び耐湿信頼性の改善を図るべく、エポキシ樹脂含有組成物に特定のフェノキシ樹脂、シアネート樹脂を添加した樹脂組成物が開示されている。 Up to now, resin compositions using epoxy resins have been widely used as resin compositions used for the insulating layer constituting the metal base circuit board. For example, Japanese Patent Application Laid-Open No. 2007-254709 discloses an epoxy resin-containing composition as a resin composition that can provide an insulating layer having high interface adhesion strength with a conductor layer even if the surface roughness of the insulating layer is small. A resin composition containing a phenolic curing agent, a phenoxy resin, and rubber particles is disclosed. In addition, International Publication No. 2009/119598 discloses a resin composition in which a specific phenoxy resin and a cyanate resin are added to an epoxy resin-containing composition in order to improve heat resistance and moisture resistance reliability in addition to plating adhesion. Is disclosed.
 上述した電気電子機器の高性能化及び小型化の急速な進行に伴い、電気素子及び/又は電子素子を実装した部品の発熱量は益々大きくなっている。このため高密度実装対応の金属ベース回路基板には、加工性、並びに、高温吸湿条件下での耐吸水性及び耐酸化劣化性の更なる改善が求められる。 With the rapid progress in performance and miniaturization of the electric and electronic devices described above, the amount of heat generated by the components mounted with the electric elements and / or electronic elements is increasing. For this reason, a metal base circuit board compatible with high-density mounting is required to further improve workability and water absorption resistance and oxidation deterioration resistance under high temperature moisture absorption conditions.
 本発明は、加工性に優れ、且つ、高温吸湿条件下での耐吸水性及び耐酸化劣化性に優れた回路基板用積層板、この回路基板用積層板から製造される金属ベース回路基板、及び、この金属ベース回路基板を備えるパワーモジュールを提供することを目的とする。 The present invention provides a circuit board laminate having excellent processability and water absorption and oxidation degradation resistance under high temperature moisture absorption conditions, a metal base circuit board produced from the circuit board laminate, and An object of the present invention is to provide a power module including the metal base circuit board.
 本発明の一側面によると、金属基板と、該金属基板の少なくとも片面に設けられた絶縁層と、該絶縁層上に設けられた金属箔とを具備する回路基板用積層板であって、上記絶縁層は樹脂成分と無機充填材とを含有し、上記樹脂成分は、熱硬化性樹脂を含有する非連続相と、ゴムを含有する連続相とを含む相分離構造を有している回路基板用積層板が提供される。 According to one aspect of the present invention, there is provided a circuit board laminate comprising a metal substrate, an insulating layer provided on at least one surface of the metal substrate, and a metal foil provided on the insulating layer. The insulating layer contains a resin component and an inorganic filler, and the resin component has a phase separation structure including a discontinuous phase containing a thermosetting resin and a continuous phase containing rubber. A laminated board is provided.
 本発明の他の側面によれば、上記回路基板用積層板は、上記ゴムとして、重量平均分子量が150万以下のゴムを少なくとも含有する。 According to another aspect of the present invention, the circuit board laminate includes at least a rubber having a weight average molecular weight of 1.5 million or less as the rubber.
 更に他の側面によれば、上記回路基板用積層板は、上記ゴムとして、主鎖が飽和構造であるゴムを少なくとも含有する。 According to yet another aspect, the circuit board laminate includes at least a rubber having a saturated main chain structure as the rubber.
 更に他の側面によれば、上記回路基板用積層板は、上記ゴムとして、アクリルゴムを少なくとも含有する。 According to yet another aspect, the circuit board laminate includes at least acrylic rubber as the rubber.
 更に他の側面によれば、上記回路基板用積層板は、上記絶縁層における上記ゴムの配合比が、上記樹脂成分の全質量に対して1~40質量%である。 According to still another aspect, in the circuit board laminate, the blending ratio of the rubber in the insulating layer is 1 to 40% by mass with respect to the total mass of the resin component.
 更に他の側面によれば、上記回路基板用積層板は、上記熱硬化性樹脂として、シアネート樹脂を少なくとも含有する。 According to still another aspect, the circuit board laminate includes at least a cyanate resin as the thermosetting resin.
 更に他の側面によれば、上記回路基板用積層板は、上記熱硬化性樹脂として、ビスフェノール型シアネート樹脂及びノボラック型シアネート樹脂を含有する。 According to still another aspect, the circuit board laminate includes a bisphenol-type cyanate resin and a novolac-type cyanate resin as the thermosetting resin.
 更に他の側面によれば、上記回路基板用積層板は、上記熱硬化性樹脂としてのエポキシ樹脂の配合比が、上記熱硬化性樹脂の全質量に対して0~10質量%である。 According to still another aspect, in the circuit board laminate, the compounding ratio of the epoxy resin as the thermosetting resin is 0 to 10% by mass with respect to the total mass of the thermosetting resin.
 また、本発明の他の側面によると、上記回路基板用積層板のいずれかが具備する上記金属箔をパターニングすることによって得られる金属ベース回路基板が提供される。 Further, according to another aspect of the present invention, there is provided a metal base circuit board obtained by patterning the metal foil included in any one of the circuit board laminates.
 また、本発明の他の側面によると、上記金属ベース回路基板を備えるパワーモジュールが提供される。 According to another aspect of the present invention, a power module including the metal base circuit board is provided.
 本発明により、加工性に優れ、且つ、高温吸湿条件下での耐吸水性及び耐酸化劣化性に優れた回路基板用積層板、この回路基板用積層板から製造される金属ベース回路基板、及び、この金属ベース回路基板を備えるパワーモジュールを提供することが可能となった。 According to the present invention, a circuit board laminate having excellent processability and water resistance and oxidation deterioration resistance under high temperature moisture absorption conditions, a metal base circuit board produced from the circuit board laminate, and It has become possible to provide a power module comprising this metal base circuit board.
図1Aは、連続相のゴムと非連続相の熱硬化性樹脂からなる相分離構造の一例を示すSEM写真である。FIG. 1A is an SEM photograph showing an example of a phase separation structure made of a continuous phase rubber and a discontinuous phase thermosetting resin. 図1Bは、連続相のゴムと非連続相の熱硬化性樹脂からなる相分離構造に、無機充填材が分散している構造の一例を示す光学顕微鏡写真である。FIG. 1B is an optical micrograph showing an example of a structure in which an inorganic filler is dispersed in a phase separation structure composed of a continuous phase rubber and a discontinuous phase thermosetting resin. 図1Cは、連続相の熱硬化性樹脂中に、無機充填材が分散している構造の一例を示す光学顕微鏡写真である。FIG. 1C is an optical micrograph showing an example of a structure in which an inorganic filler is dispersed in a continuous phase thermosetting resin. 図1Dは、連続相の熱硬化性樹脂と、非連続相のゴム粒子とからなる相分離構造の一例を示すSEM写真である。FIG. 1D is an SEM photograph showing an example of a phase separation structure composed of a continuous phase thermosetting resin and discontinuous phase rubber particles. 図1Eは、連続相の熱硬化性樹脂と非連続相のゴム粒子からなる相分離構造に、無機充填材が分散している構造の一例を示すSEM写真である。FIG. 1E is an SEM photograph showing an example of a structure in which an inorganic filler is dispersed in a phase separation structure composed of a continuous phase thermosetting resin and discontinuous phase rubber particles. 図2は、本発明の実施形態に係る回路基板用積層板を概略的に示す斜視図である。FIG. 2 is a perspective view schematically showing a circuit board laminate according to an embodiment of the present invention. 図3は、図2に示す回路基板用積層板のII-II線に沿った断面図である。3 is a cross-sectional view taken along the line II-II of the circuit board laminate shown in FIG. 図4は、図2及び図3に示す回路基板用積層板から得られる金属ベース回路基板の一例を概略的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an example of a metal base circuit board obtained from the circuit board laminate shown in FIGS. 2 and 3. 図5は、本発明の実施形態に係るパワーモジュールを概略的に示す断面図である。FIG. 5 is a cross-sectional view schematically showing a power module according to the embodiment of the present invention. 図6は、従来のパワーモジュールを概略的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing a conventional power module. 図7Aは、実施例3の回路基板用積層体に含まれる絶縁層についての、DMA測定により得られたtanδの挙動を示すグラフである。FIG. 7A is a graph showing the behavior of tan δ obtained by DMA measurement for the insulating layer included in the circuit board laminate of Example 3. 図7Bは、比較例3の回路基板用積層体に含まれる絶縁層についての、DMA測定により得られたtanδの挙動を示すグラフである。FIG. 7B is a graph showing the behavior of tan δ obtained by DMA measurement for the insulating layer included in the circuit board laminate of Comparative Example 3.
 以下、本発明の実施形態について詳述する。 
 本発明の実施形態に係る回路基板用積層板は、金属基板と、この金属基板の少なくとも片面に設けられた絶縁層と、この絶縁層上に設けられた金属箔とを具備する。図2及び図3に示す回路基板用積層板1は、金属基板2の片面に絶縁層3が形成され、絶縁層3の上に金属箔4が形成された3層構造をしている。本発明の他の実施形態において、回路基板用積層板は、金属板2の両面に絶縁層3が形成され、更に各絶縁層3の上に金属箔4が形成された5層構造をしていてもよい。なお、図2及び図3において、X及びY方向は金属基板2の主面に平行であり且つ互いに直交する方向であり、Z方向はX及びY方向に対して垂直な厚さ方向である。図2には、一例として矩形上の回路基板用積層板1を示しているが、回路基板用積層板1は他の形状を有していてもよい。
Hereinafter, embodiments of the present invention will be described in detail.
A circuit board laminate according to an embodiment of the present invention includes a metal substrate, an insulating layer provided on at least one surface of the metal substrate, and a metal foil provided on the insulating layer. 2 and 3 has a three-layer structure in which an insulating layer 3 is formed on one side of a metal substrate 2 and a metal foil 4 is formed on the insulating layer 3. In another embodiment of the present invention, the circuit board laminate has a five-layer structure in which the insulating layer 3 is formed on both surfaces of the metal plate 2 and the metal foil 4 is further formed on each insulating layer 3. May be. 2 and 3, the X and Y directions are parallel to the main surface of the metal substrate 2 and perpendicular to each other, and the Z direction is a thickness direction perpendicular to the X and Y directions. FIG. 2 shows a rectangular circuit board laminate 1 as an example, but the circuit board laminate 1 may have other shapes.
 実施形態に係る回路基板用積層板が備える絶縁層は、樹脂成分と無機充填材とを少なくとも含有する樹脂組成物を用いて形成される塗膜の硬化物である。絶縁層は、樹脂成分として少なくとも熱硬化性樹脂とゴムを含有する。 The insulating layer included in the circuit board laminate according to the embodiment is a cured product of a coating film formed using a resin composition containing at least a resin component and an inorganic filler. The insulating layer contains at least a thermosetting resin and rubber as a resin component.
 樹脂成分は絶縁層中で相分離構造を形成している。この相分離構造は、連続相(マトリックス)中に非連続相が分散している海島構造であり、非連続相は熱硬化性樹脂を含有し、連続相はゴムを含有する。このように、実施形態において、絶縁層は、マトリクス中にゴムが非連続相として分散しているのではなく、ゴムが連続相(マトリクス)を構成し、その連続相中に熱硬化性樹脂が非連続相(分散相)として分散した相分離構造を有することを特徴の一つとしている。以下において、絶縁層が含んでいる、ゴムを含む連続相と、熱硬化性樹脂を含む非連続相を有する相分離構造を、本発明の相分離構造などという。 The resin component forms a phase separation structure in the insulating layer. This phase separation structure is a sea-island structure in which a discontinuous phase is dispersed in a continuous phase (matrix), the discontinuous phase contains a thermosetting resin, and the continuous phase contains rubber. Thus, in the embodiment, in the insulating layer, the rubber is not dispersed as a discontinuous phase in the matrix, but the rubber forms a continuous phase (matrix), and the thermosetting resin is contained in the continuous phase. One of the characteristics is that it has a phase separation structure dispersed as a discontinuous phase (dispersed phase). Hereinafter, the phase separation structure having a continuous phase containing rubber and a discontinuous phase containing a thermosetting resin, which is included in the insulating layer, is referred to as a phase separation structure of the present invention.
 ゴムは低吸水性であるが、絶縁層を構成するマトリクス中に非連続相(分散相)としてゴムが分散していても、金属ベース回路基板として所望される低吸水性は得られない。絶縁層においてゴムが連続相(マトリクス)を構成することにより、絶縁層における吸水の抑制効果が発揮され、金属ベース回路基板における低吸水性の向上に寄与する。また、ゴムは酸素透過性も低いため、ゴムが連続相を構成することは、金属ベース回路基板における耐酸化劣化性の向上にも寄与する。 Rubber has low water absorption, but even if rubber is dispersed as a discontinuous phase (dispersed phase) in the matrix constituting the insulating layer, the low water absorption desired for the metal base circuit board cannot be obtained. When the rubber constitutes a continuous phase (matrix) in the insulating layer, the water absorption suppressing effect in the insulating layer is exhibited, contributing to the improvement in low water absorption in the metal base circuit board. In addition, since rubber has low oxygen permeability, the rubber constituting a continuous phase also contributes to improvement of oxidation resistance in the metal base circuit board.
 柔軟性を有するゴムが熱硬化性樹脂と相溶して加工性が向上し、硬化に伴い相分離構造が形成され絶縁層の機械強度や応力緩和が改善される。 ¡Flexible rubber is compatible with thermosetting resin to improve processability, and a phase separation structure is formed with curing, improving the mechanical strength and stress relaxation of the insulating layer.
 絶縁層における本発明の相分離構造の有無は、例えば、顕微鏡観察および/または散乱測定により確認することができる。顕微鏡観察の場合、走査型電子顕微鏡(SEM)、原子間力顕微鏡、光学顕微鏡、透過型電子顕微鏡等により相分離構造を確認することができる。また、散乱測定の場合、微小角入射小角X線散乱測定、元素分析、エネルギー分散型X線分析、電子線プローブマイクロアナライザ、X線光電子分光法等により、相分離構造の有無を確認することができる。 The presence or absence of the phase separation structure of the present invention in the insulating layer can be confirmed by, for example, microscopic observation and / or scattering measurement. In the case of microscopic observation, the phase separation structure can be confirmed by a scanning electron microscope (SEM), an atomic force microscope, an optical microscope, a transmission electron microscope, or the like. In the case of scattering measurement, the presence or absence of a phase-separated structure may be confirmed by small-angle incident small-angle X-ray scattering measurement, elemental analysis, energy dispersive X-ray analysis, electron probe microanalyzer, X-ray photoelectron spectroscopy, etc. it can.
 また、絶縁層における本発明の相分離構造の有無は、DMA測定(動的粘弾性測定)によっても確認することができる。このDMA測定による本発明の相分離構造の確認手段は、樹脂成分中のゴムの配合比が高くない場合に特に有効な手段である。例えば、ゴムの配合比が樹脂成分の全質量に対して通常50質量%未満、好ましくは40質量%以下の場合に特に有効な手段となる。
 すなわち、ゴムが連続相を形成する本発明の相分離構造の場合は、ゴムの配合比が少量でもDMA測定によりゴム由来のピークが明確に観測できる。一方、例えばゴム粒子のように、ゴムが非連続相を形成する逆相分離構造の場合、ゴムの配合比が高くないとDMA測定によってはゴム由来のピークは検出されない。これは、ゴムが非連続相を形成する逆相分離構造の場合、ゴムの配合比が少量であると樹脂の挙動が支配的となり、DMA測定によりゴム由来のピークが観測しにくくなるためと推測される。
The presence or absence of the phase separation structure of the present invention in the insulating layer can also be confirmed by DMA measurement (dynamic viscoelasticity measurement). The means for confirming the phase separation structure of the present invention by this DMA measurement is particularly effective when the compounding ratio of the rubber in the resin component is not high. For example, it is a particularly effective means when the blending ratio of the rubber is usually less than 50% by mass, preferably 40% by mass or less, based on the total mass of the resin component.
That is, in the case of the phase separation structure of the present invention in which rubber forms a continuous phase, a peak derived from rubber can be clearly observed by DMA measurement even if the blending ratio of rubber is small. On the other hand, in the case of a reverse phase separation structure in which rubber forms a discontinuous phase, such as rubber particles, a rubber-derived peak is not detected by DMA measurement unless the rubber compounding ratio is high. This is presumed that in the case of a reverse phase separation structure in which the rubber forms a discontinuous phase, the behavior of the resin is dominant when the rubber compounding ratio is small, and it is difficult to observe the rubber-derived peak by DMA measurement. Is done.
 本発明の相分離構造について、図1A~図1Eに示された写真を用いて以下に説明する。ここで、図1A~図1Eに示された写真は、いずれも、絶縁層を切断し、その断面を機械的に研磨したものを観察した写真である。
 図1Aは、本発明の相分離構造の一例を示す走査型電子顕微鏡(Scanning Electron Microscope;SEM)写真である。本発明の相分離構造を分かりやすく説明するため、図1Aに示.される相分離構造は無機充填材を含んでいない。図1Aに示された相分離構造では、連続相のゴム101中に、非連続相(分散相)の熱硬化性樹脂102が分散している。このようにゴムが連続相を構成することにより、上述の通り、低吸水性と耐酸化劣化性が向上する。
The phase separation structure of the present invention will be described below using the photographs shown in FIGS. 1A to 1E. Here, all of the photographs shown in FIGS. 1A to 1E are photographs in which the insulating layer is cut and its cross section is mechanically polished.
FIG. 1A is a scanning electron microscope (SEM) photograph showing an example of the phase separation structure of the present invention. In order to easily explain the phase separation structure of the present invention, the phase separation structure shown in FIG. 1A does not contain an inorganic filler. In the phase separation structure shown in FIG. 1A, a discontinuous phase (dispersed phase) thermosetting resin 102 is dispersed in a continuous phase rubber 101. Thus, rubber | gum comprises a continuous phase, and as above-mentioned, low water absorption and oxidation degradation resistance improve.
 これに対し、図1DのSEM写真は、本発明の相分離構造と逆の相分離構造(以下において、「逆相分離構造」などという。)を示す。図1Dに示される逆相分離構造では、連続相の熱硬化性樹脂111中に、非連続相(分散相)のゴム粒子112が分散している。このような逆相分離構造では、ゴム成分を含有していても上記効果は得られない。 On the other hand, the SEM photograph in FIG. 1D shows a phase separation structure opposite to the phase separation structure of the present invention (hereinafter referred to as “reverse phase separation structure”). In the reverse phase separation structure shown in FIG. 1D, discontinuous phase (dispersed phase) rubber particles 112 are dispersed in the continuous phase thermosetting resin 111. In such a reverse phase separation structure, the above effect cannot be obtained even if a rubber component is contained.
 図1Bは、本発明の相分離構造に、無機充填材が分散している構造の一例を示す光学顕微鏡写真である。ここでは、無機充填材として2種類の無機充填材103a、103bが使用されている。無機充填材103aは、窒化アルミニウムであり、実線で囲まれた筋状の無機充填材103bは窒化ホウ素である。この写真から無機充填材103a、103bの隙間又は空隙から、本発明の相分離構造を確認することができる。例えば、破線枠A内をみると、無機充填材(窒化アルミニウム)103aの空隙において、連続相のゴム101中に非連続相(分散相)の熱硬化性樹脂102が分散していることが確認される。
 図1Bに示される相分離構造に対し、図1Cはゴムを含有しない系の光学顕微鏡写真である。図1Cに示される構造では、連続相の熱硬化性樹脂121中に、無機充填材(窒化アルミニウム)123a、及び、実線で囲まれた筋状の無機充填材(窒化ホウ素)123bが分散している。破線枠A’内をみると、無機充填材(窒化アルミニウム)123aの空隙は熱硬化性樹脂121のみで埋まっていることがわかる。
FIG. 1B is an optical micrograph showing an example of a structure in which an inorganic filler is dispersed in the phase separation structure of the present invention. Here, two types of inorganic fillers 103a and 103b are used as the inorganic filler. The inorganic filler 103a is aluminum nitride, and the streaky inorganic filler 103b surrounded by a solid line is boron nitride. From this photograph, the phase separation structure of the present invention can be confirmed from the gaps or voids between the inorganic fillers 103a and 103b. For example, in the broken line frame A, it is confirmed that the discontinuous phase (dispersed phase) thermosetting resin 102 is dispersed in the continuous phase rubber 101 in the voids of the inorganic filler (aluminum nitride) 103a. Is done.
In contrast to the phase separation structure shown in FIG. 1B, FIG. 1C is an optical micrograph of a system containing no rubber. In the structure shown in FIG. 1C, the inorganic filler (aluminum nitride) 123a and the streaky inorganic filler (boron nitride) 123b surrounded by the solid line are dispersed in the thermosetting resin 121 in the continuous phase. Yes. Looking inside the broken line frame A ′, it can be seen that the voids of the inorganic filler (aluminum nitride) 123 a are filled with only the thermosetting resin 121.
 また、図1Eは、逆相分離構造が示された図1Dに対し、無機充填材が分散している構造の一例を示すSEM写真である。ここでは、連続相の熱硬化性樹脂111中に、2種の無機充填材、すなわち、無機充填材(アルミナ)113a、及び、破線で囲まれた筋状の無機充填材(窒化ホウ素)113bと、ゴム粒子112とが分散している。2種の無機充填材(アルミナ)113a及び無機充填材(窒化ホウ素)113bの隙間にゴム粒子112が均一に分散していないことがわかる。
 本発明において用い得るゴムは、常温でゴム弾性を有する高分子材料であればよく、例えば、常温(例えば、25℃)における弾性率が100MPa以下のものであればよい。
FIG. 1E is an SEM photograph showing an example of a structure in which an inorganic filler is dispersed with respect to FIG. 1D showing a reverse phase separation structure. Here, in the continuous phase thermosetting resin 111, two kinds of inorganic fillers, that is, an inorganic filler (alumina) 113a and a streaky inorganic filler (boron nitride) 113b surrounded by a broken line, The rubber particles 112 are dispersed. It can be seen that the rubber particles 112 are not uniformly dispersed in the gap between the two kinds of inorganic fillers (alumina) 113a and the inorganic filler (boron nitride) 113b.
The rubber that can be used in the present invention may be a polymer material having rubber elasticity at room temperature. For example, the rubber may have a modulus of elasticity of 100 MPa or less at room temperature (for example, 25 ° C.).
 絶縁層において、本発明の相分離構造を形成するためには、硬化前の絶縁層用樹脂組成物において、ゴムと熱硬化性樹脂とが溶剤に溶け互いに均一に分散した相溶状態となることが好ましい。その状態から加熱して熱硬化性樹脂の硬化を進めると、部分的に熱硬化性樹脂の分子量が増大して粘度が高くなり、最終的にゴムよりも粘度が高く(硬く)なる。粘度の観点から考察すると、より低粘度の成分が連続相を形成することから、ゴムを含む連続相と、熱硬化性樹脂を含む非連続相を有する本発明の相分離構造が形成される。 In the insulating layer, in order to form the phase separation structure of the present invention, in the insulating layer resin composition before curing, the rubber and the thermosetting resin are dissolved in a solvent and are in a compatible state in which they are uniformly dispersed. Is preferred. When the thermosetting resin is cured by heating from this state, the molecular weight of the thermosetting resin partially increases to increase the viscosity, and finally the viscosity becomes higher (harder) than the rubber. Considering from the viewpoint of viscosity, a component having a lower viscosity forms a continuous phase, so that the phase separation structure of the present invention having a continuous phase containing rubber and a discontinuous phase containing a thermosetting resin is formed.
 このため、ゴムの重量平均分子量は、溶剤に対する溶解性の観点から150万以下であることが好ましく、より好ましくは130万以下であり、更に好ましくは90万以下である。ゴムの重量平均分子量の下限値は、特に限定するものではないが、例えば、5万以上であることが好ましい。 
 ここで、重要平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)法により測定されたポリスチレン換算値を表す。
For this reason, the weight average molecular weight of rubber is preferably 1.5 million or less, more preferably 1.3 million or less, and still more preferably 900,000 or less, from the viewpoint of solubility in a solvent. The lower limit of the weight average molecular weight of the rubber is not particularly limited, but is preferably 50,000 or more, for example.
Here, the important average molecular weight represents a polystyrene equivalent value measured by a GPC (gel permeation chromatography) method.
 実施形態において好適に用い得るゴムとしては、例えば、下記のようなものが挙げられる。すなわち、スチレンブタジエンゴム、イソプレンゴム、ブタジエンゴム、クロロプレンゴム、またはアクリロニトリル・ブタジエンゴムなどのジエン系ゴム;ブチルゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、クロロスルホン化ポリエチレンゴム、塩素化ポリエチレン、アクリルゴム、多硫化ゴム、またはエピクロルヒドリンゴムなどの非ジエン系ゴム;スチレン系、オレフィン系、エステル系、ウレタン系、アミド系、ポリ塩化ビニル(polyvinyl chloride;PVC)系、またはフッ素系などの熱可塑性エラストマー;もしくは天然ゴム等が挙げられる。 Examples of rubber that can be suitably used in the embodiment include the following. That is, diene rubbers such as styrene butadiene rubber, isoprene rubber, butadiene rubber, chloroprene rubber, or acrylonitrile butadiene rubber; butyl rubber, ethylene propylene rubber, ethylene propylene diene rubber, urethane rubber, silicone rubber, fluorine rubber, chlorosulfonated polyethylene Non-diene rubbers such as rubber, chlorinated polyethylene, acrylic rubber, polysulfide rubber, or epichlorohydrin rubber; styrene, olefin, ester, urethane, amide, polyvinyl chloride (PVC), or Examples include fluorine-based thermoplastic elastomers; or natural rubber.
 本発明の実施形態において、ゴムは主鎖が飽和構造であることが好ましい。ここで、主鎖が飽和構造であるとは、ポリマー主鎖が炭素原子どうしの結合においては二重結合や三重結合の不飽和結合を有さない構造をいう。 In the embodiment of the present invention, it is preferable that the main chain of the rubber has a saturated structure. Here, the main chain having a saturated structure means a structure in which the polymer main chain does not have a double bond or a triple bond unsaturated bond in a bond between carbon atoms.
 主鎖が飽和構造のゴムとしては、例えば、ブチルゴム、エチレンプロピレンゴム、エチレンプロピレンジエンゴム、ウレタンゴム、シリコーンゴム、フッ素ゴム、クロロスルホン化ポリエチレンゴム、塩素化ポリエチレン、アクリルゴム、多硫化ゴム、またはエピクロルヒドリンゴムなどの非ジエン系ゴム、もしくはスチレン系、オレフィン系、エステル系、ウレタン系、アミド系、PVC系、またはフッ素系などの熱可塑性エラストマー等が挙げられる。一実施形態において、アクリルゴムが特に好ましい。 
 絶縁層は、ゴムとして1種を単独で含有していてもよいし、2種以上を含有していてもよい。
Examples of the rubber having a saturated main chain structure include, for example, butyl rubber, ethylene propylene rubber, ethylene propylene diene rubber, urethane rubber, silicone rubber, fluorine rubber, chlorosulfonated polyethylene rubber, chlorinated polyethylene, acrylic rubber, polysulfide rubber, or Non-diene rubbers such as epichlorohydrin rubber, or thermoplastic elastomers such as styrene, olefin, ester, urethane, amide, PVC, or fluorine are listed. In one embodiment, acrylic rubber is particularly preferred.
The insulating layer may contain 1 type independently as rubber | gum, and may contain 2 or more types.
 非連続相を構成する熱硬化性樹脂としては、例えば、シアネート樹脂、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、アクリル樹脂、ウレタン樹脂、マレイミド樹脂、ベンゾオキサジン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、不飽和ポリエステル樹脂、シリコン樹脂、ジアリルフタレート樹脂、アルキド樹脂等を挙げることができる。熱硬化性樹脂として1種を単独で使用してもよいし、2種以上を併用してもよい。 Examples of the thermosetting resin constituting the discontinuous phase include cyanate resin, epoxy resin, phenol resin, urea resin, melamine resin, acrylic resin, urethane resin, maleimide resin, benzoxazine resin, polyimide resin, polyamideimide resin, Examples include unsaturated polyester resins, silicone resins, diallyl phthalate resins, alkyd resins, and the like. One type may be used alone as the thermosetting resin, or two or more types may be used in combination.
 本発明の実施形態において、熱硬化性樹脂としてシアネート樹脂が特に好ましい。シアネート樹脂としては、例えば、ビスフェノール型シアネート樹脂、ノボラック型シアネート樹脂が挙げられる。 
 ビスフェノール型シアネート樹脂としては、例えば、ビスフェノールA型シアネート樹脂、ビスフェノールE型フェノール樹脂、テトラメチルビスフェノールF型シアネート樹脂等を挙げることができる。ビスフェノール型シアネート樹脂の重量平均分子量は特に限定されるものではなく、オリゴマーやモノマーであってもよい。例えば、耐熱性の観点からは、テトラメチルビスフェノールF型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂の順に優れており、反応性の観点からはビスフェノールA型シアネート樹脂が優れている。
In the embodiment of the present invention, a cyanate resin is particularly preferable as the thermosetting resin. Examples of the cyanate resin include bisphenol type cyanate resin and novolak type cyanate resin.
Examples of the bisphenol type cyanate resin include bisphenol A type cyanate resin, bisphenol E type phenol resin, and tetramethylbisphenol F type cyanate resin. The weight average molecular weight of the bisphenol cyanate resin is not particularly limited, and may be an oligomer or a monomer. For example, from the viewpoint of heat resistance, tetramethylbisphenol F type cyanate resin, bisphenol A type cyanate resin, and bisphenol E type cyanate resin are excellent in this order, and from the viewpoint of reactivity, bisphenol A type cyanate resin is excellent.
 本発明の一実施形態において、熱硬化性樹脂として、ビスフェノール型シアネート樹脂及びノボラック型シアネート樹脂の混合系を用いることが好ましい。その比率としては、例えば、ビスフェノール型シアネート樹脂:ノボラック型シアネート樹脂で表される質量比が、11:1~1:1であることが好ましく、9:1~2:1であることがより好ましい。 In one embodiment of the present invention, it is preferable to use a mixed system of a bisphenol type cyanate resin and a novolac type cyanate resin as the thermosetting resin. As the ratio, for example, the mass ratio represented by bisphenol type cyanate resin: novolac type cyanate resin is preferably 11: 1 to 1: 1, and more preferably 9: 1 to 2: 1. .
 エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、トリアジン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、o-クレゾールノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、臭素化エポキシ樹脂等の分子中にエポキシ基を2個以上有するエポキシ樹脂等を挙げることができる。 Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, triazine type epoxy resin, biphenyl type epoxy resin, naphthalene type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy. Resin, phenol novolac type epoxy resin, o-cresol novolac type epoxy resin, biphenyl novolac type epoxy resin, triphenylmethane type epoxy resin, dicyclopentadiene type epoxy resin, alicyclic epoxy resin, brominated epoxy resin, etc. Examples thereof include an epoxy resin having two or more epoxy groups.
 但し、本発明の実施形態において、エポキシ樹脂を含有しないか、あるいは、エポキシ樹脂を含有する場合には、その含有率は、熱硬化性樹脂の全質量に対し所定量以下であることが好ましい場合がある。例えば、エポキシ樹脂の含有率は、熱硬化性樹脂の全質量を基準として、0~10質量%が好ましく、0~7質量%がより好ましく、0~5質量%が更に好ましい。 However, in the embodiment of the present invention, when the epoxy resin is not contained or the epoxy resin is contained, the content is preferably a predetermined amount or less with respect to the total mass of the thermosetting resin. There is. For example, the content of the epoxy resin is preferably 0 to 10% by mass, more preferably 0 to 7% by mass, and still more preferably 0 to 5% by mass based on the total mass of the thermosetting resin.
 上述した通り、絶縁層の樹脂成分は、熱硬化性樹脂を含有する非連続相と、ゴムを含有する連続相から構成される相分離構造を有しているが、放熱性の観点から、ゴムを含有する連続相の配合比は熱硬化性樹脂を含有する非連続相の配合比よりも低い方が好ましい。一実施形態において、ゴムの配合比は、樹脂成分の全質量に対して1~40質量%の範囲であることが好ましく、5~30質量%であることがより好ましく、5~20質量%であることが更に好ましい。 As described above, the resin component of the insulating layer has a phase separation structure composed of a discontinuous phase containing a thermosetting resin and a continuous phase containing rubber. The blending ratio of the continuous phase containing is preferably lower than the blending ratio of the non-continuous phase containing the thermosetting resin. In one embodiment, the compounding ratio of the rubber is preferably in the range of 1 to 40% by mass, more preferably 5 to 30% by mass, with respect to the total mass of the resin component, and 5 to 20% by mass. More preferably it is.
 実施形態において、絶縁層は、樹脂成分と共に無機充填材を含有している。この無機充填材としては、例えば、アルミナ、窒化アルミニウム、窒化ホウ素、窒化ケイ素、酸化マグネシウム、酸化ケイ素等が挙げられる。これらの中から選ばれる1種又は2種以上を用いることが好ましい。無機充填材は、非連続相及び連続相の区別なく樹脂成分中に存在する。すなわち、無機充填材は、非連続相中に存在してもよいし、連続相中に存在してもよいし、双方に存在してもよい。また、無機充填材は、非連続相及び連続相にまたがって存在してもよい。 In the embodiment, the insulating layer contains an inorganic filler together with a resin component. Examples of the inorganic filler include alumina, aluminum nitride, boron nitride, silicon nitride, magnesium oxide, and silicon oxide. It is preferable to use one or more selected from these. The inorganic filler is present in the resin component without distinction between the discontinuous phase and the continuous phase. That is, the inorganic filler may be present in the discontinuous phase, may be present in the continuous phase, or may be present in both. In addition, the inorganic filler may be present across the discontinuous phase and the continuous phase.
 無機充填材を含有する系においては、硬化に伴う発熱反応が無機充填材の存在によって抑制される傾向がある。具体的には、無機充填材に反応熱が吸収されるため硬化反応が遅くなることや、無機充填材の表面官能基によっては熱硬化性樹脂の硬化反応を阻害する等の問題が考えられる。このため、表面処理された無機充填材を使用してもよいし、後述する効果促進剤との適切な組み合わせにおいて無機充填材を使用することが好ましい。無機充填材の表面処理としては、例えば、無機充填材の表面を熱硬化性樹脂と反応を伴って化学結合できる官能基で修飾してもよいし、もしくは熱硬化性樹脂と相溶性が高い官能基で修飾してもよく(例えば、シアネート基、エポキシ基、アミノ基、水酸基、カルボキシル基、ビニル基、スチリル基、メタクリル基、アクリル基、ウレイド基、メルカプト基、スルフィド基、イソシアネート基等)、例えば、シランカップリング処理やプラズマ処理などが用いられる。 In a system containing an inorganic filler, the exothermic reaction accompanying curing tends to be suppressed by the presence of the inorganic filler. Specifically, the reaction heat is absorbed by the inorganic filler, so that the curing reaction is delayed, and depending on the surface functional groups of the inorganic filler, problems such as inhibiting the curing reaction of the thermosetting resin are conceivable. For this reason, a surface-treated inorganic filler may be used, and it is preferable to use an inorganic filler in an appropriate combination with an effect accelerator described later. As the surface treatment of the inorganic filler, for example, the surface of the inorganic filler may be modified with a functional group that can chemically bond with the thermosetting resin, or a functional group highly compatible with the thermosetting resin. May be modified with a group (for example, cyanate group, epoxy group, amino group, hydroxyl group, carboxyl group, vinyl group, styryl group, methacryl group, acrylic group, ureido group, mercapto group, sulfide group, isocyanate group, etc.) For example, silane coupling treatment or plasma treatment is used.
 実施形態において、絶縁層に含有される無機充填材の割合は、樹脂成分の合計体積を基準として50~90体積%であることが好ましい。無機充填材の含有率は、より好ましくは60~80体積%である。充填率が低すぎると、所望の熱伝導率が得られない上に、無機充填材が沈殿する傾向がある。一方、充填率が高すぎると、粘度が高くなりすぎて均一な塗膜が得られず、気孔欠陥が増える原因となり得る。 In the embodiment, the proportion of the inorganic filler contained in the insulating layer is preferably 50 to 90% by volume based on the total volume of the resin components. The content of the inorganic filler is more preferably 60 to 80% by volume. If the filling rate is too low, the desired thermal conductivity cannot be obtained and the inorganic filler tends to precipitate. On the other hand, if the filling rate is too high, the viscosity becomes too high, a uniform coating film cannot be obtained, and pore defects may increase.
 絶縁層は、硬化促進剤を含有していてもよい。硬化促進剤としては、特に限定されるものではなく、例えば、ベンゾオキサジン化合物、ボレート錯体、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、ビスアセチルアセトナートコバルト(II)、トリアセチルアセトナートコバルト(III)等の有機金属塩、フェノール、ビスフェノールA、ノニルフェノール等のフェノール化合物等が挙げられる。 The insulating layer may contain a curing accelerator. The curing accelerator is not particularly limited, and examples thereof include benzoxazine compounds, borate complexes, zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, bisacetylacetonate cobalt (II), and triacetyl. Examples thereof include organic metal salts such as acetonate cobalt (III), phenol compounds such as phenol, bisphenol A, and nonylphenol.
 ベンゾオキサジン化合物は、分子内に少なくとも一つのベンゾオキサジン環を有するものであればよい。ベンゾオキサジン化合物としては、モノマーを用いてもよいし、数分子が重合してオリゴマー状態となっているものを用いてもよい。一実施形態において、ベンゾオキサジン化合物としては、分子内に2個以上のベンゾオキサジン環を有するモノマーが好ましい。また、異なる構造を有する複数種のベンゾオキサジン化合物を同時に用いてもよい。 The benzoxazine compound only needs to have at least one benzoxazine ring in the molecule. As the benzoxazine compound, a monomer may be used, or a compound in which several molecules are polymerized into an oligomer state may be used. In one embodiment, the benzoxazine compound is preferably a monomer having two or more benzoxazine rings in the molecule. A plurality of types of benzoxazine compounds having different structures may be used simultaneously.
 ベンゾオキサジン化合物としては、例えば、P-d型ベンゾオキサジン、ビスフェノールF型ベンゾオキサジン、F-a型ベンゾオキサジンなどが挙げられるが、中でもP-d型ベンゾオキサジンが好ましい。P-d型ベンゾオキサジンはジフェニルメチレン骨格等の剛直な骨格を有するため、その由来化合物は、例えばBa型ベンゾオキサジンに由来する化合物と比較してより良好な熱特性を有する架橋構造を形成することができる。 Examples of the benzoxazine compound include Pd-type benzoxazine, bisphenol F-type benzoxazine, and Fa-type benzoxazine, among which Pd-type benzoxazine is preferable. Since the Pd type benzoxazine has a rigid skeleton such as a diphenylmethylene skeleton, the compound derived from the Pd type benzoxazine forms a cross-linked structure having better thermal characteristics as compared with, for example, a compound derived from a Ba type benzoxazine. Can do.
 ボレート錯体は、リン系ボレート錯体でも非リン系ボレート錯体でもよい。 
 リン系ボレート錯体の例として、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラ-p-トリルボレート、トリ-tert-ブチルホスホニウムテトラフェニルボレート、ジ-tert-ブチルメチルホスホニウムテトラフェニルボレート、p-トリルトリフェニルホスホニウムテトラ-p-トリルボレート、テトラフェニルホスホニウムテトラフルオロボレート、トリフェニルホスフィントリフェニルボレートなどが挙げられる。
The borate complex may be a phosphorus borate complex or a non-phosphorus borate complex.
Examples of phosphoric borate complexes include tetraphenylphosphonium tetraphenylborate, tetraphenylphosphonium tetra-p-tolylborate, tri-tert-butylphosphonium tetraphenylborate, di-tert-butylmethylphosphonium tetraphenylborate, p-tolyltri Examples thereof include phenylphosphonium tetra-p-tolylborate, tetraphenylphosphonium tetrafluoroborate, and triphenylphosphine triphenylborate.
 非リン系ボレート錯体の例として、ソジウムテトラフェニルボレート、ピリジントリフェニルボレート、2-エチル-4-メチルイミダゾリウムテトラフェニルボレート、1,5-ジアゾビシクロ[4.3.0]ノネン-5-テトラフェニルボレート、リチウムトリフェニル(n-ブチル)ボレートなどが挙げられる。 Examples of non-phosphorous borate complexes include sodium tetraphenyl borate, pyridine triphenyl borate, 2-ethyl-4-methylimidazolium tetraphenyl borate, 1,5-diazobicyclo [4.3.0] nonene-5 Examples thereof include tetraphenyl borate and lithium triphenyl (n-butyl) borate.
 実施形態において、絶縁層に硬化促進剤を添加する場合、その含有率は適宜設定することができる。例えば、硬化促進剤としてベンゾオキサジン化合物を使用する場合、その含有率は、熱硬化性樹脂の合計質量を基準として1~20質量%であることが好ましく、5~15質量%であることがより好ましい。 In the embodiment, when a curing accelerator is added to the insulating layer, the content can be appropriately set. For example, when a benzoxazine compound is used as a curing accelerator, the content is preferably 1 to 20% by mass, more preferably 5 to 15% by mass based on the total mass of the thermosetting resin. preferable.
 実施形態において、絶縁層は、更に他の成分を含有していてもよい。絶縁層が含有していてもよい他の成分としては、例えば、シランカップリング剤及びチタンカップリング剤などのカップリング剤、イオン吸着剤、沈降防止剤、加水分解防止剤、レベリング剤、酸化防止剤等などが挙げられる。 In the embodiment, the insulating layer may further contain other components. Other components that the insulating layer may contain include, for example, coupling agents such as silane coupling agents and titanium coupling agents, ion adsorbents, anti-settling agents, hydrolysis inhibitors, leveling agents, and antioxidants. Agents and the like.
 絶縁層は、上述した樹脂成分及び無機充填材を少なくとも含有する樹脂組成物から形成される塗膜の硬化物である。上述したように、この樹脂組成物は、本発明の相分離構造の形成を可能とするために、ゴムと熱硬化性樹脂とが互いに均一に分散した相溶状態となることが好ましいため、ゴムと樹脂を溶解することができる溶剤を含有することが好ましい。このような溶剤としては、例えば、N,N-ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン(NMP)等のアミド系溶剤、1-メトキシ-2-プロパノ-ル、エチレングリコールモノメチルエーテル等のエーテル系溶剤、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)、シクロヘキサノン、シクロペンタノン等のケトン系溶剤、トルエン、キシレン等の芳香族系溶剤等を挙げることができる。その使用形態としては、溶剤を1種単独で使用してもよいし、2種以上を混合して使用してもよい。 The insulating layer is a cured product of a coating film formed from a resin composition containing at least the resin component and the inorganic filler described above. As described above, this resin composition is preferably in a compatible state in which the rubber and the thermosetting resin are uniformly dispersed to enable the formation of the phase separation structure of the present invention. And a solvent capable of dissolving the resin. Examples of such a solvent include amide solvents such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide, N-methyl-2-pyrrolidone (NMP), 1-methoxy-2-propano- And ether solvents such as ethylene glycol monomethyl ether, ketone solvents such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK), cyclohexanone and cyclopentanone, and aromatic solvents such as toluene and xylene. . As the usage form, one type of solvent may be used alone, or two or more types may be mixed and used.
 本発明の相分離構造が形成される前の塗膜(例えば、乾燥膜)は、好ましくはゴムと熱硬化性樹脂とが互いに均一に分散した相溶状態となるため、柔軟性が高く加工性に優れる。このため、このようなゴムと熱硬化性樹脂との相溶状態を経て形成される本発明の相分離構造を有する絶縁層は、加工性に優れる。 The coating film (for example, dry film) before the phase separation structure of the present invention is formed is preferably in a compatible state in which the rubber and the thermosetting resin are uniformly dispersed with each other. Excellent. For this reason, the insulating layer having the phase separation structure of the present invention formed through a compatible state of such rubber and thermosetting resin is excellent in processability.
 実施形態に係る回路基板用積層板において、金属基板は、例えば、単体金属又は合金からなる。金属基板の材料としては、例えば、アルミニウム、鉄、銅、アルミニウム合金、又はステンレスを使用することができる。金属基板は、炭素などの非金属を更に含んでいてもよい。例えば、金属基板2は、炭素と複合化したアルミニウムを含んでいてもよい。また、金属基板は、単層構造を有していてもよく、多層構造を有していてもよい。 In the laminated board for a circuit board according to the embodiment, the metal substrate is made of, for example, a single metal or an alloy. As a material of the metal substrate, for example, aluminum, iron, copper, aluminum alloy, or stainless steel can be used. The metal substrate may further contain a nonmetal such as carbon. For example, the metal substrate 2 may contain aluminum combined with carbon. The metal substrate may have a single layer structure or a multilayer structure.
 金属基板は、高い熱伝導率を有している。典型的には、金属基板2は、60W・m-1・K-1以上の熱伝導率を有している。 
 金属基板は、可撓性を有していてもよく、可撓性を有していなくてもよい。金属基板の厚さは、例えば、0.2-5mmの範囲内にある。
The metal substrate has a high thermal conductivity. Typically, the metal substrate 2 has a thermal conductivity of 60 W · m −1 · K −1 or more.
The metal substrate may have flexibility or may not have flexibility. The thickness of the metal substrate is, for example, in the range of 0.2-5 mm.
 金属箔は、絶縁層上に設けられている。金属箔は、絶縁層を間に挟んで金属基板と向き合っている。 
 金属箔は、例えば、単体金属又は合金からなる。金属箔の材料としては、例えば、銅又はアルミニウムを使用することができる。金属箔の厚さは、例えば、10~500μmの範囲である。
The metal foil is provided on the insulating layer. The metal foil faces the metal substrate with an insulating layer interposed therebetween.
The metal foil is made of, for example, a single metal or an alloy. As a material of the metal foil, for example, copper or aluminum can be used. The thickness of the metal foil is, for example, in the range of 10 to 500 μm.
 実施形態に係る回路基板用積層板は、例えば、以下の方法により製造することができる。 
 まず、上述した樹脂組成物を、金属基板及び金属箔の少なくとも一方に塗布する。樹脂組成物の塗布には、例えば、ロールコート法、バーコート法又はスクリーン印刷法を利用することができる。連続式で行ってもよく、単板式で行ってもよい。
The laminated board for circuit boards which concerns on embodiment can be manufactured with the following method, for example.
First, the above-described resin composition is applied to at least one of a metal substrate and a metal foil. For application of the resin composition, for example, a roll coating method, a bar coating method, or a screen printing method can be used. You may carry out by a continuous type and may carry out by a single plate type.
 必要に応じて塗膜を乾燥させた後、金属基板と金属箔とが塗膜を挟んで向き合うように重ね合わせる。さらに、それらを熱プレスする。以上のようにして、回路基板用積層板を得る。 After drying the coating film as necessary, the metal substrate and the metal foil are stacked so that they face each other with the coating film in between. Furthermore, they are hot pressed. A circuit board laminate is obtained as described above.
 この方法では、樹脂組成物を金属板及び金属箔の少なくとも一方に塗布することにより塗膜を形成するが、他の態様において、分散液をPETフィルム等の基材に塗布し乾燥することにより予め塗膜を形成し、これを金属基板及び金属箔の一方に熱転写してもよい。 In this method, the resin composition is applied to at least one of a metal plate and a metal foil to form a coating film. In another embodiment, the dispersion is applied to a substrate such as a PET film and dried in advance. A coating film may be formed and thermally transferred to one of the metal substrate and the metal foil.
 次に、上述した回路基板用積層板から得られる金属ベース回路基板について説明する。
 図4に金属ベース回路基板の一実施形態を示す。図4に示される金属ベース回路基板1´は、図2及び図3に示す回路基板用積層板1から得られるものであり、金属基板2と、絶縁層3と、回路パターン4´とを含んでいる。回路パターン4´は、図2及び図3を参照しながら説明した回路基板用積層板の金属箔4をパターニングすることにより得られる。このパターニングは、例えば、金属箔4の上にマスクパターンを形成し、金属箔4の露出部をエッチングによって除去することにより得られる。金属ベース回路基板1´は、例えば、先の回路基板用積層板1の金属箔4に対して上記のパターニングを行い、必要に応じて、切断及び穴あけ加工などの加工を行うことにより得ることができる。
Next, the metal base circuit board obtained from the laminated board for circuit boards described above will be described.
FIG. 4 shows an embodiment of a metal base circuit board. A metal base circuit board 1 ′ shown in FIG. 4 is obtained from the circuit board laminate 1 shown in FIGS. 2 and 3, and includes a metal board 2, an insulating layer 3, and a circuit pattern 4 ′. It is out. The circuit pattern 4 ′ is obtained by patterning the metal foil 4 of the circuit board laminate described with reference to FIGS. 2 and 3. This patterning can be obtained, for example, by forming a mask pattern on the metal foil 4 and removing the exposed portion of the metal foil 4 by etching. The metal base circuit board 1 ′ can be obtained, for example, by performing the above-described patterning on the metal foil 4 of the circuit board laminate 1 and performing processing such as cutting and drilling as necessary. it can.
 実施形態に係る金属ベース回路基板は、上述した回路基板用積層板から得られるので、低吸水性、加工性及び耐酸化劣化性に優れている。 Since the metal base circuit board according to the embodiment is obtained from the above-described laminated board for circuit boards, it is excellent in low water absorption, workability, and oxidation deterioration resistance.
 図5に一実施形態に係るパワーモジュールを示す。このパワーモジュール100は、金属基板13cと、絶縁層13bと、回路パターン13aを含む本発明の一実施形態に係る金属ベース回路基板13を備えるため、低吸水性、加工性及び耐酸化劣化性に優れる。パワーデバイスの高性能化に伴い発熱温度が増加傾向にある現状において、従来のパワーモジュールでは対応できなかった温度領域にも本発明のモジュールは好適に用いることができる。 FIG. 5 shows a power module according to an embodiment. Since the power module 100 includes the metal base circuit board 13 according to an embodiment of the present invention including the metal substrate 13c, the insulating layer 13b, and the circuit pattern 13a, the power module 100 has low water absorption, workability, and oxidation deterioration resistance. Excellent. In the present situation where the heat generation temperature tends to increase as the performance of power devices increases, the module of the present invention can be suitably used even in a temperature region that cannot be handled by conventional power modules.
 更に、実施形態に係るパワーモジュール100は、図6に一例を示した従来のパワーモジュール200と比較し、金属ベース回路基板13を備えることで構成部材(層)が少なくなり、全体としての厚みが薄くなることから、より低熱抵抗でコンパクト設計が可能となる。また、穴あけ、切断等の加工が容易なため組立てが容易であるなどのメリットも有している。 Furthermore, the power module 100 according to the embodiment has fewer constituent members (layers) by providing the metal base circuit board 13 as compared with the conventional power module 200 shown as an example in FIG. Since it becomes thinner, a compact design with lower thermal resistance becomes possible. In addition, there is a merit that assembly is easy because processing such as drilling and cutting is easy.
 以下に、本発明の例を記載する。本発明はこれらに限定されるものでない。 
 <組成物の調製>
 合成例1~6:樹脂組成物1~6の調製
 ビスフェノール型シアネート樹脂(以下、「B型シアネート樹脂」ともいう。)(商品名「BA200」;ロンザジャパン株式会社製)と、ノボラック型シアネート樹脂(以下、「N型シアネート樹脂」ともいう。)(商品名「PT30」;ロンザジャパン株式会社製)を、質量比でB型シアネート樹脂:N型シアネート樹脂=9:1になるように混合した。得られたシアネート樹脂の混合物100質量部に対し、硬化促進剤として、下式で表されるPd型ベンゾオキサジン化合物(商品名「Pd型ベンゾオキサジン」;四国化成工業株式会社製)を10質量部添加し、100℃において混合物が均一になるまで撹拌し、溶剤メチルエチルケトン(MEK)により溶液化した。
Examples of the present invention will be described below. The present invention is not limited to these.
<Preparation of composition>
Synthesis Examples 1 to 6: Preparation of Resin Compositions 1 to 6 Bisphenol-type cyanate resin (hereinafter also referred to as “B-type cyanate resin”) (trade name “BA200”; manufactured by Lonza Japan Co., Ltd.) and novolak-type cyanate resin (Hereinafter also referred to as “N-type cyanate resin”) (trade name “PT30”; manufactured by Lonza Japan Co., Ltd.) was mixed such that B-type cyanate resin: N-type cyanate resin = 9: 1 by mass ratio. . 10 parts by mass of a Pd-type benzoxazine compound represented by the following formula (trade name “Pd-type benzoxazine”; manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator for 100 parts by mass of the resulting cyanate resin mixture. The mixture was added, stirred at 100 ° C. until the mixture became homogeneous, and was made into a solution with the solvent methyl ethyl ketone (MEK).
 得られた樹脂溶液に、ゴム(ポリマー主鎖が飽和結合のアクリル酸エステル共重合物)を、樹脂成分全体(当該ゴムを含む)の100質量部に対してそれぞれ1、5、10、20、30、40質量部と、フィラー(無機充填材)として窒化アルミニウム(AlN)と窒化ホウ素(BN)の1:1(質量比)の混合物を、樹脂成分全体に対して、合計で65体積%になるように分散させることにより、樹脂組成物1~6を調製した。 Into the obtained resin solution, rubber (acrylic ester copolymer whose polymer main chain is a saturated bond) is added to 1, 5, 10, 20, and 100 parts by mass of the entire resin component (including the rubber), respectively. 30 to 40 parts by mass and a 1: 1 (mass ratio) mixture of aluminum nitride (AlN) and boron nitride (BN) as a filler (inorganic filler) to a total volume of 65% by volume with respect to the entire resin component Resin compositions 1 to 6 were prepared by dispersing as described above.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 合成例7:樹脂組成物1Rの調製
 B型シアネート樹脂(商品名「BA200」;ロンザジャパン株式会社製)と、N型シアネート樹脂(商品名「PT30」;ロンザジャパン株式会社製)を、質量比でB型シアネート樹脂:N型シアネート樹脂=9:1になるように混合した。得られたシアネート樹脂の混合物100質量部に対し、硬化促進剤として、上記式で表されるPd型ベンゾオキサジン化合物(商品名「Pd型ベンゾオキサジン」;四国化成工業株式会社製)を10質量部添加し、100℃において混合物が均一になるまで撹拌し、溶剤エチレングリコールモノメチルエーテルにより溶液化した。
Synthesis Example 7: Preparation of Resin Composition 1R Mass ratio of B-type cyanate resin (trade name “BA200”; manufactured by Lonza Japan Co., Ltd.) and N-type cyanate resin (trade name “PT30”; manufactured by Lonza Japan Co., Ltd.) Were mixed so that B type cyanate resin: N type cyanate resin = 9: 1. 10 parts by mass of a Pd-type benzoxazine compound represented by the above formula (trade name “Pd-type benzoxazine”; manufactured by Shikoku Kasei Kogyo Co., Ltd.) as a curing accelerator with respect to 100 parts by mass of the resulting mixture of cyanate resin. The mixture was added, stirred at 100 ° C. until the mixture became homogeneous, and was made into a solution with the solvent ethylene glycol monomethyl ether.
 得られた樹脂溶液に、窒化アルミニウム(AlN)と窒化ホウ素(BN)の1:1(質量比)の混合物を、樹脂成分全体に対して、合計で65体積%になるように分散させることにより、樹脂組成物1Rを調製した。 By dispersing a 1: 1 (mass ratio) mixture of aluminum nitride (AlN) and boron nitride (BN) in the obtained resin solution so that the total amount is 65% by volume with respect to the entire resin component. Resin composition 1R was prepared.
 合成例8:樹脂組成物2Rの調製
 フェノキシ樹脂(商品名「YP-50」;新日鉄住金化学株式会社製)を、シアネート樹脂の混合物90質量部に対して10質量部添加し、均一になるまで混合した以外は、樹脂組成物1Rと同様の方法で樹脂組成物2Rを調製した。
Synthesis Example 8: Preparation of Resin Composition 2R Add 10 parts by mass of phenoxy resin (trade name “YP-50”; manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) to 90 parts by mass of the cyanate resin mixture until uniform. A resin composition 2R was prepared in the same manner as the resin composition 1R, except that it was mixed.
 合成例9:組成物3Rの調製
 アクリルゴム粒子(商品名「ユニパウダー」;JXエネルギー株式会社製)を、シアネート樹脂の混合物90質量部に対して10質量部添加し、均一になるまで混合した以外は、樹脂組成物1Rと同様の方法で樹脂組成物3Rを調製した。
Synthesis Example 9: Preparation of Composition 3R Acrylic rubber particles (trade name “Unipowder”; manufactured by JX Energy Co., Ltd.) were added in an amount of 10 parts by mass to 90 parts by mass of the cyanate resin mixture, and mixed until uniform. Except for the above, a resin composition 3R was prepared in the same manner as the resin composition 1R.
 得られた樹脂組成物1~6、1R~3Rを表1に示す。尚、ゴムの重量平均分子量は、GPC法により測定されたポリスチレン換算値である。 The obtained resin compositions 1 to 6, 1R to 3R are shown in Table 1. In addition, the weight average molecular weight of rubber | gum is a polystyrene conversion value measured by GPC method.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <積層板の製造>
 上記で調製した各樹脂組成物を、加熱加圧後の厚みが100μmになるように回路用銅箔に塗布した。次いで、溶剤を乾燥させた後、ベースとなる銅板と貼り合せて加熱加圧成形し、積層板を作製した。
<Manufacture of laminates>
Each resin composition prepared above was applied to a copper foil for circuits so that the thickness after heating and pressing was 100 μm. Next, after the solvent was dried, it was bonded to a copper plate as a base and subjected to heat and pressure molding to produce a laminated plate.
 <相分離構造の確認>
 絶縁層における本発明の相分離構造の有無を、絶縁層の断面を走査型電子顕微鏡で観察することにより確認した。
<Confirmation of phase separation structure>
The presence or absence of the phase separation structure of the present invention in the insulating layer was confirmed by observing the cross section of the insulating layer with a scanning electron microscope.
 その結果、樹脂組成物1~6のいずれかを使用した絶縁層(実施例1~6)では、図1Bと同様の相分離構造が確認された。これに対し、樹脂組成物1R又は2Rを使用した絶縁層(比較例1、比較例2)では、相分離構造は確認されなかった。また、樹脂組成物3Rを使用した絶縁層(比較例3)では、図1Eと同様の相分離構造(逆相分離構造)が確認された。 As a result, the same phase separation structure as in FIG. 1B was confirmed in the insulating layers (Examples 1 to 6) using any of the resin compositions 1 to 6. On the other hand, no phase separation structure was confirmed in the insulating layers (Comparative Example 1 and Comparative Example 2) using the resin composition 1R or 2R. Further, in the insulating layer (Comparative Example 3) using the resin composition 3R, the same phase separation structure (reverse phase separation structure) as in FIG. 1E was confirmed.
 更に、絶縁層における本発明の相分離構造の有無を、DMA測定を用いた分析手段によっても確認した。 
 DMA測定では、各積層板に対し、回路用銅箔とベース銅板をエッチングにて除去し、得られた絶縁層を幅3mm×長さ50mmの短冊状に切り出したものをサンプルとした。測定条件は、-50℃~350℃まで5℃/分で昇温し、周波数1Hz、引張モードで測定した。そこで得られた貯蔵弾性率と損失弾性率の比をtanδとした。
Furthermore, the presence or absence of the phase separation structure of the present invention in the insulating layer was also confirmed by analysis means using DMA measurement.
In the DMA measurement, a circuit copper foil and a base copper plate were removed from each laminated plate by etching, and the obtained insulating layer was cut into a strip shape having a width of 3 mm and a length of 50 mm as a sample. The measurement conditions were that the temperature was raised from -50 ° C. to 350 ° C. at a rate of 5 ° C./min, and the measurement was performed in a frequency of 1 Hz and a tensile mode. The ratio between the storage elastic modulus and the loss elastic modulus thus obtained was defined as tan δ.
 図7Aは、樹脂組成物3を使用した絶縁層(実施例3)についての、DMA測定により得られたtanσの挙動を示すグラフであり、図7Bは、樹脂組成物3Rを使用した絶縁層(比較例3)についての、DMA測定により得られたtanσの挙動を示すグラフである。 FIG. 7A is a graph showing the behavior of tan σ obtained by DMA measurement for an insulating layer (Example 3) using the resin composition 3, and FIG. 7B shows an insulating layer using the resin composition 3R ( It is a graph which shows the behavior of tan-sigma obtained by DMA measurement about the comparative example 3).
 図7Aに示されるグラフでは、熱硬化性樹脂(シアネート樹脂)由来のピークTと、ゴム由来のピークTが検出されており、本発明の相分離構造が形成されていることがわかる。これに対し、図7Bに示されるグラフでは、ゴム由来のピークが検出されていないことから、添加されたアクリルゴム粒子は連続相を形成せず、非連続相として分散状態にあり、本発明の相分離構造が形成されていないことがわかる。 In the graph shown in FIG. 7A, a peak T 1 derived from a thermosetting resin (cyanate resin) and a peak T 2 derived from rubber are detected, and it can be seen that the phase separation structure of the present invention is formed. On the other hand, in the graph shown in FIG. 7B, since the peak derived from rubber is not detected, the added acrylic rubber particles do not form a continuous phase and are in a dispersed state as a discontinuous phase. It can be seen that no phase separation structure is formed.
 樹脂組成物1、2、4~6のいずれかを使用した絶縁層(実施例1、2、4~6)についてのDMA測定においても、図7Aと同様、熱硬化性樹脂(シアネート樹脂)由来のピークTと、ゴム由来のピークTが検出され、本発明の相分離構造が形成されていることが確認された。 In the DMA measurement for the insulating layers (Examples 1, 2, 4 to 6) using any one of the resin compositions 1, 2, 4 to 6, the thermosetting resin (cyanate resin) is derived as in FIG. 7A. Peak T 1 and rubber-derived peak T 2 were detected, and it was confirmed that the phase separation structure of the present invention was formed.
 本発明の相分離構造が形成されていたものをA、形成されていなかったものをBとして、結果を表2に示す。 The results are shown in Table 2, where A is the phase separation structure of the present invention and B is the phase separation structure is not formed.
 <評価>
 以下に示す方法により、加工性、吸水率、吸水はんだ耐電圧、及び耐熱接着力を評価した。結果を表2に示す。尚、吸水率が小さく、吸水はんだ耐電圧が大きいほど、低吸水性に優れることを示す。また、耐熱接着力が大きいほど、耐酸化劣化性に優れることを示す。
<Evaluation>
The processability, water absorption, water absorption solder withstand voltage, and heat resistant adhesive strength were evaluated by the following methods. The results are shown in Table 2. In addition, it shows that it is excellent in low water absorption, so that a water absorption is small and a water absorption solder withstand voltage is large. Moreover, it shows that it is excellent in oxidation deterioration resistance, so that heat resistant adhesive force is large.
 [加工性]
 加工性は、回路用銅箔に各樹脂組成物を塗布し、これを乾燥して形成した乾燥膜をシャーリングにてカットした際の塗膜の欠けの有無を目視で観察した。 
 乾燥膜に欠けがなかったものをA、乾燥膜に欠けがあったものをBとして、結果を表2に示す。 
 なお、乾燥膜に欠けがなかったものは加工性に優れることがわかり、更に、それを硬化させた絶縁層においても加工性に優れることがわかる。 
 [吸水率(質量%)]
 各積層板に対し、回路用銅箔とベース銅板をエッチングにて除去した後、得られた絶縁層について、以下の方法により吸水率を測定した。
[Machinability]
As for workability, the presence or absence of a coating film was visually observed when a dry film formed by applying each resin composition to a circuit copper foil and drying it was cut by shearing.
The results are shown in Table 2, with A indicating that the dry film was not chipped and B indicating that the dry film was chipped.
In addition, it turns out that what was not chipped in the dry film is excellent in workability, and further, it can be seen that an insulating layer obtained by curing the dry film is also excellent in workability.
[Water absorption (mass%)]
After removing the circuit copper foil and the base copper plate by etching from each laminated plate, the water absorption of the obtained insulating layer was measured by the following method.
 温度100℃で24時間乾燥した後で絶縁層の質量を測定した。その後、温度85℃、湿度85%の条件下で24時間吸湿させた後で再度、絶縁層の質量を測定した。吸湿前後の質量増加率を算出し、これを吸水率とした。 After drying at a temperature of 100 ° C. for 24 hours, the mass of the insulating layer was measured. Thereafter, after absorbing moisture for 24 hours under the conditions of a temperature of 85 ° C. and a humidity of 85%, the mass of the insulating layer was measured again. The mass increase rate before and after moisture absorption was calculated, and this was taken as the water absorption rate.
 [吸水はんだ耐電圧(kV)]
 各積層板の回路用銅箔面をエッチングし、φ20mmの回路パターンを形成した。この回路パターンに、40℃98%の雰囲気で24時間吸水させた。次いで、280℃のはんだ浴に5分間浮かべた後、以下の方法により破壊電圧を測定することで、吸水はんだ耐電圧を得た。
[Water absorption solder withstand voltage (kV)]
The circuit copper foil surface of each laminate was etched to form a circuit pattern of φ20 mm. This circuit pattern was allowed to absorb water in an atmosphere of 40 ° C. and 98% for 24 hours. Next, after floating in a solder bath at 280 ° C. for 5 minutes, the breakdown voltage was measured by the following method to obtain a water-absorbing solder withstand voltage.
 φ20mmの回路パターンと、裏面の銅板との間に、絶縁油中で交流電圧を印加して耐電圧を測定する。スタート電圧から500Vずつ電圧を上げ、各電圧で20秒間ずつ印加するという作業を繰り返しながら、ステップ昇圧していき、破壊電圧を測定した。 Measure the withstand voltage by applying an AC voltage in insulating oil between the circuit pattern of φ20mm and the copper plate on the back side. While repeating the operation of increasing the voltage by 500 V from the start voltage and applying each voltage for 20 seconds, the step-up voltage was measured and the breakdown voltage was measured.
 [耐熱接着力(MPa)]
 各積層板の回路用銅箔面をエッチングし、φ4mmの回路パターンを形成した。この回路パターンを、大気雰囲気中、200℃で1000時間放置した後、以下の方法により回路パターンの垂直引き剥がし強度を測定することで耐熱接着力を得た。
[Heat resistant adhesive strength (MPa)]
The circuit copper foil surface of each laminate was etched to form a φ4 mm circuit pattern. The circuit pattern was allowed to stand at 200 ° C. for 1000 hours in an air atmosphere, and then the heat resistance adhesion was obtained by measuring the vertical peeling strength of the circuit pattern by the following method.
 φ4mmの回路パターン上に、エポキシ接着剤付きのスタッドピンを垂直に固定し、150℃で1時間加熱することで硬化接着させ、引張試験のサンプルを作製した。次いで、サンプルを引張試験機に固定し、スタッドピンを垂直方向に引張り、回路パターンが剥離した時の荷重と接着面積から接着力を算出することにより、回路パターンの垂直引き剥がし強度を測定した。 A stud pin with an epoxy adhesive was fixed vertically on a φ4 mm circuit pattern, and was cured and adhered by heating at 150 ° C. for 1 hour to prepare a sample for a tensile test. Next, the sample was fixed to a tensile tester, the stud pin was pulled in the vertical direction, and the adhesive strength was calculated from the load and adhesive area when the circuit pattern was peeled, thereby measuring the vertical peeling strength of the circuit pattern.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2より、本発明の実施形態に係る実施例1~6は、加工性に優れることがわかる。 
 また、本発明の実施形態に係る実施例1~6は、吸水率が小さく、且つ、吸水はんだ耐電圧が大きくことから、低吸水性にも優れることがわかる。 
 また、本発明の実施形態に係る実施例1~6は、耐熱接着力が大きいことから、耐酸化劣化性にも優れることがわかる。
From Table 2, it can be seen that Examples 1 to 6 according to the embodiment of the present invention are excellent in workability.
In addition, it can be seen that Examples 1 to 6 according to the embodiment of the present invention are excellent in low water absorption because the water absorption rate is small and the water-absorbing solder withstand voltage is large.
In addition, it can be seen that Examples 1 to 6 according to the embodiment of the present invention have excellent resistance to oxidation and deterioration because of their high heat-resistant adhesive strength.
 なお、本願発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は可能な限り適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適当な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 Note that the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention in the implementation stage. In addition, the embodiments may be appropriately combined as much as possible, and in that case, the combined effect can be obtained. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effect described in the column of the effect of the invention Can be obtained as an invention.
1    回路基板用積層板
1’   金属ベース回路基板
2    金属基板
3    絶縁層
4    金属箔
4’   回路パターン
100  パワーモジュール
11   パワーデバイス
12   はんだ層
13   金属ベース回路基板
13a  回路パターン
13b  絶縁層
13c  金属基板
14   放熱シート
15   ヒートシンク
200  従来のパワーモジュール
21   パワーデバイス
22   第一はんだ層
23   回路パターン
24   セラミック基板
25   メタライズ層
26   第二はんだ層
27   金属基板
28   放熱シート
29   ヒートシンク
101  連続相(ゴム)
102  非連続相(熱硬化性樹脂)
103a 無機充填材(窒化アルミニウム)
103b 無機充填材(窒化ホウ素)
111  連続相(熱硬化性樹脂)
112  非連続相(ゴム粒子)
113a 無機充填材(アルミナ)
113b 無機充填材(窒化ホウ素)
121  連続相(熱硬化性樹脂)
123a 無機充填材(窒化アルミニウム)
123b 無機充填材(窒化ホウ素)
DESCRIPTION OF SYMBOLS 1 Circuit board laminated board 1 'Metal base circuit board 2 Metal board 3 Insulating layer 4 Metal foil 4' Circuit pattern 100 Power module 11 Power device 12 Solder layer 13 Metal base circuit board 13a Circuit pattern 13b Insulating layer 13c Metal board 14 Heat dissipation Sheet 15 Heat Sink 200 Conventional Power Module 21 Power Device 22 First Solder Layer 23 Circuit Pattern 24 Ceramic Substrate 25 Metallized Layer 26 Second Solder Layer 27 Metal Substrate 28 Heat Dissipating Sheet 29 Heat Sink 101 Continuous Phase (Rubber)
102 Discontinuous phase (thermosetting resin)
103a Inorganic filler (aluminum nitride)
103b Inorganic filler (boron nitride)
111 Continuous phase (thermosetting resin)
112 Discontinuous phase (rubber particles)
113a Inorganic filler (alumina)
113b Inorganic filler (boron nitride)
121 Continuous phase (thermosetting resin)
123a Inorganic filler (aluminum nitride)
123b Inorganic filler (boron nitride)

Claims (10)

  1.  金属基板と、該金属基板の少なくとも片面に設けられた絶縁層と、該絶縁層上に設けられた金属箔とを具備する回路基板用積層板であって、前記絶縁層は樹脂成分と無機充填材とを含有し、前記樹脂成分は、熱硬化性樹脂を含有する非連続相と、ゴムを含有する連続相とを含む相分離構造を有している回路基板用積層板。 A circuit board laminate comprising a metal substrate, an insulating layer provided on at least one side of the metal substrate, and a metal foil provided on the insulating layer, the insulating layer comprising a resin component and an inorganic filling A laminate for a circuit board, wherein the resin component has a phase separation structure including a discontinuous phase containing a thermosetting resin and a continuous phase containing rubber.
  2.  前記ゴムとして、重量平均分子量が150万以下のゴムを少なくとも含有する、請求項1に記載の回路基板用積層板。 The circuit board laminate according to claim 1, wherein the rubber contains at least a rubber having a weight average molecular weight of 1.5 million or less.
  3.  前記ゴムとして、主鎖が飽和構造であるゴムを少なくとも含有する、請求項1又は2に記載の回路基板用積層板。 The circuit board laminate according to claim 1 or 2, wherein the rubber contains at least a rubber having a saturated structure as a main chain.
  4.  前記ゴムとして、アクリルゴムを少なくとも含有する、請求項1~3のいずれか1項に記載の回路基板用積層板。 The circuit board laminate according to any one of claims 1 to 3, wherein the rubber contains at least acrylic rubber.
  5.  前記絶縁層における前記ゴムの配合比が、前記樹脂成分の全質量に対して1~40質量%である、請求項1~4のいずれか1項に記載の回路基板用積層板。 The circuit board laminate according to any one of claims 1 to 4, wherein a compounding ratio of the rubber in the insulating layer is 1 to 40 mass% with respect to a total mass of the resin component.
  6.  前記熱硬化性樹脂として、シアネート樹脂を少なくとも含有する、請求項1~5のいずれか1項に記載の回路基板用積層板。 The circuit board laminate according to any one of claims 1 to 5, wherein the thermosetting resin contains at least a cyanate resin.
  7.  前記熱硬化性樹脂として、ビスフェノール型シアネート樹脂及びノボラック型シアネート樹脂を含有する、請求項1~6のいずれか1項に記載の回路基板用積層板。 The circuit board laminate according to any one of claims 1 to 6, wherein the thermosetting resin contains a bisphenol type cyanate resin and a novolac type cyanate resin.
  8.  前記熱硬化性樹脂としてのエポキシ樹脂の配合比が、前記熱硬化性樹脂の全質量に対して0~10質量%である、請求項1~7のいずれか1項に記載の回路基板用積層板。 The circuit board laminate according to any one of claims 1 to 7, wherein a compounding ratio of the epoxy resin as the thermosetting resin is 0 to 10% by mass with respect to a total mass of the thermosetting resin. Board.
  9.  請求項1~8のいずれか1項に記載の回路基板用積層板が具備する前記金属箔をパターニングすることによって得られる金属ベース回路基板。 A metal base circuit board obtained by patterning the metal foil included in the laminated board for a circuit board according to any one of claims 1 to 8.
  10.  請求項9に記載の金属ベース回路基板を備えるパワーモジュール。 A power module comprising the metal base circuit board according to claim 9.
PCT/JP2018/021378 2017-06-08 2018-06-04 Laminate for circuit boards, metal base circuit board and power module WO2018225687A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-113624 2017-06-08
JP2017113624A JP7262918B2 (en) 2017-06-08 2017-06-08 Laminates for circuit boards, metal base circuit boards and power modules

Publications (1)

Publication Number Publication Date
WO2018225687A1 true WO2018225687A1 (en) 2018-12-13

Family

ID=64566503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/021378 WO2018225687A1 (en) 2017-06-08 2018-06-04 Laminate for circuit boards, metal base circuit board and power module

Country Status (3)

Country Link
JP (1) JP7262918B2 (en)
TW (1) TWI670172B (en)
WO (1) WO2018225687A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220571A (en) * 1999-11-30 2001-08-14 Hitachi Chem Co Ltd Adhesive composition, adhesive film and printing wiring board for mounting semiconductor
JP2003147323A (en) * 2001-11-08 2003-05-21 Hitachi Chem Co Ltd Adhesive composition, adhesive film, semiconductor carrier member, and semiconductor device and its production method
JP2012158634A (en) * 2011-01-31 2012-08-23 Sekisui Chem Co Ltd Insulating material and laminated structure
JP2014218023A (en) * 2013-05-09 2014-11-20 日立化成株式会社 Highly heat-conductive film
JP2015160905A (en) * 2014-02-27 2015-09-07 日東電工株式会社 Adhesive layer, adhesive sheet and method of producing adhesive layer
JP2017019900A (en) * 2015-07-08 2017-01-26 日立化成株式会社 Adhesive composition, adhesive film, metal foil with resin and metal base substrate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5487010B2 (en) * 2010-05-27 2014-05-07 日本発條株式会社 Circuit board laminate and metal base circuit board
CN104412721B (en) * 2012-07-06 2018-07-27 日本发条株式会社 Circuit board use plywood, metallic substrates circuit board and power module
WO2016088744A1 (en) * 2014-12-01 2016-06-09 三菱瓦斯化学株式会社 Resin sheet and printed wiring board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220571A (en) * 1999-11-30 2001-08-14 Hitachi Chem Co Ltd Adhesive composition, adhesive film and printing wiring board for mounting semiconductor
JP2003147323A (en) * 2001-11-08 2003-05-21 Hitachi Chem Co Ltd Adhesive composition, adhesive film, semiconductor carrier member, and semiconductor device and its production method
JP2012158634A (en) * 2011-01-31 2012-08-23 Sekisui Chem Co Ltd Insulating material and laminated structure
JP2014218023A (en) * 2013-05-09 2014-11-20 日立化成株式会社 Highly heat-conductive film
JP2015160905A (en) * 2014-02-27 2015-09-07 日東電工株式会社 Adhesive layer, adhesive sheet and method of producing adhesive layer
JP2017019900A (en) * 2015-07-08 2017-01-26 日立化成株式会社 Adhesive composition, adhesive film, metal foil with resin and metal base substrate

Also Published As

Publication number Publication date
JP2018207041A (en) 2018-12-27
TWI670172B (en) 2019-09-01
JP7262918B2 (en) 2023-04-24
TW201902696A (en) 2019-01-16

Similar Documents

Publication Publication Date Title
JP7279732B2 (en) Resin composition, adhesive film, printed wiring board and semiconductor device
KR102324901B1 (en) Resin sheet
JP6776749B2 (en) Resin composition
JP6772841B2 (en) Resin composition
CN106256862B (en) Resin composition
TWI737649B (en) Resin composition
KR102671534B1 (en) Resin compositions
JP6939687B2 (en) Resin composition
JP6828510B2 (en) Resin composition
TW201900761A (en) Resin composition
JP7099128B2 (en) Resin composition
JP6223407B2 (en) Circuit board laminate, metal base circuit board and power module
JP2009049062A (en) Method of manufacturing substrate for metal base circuit, and substrate for metal base circuit
KR20190020622A (en) Resin composition
JP7214981B2 (en) Resin composition, sheet laminate material, printed wiring board and semiconductor device
JP6776577B2 (en) Resin composition
JP2017059779A (en) Method for manufacturing printed wiring board
JP7156433B2 (en) resin composition
JP2021119634A (en) Circuit board
JP6953709B2 (en) Resin composition
JP2021185228A (en) Resin composition
TWI613251B (en) Curable resin composition
WO2018225687A1 (en) Laminate for circuit boards, metal base circuit board and power module
JP2021120466A (en) Resin sheet, printed wiring board and semiconductor device
JP6911311B2 (en) Resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813652

Country of ref document: EP

Kind code of ref document: A1