WO2013007414A1 - Verfahren, regel- bzw. steuergerät zum - und feststellbremse mit - zum einstellen einer feststellbremse in einem fahrzeug - Google Patents

Verfahren, regel- bzw. steuergerät zum - und feststellbremse mit - zum einstellen einer feststellbremse in einem fahrzeug Download PDF

Info

Publication number
WO2013007414A1
WO2013007414A1 PCT/EP2012/058577 EP2012058577W WO2013007414A1 WO 2013007414 A1 WO2013007414 A1 WO 2013007414A1 EP 2012058577 W EP2012058577 W EP 2012058577W WO 2013007414 A1 WO2013007414 A1 WO 2013007414A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
brake
current
time
determined
Prior art date
Application number
PCT/EP2012/058577
Other languages
English (en)
French (fr)
Inventor
Ullrich Sussek
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to CN201280033702.9A priority Critical patent/CN103635366B/zh
Priority to KR1020147000246A priority patent/KR101958503B1/ko
Publication of WO2013007414A1 publication Critical patent/WO2013007414A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/02Brake-action initiating means for personal initiation
    • B60T7/08Brake-action initiating means for personal initiation hand actuated
    • B60T7/10Disposition of hand control
    • B60T7/107Disposition of hand control with electrical power assistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/58Combined or convertible systems
    • B60T13/588Combined or convertible systems both fluid and mechanical assistance or drive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/741Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive acting on an ultimate actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/74Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive
    • B60T13/746Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with electrical assistance or drive and mechanical transmission of the braking action
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/26Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for determining the characteristic of torque in relation to revolutions per unit of time

Definitions

  • the invention relates to a method for setting a parking brake in a vehicle according to the preamble of claim 1.
  • DE 10 2006 052 810 A1 describes a method for estimating the clamping force generated by an electric brake motor in a parking brake of a motor vehicle.
  • the electric brake motor acts on a brake piston, which is a carrier of a brake pad, axially in the direction of a brake disc.
  • the clamping force is estimated taking into account the measured variables from a differential equation system which describes the electrical and mechanical behavior of the electric motor.
  • For measuring the engine speed which is included in the determination of the motor constant, which for the
  • Terminal force determination is required, for example, a Hall sensor can be used.
  • the invention is based on the object, with simple measures without
  • the inventive method can be used in electromechanical parking brake in vehicles, which have an electric brake motor, via which a clamping force for setting the vehicle can be generated.
  • the rotational movement of the rotor of the electric brake motor is transferred into an axial adjusting movement of a spindle, via which a brake piston, which carrier of a brake lining, is subjected to a force against a brake disc axially.
  • the parking brake is equipped with an additional brake device to provide an additional clamping force as needed and in addition to the electromechanical clamping force.
  • the auxiliary brake device is the hydraulic vehicle brake of the
  • the motor constant of the electric brake motor which is required for determining the current braking force, is determined as a function of the motor resistance and from measured current values.
  • the motor load torque can be calculated with the current motor current and from this the clamping force can be calculated on the basis of a gear ratio and efficiency.
  • the currently acting clamping force without a
  • the motor constant depends on the motor resistance, which, according to an advantageous embodiment, from the ratio of an applied operating voltage to a
  • Maximum current is determined, which prevails at engine standstill.
  • the maximum current at engine standstill is in turn determined as a function of measured first and second current values, wherein expediently an idle current is taken into account additionally.
  • the time of the second current reading is twice as long as the time of the first current reading, whereby the times of the current measurements are based on the refer to the current flow.
  • the doubling of the time interval between the first current measuring point and the second current measuring point for determining the maximum current at engine standstill has the advantage that a relatively simple relationship for determining the maximum current is given. In principle, however, it is also possible to select measuring times for the current which, relative to the beginning of the current flow, are in a different relationship to one another as a factor of 2.
  • the motor constant is determined as a function of the motor resistance, wherein additionally the mass moment of inertia of the rotor or armature of the brake motor, the no-load current, the already determined first current measuring value as well as an additional, third current measuring value are taken into account.
  • the third measured current value is tapped at a time that follows in a fixed period of time to the time of the first current reading. This fixed period of time is expediently smaller than the electrical time constant of the brake motor and is in particular shortly after the first measurement time.
  • the measurement time for the third current measured value is still before the measurement time of the second current measurement value which is required to determine the maximum current at motor standstill for calculating the motor resistance.
  • the inventive method runs in a control or control unit in the vehicle, which is expediently part of the parking brake system.
  • FIG. 1 shows a section through an electromechanical parking brake for a vehicle, in which the clamping force is generated by an electric brake motor
  • Fig. 2 is a graph showing the time-dependent course of the current, the voltage and the engine speed during the application process of the parking brake.
  • an electromechanical parking brake 1 for setting a vehicle at a standstill.
  • the parking brake 1 comprises a brake caliper 2 with a pair of pliers 9, which engages over a brake disk 10.
  • the parking brake 1 an electric motor as a brake motor 3, which rotatably drives a spindle 4, on which a run as a spindle nut spindle member 5 is rotatably mounted.
  • the spindle component 5 is adjusted axially.
  • the spindle component 5 moves within a brake piston 6, which is the carrier of a brake pad 7, which is pressed by the brake piston 6 against the brake disk 10.
  • On the opposite side of the brake disk 10 is another brake pad 8, which is held stationary on the pliers 9.
  • the spindle member 5 during a rotational movement of the spindle 4 axially forward in the direction of the brake disc 10 to move or at an opposite rotational movement of the spindle 4 axially to the rear until reaching a stop 1 1.
  • the spindle member 5 acts on the inner end face of the brake piston 6, whereby the axially displaceable mounted in the parking brake 1 brake piston 6 is pressed with the brake pad 7 against the facing end face of the brake disc 10.
  • the parking brake can be assisted by a hydraulic vehicle brake, so that the clamping force is composed of an electromotive component and a hydraulic component.
  • the rear side of the brake piston 6 facing the brake motor is subjected to pressurized hydraulic fluid.
  • Fig. 2 is a graph with the current waveform I, the voltage U and the speed curve n of the electric brake motor time-dependent for a
  • FIG. 2 shows the electromechanical clamping force F K i generated by the electric brake motor and the distance s traveled by the brake motor or an actuator acted upon by the brake motor during the application process.
  • the application process begins by applying an electrical voltage and energizing the brake motor when the circuit is closed.
  • the start phase (phase I) lasts from time t1 to time t2.
  • phase t2 and t3 represent the idle phase (phase II) in which the current I moves to a minimum level.
  • phase III the force build-up phase
  • the switching off of the electric brake motor takes place by opening the electric circuit, so that in the further course the speed n of the brake motor drops to zero.
  • the force buildup or the profile of the clamping force F K i can be determined, for example, based on the course of the current I of the brake motor, which basically has the same course as the electromechanical clamping force. Starting from the low level during the idle phase between t2 and t3, the current profile increases steeply at the beginning of time t3. This
  • Kraftanumblesaless are used.
  • the course of the force build-up can also be determined from the voltage or speed curve or from any combination of the signals current, voltage and rotational speed.
  • the motor constant K M and the motor resistance R M are required as motor characteristics, which are determined from the course of voltage and current of the electric brake motor see. The current increases when you turn on the
  • ⁇ - ⁇ , l 2 denotes the current values measured at times t 1 m and t 2, m , respectively.
  • the times t 1 m and t 2, m relate to the beginning of the current flow.
  • the time t 2 is twice as far after the beginning of the current flow as the time
  • the motor constant K M taking into account the measured value can be ⁇ ⁇ ⁇ at the measurement time t 1 M and a further, third measured current value l 3 at the measuring time t M 3 determine:
  • the measuring time t 3 m is offset by the time period At after the first measuring time t 1 m .
  • the period of time At is expediently small, it is in particular smaller than the electrical time constant ⁇ of the brake motor.
  • the measurement time t 3 M is still before the measurement time t 2 , M, to which the second current measurement value is determined, which is required for the determination of the theoretical maximum current at engine standstill.
  • the period of time At may also be so large that the measurement time t 3 M after the measurement time point t 2, M is.
  • a speed sensor is not required.
  • the value of the motor constant K M the production-related as well as the age of the brake motor and the temperature is very strong, fixed with sufficient accuracy.
  • the motor constant K M the currently acting engine load torque in the electric brake motor can be determined with knowledge of the currently acting current. From the engine load torque, the clamping force F K i can be determined.

Abstract

Bei einem Verfahren zum Einstellen einer Feststellbremse, die eine elektromechanische Bremsvorrichtung mit einem elektrischen Bremsmotor zum Erzeugen einer Klemmkraft umfasst, wird zum Bestimmen der Klemmkraft die Motorkonstante des Bremsmotors als Funktion des Motorwiderstands und aus gemessenen Stromwerten ermittelt.

Description

Beschreibung Titel
VERFAHREN, REGEL- BZW. STEUERGERÄT UM - UND FESTSTELLBREMSE MIT - ZUM EINSTELLEN EINER FESTSTELLBREMSE IN EINEM FAHRZEUG
Die Erfindung bezieht sich auf ein Verfahren zum Einstellen einer Feststellbremse in einem Fahrzeug nach dem Oberbegriff des Anspruches 1 .
Stand der Technik
In der DE 10 2006 052 810 A1 wird ein Verfahren zur Abschätzung der von einem elektrischen Bremsmotor erzeugten Klemmkraft in einer Feststellbremse eines Kraftfahrzeugs beschrieben. Der elektrische Bremsmotor beaufschlagt einen Bremskolben, welcher Träger eines Bremsbelages ist, axial in Richtung auf eine Bremsscheibe. Zur Bestimmung der Klemmkraft werden der Strom, die Versorgungsspannung des Bremsmotors sowie die Motordrehzahl gemessen, anschließend wird die Klemmkraft unter Berücksichtigung der Messgrößen aus einem Differenzialgleichungssystem abgeschätzt, welches das elektrische und mechanische Verhalten des Elektromotors beschreibt. Zur Messung der Motordrehzahl, die in die Bestimmung der Motorkonstante eingeht, welche für die
Klemmkraftermittlung erforderlich ist, kann beispielsweise ein Hall-Sensor verwendet werden.
Offenbarung der Erfindung
Der Erfindung liegt die Aufgabe zu Grunde, mit einfachen Maßnahmen ohne
Verwendung eines Drehzahlsensors eine motorische Kenngröße in einem elektrischen Bremsmotor einer elektromechanischen Bremsvorrichtung zu bestimmen, wobei von der motorischen Kenngröße die elektromechanische Klemmkraft abhängt. Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des Anspruches 1 gelöst. Die Unteransprüche geben zweckmäßige Weiterbildungen an.
Das erfindungsgemäße Verfahren kann bei elektromechanischen Feststellbrem- sen in Fahrzeugen eingesetzt werden, welche einen elektrischen Bremsmotor aufweisen, über den eine Klemmkraft zum Festsetzen des Fahrzeuges erzeugbar ist. Hierbei wird die Rotationsbewegung des Rotors des elektrischen Bremsmotors in eine axiale Stellbewegung einer Spindel übertragen, über die ein Bremskolben, welcher Träger eines Bremsbelages ist, axial gegen eine Brems- scheibe kraftbeaufschlagt wird.
Gegebenenfalls ist die Feststellbremse mit einer Zusatzbremsvorrichtung ausgestattet, um bedarfsweise und zusätzlich zur elektromechanischen Klemmkraft auch eine Zusatzklemmkraft bereitstellen zu können. Beispielsweise handelt es sich bei der Zusatzbremsvorrichtung um die hydraulische Fahrzeugbremse des
Fahrzeugs, deren Hydraulikdruck auf den Bremskolben wirkt.
Beim erfindungsgemäßen Verfahren wird die Motorkonstante des elektrischen Bremsmotors, die zum Bestimmen der aktuellen Bremskraft erforderlich ist, als Funktion des Motorwiderstandes und aus gemessenen Stromwerten ermittelt.
Bei Kenntnis der Motorkonstanten, deren Wert temperaturabhängig ist sowie innerhalb einer Motorbaureihe relativ stark schwanken kann, kann mit dem aktuellen Motorstrom das Motorlastmoment und daraus unter Zugrundelegung einer Getriebeuntersetzung sowie eines Wirkungsgrades die Klemmkraft errechnet werden. Somit ist es möglich, die aktuell wirkende Klemmkraft auch ohne einen
Drehzahlsensor zu ermitteln. Als Messgrößen müssen lediglich der Strom und die Spannung im elektrischen Bremsmotor bestimmt werden.
Die Motorkonstante hängt vom Motorwiderstand ab, der, gemäß vorteilhafter Ausführung, aus dem Verhältnis einer angelegten Betriebsspannung zu einem
Maximalstrom bestimmt wird, welcher bei Motorstillstand herrscht. Der Maximalstrom bei Motorstillstand wird seinerseits als Funktion gemessener erster und zweiter Stromwerte ermittelt, wobei zweckmäßigerweise ein Leerlaufstrom zusätzlich berücksichtigt wird. Hierbei ist es vorteilhaft, dass der Zeitpunkt des zweiten Strom messwertes doppelt so groß wie der Zeitpunkt des ersten Strommesswertes liegt, wobei sich die Zeitpunkte der Strommessungen auf den Be- ginn des Stromflusses beziehen. Die Verdopplung der Zeitspanne zwischen erstem Strommesspunkt und zweitem Strommesspunkt für die Ermittlung des Maximalstroms bei Motorstillstands hat den Vorteil, dass eine verhältnismäßig einfache Beziehung zur Ermittlung des Maximalstroms gegeben ist. Grundsätzlich können aber auch Messzeitpunkte für den Strom gewählt werden, welche, bezogen auf den Beginn des Stromflusses, in einem anderen Verhältnis zueinander als Faktor 2 stehen.
Die Motorkonstante wird als Funktion des Motorwiderstandes ermittelt, wobei zusätzlich das Massenträgheitsmoment des Rotors bzw. Ankers des Bremsmotors, der Leerlaufstrom, der bereits ermittelte erste Strommesswert sowie ein zusätzlicher, dritter Strommesswert berücksichtigt werden. Der dritte Strommesswert wird zu einem Zeitpunkt abgegriffen, der in einer festen Zeitspanne auf den Zeitpunkt des ersten Strom messwertes folgt. Diese feste Zeitspanne ist zweckmäßigerweise kleiner als die elektrische Zeitkonstante des Bremsmotors und liegt insbesondere kurz nach dem ersten Messzeitpunkt. Gegebenenfalls liegt der Messzeitpunkt für den dritten Strommesswert noch vor dem Messzeitpunkt des zweiten Strommesswertes, welcher zur Ermittlung des Maximalstroms bei Motorstillstand zur Berechnung des Motorwiderstandes erforderlich ist.
Das erfindungsgemäße Verfahren läuft in einem Regel- bzw. Steuergerät im Fahrzeug ab, das zweckmäßigerweise Bestandteil des Feststellbremssystems ist.
Weitere Vorteile und zweckmäßige Ausführungen sind den weiteren Ansprüchen, der Figurenbeschreibung und den Zeichnungen zu entnehmen. Es zeigen:
Fig. 1 einen Schnitt durch eine elektromechanische Feststellbremse für ein Fahrzeug, bei der die Klemmkraft über einen elektrischen Bremsmotor erzeugt wird,
Fig. 2 ein Schaubild mit dem zeitabhängigen Verlauf des Stroms, der Spannung und der Motordrehzahl beim Zuspannvorgang der Feststellbremse.
In Fig. 1 ist eine elektromechanische Feststellbremse 1 zum Festsetzen eines Fahrzeugs im Stillstand dargestellt. Die Feststellbremse 1 umfasst einen Brems- sattel 2 mit einer Zange 9, welche eine Bremsscheibe 10 übergreift. Als Stellglied weist die Feststellbremse 1 einen Elektromotor als Bremsmotor 3 auf, der eine Spindel 4 rotierend antreibt, auf der ein als Spindelmutter ausgeführtes Spindelbauteil 5 drehbar gelagert ist. Bei einer Rotation der Spindel 4 wird das Spindel- bauteil 5 axial verstellt. Das Spindelbauteil 5 bewegt sich innerhalb eines Bremskolbens 6, der Träger eines Bremsbelags 7 ist, welcher von dem Bremskolben 6 gegen die Bremsscheibe 10 gedrückt wird. Auf der gegenüberliegenden Seite der Bremsscheibe 10 befindet sich ein weiterer Bremsbelag 8, der ortsfest an der Zange 9 gehalten ist.
Innerhalb des Bremskolbens 6 kann sich das Spindelbauteil 5 bei einer Drehbewegung der Spindel 4 axial nach vorne in Richtung auf die Bremsscheibe 10 zu bzw. bei einer entgegen gesetzten Drehbewegung der Spindel 4 axial nach hinten bis zum Erreichen eines Anschlags 1 1 bewegen. Zum Erzeugen einer Klemmkraft beaufschlagt das Spindelbauteil 5 die innere Stirnseite des Bremskolbens 6, wodurch der axial verschieblich in der Feststellbremse 1 gelagerte Bremskolben 6 mit dem Bremsbelag 7 gegen die zugewandte Stirnfläche der Bremsscheibe 10 gedrückt wird. Die Feststellbremse kann erforderlichenfalls von einer hydraulischen Fahrzeugbremse unterstützt werden, so dass sich die Klemmkraft aus einem elektromotorischen Anteil und einem hydraulischen Anteil zusammensetzt. Bei der hydraulischen Unterstützung wird die dem Bremsmotor zugewandte Rückseite des Bremskolbens 6 mit unter Druck stehendem Hydraulikfluid beaufschlagt.
In Fig. 2 ist ein Schaubild mit dem Stromverlauf I, der Spannung U und dem Drehzahlverlauf n des elektrischen Bremsmotors zeitabhängig für einen
Zuspannvorgang dargestellt. Des Weiteren ist in Fig. 2 die elektromechanische Klemmkraft FKi eingetragen, die vom elektrischen Bremsmotor erzeugt wird, so- wie der vom Bremsmotor bzw. einem vom Bremsmotor beaufschlagten Stellglied zurückgelegte Weg s während des Zuspannvorgangs.
Zum Zeitpunkt t1 beginnt der Zuspannvorgang, indem eine elektrische Spannung aufgebracht und der Bremsmotor bei geschlossenem Stromkreis unter Strom ge- setzt wird. Die Startphase (Phase I) dauert vom Zeitpunkt t1 bis zum Zeitpunkt t2.
Zum Zeitpunkt t2 haben die Spannung U und die Motordrehzahl n ihr Maximum erreicht. Die Phase zwischen t2 und t3 stellt die Leerlaufphase dar (Phase II), in welcher der Strom I sich auf einem Minimumniveau bewegt. Daran schließt sich ab dem Zeitpunkt t3 die Kraftaufbauphase (Phase III) bis zum Zeitpunkt t4 an, in der die Bremsbeläge an der Bremsscheibe anliegen und mit zunehmender Klemmkraft FKi gegen die Bremsscheibe gedrückt werden. Zum Zeitpunkt t4 erfolgt das Abschalten des elektrischen Bremsmotors durch Öffnen des Stromkreises, so dass im weiteren Verlauf die Drehzahl n des Bremsmotors bis auf Null abfällt. Mit der Phase des Kraftaufbaus zum Zeitpunkt t3 fällt der Kraftanstiegspunkt zusammen. Der Kraftaufbau bzw. der Verlauf der Klemmkraft FKi kann beispielsweise anhand des Verlaufs des Strom I des Bremsmotors ermittelt werden, der grundsätzlich den gleichen Verlauf wie die elektromechanische Klemmkraft aufweist. Ausgehend von dem niedrigen Niveau während der Leerphase zwischen t2 und t3 steigt der Stromverlauf zu Beginn des Zeitpunktes t3 steil an. Dieser
Anstieg des Stroms kann detektiert und zum Bestimmen des
Kraftanstiegspunktes herangezogen werden. Grundsätzlich kann der Verlauf des Kraftaufbaus aber auch aus dem Spannungs- oder Drehzahlverlauf bzw. aus einer beliebigen Kombination der Signale Strom, Spannung und Drehzahl be- stimmt werden.
Zur Bestimmung der Klemmkraft FKi ohne Verwendung eines Drehzahlsensors werden als motorische Kenngrößen die Motorkonstante KM sowie der Motorwiderstand RM benötigt, die aus dem Verlauf von Spannung und Strom des elektri- sehen Bremsmotors bestimmt werden. Der Strom steigt beim Einschalten des
Bremsmotors nur durch die Ankerinduktivität gebremst stark an und fällt anschließend auf Grund der beginnenden Rotation signifikant langsamer wieder ab. Im abfallenden Ast wird der Stromverlauf im Wesentlichen von der mechanischen Zeitkonstante des Motors bestimmt, die von der Massenträgheit des Ankers J, der Motorkonstanten KM und dem Motorwiderstand RM beeinflusst wird.
Zur Bestimmung des Motorwiderstandes RM werden Stromwerte des Bremsmotors im Stillstand - bei blockiertem Anker - zu einem Zeitpunkt gemessen, in welchem der Strom seinen eingeschwungenen Zustand zumindest annähernd er- reicht hat. Hierzu wird im abfallenden Ast nach Überschreiten der Einschaltstromspitze der Strom zu zwei Zeitpunkten t1 m und t2,m gemessen und hieraus der theoretische Maximalstrom lmax berechnet, der bei stehendem Bremsmotor fließen würde. Unter Berücksichtigung des Leerlaufstroms lL, welcher in der Phase nach dem Einschaltstromstoß bestimmt wird, in der die Drehzahl konstant ist und Leerlaufstrom nur von der Last bzw. von der Reibung des Motors bestimmt wird, wird der Maximalstrom lmax gemäß der Beziehung
berechnet, wobei \-\, l2 die zu den Zeitpunkten t1 m bzw. t2,m gemessenen Stromwerte bezeichnen.
Die Zeitpunkte t1 m und t2,m beziehen sich auf den Beginn des Stromflusses. Der Zeitpunkt t2 liegt doppelt so weit nach Beginn des Stromflusses wie der Zeitpunkt
Unter Berücksichtigung der zusätzlich gemessenen Motor- bzw. Betriebsspannung UB kann gemäß
R M der Motorwiderstand RM aus dem Verhältnis der Motor- bzw. Betriebsspannung UB und dem theoretischen Maximalstrom lmax berechnet werden.
Nach Ermittlung des Motorwiderstandes RM lässt sich die Motorkonstante KM unter Berücksichtigung des Messwertes \^\ zum Messzeitpunkt t1 M und eines weiteren, dritten Strom messwertes l3 zum Messzeitpunkt t3 M bestimmen:
RM -J ~
At ' 1X - 1L wobei für die Motorkonstante KM neben dem Motorwiderstand RM zusätzlich das Massenträgheitsmoment J des Ankers des Bremsmotors berücksichtigt wird. Der Messzeitpunkt t3 m liegt um die Zeitspanne At versetzt nach dem ersten Messzeitpunkt t1 m. Die Zeitspanne At ist zweckmäßigerweise klein, sie ist insbesondere kleiner als die elektrische Zeitkonstante τ des Bremsmotors. Gegebenenfalls liegt der Messzeitpunkt t3 M noch vor dem Messzeitpunkt t2,M, zu welchem der zweite Strommesswert bestimmt wird, welcher für die Ermittlung des theoretischen Maximalstroms bei Motorstillstand erforderlich ist. Grundsätzlich kann die Zeitspanne At aber auch so groß sein, dass der Messzeitpunkt t3 M nach dem Messzeitpunkt t2,M liegt.
Mit dem vorbeschriebenen Verfahren kann die Motorkonstante vor jedem
Zuspannvorgang der elektromechanischen Feststellbremse aktuell bestimmt werden. Ein Drehzahlsensor ist nicht erforderlich. Damit liegt der Wert der Motorkonstanten KM, die produktionsbedingt sowie über das Betriebsalter des Bremsmotors und die Temperatur stark streut, mit hinreichender Genauigkeit fest. Unter Berücksichtigung der Motorkonstanten KM kann das aktuell wirkende Motorlastmoment im elektrischen Bremsmotor bei Kenntnis des aktuell wirkenden Stromes ermittelt werden. Aus dem Motorlastmoment kann die Klemmkraft FKi bestimmt werden.

Claims

Ansprüche
1 . Verfahren zum Einstellen einer Feststellbremse (1 ), die eine elektromecha- nische Bremsvorrichtung mit einem elektrischen Bremsmotor (3) zum Erzeugen einer elektromechanischen Klemmkraft (FKi) umfasst, dadurch gekennzeichnet, dass zum Bestimmen der Klemmkraft (FKi) die Motorkonstante (KM) des elektrischen Bremsmotors (3) als Funktion des Motorwiderstands (RM) und aus gemessenen Stromwerten ( , l2, I3) ermittelt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der Motorwiderstand (RM) aus dem Verhältnis von angelegter Betriebsspannung (UB) und einem Maximalstrom (lmax) bei Motorstillstand bestimmt wird:
Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der Maximalstrom (lmax) bei Motorstillstand als Funktion gemessener Stromwerte (l'i , l2) ermittelt wird.
Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Maximalstrom (lmax) bei Motorstillstand aus dem Zusammenhang
Figure imgf000009_0001
ermittelt wird, wobei
lL den Leerlaufstrom
, l2 gemessene Stromwerte zu Zeitpunkten t1 m bzw. \2,
bezeichnen. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die Zeitpunkte ti,m bzw. t2,m sich auf den Beginn des Stromflusses beziehen und der Zeitpunkt t2,m doppelt so weit nach Beginn des Stromflusses liegt wie der Zeitpunkt t1 m.
Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Motorkonstante (KM) aus dem Zusammenhang
Figure imgf000010_0001
ermittelt wird, wobei
J das Massenträgheitsmoment des Ankers des Bremsmotors l3 einen gemessenen Stromwert zum Zeitpunkt t3 m = t1 m+ At At eine auf t1 m folgende Zeitspanne bezeichnen.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Zeitspanne At kleiner ist als die elektrische Zeitkonstante (τ) des Bremsmotors ist.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass der Zeitpunkt t3,m vor dem Zeitpunkt t2,m liegt.
9. Regel- bzw. Steuergerät zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8.
10. Feststellbremse in einem Fahrzeug mit einem Regel- bzw. Steuergerät nach Anspruch 9.
PCT/EP2012/058577 2011-07-08 2012-05-09 Verfahren, regel- bzw. steuergerät zum - und feststellbremse mit - zum einstellen einer feststellbremse in einem fahrzeug WO2013007414A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280033702.9A CN103635366B (zh) 2011-07-08 2012-05-09 调整驻车制动器的方法、调节和/或控制器及驻车制动器
KR1020147000246A KR101958503B1 (ko) 2011-07-08 2012-05-09 차량 내 주차 브레이크의 조절 방법, 폐회로 제어 및/또는 개회로 제어 유닛, 및 상기 유형의 폐회로 제어 및/또는 개회로 제어 유닛을 구비한 주차 브레이크

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110078900 DE102011078900A1 (de) 2011-07-08 2011-07-08 Verfahren zum Einstellen einer Feststellbremse in einem Fahrzeug
DE102011078900.6 2011-07-08

Publications (1)

Publication Number Publication Date
WO2013007414A1 true WO2013007414A1 (de) 2013-01-17

Family

ID=46062271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/058577 WO2013007414A1 (de) 2011-07-08 2012-05-09 Verfahren, regel- bzw. steuergerät zum - und feststellbremse mit - zum einstellen einer feststellbremse in einem fahrzeug

Country Status (4)

Country Link
KR (1) KR101958503B1 (de)
CN (1) CN103635366B (de)
DE (1) DE102011078900A1 (de)
WO (1) WO2013007414A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106768586A (zh) * 2016-12-14 2017-05-31 广州汽车集团股份有限公司 电子驻车卡钳夹紧力校验方法和系统
JP2018516206A (ja) * 2015-06-22 2018-06-21 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電気機械式のブレーキ装置で制御ストロークを算出するための方法
CN110641440A (zh) * 2018-06-27 2020-01-03 罗伯特·博世有限公司 用于获取具有电制动马达的机电的制动装置中的制动力的方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014203350A1 (de) * 2014-02-25 2015-08-27 Robert Bosch Gmbh Verfahren zum Einstellen einer Feststellbremse in einem Fahrzeug
DE102015209021A1 (de) 2015-05-18 2016-11-24 Robert Bosch Gmbh Verfahren zum Betätigen einer Feststellbremse in einem Fahrzeug
DE102016208605A1 (de) 2015-05-22 2016-11-24 Robert Bosch Gmbh Verfahren zum Bereitstellen einer Bremskraft in einem Fahrzeug
DE102015210431A1 (de) 2015-06-08 2016-12-08 Robert Bosch Gmbh Verfahren zum Ansteuern einer Feststellbremse in einem Fahrzeug
DE102015210678A1 (de) 2015-06-11 2016-12-15 Robert Bosch Gmbh Verfahren zum Festsetzen eines Fahrzeugs
DE102015214119A1 (de) 2015-07-27 2017-02-02 Robert Bosch Gmbh Verfahren zum Erzeugen einer Parkbremskraft in einem Fahrzeug mit hydraulischem Bremssystem
DE102016205298A1 (de) * 2016-03-31 2017-10-05 Robert Bosch Gmbh Verfahren zum Bereitstellen einer Bremskraft in einem Fahrzeug
DE102016207284A1 (de) 2016-04-28 2017-11-02 Robert Bosch Gmbh Automatisierte Parkbremse und Verfahren zum Steuern einer automatisierten Parkbremse nach einem Unfall eines Kraftfahrzeugs
DE102016010815A1 (de) * 2016-09-08 2018-03-08 Lucas Automotive Gmbh Technik zur Charakterisierung einer elektromechanischen Aktuatoreinheit für eine Fahrzeugsbremse
KR20210011697A (ko) * 2019-07-23 2021-02-02 주식회사 만도 차량 제어 장치 및 차량 제어 방법
CN114228677B (zh) * 2021-12-28 2023-03-24 瀚德万安(上海)电控制动系统有限公司 电动制动器控制方法、装置、计算机设备及存储介质
EP4353551A1 (de) * 2022-10-14 2024-04-17 Akebono Brake Industry Co., Ltd. Verfahren zur steuerung eines elektromechanischen bremssystems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006052810A1 (de) 2006-11-09 2008-05-15 Robert Bosch Gmbh Verfahren zur Abschätzung einer Kraftentfaltung eines an eine Versorgungsspannung anschließbaren Aktuators
WO2009053429A1 (de) * 2007-10-24 2009-04-30 Continental Teves Ag & Co. Ohg Feststellbremse und verfahren zum betreiben derselben
DE102009001258A1 (de) * 2009-03-02 2010-09-09 Robert Bosch Gmbh Verfahren zur Überwachung der thermischen Belastung eines Elektromotors
DE102009027479A1 (de) * 2009-07-06 2011-01-13 Robert Bosch Gmbh Vorrichtung und Verfahren zum Überwachen einer Feststellbremse
DE102009028505A1 (de) * 2009-08-13 2011-02-17 Robert Bosch Gmbh Verfahren zum Einstellen der Klemmkraft einer hydraulisch unterstützten elektromotorischen Feststellbremse
US20110224880A1 (en) * 2010-03-12 2011-09-15 Frank Baehrle-Miller Method for setting the clamping force exerted by a parking brake

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100683163B1 (ko) * 2002-04-08 2007-02-15 주식회사 만도 유압 브레이크 시스템을 위한 유압펌프 구동제어장치 및그 제어방법
DE102004004992B4 (de) * 2004-01-30 2008-03-13 Lucas Automotive Gmbh Verfahren zum Betreiben der Bremsausrüstung eines Fahrzeugs
DE102008018749A1 (de) * 2007-09-12 2009-03-26 Continental Teves Ag & Co. Ohg Verfahren zum gesicherten Lösen einer elektromechanisch betätigbaren Feststellbremse

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006052810A1 (de) 2006-11-09 2008-05-15 Robert Bosch Gmbh Verfahren zur Abschätzung einer Kraftentfaltung eines an eine Versorgungsspannung anschließbaren Aktuators
WO2009053429A1 (de) * 2007-10-24 2009-04-30 Continental Teves Ag & Co. Ohg Feststellbremse und verfahren zum betreiben derselben
DE102009001258A1 (de) * 2009-03-02 2010-09-09 Robert Bosch Gmbh Verfahren zur Überwachung der thermischen Belastung eines Elektromotors
DE102009027479A1 (de) * 2009-07-06 2011-01-13 Robert Bosch Gmbh Vorrichtung und Verfahren zum Überwachen einer Feststellbremse
DE102009028505A1 (de) * 2009-08-13 2011-02-17 Robert Bosch Gmbh Verfahren zum Einstellen der Klemmkraft einer hydraulisch unterstützten elektromotorischen Feststellbremse
US20110224880A1 (en) * 2010-03-12 2011-09-15 Frank Baehrle-Miller Method for setting the clamping force exerted by a parking brake

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018516206A (ja) * 2015-06-22 2018-06-21 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電気機械式のブレーキ装置で制御ストロークを算出するための方法
CN106768586A (zh) * 2016-12-14 2017-05-31 广州汽车集团股份有限公司 电子驻车卡钳夹紧力校验方法和系统
CN106768586B (zh) * 2016-12-14 2019-04-02 广州汽车集团股份有限公司 电子驻车卡钳夹紧力校验方法和系统
CN110641440A (zh) * 2018-06-27 2020-01-03 罗伯特·博世有限公司 用于获取具有电制动马达的机电的制动装置中的制动力的方法

Also Published As

Publication number Publication date
CN103635366B (zh) 2017-05-31
CN103635366A (zh) 2014-03-12
DE102011078900A1 (de) 2013-01-10
KR101958503B1 (ko) 2019-03-14
KR20140036297A (ko) 2014-03-25

Similar Documents

Publication Publication Date Title
WO2013007414A1 (de) Verfahren, regel- bzw. steuergerät zum - und feststellbremse mit - zum einstellen einer feststellbremse in einem fahrzeug
EP2504599B1 (de) Verfahren zum betreiben einer feststellbremse eines fahrzeugs
WO2013149743A1 (de) Verfahren zum bereitstellen der von einer feststellbremse erzeugten klemmkraft
EP2651723B1 (de) Verfahren zum einstellen der von einer feststellbremse ausgeübten stellkraft
DE102011004772A1 (de) Verfahren zum Einstellen der von einer Feststellbremse ausgeübten Klemmkraft
DE102014203350A1 (de) Verfahren zum Einstellen einer Feststellbremse in einem Fahrzeug
EP2838767B1 (de) Verfahren zum einstellen einer feststellbremse in einem fahrzeug
DE102011101062A1 (de) Technik zum Ermitteln einer an einer hydraulisch und mechanisch betätigbaren Fahrzeugbremse anliegenden Betätigungskraft
DE102010002825A1 (de) Verfahren zum Einstellen der von einer Feststellbremse ausgeübten Klemmkraft
EP2688778B1 (de) Verfahren zum einstellen einer feststellbremse in einem fahrzeug
DE102015210431A1 (de) Verfahren zum Ansteuern einer Feststellbremse in einem Fahrzeug
DE102010063404A1 (de) Verfahren zum Einstellen der von einer Feststellbremse ausgeübten Klemmkraft
DE102011005842A1 (de) Verfahren zum Einstellen der von einer Feststellbremse ausgeübten Klemmkraft in einem Fahrzeug
DE102011004716A1 (de) Verfahren zum Einstellen einer Feststellbremse in einem Fahrzeug
DE102014226856A1 (de) Verfahren und Vorrichtung zum Betreiben einer Bremseinrichtung, Bremseinrichtung
EP2651721B1 (de) Verfahren zum einstellen der von einer feststellbremse ausgeübten klemmkraft
DE102011004704A1 (de) Verfahren zum Einstellen einer Feststellbremse in einem Fahrzeug
EP3310630B1 (de) Verfahren zur ermittlung des stellwegs in einer elektromechanischen bremsvorrichtung
DE102015209021A1 (de) Verfahren zum Betätigen einer Feststellbremse in einem Fahrzeug
DE102010039309A1 (de) Verfahren zur Ermittlung des Wirkungsgrades einer elektrisch betätigbaren Feststellbremse in einem Fahrzeug
DE102011004741A1 (de) Verfahren zum Einstellen einer Feststellbremse in einem Fahrzeug
DE102010039441A1 (de) Verfahren zur Stellwegerkennung einer elektrisch betätigbaren Feststellbremse in einem Fahrzeug
EP3247597B1 (de) Verfahren und vorrichtung zum betreiben einer parkbremse
DE102012206223A1 (de) Verfahren zum Einstellen einer Feststellbremse in einem Fahrzeug
DE102013201367A1 (de) Verfahren zum Bestimmen der Klemmkraft einer automatischen Feststellbremse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12720481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147000246

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12720481

Country of ref document: EP

Kind code of ref document: A1