WO2018224081A1 - Verfahren und vorrichtung zur absolutpositionsbestimmung eines sich um eine drehachse drehenden bauteiles eines aktors, insbesondere eines kupplungsaktors - Google Patents

Verfahren und vorrichtung zur absolutpositionsbestimmung eines sich um eine drehachse drehenden bauteiles eines aktors, insbesondere eines kupplungsaktors Download PDF

Info

Publication number
WO2018224081A1
WO2018224081A1 PCT/DE2018/100459 DE2018100459W WO2018224081A1 WO 2018224081 A1 WO2018224081 A1 WO 2018224081A1 DE 2018100459 W DE2018100459 W DE 2018100459W WO 2018224081 A1 WO2018224081 A1 WO 2018224081A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
actuator
rotating
sensor
electric motor
Prior art date
Application number
PCT/DE2018/100459
Other languages
German (de)
English (en)
French (fr)
Inventor
Markus Dietrich
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112018002898.4T priority Critical patent/DE112018002898B4/de
Priority to CN201880033605.7A priority patent/CN110651135B/zh
Publication of WO2018224081A1 publication Critical patent/WO2018224081A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/064Control of electrically or electromagnetically actuated clutches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/102Actuator
    • F16D2500/1021Electrical type
    • F16D2500/1022Electromagnet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/302Signal inputs from the actuator
    • F16D2500/3028Voltage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/50Problem to be solved by the control system
    • F16D2500/501Relating the actuator
    • F16D2500/5012Accurate determination of the clutch positions, e.g. treating the signal from the position sensor, or by using two position sensors for determination
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position

Definitions

  • the invention relates to a method for absolute position determination of a rotating about a rotation axis component of an actuator, in particular a clutch actuator, wherein on the component a mitfrontendes magnetic element is arranged and the absolute position of the magnetic element is determined with a magnet element opposite the multi-turn sensor, which is connected to a voltage is supplied.
  • a piston of a master cylinder is driven by an electrically commutated electric motor, which is controlled by a control unit. Due to its position, the piston of the master cylinder conveys a hydraulic fluid through a hydraulic line to a slave cylinder, which also has a piston which is displaced by the hydraulic fluid, whereby a force is exerted on a clutch, which is thus changed in position.
  • the angular positions and the revolutions of the rotor are monitored by means of a multi-turn sensor.
  • a multi-turn sensor is connected directly to the supply voltage of the control unit in order to constantly detect the magnetic rotation. For this constant monitoring a continuous current is necessary. If the sampling rate of the multiturn sensor is too high, a very high power consumption is required. If the sampling rate is too low, a rotation of the rotor can be overlooked.
  • the invention is thus based on the object of specifying a method and a device for determining the absolute position of a rotating component of an actuator, in which a simple, robust and cost-effective multi-turn sensor can be used, which retains its absolute position from the teach-in at the end of the tape.
  • a Wiegand wire unit monitors a movement of a magnet arrangement of the rotating component and when detected Movement generated from the magnetic field of the magnet assembly of the rotating member energy and converts it into an electrical voltage, which is provided to power the multi-turn sensor.
  • a magnetic field is built up during the rotation of the component, which is detected by the Wiegand wire unit.
  • the energy of the magnetic field is converted by the Wiegand wire unit into an electrical voltage, which is supplied to the multi-turn sensor.
  • the multiturn sensor is always energized when the component is rotating. This power supply also takes place when the actuator is switched off and an unforeseen movement of the component takes place.
  • the absolute position of the electric motor can always be determined outside of a measuring process for an angular or rotational measurement.
  • an electric motor driving the actuator is used, from the main magnet forming the magnet arrangement the Wiegand wire unit gains the energy.
  • magnets that are already present in the electric motor used to generate energy for the multi-turn sensor. On separate magnets to form a magnetic field can be omitted.
  • the multiturn sensor When the actuator is switched off, the multiturn sensor, after having received the voltage transmitted by the Wiegand wire unit, passes into an operating state in which it measures and stores the current position of the component.
  • the multiturn sensor is only energized for as long as a short-term measuring and storage process is necessary when the actuator is switched off.
  • the multiturn sensor when the actuator is switched on, the multiturn sensor is supplied with voltage via a supply voltage of a control unit or a battery voltage or via the energy of the Wiegand wire unit, whereby an angle of the component and / or rotation of the component is determined by the multiturn sensor.
  • the multi-turn sensor can thus reliably measure the position of the rotating component in each state of the actuator, so that the controller always has the current position of the rotating component at the beginning of the measurement process with switching on the normal operating state.
  • an energy store of the multi-turn sensor is charged for self-sufficient operation of the multi-turn sensor. Because of this energy stored in the energy store, the multiturn sensor can also be used during normal operating conditions. which can be powered easily and independently of the battery voltage and supply voltage of the control unit.
  • the electric motor is rotated over a predetermined angular range before a measurement process. This ensures that sufficient energy is available to operate the multiturn sensor.
  • a development of the invention relates to a device for determining the absolute position of a rotating about a rotation axis component of an actuator, in particular a clutch actuator, with a multi-turn sensor for determining the absolute position of the component carrying a magnetic element, which follows the rotational movement of the component.
  • the rotating component has a magnet arrangement, which is arranged opposite at least one Wiegand wire unit, which is connected to the multi-turn sensor for energy transmission. Since the magnet arrangement provides a changing magnetic field when rotating the component, the magnetic energy is converted by the Wiegand wire unit into electrical energy, by means of which the multi-turn sensor is supplied.
  • the magnet arrangement is formed by the magnetic element of a sensor arranged on the end face of the rotating component.
  • a magnet arrangement which is present in the actuator is used to generate energy for the multiturn sensor, which reduces the costs of the method.
  • the magnet assembly is an integral part of the rotating member.
  • the rotating component is designed as an electric motor and the magnet arrangement is formed by the main magnets of the electric motor. Since the rotor of the electric motor has a plurality of main magnets, a large magnetic field change is caused by a plurality of pole transitions of the rotating electric motor, which entails an increased energy consumption.
  • the at least one Wiegand wire unit is installed within an electric motor that represents the rotating component and faces the main magnet of the electric motor that forms the magnet arrangement. Since with a rotation over 360 ° several rere pole transitions between the individual main magnet of the electric motor occur, more energy is provided via a rotation.
  • the at least one Wiegand wire unit is connected to a power supply rather for providing energy for the multi-turn sensor.
  • This energy storage is charged when the multiturn sensor is not active. The stored energy is used up when the multiturn sensor is active.
  • the multiturn sensor which is in a standby state and / or operating state, is connected to a battery voltage or a supply voltage of a control device. Characterized in that the absolute position of the multi-turn sensor is known in each state of the multi-turn sensor, a corresponding commutation of the electric motor can be done immediately with restart of the controller with this known current position of the actuator.
  • 1 is a schematic diagram of a clutch actuation system for actuating an automated clutch
  • Fig. 2 shows a first embodiment of the device according to the invention with a
  • Fig. 3 shows an embodiment of the device according to the invention with a Wiegand wire unit
  • Fig. 4 shows a second embodiment of the method according to the invention with two
  • a clutch actuating system 1 for an automated clutch is shown in simplified form.
  • the clutch actuation system 1 is assigned to a friction clutch 2 in a drive train of a motor vehicle and comprises a master cylinder 3 which is connected to a slave cylinder 5 via a hydraulic line 4 designated as a pressure line is.
  • a slave piston 6 is movable back and forth, which actuates the friction clutch 2 via an actuating element 7 with the interposition of a bearing 8.
  • the master cylinder 3 can be connected to an expansion tank 9 via a connection opening.
  • a master piston 10 is mounted axially movable.
  • a piston rod 1 1 of the master cylinder 3 is coupled via a threaded spindle 12 with an electric motor actuator 13.
  • the electromotive actuator 13 includes an electric motor 14 designed as a commutated electric motor and a control unit 15.
  • the threaded spindle 12 converts a rotational movement of the electric motor 14 into a longitudinal movement of the master piston 10 of the master cylinder 3.
  • the friction clutch 2 is thus automatically actuated by the electric motor 14, the threaded spindle 12, the master cylinder 3 and the slave cylinder 5.
  • the electric motor 14 is an electrically commutated DC motor, it is necessary to know its absolute position for the position control of the electric motor 14.
  • This absolute position is detected by a multi-turn sensor 16.
  • the multi-turn sensor 16 is connected in its normal operating state to the control unit 15 and is powered by its supply voltage.
  • the multi-turn sensor 16 is part of a chip 17, as shown in Fig. 2.
  • the chip 17 is arranged such that the multi-turn sensor 16 faces the rotor of the electric motor 14.
  • FIG. 2 for the sake of clarity, only a magnetic element 18 is shown, which is fixedly attached to an end face of the rotor of the electric motor 14 and whose rotational movement follows. This magnetic element 18 cooperates with the multi-turn sensor 16 in determining the absolute position of the electric motor 14.
  • the magnetic element 18 is monitored by an opposite Wiegand wire unit 19, which is connected via a line 20 to a buffer capacitor 21 of the multi-turn sensor 16.
  • the multi-turn sensor 16 is coupled to a battery voltage Ußatt.
  • the chip 17 is connected to the supply voltage of the control unit 15 and determines the angle of the magnetic element 18 and counts its revolutions of the electric motor 14. These revolutions are necessary to properly adjust the commutation of the electric motor 14.
  • the Wiegand wire unit 19 is a sensor which receives as an essential component Wiegand wires having a parallel hysteresis curve with pronounced discontinuities due to parallel soft and hard magnetic areas Effect are known.
  • the sudden change of the magnetization caused by the positional change of the magnetic member 18 of the rotor of the electric motor 14 induces a voltage in a coil near the wires. This voltage is forwarded via the line 20 to the chip 17, whereby the multi-turn sensor 16 is energized.
  • the buffer capacitor 21, which supplies the multiturn sensor 16 with energy is charged.
  • the magnetic element 18 contains two-pole magnets, the change in the magnet measured by the Wiegand wire unit 19 is very small, which is not always sufficient for the operation of the multi-turn sensor 16.
  • the Wiegand wire unit 19 is arranged so as to directly face the main magnet 22 of the electric motor 14 (FIG. 3). The pole transitions of the main magnets 22, a stronger magnetic field is initiated, whereby more energy over a rotation of 360 ° is provided, which can be used for self-sufficient supply of the multi-turn sensor 16 for measuring the angle of the electric motor 14.
  • the actuator 2, 12, 13 is switched off, such energy provided by the Wiegand wire unit 19 can be used to charge the buffer capacitor 21.
  • the rotor of the electric motor 14 is rotated by a defined angular range before the measurement process in order to store sufficient energy in the buffer capacitor 21.
  • the at least one Wiegand wire unit 19 is an integral part of the electric motor 14 and does not need to be adjusted separately from the rotor of the electric motor (14). LIST OF REFERENCE NUMBERS

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)
PCT/DE2018/100459 2017-06-07 2018-05-15 Verfahren und vorrichtung zur absolutpositionsbestimmung eines sich um eine drehachse drehenden bauteiles eines aktors, insbesondere eines kupplungsaktors WO2018224081A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112018002898.4T DE112018002898B4 (de) 2017-06-07 2018-05-15 Verfahren und Vorrichtung zur Absolutpositionsbestimmung eines sich um eine Drehachse drehenden Bauteiles eines Aktors, insbesondere eines Kupplungsaktors
CN201880033605.7A CN110651135B (zh) 2017-06-07 2018-05-15 用于确定致动器的围绕旋转轴线旋转的构件的绝对位置的方法和装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017112507 2017-06-07
DE102017112507.8 2017-06-07

Publications (1)

Publication Number Publication Date
WO2018224081A1 true WO2018224081A1 (de) 2018-12-13

Family

ID=62495529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2018/100459 WO2018224081A1 (de) 2017-06-07 2018-05-15 Verfahren und vorrichtung zur absolutpositionsbestimmung eines sich um eine drehachse drehenden bauteiles eines aktors, insbesondere eines kupplungsaktors

Country Status (3)

Country Link
CN (1) CN110651135B (zh)
DE (2) DE112018002898B4 (zh)
WO (1) WO2018224081A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114858110B (zh) * 2022-05-09 2023-12-15 潍柴动力股份有限公司 离合器位置传感器的检测方法、装置及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034744A1 (de) * 2009-02-24 2010-09-30 Mehnert, Walter, Dr. Absoluter magnetischer Positionsgeber
DE102011109551A1 (de) * 2011-08-05 2013-02-07 Wachendorff Automation Gmbh & Co. Kg Messsystem zur Positionsbestimmung eines gegenüber einem Referenzkörper verschiebbaren oder verdrehbaren Körpers mit einem magnetischen Encoder
DE102012008888A1 (de) * 2012-04-30 2013-10-31 Fritz Kübler GmbH Zähl- und Sensortechnik Energieautarker Multiturn-Drehgeber und Verfahren zur Ermittlung einer eindeutigen Position einer Geberwelle mit dem Multiturn-Drehgeber
DE102013222366A1 (de) * 2012-11-22 2014-05-22 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors
US20140184030A1 (en) * 2012-12-28 2014-07-03 II Donald P. Labriola Integrated multi-turn absolute position sensor for high pole count motors
DE102016212173A1 (de) 2016-07-05 2018-01-11 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Ermittlung einer Umdrehungszahl und einer Winkelposition eines um eine Drehachse verdrehbaren Bauteils

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5404301A (en) * 1993-06-07 1995-04-04 Eaton Corporation Method and apparatus of vehicle transmission control by assured minimum pulse width
EP2343506B1 (de) * 2009-12-22 2013-06-26 SICK STEGMANN GmbH Längenmessvorrichtung
US8346451B2 (en) * 2010-02-23 2013-01-01 GM Global Technology Operations LLC Realtime estimation of clutch piston position

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009034744A1 (de) * 2009-02-24 2010-09-30 Mehnert, Walter, Dr. Absoluter magnetischer Positionsgeber
DE102011109551A1 (de) * 2011-08-05 2013-02-07 Wachendorff Automation Gmbh & Co. Kg Messsystem zur Positionsbestimmung eines gegenüber einem Referenzkörper verschiebbaren oder verdrehbaren Körpers mit einem magnetischen Encoder
DE102012008888A1 (de) * 2012-04-30 2013-10-31 Fritz Kübler GmbH Zähl- und Sensortechnik Energieautarker Multiturn-Drehgeber und Verfahren zur Ermittlung einer eindeutigen Position einer Geberwelle mit dem Multiturn-Drehgeber
DE102013222366A1 (de) * 2012-11-22 2014-05-22 Schaeffler Technologies Gmbh & Co. Kg Verfahren zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors
US20140184030A1 (en) * 2012-12-28 2014-07-03 II Donald P. Labriola Integrated multi-turn absolute position sensor for high pole count motors
DE102016212173A1 (de) 2016-07-05 2018-01-11 Schaeffler Technologies AG & Co. KG Verfahren und Vorrichtung zur Ermittlung einer Umdrehungszahl und einer Winkelposition eines um eine Drehachse verdrehbaren Bauteils

Also Published As

Publication number Publication date
CN110651135B (zh) 2021-04-16
DE112018002898B4 (de) 2023-09-21
DE102018111588A1 (de) 2018-12-13
DE112018002898A5 (de) 2020-02-20
CN110651135A (zh) 2020-01-03

Similar Documents

Publication Publication Date Title
EP2923103B1 (de) Verfahren zur bestimmung und/oder ansteuerung einer position eines elektromotors
EP1896309B1 (de) Vorrichtung und verfahren zur elektromechanischen bremsunterstützung
WO2013007414A1 (de) Verfahren, regel- bzw. steuergerät zum - und feststellbremse mit - zum einstellen einer feststellbremse in einem fahrzeug
DE102013205905A1 (de) Verfahren und Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines Elektromotors, insbesondere in einem Kupplungsbetätigungssystem eines Kraftfahrzeuges
DE102016212175A1 (de) Verfahren und Vorrichtung zur Bestimmung und/oder Ansteuerung einer Position eines elektrisch-kommutierbaren Elektromotors, insbesondere für ein Kupplungsbetätigungssystem eines Fahrzeuges
DE102017109403B4 (de) Verfahren und Vorrichtung zur Absolutpositionsbestimmung eines sich um eine Drehachse drehenden Bauteiles eines Aktors, insbesondere eines Kupplungsaktors
EP2928739A1 (de) Verfahren zur unterdruckversorgung eines pneumatischen bremskraftverstärkers eines kraftfahrzeug-bremssystems
WO2018028739A1 (de) Verfahren zum gegenseitigen justierten einer magnetsensorvorrichtung und eines aktuators und aktuatoreinrichtung mit einem aktuator und einer magnetsensorvorrichtung
EP3247613A1 (de) Lenksystem für ein automatisiertes fahren eines kraftfahrzeuges
EP2621078B1 (de) Verfahren und Vorrichtung zum Betreiben eines bürstenlosen Gleichstrommotors bei der Verstellung eines Stellelementes
EP2346729A2 (de) Hybridantriebssystem
DE102011007369A1 (de) Vorrichtung und Verfahren zum Antrieb einer Tür
EP1619511B1 (de) Erfassung des Verschleisses einer Motoransteuerung
DE112018002898B4 (de) Verfahren und Vorrichtung zur Absolutpositionsbestimmung eines sich um eine Drehachse drehenden Bauteiles eines Aktors, insbesondere eines Kupplungsaktors
DE102016107763A1 (de) Hydraulisch unterstütztes servolenksystem
DE102015221031B4 (de) Verfahren zur Ermittlung eines Tastpunktes und eines Reibwertes einer Hybridtrennkupplung eines Hybridfahrzeuges
WO2017162232A1 (de) Verfahren zum justierten befestigen einer magnetsensorvorrichtung an einem aktuator und aktuator mit einem elektromotor und einer magnetsensorvorrichtung
DE102015226036A1 (de) Bremskraftverstärkungseinrichtung für ein hydraulisches Bremssystem
WO2018149446A1 (de) Sensoranordnung und verfahren zum betrieb einer sensoranordnung zur bestimmung einer position eines aktors in einem kraftfahrzeug
WO2018166553A1 (de) Verfahren und vorrichtung zur beibehaltung einer detektierten absolutposition eines als aktor wirkenden elektromotors in einem kritischen betriebsfall
DE102013222718B4 (de) Elektromechanische Radbremse
DE102011004781A1 (de) Regel- bzw. Steuergerät für eine Feststellbremse in einem Fahrzeug
DE102007033152A1 (de) Verfahren und Vorrichtung zur Diagnose einer Ausgangsgröße eines Gleichstrommotors
EP1803209B1 (de) Vorrichtung zur energiesparenden erfassung einer betriebsgrösse eines bewegbaren elements
DE102010033535A1 (de) Verfahren und System zum Betreiben eines Fahrzeugs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18728788

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112018002898

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18728788

Country of ref document: EP

Kind code of ref document: A1