WO2018225538A1 - 医療機器駆動装置及び力情報の算出方法 - Google Patents

医療機器駆動装置及び力情報の算出方法 Download PDF

Info

Publication number
WO2018225538A1
WO2018225538A1 PCT/JP2018/020144 JP2018020144W WO2018225538A1 WO 2018225538 A1 WO2018225538 A1 WO 2018225538A1 JP 2018020144 W JP2018020144 W JP 2018020144W WO 2018225538 A1 WO2018225538 A1 WO 2018225538A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical device
acceleration information
information
unit
sub
Prior art date
Application number
PCT/JP2018/020144
Other languages
English (en)
French (fr)
Inventor
伸 牧
知樹 櫨田
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Priority to JP2019523453A priority Critical patent/JP7019693B2/ja
Publication of WO2018225538A1 publication Critical patent/WO2018225538A1/ja
Priority to US16/704,338 priority patent/US11786701B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/0105Steering means as part of the catheter or advancing means; Markers for positioning
    • A61M25/0113Mechanical advancing means, e.g. catheter dispensers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00022Sensing or detecting at the treatment site
    • A61B2017/00075Motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22001Angioplasty, e.g. PCTA
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2048Tracking techniques using an accelerometer or inertia sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/10Balloon catheters
    • A61M2025/1043Balloon catheters with special features or adapted for special applications
    • A61M2025/1079Balloon catheters with special features or adapted for special applications having radio-opaque markers in the region of the balloon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3327Measuring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/09Guide wires
    • A61M25/09041Mechanisms for insertion of guide wires

Definitions

  • the present invention relates to a medical device driving apparatus and a force information calculation method for remotely operating a medical device such as a guide wire used for a catheter inserted into a blood vessel or the like of a living body, for example.
  • intravascular treatment is performed in which a catheter or the like is inserted into a blood vessel of a patient to treat a stenosis or the like in the blood vessel.
  • a doctor or the like needs to operate a guide wire or the like that precedes the catheter and is inserted into the blood vessel to guide the catheter in order to insert the catheter.
  • it is necessary to perform a treatment while seeing the inserted state with an X-ray and seeing the inserted state with an image.
  • This disclosure is intended to provide a medical device driving apparatus and a force information calculation method capable of accurately detecting a minute force change or the like generated in a blood vessel.
  • a medical device driving apparatus is a medical device driving apparatus for inserting a long medical device into a blood vessel, and enables the long medical device to move.
  • a sensor for acquiring acceleration information of the sub movable part, and force information applied to the elongated medical device is calculated based on the acceleration information of the sub movable part. It is characterized by that.
  • the minute force from the blood vessel can be detected from the acceleration information of the movement of the sub movable portion, it is possible to accurately detect a change in the force generated in the blood vessel.
  • the long-distance medical device When moving a long-distance medical device such as a guide wire to the vicinity of the target portion in the blood vessel, the long-distance medical device can be moved efficiently by the main drive unit. Can be moved to.
  • the main drive unit For example, after being moved by the main drive unit, it is possible to detect a slight force change applied to the medical device in the blood vessel based on the acceleration information of the movement of the sub movable unit with respect to the sub drive unit body.
  • the contradictory demands of movement and detection of minute force changes can be achieved simultaneously.
  • the main drive unit is responsible for the great force of moving the long medical device over a long distance, while the main drive unit detects fine force information applied to the long medical device. Since it is difficult, the above-described contradictory demands can be achieved simultaneously by the sub-driving unit. According to the above configuration, since the minute force from the blood vessel can be detected based on the change information of the moving speed of the sub movable part, for example, it is generated in the blood vessel without providing a special sensor such as a “force sensor”. Changes in force and the like can be detected with high accuracy. Furthermore, since a special arrangement such as a “force sensor” is unnecessary, the cost can be reduced at the same time.
  • a medical device driving apparatus includes an input unit capable of inputting target acceleration information of the long medical device, and the long medical device input to the input unit Based on the target acceleration information, target acceleration information of the sub-movable part is obtained, and force information applied to the long medical device includes the target acceleration information of the sub-movable part and the actual information of the sub-movable part. It is calculated by a difference from acceleration information.
  • the force information applied to the long medical device is calculated by the difference between the target acceleration information such as the acceleration information of the sub movable part and the acceleration information such as the actual acceleration information of the sub movable part.
  • force information applied to a long medical device can be detected accurately without using a special sensor such as a force sensor.
  • the main driving unit includes a main driving unit main body and a main movable unit movable with respect to the main driving unit main body.
  • the sub-driving unit main body moves with the movement.
  • the sub-driving unit main body can be moved and the medical device can be moved by the movement of the main movable unit, so that the sub-driving unit main body can be efficiently moved.
  • the sensor includes a first sensor for acquiring acceleration information of the main movable unit, and relative acceleration information of the sub movable unit with respect to the sub driving unit main body.
  • the acceleration information of the sub movable part is calculated based on the acceleration information of the main movable part and the relative acceleration information of the sub movable part. It is characterized by being.
  • the acceleration information of the sub movable part is calculated based on the acceleration information of the main movable part and the relative acceleration information of the sub movable part, a special position sensor or the like is arranged on the sub movable part. And even if it does not acquire the absolute position information of a sub movable part, the acceleration information of a sub movable part can be acquired, and cost can be held down.
  • the first sensor is a first position sensor that acquires absolute position information of the main movable unit
  • the second sensor is the sub-movable.
  • a second position sensor for acquiring relative position information of the main drive unit with respect to the sub drive unit main body, wherein the acceleration information of the main movable unit is calculated from the absolute position information of the main movable unit,
  • the relative acceleration information is calculated from the relative position information of the sub movable part.
  • a medical device driving apparatus includes an input unit capable of inputting target acceleration information of the long medical device, and the long medical device input to the input unit Based on the target acceleration information, target acceleration information of the sub movable portion is calculated, and based on the target acceleration information of the sub movable portion, target acceleration information of the main movable portion and the sub drive of the sub movable portion. The target relative acceleration information with respect to the main body is determined.
  • the target acceleration information of the main movable unit and the target relative acceleration information of the sub movable unit with respect to the sub drive unit main body are determined based on the target acceleration information of the sub movable unit, the sub movable unit and the main movable unit Each of the units can be controlled individually.
  • the medical device driving apparatus is configured so that, in determining the target acceleration information, the relative position of the sub movable unit with respect to the sub drive unit main body is within a certain range.
  • the target acceleration information and the target relative acceleration information of the sub movable part are determined.
  • the target acceleration information of the main movable unit and the target relative acceleration information of the sub movable unit are determined so that the relative position of the sub movable unit with respect to the sub drive unit main body is within a certain range. It is possible to accurately detect a slight force change applied to the medical device.
  • the force information applied to the elongated medical device is a difference between the target relative acceleration information of the sub movable portion and the relative acceleration information of the sub movable portion. And the difference between the target acceleration information of the main movable part and the acceleration information of the main movable part.
  • a medical device driving apparatus as an embodiment of the present disclosure has an operation unit for inputting the target acceleration information of a long medical device to the input unit, and the calculated long medical device Force information applied to the device is reflected on the operation unit.
  • the operator who operates the operation unit can feel the force applied to the long medical device from the blood vessel or the like, so that the device is easy to operate.
  • the medical device driving apparatus is characterized in that when the calculated force information applied to the long medical device exceeds a predetermined value, a notification to that effect is given.
  • the apparatus since the operator of the medical device driving apparatus can know the presence or absence of abnormality, the apparatus is more reliable.
  • the medical device driving apparatus is configured to stop the movement of the sub movable unit when the calculated force information applied to the long medical device exceeds a predetermined value.
  • a force information calculation method is a force information calculation method for calculating force information applied to a long medical device, and includes a target acceleration of the long medical device.
  • a step of acquiring information, a step of driving the elongate medical device based on the target acceleration information of the elongate medical device, and acquiring actual acceleration information of the elongate medical device And calculating the force information applied to the elongated medical device based on the difference between the actual acceleration information and the target acceleration information.
  • FIG. 1 is a schematic diagram showing a guide wire drive system 1, for example, a medical device apparatus including a guide wire drive apparatus 10 that is a medical device drive apparatus of the present invention.
  • the guide wire drive system 1 has a balloon catheter 2 for insertion and placement in a blood vessel of a patient, for example.
  • the balloon catheter 2 has a configuration in which a balloon 21 that is expanded by injection of a contrast agent is disposed at the tip thereof. Specifically, the balloon 21 is expanded at the stenosis (lesion) in the blood vessel of the patient to expand the stenosis and treat it.
  • the balloon catheter 2 of the present embodiment is, for example, a PTCA (Percutaneous Transluminal Coronary Angioplasty) dilatation balloon catheter used for expanding a stenosis of a coronary artery.
  • the balloon catheter 2 according to the present embodiment treats and improves a stenosis part formed in a living organ such as another blood vessel, bile duct, trachea, esophagus, other digestive tract, urethra, ear nasal lumen, and other organs. It can be configured to be used for the purpose.
  • the balloon catheter 2 has a long shaft 22 having flexibility that can be inserted into a living body lumen, and a balloon that can be expanded and contracted at the tip of the shaft 22. 21 is arranged.
  • a hub 24 for connecting the balloon catheter 2 to another device is disposed on the proximal end side of the shaft 22.
  • the shaft 22 is also formed with an opening 25 through which, for example, a guide wire 23 that is a long medical device is led out.
  • the guide wire 23 is inserted into the blood vessel in advance of the balloon 21 and has a structure for guiding the subsequent balloon 21 to the lesioned part. For this reason, the guide wire 23 is inserted from the opening 25 in FIG. 1 and arranged so as to penetrate through the tip of the balloon 21.
  • a guide wire driving device 10 that serves to insert the guide wire 23 into a patient's blood vessel is provided.
  • the guide wire 23 inserted into the patient's blood vessel is imaged by an X-ray imaging device (not shown), and the video is displayed on the display 12 of FIG.
  • the guide wire driving device 10 is moved (swinged) so that a doctor or the like as an operator moves, for example, a handle 11a as an input unit, for example, an operation unit of the “joystick 11” shown in FIG.
  • the drive is controlled.
  • the doctor or the like can insert the guide wire 23 into the blood vessel of the patient by operating the handle 11a of the joystick 11 while visually confirming the display 12 away from the patient.
  • doctors and the like are configured to avoid exposure by X-rays.
  • FIG. 2 is a schematic diagram illustrating a main mechanical configuration of the guide wire driving device 10 of FIG.
  • the guide wire driving device 10 includes, for example, a wire attachment portion 13 that is a support portion to which the guide wire 23 of FIG. 1 is attached. And this wire attachment part 13 is connected to the fine drive part which is an example of a sub drive part. Specifically, it is connected to a fine movable part 36 of a voice coil motor (VCM) 30 which is a fine drive part.
  • the fine movable portion 36 is an example of a sub movable portion.
  • the voice coil motor (VCM) 30 is a motor that converts electric energy into kinetic energy using a magnetic field as a medium. In this embodiment, for example, the coil moves in a magnetic field.
  • the VCM 30 can make the fine movable portion 36 lightweight, has an excellent electrical response, can move at high speed, and can generate thrust almost proportional to the energized current, so that it can be controlled precisely. It has become.
  • the VCM 30 in FIG. 2 can accurately detect a fine force on the guide wire 23 in the blood vessel, for example, an external force (reaction force or the like).
  • FIG. 3 is a schematic diagram showing the VCM 30 of FIG. 2 in three dimensions.
  • the VCM 30 includes, for example, a fine drive unit main body (housing) 33 that is a sub drive unit main body, and the fine drive unit main body 33 includes an outer yoke 33a and an inner yoke 33b. Yes.
  • a magnet 32 is disposed inside the outer yoke 33a.
  • a coil 34 is disposed opposite to the magnet 32, and the coil 34 is formed in the fine movable portion 36.
  • the wire attaching portion 13 is connected to the fine movable portion 36.
  • the fine movable portion 36 moves relative to the fine drive portion main body 33 due to a change in the magnetic field of the fine drive portion main body 33, and, for example, moves in the tip direction of the arrow X in FIG. It has a configuration.
  • the guide wire 23 abuts against a blood vessel wall or the like and a force is applied to the VCM 30 and the force exceeds the force that the fine movable portion 36 moves from the fine drive portion main body 33 to the tip of the arrow X in FIG.
  • the fine movable portion 36 is configured to move in the proximal direction of the arrow X in FIG.
  • the VCM 30 allows the guide wire 23 to move finely, and when a force is applied to the guide wire 23, it reacts precisely even if the force is fine,
  • the movable part 36 is configured to move.
  • the fine movable portion 36 of the VCM 30 needs to accurately react to the force on the guide wire 23, the current and the like are adjusted so as to be arranged at a predetermined position.
  • the reference point (b) of the fine drive unit main body 33 shown in FIG. 2 is located at the reference portion (reference part) of the fine movable portion 36, for example, the base end side of the fine movable portion 36, or its reference Control is performed so as to be within a predetermined range of the point b (for example, a predetermined range in the moving direction of the fine movable portion 36 in FIG. 2).
  • the guide wire driving device 10 includes, for example, a linear motor 40 that is a main driving unit.
  • the linear motor 40 has a main drive unit main body (housing) 41, and magnets 42 arranged in a straight line are arranged in the main drive unit main body 41.
  • positioned so that this magnet 42 may be opposed is arrange
  • an attachment shaft 45 is connected to the main movable portion 44, and a fine drive portion main body 33 of the VCM 30 is connected to the distal end side of the attachment shaft 45.
  • the main movable portion 44 is connected to the fine drive portion main body 33 via the mounting shaft 45, and the linear motor 40 is driven to move the main movable portion 44 toward the front end side in FIG.
  • the VCM 30 is also configured to move to the distal end side (guide wire 23 side).
  • the linear motor 40 is used for a long movement of the guide wire 23 that is difficult for the VCM 30, for example, when the guide wire 23 is inserted into a blood vessel and the guide wire 23 is advanced to a target site. And when measuring the micro force from the blood vessel in a target part, it has composition which uses VCM30.
  • the VCM 30 since the guide wire 23 is connected to the fine movable portion 36 of the VCM 30 via the wire attachment portion 13, the VCM 30 is configured to easily detect a fine force or the like from the guide wire 23. That is, the linear motor 40 bears a large force for moving the long guide wire 23 over a long distance, while the linear motor 40 can detect fine force information applied to the long guide wire 23. Since it is difficult, the VCM 30 is responsible for achieving the above contradictory requirements at the same time.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • ROM Read Only Memory
  • FIG. 4 is a schematic block diagram showing a main configuration of the guide wire driving device 10 of FIG.
  • the guide wire driving device 10 includes a “drive control unit 51”, and the drive control unit 51 communicates with the joystick 11, the display 12, and the like “communication device 52”, “timer device”. 53 ”,“ information input device 54 ”, the linear motor 40, the VCM 30 and the like shown in FIG.
  • the drive control unit 51 includes a “first storage unit 60”, a “second storage unit 70”, a “third storage unit 80”, a “fourth storage unit 90”, a “fifth storage unit 100” illustrated in FIG.
  • the “sixth storage unit 110” is controlled. 5 to 10 are respectively “first storage unit 60”, “second storage unit 70”, “third storage unit 80”, “fourth storage unit 90”, “fifth storage unit 100” and “first storage unit”. It is a schematic block diagram which shows the main structures of "6 memory
  • a “magnetic sensor 47” as a first position sensor is disposed in the coil 43 portion of the main movable portion 44 of the linear motor 40, and the absolute position of the main movable portion 44 is described later. Used when acquiring information.
  • the VCM 30 is provided with, for example, a position detection sensor 35 that is a second position sensor that detects the position of the fine movable portion 36 via a Hall element. As will be described later, the fine drive portion of the fine movable portion 36 is formed. It is used when acquiring relative position information with respect to the main body 33.
  • the base end side which is the reference of the fine movable portion 36 in FIG. 2, coincides with the reference point (b) of the fine driving unit main body 33 or is disposed within a predetermined range of the reference point (b). It can be determined whether or not it is done.
  • the “magnetic sensor 47” acquires the absolute position information of the main movable portion 44, acquires the speed information of the main movable portion 44 based on this position information, and further acquires the main movable portion from the speed information.
  • the acceleration information of the unit 44 is obtained.
  • FIG. 10 is a schematic flowchart showing a process of acquiring “main movable part acceleration information” which is acceleration information of the main movable part 44.
  • main movable part acceleration information which is acceleration information of the main movable part 44.
  • step (hereinafter referred to as “ST”) 1 in FIG. 10 the “main movable part position acquisition unit (program) 61” in FIG. 5 operates, and the movement of the main movable part 44 of the linear motor 40 is performed from the magnetic sensor 47. And the position information of the main movable portion 44 is grasped. And it memorize
  • step 2 speed information of the main movable part 44 is generated. That is, the “main movable part speed generation part (program) 63” of FIG. 5 operates, and based on the “position information” of the main movable part 44 of the “main movable part position storage part 62” of FIG. “Main movable part speed information”, which is speed information of the main movable part 44, is generated and stored in the “main movable part speed storage part 64” of FIG.
  • “speed information” of the main movable unit 44 is generated and stored.
  • acceleration information of the main movable part 44 is generated.
  • the “main movable part acceleration generating part (program) 65” in FIG. 5 operates, and the “main movable part speed storage part 64” in FIG. 5 is referred to.
  • “main movable part acceleration information which is acceleration information of the main movable part 44 at the current time” Is generated and stored in the “main movable part acceleration storage unit 66” of FIG.
  • the “acceleration information” of the main movable portion 44 of the linear motor 40 in FIG. 2 can be acquired in this way.
  • the “position detection sensor 35” acquires the relative position information of the fine movable part 36 with respect to the fine drive unit main body 33, and obtains the relative speed information of the fine movable part 36 based on the relative position information. Furthermore, the relative acceleration information of the fine movable part 36 is obtained from the relative speed information.
  • FIG. 11 is a schematic flowchart illustrating a process of acquiring “fine movable portion relative acceleration information” that is relative acceleration information of the fine movable portion 36 with respect to the fine drive portion main body 33.
  • the process of acquiring “fine movable part relative acceleration information” for the fine drive part main body 33 of the fine movable part 36 will be described using the flowchart.
  • the “fine movable part relative position acquisition unit (program) 71” in FIG. 6 operates, and the position detection sensor 35 acquires the movement of the fine movable part 36 of the VCM 30. And the relative position information of the reference
  • the “fine movable part relative speed generation part (program) 73” of FIG. 6 operates, and based on the “position information” of the fine movable part 36 of the “fine movable part relative position storage part 72” of FIG. “Fine movable part relative speed information” which is relative speed information of the fine movable part for each time is generated and stored in the “fine movable part relative speed storage unit 74” of FIG.
  • the “relative speed” of the fine movable portion 36 with respect to the fine drive portion main body 33 is generated and stored.
  • ST13 relative acceleration information of the fine movable part 36 with respect to the fine drive part main body 33 is generated.
  • the “fine movable part relative acceleration generating part (program) 75” in FIG. 6 operates and refers to the “fine movable part relative speed storage part 74” in FIG.
  • the relative acceleration information of the fine movable part 36 at the current time is based on the fine movable part relative speed information immediately before the current time and the fine movable part relative speed information at the current time.
  • "Fine movable part relative acceleration information” is generated and stored in "Fine movable part relative acceleration storage unit 76" in FIG.
  • FIGS. 1 to 9 are schematic flowcharts showing a main operation example of the guide wire driving system 1 having the guide wire driving device 10 of FIG.
  • an operator such as a doctor starts operating the guide wire driving device 10 of the guide wire driving system 1 of FIG.
  • the operator inserts the guide wire 23 into the blood vessel prior to the catheter.
  • X-ray imaging apparatus (not shown) irradiates the patient with X-rays, and the X-ray fluoroscope is used to display the corresponding part on the display 12. Therefore, the operator can start the operation of the guide wire driving device 10 while avoiding exposure by X-rays.
  • the process proceeds to ST22.
  • the operator operates by tilting the handle 11a of the joystick 11 shown in FIG.
  • the target acceleration in the movement of the guide wire 23 in FIG. 1 is determined by the degree of inclination of the handle 11a.
  • the “target acceleration generation unit (program) 81” of FIG. 7 operates, and the target acceleration at the absolute coordinates (position) of the fine movable unit 36 is calculated from the target acceleration of the guide wire 23, and FIG. It is stored in the “fine movable part target acceleration storage part 82”.
  • the target acceleration at the absolute coordinates (position) of the fine movable portion 36 indicates the acceleration at the absolute coordinates (position) on the distal end side (wire attachment portion 13 side) of the fine movable portion 36 in FIG. Therefore, the acceleration relating to the movement of the guide wire 23 connected to the fine movable portion 36 via the wire attachment portion 13 is controlled by the acceleration at the absolute coordinates (position) of the fine movable portion 36.
  • the target acceleration at the absolute coordinates (position) of the fine movable portion 36 is calculated from the target acceleration of the guide wire 23.
  • the present invention is not limited to this, and the target acceleration of the guide wire 23 is calculated as the fine movable portion 36.
  • the target acceleration in absolute coordinates (position) may be used.
  • ST23 information on the relative position between the reference portion of the fine movable portion 36 (the base end side of the fine movable portion 36) and the reference point (b) of the fine drive portion main body 33 is acquired. That is, deviation information between the reference portion of the fine movable portion 36 and the reference point (b) of the fine drive portion main body 33 is acquired.
  • the “main movable part target acceleration” and the “fine movable part target relative acceleration” which is the target relative acceleration of the fine movable part 36 with respect to the fine drive part main body 33 are determined.
  • These “main movable part target acceleration” and “fine movable part target relative acceleration” are stored in the “main movable part target acceleration storage unit 83” and the “fine movable part target relative acceleration storage unit 84” in FIG. 7, respectively. To do.
  • the “main movable portion target acceleration” and the “fine movable portion target” are set so as to eliminate the deviation. Adjust the distribution ratio to "relative acceleration”.
  • the main movable unit 44 in FIG. 2 calculates a force (electric power) for becoming “main movable unit target acceleration information” in the “main movable unit target acceleration storage unit 83” in FIG. Supply power.
  • the linear motor 40 is driven, and the main movable portion 44 moves with respect to the main drive portion main body 41.
  • a force (electric power) for the “fine movable part 36” to become “fine movable part target relative acceleration information” in the “fine movable part target relative acceleration storage unit 84” of FIG. 6 is calculated, and the power is supplied to the VCM 30. Supply.
  • the VCM 30 is driven, and the fine movable portion 36 moves with respect to the fine drive portion main body 33.
  • ST27 “main movable part acceleration information 66” in FIG. 5 from “main movable part acceleration information” immediately before applying a force (electric power) for becoming “main movable part target acceleration” to the linear motor 40 is obtained. Get from and remember.
  • ST28 “fine movable part relative acceleration information” immediately before applying a force (electric power) for achieving “fine movable part target relative acceleration” to the VCM 30 is shown as “fine movable part relative acceleration storage part 76” in FIG. ”And memorize.
  • the acceleration information of the main movable portion 44 of the linear motor 40 in FIG. 2 and the relative acceleration information of the fine movable portion 36 of the VCM 30 with respect to the fine drive unit main body 33 have been obtained through the steps so far, the following steps are performed.
  • the acceleration information at the absolute position of the unit 36 is generated, and the acceleration information of the guide wire 23 is estimated.
  • the “fine movable part acceleration generation part (program) 85” in FIG. 7 operates, and the “main movable part acceleration storage part 66” in FIG. 5 and the “fine movable part relative acceleration storage part 76” in FIG. Refer to Then, based on the acceleration information of the main movable part 44 and the relative acceleration information of the fine movable part 36 with respect to the fine drive part main body 33, fine movable part acceleration information that is acceleration information at the absolute position of the fine movable part is generated, This is stored in the “fine movable part acceleration storage unit 86” in FIG.
  • the acceleration of the guide wire 23 is estimated from the acceleration at the absolute position of the fine movable portion 36, and the acceleration at the absolute position of the fine movable portion 36 is the main movable portion 44 of the linear motor 40. And the relative acceleration of the fine movable portion 36 of the VCM 30 with respect to the fine drive portion main body 33. For this reason, in this step, this calculation is executed, and acceleration information (fine movable part acceleration information) at the absolute position of the fine movable part 36 is acquired.
  • acceleration information can be obtained without arranging a separate position sensor or the like for using absolute position information such as the wire attachment portion 13 to which the guide wire 23 is connected. So the cost can be reduced.
  • the acceleration at the absolute position of the fine movable portion 36 is obtained from the acceleration of the main movable portion 44 of the linear motor 40 and the relative acceleration of the fine movable portion 36 of the VCM 30.
  • a position sensor for acquiring the absolute position information may be separately arranged. This position sensor may detect the end of the fine movable portion 36 or the like, or may detect the position of the end of the wire attachment portion 13 connected to the fine movable portion 36. Based on the absolute position information detected by such a separate position sensor, acceleration information of the fine movable portion 36 or the wire attachment portion 13 may be obtained, and this may be used as the acceleration of the guide wire 23. In this case, highly accurate acceleration information can be acquired.
  • the positions of the main movable portion 44 and the fine movable portion 36 are detected by the magnetic sensor 47 and the position detection sensor 35, respectively, and the speed and acceleration are obtained, but the present invention is not limited to this.
  • a speed sensor or an acceleration sensor may be used.
  • the acceleration of the absolute position of the fine movable portion 36 is obtained from the accelerations of the main movable portion 44 and the fine movable portion 36.
  • the present invention is not limited to this, and the absolute position of the fine movable portion 36 is detected.
  • a position sensor that detects the speed, a speed sensor that detects the speed, and an acceleration sensor that detects the acceleration may be arranged, and the acceleration at the absolute position of the fine movable portion 36 may be directly obtained.
  • Step30 the acceleration information at the absolute position of the fine movable part 36 acquired in ST29 is compared with the target acceleration information of the fine movable part 36, and acceleration difference information is generated.
  • the “target acceleration comparison unit (program) 91” in FIG. 8 operates, the target acceleration information at the absolute position of the fine movable portion 36 of the “fine movable portion target acceleration storage unit 82” in FIG. 7 is compared, and the “acceleration difference information” is generated and stored in the “acceleration difference storage unit 92” of FIG.
  • “fine movable part acceleration information” is generated from “main movable part acceleration information” and “fine movable part relative acceleration information”, and “fine movable part acceleration information” and “fine movable part target acceleration information” are generated.
  • the “acceleration difference information” is acquired, but the present invention is not limited to this, and the “main movable part acceleration information” and the “main movable part target acceleration information” generated by comparison are generated.
  • the “partial acceleration difference information” and the “fine movable part relative acceleration difference information” generated by comparing “fine movable part relative acceleration information” and “fine movable part target relative acceleration information” may be added. Absent.
  • the external force is obtained in the following steps without using a force sensor or the like.
  • the process proceeds to ST31.
  • the “external force generation unit (program) 95” in FIG. 8 operates and refers to the “external force arithmetic expression storage unit 94” in FIG.
  • the mass (m) information of necessary parts and the like is acquired from the “mass storage unit 93” in FIG. 8, and the “acceleration difference information” is acquired from the “acceleration difference storage unit 92” in FIG. And it calculates using the above-mentioned formula, "external force information (F)” is calculated
  • the force (F) obtained in this way corresponds to a force (for example, applied force (external force)) exerted on the guide wire 23 from a blood vessel or the like.
  • a force for example, applied force (external force)
  • the force (F) applied to the guide wire 23 in the blood vessel or the like can be accurately grasped without specially arranging a force sensor or the like for detecting the force.
  • the force (F) since the force (F) is grasped by the movement of the fine movable portion 36 of the VCM 30, an extremely fine change in force can be detected.
  • the linear motor 40 bears a large force for moving the long guide wire 23 for a long distance, while the fine force applied to the long guide wire 23 is small. Since detection of force information is difficult to detect with the linear motor 40, the fine movable portion 36 of the VCM 30 bears the above-described contradictory requirements.
  • the process proceeds to ST32.
  • the “joystick load change processing unit (program) 101” in FIG. 9 operates to increase the load during the operation of the handle 11a based on the external force (F) of the “external force storage unit 96” in FIG.
  • the process proceeds to ST33.
  • the “external force (F) warning information generation unit (program) 102” in FIG. 9 operates and refers to the “external force (F) warning information storage unit 103” in FIG.
  • the “external force (F) warning information storage unit 103” stores information on the value of external force (F) to be warned. Therefore, in this step, it is determined whether or not the external force (F) of the “external force storage unit 96” in FIG. 8 exceeds the value of the external force (F) to be warned. If it exceeds, “Warning” is displayed on the display 12 in ST34.
  • the guide wire drive device 10 may be forcibly stopped when the value of the external force (F) is equal to or greater than a predetermined value. In this case, the guide wire driving device 10 is safer and more reliable.
  • the present invention is not limited to the above-described embodiment.
  • whether or not to warn is determined in ST33 based on whether or not the predetermined value is exceeded.
  • the present invention is not limited to this, and whether or not the slope of the external force (F) has suddenly increased. It does not matter if you decide.
  • “alarm” is displayed in ST22.
  • the present invention is not limited to this, and the “guidewire driving device 10” may forcibly retract about 10 mm in the direction of extracting the guidewire 23 from the blood vessel. good.
  • control is performed so that the reference (base end side) of the fine movable portion 36 of the VCM 30 is always maintained at the reference point (b) of the fine drive unit main body 33.
  • the invention is not limited to this, and the position of the fine movable portion 36 of the VCM 30 is not controlled until the guide wire 23 is brought close to the vicinity of the target portion in the blood vessel by the linear motor 40, and the fine portion of the VCM 30 is not controlled until it approaches the vicinity of the target portion.
  • You may comprise so that it may control so that the reference
  • the present invention is not limited to this, and the linear motion mechanism using the pneumatic cylinder, the mass of the movable unit is reduced, and the friction is also reduced.
  • a smaller linear motor may be used.
  • this invention is not restricted to this, The linear motion mechanism which combined the feed screw and the motor may be sufficient.
  • fine movable part relative acceleration generation part program
  • 76 ... fine movable part relative acceleration storage part, 80 ... third storage unit, 81 ... target acceleration generation unit (program)
  • 82 ... fine movable part target acceleration storage part, 83 ... main movable part target acceleration storage part, 84 ... fine movable part target relative acceleration storage part, 85 ... fine movable part acceleration generation part (program)
  • 86 ... Fine movable part acceleration storage unit, 90... 4th storage unit, 91... Target acceleration comparison unit (program), 92... Acceleration difference storage unit, 93.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Surgery (AREA)
  • Hematology (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Robotics (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

血管内に長尺状の医療機器23を挿入するための医療機器駆動装置10であって、長尺状の医療機器の微細な移動を可能にする副駆動部30と、長尺状の医療機器の長距離移動を可能にする主駆動部40と、を有し、副駆動部は、副駆動部本体33と、この副駆動部本体に対して移動可能な副可動部36と、を備え、長尺状の医療機器に加わる微細な力情報は、副可動部の加速度情報に基づいて算出されることを特徴とする医療機器駆動装置10。

Description

医療機器駆動装置及び力情報の算出方法
 本発明は、例えば、生体の血管内等に挿入されるカテーテル等に使用するガイドワイヤ等の医療機器を遠隔操作するための医療機器駆動装置及び力情報の算出方法に関する。
 従来、患者の血管内にカテーテル等を挿入して、血管内の狭窄部等を治療する「血管内治療」が行われている。
 この「血管内治療」では、医師等が、カテーテルを挿入するために、カテーテルに先行し、カテーテルをガイドするために血管内に挿入されるガイドワイヤ等を操作する必要がある。
 このガイドワイヤを操作するには、医師等が挿入された状態をX線で透視し、画像で挿入状態を視認しながら施術を行う必要がある。
 しかし、この施術方法は、患者の近傍で施術する必要があるため、医師等がX線によって被曝するおそれがある。
 そこで、医師等が患者に直接ではなく、遠隔操作可能なロボットを用いてガイドワイヤ等の挿入を行う提案がなされている(例えば、特許文献1)。
米国特許公開公報2015ー1968号公報
 しかし、遠隔操作可能なロボットを使用する場合、医師等が直接、手で操作する際に感じる僅かな力の情報を取得し難い。このため、例えば、ガイドワイヤ等の先端が血管内壁の病変部に当接し、ガイドワイヤ等の先端が前進できない事態が発生したとしても、その事態の発生を把握することが出来ない場合がある。
 その事態に気付かずにガイドワイヤ等を前進させ続けることにより、ガイドワイヤ等がたわんで、最終的には突然跳ねて血管壁を突き破る等の事態が発生するおそれがあった。
 本開示は、血管内で発生する微細な力の変化等を精度良く検知することができる医療機器駆動装置及び力情報の算出方法を提供することを目的とする。
 本開示の第1の態様としての医療機器駆動装置は、血管内に長尺状の医療機器を挿入するための医療機器駆動装置であって、前記長尺状の医療機器の移動を可能にする主駆動部と、前期長尺状の医療機器の前記駆動部よりも短い距離の移動を可能とし、副駆動部本体と、前記副駆動部本体に対して移動可能な副可動部と、を備える副駆動部と、前記副可動部の加速度情報を取得するためのセンサと、を有し、前記長尺状の医療機器に加わる力情報は、前記副可動部の加速度情報に基づいて算出されることを特徴とする。
 前記構成によれば、副可動部の移動の加速度情報で、血管からの微細な力を検知できるので、血管内で発生する力の変化等を精度良く検知することができる。
 ガイドワイヤ等の長尺状の医療機器を血管内の目標部分近傍まで移動させるといった長距離移動を行う際には、主駆動部で移動させることができるので、長尺状の医療機器を効率的に移動させることができる。
 一方、例えば、主駆動部で移動された後は、副可動部の副駆動部本体に対する移動の加速度情報により、血管内で医療機器に加わる僅かな力変化を検知可能なので、医療機器の効率的移動と微細な力変化の検知という相矛盾した要請を同時に達成することができる。
 すなわち、例えば、長尺状の医療機器を長距離移動させるという大きな力は、主駆動部が担い、一方、長尺状の医療機器に加わる微細な力情報の検出は、主駆動部では検知が困難であるため、副駆動部が担うことで、上述の相矛盾した要請を同時に達成することができる構成となっている。
 前記構成によれば、副可動部の移動の速度の変化情報で、血管からの微細な力を検知できるので、例えば、「力センサ」等の特別なセンサを設けることなく、血管内で発生する力の変化等を精度良く検知することができる。
 さらに、特別な例えば、「力センサ」等の配置が不要であるため、同時にコストも下げることができる。
 本開示の一実施形態としての医療機器駆動装置は、前記長尺状の医療機器の目標加速度情報を入力可能な入力部を有し、前記入力部に入力された前記長尺状の医療機器の前記目標加速度情報に基づいて、前記副可動部の目標加速度情報が求められ、長尺状の医療機器に加わる力情報は、前記副可動部の前記目標加速度情報と前記副可動部の実際の前記加速度情報との差によって算出されることを特徴とする。
 前記構成によれば、長尺状の医療機器に加わる力情報は、副可動部の加速度情報等の目標加速度情報と副可動部の実際の加速度情報等の加速度情報との差によって算出されるので、例えば、力センサ等の特別なセンサ等を用いることなく、精度良く長尺状の医療機器に加わる力情報を検知することができる。
 本開示の一実施形態としての医療機器駆動装置において、前記主駆動部は、主駆動部本体と、前記主駆動部本体に対して移動可能な主可動部と、を備え、前記主可動部の移動に伴って前記副駆動部本体が移動することを特徴とする。
 前記構成によれば、主可動部の移動で、副駆動部本体も移動されると共に医療機器も移動させられるので、効率的に副駆動部本体を移動させることができる。
 本開示の一実施形態としての医療機器駆動装置において、前記センサは、前記主可動部の加速度情報を取得するための第1のセンサと、前記副可動部の前記副駆動部本体に対する相対加速度情報を取得するための第2のセンサと、を有し、前記副可動部の前記加速度情報は、前記主可動部の前記加速度情報と、前記副可動部の前記相対加速度情報と、に基づいて算出されることを特徴とする。
 前記構成によれば、副可動部の加速度情報は、主可動部の加速度情報と、副可動部の相対加速度情報に基づいて算出されるので、特別な位置センサ等を副可動部に対して配置し、副可動部の絶対位置情報を取得しなくても、副可動部の加速度情報を取得することができ、コストを抑えることができる。
 本開示の一実施形態としての医療機器駆動装置において、前記第1のセンサは、前記主可動部の絶対位置情報を取得する第1の位置センサであり、前記第2のセンサは、前記副可動部の前記副駆動部本体に対する相対位置情報を取得する第2の位置センサであり、前記主可動部の前記加速度情報は、前記主可動部の前記絶対位置情報から算出され、前記副可動部の前記相対加速度情報は、前記副可動部の前記相対位置情報から算出されることを特徴とする。
 本開示の一実施形態としての医療機器駆動装置は、前記長尺状の医療機器の目標加速度情報を入力可能な入力部を有し、前記入力部に入力された前記長尺状の医療機器の前記目標加速度情報に基づいて、前記副可動部の目標加速度情報が算出され、前記副可動部の前記目標加速度情報に基づいて、前記主可動部の目標加速度情報および前記副可動部の前記副駆動部本体に対する目標相対加速度情報が決定されることを特徴とする。
 前記構成によれば、副可動部の目標加速度情報に基づいて、主可動部の目標加速度情報および副可動部の副駆動部本体に対する目標相対加速度情報が決定されるので、副可動部と主可動部とのそれぞれを個別に制御することができる。
 本開示の一実施形態としての医療機器駆動装置は、前記目標加速度情報の決定において、前記副可動部の前記副駆動部本体に対する相対位置が一定の範囲内となるように、前記主可動部の前記目標加速度情報及び前記副可動部の前記目標相対加速度情報が決定されることを特徴とする。
 前記構成によれば、副可動部の副駆動部本体に対する相対位置が一定の範囲内となるように、主可動部の目標加速度情報及び副可動部の目標相対加速度情報が決定されるので、血管内で医療機器に加わる僅かな力変化を精度良く検知することができる。
 本開示の一実施形態としての医療機器駆動装置において、前記長尺状の医療機器に加わる力情報は、前記副可動部の前記目標相対加速度情報と前記副可動部の前記相対加速度情報との差、及び、前記主可動部の前記目標加速度情報と前記主可動部の前記加速度情報との差、に基づいて算出されることを特徴とする。
 本開示の一実施形態としての医療機器駆動装置は、前記入力部に長尺状の医療機器の前記目標加速度情報を入力するための操作部を有し、前記算出された前記長尺状の医療機器に加わる力情報を前記操作部に反映させることを特徴とする。
 前記構成によれば、操作部を操作する操作者が、血管などから長尺状の医療機器に加わる力を感じることができるので、操作し易い装置となる。
 本開示の一実施形態としての医療機器駆動装置は、前記算出された前記長尺状の医療機器に加わる力情報が所定の値を超えた際に、その旨を報知することを特徴とする。
 前記構成によれば、医療機器駆動装置の操作者が、異常の有無を知ることができるので、より信頼性が高い装置となる。
 本開示の一実施形態としての医療機器駆動装置は、前記算出された前記長尺状の医療機器に加わる力情報が所定の値を超えた際に、前記副可動部の移動を停止することを特徴とする。
 前記構成によれば、長尺状の医療機器に加わる力情報が所定の値を超えた際に、副可動部の移動を停止するので、より安全で信頼性が高い装置となる。
 本開示の第2の態様としての力情報の算出方法は、長尺状の医療機器に加わる力情報を算出するための力情報の算出方法であって、前記長尺状の医療機器の目標加速度情報を取得する工程と、前記長尺状の医療機器の前記目標加速度情報に基づいて、前記長尺状の医療機器を駆動させる工程と、前記長尺状の医療機器の実際の加速度情報を取得する工程と、前記実際の加速度情報と前記目標加速度情報との差によって前記長尺状の医療機器に加わる前記力情報を算出する工程と、を有することを特徴とする。
 本開示によれば、血管内で発生する力の変化等を精度良く検知することができる医療機器駆動装置及び力情報の算出方法を提供することができる。
本発明の医療機器駆動装置である例えば、ガイドワイヤ駆動装置を備える医療機器居装置である例えば、ガイドワイヤ駆動システムを示す概略図である。 図1のガイドワイヤ駆動装置の主な機械的構成を示す概略図である。 図2のVCMを立体的に示した概略図である。 図1のガイドワイヤ駆動装置の主な構成を示す概略ブロック図である。 第1記憶部の主な構成を示す概略ブロック図である。 第2記憶部の主な構成を示す概略ブロック図である。 第3記憶部の主な構成を示す概略ブロック図である。 第4記憶部の主な構成を示す概略ブロック図である。 第5記憶部の主な構成を示す概略ブロック図である。 主可動部の加速度情報である「主可動部加速度情報」を取得する工程を示す概略フローチャートである。 微細可動部の微細駆動部本体に対する相対加速度情報である「微細可動部相対加速度情報」を取得する工程を示す概略フローチャートである。 図1のガイドワイヤ駆動装置を有するガイドワイヤ駆動装置システムの主な動作例を示す概略フローチャートである。 図1のガイドワイヤ駆動装置を有するガイドワイヤ駆動装置システムの主な動作例を示す他の概略フローチャートである。
 以下、この発明の好適な実施の形態を、添付図面等を参照しながら、詳細に説明する。
 尚、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載ない限り、これらの態様に限られない。
 図1は、本発明の医療機器駆動装置である例えば、ガイドワイヤ駆動装置10を備える医療機器装置である例えば、ガイドワイヤ駆動システム1を示す概略図である。
 図1に示すように、ガイドワイヤ駆動システム1は、患者の生体である例えば、血管内に挿入し配置するためのバルーンカテーテル2を有している。
 このバルーンカテーテル2は、その先端に、造影剤の注入によって拡張するバルーン21が配置される構成となっている。
 具体的には、患者の血管内の狭窄部(病変部)でバルーン21を拡張させることで狭窄部を押し広げて治療可能な構成となっている。
 本実施の形態のバルーンカテーテル2は、例えば、冠動脈の狭窄部を広げるために使用されるPTCA(Percutaneous Transluminal Coronary Angioplasty:経皮的冠動脈内腔拡張術)拡張用バルーンカテーテルである。
 本実施の形態のバルーンカテーテル2は、例えば、他の血管、胆管、気管、食道、その他の消化管、尿道、耳鼻内腔、その他の臓器等の生体器官に形成された狭窄部の治療及び改善を目的として使用されるものとして構成することができる。
 バルーンカテーテル2は、図1に示すように、生体管腔内に挿入可能な可撓性を備える長尺状のシャフト22を有し、このシャフト22の先端に上述の拡張及び収縮が可能なバルーン21が配置されている。
 シャフト22の基端側には、バルーンカテーテル2が他の装置と接続するためのハブ24が配置されている。
 シャフト22には、長尺状の医療機器である例えば、ガイドワイヤ23が導出される開口部25も形成されている。
 このガイドワイヤ23は、バルーン21に先行して血管内に挿入され、後から続くバルーン21を病変部まで案内する役割等を果たす構成となっている。
 このため、ガイドワイヤ23は、図1の開口部25から挿入され、バルーン21の先端から突き抜けるように配置される。
 本実施の形態では、図1に示すように、このガイドワイヤ23を患者の血管内に挿入する役割を果たすガイドワイヤ駆動装置10を備えている。
 具体的には、患者の血管内に挿入されたガイドワイヤ23は、図示しないX線撮像装置で撮像され、その映像が図1のディスプレイ12に表示される。
 ガイドワイヤ駆動装置10は、操作者である医師等が、入力部である例えば、図1に示す「ジョイスティック11」の操作部である例えば、ハンドル11aを倒すように移動(揺動)させることで、その駆動がコントロールされる。
 したがって、医師等は、患者から離れて、ディスプレイ12を視認しながら、ジョイスティック11のハンドル11aを操作することで、ガイドワイヤ23を患者の血管内に挿入させることができる。
 このため、医師等は、X線による被曝を回避することができる構成となっている。
 図2は、図1のガイドワイヤ駆動装置10の主な機械的構成を示す概略図である。
 図2に示すように、ガイドワイヤ駆動装置10は、図1のガイドワイヤ23を取り付ける支持部である例えば、ワイヤ取付部13を有している。
 そして、このワイヤ取付部13は、副駆動部の一例である微細駆動部に接続されている。具体的には、微細駆動部である例えば、ボイスコイルモータ(VCM)30の微細可動部36に接続されている。
 この微細可動部36が、副可動部の一例となっている。
 ボイスコイルモータ(VCM)30は、磁場を媒体として電気エネルギーを運動エネルギーに変換するモータで、本実施の形態では、例えば、磁場の中でコイルが動くタイプとなっている。
 VCM30は、微細可動部36を軽量とすることができ、電気的応答に優れ、高速な運動が可能であると共に、通電電流にほぼ比例した推力発生が可能なため、精密な制御が可能なモータとなっている。
 このため、本実施の形態では、図2のVCM30は、血管内におけるガイドワイヤ23に対する微細な力、例えば、外力(反力等)を精度良く検知することができる。
 VCM30は、具体的には、以下のような構成となっている。
 図3は、図2のVCM30を立体的に示した概略図である。
 図2及び図3の示すように、VCM30は、副駆動部本体である例えば、微細駆動部本体(ハウジング)33を有し、微細駆動部本体33は、アウターヨーク33aとインナーヨーク33bを備えている。
 このアウターヨーク33aの内側には、磁石32が配置されている。
 この磁石32に対向してコイル34が配置され、このコイル34は、微細可動部36に形成されている。
 微細可動部36には、図2に示すように、ワイヤ取付部13が接続されている。
 このため、VCM30が通電すると、微細可動部36が微細駆動部本体33の磁場の変化により微細駆動部本体33に対して相対的に移動し、例えば、図3の矢印Xの先端方向に移動する構成となっている。
 VCM30は、ガイドワイヤ23が血管壁等に当接し、力を加えられ、その力で、微細可動部36が微細駆動部本体33から図3の矢印Xの先端に移動する力を上回るときは、微細可動部36が、逆に、図3の矢印Xの基端方向に移動する構成ともなっている。
 したがって、本実施の形態では、VCM30は、ガイドワイヤ23の微細な移動を可能にすると共に、ガイドワイヤ23に力が加わったときは、その力が微細であっても精密に反応して、微細可動部36が移動する構成となっている。
 このように、本実施の形態のVCM30の微細可動部36は、ガイドワイヤ23に対する力に精度良く反応する必要があることから、所定位置に配置されるように電流等が調整されている。
 例えば、図2で示す微細駆動部本体33の基準点(b)に、微細可動部36の基準となる部分(基準部)、例えば、微細可動部36の基端側が位置し、若しくは、その基準点bの所定の範囲(例えば、図2の微細可動部36の移動方向の所定範囲)内に位置するように制御されることになる。
 図2に示すように、ガイドワイヤ駆動装置10は、主駆動部である例えば、リニアモータ40を有している。
 リニアモータ40は、図2に示すように主駆動部本体(ハウジング)41を有し、この主駆動部本体41には、一直線に配列された磁石42が配列されている。
 そして、この磁石42と対向するように配置されたコイル43は、主可動部44側に配置されている。
 このため、通電することで、主可動部44が磁石42に沿って移動する構成となっている。
 図2に示すように、主可動部44には、取り付け軸45が接続されると共に、取り付け軸45の先端側には、VCM30の微細駆動部本体33が接続されている。
 すなわち、主可動部44は、取り付け軸45を介して微細駆動部本体33と接続されており、リニアモータ40が駆動して、主可動部44が、図2の先端側方向に向かって移動することによりVCM30も先端側(ガイドワイヤ23側)に移動する構成となっている。
 本実施の形態では、リニアモータ40は、VCM30では困難な、ガイドワイヤ23の長い移動、例えば、血管内へガイドワイヤ23を挿入し、目標部位までガイドワイヤ23を進める場合などに使用される。
 そして、目標部位における血管からの微細な力を測定する場合には、VCM30を使用する構成となっている。
 特に、VCM30の微細可動部36には、ワイヤ取付部13を介して、ガイドワイヤ23が接続されているためVCM30は、ガイドワイヤ23からの微細な力等を検知し易い構成となっている。
 すなわち、長尺状のガイドワイヤ23を長距離移動させるという大きな力は、リニアモータ40が担い、一方、長尺状のガイドワイヤ23に加わる微細な力情報の検出は、リニアモータ40では検知が困難であるためVCM30が担うことで、上述の相矛盾した要請を同時に達成することができる構成となっている。
 ところで、図1に示すガイドワイヤ駆動装置10等は、図示しないCPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)等を有し、これらは、バスを介して接続されている。
 図4は、図1のガイドワイヤ駆動装置10の主な構成を示す概略ブロック図である。
 図4に示すように、ガイドワイヤ駆動装置10は、「駆動制御部51」を有し、駆動制御部51は、ジョイスティック11やディスプレイ12等と通信するための「通信装置52」、「計時装置53」、「情報入力装置54」や図2に示すリニアモータ40、VCM30等を制御する構成となっている。
 駆動制御部51は、図4に示す「第1記憶部60」、「第2記憶部70」、「第3記憶部80」、「第4記憶部90」、「第5記憶部100」及び「第6記憶部110」を制御する。
 図5乃至図10は、それぞれ「第1記憶部60」、「第2記憶部70」、「第3記憶部80」、「第4記憶部90」、「第5記憶部100」及び「第6記憶部110」の主な構成を示す概略ブロック図である。これらの内容は後述する。
 図4に示すようにリニアモータ40の主可動部44のコイル43部分には、第1の位置センサである例えば、「磁気センサ47」が配置され、後述するように主可動部44の絶対位置情報を取得する際に用いられる。
 そして、VCM30には、ホール素子を介して微細可動部36の位置を検出する第2の位置センサである例えば、位置検出センサ35が形成され、後述するように、微細可動部36の微細駆動部本体33に対する相対位置情報を取得する際に用いられる。
 この相対位置情報により、図2の微細可動部36の基準である基端側が、微細駆動部本体33の基準点(b)と一致し、又は、基準点(b)の所定の範囲内に配置されているか否かを判断することができる。
 すなわち、本実施の形態では、「磁気センサ47」で、主可動部44の絶対位置情報を取得し、この位置情報に基づき主可動部44の速度情報を取得し、さらに、速度情報から主可動部44の加速度情報を取得する構成となっている。
 図10は、主可動部44の加速度情報である「主可動部加速度情報」を取得する工程を示す概略フローチャートである。
 以下、同フローチャートを用いて、主可動部44の主可動部加速度情報を取得する工程を説明する。
 図10のステップ(以下「ST」とする。)1では、図5の「主可動部位置取得部(プログラム)61」が動作し、リニアモータ40の主可動部44の移動を磁気センサ47からの信号で検知し、主可動部44の位置情報を把握する。
 そして、主可動部44の位置情報として図6の「主可動部位置記憶部62」に記憶する。
 これにより、図2の主可動部44の移動の位置情報を取得することができる。
 次いで、ST2へ進む。ST2では、主可動部44の速度情報を生成する。
 すなわち、図5の「主可動部速度生成部(プログラム)63」が動作し、図5の「主可動部位置記憶部62」の主可動部44の「位置情報」に基づいて、時刻毎の主可動部44の速度情報である「主可動部速度情報」を生成し、図5の「主可動部速度記憶部64」に記憶する。
 すなわち、位置情報と時刻情報とに基づき、主可動部44の「速度情報」を生成して記憶する。
 次いで、ST3へ進む。ST3では、主可動部44の加速度情報を生成する。
 具体的には、図5の「主可動部加速度生成部(プログラム)65」が動作し、図5の「主可動部速度記憶部64」を参照する。
 そして、時刻情報を基準に、現在時刻の直前の主可動部速度情報と現在時刻の主可動部速度情報とに基づいて、現在時刻の主可動部44の加速度情報である「主可動部加速度情報」を生成し、図5の「主可動部加速度記憶部66」に記憶する。
 本実施の形態では、このようにして、図2のリニアモータ40の主可動部44の「加速度情報」を取得することができる。
 ところで、本実施の形態では、「位置検出センサ35」で微細可動部36の微細駆動部本体33に対する相対位置情報を取得し、この相対位置情報に基づき、微細可動部36の相対速度情報を取得し、さらに、相対速度情報から微細可動部36の相対加速度情報を取得する構成ともなっている。
 図11は、微細可動部36の微細駆動部本体33に対する相対加速度情報である「微細可動部相対加速度情報」を取得する工程を示す概略フローチャートである。
 以下、同フローチャートを用いて、微細可動部36の微細駆動部本体33に対する「微細可動部相対加速度情報」を取得する工程を説明する。
 先ず、ST11では、図6の「微細可動部相対位置取得部(プログラム)71」が動作し、VCM30の微細可動部36の移動を位置検出センサ35で取得する。
 そして、微細可動部36の基準となる部分(基準部)、例えば、微細可動部36の基端側と、微細駆動部本体33の基準点(b)と、の相対位置情報を把握する。
 そして、微細可動部36の相対位置情報として、図6の「微細可動部相対位置記憶部72」に記憶させる。
 次いで、ST12へ進む。ST12では、図6の「微細可動部相対速度生成部(プログラム)73」が動作し、図6の「微細可動部相対位置記憶部72」の微細可動部36の「位置情報」に基づいて、時刻毎の微細可動部の相対速度情報である「微細可動部相対速度情報」を生成し、図6の「微細可動部相対速度記憶部74」に記憶する。
 すなわち、微細可動部36の微細駆動部本体33に対する相対位置と時刻情報とに基づき、微細可動部36の微細駆動部本体33に対する「相対速度」を生成し、記憶する。
 次いで、ST13へ進む。ST13では、微細可動部36の微細駆動部本体33に対する相対加速度情報を生成する。
 具体的には、図6の「微細可動部相対加速度生成部(プログラム)75」が動作し、図6の「微細可動部相対速度記憶部74」を参照する。
 そして、時刻情報を基準に、現在時刻の直前の微細可動部相対速度情報と、現在時刻の微細可動部相対速度情報と、に基づいて、現在時刻の微細可動部36の相対加速度情報である「微細可動部相対加速度情報」を生成し、図6の「微細可動部相対加速度記憶部76」に記憶する。
 本実施の形態では、このようにして、図2のVCM30の微細可動部36の微細駆動部本体33に対する「相対加速度情報」を取得することができる。
 図12及び図13は、図1のガイドワイヤ駆動装置10を有するガイドワイヤ駆動システム1の主な動作例を示す概略フローチャートである。
 以下、これらのフローチャートに沿って説明すると共に、図1乃至図9等の構成等についても説明する。
 先ず、図12のST21では、医師等の操作者が図1のガイドワイヤ駆動システム1のガイドワイヤ駆動装置10の操作を開始する。
 具体的には、操作者は、ガイドワイヤ23をカテーテルに先行して血管内に挿入させる。
 このとき、図示しないX線撮像装置でX線を患者に照射し、X線透視で、該当部位をディスプレイ12に表示させながら行う。
 したがって、操作者はX線による被曝を避けながらガイドワイヤ駆動装置10の操作を開始することができる。
 次いで、ST22へ進む。ST2では、操作者は図1のジョイスティック11のハンドル11aを倒す等して操作する。
 このハンドル11aの傾倒度合いで、図1のガイドワイヤ23の移動における目標加速度が決定される。
 具体的には、図7の「目標加速度生成部(プログラム)81」が動作し、ガイドワイヤ23の目標加速度から、微細可動部36の絶対座標(位置)における目標加速度が計算され、図7の「微細可動部目標加速度記憶部82」に記憶される。
 ここで、微細可動部36の絶対座標(位置)における目標加速度は、図2の微細可動部36の先端側(ワイヤ取付部13側)の絶対座標(位置)における加速度を示す。
 このため、微細可動部36の絶対座標(位置)における加速度により、微細可動部36とワイヤ取付部13を介して接続されているガイドワイヤ23の移動に関する加速度が制御される。
 本実施の形態では、ガイドワイヤ23の目標加速度から微細可動部36の絶対座標(位置)における目標加速度を計算したが、本発明はこれに限らず、ガイドワイヤ23の目標加速度を微細可動部36の絶対座標(位置)における目標加速度としても構わない。
 次いで、ST23へ進む。ST23では、微細可動部36の基準部(微細可動部36の基端側)と微細駆動部本体33の基準点(b)との相対位置情報を取得する。
 すなわち、微細可動部36の基準部と微細駆動部本体33の基準点(b)とのズレ情報を取得する。
 次いで、ST24では、図7の「微細可動部目標加速度記憶部82」に記憶されている「微細可動部36の絶対位置における目標加速度情報」から主可動部44の絶対位置における目標加速度である「主可動部目標加速度」及び微細可動部36の微細駆動部本体33に対する目標相対加速度である「微細可動部目標相対加速度」を決定する。
 そして、これら「主可動部目標加速度」及び「微細可動部目標相対加速度」は、それぞれ、図7の「主可動部目標加速度記憶部83」及び「微細可動部目標相対加速度記憶部84」に記憶する。
 この決定に際して、微細可動部36の基準部が微細駆動部本体33の基準点(b)からズレている場合は、そのズレを解消するように「主可動部目標加速度」及び「微細可動部目標相対加速度」への分配率を調整する。
 次いで、図12のST25及びST26へ進む。
 ST25では、図2の主可動部44が、図7の「主可動部目標加速度記憶部83」の「主可動部目標加速度情報」となるための力(電力)を算出し、リニアモータ40に電力を供給する。
 これにより、リニアモータ40が駆動し、主可動部44が主駆動部本体41に対して移動する。
 ST26では、「微細可動部36」が図6の「微細可動部目標相対加速度記憶部84」の「微細可動部目標相対加速度情報」となるための力(電力)を算出し、VCM30に電力を供給する。
 これにより、VCM30が駆動し、微細可動部36が微細駆動部本体33に対して移動する。
 ST25の後、ST27へ進み、ST26の後、ST27へ進む。これらは同時に実行されても構わない。
 ST27では、リニアモータ40に対して「主可動部目標加速度」となるための力(電力)を付与する直前からの「主可動部加速度情報」を図5の「主可動部加速度記憶部66」から取得し、記憶する。
 ST28では、VCM30に対して「微細可動部目標相対加速度」となるための力(電力)を付与する直前からの「微細可動部相対加速度情報」を図6の「微細可動部相対加速度記憶部76」から取得し、記憶する。
 ここまでの工程で、図2のリニアモータ40の主可動部44の加速度情報と、VCM30の微細可動部36の微細駆動部本体33に対する相対加速度情報とを取得したため、以下の工程で、微細可動部36の絶対位置における加速度情報を生成し、ガイドワイヤ23の加速度情報を推測する。
 すなわち、ST29では、図7の「微細可動部加速度生成部(プログラム)85」が動作し、図5の「主可動部加速度記憶部66」と図6の「微細可動部相対加速度記憶部76」を参照する。
 そして、主可動部44の加速度情報と、微細可動部36の微細駆動部本体33に対する相対加速度情報と、に基づき、微細可動部の絶対位置における加速度情報である微細可動部加速度情報を生成し、図7の「微細可動部加速度記憶部86」に記憶する。
 すなわち、図2に示すように、ガイドワイヤ23の加速度は、微細可動部36の絶対位置における加速度から推測されると共に、微細可動部36の絶対位置における加速度は、リニアモータ40の主可動部44の加速度と、VCM30の微細可動部36の微細駆動部本体33に対する相対加速度から求められる。
 このため、本工程では、かかる演算を実行し、微細可動部36の絶対位置における加速度情報(微細可動部加速度情報)を取得する。
 このように、本実施の形態では、ガイドワイヤ23を接続しているワイヤ取付部13等の絶対位置情報を用いるための別個の位置センサ等を配置することなく、その加速度情報を得ることができるので、コストを抑えることができる。
 本実施の形態では、リニアモータ40の主可動部44の加速度とVCM30の微細可動部36の相対加速度から微細可動部36の絶対位置における加速度を求めたが、これに限らず、微細可動部36の絶対位置情報を取得する位置センサを別に配置しても構わない。
 この位置センサは、微細可動部36の端部等を検知してもよいし、微細可動部36と接続されているワイヤ取付部13の端部等の位置を検知してもよい。
 このような、別個の位置センサで検知した絶対位置情報に基づき、微細可動部36またはワイヤ取付部13の加速度情報を求め、これを、ガイドワイヤ23の加速度としても構わない。
 この場合、精度の高い、加速度情報を取得することができる。
 また、本実施の形態では、主可動部44及び微細可動部36の位置は、それぞれ磁気センサ47及び位置検出センサ35で検出し、速度及び加速度を求めたが、本発明はこれに限らず、磁気センサ47及び位置検出センサ35の代わりに、速度センサ又は加速度センサを用いても構わない。
 本実施の形態では、微細可動部36の絶対位置の加速度は、主可動部44及び微細可動部36の加速度から求めたが、本発明はこれに限らず、微細可動部36の絶対位置を検出する位置センサ、速度を検出する速度センサ及び加速度を検出する加速度センサを配置し、直接、微細可動部36の絶対位置における加速度を求めても構わない。
 次いで、ST30へ進む。ST30では、ST29で取得した微細可動部36の絶対位置における加速度情報を微細可動部36の目標加速度情報と比較し、加速度差情報を生成する。
 具体的には、図8の「目標加速度比較部(プログラム)91」が動作し、図7の「微細可動部目標加速度記憶部82」の微細可動部36の絶対位置における目標加速度情報と、図7の「微細可動部加速度記憶部86」の微細可動部加速度情報を比較し、その「加速度差情報」を生成し、図8の「加速度差記憶部92」に記憶する。
 本実施の形態では、「主可動部加速度情報」及び「微細可動部相対加速度情報」から「微細可動部加速度情報」を生成し、「微細可動部加速度情報」と「微細可動部目標加速度情報」とを比較し、「加速度差情報」を取得したが、本発明は、これに限らず、「主可動部加速度情報」と「主可動部目標加速度情報」とを比較して生成した「主可動部加速度差情報」と、「微細可動部相対加速度情報」と「微細可動部目標相対加速度情報」とを比較して生成した「微細可動部相対加速度差情報」と、を足し合わせる構成としても構わない。
 すなわち、微細可動部加速度情報が、微細可動部目標加速度情報より小さいときは、ガイドワイヤ23に血管等から微細な力が働いているため、何らかの異常が発生している可能性がある。
 一方、微細可動部加速度情報が、微細可動部目標加速度情報より大きいときは、ガイドワイヤ23が血管側に引っ張られる力が働いているため、同様に何らかの異常が発生している可能性がある。
 そこで、本実施の形態では、力センサ等を使用することなく、以下の工程で、その外力を求める。
 具体的には、ST31へ進む。ST31では、図8の「外力生成部(プログラム)95」が動作し、図8の「外力演算式記憶部94」を参照する。
 この「外力演算式記憶部94」には、外力演算用の式である、例えば、「m(質量)×a(加速度)=外力(F)」が記憶されている。
 すなわち、力(F)は、質量(m)に加速度(a)を乗じることで、求められることが記憶されている。
 そこで、本工程では、図8の「質量記憶部93」から必要な部品等の質量(m)情報を取得し、図8の「加速度差記憶部92」から「加速度差情報」を取得する。
 そして、上述の式を用いて演算し、「外力情報(F)」を求め、図9の「外力記憶部96」に記憶する。
 すなわち、このようにして求められた力(F)が、血管等からガイドワイヤ23に影響を与えた力(例えば、加わった力(外力))に相当する。
 このように、本実施の形態によれば、力を検知する力センサ等を特別に配置することなく、血管内等でガイドワイヤ23に加わる力(F)を正確に把握することができる。
 本実施の形態では、VCM30の微細可動部36の動きで、力(F)を把握するため、極めて微細な力の変化も検知することができる。
 本実施の形態のガイドワイヤ駆動システム1のガイドワイヤ駆動装置10では、ガイドワイヤ23が血管内の比較的長い距離を移動するときは、比較的大きな力を有するリニアモータ40で移動させるため、迅速にガイドワイヤ23を目的箇所まで移動させることができる。
 一方、血管内等における異常等が発生し、ガイドワイヤ23に加わった微細な外力は、VCM30の微細可動部36の動きで精度良く検知することができる。
 したがって、本実施の形態のガイドワイヤ駆動装置10は、長尺状のガイドワイヤ23を長距離移動させるという大きな力は、リニアモータ40が担い、一方、長尺状のガイドワイヤ23に加わる微細な力情報の検出は、リニアモータ40では検知が困難であるため、VCM30の微細可動部36が担うことで、上述の相矛盾した要請を同時に達成することができる構成となっている。
 ところで、ST31で外力(F)を演算した後、ST32へ進む。ST32では、図9の「ジョイスティック負荷変更処理部(プログラム)101」が動作し、図8の「外力記憶部96」の外力(F)に基づき、ハンドル11aの動作の際の負荷を強くする。
 このようにハンドル11aの動作の際の負荷を強くすることで、ハンドル11aを操作する操作者が、血管からガイドワイヤ23に加わる力を感じることができるので、異常等の発生を把握し易い装置となる。
 次いで、ST33へ進む。ST33では、図9の「外力(F)警告情報生成部(プログラム)102」が動作し、図9の「外力(F)警告情報記憶部103」を参照する。
 この「外力(F)警告情報記憶部103」には、警告すべき外力(F)の値情報等が記憶されている。
 したがって、本工程では、図8の「外力記憶部96」の外力(F)が、警告すべき外力(F)の値を超えているか否かを判断する。
 そして、超えているときは、ST34で、「警告」をディスプレイ12に表示する。
 このように、ディスプレイ12に「警告」を表示することで、操作者に注意を促すことができる。
 上述の外力(F)の値が、所定以上となった場合に、ガイドワイヤ駆動装置10を強制的に停止させる構成としても構わない。
 この場合は、より安全で信頼性が高いガイドワイヤ駆動装置10となる。
 ST34に続き、ST35で、停止信号が入力されなければ、同様の工程を繰り返す。
 ところで、本発明は、上述の実施の形態に限定されない。
 本実施の形態では、ST33で、所定値を超えているか否かで、警告すべきか否かを判断したが、本発明はこれに限らず、外力(F)の傾きが急に上昇したか否かで判断しても構わない。
 本実施の形態では、ST22で「警報」を表示したが、本発明はこれに限らず、「ガイドワイヤ駆動装置10」がガイドワイヤ23を血管から抜き取る方向に10mm程度強制的に退避させても良い。
 さらに、本実施の形態では、VCM30の微細可動部36の基準(基端側)が、常に微細駆動部本体33の基準点(b)に維持されるように制御する例を示したが、本発明はこれに限らず、リニアモータ40でガイドワイヤ23を血管内の目標部位近傍に近づくまでは、VCM30の微細可動部36の位置は制御せず、目標部位近傍に近づいて初めて、VCM30の微細可動部36の基準(基端側)が微細駆動部本体33の基準点(b)に維持するように制御するように構成しても構わない。
 本実施の形態では、副駆動部として、VCM30を用いる例を示したが、本発明は、これにかぎらず、空圧シリンダを用いた直動機構や、可動部の質量を小さくし、摩擦も小さくしたリニアモータでも構わない。
 さらに、主駆動部として、リニアモータ40を用いる例を示したが、本発明はこれに限らず、送りねじとモータを組み合わせた直動機構でも構わない。
 1・・・ガイドワイヤ駆動システム、2・・・バルーンカテーテル、10・・・ガイドワイヤ駆動装置、11・・・ジョイスティック(入力部)、11a・・・ハンドル(操作部)、12・・・ディスプレイ、13・・・ワイヤ取付部、21・・・バルーン、22・・・シャフト、23・・・ガイドワイヤ、24・・・ハブ、25・・・開口部、30・・・ボイスコイルモータ(VCM)、32、42・・・磁石、33・・・微細駆動部本体、33a・・・アウターヨーク、33b・・・インナーヨーク、34・・・コイル、35・・・位置検出センサ、36・・・微細可動部、40・・・リニアモータ、41・・・主駆動部本体、43・・・コイル、44・・・主可動部、45・・・取り付け軸、47・・・磁気センサ、51・・・駆動制御部、52・・・通信装置、53・・・計時装置、54・・・情報入力装置、60・・・第1記憶部、61・・・主可動部位置取得部(プログラム)、62・・・主可動部位置記憶部、63・・・主可動部速度生成部(プログラム)、64・・・主可動部速度記憶部、65・・・主可動部加速度生成部(プログラム)、66・・・主可動部加速度記憶部、70・・・第2記憶部、71・・・微細可動部相対位置取得部(プログラム)、72・・・微細可動部相対位置記憶部、73・・・微細可動部相対速度生成部(プログラム)、74・・・微細可動部相対速度記憶部、75・・・微細可動部相対加速度生成部(プログラム)、76・・・微細可動部相対加速度記憶部、80・・・第3記憶部、81・・・目標加速度生成部(プログラム)、82・・・微細可動部目標加速度記憶部、83・・・主可動部目標加速度記憶部、84・・・微細可動部目標相対加速度記憶部、85・・・微細可動部加速度生成部(プログラム)、86・・・微細可動部加速度記憶部、90・・・第4記憶部、91・・・目標加速度比較部(プログラム)、92・・・加速度差記憶部、93・・・質量記憶部、94・・・外力演算式記憶部、95・・・外力生成部(プログラム)、96・・・外力記憶部、100・・・第5記憶部、101・・・ジョイスティック負荷変更処理部(プログラム)、102・・・外力(F)警告情報生成部(プログラム)、103・・・外力(F)警告情報記憶部

Claims (12)

  1.  血管内に長尺状の医療機器を挿入するための医療機器駆動装置であって、
     前記長尺状の医療機器の移動を可能にする主駆動部と、
     前期長尺状の医療機器の前記駆動部よりも短い距離の移動を可能とし、副駆動部本体と、前記副駆動部本体に対して移動可能な副可動部と、を備える副駆動部と、
     前記副可動部の加速度情報を取得するためのセンサと、を有し、
     前記長尺状の医療機器に加わる力情報は、前記副可動部の加速度情報に基づいて算出されることを特徴とする医療機器駆動装置。
  2.  前記長尺状の医療機器の目標加速度情報を入力可能な入力部を有し、
     前記入力部に入力された前記長尺状の医療機器の前記目標加速度情報に基づいて、前記副可動部の目標加速度情報が求められ、
     長尺状の医療機器に加わる力情報は、前記副可動部の前記目標加速度情報と前記副可動部の実際の前記加速度情報との差によって算出されることを特徴とする請求項1に記載の医療機器駆動装置。
  3.  前記主駆動部は、主駆動部本体と、前記主駆動部本体に対して移動可能な主可動部と、を備え、
     前記主可動部の移動に伴って前記副駆動部本体が移動することを特徴とする請求項1に記載の医療機器駆動装置。
  4.  前記センサは、前記主可動部の加速度情報を取得するための第1のセンサと、前記副可動部の前記副駆動部本体に対する相対加速度情報を取得するための第2のセンサと、を有し、
     前記副可動部の前記加速度情報は、前記主可動部の前記加速度情報と、前記副可動部の前記相対加速度情報と、に基づいて算出されることを特徴とする請求項3に記載の医療機器駆動装置。
  5.  前記第1のセンサは、前記主可動部の絶対位置情報を取得する第1の位置センサであり、
     前記第2のセンサは、前記副可動部の前記副駆動部本体に対する相対位置情報を取得する第2の位置センサであり、
     前記主可動部の前記加速度情報は、前記主可動部の前記絶対位置情報から算出され、
     前記副可動部の前記相対加速度情報は、前記副可動部の前記相対位置情報から算出されることを特徴とする請求項4に記載の医療機器駆動装置。
  6.  前記長尺状の医療機器の目標加速度情報を入力可能な入力部を有し、
     前記入力部に入力された前記長尺状の医療機器の前記目標加速度情報に基づいて、前記副可動部の目標加速度情報が算出され、
     前記副可動部の前記目標加速度情報に基づいて、前記主可動部の目標加速度情報および前記副可動部の前記副駆動部本体に対する目標相対加速度情報が決定されることを特徴とする請求項5に記載の医療機器駆動装置。
  7.  前記目標加速度情報の決定において、前記副可動部の前記副駆動部本体に対する相対位置が一定の範囲内となるように、前記主可動部の前記目標加速度情報及び前記副可動部の前記目標相対加速度情報が決定されることを特徴とする請求項6に記載の医療機器駆動装置。
  8.  前記長尺状の医療機器に加わる力情報は、前記副可動部の前記目標相対加速度情報と前記副可動部の前記相対加速度情報との差、及び、前記主可動部の前記目標加速度情報と前記主可動部の前記加速度情報との差、に基づいて算出されることを特徴とする請求項6又は請求項7に記載の医療機器駆動装置。
  9.  前記入力部に長尺状の医療機器の前記目標加速度情報を入力するための操作部を有し、
     前記算出された前記長尺状の医療機器に加わる力情報を前記操作部に反映させることを特徴とする請求項3、請求項6乃至請求項8のいずれか1項に記載の医療機器駆動装置。
  10.  前記算出された前記長尺状の医療機器に加わる力情報が所定の値を超えた際に、その旨を報知することを特徴とする請求項1乃至請求項9のいずれか1項に記載の医療機器駆動装置。
  11.  前記算出された前記長尺状の医療機器に加わる力情報が所定の値を超えた際に、前記副可動部の移動を停止することを特徴とする請求項1乃至請求項9のいずれか1項に記載の医療機器駆動装置。
  12.  長尺状の医療機器に加わる力情報を算出するための力情報の算出方法であって、
     前記長尺状の医療機器の目標加速度情報を取得する工程と、
     前記長尺状の医療機器の前記目標加速度情報に基づいて、前記長尺状の医療機器を駆動させる工程と、
     前記長尺状の医療機器の実際の加速度情報を取得する工程と、
     前記実際の加速度情報と前記目標加速度情報との差によって前記長尺状の医療機器に加わる前記力情報を算出する工程と、を有することを特徴とする力情報の算出方法。
PCT/JP2018/020144 2017-06-05 2018-05-25 医療機器駆動装置及び力情報の算出方法 WO2018225538A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019523453A JP7019693B2 (ja) 2017-06-05 2018-05-25 医療機器駆動装置
US16/704,338 US11786701B2 (en) 2017-06-05 2019-12-05 Medical device drive apparatus and force information calculation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017111098 2017-06-05
JP2017-111098 2017-06-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/704,338 Continuation US11786701B2 (en) 2017-06-05 2019-12-05 Medical device drive apparatus and force information calculation method

Publications (1)

Publication Number Publication Date
WO2018225538A1 true WO2018225538A1 (ja) 2018-12-13

Family

ID=64567294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/020144 WO2018225538A1 (ja) 2017-06-05 2018-05-25 医療機器駆動装置及び力情報の算出方法

Country Status (3)

Country Link
US (1) US11786701B2 (ja)
JP (1) JP7019693B2 (ja)
WO (1) WO2018225538A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111938817A (zh) * 2020-08-05 2020-11-17 北京唯迈医疗设备有限公司 一种介入手术机器人导丝动作安全预警方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355730A (ja) * 2001-03-27 2002-12-10 Rikogaku Shinkokai テーブル位置決め装置
JP2003517866A (ja) * 1999-12-22 2003-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 衝突検出装置を備えた医学的装置
JP2003177186A (ja) * 2001-12-12 2003-06-27 Canon Inc ステージ駆動方法
JP2010182084A (ja) * 2009-02-05 2010-08-19 Yamatake Corp パラメータ推定装置
JP2013517065A (ja) * 2010-01-15 2013-05-16 イマージョン コーポレイション 触覚的フィードバックをもった最小侵襲性外科手術ツールのためのシステムと方法
US20130190726A1 (en) * 2010-04-30 2013-07-25 Children's Medical Center Corporation Motion compensating catheter device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279559A (en) * 1992-03-06 1994-01-18 Aai Corporation Remote steering system for medical catheter
EP1907041B1 (en) * 2005-07-11 2019-02-20 Catheter Precision, Inc. Remotely controlled catheter insertion system
FR2955472B1 (fr) 2010-01-27 2012-01-20 Hotel Francois L Support de presentation d'objet
US9307927B2 (en) * 2010-08-05 2016-04-12 Biosense Webster (Israel) Ltd. Catheter entanglement indication
US11114918B2 (en) 2013-06-26 2021-09-07 Corindus, Inc. Differential drive
US10702292B2 (en) * 2015-08-28 2020-07-07 Incuvate, Llc Aspiration monitoring system and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003517866A (ja) * 1999-12-22 2003-06-03 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 衝突検出装置を備えた医学的装置
JP2002355730A (ja) * 2001-03-27 2002-12-10 Rikogaku Shinkokai テーブル位置決め装置
JP2003177186A (ja) * 2001-12-12 2003-06-27 Canon Inc ステージ駆動方法
JP2010182084A (ja) * 2009-02-05 2010-08-19 Yamatake Corp パラメータ推定装置
JP2013517065A (ja) * 2010-01-15 2013-05-16 イマージョン コーポレイション 触覚的フィードバックをもった最小侵襲性外科手術ツールのためのシステムと方法
US20130190726A1 (en) * 2010-04-30 2013-07-25 Children's Medical Center Corporation Motion compensating catheter device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111938817A (zh) * 2020-08-05 2020-11-17 北京唯迈医疗设备有限公司 一种介入手术机器人导丝动作安全预警方法及系统
CN111938817B (zh) * 2020-08-05 2022-05-24 北京唯迈医疗设备有限公司 一种介入手术机器人导丝动作安全预警方法及系统

Also Published As

Publication number Publication date
JPWO2018225538A1 (ja) 2020-04-02
JP7019693B2 (ja) 2022-02-15
US20200108226A1 (en) 2020-04-09
US11786701B2 (en) 2023-10-17

Similar Documents

Publication Publication Date Title
US11013561B2 (en) Medical device navigation system
US8257302B2 (en) User interface for remote control catheterization
JP6837774B2 (ja) カテーテルおよびガイドワイヤ連携挿入システム
JP6064263B2 (ja) 力計測装置及び力計測方法、マスタースレーブ装置、力計測プログラム、並びに、集積電子回路
US8591400B2 (en) Medical instrument
US8041411B2 (en) Device and method for controlling a magnetic element in the body of a patient
CN114025699A (zh) 具有被动弯曲模式的主动控制可转向医疗设备
JPWO2009069413A1 (ja) 駆動装置ならびにそれを備えた医療装置および訓練装置
US20020042570A1 (en) Apparatus for the automatic performance of diagnostic and/or therapeutic actions in body cavites
JP2009513272A (ja) 医療器具に対しておよび医療器具の操作に対して加えられる力を制御するシステムおよび方法
JP2009247619A (ja) 医療用マニピュレータシステム
KR101644551B1 (ko) 가이드와이어 및 가이드와이어 시스템
JP3872210B2 (ja) カテーテル操作シミュレータ及びそれを用いたシミュレーション方法
JP6440071B2 (ja) 柔軟長尺部材の装置、柔軟長尺部材の方法、及び制御プログラム
CN115252132B (zh) 一种基于介入手术机器人的导航系统、主端遥控导航系统和程序产品
WO2018225538A1 (ja) 医療機器駆動装置及び力情報の算出方法
KR101599428B1 (ko) 카테터 시스템
Mei et al. Intravascular palpation and haptic feedback during angioplasty
Polygerinos et al. Measuring tip and side forces of a novel catheter prototype: A feasibility study
WO2012172952A1 (ja) 生体情報取得システム
WO2018203365A1 (ja) 医療用マニピュレータシステム及び医療用マニピュレータシステムの作動方法
Hatzfeld et al. Measurement setup to evaluate haptic interaction in catheterization procedures for training purposes
EP3860454B1 (en) Dilation instrument with malleable guide and dilation catheter with integral position sensor
WO2022244183A1 (ja) 医療システム、及び、ナビゲーション方法
WO2016001782A1 (en) Integrated active fixation system for scope navigation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18813773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019523453

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18813773

Country of ref document: EP

Kind code of ref document: A1