WO2018224081A1 - Method and device for determining the absolute position of a component of an actuator rotating about a rotational axis, in particular a clutch actuator - Google Patents
Method and device for determining the absolute position of a component of an actuator rotating about a rotational axis, in particular a clutch actuator Download PDFInfo
- Publication number
- WO2018224081A1 WO2018224081A1 PCT/DE2018/100459 DE2018100459W WO2018224081A1 WO 2018224081 A1 WO2018224081 A1 WO 2018224081A1 DE 2018100459 W DE2018100459 W DE 2018100459W WO 2018224081 A1 WO2018224081 A1 WO 2018224081A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- actuator
- rotating
- sensor
- electric motor
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D5/00—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
- G01D5/12—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
- G01D5/14—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
- G01D5/142—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
- G01D5/145—Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D48/00—External control of clutches
- F16D48/06—Control by electric or electronic means, e.g. of fluid pressure
- F16D48/064—Control of electrically or electromagnetically actuated clutches
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/10—System to be controlled
- F16D2500/102—Actuator
- F16D2500/1021—Electrical type
- F16D2500/1022—Electromagnet
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/30—Signal inputs
- F16D2500/302—Signal inputs from the actuator
- F16D2500/3028—Voltage
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/50—Problem to be solved by the control system
- F16D2500/501—Relating the actuator
- F16D2500/5012—Accurate determination of the clutch positions, e.g. treating the signal from the position sensor, or by using two position sensors for determination
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D2500/00—External control of clutches by electric or electronic means
- F16D2500/70—Details about the implementation of the control system
- F16D2500/704—Output parameters from the control unit; Target parameters to be controlled
- F16D2500/70402—Actuator parameters
- F16D2500/7041—Position
Definitions
- the invention relates to a method for absolute position determination of a rotating about a rotation axis component of an actuator, in particular a clutch actuator, wherein on the component a mitfrontendes magnetic element is arranged and the absolute position of the magnetic element is determined with a magnet element opposite the multi-turn sensor, which is connected to a voltage is supplied.
- a piston of a master cylinder is driven by an electrically commutated electric motor, which is controlled by a control unit. Due to its position, the piston of the master cylinder conveys a hydraulic fluid through a hydraulic line to a slave cylinder, which also has a piston which is displaced by the hydraulic fluid, whereby a force is exerted on a clutch, which is thus changed in position.
- the angular positions and the revolutions of the rotor are monitored by means of a multi-turn sensor.
- a multi-turn sensor is connected directly to the supply voltage of the control unit in order to constantly detect the magnetic rotation. For this constant monitoring a continuous current is necessary. If the sampling rate of the multiturn sensor is too high, a very high power consumption is required. If the sampling rate is too low, a rotation of the rotor can be overlooked.
- the invention is thus based on the object of specifying a method and a device for determining the absolute position of a rotating component of an actuator, in which a simple, robust and cost-effective multi-turn sensor can be used, which retains its absolute position from the teach-in at the end of the tape.
- a Wiegand wire unit monitors a movement of a magnet arrangement of the rotating component and when detected Movement generated from the magnetic field of the magnet assembly of the rotating member energy and converts it into an electrical voltage, which is provided to power the multi-turn sensor.
- a magnetic field is built up during the rotation of the component, which is detected by the Wiegand wire unit.
- the energy of the magnetic field is converted by the Wiegand wire unit into an electrical voltage, which is supplied to the multi-turn sensor.
- the multiturn sensor is always energized when the component is rotating. This power supply also takes place when the actuator is switched off and an unforeseen movement of the component takes place.
- the absolute position of the electric motor can always be determined outside of a measuring process for an angular or rotational measurement.
- an electric motor driving the actuator is used, from the main magnet forming the magnet arrangement the Wiegand wire unit gains the energy.
- magnets that are already present in the electric motor used to generate energy for the multi-turn sensor. On separate magnets to form a magnetic field can be omitted.
- the multiturn sensor When the actuator is switched off, the multiturn sensor, after having received the voltage transmitted by the Wiegand wire unit, passes into an operating state in which it measures and stores the current position of the component.
- the multiturn sensor is only energized for as long as a short-term measuring and storage process is necessary when the actuator is switched off.
- the multiturn sensor when the actuator is switched on, the multiturn sensor is supplied with voltage via a supply voltage of a control unit or a battery voltage or via the energy of the Wiegand wire unit, whereby an angle of the component and / or rotation of the component is determined by the multiturn sensor.
- the multi-turn sensor can thus reliably measure the position of the rotating component in each state of the actuator, so that the controller always has the current position of the rotating component at the beginning of the measurement process with switching on the normal operating state.
- an energy store of the multi-turn sensor is charged for self-sufficient operation of the multi-turn sensor. Because of this energy stored in the energy store, the multiturn sensor can also be used during normal operating conditions. which can be powered easily and independently of the battery voltage and supply voltage of the control unit.
- the electric motor is rotated over a predetermined angular range before a measurement process. This ensures that sufficient energy is available to operate the multiturn sensor.
- a development of the invention relates to a device for determining the absolute position of a rotating about a rotation axis component of an actuator, in particular a clutch actuator, with a multi-turn sensor for determining the absolute position of the component carrying a magnetic element, which follows the rotational movement of the component.
- the rotating component has a magnet arrangement, which is arranged opposite at least one Wiegand wire unit, which is connected to the multi-turn sensor for energy transmission. Since the magnet arrangement provides a changing magnetic field when rotating the component, the magnetic energy is converted by the Wiegand wire unit into electrical energy, by means of which the multi-turn sensor is supplied.
- the magnet arrangement is formed by the magnetic element of a sensor arranged on the end face of the rotating component.
- a magnet arrangement which is present in the actuator is used to generate energy for the multiturn sensor, which reduces the costs of the method.
- the magnet assembly is an integral part of the rotating member.
- the rotating component is designed as an electric motor and the magnet arrangement is formed by the main magnets of the electric motor. Since the rotor of the electric motor has a plurality of main magnets, a large magnetic field change is caused by a plurality of pole transitions of the rotating electric motor, which entails an increased energy consumption.
- the at least one Wiegand wire unit is installed within an electric motor that represents the rotating component and faces the main magnet of the electric motor that forms the magnet arrangement. Since with a rotation over 360 ° several rere pole transitions between the individual main magnet of the electric motor occur, more energy is provided via a rotation.
- the at least one Wiegand wire unit is connected to a power supply rather for providing energy for the multi-turn sensor.
- This energy storage is charged when the multiturn sensor is not active. The stored energy is used up when the multiturn sensor is active.
- the multiturn sensor which is in a standby state and / or operating state, is connected to a battery voltage or a supply voltage of a control device. Characterized in that the absolute position of the multi-turn sensor is known in each state of the multi-turn sensor, a corresponding commutation of the electric motor can be done immediately with restart of the controller with this known current position of the actuator.
- 1 is a schematic diagram of a clutch actuation system for actuating an automated clutch
- Fig. 2 shows a first embodiment of the device according to the invention with a
- Fig. 3 shows an embodiment of the device according to the invention with a Wiegand wire unit
- Fig. 4 shows a second embodiment of the method according to the invention with two
- a clutch actuating system 1 for an automated clutch is shown in simplified form.
- the clutch actuation system 1 is assigned to a friction clutch 2 in a drive train of a motor vehicle and comprises a master cylinder 3 which is connected to a slave cylinder 5 via a hydraulic line 4 designated as a pressure line is.
- a slave piston 6 is movable back and forth, which actuates the friction clutch 2 via an actuating element 7 with the interposition of a bearing 8.
- the master cylinder 3 can be connected to an expansion tank 9 via a connection opening.
- a master piston 10 is mounted axially movable.
- a piston rod 1 1 of the master cylinder 3 is coupled via a threaded spindle 12 with an electric motor actuator 13.
- the electromotive actuator 13 includes an electric motor 14 designed as a commutated electric motor and a control unit 15.
- the threaded spindle 12 converts a rotational movement of the electric motor 14 into a longitudinal movement of the master piston 10 of the master cylinder 3.
- the friction clutch 2 is thus automatically actuated by the electric motor 14, the threaded spindle 12, the master cylinder 3 and the slave cylinder 5.
- the electric motor 14 is an electrically commutated DC motor, it is necessary to know its absolute position for the position control of the electric motor 14.
- This absolute position is detected by a multi-turn sensor 16.
- the multi-turn sensor 16 is connected in its normal operating state to the control unit 15 and is powered by its supply voltage.
- the multi-turn sensor 16 is part of a chip 17, as shown in Fig. 2.
- the chip 17 is arranged such that the multi-turn sensor 16 faces the rotor of the electric motor 14.
- FIG. 2 for the sake of clarity, only a magnetic element 18 is shown, which is fixedly attached to an end face of the rotor of the electric motor 14 and whose rotational movement follows. This magnetic element 18 cooperates with the multi-turn sensor 16 in determining the absolute position of the electric motor 14.
- the magnetic element 18 is monitored by an opposite Wiegand wire unit 19, which is connected via a line 20 to a buffer capacitor 21 of the multi-turn sensor 16.
- the multi-turn sensor 16 is coupled to a battery voltage Ußatt.
- the chip 17 is connected to the supply voltage of the control unit 15 and determines the angle of the magnetic element 18 and counts its revolutions of the electric motor 14. These revolutions are necessary to properly adjust the commutation of the electric motor 14.
- the Wiegand wire unit 19 is a sensor which receives as an essential component Wiegand wires having a parallel hysteresis curve with pronounced discontinuities due to parallel soft and hard magnetic areas Effect are known.
- the sudden change of the magnetization caused by the positional change of the magnetic member 18 of the rotor of the electric motor 14 induces a voltage in a coil near the wires. This voltage is forwarded via the line 20 to the chip 17, whereby the multi-turn sensor 16 is energized.
- the buffer capacitor 21, which supplies the multiturn sensor 16 with energy is charged.
- the magnetic element 18 contains two-pole magnets, the change in the magnet measured by the Wiegand wire unit 19 is very small, which is not always sufficient for the operation of the multi-turn sensor 16.
- the Wiegand wire unit 19 is arranged so as to directly face the main magnet 22 of the electric motor 14 (FIG. 3). The pole transitions of the main magnets 22, a stronger magnetic field is initiated, whereby more energy over a rotation of 360 ° is provided, which can be used for self-sufficient supply of the multi-turn sensor 16 for measuring the angle of the electric motor 14.
- the actuator 2, 12, 13 is switched off, such energy provided by the Wiegand wire unit 19 can be used to charge the buffer capacitor 21.
- the rotor of the electric motor 14 is rotated by a defined angular range before the measurement process in order to store sufficient energy in the buffer capacitor 21.
- the at least one Wiegand wire unit 19 is an integral part of the electric motor 14 and does not need to be adjusted separately from the rotor of the electric motor (14). LIST OF REFERENCE NUMBERS
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- Mechanical Engineering (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
Abstract
The invention relates to a method for determining the absolute position of a component of an actuator rotating about a rotational axis, in particular a clutch actuator, wherein a co-rotating magnetic element (18) is arranged on the component (14), and the absolute position of the magnetic element (18) is detected by means of a multi-turn sensor (16) located opposite the magnetic element (18), which multi-turn sensor sensor (16) is supplied with a voltage. In a method in which a particularly robust and simple multi-turn sensor can be used, a Wiegand wire unit (19) monitors movement of a magnetic assembly (18, 22) of the rotating component (14) and generates energy when movement is detected from the magnetic field of the magnetic assembly (18, 22) of the rotating component (14) and converts this into electrical voltage, which is provided to supply the multi-turn sensor (16) with voltage.
Description
Verfahren und Vorrichtung zur Absolutpositionsbestimmung eines sich um eine Drehachse drehenden Bauteiles eines Aktors, insbesondere eines Kupplungsaktors Method and device for absolute position determination of a rotating about a rotation axis component of an actuator, in particular a clutch actuator
Die Erfindung betrifft ein Verfahren zur Absolutpositionsbestimmung eines sich um eine Drehachse drehenden Bauteiles eines Aktors, insbesondere eines Kupplungsaktors, wobei an dem Bauteil ein mitdrehendes Magnetelement angeordnet ist und die Absolutposition des Magnetelementes mit einem dem Magnetelement gegenüberliegenden Multiturn-Sensor ermittelt wird, der mit einer Spannung versorgt wird. The invention relates to a method for absolute position determination of a rotating about a rotation axis component of an actuator, in particular a clutch actuator, wherein on the component a mitdrehendes magnetic element is arranged and the absolute position of the magnetic element is determined with a magnet element opposite the multi-turn sensor, which is connected to a voltage is supplied.
In Kupplungsbetätigungssystemen in Kraftfahrzeugen, insbesondere bei elektrohydraulischen Kupplungsbetätigungssystemen, wird ein Kolben eines Geberzylinders von einem elektrisch kommutierten Elektromotor angetrieben, der von einem Steuergerät angesteuert wird. Der Kolben des Geberzylinders befördert aufgrund seiner Position eine Hydraulikflüssigkeit durch eine Hydraulikleitung zu einem Nehmerzylinder, welcher ebenfalls einen Kolben aufweist, der durch die Hydraulikflüssigkeit verstellt wird, wodurch eine Kraft auf eine Kupplung ausgeübt wird, welche somit in ihrer Position verändert wird. Zur genauen Ansteuerung des Elektromotors und somit der Einstellung einer genauen Kupplungsposition muss eine Winkelposition eines Rotors des elektrisch kommutierten Elektromotors genau erfasst werden. Wie aus der unveröffentlichten Patentanmeldung der Anmelderin mit dem Aktenzeichen DE 10 2016 212 173.1 hervorgeht, werden die Winkelpositionen bzw. die Umdrehungen des Rotors mittels eines Multiturn-Sensors überwacht. Ein solcher Multi- turn-Sensor ist dabei direkt an die Versorgungsspannung des Steuergerätes angeschlossen, um die Magnetdrehung ständig zu detektieren. Für diese ständige Überwachung ist ein Dauerstrom notwendig. Ist die Abtastrate des Multiturnsensors zu hoch, wird ein sehr hoher Stromverbrauch benötigt. Ist die Abtastrate zu gering, kann eine Drehung des Rotors übersehen werden. In clutch actuation systems in motor vehicles, especially in electro-hydraulic clutch actuation systems, a piston of a master cylinder is driven by an electrically commutated electric motor, which is controlled by a control unit. Due to its position, the piston of the master cylinder conveys a hydraulic fluid through a hydraulic line to a slave cylinder, which also has a piston which is displaced by the hydraulic fluid, whereby a force is exerted on a clutch, which is thus changed in position. For precise control of the electric motor and thus the setting of a precise coupling position, an angular position of a rotor of the electrically commutated electric motor must be accurately detected. As is apparent from the unpublished patent application of the applicant with the file number DE 10 2016 212 173.1, the angular positions and the revolutions of the rotor are monitored by means of a multi-turn sensor. Such a multi-turn sensor is connected directly to the supply voltage of the control unit in order to constantly detect the magnetic rotation. For this constant monitoring a continuous current is necessary. If the sampling rate of the multiturn sensor is too high, a very high power consumption is required. If the sampling rate is too low, a rotation of the rotor can be overlooked.
Der Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zur Absolutpositionsbestimmung eines sich drehenden Bauteiles eines Aktors anzugeben, bei welchem ein einfacher, robuster und kostengünstiger Multiturn-Sensor verwendet werden kann, der ab dem Einlernen am Bandende seine Absolutposition behält. The invention is thus based on the object of specifying a method and a device for determining the absolute position of a rotating component of an actuator, in which a simple, robust and cost-effective multi-turn sensor can be used, which retains its absolute position from the teach-in at the end of the tape.
Erfindungsgemäß ist die Aufgabe dadurch gelöst, dass eine Wiegand-Drahteinheit eine Bewegung einer Magnetanordnung des sich drehenden Bauteiles überwacht und bei detektierter
Bewegung aus dem Magnetfeld der Magnetanordnung des sich drehenden Bauteiles Energie generiert und diese in eine elektrische Spannung umwandelt, welche zur Spannungsversorgung des Multiturn-Sensors bereitgestellt wird. Durch die Magnetanordnung des sich drehenden Bauteiles wird beim Drehen des Bauteils ein Magnetfeld aufgebaut, welches durch die Wiegand-Drahteinheit detektiert wird. Die Energie des Magnetfeldes wird durch die Wiegand- Drahteinheit in eine elektrische Spannung umgewandelt, mit der der Multiturn-Sensor versorgt wird. Dadurch wird der Multiturn-Sensor immer bestromt, wenn das Bauteil sich dreht. Diese Spannungsversorgung erfolgt auch dann, wenn der Aktor abgeschaltet ist und eine unvorhergesehene Bewegung des Bauteils erfolgt. Mittels dieser Vorgehensweise kann außer- halb eines Messvorganges für eine Winkel- oder Umdrehungsmessung immer die Absolutposition des Elektromotors bestimmt werden. According to the invention, the object is achieved in that a Wiegand wire unit monitors a movement of a magnet arrangement of the rotating component and when detected Movement generated from the magnetic field of the magnet assembly of the rotating member energy and converts it into an electrical voltage, which is provided to power the multi-turn sensor. As a result of the magnet arrangement of the rotating component, a magnetic field is built up during the rotation of the component, which is detected by the Wiegand wire unit. The energy of the magnetic field is converted by the Wiegand wire unit into an electrical voltage, which is supplied to the multi-turn sensor. As a result, the multiturn sensor is always energized when the component is rotating. This power supply also takes place when the actuator is switched off and an unforeseen movement of the component takes place. By means of this procedure, the absolute position of the electric motor can always be determined outside of a measuring process for an angular or rotational measurement.
Vorteilhafterweise wird als sich drehendes Bauteil ein den Aktor antreibender Elektromotor verwendet, aus dessen die Magnetanordnung bildenden Hauptmagneten die Wiegand- Drahteinheit die Energie gewinnt. Bei dieser Vorgehensweise werden Magnete, die bereits im Elektromotor vorhanden sind, zur Energiegewinnung für den Multiturn-Sensor genutzt. Auf separate Magnete zur Ausbildung eines Magnetfeldes kann dabei verzichtet werden. Advantageously, as the rotating component, an electric motor driving the actuator is used, from the main magnet forming the magnet arrangement the Wiegand wire unit gains the energy. In this approach, magnets that are already present in the electric motor, used to generate energy for the multi-turn sensor. On separate magnets to form a magnetic field can be omitted.
In einer Ausgestaltung geht der Multiturn-Sensor bei abgeschaltetem Aktor nach Empfang der von der Wiegand-Drahteinheit übermittelten Spannung in einen Betriebszustand über, in welchen dieser die aktuelle Position des Bauteiles misst und abspeichert. Dabei wird der Multiturn-Sensor nur so lange bestromt, wie bei abgeschaltetem Aktor ein kurzzeitiger Mess- und Speichervorgang nötig ist. In einer Variante wird bei eingeschaltetem Aktor der Multiturn-Sensor über eine Versorgungsspannung eines Steuergerätes oder eine Batteriespannung oder über die Energie der Wiegand-Drahteinheit mit Spannung versorgt, wobei ein Winkel des Bauteiles und/oder Umdrehung des Bauteiles durch den Multiturn-Sensor ermittelt werden. Der Multiturn-Sensor kann somit bei jedem Zustand des Aktors die Position des sich drehenden Bauteiles zuverlässig messen, so dass beim Beginn des Messvorgangs mit Einschalten des normalen Betriebszustandes dem Steuergerät immer die aktuelle Position des sich drehenden Bauteiles vorliegt. When the actuator is switched off, the multiturn sensor, after having received the voltage transmitted by the Wiegand wire unit, passes into an operating state in which it measures and stores the current position of the component. The multiturn sensor is only energized for as long as a short-term measuring and storage process is necessary when the actuator is switched off. In one variant, when the actuator is switched on, the multiturn sensor is supplied with voltage via a supply voltage of a control unit or a battery voltage or via the energy of the Wiegand wire unit, whereby an angle of the component and / or rotation of the component is determined by the multiturn sensor. The multi-turn sensor can thus reliably measure the position of the rotating component in each state of the actuator, so that the controller always has the current position of the rotating component at the beginning of the measurement process with switching on the normal operating state.
In einer Ausführungsform wird mit der durch die Wiegand-Drahteinheit aus dem Hauptmagneten des Elektromotors bereitgestellten Energie ein Energiespeicher des Multiturn-Sensors zum autarken Betrieb des Multiturn-Sensors aufgeladen. Aufgrund dieser im Energiespeicher bevorrateten Energie kann der Multiturn-Sensor auch während des normalen Betriebszustan-
des einfach und unabhängig von Batteriespannung und Versorgungsspannung des Steuergerätes mit Energie versorgt werden. In one embodiment, with the energy provided by the Wiegand wire unit from the main magnet of the electric motor, an energy store of the multi-turn sensor is charged for self-sufficient operation of the multi-turn sensor. Because of this energy stored in the energy store, the multiturn sensor can also be used during normal operating conditions. which can be powered easily and independently of the battery voltage and supply voltage of the control unit.
Vorteilhafterweise wird zur Aufladung des Energiespeichers der Elektromotor vor einem Messvorgang über einen vorgegebenen Winkelbereich gedreht. Dadurch wird sichergestellt, dass ausreichend Energie zum Betrieb des Multiturn-Sensors vorhanden ist. Advantageously, to charge the energy storage, the electric motor is rotated over a predetermined angular range before a measurement process. This ensures that sufficient energy is available to operate the multiturn sensor.
Eine Weiterbildung der Erfindung betrifft eine Vorrichtung zur Absolutpositionsbestimmung eines sich um eine Drehachse drehenden Bauteiles eines Aktors, insbesondere eines Kupp- lungsaktors, mit einem Multiturn-Sensor zur Bestimmung der Absolutposition des ein Magnetelement tragenden Bauteiles, welches der Drehbewegung des Bauteiles folgt. Bei einer Vorrichtung, bei welcher ein kostengünstiger und robuster Multiturn-Sensor Verwendung finden kann, weist das sich drehende Bauteil eine Magnetanordnung auf, welche mindestens einer Wiegand-Drahteinheit gegenüberliegend angeordnet ist, die zur Energieübertragung mit dem Multiturn-Sensor verbunden ist. Da die Magnetanordnung ein sich änderndes Magnetfeld beim Drehen des Bauteiles bereitstellt, wird die magnetische Energie durch die Wiegand- Drahteinheit in elektrische Energie umgesetzt, mittels welcher der Multiturn-Sensor versorgt wird. Vorteilhafterweise ist die Magnetanordnung durch das auf der Stirnseite des sich drehenden Bauteiles angeordnete Magnetelement eines Sensors gebildet. Dadurch wird eine an sich im Aktor vorhandene Magnetanordnung zur Energiegewinnung für den Multiturn-Sensor genutzt, was die Kosten des Verfahrens reduziert. In einer Alternative ist die Magnetanordnung ein integrierter Bestandteil des sich drehenden Bauteiles. A development of the invention relates to a device for determining the absolute position of a rotating about a rotation axis component of an actuator, in particular a clutch actuator, with a multi-turn sensor for determining the absolute position of the component carrying a magnetic element, which follows the rotational movement of the component. In a device in which a cost-effective and robust multi-turn sensor can be used, the rotating component has a magnet arrangement, which is arranged opposite at least one Wiegand wire unit, which is connected to the multi-turn sensor for energy transmission. Since the magnet arrangement provides a changing magnetic field when rotating the component, the magnetic energy is converted by the Wiegand wire unit into electrical energy, by means of which the multi-turn sensor is supplied. Advantageously, the magnet arrangement is formed by the magnetic element of a sensor arranged on the end face of the rotating component. As a result, a magnet arrangement which is present in the actuator is used to generate energy for the multiturn sensor, which reduces the costs of the method. In an alternative, the magnet assembly is an integral part of the rotating member.
In einer Ausgestaltung ist das sich drehende Bauteil als Elektromotor ausgebildet und die Magnetanordnung durch die Hauptmagnete des Elektromotors gebildet. Da der Rotor des Elektromotors mehrere Hauptmagnete aufweist, wird durch mehrere Polübergänge des sich drehenden Elektromotors eine starke Magnetfeldänderung hervorgerufen, welche ein erhöhtes Energieaufkommen nach sich zieht. In one embodiment, the rotating component is designed as an electric motor and the magnet arrangement is formed by the main magnets of the electric motor. Since the rotor of the electric motor has a plurality of main magnets, a large magnetic field change is caused by a plurality of pole transitions of the rotating electric motor, which entails an increased energy consumption.
Vorteilhafterweise ist die mindestens eine Wiegand-Drahteinheit innerhalb eines das sich dre- hende Bauteil darstellenden Elektromotors verbaut und liegt dem die Magnetanordnung bildenden Hauptmagneten des Elektromotors gegenüber. Da bei einer Drehung über 360° meh-
rere Polübergänge zwischen den einzelnen Hauptmagneten des Elektromotors auftreten, wird über eine Drehung mehr Energie bereitgestellt. Advantageously, the at least one Wiegand wire unit is installed within an electric motor that represents the rotating component and faces the main magnet of the electric motor that forms the magnet arrangement. Since with a rotation over 360 ° several rere pole transitions between the individual main magnet of the electric motor occur, more energy is provided via a rotation.
In einer Ausgestaltung ist die mindestens eine Wiegand-Drahteinheit mit einem Energiespei- eher zur Bereitstellung von Energie für den Multiturn-Sensor verbunden. Dieser Energiespeicher wird aufgeladen, wenn der Multiturn-Sensor nicht aktiv ist. Die darin gespeicherte Energie wird bei aktivem Multiturn-Sensor von diesem aufgebraucht. In one embodiment, the at least one Wiegand wire unit is connected to a power supply rather for providing energy for the multi-turn sensor. This energy storage is charged when the multiturn sensor is not active. The stored energy is used up when the multiturn sensor is active.
In einer Variante ist der sich in einem Bereitschaftszustand und/oder Betriebszustand befin- dende Multiturn-Sensor mit einer Batteriespannung oder einer Versorgungsspannung eines Steuergerätes verbunden. Dadurch, dass die Absolutposition des Multiturn-Sensors in jedem Zustand des Multiturn-Sensors bekannt ist, kann bei Neustart des Steuergerätes mit dieser bekannten aktuellen Position des Aktors sofort eine entsprechende Kommutierung des Elektromotors erfolgen. In one variant, the multiturn sensor, which is in a standby state and / or operating state, is connected to a battery voltage or a supply voltage of a control device. Characterized in that the absolute position of the multi-turn sensor is known in each state of the multi-turn sensor, a corresponding commutation of the electric motor can be done immediately with restart of the controller with this known current position of the actuator.
Die Erfindung lässt zahlreiche Ausführungsformen zu. Eine davon soll anhand der in der Zeichnung dargestellten Figuren näher erläutert werden. The invention allows numerous embodiments. One of them will be explained in more detail with reference to the figures shown in the drawing.
Es zeigen: Show it:
Fig. 1 eine Prinzipdarstellung eines Kupplungsbetätigungssystems zur Betätigung einer automatisierten Kupplung, 1 is a schematic diagram of a clutch actuation system for actuating an automated clutch,
Fig. 2 ein erstes Ausführungsbeispiel der erfindungsgemäßen Vorrichtung mit einer Fig. 2 shows a first embodiment of the device according to the invention with a
Wiegand-Drahteinheit, Wiegand wire unit
Fig. 3 ein Ausführungsbeispiel der erfindungsgemäßen Vorrichtung mit einer Wiegand-Drahteinheit, Fig. 4 ein zweites Ausführungsbeispiel des erfindungsgemäßen Verfahrens mit zwei Fig. 3 shows an embodiment of the device according to the invention with a Wiegand wire unit, Fig. 4 shows a second embodiment of the method according to the invention with two
Wiegand-Drahteinheiten. Wiegand wire units.
In Fig. 1 ist ein Kupplungsbetätigungssystem 1 für eine automatisierte Kupplung vereinfacht dargestellt. Das Kupplungsbetätigungssystem 1 ist in einem Antriebsstrang eines Kraftfahr- zeuges einer Reibungskupplung 2 zugeordnet und umfasst einen Geberzylinder 3, der über eine als Druckleitung bezeichnete Hydraulikleitung 4 mit einem Nehmerzylinder 5 verbunden
ist. In dem Nehmerzylinder 5 ist ein Nehmerkolben 6 hin und her bewegbar, der über ein Betätigungselement 7 unter Zwischenschaltung eines Lagers 8 die Reibungskupplung 2 betätigt. In Fig. 1, a clutch actuating system 1 for an automated clutch is shown in simplified form. The clutch actuation system 1 is assigned to a friction clutch 2 in a drive train of a motor vehicle and comprises a master cylinder 3 which is connected to a slave cylinder 5 via a hydraulic line 4 designated as a pressure line is. In the slave cylinder 5, a slave piston 6 is movable back and forth, which actuates the friction clutch 2 via an actuating element 7 with the interposition of a bearing 8.
Der Geberzylinder 3 ist über eine Verbindungsöffnung mit einem Ausgleichsbehälter 9 ver- bindbar. In dem Geberzylinder 3 ist ein Geberkolben 10 axial beweglich gelagert. Eine Kolbenstange 1 1 des Geberzylinders 3 ist über eine Gewindespindel 12 mit einem elektromotorischen Stellantrieb 13 gekoppelt. Der elektromotorische Stellantrieb 13 umfasst einen als kommutierten Elektromotor ausgebildeten Elektromotor 14 und ein Steuergerät 15. Die Gewindespindel 12 setzt eine Drehbewegung des Elektromotors 14 in eine Längsbewegung des Geberkolbens 10 des Geberzylinders 3 um. Die Reibungskupplung 2 wird somit durch den Elektromotor 14, die Gewindespindel 12, den Geberzylinder 3 und den Nehmerzylinder 5 automatisiert betätigt. The master cylinder 3 can be connected to an expansion tank 9 via a connection opening. In the master cylinder 3, a master piston 10 is mounted axially movable. A piston rod 1 1 of the master cylinder 3 is coupled via a threaded spindle 12 with an electric motor actuator 13. The electromotive actuator 13 includes an electric motor 14 designed as a commutated electric motor and a control unit 15. The threaded spindle 12 converts a rotational movement of the electric motor 14 into a longitudinal movement of the master piston 10 of the master cylinder 3. The friction clutch 2 is thus automatically actuated by the electric motor 14, the threaded spindle 12, the master cylinder 3 and the slave cylinder 5.
Da es sich bei dem Elektromotor 14 um einen elektrisch kommutierten Gleichstrommotor han- delt, ist es notwendig, dessen Absolutposition für die Lageregelung des Elektromotors 14 zu kennen. Diese Absolutposition wird mit einem Multiturn-Sensor 16 detektiert. Der Multiturn- Sensor 16 ist in seinem normalen Betriebszustand mit dem Steuergerät 15 verbunden und wird von dessen Versorgungsspannung gespeist. Der Multiturn-Sensor 16 ist Bestandteil eines Chips 17, wie es in Fig. 2 dargestellt ist. Der Chip 17 ist so angeordnet, dass der Multi- turn-Sensor 16 dem Rotor des Elektromotors 14 gegenüberliegt. In Fig. 2 ist der Übersichtlichkeit halber lediglich ein Magnetelement 18 dargestellt, welches fest an einer Stirnseite des Rotors des Elektromotors 14 befestigt ist und dessen Drehbewegung folgt. Dieses Magnetelement 18 wirkt mit dem Multiturn-Sensor 16 bei der Bestimmung der Absolutposition des Elektromotors 14 zusammen. Since the electric motor 14 is an electrically commutated DC motor, it is necessary to know its absolute position for the position control of the electric motor 14. This absolute position is detected by a multi-turn sensor 16. The multi-turn sensor 16 is connected in its normal operating state to the control unit 15 and is powered by its supply voltage. The multi-turn sensor 16 is part of a chip 17, as shown in Fig. 2. The chip 17 is arranged such that the multi-turn sensor 16 faces the rotor of the electric motor 14. In FIG. 2, for the sake of clarity, only a magnetic element 18 is shown, which is fixedly attached to an end face of the rotor of the electric motor 14 and whose rotational movement follows. This magnetic element 18 cooperates with the multi-turn sensor 16 in determining the absolute position of the electric motor 14.
Das Magnetelement 18 wird dabei von einer gegenüberliegenden Wiegand-Drahteinheit 19 überwacht, welche über eine Leitung 20 mit einem Pufferkondensator 21 des Multiturn- Sensors 16 verbunden ist. Darüber hinaus ist der Multiturn-Sensors 16 mit einer Batteriespannung Ußatt gekoppelt. The magnetic element 18 is monitored by an opposite Wiegand wire unit 19, which is connected via a line 20 to a buffer capacitor 21 of the multi-turn sensor 16. In addition, the multi-turn sensor 16 is coupled to a battery voltage Ußatt.
Im Normalbetrieb des Aktors 3, 12, 13 liegt der Chip 17 an der Versorgungsspannung des Steuergerätes 15 und ermittelt den Winkel des Magnetelementes 18 und zählt dabei dessen Umdrehungen des Elektromotors 14. Diese Umdrehungen sind notwendig, um die Kommutierung des Elektromotors 14 richtig einzustellen. In normal operation of the actuator 3, 12, 13, the chip 17 is connected to the supply voltage of the control unit 15 and determines the angle of the magnetic element 18 and counts its revolutions of the electric motor 14. These revolutions are necessary to properly adjust the commutation of the electric motor 14.
Anstelle einer Energieversorgung des Multiturn-Sensors 16 durch die Versorgungsspannung des Steuergerätes 15 kann die notwendige Energie aber auch aus dem Magnetfeld des sich
drehenden Magnetelementes 18 gewonnen werden. Dies geschieht mit Hilfe der Wiegand- Drahteinheit 19. Bei der Wiegand-Drahteinheit 19 handelt es sich um einen Sensor, welcher als wesentliches Bauelement Wiegand-Drähte erhält, die durch parallele weich- und hartmagnetische Bereiche eine Hysteresekurve mit ausgeprägten Sprungstellen aufweisen, die als Wiegand-Effekt bekannt sind. Die plötzliche Änderung der Magnetisierung, welche durch die Positionsänderung des Magnetelementes 18 des Rotors des Elektromotors 14 hervorgerufen wird, induziert in einer den Drähten nahen Spule eine Spannung. Diese Spannung wird über die Leitung 20 an den Chip 17 weitergeleitet, wodurch der Multiturn-Sensor 16 mit Energie versorgt wird. Es besteht aber auch die Möglichkeit, dass aufgrund dieser Spannung der Puf- ferkondensator 21 , welcher den Multiturn-Sensor 16 mit Energie versorgt, aufgeladen wird. Instead of a power supply of the multi-turn sensor 16 by the supply voltage of the control unit 15, the necessary energy but also from the magnetic field of the rotating magnetic element 18 are obtained. This is done with the aid of the Wiegand wire unit 19. The Wiegand wire unit 19 is a sensor which receives as an essential component Wiegand wires having a parallel hysteresis curve with pronounced discontinuities due to parallel soft and hard magnetic areas Effect are known. The sudden change of the magnetization caused by the positional change of the magnetic member 18 of the rotor of the electric motor 14 induces a voltage in a coil near the wires. This voltage is forwarded via the line 20 to the chip 17, whereby the multi-turn sensor 16 is energized. However, there is also the possibility that, due to this voltage, the buffer capacitor 21, which supplies the multiturn sensor 16 with energy, is charged.
Da das Magnetelement 18 zweipolige Magnete enthält, ist die Magnetänderung, die durch die Wiegand-Drahteinheit 19 gemessen wird, sehr gering, was nicht immer zum Betrieb des Multi- turn-Sensors 16 ausreicht. Aus diesem Anlass ist die Wiegand-Drahteinheit 19 so angeordnet, dass sie direkt den Hauptmagneten 22 des Elektromotors 14 gegenüberliegt (Figur 3). Durch die Polübergänge der Hauptmagnete 22 wird ein stärkeres Magnetfeld initiiert, wodurch mehr Energie über eine Drehung von 360° bereitgestellt wird, die zur autarken Versorgung des Mul- titurn-Sensors 16 zur Messung des Winkels des Elektromotors 14 genutzt werden kann. Bei abgeschaltetem Aktor 2, 12, 13 ist eine solche, von der Wiegand-Drahteinheit 19 bereitgestell- te Energie zur Aufladung des Pufferkondensators 21 nutzbar. Dabei wird der Rotor des Elektromotors 14 vor dem Messvorgang um einen definierten Winkelbereich gedreht, um ausreichend Energie im Pufferkondensator 21 zu speichern. Since the magnetic element 18 contains two-pole magnets, the change in the magnet measured by the Wiegand wire unit 19 is very small, which is not always sufficient for the operation of the multi-turn sensor 16. On this occasion, the Wiegand wire unit 19 is arranged so as to directly face the main magnet 22 of the electric motor 14 (FIG. 3). The pole transitions of the main magnets 22, a stronger magnetic field is initiated, whereby more energy over a rotation of 360 ° is provided, which can be used for self-sufficient supply of the multi-turn sensor 16 for measuring the angle of the electric motor 14. When the actuator 2, 12, 13 is switched off, such energy provided by the Wiegand wire unit 19 can be used to charge the buffer capacitor 21. In this case, the rotor of the electric motor 14 is rotated by a defined angular range before the measurement process in order to store sufficient energy in the buffer capacitor 21.
Wie aus Fig. 4 hervorgeht, können aber auch mehrere Wiegand-Drahteinheiten 19.1 , 19.2 zur Aufladung des Pufferkondensators 21 gegenüberliegend den Hauptmagneten 22 des Elektromotors 14 angeordnet sein, wodurch mehr Energie aus dem Magnetfeld des sich drehenden Rotors des Elektromotors 14 gewonnen wird. In einer besonders einfachen Ausführung ist die mindestens eine Wiegand-Drahteinheit 19 integraler Bestandteil des Elektromotors 14 und muss nicht separat gegenüber dem Rotor des Elektromotors (14) justiert werden.
Bezugszeichenliste As is apparent from Fig. 4, but also several Wiegand wire units 19.1, 19.2 may be arranged to charge the buffer capacitor 21 opposite the main magnet 22 of the electric motor 14, whereby more energy is obtained from the magnetic field of the rotating rotor of the electric motor 14. In a particularly simple embodiment, the at least one Wiegand wire unit 19 is an integral part of the electric motor 14 and does not need to be adjusted separately from the rotor of the electric motor (14). LIST OF REFERENCE NUMBERS
1 Kupplungsbetätigungssystem 1 clutch actuation system
2 Reibungskupplung 2 friction clutch
3 Geberzylinder 3 master cylinders
4 Hydraulikleitung 4 hydraulic line
5 Nehmerzylinder 5 slave cylinders
6 Nehmerkolben 6 slave pistons
7 Betätigungselement 7 actuator
8 Lager 8 bearings
9 Ausgleichsbehälter 9 expansion tank
10 Geberkolben 10 masterbatches
11 Kolbenstange 11 piston rod
12 Gewindespindel 12 threaded spindle
13 Stellantrieb 13 actuator
14 Elektromotor 14 electric motor
15 Steuergerät 15 control unit
16 Multiturn-Sensor 16 multi-turn sensor
17 Chip 17 chip
18 Magnetelement 18 magnetic element
19 Wiegand-Drahteinheit 19 Wiegand wire unit
20 Leitung 20 line
21 Pufferkondensator 21 buffer capacitor
22 Hauptmagnete 22 main magnets
23 Diode
23 diode
Claims
1. Verfahren zur Absolutpositionsbestimmung eines sich um eine Drehachse drehenden Bauteiles eines Aktors, insbesondere eines Kupplungsaktors, wobei an dem Bauteil (14) ein mitdrehendes Magnetelement (18) angeordnet ist, und die Absolutposition des Magnetelementes (18) mit einem dem Magnetelement (18) gegenüberliegenden Multi- turn-Sensor (16) ermittelt wird, der mit einer Spannung versorgt wird, dadurch gekennzeichnet, dass eine Wiegand-Drahteinheit (19) eine Bewegung einer Magnetanordnung (18, 22) des sich drehenden Bauteiles (14) überwacht und bei detektierter Bewegung aus dem Magnetfeld der Magnetanordnung (18, 22) des sich drehenden Bauteiles (14) Energie generiert und diese in eine elektrische Spannung umwandelt, welche zur Spannungsversorgung des Multiturn-Sensors (16) bereitgestellt wird. 1. A method for absolute position determination of a rotating about a rotation axis component of an actuator, in particular a clutch actuator, wherein on the component (14) a co-rotating magnetic element (18) is arranged, and the absolute position of the magnetic element (18) with a magnetic element (18) opposite multi-turn sensor (16) is supplied, which is supplied with a voltage, characterized in that a Wiegand wire unit (19) monitors a movement of a magnet assembly (18, 22) of the rotating member (14) and when detected Movement from the magnetic field of the magnet assembly (18, 22) of the rotating member (14) generates energy and converts it into an electrical voltage, which is provided to power the multi-turn sensor (16).
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass als sich drehendes Bauteil ein den Aktor antreibender Elektromotor (14) verwendet wird, aus dessen die Magnetanordnung bildenden Hauptmagnete (22) die Wiegand-Drahteinheit (19) die Energie gewinnt. 2. The method according to claim 1, characterized in that as a rotating component, an actuator driving the electric motor (14) is used, from which the magnet assembly forming main magnets (22) wins the Wiegand wire unit (19) the energy.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Multiturn- Sensor (16) bei abgeschaltetem Aktor nach Empfang der von der Wiegand- Drahteinheit (19) übermittelten Spannung in einen Betriebszustand übergeht, in welchen dieser die aktuelle Position des Bauteiles (14) misst und abspeichert. 3. The method according to claim 1 or 2, characterized in that the multiturn sensor (16) with switched off actuator after receipt of the Wiegand wire unit (19) transmitted voltage in an operating state, in which this the current position of the component ( 14) measures and stores.
4. Verfahren nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass bei eingeschaltetem Aktor der Multiturn-Sensor (16) über eine Versorgungsspannung eines Steuergerätes (15) oder eine Batteriespannung (Ußatt) oder über die Energie der Wiegand- Drahteinheit (19) mit Spannung versorgt wird, wobei ein Winkel des Bauteiles (14) und/oder Umdrehungen des Bauteiles (14) durch den Multiturn-Sensor (16) ermittelt werden. 4. The method of claim 1, 2 or 3, characterized in that when the actuator of the multi-turn sensor (16) via a supply voltage of a control unit (15) or a battery voltage (Ußatt) or on the energy of the Wiegand wire unit (19) is supplied with voltage, wherein an angle of the component (14) and / or revolutions of the component (14) by the multi-turn sensor (16) are determined.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass mit der durch die Wiegand-Drahteinheit (19) aus dem Hauptmagneten (22) des Elektromotors (14) bereitgestellten Energie ein Energiespeicher (21) des Multiturn-Sensors (16) zum autarken Betrieb des Multiturn-Sensors (16) aufgeladen wird.
5. The method according to claim 4, characterized in that the energy provided by the Wiegand wire unit (19) from the main magnet (22) of the electric motor (14) energy storage (21) of the multi-turn sensor (16) for autonomous operation of Multiturn sensor (16) is charged.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass zur Aufladung des Energiespeichers (21) der Elektromotor (14) vor einem Messvorgang über einen vorgegebenen Winkelbereich gedreht wird. 6. The method according to claim 5, characterized in that for charging the energy store (21) of the electric motor (14) is rotated over a predetermined angular range before a measuring operation.
7. Vorrichtung zur Absolut Positionsbestimmung eines sich um eine Drehachse drehenden Bauteiles eines Aktors, insbesondere eines Kupplungsaktors, mit einem Multiturn- Sensor (16) zur Bestimmung der Absolutposition des ein Magnetelement (18) tragenden Bauteiles (14), welches der Drehbewegung des Bauteiles (14) folgt, dadurch gekennzeichnet, dass das sich drehende Bauteil (14) eine Magnetanordnung (18, 22) aufweist, welcher mindestens eine Wiegand-Drahteinheit (19) gegenüberliegend angeordnet ist, die zur Energieversorgung des Multiturn-Sensors (16) mit diesem verbunden ist. 7. A device for absolute position determination of a rotating about a rotation axis component of an actuator, in particular a clutch actuator, with a multi-turn sensor (16) for determining the absolute position of a magnetic element (18) supporting the component (14), which of the rotational movement of the component ( 14), characterized in that the rotating component (14) has a magnet arrangement (18, 22), which is arranged opposite at least one Wiegand wire unit (19), which is connected to the power supply of the multi-turn sensor (16) is.
8. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Magnetanordnung durch das auf einer Stirnseite des sich drehenden Bauteiles (14) angeordnete Magnetelementes (18) gebildet ist, wobei das Magnetelement (18) Bestandteil eines Sensors ist. 8. The device according to claim 7, characterized in that the magnet arrangement by the on an end face of the rotating member (14) arranged magnetic element (18) is formed, wherein the magnetic element (18) is part of a sensor.
9. Vorrichtung nach Anspruch 7, dadurch gekennzeichnet, dass die Magnetanordnung (22) ein integrierter Bestandteil des sich drehenden Bauteiles (14) ist. 9. Apparatus according to claim 7, characterized in that the magnet arrangement (22) is an integral part of the rotating component (14).
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass das sich drehende Bauteil als Elektromotor (14) ausgebildet ist, und die Magnetanordnung durch die Hauptmagnete (22) des Elektromotors (14) gebildet ist.
10. The device according to claim 9, characterized in that the rotating member is formed as an electric motor (14), and the magnet assembly by the main magnets (22) of the electric motor (14) is formed.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112018002898.4T DE112018002898B4 (en) | 2017-06-07 | 2018-05-15 | Method and device for determining the absolute position of a component of an actuator, in particular a clutch actuator, rotating about an axis of rotation |
CN201880033605.7A CN110651135B (en) | 2017-06-07 | 2018-05-15 | Method and device for determining the absolute position of a component of an actuator that rotates about an axis of rotation |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017112507 | 2017-06-07 | ||
DE102017112507.8 | 2017-06-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018224081A1 true WO2018224081A1 (en) | 2018-12-13 |
Family
ID=62495529
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2018/100459 WO2018224081A1 (en) | 2017-06-07 | 2018-05-15 | Method and device for determining the absolute position of a component of an actuator rotating about a rotational axis, in particular a clutch actuator |
Country Status (3)
Country | Link |
---|---|
CN (1) | CN110651135B (en) |
DE (2) | DE102018111588A1 (en) |
WO (1) | WO2018224081A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114858110B (en) * | 2022-05-09 | 2023-12-15 | 潍柴动力股份有限公司 | Detection method and device of clutch position sensor and vehicle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009034744A1 (en) * | 2009-02-24 | 2010-09-30 | Mehnert, Walter, Dr. | Absolute magnetic position sensor |
DE102011109551A1 (en) * | 2011-08-05 | 2013-02-07 | Wachendorff Automation Gmbh & Co. Kg | Measuring system for contactless measurement of positions of magnetic element for motor, determines desired curve adapted to magnetization between north and south poles of magnetic elements with respect to reference element |
DE102012008888A1 (en) * | 2012-04-30 | 2013-10-31 | Fritz Kübler GmbH Zähl- und Sensortechnik | Energy-self-sufficient multi turn rotation transducer for acquisition of number of complete 360 degree rotations of encoder shaft, has evaluation unit providing quadrant value to history buffer when resetting pulse is carried-out |
DE102013222366A1 (en) * | 2012-11-22 | 2014-05-22 | Schaeffler Technologies Gmbh & Co. Kg | Method for determining and / or controlling a position of an electric motor |
US20140184030A1 (en) * | 2012-12-28 | 2014-07-03 | II Donald P. Labriola | Integrated multi-turn absolute position sensor for high pole count motors |
DE102016212173A1 (en) | 2016-07-05 | 2018-01-11 | Schaeffler Technologies AG & Co. KG | Method and device for determining a number of revolutions and an angular position of a component rotatable about an axis of rotation |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5404301A (en) * | 1993-06-07 | 1995-04-04 | Eaton Corporation | Method and apparatus of vehicle transmission control by assured minimum pulse width |
EP2343506B1 (en) * | 2009-12-22 | 2013-06-26 | SICK STEGMANN GmbH | Length measuring device |
US8346451B2 (en) * | 2010-02-23 | 2013-01-01 | GM Global Technology Operations LLC | Realtime estimation of clutch piston position |
-
2018
- 2018-05-15 WO PCT/DE2018/100459 patent/WO2018224081A1/en active Application Filing
- 2018-05-15 CN CN201880033605.7A patent/CN110651135B/en active Active
- 2018-05-15 DE DE102018111588.1A patent/DE102018111588A1/en not_active Withdrawn
- 2018-05-15 DE DE112018002898.4T patent/DE112018002898B4/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009034744A1 (en) * | 2009-02-24 | 2010-09-30 | Mehnert, Walter, Dr. | Absolute magnetic position sensor |
DE102011109551A1 (en) * | 2011-08-05 | 2013-02-07 | Wachendorff Automation Gmbh & Co. Kg | Measuring system for contactless measurement of positions of magnetic element for motor, determines desired curve adapted to magnetization between north and south poles of magnetic elements with respect to reference element |
DE102012008888A1 (en) * | 2012-04-30 | 2013-10-31 | Fritz Kübler GmbH Zähl- und Sensortechnik | Energy-self-sufficient multi turn rotation transducer for acquisition of number of complete 360 degree rotations of encoder shaft, has evaluation unit providing quadrant value to history buffer when resetting pulse is carried-out |
DE102013222366A1 (en) * | 2012-11-22 | 2014-05-22 | Schaeffler Technologies Gmbh & Co. Kg | Method for determining and / or controlling a position of an electric motor |
US20140184030A1 (en) * | 2012-12-28 | 2014-07-03 | II Donald P. Labriola | Integrated multi-turn absolute position sensor for high pole count motors |
DE102016212173A1 (en) | 2016-07-05 | 2018-01-11 | Schaeffler Technologies AG & Co. KG | Method and device for determining a number of revolutions and an angular position of a component rotatable about an axis of rotation |
Also Published As
Publication number | Publication date |
---|---|
CN110651135A (en) | 2020-01-03 |
CN110651135B (en) | 2021-04-16 |
DE112018002898A5 (en) | 2020-02-20 |
DE112018002898B4 (en) | 2023-09-21 |
DE102018111588A1 (en) | 2018-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3271223B1 (en) | Actuating device for a motor vehicle brake | |
EP2923103B1 (en) | Method for determining and/or controlling a position of an electric motor | |
EP1896309B1 (en) | Device and method for electromechanical brake servo assistance | |
WO2013007414A1 (en) | Method, regulating and/or control unit, and parking brake having a regulating and/or control unit of said type for adjusting a parking brake in a vehicle | |
DE102013205905A1 (en) | Method and device for determining and / or controlling a position of an electric motor, in particular in a clutch actuation system of a motor vehicle | |
DE102014222335B4 (en) | Device and method for detecting an operating pressure of a fluid pump for a motor vehicle | |
DE102016212175A1 (en) | Method and device for determining and / or controlling a position of an electrically commutatable electric motor, in particular for a clutch actuation system of a vehicle | |
DE102017109403B4 (en) | Method and device for determining the absolute position of a component of an actuator, in particular a clutch actuator, rotating about an axis of rotation | |
DE102015201032B4 (en) | Steering system for automated driving of a motor vehicle | |
DE102012222545A1 (en) | Method for the vacuum supply of a pneumatic brake booster of a motor vehicle brake system | |
WO2018028739A1 (en) | Method for the mutual adjustment of a magnetic sensor device and of an actuator, and actuator device having an actuator and a magnetic sensor device | |
EP2621078B1 (en) | Method and device for operating a brushless direct-current motor when adjusting a positioning element | |
EP2346729A2 (en) | Hybrid drive system | |
DE102011007369A1 (en) | Device and method for driving a door | |
EP1619511B1 (en) | Detecting the wear of a motor drive | |
DE112018002898B4 (en) | Method and device for determining the absolute position of a component of an actuator, in particular a clutch actuator, rotating about an axis of rotation | |
DE102016107763A1 (en) | HYDRAULICALLY SUPPORTED POWER STEERING SYSTEM | |
DE102015221031B4 (en) | Method for determining a touch point and a coefficient of friction of a hybrid clutch of a hybrid vehicle | |
WO2017162232A1 (en) | Method for the adjusted fastening of a magnetic sensor device to an actuator, and actuator having an electric motor and a magnetic sensor device | |
WO2018149446A1 (en) | Sensor arrangement and method for operating a sensor arrangement for determining a position of an actuator in a motor vehicle | |
DE102015226036A1 (en) | Brake booster for a hydraulic brake system | |
WO2018166553A1 (en) | Method and device for maintaining a detected absolute position of an electric motor operating as an actuator during a critical operation | |
DE102013222718B4 (en) | Electromechanical wheel brake | |
DE102007033152A1 (en) | For the diagnosis of a direct current motor, it runs as a generator during the diagnosis time for the induced voltage to be analyzed for faults | |
DE102010033535A1 (en) | Method for operating vehicle e.g. hybrid vehicle, involves recuperating energy produced during braking of vehicle and using energy for driving internal combustion engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18728788 Country of ref document: EP Kind code of ref document: A1 |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: R225 Ref document number: 112018002898 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18728788 Country of ref document: EP Kind code of ref document: A1 |